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  Streams and associated riparian zones are among the world’s most highly valued yet 

threatened ecosystems. Interest in using the ecosystem engineering behavior of beaver to 

meet watershed conservation goals is becoming more pervasive, owing to substantive 

work documenting the physical effects of beaver impoundments on freshwater 

ecosystems. However, it is unclear how beaver modify ecological processes linking 

abiotic factors to changes in the surrounding biotic community. I investigated how beaver 

impoundments influence local food web processes, as well as impact native fish species 

threatened by nonnative invasions.  

  I showed that beaver impoundments enhanced aquatic resource availability to terrestrial 

consumers. Beaver impounded watersheds had increased densities of emerging aquatic 

macroinvertebrates and higher levels of aquatic carbon in terrestrial consumer tissues, 

resulting in higher terrestrial consumer abundances.  

  Beaver impoundments also had measurable effects on invasion dynamics between 

nonnative brook charr and native cutthroat trout populations. Brook charr are native to 

the eastern U.S., and are a key factor in native cutthroat declines in western watersheds. 

Streams with beaver had potential negative impacts for cutthroat, with higher brook charr 

densities, and increased spatial overlap between these species. In contrast, young-of-the-

year cutthroat in invaded streams maintained high growth rates with beaver present, but 

showed growth reductions without beaver. Thus beaver conveyed both negative and 

positive impacts to cutthroat trout.  

  At the population level, I found that cutthroat in the non-beaver invaded watershed 

exhibited low survival rates, negative population growth, and a short median time to 

extinction. With beaver present in invaded streams, cutthroat exhibited 40 % higher 

survival rates relative to the non-beaver control. This led to cutthroat population growth 

rates 5 – 20 % higher than in non-beaver streams, with longer median times to extinction. 

Therefore, beaver impoundments had positive implications for cutthroat persistence in 

brook charr invaded streams. 

  My research links the habitat altering effects of beaver to changing ecological processes 

that influence community and population structure of other elements of the system, with 

implications for persistence of native species. Understanding the ecosystem effects of a 

highly interactive species like beaver is crucial to predicting repercussions of using 

beaver in a restoration context. 
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CHAPTER 1 

INTRODUCTION AND OVERVIEW 

 

Freshwater streams are dynamic ecosystems, influenced by a multitude of abiotic 

and biotic factors working synergistically to define watershed habitat characteristics 

(Moore 2006). A rich body of theory, developed over the past 40 years (e.g. Junk et al. 

1989; Stanford et al. 2005; Stanford & Ward 1993; Vannote et al. 1980), has advanced 

our understanding of how physical and biological processes can control the 

characteristics of aquatic systems, resulting in a complex mosaic of heterogeneous habitat 

patches within stream watersheds. Biota that directly or indirectly regulate resource 

availability to other organisms through the modification, maintenance, or creation of 

habitats, are termed ecosystem engineers (Jones et al. 1997). When beaver (Castor spp.) 

impound water through damming and feeding behaviors, they are often considered the 

quintessential ecosystem engineer. Beaver drive an extensive watershed disturbance 

regime (McKinstry & Anderson 2002) through the creation of lentic habitat, triggering 

fundamental changes in channel geomorphology, hydrology and nutrient cycling 

(Naiman et al. 1988; Naiman & Melillo 1984; Naiman et al. 1986). Thus, beaver 

naturally perform many of the functions that we attempt to engineer during restoration of 

degraded stream ecosystems.  

Severe overexploitation of global beaver populations until the early 20
th

 century 

likely simplified many freshwater ecosystems, engendering large changes in ecological 

processes and stream habitat characteristics. Following cessation of harvest, beaver are 

again becoming abundant across their former ranges in Eurasia and North America 

(Rosell et al. 2005). Population increases of a species capable of significantly altering and 

reconnecting natural ecosystem processes is of considerable scientific and management 

interest (Rosell et al. 2005), spurring on reintroduction programs throughout Europe 

(Jones et al. 2009), and leading to the incorporation of beaver into some aquatic 

restoration plans in North America (Pollock et al. 1995).  

An intriguing facet of ecosystem engineers is their potential to link many levels of 

biological organization within an ecosystem: they can influence individuals at the 

physiological and behavioral levels, which has repercussions for populations and 
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communities, and culminates with changes at the landscape scale (Wright & Jones 2006). 

Research of beaver engineering has typically concentrated on shifts in system 

geomorphology and hydrology (Naiman et al. 1986), sediment characteristics (Rosell et 

al. 2005), and nutrient cycling (Johnston & Naiman 1990). These changes in physical 

processes have been associated with altered riparian successional dynamics, increased 

invertebrate biotic productivity, and positive effects on diversity of several animal species 

(Collen & Gibson 2001; Naiman 1994; Naiman et al. 1988; Naiman et al. 1986; Schlosser 

1995). However, less is known about how beaver influence population or community 

structuring processes that produce these patterns. Some research suggests that beaver 

ponds augment breeding habitat availability for amphibian species, thereby increasing 

occurrence (Popescu & Gibbs 2009; Stevens et al. 2007), and supporting richer 

amphibian assemblages on the landscape than without beaver ponds (Cunningham et al. 

2007). It is however, unclear how beaver regulate fundamental community processes of 

predation, competition, or resource cycling between habitats. Ecosystem engineers that 

influence key community interactions on the landscape will be important in structuring 

communities. It is therefore essential that we consider these processes through the lens of 

species assemblages (Crain & Bertness 2006). 

Establishing the effects of beaver on other components of the stream community 

allows us to assess the utility of beaver as potential restoration agents. Conservation of 

freshwater ecosystems requires a sound understanding of the biophysical linkages 

between geomorphic form, flow regime, and watershed ecology (Montgomery et al. 

2003). Watershed restoration practices seek to reconnect physical and biotic linkages 

across habitats, in order to sustain intact and functioning food webs, and to promote the 

persistence of native species in the face of invasive species (Jackson et al. 1995; 

Montgomery et al. 2003).  

Management efforts using beaver should be based on a sound scientific 

understanding of the ecological mechanisms operating within the system. Beaver are 

naturally a ubiquitous element of most Holarctic freshwater ecosystems and as such 

identifying their role in ecological processes that may influence conservation of these 

ecosystems is highly desirable. I therefore set out to elucidate the impacts of beaver 

activity on aspects of freshwater ecosystems of immediate conservation concern. I 
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specifically examined two pressing issues. In Chapter 2, I examined the influence of 

beaver on stream invertebrate composition, emergence, and nutrient subsidization of 

terrestrial systems. In Chapters 3 and 4, I mechanistically examined how beaver affect the 

habitat, stream distribution, and individual and population impacts to native fish species 

in the face of exotic invasions.   

The basic components of food webs—nutrients, detritus, and organisms—

naturally span spatial boundaries (Polis et al. 1997). It is well established that 

allochthonous inputs of terrestrial organic matter act to subsidize stream systems (e.g. 

England & Rosemond 2004), with major impacts on freshwater biotic productivity and 

biodiversity (Naiman et al. 1986; 1988; France 1997; Collen and Gibson 2001). Stream 

aquatic nutrients have also been shown to seasonally subsidize terrestrial food webs 

(Baxter et al. 2005; Nakano & Murakami 2001). Ecologists recognize the importance of 

energy and nutrient transfers across system boundaries (Polis et al. 1997), which can lead 

to an increased diversity and abundance of consumers in receiving systems (e.g. Baxter et 

al. 2004; Power 2001; Stapp & Polis 2003). Using stable isotopes of carbon and nitrogen, 

studies have demonstrated that terrestrial habitats with a relatively poor resource base can 

support higher densities of terrestrial consumers in the presence of stream and marine 

subsidy than would otherwise be possible (e.g. Darimont & Reimchen 2002; Hilderbrand 

et al. 1999; Roth 2003; Stapp & Polis 2003). In Chapter 2, I describe the mechanisms by 

which beaver impoundments change nutrient dynamics and terrestrial community 

structures through enlargement of aquatic resource sheds. Specifically, I found that 

beaver ponds produced substantially higher emergence densities of aquatic 

macroinvertebrates relative to non-beaver stream sites, and that these served as link 

organisms, enlarging the spatial extent of aquatic resources by dispersing more aquatic 

nutrients, farther into the terrestrial food web. 

In addition to shaping terrestrial communities, beaver impoundments may alter 

aquatic communities. For the second part of my dissertation, I examined the role that 

beaver play in fish invasion ecology. The effects of beaver impoundments on fish 

assemblages can be highly variable among and within regions, with results affected by 

beaver pond age, position in the watershed, the original (pre-beaver) conditions and fish 

species present (Collen & Gibson 2001; Snodgrass & Meffe 1998). Hence, patterns and 
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mechanisms associated with how beaver influence fish community structure, abundance 

and distribution are unclear. Formation of pool habitat may increase water temperatures, 

prey availability to fish, and juvenile rearing habitat for many species, with important 

effects on diversity, growth rates, and relative abundance of species such as Atlantic 

salmon (Salmo salar), brook charr (Salvelinus fontinalis), brown trout (Salmo trutta), and 

minnows (Phoxinus phoxinus) (Hagglund & Sjoberg 1999; Scruton et al. 1998). In 

addition, beaver have been shown to provide critical winter habitat for sensitive stream 

fishes including cutthroat trout (Oncorhynchus clarkii) and bull trout (Salvelinus 

confluentus) (Jakober et al. 2000). However, these positive changes in stream habitat 

structure for native fish species may also benefit exotic species, fuelling fears that beaver 

could exacerbate the severity of nonnative freshwater invasions. Introduced fishes that 

become invasive are one of the most serious threats to native fish populations (Allan & 

Flecker 1993; Peterson & Fausch 2003). Brook charr, a native of eastern North America, 

were introduced into western watersheds during the 19
th

 century, and have subsequently 

expanded throughout western montane coldwater streams (Kennedy et al. 2003). In many 

parts of the inland western United States brook charr invasions, in conjunction with 

habitat destruction and genetic introgression with exotic rainbow trout (Oncorhynchus 

mykiss), have resulted in the extirpation of cutthroat trout from at least 95% of their 

historic ranges (Kennedy et al. 2003; Young 1995). In Montana’s streams, water 

temperature, fine sediment, and the abundance of pools and woody debris have all been 

correlated with brook charr invasion, and the concomitant displacement of westslope 

cutthroat trout (Shepard 2004). These habitat factors implicate the presence of beaver in a 

watershed as facilitators of brook charr invasion.  

It is well documented that brook charr tend to monopolize lower stream 

elevations, displacing cutthroat to colder refuges in colder headwater reaches of invaded 

watersheds (Dunham et al. 2002; Fausch 1989; Paul & Post 2001; Rieman et al. 2006). 

Indeed, many of the remaining cutthroat populations within the upper Missouri basin are 

now isolated in high elevation headwater habitats (Shepard et al. 1997). Gradual 

upstream declines in growth rates associated with declining water temperatures may 

define the upstream limit for brook charr invasions of coldwater stream systems (Adams 

1999). However, beaver ponds may allow brook charr to circumvent their upstream 
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minimum temperature threshold through provision of warmer habitats, particularly in 

middle and higher elevations of montane streams (Adams 1999). Thus beaver ponds 

could function as reproductive source areas from which to colonize high elevation, colder 

sink sections of watersheds (Schlosser 1995). In addition to altering the invasion success 

of brook charr, beaver ponds may influence the outcome of species interactions between 

cutthroat and brook charr. If beaver pond habitat increases brook charr abundance and 

distribution in a stream, then their negative impacts on westslope cutthroat may be larger. 

Increased temperature has also been implicated in enhancing the ability of brook charr to 

outcompete cutthroat trout (De Staso III & Rahel 1994; Novinger 2000). Therefore if 

beaver ponds increase stream temperature to a degree that has been shown to affect the 

interspecific competitive ability of cutthroat trout with brook charr (Thomas 1996), this 

may confer brook charr with a greater competitive advantage. Chapter 3 examines how 

beaver mediate the effects of brook charr invasion on cutthroat trout stream distributions 

and somatic growth rates. I found that in watersheds with beaver impoundments, 

cutthroat trout exhibited increased stream distributions and higher somatic growth rates. 

Chapter 4 expands upon these observed differences in cutthroat distributions and growth 

rates, exploring how beaver alter the impacts of brook charr invasion on cutthroat trout 

demography and extinction risk. Cutthroat populations in beaver streams had higher 

survival rates, higher growth rates, and hence reduced extinction risk relative to a non-

beaver control.  

There are therefore myriad ramifications of beaver activity for freshwater 

ecosystems, and several of these have been used to justify their active transplantation into 

degraded ecosystems of the Pacific northwest (Pollock et al. 1995). This represents a 

cost-effective and innovative watershed management strategy, perhaps offering a more 

environmentally benign and sustainable method of mitigating wetland loss in the face of 

declining annual streamflow (Luce & Holden 2009) and ultimately a changing climate 

(Hood & Bayley 2008). However, we must inform management actions using a sound 

scientific understanding of how such systems operate so that we maintain environmental 

quality and functional food webs, without exacerbating threats from exotic species. My 

dissertation therefore addresses deficiencies in our understanding of the role that beaver 

disturbance plays in these basic ecosystem processes of conservation relevance.  
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CHAPTER 2 

BEAVER EXPAND AQUATIC CARBON RESOURCE SHEDS 

 

Abstract 

Fluxes of resource subsidies between aquatic and terrestrial habitats can be modified by 

disturbance events, producing measurable effects on consumer dynamics in receiving 

systems. Beaver (Castor canadensis) considerably alter stream habitat characteristics and 

aquatic resource availability. However, it is unclear how the quantity and areal dispersal 

(resource shed) of aquatic nutrients translate to terrestrial systems. I examined how 

beaver influence macroinvertebrate emergence patterns, and determined impacts on focal 

terrestrial consumers. I examined differences in abundance and community composition 

of aquatic macroinvertebrates, as well as differences in the abundances of focal terrestrial 

consumers (Lycosid spiders and Peromyscus maniculatus) between beaver and non-

beaver sites. I used stable isotope analysis to identify feeding relationships at these sites, 

and to track the flow of carbon from autotrophs to heterotrophic consumers. Beaver 

systems had higher abundances and emergence densities of Diptera and Trichoptera than 

non-beaver sites. Beaver sites also had 55 % and 75 % higher abundances of Lycosids 

and P. maniculatus, respectively. Lycosids showed enrichment in aquatic carbon 75 % 

further from the water’s edge at beaver sites. I document how beaver habitat modification 

enhances macroinvertebrate abundances and emergence distances from the water’s edge, 

leading to increased subsidization of focal terrestrial consumers. This work defines a 

novel example of a ubiquitous agent of landscape disturbance leading to alterations in 

nutrient subsidies in small stream ecosystems. I demonstrate that beaver have a major 

role in ecosystem functioning, providing direction for management efforts that seek to 

maintain natural ecosystems in the face of drying climatic conditions.  

 

 

 

 

 

 



 7 

Introduction 

 

The importance of allochthonous subsidization of aquatic biota is well 

documented (Cummins et al. 1973; Eberle & Stanford 2009; Fisher & Likens 1973; 

Mason & MacDonald 1982; Nakano et al. 1999; Wallace et al. 1997, 1999), and is a 

crucial component of early models of longitudinal biotic and abiotic gradients in river 

systems (Vannote et al. 1980). As our conceptual understanding of aquatic systems has 

developed (see Junk et al. 1989; Stanford et al. 2005; Stanford & Ward 1993), it has 

become clear that nutrient subsidies are not unidirectional, but rather follow 

omnidirectional resource gradients (e.g. Nakano & Murakami 2001). This has led to a 

burgeoning body of research elucidating the importance of reciprocal energy transfers 

between aquatic and terrestrial food webs, which have the capacity to influence growth 

rates, population sizes, and community structure of receiving systems (e.g.,  Baxter et al. 

2005; Baxter et al. 2004; Burdon & Harding 2008; Darimont & Reimchen 2002; Gray 

1993; Hilderbrand et al. 1999; Iwata et al. 2003; Kato et al. 2003; Nakano & Murakami 

2001; Power 2001; Richardson et al. 2009; Roth 2003; Stapp & Polis 2003). Trans-

ecotone fluxes inextricably bind aquatic and terrestrial habitats together, and disruption or 

alteration of these fluxes are likely to propagate widely throughout the linked food webs.   

Research is beginning to elucidate the role of ecological disturbances in mediating 

trans-ecotone fluxes. Disruption of subsidies has been associated with several 

anthropogenically related disturbances. For instance, exotic species invasions can 

intercept terrestrial subsidies to aquatic habitats, leading to trophic cascades that 

ultimately reduce riparian consumer densities (Baxter et al. 2004), as well as 

fundamentally changing terrestrial nutrient dynamics and hence influencing plant 

productivity and composition (Maron et al. 2006). Deforestation has been shown to 

weaken terrestrial-aquatic linkages through reductions in allochthonous organic material 

entering the aquatic system, which support native stream food webs (England & 

Rosemond 2004). In a similar fashion, natural flood disturbance has been shown to 

influence cross-habitat nutrient flux. Varying flood magnitude modifies the degree of 

aquatic prey subsidization to riparian fishing spiders, whereby a trade-off between spider 

habitat quality (which increases with high magnitude flood) and subsidy availability 
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(highest at low flood magnitude) causes fishing spiders to attain peak biomass at 

intermediate levels of disturbance (Greenwood & McIntosh 2008). Whilst there are 

relatively few known examples of natural disturbance influencing cross-habitat nutrient 

flux, it is likely that other periodic disturbances affect this integral component of 

ecosystem dynamics.  

As a ubiquitous and strongly interactive element on the North American 

continent, beaver (Castor canadensis) drive a natural disturbance regime that has the 

potential to have large effects on these nutrient fluxes. Beaver feeding and dam-building 

behaviours have considerable effects on freshwater ecosystems (Collen & Gibson 2001; 

McKinstry & Anderson 2002). Beaver dams create lentic habitat in otherwise lotic 

systems, increasing landscape heterogeneity (Johnston & Naiman 1990) by driving 

changes in channel geomorphology and hydrology (Naiman et al. 1986), sediment 

characteristics (Rosell et al. 2005), and nutrient cycling (Coleman & Dahm 1990). These 

effects have been found to enhance algal production (Coleman & Dahm 1990), and 

modify riparian vegetation structure and dynamics (McKinstry & Anderson 2002). In 

addition to impacting riparian successional processes, and hence the structure and species 

composition of riparian plant communities (e.g.,  Huntly 1995), beaver have numerous 

other and far-reaching effects in the terrestrial ecosystem (for a full review see Rosell et 

al. 2005). For example, increased production of cottonwood (Populus spp.) chemical 

defence compounds through beaver feeding counterintuitively acts to stimulate terrestrial 

leaf beetle (Chrysomela confluens) production (Martinsen et al. 1998). Beaver also shape 

the dynamics of many bird species through the provision of high levels of invertebrate 

production (McKinstry et al. 2001), cover, and habitat (Carr 1940).  

In ponds formed by beaver, macroinvertebrate community structure transitions 

from lotic to lentic assemblages (Harthun 1999; Margolis et al. 2001; McDowell & 

Naiman 1986; Sprules 1941), whilst invertebrate communities associated with the dam 

structure itself can exhibit assemblages typical of a more free-flowing environment 

(Clifford et al. 1993). Indeed, diversity of invertebrate fauna can be highest in the dam 

structure relative to adjacent lotic and beaver pond habitats of the stream, with beaver 

dams in Germany exhibiting median invertebrate emergence densities 3.2 and 5.5 times 

higher than in stream and pond sections respectively (Rolauffs et al. 2001). However, it is 
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unknown how these increases in macroinvertebrate emergence densities influence trans-

ecotone subsidies to the terrestrial system.   

The areal extent to which resources disseminate from a given source are defined 

as their “resource shed”. The cross-habitat movement of aquatic resources via 

macroinvertebrates provides an intuitive mechanism for how aquatic productivity, altered 

by beaver activity, may change the size of aquatic resource sheds. The goals of this study 

were to ascertain how beaver disturbance affects trans-ecotone transport of aquatic 

carbon via aquatic invertebrates, and to measure concomitant changes in terrestrial 

consumer food sources and biomass. I tracked aquatic carbon flow through focal species 

(Figure 2.1) to assess how prominent members of the terrestrial food web may be 

influenced by beaver disturbance. Insectivorous wolf spiders (family Lycosidae) provided 

an abundant and easily captured taxon that have been shown to be important terrestrial 

consumers of aquatic macroinvertebrate prey (e.g. Paetzold et al. 2005). Similarly, 

omnivorous deer mice (Peromyscus maniculatus) were targeted due to their prominent 

role in terrestrial food webs. In addition to being a major prey item, voracious seed 

predators, and disease reservoir (Pearson & Callaway 2006), these rodents are also highly 

mobile and have a great reproductive potential, making them potentially important 

vectors of inland transport of aquatic nutrients (Stapp & Polis 2003). Delineating how 

beaver disturbance influences these focal species is an important step towards 

understanding how broader communities are structured on the landscape in the presence 

of this keystone species. I investigated the hypothesis that beaver-created wetlands 

increase nutrient subsidization of the terrestrial system compared with unmodified stream 

sections. By comparing non-beaver and beaver sites, I addressed the following specific 

questions: 

(1) Do beaver sites exhibit different aquatic invertebrate emergence patterns, 

in terms of community composition and abundance? 

(2) Do focal terrestrial consumers ingest more aquatically derived carbon at 

beaver sites, and are there differences in the scale of aquatic resource 

sheds?  

(3) Are abundances of focal terrestrial consumers higher at beaver sites? 
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Methods 

 

Study sites 

I studied three beaver (B), and three non-beaver (NB) sites in the Beaverhead-

Deerlodge National Forest. Beaver pond sites were located in the upper Ruby River (B) 

(UTM: 12T 420882E 4969250N), and at two sites on Seymour Creek (B1 – UTM: 12T 

330758E 5095795N; B2 – UTM: 12T 328939E 5097955N). Beaver sites were selected to 

include a simple beaver complex, comprising a single main dam impounding a discrete 

single pond with no lateral areas of standing water. I also chose non-beaver control sites 

that had no current discernible signs of beaver activity in the upper Ruby River (NB) 

(UTM: 12T 420695E 4969329N), Coal Creek (NB) (UTM: 12T 421560E 4966490N), 

and Twelvemile Creek (NB) (12T 336795E 5094675N). Given home range size and 

terrestrial dispersal behaviours of the taxa central to this study (aquatic 

macroinvertebrates (see Bilton et al. 2001), Lycosid spiders (Kuenzler 1958), 

Peromyscus maniculatus (Abramson et al. 2006)), I ensured independence among sites 

by selecting sites greater than 2 km from each other. All study streams were 

approximately the same size and gradient at study sites, and had abundant salmonid 

populations (Ruby River and Coal Creek: Oncorhynchus clarkii lewisi, Thymallus 

arcticus, and Seymour Creek and Twelvemile Creek: O. clarkii lewisi, Salvelinus 

fontinalis).  

Aquatic sampling at each site was designed to elucidate isotopic signatures of 

primary production at each site, as well as isotopic signatures and abundance estimates of 

aquatic invertebrates. I established three terrestrial transects at each site, along which I 

sampled vegetation, Lycosid spider, and P. maniculatus individuals for isotope analysis 

and abundance estimates (Figure 2.2).  

 

Vegetation sampling 

 To establish baseline carbon isotopic signatures (!
13

C) of each habitat type, 

vegetation was sampled at Coal Creek and Ruby River sites from 06-Jul-2005 to 08-Jul-

2005. Seymour Creek and Twelvemile Creek were sampled during the period 02-Aug-

2005 to 06-Aug-2005. I stratified the water body at each site, collecting aquatic 
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vegetation from 5 random points along the margins (within 1 m of the bank) as well as at 

5 random points in the channel (Figure 2.2). Where they occurred, I collected biofilm, 

filamentous algae, and macrophytes. I collected terrestrial vegetation at each site along 

three transects extending away from the water body (Figure 2.2). I placed 1 m
2
 quadrats 

every 10 m along each transect up to 100 m. Vegetation in quadrats were identified to the 

genus level, and representative samples of each were removed.  

 

Aquatic macroinvertebrate sampling 

I sampled aquatic macroinvertebrates, during the periods of 06-Jul-2005 to 08-

Jul-2005 in Coal Creek and Ruby River and 02-Aug-2005 to 06-Aug-2005 in Seymour 

Creek and Twelvemile Creek. I used kick net sampling (using a D-net, mesh size: 500 

µm) at non-beaver sites, and D-net (mesh size: 500 µm) sweeps at beaver sites to collect 

macroinvertebrates from 10 random 1 m
2 
points. To initially quantify macroinvertebrate 

emergence, I used terrestrial light traps (CDC Miniature Light Trap Model 512) situated 

at 0 m and 100 m on each of the three transects at each site (Figure 2.2). To ensure light 

traps characterized consistent patterns of aquatic invertebrate emergence, I also sampled 

aquatic invertebrates during the period of 01-Jun-2007 to 29-Jun-2007, using three 

randomly placed floating emergence traps (effective capture area: 400 cm
2
) (Cushman 

1983) at each site. The emergence traps were checked at weekly intervals. Captured 

macroinvertebrates were collected and traps were reset. Whole invertebrate specimens 

from each of these sampling methods were preserved in 75% ethanol and returned to the 

laboratory, where they were dried for 48 hours at 50 °C, and sorted to order or family. 

To estimate relative macroinvertebrate abundances from D-net samples, I 

averaged counts of each taxon from the ten 1 m
2
 sample points at each site. Counts of 

each taxa captured by the three emergence traps at each site were averaged, scaled to 

number caught per square meter, and expressed as the number caught per day. 

Invertebrates captured by light traps at 0 and 100 m from the water’s edge were 

expressed in terms of the number of different individuals captured per unit trapping effort 

(CPUE) (Equation 1). Estimates were calculated separately for each transect, then 

averaged among the three transects to obtain an average abundance for each site. 
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Trapping effort was therefore 3 trap nights per distance point (0 and 100 m) per transect 

(based on 1 trap, set for 3 days).  

 

! 

CPUE =
captures

trapnights
"100        Equation 1 

  

Terrestrial Lycosid sampling 

I sampled Lycosid spiders using two pitfall traps at each trapping point at 5 m 

intervals from 0 – 50 m along the three 100 m stream-to-upland transects. To ensure that 

truly terrestrial Lycosid signatures were established, pitfall traps at 100 m were 

positioned on each transect. Lycosid trapping occurred 06-Jul-2005 to 08-Jul-2005 at 

Coal Creek and Ruby River and 02-Aug-2005 to 08-Aug-2005 at Seymour Creek and 

Twelvemile Creek. Traps were checked daily, captured spiders removed, and traps reset. 

Spiders were stored in dry, cold for return to the laboratory. To estimate the relative 

abundance of Lycosid spiders within 100 m of the aquatic-terrestrial ecotone at each site, 

I used the number of individuals captured per unit trapping effort (CPUE) as an index of 

abundance (Equation 1) for each transect, then averaged across transects to obtain an 

average site abundance. Trapping effort was therefore 33 trap nights per transect (based 

on 11 traps, set for 3 days).  

 

P. maniculatus sampling 

 I used 30 Sherman live-traps arranged along each of the three stream-to-upland 

transects at each site to derive isotopic signatures and abundance of P. maniculatus. Two 

traps, baited with sunflower seeds, were located at each transect point. Trap points were 

spaced at 5 m intervals along the first 50 m of each transect, then at 10 m intervals up to 

100 m from the water’s edge. 

Traps were set for three-consecutive nights at all sites. I baited traps each evening 

with sunflower seeds, and closed them each morning to reduce trapping mortality rates. I 

collected a 2 – 3 mm piece of tail tissue from each new capture for stable isotope 

analysis, following protocols approved by the Institutional Animal Care and Use 

Committee at the University of Montana. All captured individuals were released 
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immediately at their location of capture. Tail tissue samples consisting of bone, cartilage, 

and skin were stored in cold dry conditions for return to the laboratory.  

To estimate relative P. maniculatus abundance within 100 m of the aquatic-

terrestrial ecotone at each site, I used the number of unique captures per unit effort on 

each transect to calculate a relative abundance index. To account for sprung traps, and 

thus a loss of trapping effort, I used a corrected index (CPUEcorrected) (Cunningham & 

Moors 1996). Total trapping effort on each transect was 102 trap nights (based on 30 

traps, set for 3 nights). Half a night was subtracted for each sprung trap (whether it had 

captured an animal or not) based on the assumption that it had been sprung for at least 

half a night (Equation 2). The index was calculated separately for each transect, then 

averaged among the three transects to obtain the average abundance at each site. I 

averaged P. maniculatus abundances at each site and grouped them according to the 

presence/absence of beaver.  

!

! 

CPUEcorrected =
captures

trapnights"
sprung traps

2

#100  ! ! ! Equation 2!

 

Isotope analysis 

In the laboratory, I dried all vegetation and consumer samples at 50°C for 48 

hours. I sub-sampled dried aquatic and terrestrial vegetation by randomly selecting at 

least 3 samples of all vegetation types from each site. Dried samples were ground to 

powder, and 2 – 3 mg of vegetation, and 1 mg of aquatic invertebrates, Lycosid spiders, 

and P. maniculatus were measured into tin capsules (Costech Analytical Technologies, 

Inc.) for isotopic analysis.  

I conducted isotopic analysis on samples from two beaver (Ruby River – B and 

Seymour Creek – B1) and two non-beaver sites (Ruby River – NB and Coal Creek – 

NB). Dried and ground samples of vegetation, invertebrates, and small mammals from 

these sites were sent to the UC Davis Stable Isotope Facility for analyses. Samples were 

analyzed for natural abundances of 
13

C and 
15

N using a PDZ Europa ANCA-GSL 

elemental analyzer interfaced with a PDZ Europa 20-20 isotope ratio mass spectrometer 

(Sercon Ltd. Cheshire, UK).  
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Stable isotope composition of analyzed samples were expressed as ! values, 

which refers to the difference in parts per thousand (‰) between the isotopic ratio of the 

sample and that of a standard (PeeDee Belemnite formation for C and atmospheric 

nitrogen for N): 

 

! 

"13Cor"15N =
Rsample # Rstandard

Rstandard

$1000       Equation 3 

 

The !
13

C and !
15

N values of the aquatic and terrestrial resource base, as well as 

aquatic invertebrates, Lycosid spiders, and P. maniculatus were averaged and associated 

variances calculated. To determine how Lycosids and P. maniculatus utilized carbon 

from aquatic versus terrestrial primary sources at each site, I used a two source mass 

balance mixing model for carbon isotopes (Equation 4) (Phillips and Koch 2002) to 

calculate the proportional contribution of aquatic carbon to Lycosids and P. maniculatus, 

extending from 0 – 100 m from the water’s edge at each site.  

 

!
13

CM = fX(!
13

CX + "
13

Ctissue-X) + fY(!
13

CY + "
13

Ctissue-Y);   Equation 4 

1 = fX + fY            

 

where:  

X = Aquatic vegetation isotope signature   

Y = Terrestrial vegetation isotope signature 

M = mixture (consumer) 

ƒ = proportion of C mass from a food source 

"
13

Ctissue-X = trophic fractionation (approximately 1 ‰ for C) 

 

One-way Analysis of Variance (ANOVA) and Tukey’s HSD post-hoc pairwise 

comparisons were used to determine how proportional aquatic tissue carbon of terrestrial 

consumers changed with distance from the water’s edge for each site individually. The 

percent aquatic tissue carbon signature at the trapping point closest to the water’s edge 

was used as a baseline to which all other distance signatures were compared using 
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Tukey’s HSD pairwise comparisons. To evaluate how beaver activity and distance 

influenced the proportion of aquatic carbon in P. maniculatus and Lycosid spider tissues 

at beaver versus non-beaver sites, I grouped the data according to beaver presence, and 

used univariate nested ANOVA to assess aquatic carbon tissue proportions within 35 m 

of the water’s edge for Lycosids and within 100 m for P. maniculatus (distance 

thresholds derived from one-way ANOVA above). Beaver presence/absence was treated 

as a fixed factor, with transect nested within this as a random factor.  

 

Results 

 

Vegetation  

Isotopic signatures 

Macrophytes and filamentous algae constituted the aquatic basal resource base, 

and I assumed that their !
13

C represented 100% autochthonous organic carbon. Aquatic 

primary production at each site was considerably enriched in 
13

C compared with 

terrestrial primary productivity (Figure 2.3), which was derived from dominant terrestrial 

vegetation: Salix spp., Poaceae spp., Artemisia tridentata, Lupinus spp., Achillea 

millefolium, Fragaria virginiana, Potentilla spp.  

 

Aquatic macroinvertebrates 

Abundances 

 Of the five macroinvertebrate taxa captured in their nymphal form using D-net 

sampling, all exhibited significant differences in abundance between beaver and non-

beaver sites (Figure 2.4a). Ephemeroptera dominated non-beaver sites, comprising 45 – 

50 % of the overall communities at these sites, compared with 2 – 5 % at beaver sites (t = 

5.85, P = 0.004). Plecoptera were also more common in non-beaver environments (t = 

7.07, P = 0.002) constituting 15 – 20 % of the community. Contrastingly, I found 

significantly higher abundances of nymphal Diptera (t = -16.52, df = 4, P < 0.001) and 

Trichoptera (t = -6.04, df = 4, P = 0.004) at beaver ponds relative to non-beaver sites, 

with approximately 3- and 7-fold more individuals per unit area, respectively. I also 

found that Odonata comprised between 7 – 14 % of nymphal macroinvertebrate taxa at 
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beaver sites, whilst Ephemeroptera nymphs were a minor community component at 

beaver sites (2 – 9 %).  

 I quantified relative differences in emerging macroinvertebrate abundances 

between beaver and non-beaver sites using emergence traps to capture three taxa present 

at both site types (Figure 2.4b). Based on these taxa, I found that overall daily emergence 

rates from beaver ponds were 3.5 times higher than at non-beaver sites. Approximately 

twice as many Ephemeroptera emerged per day at beaver sites (t = -4.94, df = 4, P = 

0.008). At the non-beaver sites, Trichoptera emerged at 3 times the rate at beaver sites (t 

= -4.90, df = 4, P = 0.008), and Diptera at almost 4.5 times (t = -4.95, df = 4, P = 0.008) 

the rates of non-beaver sites. 

 In the case of airborne, adult aquatic invertebrates, I found no differences in 

Ephemeroptera or Plecoptera abundances at distances of 0 and 100 m of the water’s edge, 

between beaver and non-beaver sites (Figures 2.4c and 2.4d). However, Diptera were 

considerably more numerous at beaver sites, with around 4 times the number 

immediately adjacent to the beaver pond (t = -4.77, df = 4, P = 0.009), and twice as many 

at 100 m (t = -2.96, df = 4, P = 0.04). Trichoptera exhibited even larger differences in 

abundance at beaver sites, with approximately 5.5 times the number at non-beaver areas 

(t = -2.99, df = 4, P = 0.04). Whilst more Trichoptera individuals were captured 100 m 

from the water’s edge at beaver sites (Figure 2.4d), these were not statistically different 

from non-beaver sites (t = -0.90, df = 4, P = 0.42).  

 

Isotopic signatures 

Five taxonomic groups of aquatic macroinvertebrates were used for stable isotope 

analysis (Figure 2.3). These represented over 95% of the total insect biomass found at 

each site, and comprised taxa likely to be important in the transfer of energy across the 

ecotone boundary. Overall, !
13

C values of Ephemeroptera (grazers) reflected the values 

of aquatic primary productivity, whilst Plecoptera and Trichoptera (detritivores) exhibited 

strong terrestrially derived !
13

C values. Diptera (predominantly comprised of Simuliidae, 

Culicidae Chironomidae (filter feeders)) exhibited !
13

C values intermediate between 

aquatic and terrestrial basal resource values. However, Dipterans at beaver sites were 

approximately 18 % more enriched in !
13

C than in non-beaver sites, implying a larger 
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contribution of aquatic carbon to Dipteran production at beaver pond sites. Similarly, 

Odonata, which were found only at beaver sites, also exhibited intermediate !
13

C 

signatures. 

 

Focal terrestrial consumers 

Isotopic signatures 

Within each site, Lycosid spiders and P. maniculatus exhibited similar !
13

C 

signatures, and these showed enrichments in !
13

C at beaver sites, indicating increased 

importance of aquatic carbon resources, likely the result of increased reliance on 

Dipterans and Ephemeropterans (Figure 2.3).  

 

Abundances 

 I found that relative abundances of Lycosid spiders and P. maniculatus were 

positively related to beaver presence, with approximately 55 % and 75 % higher 

abundances at beaver sites relative to non-beaver sites respectively (Lycosid: Levene’s 

test: P = 0.97; t = -3.69, df = 4, P = 0.02; P. maniculatus: Levene’s test: P = 0.11; t = -

3.75, df = 4, P = 0.02; Figure 2.5).  

 

Tracing aquatic subsidies 

 In beaver systems, I detected a higher overall trend in the mean proportions of 

aquatic carbon in terrestrial consumer tissues, for both Lycosids (Figure 2.6a) and P. 

maniculatus (Figure 2.6b). The effect of distance from water’s edge on the proportion of 

aquatic carbon in Lycosid tissue was highly variable (Figure 2.7), exhibiting no 

statistically significant differences among the various distance points measured at non-

beaver sites (Coal Creek: F10,22 = 1.30, P = 0.29; Ruby R. – NB: F10,28 = 1.83, P = 0.10). 

Proportional aquatic tissue carbon of P. maniculatus was also variable, with no 

significant differences evidenced at Coal Creek (F7,16 = 1.69, P = 0.18), yet the Ruby 

River – NB site indicated significant differences in aquatic tissue composition with 

distance (F9,20 = 3.72, P = 0.007). Tukey’s HSD post hoc multiple comparisons for Ruby 

river – NB indicated that this trend of decreased P. maniculatus aquatic carbon signatures 

with distance was driven by significant pairwise differences between three sets of 
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trapping points: 10 m and 15 m (P = 0.03), 10 m and 60 m (P = 0.02), and between 10 m 

and 80 m (P = 0.01). 

 At beaver sites, I detected a negative relationship between distance from water 

body and percent aquatic tissue carbon in terrestrial consumers. Lycosids exhibited 

distinct reductions in aquatic carbon tissue content (Ruby River – B: F10,25 = 8.70, P < 

0.001; Seymour Creek – B: F10,35 = 8.34, P < 0.001; Figure 2.7), while P. maniculatus 

manifested significant reductions in aquatic carbon with distance at Seymour Creek (F7,16 

= 2.78, P = 0.043), although the trend of reduced percent aquatic carbon with distance 

was not significant at the Ruby River – B site (F7,16 = 1.43, P = 0.26), although a paucity 

of captures at several trapping points within 50 m of the water’s edge may also have 

played a role in this result (Figure 2.8). Tukey’s HSD post-hoc multiple comparisons 

revealed that high Lycosid aquatic carbon signatures were statistically indistinguishable 

from the water’s edge to a distance of 35 m (0 m to 40 m: P = 0.001) at the Ruby River – 

B site and up to a distance of 30 m (0 m to 35 m: P = 0.03) from the water’s edge at 

Seymour. After these distance thresholds, proportional aquatic tissue carbon signatures at 

beaver sites were statistically indistinguishable from those at non-beaver sites (Figure 

2.7). P. maniculatus also manifested reductions in percent aquatic tissue carbon with 

distance (Figure 2.8). This trend was statistically significant at Seymour Creek – B, 

although determining the distance threshold at which aquatic subsidy was important was 

hindered by patchy capture success at certain distances. Since no captures were recorded 

between 60 m and 100 m, the first statistically distinct carbon signature occurred at 100 

m (0 m to 100 m: P = 0.04). I also found that beaver activity imparted significantly higher 

proportions of aquatic carbon to Lycosids (F1,4 = 89.3, P = 0.001) and P. maniculatus 

(F1,4 = 52.67, P = 0.002) within 35 m and 100 m of the water’s edge, respectively. 

 

Discussion 

 

My research links a keystone species to the modification of nutrient subsidies, and 

shows the importance of disturbance and landscape heterogeneity to the process of trans-

ecotonal nutrient flux. I documented the novel example of beaver engineering resulting in 

altered community composition and increased emergence rates of aquatic 



 19 

macroinvertebrates. Although aquatic subsidies have been documented in other studies, 

my work indicates that beaver increase the scale of aquatic resource sheds, evidenced by 

a broader extent of emergence as well as aquatic and terrestrial consumers attaining 

higher abundances, with an increased reliance on aquatic energy sources. Although I have 

presented clear evidence of elevated macroinvertebrate emergence rates corresponding 

with increased abundance of terrestrial consumers, there may be other pathways by which 

beaver activity influence community structure. The propensity for beaver to alter 

structural aspects of stream ecosystems suggests that nutrient dynamics may be modified 

by increased preponderance of discrete lateral standing water bodies, and/or aggregation 

and direct consumption of aquatic emergent vegetation by terrestrial consumers. While 

these factors may generally have ecosystem-structuring roles in beaver systems, 

increased macroinvertebrate emergence are well established as the dominant vector of 

aquatic nutrient translation due to the simple structure of beaver ponds chosen for study, 

and the enriched nitrogen signatures of terrestrial consumers relative to aquatic 

macroinvertebrate signatures at beaver sites (Figure 2.3). 

As in other studies (Clifford et al. 1993; Harthun 1999; Margolis et al. 2001; 

McDowell & Naiman 1986; Rolauffs et al. 2001; Sprules 1941), I found that beaver sites 

exhibited altered macroinvertebrate community compositions, and increased abundances 

(Figure 2.4). Mean emergence densities of 379 individuals m
-2

 d
-1

 in beaver areas were 

3.5 times larger than those at non-beaver sites. Trichoptera and Diptera exhibited the 

largest differences in abundance for individual macroinvertebrate taxa amongst all 

sampling methods (Figure 2.4a – d). These taxa were present at beaver sites in 

considerably higher densities at all life stages (nymphal, emerging, and adult) although 

Trichoptera were not significantly more abundant 100 m from the water’s edge (Figure 

2.3d). Given the isotopic signatures of these taxa (Figure 2.3), Dipterans, which were 

more enriched in aquatic carbon and extended further into the terrestrial environment, 

appear to be the major link organisms responsible for the transference of aquatic carbon 

to terrestrial consumers. Detritivorous Trichopterans at all sites exhibited strongly 

terrestrial isotopic signatures, and likely benefit in beaver systems through enhanced 

accumulation of terrestrial detritus. Therefore, since Trichoptera achieve higher 

abundances in beaver systems, but ultimately derive carbon from primarily terrestrial 
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sources, the actual amount of subsidization emanating from beaver ponds via aquatic 

invertebrates was underestimated by this study, as this would have shown up in terrestrial 

consumer tissue as terrestrial carbon. 

In lotic systems, the importance of emerging aquatic insects to riparian predators 

is well established (e.g. Lynch et al. 2002), and have been known to contribute up to 90 

% of a predators diet (Kato et al. 2004). I show that disturbance of lotic systems caused 

by beaver in small stream ecosystems can have measurable effects on the stream-to-

upland flux of aquatic carbon subsidies, and thus alter the resource shed of aquatic 

resources. 

While other studies (Briers et al. 2005; Collier et al. 2002; Sanzone et al. 2003) 

have detected large aquatic subsidies influencing Lycosid spiders within approximately 

10 m of the stream, my results for Lycosids at non-beaver sites were extremely variable, 

showing no trend in aquatic carbon content with distance from the stream. This may be 

due to low sample sizes in conjunction with variability in Lycosid home range sizes. 

Lycosid home ranges are reported to vary by two orders of magnitude, from 0.6 - 41.8 m
2
 

(Kuenzler 1958). Lower resource availability at non-beaver sites may lead to larger 

foraging areas, thereby inflating variances. P. maniculatus, also exhibited extremely 

variable and ill-defined trends at non-beaver sites (Figure 2.8), and may be beset by 

sample size and home range issues in a similar manner to Lycosids at these sites 

(diameter of P. maniculatus home range = 100 ± 25 m (Abramson et al. 2006)).  

At sites with beaver activity, enhanced macroinvertebrate emergence rates 

extended further from the water’s edge, thus increasing availability of aquatic 

invertebrates to consumers at beaver sites relative to non-beaver sites. Spider abundances 

were approximately 55 % higher at beaver sites relative to non-beaver controls (Figure 

2.5), with a concomitant two-fold increase in the aquatically derived content of their 

tissues within 20 m of beaver ponds. Overall, Lycosid tissues comprised higher 

proportions of aquatic carbon (Figure 2.6a), with approximately 25 % of Lycosid diets 

immediately adjacent to beaver ponds comprised aquatic carbon. This declined with 

distance, before becoming indistinguishable from non-beaver sites at approximately 35 m 

(Figure 2.7). This corresponds to a 75 % greater distances compared with previous 

studies at unmodified lotic sites. Since the home range size of P. maniculatus (Abramson 
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et al. 2006) entirely encompassed my sampling transects, thus confounding 

measurements of isotopic signatures with distance, I did not examine the effect of 

distance from water’s edge on the proportion of aquatic carbon in P. maniculatus tissue. 

However, evaluation of overall aquatic carbon signatures in beaver versus non-beaver 

sites showed a convincing trend of enhanced proportional contributions of aquatically-

derived carbon in P. maniculatus tissues associated with beaver systems (Figure 2.6b). 

Many studies have documented positive effects of beaver habitat creation for 

other species. Amphibians species elicit a variety of responses, such as increased 

occurrence correlated with pond area (Popescu & Gibbs 2009), enhanced survival and 

production (Karraker & Gibbs 2009), and higher juvenile recruitment (Stevens et al. 

2007). Small mammals have been found to have two to three times higher abundances in 

beaver-influenced willow (Salix spp.) shrubland habitats than in adjacent riparian habitat 

(Medin & Clary 1991), as well as increased abundances associated with beaver lodge 

structures in Lithuania (Ulevi"ius & Janulaitis 2007), and ungulates such as moose (Alces 

alces),  elk (Cervus elaphus), and deer (spp.) benefit from riparian beaver habitat (Baker 

& Hill 2003). I also detected higher abundances of focal terrestrial consumers, but go 

further to quantify a distinct expansion of the aquatic carbon resource shed at beaver sites 

relative to that exhibited by non-beaver sites, tying together the mechanism of enhanced 

nutrient subsidy from the beaver influenced aquatic system to the altered dynamics of the 

local consumer populations. 

By incorporating cross-habitat nutrient fluxes into the field of food web ecology 

and recognizing the modifying role that disturbance plays, we are presented with a more 

complete picture of how natural communities operate. Broadening the scope at which 

food webs are viewed is already being used to elucidate how spatially discrete 

populations are receiving subsidization from distant sources. Factoring into this the 

influence of highly interactive species, such as beaver, provides us with an insight into 

heterogeneity in trans-ecotone subsidies and the enlargement of resource sheds on the 

landscape. Through the creation and maintenance of wetlands (see Hood & Bayley 2008), 

and their effects on resource sheds, beaver may play a pivotal role in structuring wetland 

communities on the landscape. Therefore, understanding the effects of disturbance 

regimes and the influence of highly interactive species will be an essential prerequisite in 
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our efforts to predict and manage natural system dynamics under changing environmental 

conditions.  
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Figure Legends 

 

Figure 2.1.   Conceptual food web of study system in southwestern Montana. Thick 

arrows indicate hypothesized pathway of trans-ecotone nutrient subsidization. Dashed 

boxes indicate focal terrestrial consumers investigated (Lycosid spiders and Peromyscus 

maniculatus). 

 

Figure 2.2.   Sampling strategy and trapping methods used at beaver and non-beaver 

study sites. 

 

Figure 2.3.   Stable carbon (!
13

C) and nitrogen (!
15

N) isotopic signatures of aquatic and 

terrestrial primary producers, aquatic macroinvertebrates, Lycosid spiders, and 

Peromyscus maniculatus. Values are means ± 1 SE. 

 

Figure 2.4.   Relative abundances of aquatic macroinvertebrates at beaver ( ) and 

non-beaver ( ) sites, using (a) D-net sampling, (b) emergence trap sampling, and 

light trap sampling situated at (c) 0 m and (d) 100 m from the water’s edge. CPUE = 

Catch Per Unit Effort. Values are means ± 1 SE.  

 

Figure 2.5.   Relative abundance of Lycosid spiders and Peromyscus maniculatus at 

beaver ( ) and non-beaver ( ) study sites. CPUE = Catch Per Unit Effort. 

Values are means ± 1 SE. 

 

Figure 2.6.   Boxplots of the proportion of (a) Lycosid and (b) Peromyscus maniculatus 

tissue carbon that is derived from aquatic primary production at non-beaver and beaver 

sites. Boxplots for each taxa show minimum, first quartile, median, third quartile, 

maximum, and any outliers (circles) for samples collected at non-beaver ( ) and 

beaver ( ) sites.  
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Figure 2.7.   Proportional contribution of aquatically derived carbon in Lycosid spider 

tissues with lateral distance from the water’s edge. Values are means ± 1 SE. 

 

Figure 2.8.   Proportional contribution of aquatically derived carbon in Peromyscus 

maniculatus tissues with lateral distance from the water’s edge. Values are means ± 1 SE. 
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CHAPTER 3 

BEAVER ORCHESTRATE CHANGES IN FISH INVASION DYNAMICS 

 

Abstract 

The spread and success of nonnative species may be enhanced by native species in 

unusual ways. Throughout the western U.S., brook charr (Salvelinus fontinalis) invasion 

has been implicated in the decline of native cutthroat trout (Oncorhynchus clarkii). 

Landscape factors influencing the extent and impact of this invasion need to be 

determined. Native beaver (Castor canadensis) alter streams considerably, but it is 

unknown how this affects brook charr invasion success, or the consequences for native 

trout. My objectives were to understand how beaver affect stream temperatures, brook 

and cutthroat trout distributions, and cutthroat growth rates. During the summers of 2006-

2008, I studied brook charr and cutthroat trout in southwestern Montana, in streams both 

with and without beaver. Using temperature loggers, habitat surveys, and fish depletion 

sampling methods, I found that beaver presence elevated stream temperatures, increased 

brook charr densities, and increased the degree of spatial overlap between these species. I 

also used mark-recapture and scale analysis to determine brook charr effects on cutthroat 

growth and whether beaver influence cutthroat and brook charr interactions. In brook 

charr invaded streams, young-of-the-year cutthroat maintained high growth rates when 

beaver were present, but showed growth reductions without beaver. Thus beaver convey 

both positive (higher temperature and growth) and negative (increased densities of and 

overlap with brook charr) impacts to native cutthroat trout. Therefore, beaver mitigate 

some of the negative effects of brook charr on cutthroat trout. My research elucidates the 

importance of considering how important landscape modifiers such as beaver alter the 

outcome of invasions. 
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Introduction 

 

The global spread of invasive species represents a grave threat to natural 

ecosystems, and is one of the greatest challenges currently facing conservation biologists 

and resource managers (Byers et al. 2002; Vitousek et al. 1996). Nonnative invasion can 

lead to biotic homogenization across the landscape (Rahel 2002), loss of biodiversity 

(Sakai et al. 2001), behavioral and evolutionary changes in native species, and food web 

disruption (Baxter et al. 2004; Power 1990; Townsend 1996).  

The discipline of invasion ecology relies upon an amalgam of ecological theories 

(Cadotte et al. 2006; Shea & Chesson 2002), but these have rarely been evaluated with 

empirical data (Parker 2000; Peterson & Fausch 2003). Recent studies have begun to link 

quantitative field data to invasion theory in an effort to produce reliable predictions of 

invasion processes through the development of specific, mechanistic models that describe 

the invasion of particular taxa, which can then be tested with experimental data (Peterson 

& Fausch 2003). By incorporating experimental methodology, invasion ecology is 

striving to develop theoretical tools that will enable conservation practitioners to identify 

systems that are prone to a given invasive species, and estimate their likely impacts on 

native members of the invasible community. However, biotic invasions likely result from 

a complex synergy between exotic species traits, receiving community traits, and abiotic 

conditions (Lambrinos 2002). Hence, unraveling the Gordian knot of ecological invasion 

dynamics is stymied by variation in the success of invaders, and responses of natural 

communities across a heterogeneous landscape (Lambrinos 2002; Lonsdale 1999; 

Vermeij 1991). 

Some of the most successful invasions occur in anthropogenically disturbed 

habitats, whereby organisms that have a long history of association with human-modified 

ecosystems are able to invade environments that they are adapted to, but to which native 

species are not (Sax & Brown 2000). Successful invasions are commonly accompanied 

by the decline or extirpation of native taxa (Kiesecker et al. 2001; Young 1995). The 

mechanisms implicated in perceived native declines are likely to be highly context-

dependent, but one of the strongest generalizations to emerge from detailed studies of 

invasion biology is the positive relationship between disturbance and invasion success 
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(Drake et al. 1989). Invaders have been observed to successfully invade disturbed 

habitats with concomitant declines in native species, yet are less likely to influence native 

populations in undisturbed habitats (Davis et al. 2000; Herbold & Moyle 1986; Kiesecker 

et al. 2001). Despite this, the role that natural disturbance events play in biotic invasion is 

less clear. For example, responses of native species whose evolutionary history in the 

presence of local disturbance regimes such as wildfires or flash floods can ameliorate the 

outcome of invasions, thereby facilitating native resilience (Dunham et al. 2003; Meffe 

1984). 

In aquatic systems of North America, the natural disturbance regime of native 

beaver (Castor canadensis) populations is an uninvestigated aspect of freshwater 

invasion ecology. As a keystone species, beaver substantially influence watershed 

disturbance regimes through their feeding and damming behaviors (Collen & Gibson 

2001). Beaver impoundments create lentic habitat in otherwise lotic systems, leading to 

fundamental alterations in channel geomorphology and hydrology (Naiman et al. 1986), 

sediment characteristics (Rosell et al. 2005), nutrient cycling, and increases in landscape 

heterogeneity (Johnston & Naiman 1990). Consequently, it has been shown that beaver 

can promote changes in succession dynamics, increase biotic productivity, and enhance 

diversity of floral and faunal assemblages (Collen & Gibson 2001; Naiman 1994; Naiman 

et al. 1988; Naiman et al. 1986; Schlosser 1995). Increases in water storage through 

beaver impoundments also alter riparian habitat, and augment water supply and late-

season flows (Fouty 2003; Hood & Bayley 2008). 

The formation of pool habitat by beaver may increase water temperatures, prey 

availability, and juvenile rearing habitat for species such as Atlantic salmon (Salmo 

salar) and brook charr (Salvelinus fontinalis) (Scruton et al. 1998; Winkle et al. 1990), as 

well as enhance critical winter habitat for fishes such as cutthroat trout (Oncorhynchus 

clarkii) and bull charr (Salvelinus confluentus) (Jakober et al. 2000). The potential for 

beaver to influence stream temperature varies depending on regional characteristics 

(Collen & Gibson 2001). In conjunction with available physical habitat, temperature is an 

important stream characteristic that directly influences fish distributions and growth rates 

(Magnuson et al. 1979). In areas of the western United States, water temperatures in 

mountain streams often fall below the critical temperatures for trout (e.g. optimal growth 
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temperature: cutthroat trout = 13.6°C (Bear et al. 2007), brook charr = 13 – 16 °C 

(Baldwin 1956; McCormick et al. 1972)). Temperature increases through beaver activity 

may benefit both native and nonnative salmonids and have been reported in Utah 

(Rasmussen 1941), New Mexico (Huey & Wolfrum 1956), and Wyoming (Grasse & 

Putnam 1955).  

Associated with the potential for beaver impoundments to provide high quality 

habitat conditions for native species, is the possibility that nonnative fishes may benefit 

disproportionately from the presence of beaver in a watershed. In Montana, streams with 

higher water temperatures, fine sediment, and the abundance of pools and large wood 

have been correlated with brook charr invasion (Shepard 2004), hence implicating beaver 

as facilitators of brook charr invasion.  

As an invasive species from eastern North America, brook charr have expanded 

into numerous montane coldwater streams of the western United States (Kennedy et al. 

2003). In invaded systems brook charr and native salmonids have been observed to occur 

in allopatry, with brook charr dominating warmer downstream water, and native 

salmonids confined to upstream colder water (Dunham et al. 2002; Fausch 1989; Paul & 

Post 2001; Rieman et al. 2006).  Beaver ponds may allow brook charr to circumvent their 

upstream minimum temperature limits (Adams 1999), and use beaver ponds as 

reproductive source areas from which to colonize high elevation, colder sink sections of a 

watershed (Schlosser 1995).  

Any factor that enhances the ability of brook charr to invade watersheds could 

have serious consequences for native species such as westslope cutthroat trout (O. c. 

lewisi). As brook charr invade aquatic ecosystems in western North America, native 

cutthroat trout decline (e.g. Dunham et al. 2002; Peterson et al. 2004; Shepard 2004). 

These declines are generally attributed to three mechanisms: competition, predation, and 

parasite or disease transmission (Dunham et al. 2002). Studies suggest that brook charr 

exhibit dominant aggressive behavior over other salmonid species (McMahon et al. 

2007), and field experiments have shown reduced feeding efficiency and growth of 

cutthroat trout in the presence of brook charr (Novinger 2000; Thomas 1996). Size-

dependent interspecific competition with brook charr is often cited as the driver of 

cutthroat trout displacement (Griffith 1988), with smaller cutthroat affected most. Stream 
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temperature has been shown to alter the competitive interaction between these species 

(De Staso III & Rahel 1994; Novinger 2000), with research suggesting enhanced brook 

charr competitive ability between 13°C and 17°C (Thomas 1996). This corresponds with 

brook charr exhibiting comparatively higher growth efficiencies than cutthroat at these 

temperatures (McMahon, unpublished data). Therefore, if beaver ponds increase overall 

stream temperatures, brook charr may have a greater competitive advantage over 

cutthroat trout. 

In this study, I used stream comparisons to investigate how beaver modification 

of fish habitat characteristics influences the potential of brook charr invasion of western 

watersheds and the consequences for native westslope cutthroat trout. My  objectives 

focused around the questions:  

(1) Do beaver alter stream distributions of brook charr and westslope 

cutthroat trout, and are changes correlated with an altered temperature 

regime? 

(2) What are the impacts of beaver modification on potential and realized 

growth rates for cutthroat trout? 

 

Methods 

 

Study sites 

I selected seven study streams in the Beaverhead-Deerlodge National Forest, 

adjacent Bureau of Land Management, and private lands of southwestern Montana. Each 

of these streams included cutthroat trout, with differing combinations of brook charr and 

beaver to fulfill the treatment criteria: treatment 1 = beaver and cutthroat trout present, 

treatment 2 = cutthroat trout and brook charr present, and treatment 3 = beaver, cutthroat 

trout, and brook charr present (Table 3.1). The only salmonid species in treatment 

streams were westslope cutthroat trout and brook char. Non-salmonid fishes in my study 

streams included sculpin (Cottus spp.) and longnose suckers (Catostomus catostomus). 

All study watersheds with the requisite species assemblages were suitable for beaver 

habitation, of similar size and gradient, and fell within an elevation range of 

approximately 1,700 m to 2,400 m (Table 3.1). 
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Do beaver alter stream distributions of brook charr and westslope cutthroat trout, and 

are changes correlated with an altered temperature regime? 

 

Stream temperature and habitat sampling  

I measured variation in physical factors among streams by conducting habitat 

surveys in each study stream using protocols adapted from Overton et al. (1997). 

Proceeding upstream, I described each channel habitat unit (riffle, run, or pool), and 

measured its length (m), mean wetted width (m), and middle depths of riffles (cm). In 

addition, I measured channel gradient, and elevation using a compass and Garmin GPS 

unit respectively. These measurements were corroborated using geographic information 

system software (GIS, ArcGIS 9) and 30 m resolution digital elevation models 

(http://nris.mt.gov/gis/). I analyzed for differences in these habitat characteristics among 

the three treatment types using a one-way analysis of variance (ANOVA) (Zar 1999). 

I sampled water temperature along the entire length of all study streams by 

deploying iButton digital temperature loggers (model DS1920: Maxim Integrated 

Products, Dallas semi-conductor, Sunnyvale, CA, USA) at intervals ranging from 10 – 

800 m. Temperature loggers were placed in the channel thalweg, and shielded from direct 

solar radiation (Dunham et al. 2005). Loggers recorded water temperature in all study 

streams (to the nearest 0.5°C; every 30 minutes) from late May through October in 2006, 

2007, and 2008 (Table 3.1). 

I summarized data from temperature loggers as average daily temperature. Based 

on movement data from other studies (Gowan & Fausch 1996; Hilderbrand 1998; Young 

1996), I assumed some degree of local movement out of my 200 m sample sections and 

pooled these to give mid- and high elevation temperature values for each stream. I used 

methods from Coleman and Fausch (2007) to calculate the growing season degree-days 

(hereafter degree-days) for each elevation strata of each stream by summing the daily 

mean temperatures over the course of the growing season. The beginning of the growing 

season was defined as the first week that average stream temperatures exceeded and 

remained above 5°C for the season. The end of the growing season corresponded to the 

last day of the first week that average stream temperature remained below 4°C (Coleman 

& Fausch 2007). These growing season criteria are based on research that adult cutthroat 
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trout spawn when stream temperatures rise to 5-8°C (USFWS 1998), and that in trout, 

growth typically occurs when temperatures exceed 4°C (Piper et al. 1982). I used 

Levene’s test for equality of variances and conducted a t-test to examine differences in 

mid- and high-elevation degree-days in beaver and non-beaver streams. 

 

Fish capture  

I stratified study streams into low-, mid, and high elevations, and randomly 

selected three 200 m sections within the mid- and high elevation strata of each stream. 

Five streams comprised my core capture-mark-recapture sampling systems, and were 

surveyed over three years (2006-2008; Table 3.1). These five core study streams were 

sampled twice during each year (once in July and once in August). I added two more 

streams in 2008 to augment temperature, distribution, and growth data (Table 3.1). I used 

two-pass depletion electrofishing to capture brook charr and westslope cutthroat trout. 

During sampling, each section was temporarily enclosed with block-nets, and sampled in 

an upstream direction using a backpack electrofishing unit (Smith-Root Inc. model 15-D, 

Vancouver, WA, USA). All brook charr and cutthroat trout captured were measured 

(total length (TL), nearest 1 mm), weighed (nearest 1 g), and scales were taken for aging 

and growth analysis, and then fish were released. Additionally, fish greater than 55 mm 

were individually tagged with a Passive Integrated Transponder (PIT) tag in core streams. 

During the second (recapture) session of each year, I repeated the above sampling 

protocol except recaptures were not tagged.  

Length-frequency data for cutthroat trout were used to provide insight into the 

dynamics of my study populations (Figure 3.1). I also summed individual captures from 

each sample section within mid- and high strata and divided by total stream captures by 

species within each stream to obtain an estimate of proportionate distributions at mid- 

versus high elevations, and investigated the relationship between proportional distribution 

and elevation strata using Pearson’s correlations. Densities of brook charr and cutthroat 

trout per 100 m were calculated in mid- and high elevations of each stream by pooling the 

number of fish caught in each elevation strata and dividing by the total length of stream 

sampled.  

To investigate whether there was a treatment effect on stream distributions, I then 
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calculated the degree of overlap between cutthroat trout and brook charr using the spatial 

overlap index (Cxy) devised by Schoener (1970): 

 

! 

Cxy =1" 1
2 ( Pxi " Pyi# ) $100       Equation 1 

 

Where Pxi is the proportional contribution of habitat i to the total habitat occupation of 

species x, and Pyi is the proportional contribution of habitat i to the total habitat 

occupation of species y. Habitat overlap may range from 0% (no habitat overlap) to 100% 

(total habitat overlap), and as such were arcsine-square-root transformed for further 

statistical analyses. Using treatment type, elevation (mid or high), and year as 

independent variables, I analyzed for differences in degree-days and cutthroat trout 

density among the three treatment types using multivariate analysis of variance 

(MANOVA). I investigated pairwise differences between treatments using Tamhane’s T2 

post hoc comparisons, a conservative test appropriate to analyses incorporating unequal 

sample sizes among treatments. I used elevation, year, and brook charr treatment type 

(treatments 2 and 3 only) as independent variables in a second MANOVA with 

Tamhane’s T2 pairwise comparisons, to assess differences in brook charr densities and 

the degree of cutthroat trout and brook charr overlap between invaded treatment types. 

 

What are the impacts of beaver modification on potential and realized growth rates for 

westslope cutthroat trout?  

 

Potential cutthroat trout growth rates 

I used the pooled mean temperatures for each elevation strata to calculate 

potential growth rates of cutthroat trout found within each strata, using an experimentally 

derived growth model for cutthroat trout and the average temperatures for mid- and high-

elevations of each stream (Equation 2: Bear et al. 2007). This model predicts daily 

growth rates for westslope cutthroat trout in the approximate size range of 100–130 mm 

across a range of temperatures assuming non-limiting food resources. 

 

% WCT daily growth rate = – 4.1727 + 0.9496T – 0.0348T
2
  Equation 2 
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where WCT = westslope cutthroat trout, T = mean daily summertime temperature (°C). 

 

Realized cutthroat trout growth rates 

I estimated cutthroat trout growth during the first year of life. I collected scales 

from the body area near the lateral line between the dorsal and anal fins from cutthroat 

trout and stored them in envelopes prior to dry mounting on a glass slide with a cover 

slip. I examined growth to age-1 using 3 to 10 scales from 25 cutthroat trout individuals 

from each stream (except Hell Roaring creek where only 12 cutthroat were captured). 

Individuals for this analysis were drawn randomly from each study section, with roughly 

equal numbers of fish selected from mid- and high-elevations in the beaver treatments. 

Since cutthroat trout were predominantly distributed in high-elevation stream reaches in 

my non-beaver streams, the majority of scales in this treatment were derived from fish in 

the high-elevation strata of these streams. I viewed and digitized the selected mounted 

scales using an 11.2 Color Mosaic digital camera (Diagnostic Instruments, Inc., Sterling 

Heights, MI, USA) attached to a Leica MZ16 Stereomicroscope (Leica Microsystems 

Ltd., Switzerland) at 920X magnification. I then used ImageJ 1.37V software (Wayne 

Rasband, National Institutes of Health, USA) to measure the distance (mm) from the 

focus (center) of the scale to the first annulus, and from the focus to the outer edge of the 

scale (radius). These measurements were taken along the longest axis of the scale. Scale 

readings were verified by comparing 10% of the scales read to readings of a second 

reader. I then back-calculated the length of cutthroat trout at age-1 using the Fraser-Lee 

formula (Equation 4: Fraser 1916; Lee 1920): 

 

        Equation 3 

where L
i 
= back-calculated fish body length at age i, L

c 
= fish body length at capture, S

i 
= 

mean scale radius at annulus i, S
c 
= mean scale total radius, a = intercept determined from 

regression of scale radius and fish total length (R
2
 = 0.89, y = 254.7x + 30.9). Values 

were averaged to determine mean length at age-1 for each stream. I regressed scale radius 

with fish total length to validate this method of estimating growth to age-1. I used one-
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way ANOVA and Tamhane’s T2 post hoc pairwise comparisons to analyze for 

differences in cutthroat trout size at age-1 amongst treatments. 

I used measurements of TL from within-summer recapture data to estimate 

relative growth rates (G, expressed as %) of cutthroat trout greater than 1 year old, and up 

to 150 mm. The lower size-limit of recaptures used was stream-specific, with size-at-age-

1 estimates derived from scale analyses providing the lower bound for each stream (age-

1stream). The upper size limit of 150 mm was used to allow comparison with potential 

growth rates based on temperature (equation 2). I then used a relative growth equation 

(Equation 4) to calculate summer cutthroat growth rates. 

 

        Equation 4 

 

where Y1 = initial weight (g), Y2 = recaptured weight, and t = time interval between 

captures (days) (Bear et al. 2007). Recapture growth rates were arcsine-square-root 

transformed for normality and tested for overall stream growth rate differences amongst 

treatments using nested Univariate ANOVA. I split my data by elevation strata and 

repeated this procedure to examine for differences amongst treatment by strata. 

Tamhane’s T2 post hoc tests were used to analyze pairwise treatment differences. To 

remove the effects of temperature on growth differences among my streams, I divided 

recapture growth rates (equation 4) by the potential growth rate (equation 2) for each 

study stream. 

 

Results 

 

Do beaver alter stream distributions of brook charr and westslope cutthroat trout, and 

are changes correlated with an altered temperature regime? 

 

Aside from differences caused by beaver, my study streams generally exhibited 

similar habitat attributes (Table 3.2). There were no statistically significant differences in 

habitat characteristics among treatment types (ANOVA: P > 0.1), except for higher 
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average summer temperatures at mid- (ANOVA: F = 13.53, df = 2, P = 0.017) and high- 

(ANOVA: F = 11.51, df = 2, P = 0.022) elevations of beaver systems. This was 

manifested by average summertime water temperatures approximately 3.5°C and 3.2°C 

greater in beaver watersheds than watersheds without beaver present in mid- and high-

elevation strata respectively. Concomitantly, I found that streams influenced by beaver 

exhibited approximately one-third higher degree-days values (Levene’s test: P = 0.25; t-

test: t = 2.4, df = 10, P = 0.03; Figure 3.2).  

There was a significant treatment effect on the proportional distribution of 

cutthroat trout at mid- and high-elevations (ANOVA: F = 33.28, df = 2, P < 0.001), with 

higher proportions of cutthroat trout distributed in higher-elevations of non-beaver/brook 

charr streams, relative to streams with both brook charr and beaver present (Tamhane’s 

T2 test: P = 0.004). However, I found no difference in cutthroat distributions between 

beaver watersheds with and without brook charr (Tamhane’s T2 test: P = 0.822) (Figure 

3.3). Using these mid/high-elevation proportion data, I calculated that the degree of 

cutthroat trout/brook charr overlap was significantly higher in beaver versus non-beaver 

treatments (MANOVA: F = 43.48, df = 1, P < 0.001) (Table 3.3).  

I found a significant treatment effect on westlsope cutthroat trout densities 

(MANOVA: F = 43.29, df = 2, P < 0.001). Using Tamhane’s T2 post-hoc pairwise 

comparisons, I demonstrated significantly higher cutthroat densities in beaver/non-brook 

charr streams compared with densities found in brook charr invaded streams both with (P 

< 0.001) and without beaver present (P < 0.001) (Figure 3.4). I found no difference in 

cutthroat trout densities between beaver and non-beaver streams undergoing brook charr 

invasion (P = 0.265). On the other hand, brook charr densities were significantly higher 

in beaver influenced streams relative to non-beaver streams (MANOVA: F = 8.53, df = 1, 

P = 0.019).  

Overall, I found that the effect of beaver in brook charr invaded streams acts to 

increase stream temperatures and hence degree-days, brook charr densities, and the 

degree of spatial overlap between brook charr and cutthroat trout. Whereas 80 – 100 % of 

cutthroat trout were restricted to high-elevation strata of non-beaver invaded streams, 

with approximately 60 – 75 % species overlap, beaver presence corresponded with the 

majority (50-80%) of cutthroat trout captured in mid-elevation sections, with 
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approximately 90 % overlap with high density brook charr populations. The effect of 

brook charr in beaver streams does not appear to influence cutthroat displacement to 

higher elevations, but corresponds to depressed cutthroat densities.  

  

What are the impacts of beaver modification on potential and realized growth rates of 

cutthroat trout? 

 

I found differences in size-at-age-1 among treatment types (ANOVA: F2,3 = 

6.251, P = 0.001). Pairwise treatment comparisons were statistically significant except for 

between treatments 1 and 3 (Tamhane’s T2 test:  treatment 1-2: P = 0.025; treatment 1-3: 

P = 0.980; treatments 2-3: P = 0.017) (Figure 3.5). I therefore found no differences in 

growth rate between treatments with beaver, regardless of brook charr presence. 

However, without beaver, cutthroat trout were approximately 15 mm smaller at age-1. 

Overall, recaptured cutthroat trout (TL size range: Age-1stream to 150 mm) growth 

rates were not statistically different among treatments (ANOVA: F1,2 = 8.1, P = 0.105), 

although post-hoc pairwise comparison between treatments 1 and 2, and 2 and 3 were 

significant (Tamhane’s T2 test: treatment 1-2: P < 0.001, treatment 1-3: P = 0.001, 

treatment 2-3: P = 0.115) (figure 3.6a). Recaptured cutthroat growth rates in the beaver 

(no brook charr) treatment (treatment 1) were approximately twice as high as those 

captured in the presence of brook charr. The strata at which these fish were captured in 

each stream, and their mean size at first capture are reported in Table 3.3. Examination of 

mid-elevation recaptures in isolation showed similar treatment differences in growth rate 

(ANOVA: F1,2 = 2.261, P = 0.297), with considerably higher growth rates realized in 

non-brook charr streams (Tamhane’s T2 test: treatment 1-2: P < 0.001, treatment 1-3: P = 

0.001, treatment 2-3: P = 0.503). High-elevation recapture growth rates also showed this 

pattern (ANOVA: F1,2 = 93.136, P =  0.084), there was stronger support for increased 

cutthroat growth rates in brook charr invaded streams with beaver (Tamhane’s T2 test: 

treatment 1-2: P = 0.003, treatment 1-3: P < 0.001, treatment 2-3: P = 0.057) (figure 

3.6a). I then evaluated the influence of stream temperature on recapture growth rates 

using proportion of potential growth for each stream (figure 3.6b). These results were 
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consistent with the recapture growth rate analysis, indicating that temperature differences 

alone among streams do not explain these differences.  

  

Discussion 

 

I shed light on an aspect of invasion ecology in which the dynamics of an exotic 

invader and a sensitive native species can be mediated by a third species native to that 

system. In several small, mountain streams of western Montana, I found that beaver 

disturbance increased both the mid- and high-elevation fish growing season to levels that 

enhanced juvenile cutthroat growth rates. Faster growth in stream fishes allows larger 

body sizes to be attained before overwintering, engendering increased survival and higher 

recruitment success (Crowder et al. 1987; Letcher et al. 1997; Wootton 1990). In contrast 

to research conducted in Wisconsin that reports beaver dam removal to result in large 

increases in brook charr and brown trout (Salmo trutta) abundances (Avery 2004), I 

showed that brook charr densities in increased by 2 – 3 fold in beaver dammed streams 

compared with non-beaver streams (figure 3.4), a result consistent with several other 

studies conducted in Western States (Grasse & Putnam 1955; Huey & Wolfrum 1956; 

Rasmussen 1941). This suggests that beaver activity likely influences freshwater fish 

invasions in a context-dependent fashion (see Collen & Gibson 2001; Snodgrass & Meffe 

1998). However, since the brook charr/cutthroat trout invasion scenario essentially 

encompasses western, cold-water mountain systems, it is likely that my results are 

applicable to small headwater streams across the extent of this invasion event. 

In keeping with other reports of brook charr/cutthroat trout stream distribution, I 

found that in non-beaver streams there was a clear distinction between elevational stream 

distributions of brook charr and cutthroat trout (Dunham et al. 2002; Fausch 1989; Paul 

& Post 2001; Rieman et al. 2006) (Figure 3.3). This was accompanied by reduced species 

overlap with significantly lower cutthroat individual growth rates. Invasives dominated 

lower stream sections, with natives predominantly found in higher elevation reaches. This 

limitation of downstream cutthroat trout distribution corresponds with other empirical 

evidence that show that brook charr gain a competitive advantage over cutthroat trout at 



 46 

warmer stream temperatures that are associated with lower elevations (De Staso III & 

Rahel 1994; Novinger 2000).  

I found positive implications of beaver presence for cutthroat trout, manifested by 

significant increases in the length of the growing season at both mid- and high-elevations 

in the beaver streams (Figure 3.2), a key determinant of recruitment success (Coleman & 

Fausch 2007). While mid-elevation strata of non-beaver watersheds exhibited growing 

seasons marginally within the bounds required for strong recruitment success, the high-

elevation strata of these streams, where the majority of cutthroat trout were, fell within 

temperature bounds that bestow a high risk of recruitment failure (Figure 3.3). Length-

frequency distributions (Figure 3.1) and estimates of cutthroat density (Figure 3.4) 

provide ancillary support for the increased occurrence of cutthroat recruitment failure in 

non-beaver watersheds, with reduced numbers and an under-representation of smaller-

sized fish in these streams relative to those influenced by beaver activity.  

I therefore provide evidence that under brook charr invasion conditions, cutthroat 

trout in non-beaver systems are likely to be restricted to higher elevations with curtailed 

growing season. Where such spatial demarcation exists, a common management strategy 

employed by fisheries biologists charged with conserving westslope cutthroat trout 

(particularly east of the Continental Divide in Montana) is to isolate these populations 

using artificial fish migration barriers (Fausch et al. 2009). This isolation management 

approach may be justified in moribund cases of cutthroat decline to maintain short-term 

persistence of fragmented remnant cutthroat populations. However, when applied 

indiscriminately, an invasion-isolation trade-off emerges in which longer-term 

consequences of isolation involves loss of fluvial life-history form and genetic diversity 

(Fausch et al. 2009; Peterson et al. 2008b), with concomitant increases in susceptibility to 

stochastic processes (Novinger & Rahel 2003) such as recruitment failure. It is generally 

recommended that where implemented, isolation management should incorporate as large 

and diverse an area as possible, and that efforts should be made to ensure that critical 

habitat requirements are met (e.g. Novinger & Rahel 2003). My research suggests that 

including beaver in the isolation-management process, with the aim of modifying stream 

temperatures and augmenting complex habitat availability could meet this last criterion, 
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potentially increasing conservation success rates where these drastic actions are 

warranted. 

Realistically, the ubiquity of brook charr invasions across the range of cutthroat 

trout (Dunham et al. 2002) makes it infeasible to physically remove all these invasives, or 

fragment and isolate all cutthroat populations. Based on my findings, I propose that the 

inclusion of beaver on the landscape furnishes a degree of ecological function that both 

positively and negatively mitigates aspects of this particular invasion scenario. I found 

that beaver facilitated the spread of brook charr into upper stream reaches, and increased 

brook charr/cutthroat trout stream overlap (Table 3.3). Cutthroat trout in beaver streams 

benefited through lower stream distributions. However, even in beaver streams the effect 

of brook charr presence decreased cutthroat trout densities. This was likely a result of 

increased interspecific competition due to large increases in brook charr densities, since 

brook charr are capable of tolerating higher populations densities than cutthroat trout 

(Schroeter 1998).  

By altering stream distributions and hence the degree of overlap between brook 

charr and cutthroat trout, beaver activity led to changes in interspecific interactions 

between these species. Other studies have found that effects of brook charr are most 

severe on smaller cutthroat trout size classes (Griffith 1988; Peterson et al. 2004). 

However, my results indicated that juvenile cutthroat trout in brook charr invaded beaver 

streams were able to attain comparable sizes at age-1 as in non-invaded beaver streams. 

Additionally, these cutthroat trout juveniles were approximately 15 mm larger at age-1 

under invasion conditions than individuals in non-beaver invaded streams (Figure 3.5). 

Thus, beaver appear to alter the interaction dynamics between cutthroat trout and brook 

charr, mitigating negative effects of this invasion on juvenile trout.  

In the case of larger cutthroat trout however, I found a significant negative effect 

on cutthroat trout growth when in sympatry with brook trout, regardless of beaver 

presence (Figure 3.6a). This was contrary to my expectations, as other research has 

reported that larger cutthroat trout survival rates (age-2+) remain unaffected by brook 

charr invasion (Peterson et al. 2004). However, Peterson et al. (2004) note that sublethal 

effects of brook charr, such as reduced growth and hence fecundity may have population-

level implications for cutthroat trout. Additionally, my results probably suffer from low 
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sample sizes and incorporate cutthroat trout of age-1+, thereby making it difficult to 

directly compare with Peterson et al.’s (2004) findings. Whilst I found no mitigating 

effects of beaver on cutthroat trout when examining overall mid- and high-elevation 

strata together, I did detect a weak trend of increased growth of age-1+ cutthroat in high-

elevations of beaver streams compared with non-beaver streams (Figure 3.6a). Thus, 

moderating effects of beaver on larger cutthroat trout may be dependent on elevation, and 

should be investigated further. 

Examining these growth rates as a proportion of potential growth as predicted by 

temperature alone, I found that cutthroat trout in non-invaded beaver streams grew at 30-

80% of potential growth rates whilst those in brook charr invaded beaver streams reached 

approximately 15-25% of their potential growth rate, thus implying a brook charr effect. 

Upon initial inspection, I found no effect of beaver on age-1+ through comparison of 

non-beaver and beaver invaded streams. However, this is due to cutthroat trout at mid-

elevations attaining around 25% of their potential growth rates in each treatment type. 

Examination of high-elevation strata hints at a weak beaver effect whereby cutthroat at 

this elevation achieve 5 % of their potential growth compared with around 15% in beaver 

streams (Figure 3.6b).  

My study provides quantitative evidence for how beaver modify the invasion 

ecology of brook charr in mountain streams of western North America, and provides 

information for how this habitat modifier can be incorporated into invasion theory. For 

instance, in the context of invasion, the interaction chain effect is usually used to describe 

a chain of direct linkages between the effects of habitat modification on invasive species 

abundance, which in turn has direct effects on native species decline (Didham et al. 

2007). Natural beaver disturbance may represent a special case of an interaction chain 

effect. Although brook charr invaded higher and attained higher densities in the beaver 

streams, cutthroat trout may benefit enough from warmer water temperatures and more 

complex habitat in order to persist in the face of this invasion. My research complements 

another recent study which shows that interactive effects of beaver act to enhance native 

puye (Galaxias maculatus) abundances in Chile, and hence moderate the negative effects 

of invasive trout on this species (Moorman et al. 2009). In this case, despite the fact that 

beaver themselves represent an invasive species, this example in conjunction with my 



 49 

research serves to elucidate the integral role that beaver can play in the invasion 

dynamics of freshwater systems. 

 

Summary/Conclusion 

 

Beaver facilitated the invasion of brook charr, but the presence of this habitat 

modifier acted to mitigate some of the negative effects of this invasive on cutthroat trout 

in my study system. The utility of beaver engineering is becoming more prominent in the 

realm of freshwater restoration efforts that seek to reshape ecosystem functioning of 

degraded systems (Roni et al. 2008), and to offset the effects of a drying climate (Hood & 

Bayley 2008). With beaver presence and nonnative fish invasions ubiquitous across the 

North American landscape, my research highlights the importance of considering beaver 

in native species conservation plans and invasive species management. Determining how 

beaver affects size-specific survival rates of these species is a vital next step in these 

systems. This will allow us to evaluate the implications that beaver activity has for 

population persistence of native westslope cutthroat trout, and will help to inform 

effective management strategies for this invasive/native conundrum.  
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Table 3.1. Sampling strategies used in study streams of southwestern Montana. 

 

Stream Treatment§ Focal species present 
Year(s) 

sampled 
Data collected! 

Elevation range sampled 

(m) 

Stream length 

sampled for fish 

capture (m) 

     
Mid-

elevation 

High-

elevation 

 

Stone 1 
 

‘06, ‘07, ‘08 D, S, MR, T, H 1800-1899 1900-2200 1,200 

Rape 1 
 

‘06, ‘07, ‘08 D, S, MR, T, H 1900-1999 2000-2180 800 

Johnson 2  ‘06, ‘07, ‘08 D, S, MR, T, H 1840-1999 2000-2170 800 

Stine 2  ‘08 T, H 1900-1999 2000-2200 500 

Hell Roaring 2  ‘08 D, S, T, H 1940-2010 2011-2200 800 

Lacy 3 

 

‘06, ‘07, ‘08 D, S, MR, T, H 1900-2020 2021-2230 1,000 

Squaw 3 

 

‘06, ‘07, ‘08 D, S, MR, T, H 1850-1999 2000-2100 1,020 

§ Treatment: 1 = westslope cutthroat trout, beaver present; 2 = westslope cutthroat trout, brook charr, present; 3 = westslope cutthroat trout, beaver, 

brook charr present 

! Fish data collected: D = distribution, S = scales sampled, MR = capture-mark-recapture, T = temperature, H = habitat 
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Table 3.2. Habitat characteristics of study streams in southwestern Montana. 

 

Stream Treatment§ 
Average Channel 

gradient (%) 

Average width 

(m) 

Midstream depth 

(cm) 

Pool frequency 

(per 100 m) 
Mean summer temperature (°C)† 

      Mid-elevation High-elevation 

Stone 1 5 4 22.2 2.7 12.1 8.8 

Rape 1 9 2.2 20.8 2.2 13.7 10.9 

Johnson 2 9 4.5 21.7 1.6 10.7 8.4 

Stine 2 8 3.0 21.3 1.8 9.7 8.0 

Hell Roaring 2 6 3.5 24.8 2.8 10.1 7.2 

Lacy 3 5 3.6 19.9 1.7 13.5 11.5 

Squaw 3 6 2 34.8 3.1 15.3 12.9 

§ Treatment: 1 = westslope cutthroat trout, beaver present; 2 = westslope cutthroat trout, brook charr, present; 3 = westslope cutthroat trout, beaver, 

brook charr present 

† Mean summer temperature 1 July – 31 August 2006 – 2008 data 
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Table 3.3. Fish capture/recapture rates and attributes of fish populations in each stream used in calculation of distribution and 

growth rate metrics among treatments. 

 

Stream Treatment§ 
No. fish captured/recaptured 

Mid-elevation strata 

No. fish captured/recaptured 

High elevation strata 

Ave. 

overlap 

(%) 

Ave. TL (mm) 

of recaptured 

WCT†  

  2006 2007 2008 2006 2007 2008   

  WCT BKC WCT BKC WCT BKC WCT BKC WCT BKC WCT BKC   

Stone 1 264/51 " 228/75 " 213/75 " 138/15 " 136/33 " 133/27 " " 125/(15.9) 

Rape 1 51/7 " 90/31 " 34/5 " 43/4 " 54/5 " 35/6 " " 93/(28.1) 

Johnson 2 10/1 43/6 5/3 48/3 5/4 34/4 46/12 29/6 15/6 22/5 10/3 9/3 76.4 139/(10.5) 

Hell 

Roaring 
2 " " " " 0 21 " " " " 12 2 59.8 

" 

Squaw 3 42/9 271/21 48/18 603/46 51/20 319/122 30/9 185/15 45/13 171/16 48/22 165/43 93.0 110/(25.9) 

Lacy 3 76/12 258/39 54/25 217/75 33/11 136/45 12/0 80/14 18/6 86/24 5/1 63/18 91.6 129/(16.4) 

§ Treatment: 1 = westslope cutthroat trout (WCT), beaver present; 2 = westslope cutthroat trout, brook charr (BKC), present; 3 = westslope 

cutthroat trout, beaver, brook charr present 

† WCT in the size range 55 – 149mm (TL/(SD))
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Figure Legends 

 

Figure 3.1. Length-Frequency distributions of westslope cutthroat trout in each treatment 

type. Treatment type is indicated pictorially (white fish = cutthroat trout, black fish = 

brook charr, and beaver.  

 

Figure 3.2. Average Growing Season Degree days (+/- SE) in beaver and non-beaver 

study streams. Hatched temperature zone (900 – 1,200 Celsius degree days) indicates 

optimal degree-days for westslope cutthroat trout (WCT) recruitment, the white 

temperature zone (800 – 900 Celsius degree days) indicates variable recruitment success, 

and the stippled temperature zone (< 800 Celsius degree days) indicates high risk of 

recruitment failure (Coleman & Fausch 2007). 

 

Figure 3.3. Proportions of westslope cutthroat trout (WCT) and brook charr (BKC) 

captured in mid- and high elevation strata of each stream. Average mid- and high strata 

degree-days are shown by textured rectangles, with latitudinal length of rectangle 

denoting range between 2006 and 2008 average degree-days. Streams are grouped 

according to treatment, with treatment type indicated pictorially (white fish = WCT, 

black fish = brook charr (BKC), and beaver. Hatched temperature zone (900 – 1,200 

Celsius degree days) indicates optimal degree-days for westslope cutthroat trout (WCT) 

recruitment, the white temperature zone (800 – 900 Celsius degree days) indicates 

variable recruitment success, and the stippled temperature zone (< 800 Celsius degree 

days) indicates high risk of recruitment failure (Coleman & Fausch 2007). 

 

Figure 3.4. Densities of westslope cutthroat trout (+/- SE) (white bars) and brook charr 

(+/- SE) (grey bars) in each stream. Streams are grouped according to treatment, with 

treatment type indicated pictorially (white fish = WCT, black fish = brook charr (BKC), 

and beaver. 

  

Figure 3.5. Westslope cutthroat trout back-calculated size at age-1 for each stream. 

Treatment type is indicated pictorially (white fish = WCT, black fish = brook charr 
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(BKC), and beaver. Letters A and B indicate significant difference between treatments: 

treatments with different letters are significantly different from one another (P ! 0.05), 

whilst treatments with the same letter indicate no statistical difference (P > 0.05). 

 

Figure 3.6. (a) Percentage daily growth rate (+/- SE) of westslope cutthroat trout at mid- 

(white bars) and high-elevations (grey bars) of each stream. (b) The proportion of 

realized growth to temperature-based potential growth (+/- SE) at mid- (white bars) and 

high-elevations (grey bars) in each stream. Treatment type is indicated pictorially (white 

fish = WCT, black fish = brook charr (BKC), and beaver. 
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CHAPTER 4  

BEAVER MITIGATE NATIVE FISH DECLINES IN THE FACE OF INVASION 

 

Abstract 

An understanding of the parameters that alter demographic consequences of invasions on 

natural systems is essential as we work to manage exotics and maintain native persistence 

across the landscape. Brook charr (Salvelinus fontinalis) populations have become 

established throughout the western United States, and have been implicated in native 

cutthroat trout (Oncorhynchus clarkii) declines across their range. Heterogeneity in 

stream habitat characteristics imposed by beaver (Castor canadensis) activity has the 

potential to alter invasion dynamics between brook charr and cutthroat trout. I examined 

how beaver influence cutthroat demographic rates and population persistence in invaded 

and non-invaded streams. I measured vital rates with a 3-year mark-recapture study in 

southwest Montana to evaluate relative impacts of beaver impoundments on invaded 

cutthroat demography and developed population models to determine extinction risk. In 

comparison with non-beaver streams, I found that cutthroat exhibit ~ 40 % higher 

apparent survival rates in beaver influenced streams. I also found differences in life-stage 

transition rates, with small to large adult transition probabilities 1.5 and 4 times higher in 

beaver systems. The invaded non-beaver stream exhibited the lowest population growth 

rates (" = 0.89), and the shortest median time to extinction (8-years). Estimates of 

population growth rates from invaded beaver streams had 5 – 20 % higher growth rates 

and longer median times to extinction. Beaver mitigate negative effects of brook charr 

invasions on cutthroat trout populations. I lend support to an emerging body of evidence 

that elucidates how spatial heterogeneity on the landscape can lessen the impacts of an 

invasive species, allowing native persistence. I therefore propose that including beaver in 

our cutthroat management toolbox could be used to improve population persistence of 

this sensitive species.   
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Introduction 

 

Exotic species invasions have devastating effects on native species and 

ecosystems worldwide, adding to a gamut of stressors on native populations that include 

habitat degradation, pollution, overexploitation, and disease (Wilcove et al. 1998). Of 

these stressors, the proliferation of invasive species presents one of the least tractable 

problems facing ecologists and land managers charged with native species conservation 

(Byers et al. 2002; Vitousek et al. 1996). Recognition of the magnitude of this threat has 

stimulated an upsurge in research on ecological invasions (Smith et al. 2006). However, 

predicting invasions and their impacts, as well as formulation of effective management 

tools to curtail invasives has proved elusive (Pearson & Fletcher 2008). Understanding 

the factors and mechanisms that cause invasion success and impacts on native species to 

be highly context-dependent (Catford et al. 2009; Daehler 2003), may help in the 

development of efficacious management approaches.  

In freshwater systems of the western U.S., invasions by nonnative brook charr 

(Salvelinus fontinalis) have been implicated in native cutthroat trout (Oncorhynchus 

clarkii spp.) population declines, displacement, and range contraction over the past 

century (Dunham et al. 2002; Kennedy et al. 2003; Young 1995). Consequently, three 

subspecies of cutthroat trout are formally listed as threatened under the U.S. Endangered 

Species Act, and the status of cutthroat is a management concern throughout the species’ 

range (Dunham et al. 2002). Interspecific competition is commonly linked to cutthroat 

displacement by brook charr (Adams et al. 2000; Dunham et al. 2002; Fausch 1988; 

Griffith 1988), and involves brook charr displaying increased agonistic behavior and 

occupying preferred feeding positions when sympatric with cutthroat (Chilcote 2004; De 

Staso III & Rahel 1994; Griffith 1972, 1974; Novinger 2000). Demographic work 

examining sympatric brook charr-cutthroat populations shows that brook charr depress 

cutthroat populations through age-specific biotic interactions that reduce juvenile 

cutthroat survival rates (Figure 4.1) (Peterson et al. 2004). Brook charr monopolize more 

energetically profitable lower elevations of invaded streams, relegating cutthroat to 

colder upstream reaches (Dunham et al. 2002; Fausch 1989; Paul & Post 2001; Rieman et 
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al. 2006). Indeed, many of the remaining cutthroat populations within the upper Missouri 

basin are now restricted to isolated headwater habitats (Shepard et al. 1997).  

Aside from direct effects of brook charr competition on native demographic rates, 

shifts in cutthroat distributions to higher elevations have potential population impacts by 

reducing somatic growth rates. This has implications for reduced size-at-age (McCaffery, 

Chapter 3), and hence fecundity values (Downs 1995). Additionally, colder temperatures 

experienced by displaced cutthroat increase variation in recruitment success, thereby 

leading to a greater likelihood of recruitment failure (Coleman & Fausch 2007; Peterson 

et al. 2004). These direct and indirect impacts are hypothesized to increase the risk of 

extinction. (Rieman & McIntyre 1993; Schaffer 1991; Schaffer & Sampson 1988).  

Population dynamics of native cutthroat trout in the face of brook charr invasion 

pressure varies across the landscape. Understanding the mechanisms behind how 

population responses vary, and subsequent impacts on cutthroat persistence, is essential 

to conservation efforts of these natives. Perhaps the most pervasive natural modifier of 

freshwater stream systems on the North American landscape is habitat engineering 

associated with beaver (Castor canadensis) (Collen & Gibson 2001). As a result of 

feeding and damming activities, beaver increase landscape heterogeneity (Johnston & 

Naiman 1990) through the creation of lentic habitat in otherwise lotic systems. The 

formation of pool habitat increases water temperatures both at the impoundment as well 

as downstream (McCaffery, Chapter 3), and enhances prey availability and juvenile 

rearing habitat for all salmonid species (Scruton et al. 1998; Winkle et al. 1990). Stream 

reaches influenced by beaver have been found to accommodate high abundances of brook 

charr (Hilderbrand 1998), and beaver pools provide critical winter habitat for cutthroat 

trout (Jakober et al. 2000). However, quantitative research on the role of beaver habitat 

modification in aquatic invasive/native fish dynamics is scarce. One example from 

Chilean watersheds, where beaver themselves are an invasive exotic species, suggests 

that native puye (Galaxias maculatus) attain higher abundances in beaver streams that are 

under invasion pressure from exotic salmonids (Moorman et al. 2009). These recent 

findings strongly suggest that beaver activity influences demographic parameters of 

native populations, and allows them to persist in the sympatry with exotics. 
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With more natives distributed in lower elevation, warmer stream reaches, juvenile 

cutthroat in beaver streams display higher somatic growth rates relative to non-beaver 

systems (McCaffery, Chapter 3), although exhibit a greater degree of spatial overlap with 

brook charr. Thus I was interested in establishing if these findings propagate to altering 

cutthroat population persistence.   

I examined cutthroat trout populations subject to brook charr invasion in both 

beaver and non-beaver streams to investigate how habitat modification by beaver might 

affect cutthroat demographic parameters, and provide insight into cutthroat population 

viability. Specifically, I assessed how beaver influence cutthroat trout demographic 

parameters in invaded and non-invaded streams, and evaluated the repercussions for 

cutthroat population persistence in the face of invasion. 

 

Methods 

 

Study sites 

I selected five study streams in the Beaverhead-Deerlodge National Forest, and 

nearby Bureau of Land Management, and private lands in southwestern Montana. All 

streams included cutthroat trout, but differed in terms of brook charr and beaver presence 

in order to fulfill the treatment criteria: 1 = beaver and cutthroat trout present, 2 = 

cutthroat trout and brook charr present, and 3 = beaver, cutthroat trout, and brook charr 

present. The only salmonid species inhabiting the study streams were westslope cutthroat 

trout and brook charr. All study watersheds fell within an elevation range of 

approximately 1,800 m to 2,200 m and were suitable for beaver habitation. Streams were 

selected based on the presence of requisite species assemblages, and were of similar size 

and gradient (Table 4.1). 

 

Data collection 

I sampled each study stream using capture-mark-recapture methods during July 

and August of 2006, 2007, and 2008. I stratified each stream into low, mid, and high 

elevations, and randomly selected three 200 m sections within the mid and high elevation 

strata of each stream for study. I used two-pass depletion electrofishing to capture brook 
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charr and westslope cutthroat trout. During the first sampling session, I enclosed each 

200 m section temporarily with block-nets, and sampled in an upstream direction using a 

backpack electrofishing unit (Smith-Root Inc. model 15-D, Vancouver, WA, USA). I 

measured (total length (TL), nearest 1 mm), and weighed (nearest 1 g) all cutthroat trout. 

Fish greater than 55 mm were individually tagged with a 12 mm passive integrated 

transponder tag (PIT tags: Biomark, Inc., Boise, ID, USA) and released. During 

subsequent recapture sessions, I repeated the established sampling protocol except I 

recorded recaptures, and PIT tagged new captures.  

 

Demographic parameter estimation 

I modeled cutthroat trout populations using a combination of my own nark-

recapture field data and vital rates obtained from the literature. Since cutthroat trout 

exhibit size-specific maturity and fecundity, as well as potential differences in survival, I 

grouped cutthroat into four life stages categories: stage 1 = Young-of-the-year (YOY), 

stage 2 = juvenile (treatment 1: TL 89–142 mm, treatment 2: TL 78–142 mm, treatment 

3: TL 88–142 mm), stage 3 = small adult (TL 143–173 mm), and stage 4 = large adult 

(TL 174–265 mm) (Figure 4.2). These stage classes encompassed the range of sizes 

exhibited by resident cutthroat in my study streams, and approximately correspond to 

other published cutthroat trout stage-based demographic models (Hilderbrand 2002; 

Peterson et al. 2008a). I directly measured juvenile, small adult, and large adult stages, 

and used literature-based vital rate values for the young-of-the-year stage (Hilderbrand 

2002; Peterson et al. 2008a; Peterson et al. 2004; Shepard et al. 1997). The variation in 

juvenile cutthroat trout growth associated with treatment type observed in the field 

(McCaffery, Chapter 3) was reflected in my model by setting treatment-specific size 

ranges for juveniles (Figure 4.2).  

 Given that my sampling design incorporated periods of time between capture 

sessions during which cutthroat could enter or leave the study reach, I minimized bias in 

my estimation of demographic vital rates by examining stream capture histories for 

evidence of transient fish. Transients are individuals that leave the study area after first 

capture and thus have a subsequent local survival probability equal to zero (Pradel et al. 

1997). I used Tmsurviv (Hines 1996) to calculate stage-specific estimates of the 
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proportion of residents (!), resident survival rates ("), and associated capture probabilities 

(p). All possible model combinations, with and without time dependence for each 

parameter were tested. I found no evidence of overdispersion in any of my capture 

histories (! = 1), and I proceeded to assess candidate models using AICc (see White & 

Burnham 1999). Models with the lowest values of AICc were retained (Lebreton et al. 

1992), and any models with AICc differences greater than four were discarded (Anderson 

et al. 1994). The best models for all streams indicated high cutthroat site fidelity with a 

negligible influence of transients (! = 1).  

I then analyzed my capture data using multi-strata mark-recapture models in 

Program MARK (White & Burnham 1999). Model strata corresponded to juvenile, small 

adult, and large adult demographic life-stages. Time-independent models that 

incorporated stage dependence yielded parameter estimates and variances for survival 

(!), transition rates between life stages (#), and capture probability (p), which were then 

ranked using AICc. 

    

Matrix model construction 

I determined the demographic implications of beaver on invaded and non-invaded 

cutthroat population growth rates using matrix transition models. I constructed post-birth 

pulse stage-structured matrix models using invaded (low survival (LS)) and non-invaded 

(high survival (HS)) young-of-the-year survival rates (Peterson et al. 2008a; Shepard et 

al. 1997), and estimated mean stage-specific survival and transition rates. To calculate 

reproductive output (F) of adults, I combined estimated adult survival and transition rates 

with literature values of stage-specific fecundity, sex ratio (assumed to be 1:1), and egg 

and fry survival rates (Hilderbrand 2002; Peterson et al. 2008a). I obtained estimates of 

variation in cutthroat vital rates from the literature (Table 4.2; Hilderbrand 2002; 

Peterson et al. 2008a; Shepard et al. 1997), and used stochastic matrix projection models 

to determine cutthroat population growth rate for each study stream and explore future 

population viability. Since previous research has found mitigating effects of beaver for 

invaded cutthroat trout (McCaffery, Chapter 3), I simulated brook charr invaded systems 

using both high and low values for young-of-the-year cutthroat survival (Table 4.2). I set 

the initial population vectors to 2,500 individuals at stable stage distribution for each 
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stream, as this is a realistic carrying capacity for cutthroat populations in small streams 

(Hilderbrand 2002), and is a reasonable stream-wide total population size based on 

cutthroat density data for these streams (McCaffery, Chapter 3). I used two metrics to 

characterize cutthroat population response to invasion, with and without beaver: (i) 

stochastic lambda ("S), and (ii) median time to extinction. Persistence was defined as 

maintaining a total population size greater than 50. Simulations were run for 100 time 

steps (years), and iterated 1,000 times using MATLAB version R2007a (MathWorks, 

Inc.). Projecting the population 100-years into the future is approximately 20 times the 

generation time of cutthroat trout (Downs et al. 1997), and as such is of sufficient 

duration to characterize the dynamics of these populations and provide useful indices of 

extinction risk in the face of invasion. I calculated empirical cumulative distribution 

functions to elucidate extinction probabilities through time, and expressed overall risk to 

cutthroat populations in terms of the median time to extinction (Morris & Doak 2002). 

 

Results 

 

Cutthroat trout demographic parameters 

I found no evidence of transience in my study areas, and assumed that capture 

histories comprised only resident cutthroat individuals (! = 1.0; Table 4.3). Therefore, I 

estimated apparent survival and stage transition probabilities using Program MARK 

(Table 4.4). In comparison to the non-beaver stream, I found that across all stage classes, 

apparent survival was 40 % and 46 % higher in beaver non-invaded and invaded streams 

respectively. Examination of mean stage-specific survival rates between beaver and non-

beaver systems revealed that estimated juvenile survival was around 36 % higher in non-

invaded beaver streams and 20 % higher, though more variable, in invaded beaver 

streams. I found that stage-specific survival of small and large adults in beaver systems 

were 40 % higher in non-brook charr invaded streams, and 36 % and 58 % higher 

respectively in invaded systems (Figure 4.3).  

The probability of juveniles transitioning to small adults was relatively similar 

across all treatments. However, I found that the probability of juveniles transitioning to 

large adults was around 1.5 times greater in beaver systems. Similarly, I found a 4-fold 
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increase in transition rates of small adults to large adults in beaver influenced systems, 

relative to the non-beaver stream (Figure 4.4).  

Using my mean vital rate estimates, and estimates of vital rate variation from the 

literature, I constructed stochastic stage-based population matrix models to evaluate the 

influence of beaver presence on annual cutthroat population growth rates under invasion 

pressure. Non-invaded beaver streams exhibited positive stochastic annual growth rates 

of around 2 % per year. The brook charr invaded non-beaver stream, exhibited 

precipitous population declines of approximately 10 % per year, whilst invaded beaver 

streams modeled with the same low young-of-the-year survival rates declined at around 1 

% and 6 % per year. However, simulations of brook charr invaded beaver streams 

exhibited annual population growth rates of 2 % and 7 % (Figure 4.5).   

 

Cutthroat trout population persistence 

 To compare the relative levels of extinction risk associated with the cutthroat 

populations, I calculated cumulative distribution functions of the extinction probabilities 

for each stream population (Figure 4.6). In non-invaded beaver streams, I calculated that 

there was a relatively low likelihood of these populations going extinct within a 100-year 

timeframe, with cumulative probabilities of approximately 10 % and 45 % after 100-

years. However, in brook charr invaded streams, I found that when modeled using low 

young-of-the-year survival rates, all cutthroat populations had a 100 % probability of 

extinction within 100-years. The median time to extinction in the invaded non-beaver 

stream was 8 years, whilst median extinction times in invaded beaver streams were 11 

and 23 years. Modeling invaded beaver streams using high young-of-the-year survival 

rates yielded cumulative extinction probabilities of 0 % and 5 % after 100-years (Figure 

4.6). 

  

Discussion 

 

My research provided new insight into the integral role that beaver play in stream 

ecosystems, and demonstrated the positive implications of this keystone species for 

cutthroat trout demography in systems that are threatened by brook charr. Since the 
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ultimate metric of invasion impact on a native species is the probability of native 

extinction, I used demographic analyses to investigate the population-level implications 

of documented effects that beaver provide critical fish habitat (Jakober et al. 2000), 

enhance cutthroat somatic growth rates, but increase the degree of overlap with a major 

competitor (McCaffery, Chapter 3). 

In non-beaver streams invaded by brook charr, cutthroat trout exhibited low 

survival rates across all stage classes. With beaver present in invaded streams, cutthroat 

exhibited slightly higher mean survival at the juvenile stage, and substantial increases in 

small and large adult survival rates. Comparison of my low adult survival estimates (! = 

0.25) with the other study streams and to literature values (! # 0.35 – 0.55), is somewhat 

contrary to previous cutthroat demographic work examining the effects of brook charr 

invasion. Using brook charr removal experiments, Peterson et al. (2004) found that while 

juvenile cutthroat suffered lower survival in sympatry with brook charr, adults survival 

was unaffected by brook charr presence. This discrepancy may be due to the extreme 

species segregation in the non-beaver stream, whereby all cutthroat in this watershed 

were displaced into extreme headwater reaches which exhibited cold, less productive fish 

habitat (McCaffery, Chapter 3). Comparisons of stage-specific cutthroat survival between 

invaded and non-invaded beaver streams, where cutthroat were distributed throughout the 

watershed (McCaffery, Chapter 3), showed high adult survival regardless of brook charr 

presence (Figure 4.3). Mean juvenile survival rates in beaver streams were slightly lower 

with brook charr present, albeit a weaker effect than evident in the non-beaver stream.  

In addition to allowing the projection of future cutthroat population trajectories, 

evaluation of stage transition rates can also provide us with clues about the mechanisms 

shaping cutthroat population growth rates. Stage transition probabilities for juvenile to 

small adults were similar across all treatments. However, transition rates from juvenile to 

large adult, and small adult to large adult were substantially greater in beaver systems, 

regardless of brook charr presence. This suggests that cutthroat somatic growth rates are 

much higher in beaver influenced streams relative to non-beaver, a result that is 

consistent with previous findings of higher somatic growth rates in these beaver streams, 

as well as length-frequency data which shows smaller cutthroat size structure in the non-

beaver stream relative to beaver systems (McCaffery, Chapter 3).  
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Translating these vital rates to estimates of population growth, I found that all 

systems subject to brook charr invasion exhibit negative population growth rates, with the 

non-beaver stream exhibiting the most precipitous decline (Figure 4.5). This is likely a 

consequence of both direct competition, and indirect interactions, associated with 

cutthroat displacement to upstream, colder water, leading to lower somatic growth and 

survival rates in suboptimal habitat. Additionally, a population of smaller sized fish is 

less fecund, therefore diminishing resulting population growth rates further. Reductions 

in somatic growth, fecundity, and population growth with increased elevation are the 

mechanism that limit upstream brook charr distributions in these stream types (Adams 

1999), and this pattern of spatial competitive exclusion of cutthroat to higher elevations 

by brook charr is not uncommon on the landscape (e.g. Dunham et al. 2002). My results 

suggest that whilst upstream displacement of cutthroat trout provides a refuge from direct 

competitive effects of brook charr, it does not represent a viable option for long-term 

cutthroat persistence.   

Since beaver have significant positive effects on somatic growth rates of 

cutthroat, as well as raising their relative abundances compared with non-beaver streams, 

I also ran simulations where young-of-the-year cutthroat survival was set at non-invaded 

levels, whilst keeping all other measured vital rates the same. Resulting population 

growth rates of cutthroat trout under this scenario are positive, and suggest that beaver 

could mitigate brook charr effects on cutthroat populations to levels comparable to non-

invaded systems, and achieving approximate parity with growth rates reported by 

Peterson et al. (2008a).   

Quantitative risk of extinction provides us with a metric for which to compare 

relative extinction rates across populations, and is most useful for assessing the relative 

effects of potential management actions on native persistence (Reed et al. 2002). Non-

invaded beaver systems have relatively low probabilities of extinction within the next 

century. Under brook charr invasion however, all cutthroat populations reached the quasi-

extinction threshold within a 100-year timeframe. In brook charr invaded systems with 

beaver present, I found that median time to extinction was delayed by a few years relative 

to the non-beaver invaded stream. Based on significantly higher somatic growth rates 

during the first year (McCaffery, Chapter 3), it is likely that beaver raise young-of-the-
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year survival rates to some degree. I therefore bounded young-of-the-year survival 

between low and high young-of-the-year survival rates, and found that cumulative time to 

extinction in invaded beaver streams using high young-of-the-year survival values, 

reduced the likelihood of extinction to between 0 and 5 % over 100-years. 

The shift to reduced cutthroat extinction risk with beaver presence offers clues to 

potential management strategies to ensure persistence of native cutthroat populations. 

Thus far, conventional efforts to maintain cutthroat populations on the landscape have 

followed a crisis management approach. Struggling populations are subjected to various 

management interventions, such as translocations to headwater reaches (Coleman & 

Fausch 2007), installing barriers to nonnative movement, and direct removal actions 

(Dunham et al. 2002; Peterson et al. 2008a). These actions are variably successful and 

can have adverse consequences for the native species of concern. Even if beaver do not 

raise young-of-the-year survival, and I conservatively evaluate invaded cutthroat trout in 

beaver systems using low survival estimates for this stage class, the presence of beaver 

increases population growth rates by around 5 and 12 %, corresponding to an extension 

of 3 – 15 years in time to extinction. In comparison, suppression of brook charr using 

repeat electrofishing management, can yield as high as 80 % increases in cutthroat 

population growth (Peterson et al. 2008a). However, benefit-cost ratio analysis of this 

management strategy for scenarios of periodic repeat suppression over a period of 50-

years and low brook charr immigration rates, yields increases in cutthroat population 

growth of around 1 – 2.5 % per unit effort. I propose that the use of beaver as agents of 

cutthroat restoration could improve population growth rates, and depending on the 

strength of the invasion, could be used in concert with periodic suppression and 

supplementation management actions. 

I document an emerging phenomenon in invasion ecology in which spatial 

heterogeneity in habitat factors can change the competitive effects of invasives on native 

species, leading to pockets of native persistence in the face of invasion (Metlen, 

unpublished data, Kolb et al. 2002; Lortie & Cushman 2007). As conservation biologists 

strive for effective, long-term solutions to mitigate brook charr invasions on cutthroat 

populations, a holistic approach to conservation that takes account of and maintains 

essential population and life history processes is essential. I show that the effects of 
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beaver on native species under invasion pressure hints at their potential utility for 

cutthroat management, and suggests their inclusion in the fisheries management toolbox. 
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Table 4.1. Characteristics of study streams in southwestern Montana. 

 

Stream 
Treatment

§
 

Focal species 

present 

Elevation range sampled 

(m) 

Stream 

length 

sampled (m) 

Total number of 

cutthroat marked 

UTM of downstream  

sample point 

   Mid-elevation 
High-

elevation 
 

 
Zone E N 

Stone 1 
 

1800-1899 1900-2200 1,200 729 12T 391367 5009731 

Rape 1 
 

1900-1999 2000-2180 800 159 12T 326945 4978266 

Johnson 2  1840-1999 2000-2170 800 101 12T 344216 5079030 

Lacy 3 

 

1900-2020 2021-2230 1,000 111 12T 331606 5052573 

Squaw 3 

 

1850-1999 2000-2100 1,020 142 12T 320848 5072475 

§ Treatment: 1 = westslope cutthroat trout, beaver present; 2 = westslope cutthroat trout, brook charr present; 3 = westslope cutthroat trout, beaver, 

brook charr present 
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Table 4.2. Matrix elements and parameters used in demographic analysis of cutthroat trout. Mean values and associated 

coefficients of variation (CVs) used in stochastic projections. 

 
Matrix element or parameter Mean value CV (%)* 

 
Stone Creek 

 

Rape Creek 

 

Johnson 

Creek 

 

Lacy Creek 

 

Squaw Creek 

 

 

YOY survival* 0.318 0.318 0.025 0.025/0.318a 0.025/0.318a 20 

Juvenile survival 0.33 0.35 0.25 0.29 0.31 20 

Small adult survival 0.35 0.35 0.25 0.39 0.4 10 

Large adult survival 0.37 0.35 0.25 0.4 0.41 10 

Probability of small adult breeding* 0.75 0.75 0.75 0.75 0.75 10 

Probability of large adult breeding* 1.0 1.0 1.0 1.0 1.0 10 

Small adult clutch size* 187 187 187 187 187 10 

Large adult clutch size*b 473 473 473 473 473 10 

Egg to age-0 survival from spring 

spawning to fall census* 
0.4 0.4 0.4 0.4 0.4 20 

Transition probability  

(Juvenile to small adult) 
0.49 0.49 0.48 0.57 0.71 10 

Transition probability  

(Juvenile to large adult) 
0.14 0.1 0.05 0.15 0.1 10 

Transition probability  

(Small adult to large adult) 
0.51 0.44 0.08 0.4 0.33 10 

* Value obtained from Peterson et al. (2008a). 

a – Separate simulations using low and high young-of-the-year (YOY) survival were projected for invaded, beaver streams. 

b – My large adult size class encompasses Peterson et al.’s (2008a) medium and large adult size classes. I therefore averaged clutch size values for these 

stages to gain an average clutch size applicable to my size range for large adults.  
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Table 4.3. Output from Tmsurviv, showing the best model for each stream, and estimated survival rates and proportion of 

resident cutthroat trout. 

 

Stream Model AICc 

No. 

parameters 
Estimated survival 

Proportion of 

residents 

    Juvenile !  (SE) Small adult !  (SE) Large adult !  (SE)  

Stone !. ptime ". 243.5 7 0.33 (0.03) 0.33 (0.03) 0.33 (0.03) 1.0 

Rape !. p. ". 126.5 3 0.33 (0.067) 0.33 (0.067) 0.33 (0.067) 1.0 

Johnson !. p. ". 88.69 3 0.28 (0.062) 0.28 (0.062) 0.28 (0.062) 1.0 

Lacy !. p. ". 139.9 3 0.36 (0.059) 0.36 (0.059) 0.36 (0.059) 1.0 

Squaw !. p. ". 87.81 3 0.35 (0.072) 0.35 (0.072) 0.35 (0.072) 1.0 
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Table 4.4. Output from Program MARK, the best model for each stream and estimated cutthroat trout survival rates and 

transition probabilities used in matrix projection models. 

 

Stream Model AICc 

No. 

parameters 
Estimated survival Estimated stage transition probability 

    
Juvenile  

!  (SE) 

Small adult 

!  (SE) 

Large adult 

!  (SE) 

Juvenile #  

(SE) 

Juvenile #  

(SE) 

Juvenile #  

(SE) 

Stone !stage p. #stage 342.5 7 0.33 (0.05) 0.35 (0.1) 0.37 (0.07) 0.49 (0.11) 0.14 (0.04) 0.51 (0.12) 

Rape !stage pstage #stage 358.6 9 0.35 (0.06) 0.35 (0.06) 0.35 (0.06) 0.49 (0.20) 0.10 (0.03) 0.44 (0.18) 

Johnson !. p. #stage 158.5 5 0.25 (0.07) 0.25 (0.07) 0.25 (0.07) 0.48 (0.21) 0.05 (0.12) 0.08 (0.08) 

Lacy !stage pstage #stage 338.13 9 0.29 (0.09) 0.39 (0.06) 0.40 (0.05) 0.57 (0.16) 0.15 (0.04) 0.40 (0.08) 

Squaw !stage pstage #stage 151.42 9 0.31 (0.08) 0.40 (0.07) 0.41 (0.04) 0.71 (0.21) 0.1 (0.05) 0.33 (0.09) 
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Figure Legends 

 

Figure 4.1. Conceptual diagram of the demography of brook charr invasion and effects on 

cutthroat trout. Life stages are shown with transitions between stages depicted by arrows. 

Dashed arrows indicate demographic transitions that are affected by biotic interactions 

with brook charr. Adapted from Peterson et al. (2004). 

 

Figure 4.2. Post-birth pulse, stage-structured life cycle diagram for stream-resident 

cutthroat trout. Stage transitions are the product of surviving and transitioning to the next 

life stage. Reproductive output (F) for a given stage was the product of probability of 

breeding, clutch size, spawner survival, and egg survival plus reproductive output from 

the previous stage. 

 

Figure 4.3. Stage-specific cutthroat trout apparent survival  (+/- SE) for each study 

stream. 

 

Figure 4.4. Stage-specific cutthroat trout transition probabilities  (+/- SE) for each study 

stream. 

 

Figure 4.5. Stochastic population growth rates (ln(!)) (+/- SE) for westslope cutthroat 

trout in each study stream. Invaded beaver streams were modeled using low and high 

young-of-the-year (YOY) survival values. 

 

Figure 4.6. Cumulative distribution functions for the probability of cutthroat trout quasi-

extinction in each stream. Invaded beaver streams were modeled using low (LS) and high 

(HS) young-of-the-year (YOY) survival values. Treatment type is indicated 

pictorially(black fish = brook charr, and beaver). 
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