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A bstract

Agricultural and rangeland land uses occupy large areas in the western United States.
An estimated 23 million ha of rangeland and pasture and 6.5 million ha of eroplands exist 
in Montana alone. Ground based reconnaissance provides more accurate measures of 
crop and rangeland vegetation productivity but is impractical for such large areas.
Remote sensing has been promoted as a diagnostic tool for analyzing vegetation 
productivity given its’ synoptic, objective and timely coverage. The Moderate 
Resolution Imaging Spectrometer (MODIS) provides land products in addition to 
imagery. This study was conducted to evaluate the efficacy of selected MODIS 
algorithms for deriving wheat yield and characterizing intra - and inter - annual rangeland 
vegetation dynamics. This task was completed in three steps. Each step necessarily 
builds on knowledge gained during the progression of the research. First, I compare 
MODIS - derived vegetation productivity with measures of above - ground green biomass 
in the Little Missouri National Grasslands. Second, county, climate district and state 
level wheat yield is derived from MODIS gross primary productivity (GPP) and 
compared with observed yield from the same spatial domains. Third, I formulate a spring 
wheat yield model for Montana driven by MODIS vegetation data. Results demonstrate 
that although MODIS vegetation products have some improved characteristics over 
earlier platforms (e.g AVHRR and ETM+) they are still restricted by the same limitations 
of relating coarse resolution remote sensing data to ground based biophysical phenomena 
identified decades earlier. As a result, areas needing further research are identified and 
suggestions for further evaluating rangeland vegetation and wheat yield using MODIS 
algorithms are provided.
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CHAPTER 1

REM O TE SENSING of RANGELAND AND AGRICULTURAL VEGETATION 

Overview

The goal of this dissertation research is to explore the potential of MODIS derived 

vegetation productivity for quantitatively characterizing rangeland and agricultural 

patterns on the Northern Great Plains. This document is organized into five chapters, 

ordered chronologically, to demonstrate progressive understanding of MODIS products 

and potential implications of the research. The common thread linking each of these 

stand alone chapters is the exploration of this new satellite data stream and a critical 

evaluation of appropriate spatial scale for applying MODIS vegetation data within the 

context of my research.

Statem ent o f Problem

In the western United States we are blessed with an, albeit decreasing, abundance 

of agricultural and rangeland landscapes. Montana alone hosts nearly 23 million ha of 

pasture and rangeland and roughly 6.5 million ha of croplands (Fisher et al. 1998). Most 

of the rangelands in the west occur in relatively remote areas making quantification of 

vegetation productivity exceptionally challenging, despite the need for such data. 

Different authors use different criteria for determining the spatial extents of rangelands, 

though Global estimates for rangeland are as high as 50 -  70% of the total land surface 

(Holechek et al. 1989). Vogelmann et al. (2001) estimate that shrublands and grasslands 

are 34% of the total area in the conterminous USA (Hunt et al. 2003).

The situation is different for crops because producers have reasonably good 

estimates of crop yield, and therefore are not necessarily dependent upon yield estimates.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2
particularly from satellite imagery. But, for the purposes of drought mitigation, crop 

insurance and averting disastrous crop failures, it is important to understand regional crop 

production patterns. This is especially the case in developing countries that have few, if 

any, regularized yield monitoring systems.

Ground based assessment techniques, such as plot level biomass measurement, or 

more recently, in the case of crops, yield monitors on crop harvesting machinery remain 

the most reliable method for characterizing vegetation productivity. However, given the 

large expanses of crop and rangeland in the western United States, comprehensive ground 

based reconnaissance at regular temporal and spatial intervals is impractical.

This is problematic as time is a critical factor for evaluating rangelands and crops 

because drought conditions can significantly alter ecological conditions and economic 

returns from a region. Although finer resolution spacebome sensors, such as the widely 

used Landsat Enhanced Thematic Mapper plus (ETM+) provide sufficient resolution for 

detailed spatial analyses, they provide limited spatial and temporal coverage. Often, 

during the growing season, ETM+ data may be un-useable due to clouds given the 

sensors repeat frequency of 16 days. In contrast, timely, synoptic coverage is the forte of 

the MODIS vegetation products, making them an attractive tool for monitoring regional 

crop and rangeland productivity despite their I-km spatial resolution. Unfortunately, in 

spite of the widely recognized need for regular monitoring of crop and rangeland 

resources, few studies to date have focused on using MODIS vegetation data from a 

managerial perspective, though many have used other forms of remotely sensed imagery. 

This is partly due to the infancy of the MODIS data stream and partly from the nature of 

University research in general. Hence the central focus of this research is investigating

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3
the role of MODIS vegetation products for evaluating selected aspects of agricultural and 

rangeland landscapes in the Northern Great Plains.

The conclusions supported as a result of this research are similar for both 

systems in that, I provide suggestions for appropriate spatial scales and what kind of 

questions can suitably be answered with MODIS vegetation data. While not exhaustive, 

this research provides much needed insight to the behavior and suitability of MODIS 

vegetation data for evaluating crop and rangeland systems from a realistic, and at times, 

critical standpoint.

Background

Rangeland Remote Sensing

One of the first research activities was to examine the usefulness of MODIS 

vegetation productivity data for range management. Even after completing this 

dissertation, that task remains largely unsatisfied. The reasons for this are many and 

beyond the scope of a single document. However, two overriding factors have prevented 

operational use of nearly any remote sensing data for the purposes of range management 

owed largely to the mismatch in the information needed by managers and the information 

that can realistically and practically be derived from remote sensing (Hunt et al. 2003).

First, most management decisions are based on factors which are not resolved 

using most practical means of remote sensing, especially form a satellite perspective. For 

example, utilization of key species at the allotment (or finer) level often instigates 

removal of livestock from an area. This level of detail is not detectable in most forms of 

remote sensing data, particularly spacebome instruments. This is not to say however, that 

given enough time, money and appropriate objectives, one could not devise scientifically
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and managerially interesting products based on remote sensing. As Tueller (1989) 

suggests, remote sensing does hold significant promise as an analysis tool for rangelands, 

but not to the degree those in the in the industry would like to think. Second, smaller 

grazing allotments can usually be characterized more quickly and accurately by 

traditional ground based reconnaissance methods on an individual basis. Herein lays the 

conundrum. Although we can more accurately characterize key rangeland components 

using ground based methods it is nearly impossible to evaluate all grazing allotments in a 

region using these techniques. This exemplifies the need for alternate means of data 

collection, which remote sensing can help provide.

Major concerns facing range managers are invasive weeds, time of greenup, 

utilization, vegetation species composition, vegetation productivity, and rangeland health. 

A wide variety of satellite remote sensing platforms differing in repeat frequency, spatial 

resolution and radiometric precision are available for use as tools to asses the vegetative 

state of rangelands and have been used to examine rangeland condition (Pickup et al. 

1994), desertification (Dregne and Tucker 1988,Nicholson et al. 1998) productivity 

(Anderson et al. 1993,Pickup 1996) and stocking rate (Oesterheld et al. 1998). Other 

studies have successfully mapped noxious weed infestations using higher spectral and 

spatial resolution imagery. For example, the Airborne Visible Infrared Imaging 

Spectrometer (AVIRIS) has been used to identify leafy spurge infestations (Williams and 

Hunt 2002) on rangelands in north eastern Wyoming. The fine spatial scale required for 

appropriately addressing rangeland vegetative characteristics is usually accompanied by 

limited repeat frequency. For example, it is difficult, if not impossible to get a temporal 

growth profile from Ikonos, AVIRIS, ETM+ or ASTER data. In contrast, many
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management schemes require information for large areas within an extended temporal 

framework, as in the case of biomass utilization or trends in production. So we have the 

puzzling difficulty of large landscapes with detailed monitoring requirements and remote 

sensing platforms which are generally ill-suited to address most site specific concems 

unless time, money and personnel are unlimited. To this end, addressing the top 

concems of the range management community using merely remote sensing data is, for 

most purposes, pushing the technology beyond practical limits and certainly exceeds the 

scope of this dissertation. However, given that a major research focus of NTSG has been 

the derivation and ,more recently, application of the MODIS vegetation productivity data 

stream; I wanted to simultaneously determine the usefulness of these data for assessing 

rangeland vegetation and the appropriate degree of spatial aggregation for applying these 

data in rangeland environments.

Monitoring biomass conditions has been a key subject of past research endeavors 

in rangeland environments. In particular, the AVHRR has been extensively used to 

evaluate rangeland biomass (Justice and Hiemaux 1986, Prince and Tucker 1986, Tucker 

et al. 1986, Nicholson et al. 1998). The NDVI has been the most common application of 

AVHRR data for assessing the state of vegetation. The NDVI is calculated as (NIR- 

RED)/(NIR-I-RED) where NIR is the reflectivity of the near infrared waveband and RED 

is the reflectivity of the red waveband from a remote sensing instmment (Justice et al. 

1985). The popularity and wide use of AVHRR NDVI is owed partly to its simplistic 

formulation and inherent link to biophysical rates and largely because until recently 

AVHRR was the instrument of choice for collecting coarse resolution imagery for large 

regions due to its twice daily coverage and synoptic view (Peters et al. 2002).
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Although NDVI is linked to many vegetative traits such as vegetation cover 

(Schmidt and Gitelson 2000), photosynthetic capacity (Asrar et al. 1992) and biomass 

(Prince and Tucker 1986, Box et al. 1989, Wylie et al. 1995), it is not itself a biophysical 

measure and must therefore be indirectly related to a vegetative characteristic vicariously. 

These vicarious linkages are most often expressed as regression formulas whose 

application is spatially and temporally limited to data used in the formulation. In 

particular, this means that quantitative assessment of rangeland productivity is only 

possible in a retrospective empirical manner (e.g. Prince and Tucker (1986) and Wylie et 

al. (1995).

Thus, there is niche for a regional rangeland vegetation productivity monitor that 

can be applied in a timely manner and is not solely dependent on empiricism yet provides 

a reasonably accurate depiction of regional rangeland vegetation patterns. To facilitate 

this endeavor, the MODIS leaf area index (LAl)/fraction of photosynthetically active 

radiation (FPAR) data are combined with meteorological inputs and used to produce 

daily estimates of gross and net primary productivity (GPP and NPP) and net 

photosynthesis (PSNnet) in a simplified plant growth algorithm. Few if any studies, 

however, have sought to examine the performance of MODIS vegetation products in 

rangeland environments. This is largely due to the infancy and historical instability of 

the data stream.

The Terra and Aqua MODIS sensors were successfully deployed by NASA on 18, 

December 1999 and 4 May, 2002 respectively. Several decades of improved 

communications, hardware, software, data storage capacity, and satellite engineering 

enable the MODIS instrument to provide enhanced monitoring capabilities. A suite of
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satellites has been used to measure and monitor biophysical constituents of the earth’s 

surface, each exhibiting different characteristics. The MODIS sensor, however, is unique 

because it combines both the spatial and spectral resolution of several satellites on a 

single platform. MODIS exhibits greater radiometric resolution than traditional sensors 

providing a broader range of measurement and therefore increased sensitivity to small 

changes in spectral reflectivity. The MODIS offers 36 spectral channels, as compared to 

five on the AVHRR instrument, seven on Landsat TM or eight on ETM+. These 

characteristics provide new capability for terrestrial remote sensing intended for global 

change research for which MODIS generates a suite of standard products designed to 

remove the burden of most data processing requirements (Justice et al. 1998). Although 

Landsat systems offer greater spatial resolution (30 meter) they exhibit a revisit time of 

16 days. With clouds they often yield only two to three scenes per growing season. 

Changes in surface conditions are sufficiently rapid to make high-temporal-frequency 

coverage a requisite for monitoring vegetation, particularly in semi-arid regions for which 

the MODIS primary productivity estimates (eight-day summations) are uniquely suited 

(Reeves et al. 2001). The combination of improved sensor characteristics and high 

temporal frequency of data collection makes MODIS a logical choice for monitoring 

regional pattems of rangeland and agricultural vegetation alike.

Remote Sensing o f Wheat Growth and Yield

Crops provide a powerful testbed for evaluating the reliability of remote sensing 

based vegetation metrics because of our wealth of knowledge of crop growth and 

extensive data base of yield provided the USDA Published estimates Database (PEDB). 

Since I had no background in agricultural systems or crop modeling, I was originally
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excited by the opportunity of using the extensive data base of yield to compare with 

modeled predictions. However, I soon leamed that having an abundance of observations 

is a double-edged sword. On one hand, observations provide an excellent means of 

testing model theory, design and overall performance. On the other hand, this makes the 

modeling endeavor more risky from the standpoint of publication, as it usually brings 

model weaknesses to the forefront. This is in sharp contrast to models for natural 

environments, or global vegetation models, where there are few if any observations for 

validation. Despite the academic risk of this environment and my original lack of 

knowledge of developing crop models, I faithfully maintained this endeavor for the 

course of my Ph.D. education.

Part of the difficulty developing a regional yield monitoring system is a lack of 

comparable models to provide background information. Traditionally, wheat yield 

models have been broad scale and retrospective or extremely, intricate, point based 

simulators of wheat yield. With the exception of the USDA Foreign Agricultural Service 

(FAS), broad scale models have, almost exclusively, used AVHRR NDVI to derive 

empirical, statistical relationships between NDVI and crop yield. However, information 

surrounding the details of both USDA foreign large scale wheat yield forecasting is 

difficult to obtain. Nevertheless, it appears that, the FAS uses 25 mile X 25-mile 

meteorological data to drive a simple water balance model. Application of this and other 

strictly empirical models (e.g. Brocklehurst 1977, Gao et al. 1993) is limited to areas 

where the regression equations were formulated. More recently Labus et al. (2002), 

derived a very simplistic experiment in which growing season NDVI was regressed with 

yield for different climate districts in Montana. While these retrospective analyses
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provide insight to past performance and suffice for calibration, they do little to aid the 

need for near real time yield information.

On the other extreme, several field-level, cultivar specific wheat growth models 

are currently available. The most widely used are CERES-wheat (Ritchie and Otter 

1985) and Sirius (Jamieson et al. 1998). These models essentially “grow” a wheat kernel 

from emergence to maturity by simulating complex physiological interactions between 

the wheat plant and surrounding environment. Management, weather, soil and crop 

genetic data are required to achieve accurate yield calculations yet are difficult if not 

impossible to obtain for a region. Due to their complex nature intricate, point level 

models are not suitable for regional estimates of yield and are consequently not widely 

used by organizations that might benefit from this information. For these reasons, I 

perceive a niche for a model that uses remote sensing data and is a compromise between 

large-scale empirical relationships and extremely small-scale, highly detailed, 

physiologically complex field level models.

The concept of using satellite remote sensing data for analyzing crop yield and as 

an input to crop models is not new. Use of satellite remotely sensed data for crop 

production research has generally fallen into one of four categories; First, and most 

simplistic is relating temporal integration of imagery (usually AVHRR NDVI) to yield in 

statistical models. This approach was used by Wiegand et al. (1979), Tucker et al.

(1981), Benedetti and Rossini (1993), Gupta et al. (1993) and Doraiswamy and Cook 

(1995) and others previously mentioned. The second application of remotely sensed data 

is derivation of critical model parameters which are difficult to estimate using other 

means across the landscape using traditional techniques. This includes, but is not limited
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to, estimating surface temperature for improving evapotranspiration estimates (Moran et 

al. 1994), computing crop emergence (Badwhar 1980), estimating crop moisture deficit 

(Doraiswamy and Thompson 1982, Moran et al. 1994) and soil moisture status. In the 

second method, a time series of remotely sensed measurements is used as calibration data 

for the crop model. For example, Doraiswamy et al. (2003) used Landsat TM and 

AVHRR NDVI to adjust simulated NDVI derived from EPIC (Erosion Productivity 

Impact Calculator) and SAIL (Verhoef 1984) a one-dimensional radiative transfer model. 

The adjustment of simulated NDVI was ultimately used to calibrate LAI as predicted by 

EPIC. The final approach, which was used in this research, involves computation of key 

biophysical crop parameters from remote sensing data and directly feeding them into the 

model. Crop parameters successfully used in this method are measures of light 

interception with the canopy, principally leaf area index (LAI). This approach has not 

been used on a regular basis because LAI is usually estimated with regression techniques 

that are not stable through space and time and must therefore be re-evaluated for different 

regions, rendering them nearly useless for practical, wide-scale implementation.

However, one of the key variables derived from MODIS data is fraction of 

photosynthetically active radiation absorbed by the plant canopy (FPAR). Thus, it 

seemed logical to utilize these data as a direct input to a simple wheat yield model, the 

formulation of which is discussed in Chapter 4.

The research presented in this dissertation fills a gap in the current body of 

knowledge of crop yield assessment and rangeland vegetation productivity as estimated 

with MODIS data. As demonstrated, past research has focused on similar regions, but 

not with MODIS vegetation products, and not usually with management implications in
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mind. The ultimate findings of this research provide valuable insight to future users of 

these vegetation products, as it advances our understanding of the problems and merits of 

linking remotely sensed data to vegetation productivity in both crop and rangeland 

environments. Specifically, when developing this research I sought to move beyond 

simply modeling vegetative and grain yield by applying statistical models.

Objectives
This research seeks to answer four basic questions. To what extent does the 

MODIS vegetation productivity product emulate trends in rangeland vegetation? Can 

wheat yield be accurately estimated for entire regions using only the MODIS vegetation 

product suite? If not, what changes can be made to the modeling environment and input 

data stream to improve yield estimates? and, what is the appropriate spatial domain for 

characterizing regional rangeland productivity and wheat yield from MODIS data? In 

order to improve our understanding of the performance and usefulness of MODIS 

vegetation data in a managerial context this research will:

1) Describe the spatial and temporal relationship between MODIS vegetation 

productivity estimates and scaled, plot based measures of above-ground green 

biomass in a heavily grazed rangeland setting (Chapter 2).

2) Explore the usefulness and feasibility of using standard MODIS products for 

estimating regional wheat yield without the use of retrospective empirical 

analyses (Chapter 3).

3) Develop a regional spring wheat yield monitor for Montana by exploiting the 

strengths and subverting the weaknesses of the process developed in Chapter 

three.
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To achieve these objectives I relate seasonal MODIS net photosynthesis (PSNnet) 

to above -  ground green biomass (AGGB) for the 2001 and 2002 growing seasons. The 

relations during the 2001 growing season were much better than in 2002. At this stage 1 

conducted an in-depth analysis to determine the cause of the different results between the 

years and found years with much higher than normal growing season precipitation (2001) 

followed by a very dry year (2002) makes remote sensing of AGGB difficult. In 

addition, I characterize the inter-annual variation in net primary productivity of 

rangelands for 2001 through 2003. Significant differences in NPP (P < 0.05) were 

observed between years owed mainly to the significant (P < 0.05) decline in growing 

season precipitation during the same time. These large differences provided an excellent 

test bed for a first look at the behavior of MODIS vegetation productivity products in 

rangeland environments.

Next, in Chapter three, I integrate MODIS GPP estimates over an apparent 

growing season and compute yield at the county, climate district and state levels. Yield 

estimates were compared with observations aggregated over the identical spatial 

domains. Progressive levels of spatial aggregation provide increasingly better predictive 

ability for Montana and North Dakota. Critical examination revealed several factors 

inhibiting accurate wheat yield estimation for counties.

Finally, in Chapter four, these inhibiting factors were partially ameliorated and 

wheat yield was estimated for counties of Montana using a process based 

phenomenological wheat yield model driven by MODIS FPAR. Results were greatly 

improved over those demonstrated in Chapter three, but still indicated that spatial 

aggregation provides more reliable yield estimates.
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CHAPTER 2

APPLYING IMPROVED ESTIMATES OF MODIS PRODUCTIVITY TO 
CHARACTERIZE GRASSLAND VEGETATION DYNAMICS

A bstract

The Moderate Resolution Imaging Spectroradiometer (MODIS)-derived 

vegetation productivity was tested in the grasslands of western North Dakota to 

determine its ability to characterize fluctuations in above-ground green biomass and 

provide regional perspectives of inter-annual vegetation dynamics. Above ground green 

biomass was measured at 2200 vegetation quadrats (0.5 m^) in 2001 and 2130 quadrats in 

2002. These observations were spatially disjunct which required interpolation between 

quadrats. Interpolation models were constructed using high resolution satellite imagery 

and accumulated growing degree days. The interpolations were applied to large spatial 

aggregations (about 185,000 ha). Regionally scaled biomass measurements were 

subsequently compared with MODIS net photosynthesis (PSNnet) estimates at three times 

during the growing seasons of 2001 and 2002. The relationships between MODIS PSN„et 

estimates and scaled above-ground green biomass improved steadily during the 

progression of each growing season, and reached a maximum (r^ = 0.77 and 0.57 in 2001 

and 2002, respectively) near peak greenness. Above-ground green biomass was more 

tightly coupled in 2001 because of the relative abundance of green biomass compared 

with 2002. Inter-annual variability in grassland vegetation is characterized through 

analysis of MODIS derived net primary productivity (NPP) for the years 2001 to 2003. 

MODIS NPP estimates showed a significant decline (P < 0.05) from 2001 to 2003, partly 

induced by a significant decline (P < 0.05) in growing season precipitation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



17

Introduction

Though ground-based measurement is the most reliable method for assessing site- 

specific vegetative conditions, long-term planning and administrative needs, such as 

county and state level drought mitigation, may be more appropriately addressed by a 

consistent, regional overview which ground-based reconnaissance is unlikely to provide. 

Remote sensing may offer a sample measure of productivity at regional scales and has 

been promoted as a diagnostic tool for these purposes (White et al. 1997, Sannier et al. 

1998, Steininger 2000, Reeves et al. 2001, Tucker et al. 2001). The Moderate Resolution 

Imaging Spectroradiometer (MODIS) instrument allows for regional monitoring through 

generation of global, weekly (eight-day) net photosynthesis (PSN„eO and annual estimates 

of net primary productivity (NPP). Because of the recent launch of the instrument few, if 

any, studies have evaluated the performance of regional MODIS vegetation productivity 

estimates in grassland environments. Therefore, the objective of this study is to test the 

efficacy of the MODIS as a monitoring tool by directly comparing productivity estimates 

with field measurements of biomass in North Dakota grasslands and then analyzing inter- 

and intra-annual dynamics as estimated from PSNnet and NPP for the years 2001 to 2003. 

First MODIS PSNnet was compared with scaled above - ground green biomass (AGBB) 

by scaling biomass observations for each of 12 mapping units in the Little Missouri 

National Grasslands (LMNG) for 2001 and 2002. Second, total precipitation from 1 

January to peak greenness was quantified for each mapping unit in the LMNG for 2001 

to 2002. Third, I compared time integrated MODIS productivity estimates from 1 

January through the composite period containing the date of AGGB prediction with
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scaled biomass observations. Finally, I characterized inter-annual variation of NPP in 

relation to differing amounts of growing season precipitation.

Background

Grassland environments are relatively simple laboratories for relating MODIS 

productivity to AGGB because large inter - annual fluctuations of AGGB are common, 

and dominance of herbaceous biomass allows for collection of biomass. In addition, 

herbaceous vegetation tends to respond more quickly to precipitation than other types of 

vegetation (Lauenroth 1979).

Field above-ground biomass is often used as an indicator of the pattem and 

magnitude of variation of natural carbon fixation (Zheng et al. 2003). This makes 

aboveground biomass a logical attribute to relate with MODIS PSNnet for regional 

studies, though conceptually MODIS primary productivity estimates can only be 

quantitatively validated by comparison with flux tower measurements. Tower-based 

estimates of productivity represent a spatial average of carbon flux over a tower 

“footprint”. The “footprints’” dimensions depend on wind speed, wind direction, surface 

roughness, and atmospheric stability (Tumer et al. 2003). The variably sized, usually 

small (< I-km^) footprint of flux towers, combined with low tower density in grassland 

environments, make validation of MODIS products challenging. Moreover, most 

management schemes rely more on biomass dynamics than carbon flux measurements. 

Study Area

The Little Missouri National Grasslands (LMNG) located in North Dakota (figure 

I), a 809,380 ha area managed primarily by the USDA Forest Service for grazing by 

domestic and wild animals, was the study area. Portions of the LMNG were converted to
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nearly homogenous stands of crested wheat grass {Agropyron cristatum) in the early to 

mid-1900’s, though these stands receive no artificial fertilization or irrigation. Climate of 

the LMNG is continental and semi-arid and Cleland et al. (1997) provides a detailed 

description of the LMNG geo-elimatie setting. Annual average precipitation varies from 

360 to 410 mm, with 70% occurring between April and September (Whitman 1978). In 

2001 the LMNG region was notably wetter during the growing season (1 April to 1 

September) and drier in 2002 and 2003 than the 50-year mean (figure 2). Potential 

natural vegetation of the LMNG is typical of the mixed grass prairie in the Northern 

Great Plains (Jensen et al. 2001) and is predominantly a wheatgrass-needlegrass 

{Pascopyrum-Nasella) association (Jensen et al. 2001). Dominant species include 

western wheatgrass {Pascopyrum smithii (Rydb.) A. Love), green needlegrass {Nassella 

viridula (Trin.)), needle and thread grass Hesperostipa comata (Trin.) & Rupr.), blue 

grama (Bouteloua gracilis (H.B.K.)Lag.) and threadleaf sedge (Carex filifolia).
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Figure 1. Location of the Little Missouri National Grasslands (cross hatched region) in 
North Dakota and the spatial arrangement of the zones of meteorological 
influence (Thiesson polygons).
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Figure 2. Difference between 2001 to 2003 growing season precipitation and the 50-year 
mean at 12 weather stations within and adjacent to the Little Missouri National 
Grasslands.

Methods

The ultimate goal of this research was to compare MODIS vegetation productivity 

to AGGB. This required the following methodological steps: 1) area pre-stratification 

for the biomass sampling procedure, 2) acquiring high resolution satellite data and 

converting them to normalized difference vegetation index (NDVI), 3) Identifying the 

appropriate scale for comparing AGGB, 4) creating biomass scaling models (for 

interpolating between spatially disjunct biomass observations and 5) comparing scaled 

biomass measures to MODIS PSN„et and NPP.
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Collecting Biomass Observations

For sampling purposes, the study area was classified in four strata including 

native and seeded grasslands with high productivity (3 and 38 percent of study area, 

respectively) and native and seeded grasslands with low productivity (9 and 50 percent of 

study area, respectively). This was possible because of a suite of biophysical variables 

developed by Jensen et al. (2001) permit detailed sampling and masking procedures. 

Based on this I tried to allocate our sampling resources accordingly. This ensured that 

grazing allotments were selected that represented the different areas within the LMNG to 

describe spatial and temporal trends in AGGB (kg ha'*).

AGGB was measured for 473 transects across 3 time periods (27 -  31 May, 13 -  

17 June, and 13 -  17 July) during the 2001-growing season in the LMNG. Sites were 

selected based on federal ownership and accessibility and observed strata. For each site, 

a transect was established perpendicular to and started at least 50-meters from fence-lines 

to avoid the influence of roads or channeled livestock trails that typically run along fence- 

lines. Transect length was randomly determined and varied from 250 to 500 meters. 

Beginning and ending locations for each transect were recorded with a global positioning 

system (gps). At 25-m intervals a 0.5-m^ quadrat was clipped at 1-cm stubble height, 

placed in a paper bag, and the percentage of living vegetation was estimated. A total of 

2200 quadrats were clipped in the 2001-growing season.

The mean allotment size for the LMNG is 342 ha, making it difficult to strike a 

balance between sufficient sampling intensity for a given allotment while sampling 

enough allotments to cover the range of variability expected across the differing 

environments within the LMNG. Based on this premise the sampling procedure for 2002
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was modified, hoping that a pixel based approach ( 3 X 3  pixel average NDVI versus plot 

level biomass) would provide a more accurate depiction of the range of variability within 

and between allotments that were sampled. Above-ground green biomass was measured 

in the 2002 growing season at 426 sites over 3 time periods (20 -  23 May, 14 -  17 June, 

and 10 -  13 July) using the area weighted sampling designed in 2001. At each site, a 

sampling microsite (45 x 45 m) was established. Microsites were homogeneous in 

species composition and biomass. A range of biomass levels from nearly bare ground 

around prairie dog towns, to heavily vegetated allotments were sampled to ensure that 1 

could capture as much of the productivity continuum as possible.

Within each microsite, above-ground biomass was clipped within five randomly located- 

0.5 m^ quadrats to a 1-cm stubble height, placed in a paper bag, and the percentage of 

living vegetation was estimated. A total of 2130 quadrats were clipped during the 2002- 

growing season. All herbaceous biomass collected was subsequently dried at 65 C° for at 

least 48 hours and weighed. The average AGGB per site was calculated as the total dry 

weight multiplied by the percent of green vegetation from each sampled quadrat during 

each sampling period for both years of the study.

Scaling Biomass Observations

The disparate resolution between MODIS vegetation data and the vegetation 

quadrats combined with large distances between sampling areas required interpolation 

between biomass observations. Large distances (> 40 km) precluded the use of 

geostatistical techniques for interpolation. Instead 1 chose to scale biomass observations 

using Advanced Spacebome Thermal Emission and Reflection Radiometer (ASTER) and 

Enhanced Thematic Mapper Plus (ETM+) NDVI. This required identification of the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



24

appropriate spatial scale for analysis. In other words each vegetation quadrat could be 

related to the accompanying ASTER or ETM+ NDVI image pixel, or some spatial 

aggregation of both pixels and quadrats. Before scaling, it was necessary to first acquire 

and then process the ETM+ and ASTER imagery into NDVI.

Three relatively cloud free Level -IG  Landsat Enhanced Thematic Mapper 

(ETM+) scenes (path 34/row 27) were acquired over the Little Missouri National 

Grasslands for 19 May, 22 June, and 22 July 2001. All scenes were registered to UTM 

zone 13 North and exhibited less than 10% cloud cover. A dark object subtraction was 

applied to reduce path radiance. All scenes were cloud-and water-masked, co-registered, 

and converted from digital counts to radiance (W m'^ sr'^ nm‘ )̂. To minimize between 

scene variability, radiance values were converted to at-sensor reflectance as described by 

Markham and Barker (1986). Bands 3 (RED) and 4 (NIR) were used to derive NDVI 

computed as (NIR -  RED)/(NIR RED) ( I )

where NIR and RED are the spectral responses for the near-infrared and red wavebands 

respectively. For visible and NIR channels, ASTER has a spatial resolution of 15 meters 

while ETM+ has a resolution of 30 meters and both sensors measure radiance in the 

identical RED wavelength (0.63 -  0.69 pm) and nearly identical NIR bands (0.78 -  0.86 

and 0.75 -  0.79 pm for ASTER and ETM-t- respectively).

In 2002 no cloud free ETM+ data were available, so instead 22 ASTER L2 

surface reflectance images of the LMNG were obtained. These ASTER scenes 

collectively covered the temporal range of 13 May, 5 June, 30 June, and 9 July 2002. All 

22 ASTER scenes were geo-registered to UTM zone 13 North. NDVI was subsequently 

computed for each ASTER image.
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Following image pre-processing, to ensure that the pixels analyzed corresponded 

to the habitats sampled, all grassland habitats that were not sampled during the biomass 

collection procedure were removed. A 30-meter spatial resolution image depicting 

grassland habitats throughout the LMNG was obtained from Jensen et al. (2001) and used 

to isolate the spectral response of grassland vegetation for creation of the above-ground 

biomass-scaling models. Badlands, shrublands and agricultural lands were removed. 

Following the masking procedure a series of tests were performed to establish the 

strongest relationship between biomass measurements and NDVI for the biomass 

interpolation (scaling) procedure.

These tests included: 1) pixel to sample point comparison (point in cell 

extraction), 2)1  x l  and 3 x 3  zonal mean for 2001 and 2002 data respectively, 3) average 

NDVI within each grazing allotment, and 4) average NDVI by zone of meteorological 

influence (described below). I chose a 7 x 7- pixel area surrounding each transect in 

2001 and a 3 x 3-pixel area around each microsite in 2002. The 7 x 7-pixel kemel (210 x 

210 meters) was chosen because the average length of sample transects was about 200 

meters, while the 3 x 3 pixel kemel was chosen because this ensures a ± 2 pixel boundary 

around each field site in 2002. Another level of aggregation included spatially averaging 

NDVI within each grazing allotment. As a final method of relating biomass to NDVI, a 

zone of meteorological influence was established through creation of Thiesson polygons 

(figure. 1) around weather stations found within and adjacent to the study area.

Ordinary least-squares regression (Zar 1995) was used to determine the strength 

of the relationship between average biomass and average NDVI within each of these 

spatial domains. While spatially averaging all plots within each Thiesson polygon
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reduces the sample size available for analyses, it also reduces variability between 

geographically similar plots while emphasizing regional differences.

The identical spatial aggregations were performed on MODIS PSNnet- This was 

done to see if scaling the biomass observations provided better results than just analyzing 

the raw, plot-level biomass data aggregated without interpolation. If multiple vegetation 

quadrats occurred within the boundary of a 1-km^ MODIS pixel they were averaged 

together.

In addition to NDVI, daily meteorology was acquired for use as explanatory 

variables in the forthcoming biomass scaling models. Daily precipitation and minimum 

and maximum temperature were obtained from the National Climate Data Center 

(NCDC) database of surface meteorology for the years 2001 to 2003 for each Thiesson 

polygon. These data were screened such that if > 5% of the observations in any 

meteorological category were missing in any year, then the station was not used. This 

resulted in 12 complete stations and corresponding Thiesson polygons for 2001-2003 

growing seasons (figure 1).

Stepwise regression was used to determine the most appropriate significant (P < 

0.05) regression model for scaling biomass observations. The model initially included 

the meteorological variables, NDVI and their interactions for each Thiesson polygon. A 

tolerance of 0.01 was selected for avoiding variables exhibiting a high degree of 

colinearity during the forward-stepping regression process.

Processing and Computing Improved MODIS Vegetation Productivity

The standard MODIS productivity algortithm produces anomalous and artificial 

productivity boundaries due to the coarse resolution (1° X 1.25°) daily meteorological
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data required by the algorithm (Heinsch et al. 2003). In addition cloud contamination can 

render artificially low productivity estimates due to missing or inaccurate estimates of 

LA IandFPA R.

To ameliorate these effects MODIS productivity estimates were reprocessed for 

2001 - 2003. To accomplish this task, MODIS land cover and LAI/FPAR data for the 

MODIS tiles HI0V04 and HI IV04 were obtained from the Earth Observing System Data 

Gateway for 2001 to 2003. Both the land cover and LAEFPAR are I-km^ spatial 

resolution products. The primary productivity estimates used in this study were 

computed from the standard Collection 4 LAI/FPAR and land cover products but used 

modified daily meteorological records and the updated biome properties look up table 

(BPLUT) found in Heinsch et al. (2003).

The original meteorological data used for standard computation of MODIS 

productivity estimates comes from the NASA Goddard Space Flight Center (GSFC) Data 

Assimilation Office (DAO) (Atlas and Lucchesi 2000) and includes daily estimates of 

minimum and average temperature, solar radiation, and vapor pressure deficit (VPD). 

These meteorological data are only available at 1.25° X 1° spatial resolution. This 

ensures that within the spatial extent of each DAO cell, every 1-km^ MODIS pixel will 

inherit identical DAO characteristics. The disparate resolution of these inputs to the 

MODIS productivity algorithm produces noticeable, artificial boundaries in the end 

products, particularly the eight-day composite PSNnet. As a result the DAO data were 

spatially smoothed, thereby taking out the artificial boundaries. In addition, due to clouds 

the LAI/FPAR product was temporally filled where necessary.
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The LAI/FPAR product is ultimately derived from atmosphere corrected surface 

reflectance data and contains quality assurance layers within each file. The quality 

assurance layer provides a means of screening all pixels that are not desirable for 

analysis, either as a result of sensor and algorithm performance, atmospheric conditions, 

or cloud contamination. Screening criteria used to filter LAI/FPAR used in this study are 

included in Table I. If any LAI/FPAR pixel did not pass the quality screening criteria, its 

value was determined through linear interpolation between the previous period’s value 

and the next period to pass the screening process. The resulting productivity estimates 

derived from these temporally and spatially smoothed inputs are identical to the standard 

MODIS products in all other aspects.

Table 1. Quality control criteria used for screening MODIS LAI/FPAR data for 2001 to 
2003.

QC flag description' Screening criteria
MODLAND_QC < =  I
DEADDETECTOR 0
CLOUDSTATE 0 or 3
SCF_QC
1 A f  . .  .  -1 1 1 , •  r> .

< = 3

Vegetation Productivity Algorithm

The MODIS productivity algorithms used in this study are summarized below.

For examining inter-annual variation in primary productivity I used NPP:

46
NPP = ^  PSNnet - Rmiw - Rguaf - Rgfmot - Rgiw - Rgdw (2)

Period-1

where NPP is the estimate of annual net primary productivity, PSNnet is the eight-day 

summation of net photosynthesis (there are 46 periods in a year), Rmi» is the maintenance 

respiration for the live woody component, Rgka/ is the growth respiration for leaves.
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Rgfroot is the growth respiration for fine roots, Rgiw is the growth respiration for live woody 

tissue, and Rgû , is the growth respiration for dead wood.

Net photosynthesis is computed as:

PSNnet = GPP -  R m _lea f- Rm_froot (3)

where PSNnet is the eight-day summation of net photosynthesis (kg C m'^), GPP is the 

eight-day summation of gross primary productivity, Rm_leaf is the maintenance 

respiration for leaves, and Rm_froot is the maintenance respiration of fine roots. Gross 

primary productivity is computed as:

GPP = 8 * PAR * FPAR (4)

where GPP is the eight-day summation of gross primary productivity (kg C m'^), 8 is the 

radiation use efficiency (kg C MJ"  ̂photosynthetically active radiation (PAR)), and FPAR 

is the fraction of absorbed PAR. Since one objective of this paper was to examine the 

performance of MODIS productivity in relation to observed seasonal AGGB, I chose 

PSNnet instead of GPP, which is theoretically further removed from observed biomass 

(i.e. no accounting for respiration in GPP).

All MODIS land products were converted from their native HDF-EOS data 

format to flat binary and reprojected from the Sinusoidal projection to Lamberts 

Azimuthal Equal Area (center of longitude -100°, reference latitude 45°). Following the 

reprojection, tiles were merged and scaled (kg C m ^) to form a seamless representation 

of the study area. Primary productivity estimates were spatially subset to include only 

grassland vegetation. The analysis mask for this process was derived from MODIS land 

cover type 2 data (Strahler et al. 1996). The MODIS land cover mask indicated about 

72% of the region was occupied by grassland vegetation. The Type 2 land cover is
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comparable to the International Geosphere-Biosphere Program (IGBP) global land cover 

data set (Hansen and Reed 2000).

Analyzing Intra-and Inter-Annual Productivity Dynamics

All MODIS grassland pixels passing the quality control criteria (Table 1) were 

averaged within each Thiesson polygon to obtain a single mean estimate of time 

integrated PSNnet from the start of the year to each date of biomass prediction. Net 

primary productivity was aggregated in a similar fashion. Since each Thiesson polygon 

was a different size, NPP means were computed on an area-weighted basis. The strength 

of the relationship between regionally scaled biomass measurements and MODIS PSNnet 

was determined using ordinary least squares regression in each of 3 time periods for the 

entire LMNG in 2001 and 2002. Detection of significant (P < 0.05) inter-annual 

differences between regionally averaged NPP means from 2001, 2002, and 2003 was 

accomplished using a one-way ANOVA and the Tukey test (Zar 1995) for separating 

means. Trends in NPP were compared with growing season precipitation trends for the 

same spatial and temporal domain.

Results

The results of the biomass scaling operation are presented first. This includes the 

relationships between different levels of spatial aggregation and high resolution NDVI as 

well as the results of the forward stepwise regression analysis used to build the biomass 

scaling models. Next, the relationships between scaled and un-scaled AGGB and 

MODIS PSNnet are examined. Finally the inter-annual trends in NPP and precipitation 

are quantified and compared.
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Biomass scaling Models

No strong relationships were found between either ETM+ or ASTER NDVI and 

clipped plot biomass for any aggregation method except the zone of meteorological 

influence (Table 2). This finding was anticipated because at regional scales grassland 

biomass is dominated primarily by local climate conditions, especially precipitation 

during the growing season (Lauenroth 1979). Grazing is also a factor in the region but 

usually for smaller areas. For example, over the span of 100 miles, the dominant driver 

of biomass should be the abiotic environment and precipitation, while allotment to 

allotment variability tends to be more closely aligned with herbivory. Only four of the 

Thiesson polygons are dominated by the Little Missouri National Grasslands. This is not 

a problem because the Little Missouri National Grasslands were used as a sampling area 

to represent the grassland biomass of the region. This analysis however requires some 

sort of scalar to infer productivity outside of the sampling area.

Table 2. Relationship (r^) between sample measures of above-ground green biomass and
 ETM+ (2001) and ASTER (2002) NDVI. Dates are sample period midpoints.
^  Point Zonal pixel Allotment Thiesson polygon

^ ^ in cell (n) mean (n) Mean (n) Mean (n)
2001

28 May 0.00 (158) O.H*(46) 0.16*(26) 0.49* (12)
15 June 0.26*(129) 0.15*(40) 0.23*(29) 0.62* (12)
15 July 0.20* (186) 0.25*(53) 0.28* (36) 0.81*(12)
2002

22 May 0.10(122) 0.03 (48) 0.07 (33) 0.39*(9)
16 June 0.15*(142) 0.21* (59) 0.25*(35) 0.57* (9)
12 July 0.23* (162) 0.28* (65) 0.22* (35) 0.68* (9)
In 2001 a 7 X 7 zonal mean was used. In 2002 a 3 x  3 zonal mean was used.

*(P < 0.05).

Since Thiesson polygons provided the best relationships, they were subsequently 

used as the spatial aggregate to build scaling models for interpolating biomass. The final 

scaling models used NDVI and thermal time resulting in
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BIOMASS^ooi = NDVIetm+ (212.6) + gddsum(-0.003) -  33.8 (5)

where BIOMASSagoi is the estimated AGGB within each Thiesson polygon in 2001, 

NDVIetm+ is the average ETM+ NDVI for a given polygon, gddsum is the summation of 

thermal time (TAVGdaiiy-0°C) from 1 January 2001 to the date of ground sampling where 

TAYGdaiiyis the daily average temperature. In 2002, a similar model was constructed for 

scaling biomass observations:

(6)

where BIOMASSago2 is the estimated AGGB within each Thiesson polygon in 2002, 

N D V I a s te r  is the average ASTER NDVI for a given polygon and gddsum is the 

summation of thermal time (TAVGdaiiy-0°C) from I January 2002 to the date of sampling.

Stepwise regression indicated that inclusion of precipitation did not improve 

overall model predictability due to high colinearity with NDVI (Table 3).

Table 3. Results of stepwise regression for scaling model parameter selection 2001 and

BIOMASSago2 = NDVIaster (266.7) + gdd^„„ (-0.009) -  57.9

Model iteration ‘ Adjusted
R^

SEE^ Partial
correlation
coefficient

t -  value*

2001
I) ETM-t- NDVI 0.81 5.40 0.90 9.55
2) ETM-f NDVI 0.89 4.19 0.89 8.89
GDDsum X -0.66 -3.78
ETM+NDVI

2002
I) ASTER NDVI 0.82 5.66 0.89 9.80
2) ASTER NDVI 0.87 4.65 0.88 8.06
GDDsum X ASTER -0.60 -3.20
NDVI
GDDsum is the summation of growing degree days, 

^n = 22 for 2001 and n = 21 for 2002.
*P < 0.05.
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Cross-validation proved that the scaling models worked sufficiently well for describing 

spatial patterns of vegetation throughout the grassland region (figure 3), though a higher 

degree of bias was observed in the 2002 model.

Regionally scaled AGGB produced at peak greenness was estimated as 1054 ± 36 

(SEM) and 980 ± 44 (SEM) kg ha'^ for 2001 and 2002 respectively. Unsealed biomass 

(quadrat data for AGGB) during peak greenness was 1021 ± 42 (SEM) and 996 ± 57 

(SEM) kg ha'^ for 2001 and 2002, respectively. These values compare favorably with 

results from 11 years of biomass observations by Hanson (1976) who reported an 11-year 

mean of 1012 kg ha'^ in a similar grassland environment in Montana. The site evaluated 

by Hanson (1976) received an annual average of 330 mm of precipitation and had similar 

species composition to the current study area.
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Figure 3. Cross validation results of the biomass scaling models for 2001 and 2002.
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Improved Estimates o f  Primary Productivity

The results of the spatially smoothed climatalogical (DAO) input on weekly 

PSNnet are noticeable in North Dakota and the region surrounding the LMNG (figure 4). 

Figure 4A depicts the artificial boundary from the DAO influence. The improved 

estimates of productivity were visually and quantitatively superior. In July, the 

relationship between MODIS PSNnet and AGGB was improved from r-square 0.54 to 

0.77 and 0.51 to 0.57 in 2001 and 2002 respectively using the enhanced productivity 

product.

240 Ki omelers

I I North Dakota

Little Missouri National Grasslands 

PSNnet (Kg C m^2)

HU H ig h : 0.0335

U H li L o w :-0.0152

W ater
3000
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0,00 0.01 0.02-0,01

240 Kilom eters
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■ * 1  H ig h : 0.0306

2000  -

^  1500 -

1000  -

S ta n d a r d  P S N n e t  P e r io d  1 8 5  (kg C  m ^)

L o w : -0.0164

W ater

E n h a n c e d  P S N n e t  P e r io d  1 8 5  (kg  C  m ^)

Figure 4. Comparison between standard MODIS derived PSNnet (4A) and the enhanced 
version that contains spatially smoothed meteorology and temporally filled 
LAI/FPAR (4B). Images are PSNnet (kg C m'^) from composite period 185, 2001. 
Improvements are easily seen in both the images and histograms.
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Though these results provide evidence that the improved MODIS productivity 

estimates are more appropriate for monitoring AGGB in grassland environments, it is still 

impossible to assess whether these improved productivity estimates provide more 

accurate estimates of carbon sequestration at regional scales. Such a comparison is 

beyond the scope of the current study. All subsequent analyses were performed using the 

improved MODIS productivity estimates.

Comparing Net Photosynthesis Estimates to Green Biomass 

Net photosynthesis from MODIS was compared with the scaled and un-scaled 

above ground green biomass. Table 4 demonstrates the relatively poor relationship 

between MODIS PSNnet and un-scaled aggb.

Table 4. Relationship (r^) between sample measures of above-ground green biomass and 
accumulated PSNnet from MODIS. Dates are the beginning of the MODIS

______ productivity composite periods.____________________
Point Zonal pixel Allotment Thiesson polygon 

^ ^ in cell (n) mean (n) Mean (n) Mean (n)
2001

25 May 0.00 (51) 0.09 (42) 0.12(26) 0.37* (12)
10 June 0.11(45) 0.16* (38) 0.19*(29) 0.43* (12)
12 July 0.13* (68) 0.19* (52) 0.20* (32) 0.62* (12)
2002

17 May 0.09 (41) 0.03 (35) 0.07 (33) 0.31* (9)
10 June 0.12(44) 0.09 (38) 0.16* (31) 0.34* (9)
12 July 0.18* (56) 0.16* (48) 0.18*(35) 0.41*(9)
In 2001 a 7 X 7 zonal mean was used. In 2002 a 3 x 3 zonal mean was used.

*(P < 0.05).

Regionally aggregating using only grassland pixels produced PSNnet estimates, 

which varied spatially in a similar pattem to scaled AGGB (figure 5). As expected, the 

strength (r^) of the relationships between scaled AGGB and MODIS PSNnet were highest 

during peak greenness in 2001 and 2002. This finding was anticipated because during 

peak greenness the MODIS sensor receives relatively more vegetation signal than
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background. The proportional increase in PSNnet was higher from June to July than was 

observed in AGGB during the same time period.
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Figure 5. Accumulated MODIS PSNnet estimates for 2001 and 2002 compared with 
scaled above-ground green biomass from a similar period. For 2001 the 
composite periods of accumulation for MODIS PSNnet were from 1 - 1 3 7  for 
May, 1 -  161 for June and 1 -  193 for July. For 2002 the periods of accumulation 
for MODIS PSNnet were for composite periods 1 -  145 for May, 1 -  161 for June 
and 1 -  193 for July. 2001 scaled above-ground green biomass estimates were for 
28 May, 15 June and 15 July. 2002 scaled biomass estimates were for composite 
22 May, 16 June and 12 July. Note the aberrantly high productivity of Thiesson 
polygon 322193.
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The relation between MODIS PSNnet and AGGB was stronger in 2001 than 2002 

due to greater precipitation, which ultimately led to a greater FPAR signal. This was 

especially evident in May 2002 where no correlation was found between MODIS PSN„et 

estimates and scaled AGGB.

The response of MODIS PSNnet to precipitation fluctuations is evident when 

comparing the 2001 and 2002 growing seasons. For example, Thiesson polygon 322193 

(figure 5) exhibited aberrantly high biomass and commensurately high PSNnet during 

2002 due to much higher than normal growing season precipitation in the same polygon 

(figure 2).

Inter-Annual NPP Trends

The analysis of variance of regional NPP for 2001 to 2003 revealed a highly 

significant (P < 0.0001) decreasing trend in productivity. Table 5 reveals that 2001 was 

significantly (P < 0.05) more productive than either 2002 or 2003. Similarly, the 2001 

growing season precipitation was significantly higher (P < 0.05) than either 2002 or 

2003. These differences are clearly visible in the NPP images for the 3 years analyzed 

(figure 6). Growing season precipitation was high in 2001 (figure 2),

Table 5. Regional mean NPP and growing season precipitation for the Little Missouri 
National Grasslands and adjacent area.

Variable Year
2001 2002 2003

Precipitation (mm)^ 383 (19)a* 291 (23)b 235 (7)b

NPP (kg C ha ‘)* 3000 (42)a 2437 (57)b 2296 (34)b

*Means in the same row followed by the same subscript are not significantly different 
(P < 0.05).
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while 2002 and 2003 were relatively dry in relation, thereby providing ideal test beds to 

determine the usefulness of MODIS productivity products for assessing inter-annual 

differences in productivity.

2001
Mean = 3000 +/- 42 

kg C/ha

2002
Mean = 2437 +/- 57 

kg C/ha

2003
Mean = 2296 +/- 34 

kg C/ha

Q

15
—I__

30
_L _

60 km 
j  I

NPP (kg C/ha)
I >2849

<578

Figure 6. Mean and SEM of net primary productivity for the entire Little Missouri 
National Grasslands (LMNG) for 2001 to 2003. Only grassland pixels are 
represented. Polygons are Thiesson polygons around 12 weather stations. Gray 
line represents the administrative boundary of the LMNG.

Discussion

The highest degree of association between biomass and NDVI occurred during 

the July sampling periods (near peak greenness) for both years of the study. Above

ground green biomass observations were obtained only three times during the growing 

seasons of 2001 and 2002, thus, using clipped plot data, it is not possible to know exactly 

when peak greenness occurred throughout the LMNG though, in each year for the periods
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examined, biomass observations were highest in July. Although many studies have 

utilized end-of -season standing crop measurements for relating biomass to remote 

sensing data, for monitoring growing season vegetation conditions, a continuous 

sampling design (i.e. multiple sampling periods in the growing season) is superior to 

measuring only the end-of-season standing crop when seasonal variation needs to be 

quantified. End-of -season standing crop measurements can overestimate annual 

productivity on perennial grasslands because, inevitably, the biomass measure at a given 

plot will include dead vegetation from the previous year and, to a much lesser degree, the 

current growing season. In contrast, if herbivory is significant, End-of -season standing 

crop measurements can underestimate the current year’s growth. Scurlock et al. (2002) 

provide an excellent overview of the assumptions associated with most techniques for 

evaluating primary productivity of grasslands.

In addition to identifying the time period with the strongest links between MODIS 

PSNnet and AGGB, this study also discovered an appropriate spatial domain for analysis. 

Only the Thiesson polygons (average size about 185,000 ha) provided suitable results.

At smaller spatial aggregates biomass could not be reliably scaled using the high 

resolution satellite imagery and meteorological observations. There are several likely 

reasons why there were weak linkages between NDVI and clipped biomass in all 

comparisons except the Thiesson polygons. First, while clipping remains the most 

objective method of measuring biomass on small plots, estimating the amount of green 

vegetation within a sampling quadrat is difficult. For example, what the human eye 

detects as “green” might, in reality, be nearly non-photosynthetic, distorting the 

NDVI/green biomass relationship. Second, especially at the end of the growing season.
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there might be a substantial amount of senesced vegetation, within a plot frame, whose 

canopy resides over the top of relatively green vegetation. This green vegetation would 

be separated and weighed but due to the effects of the senesced vegetation in the upper 

canopy, the NDVI signal would remain low. Finally, there is a poorer correlation 

between NDVI derived from upwelling radiance than between NDVI derived from 

atmosphere corrected data and biomass (Shoshany et al. 1995, Turner et al. 1999), which 

would have only affected the 2001 scaling model. While I initially assumed that ASTER 

NDVI would be more closely related to AGGB, the presence of large amounts of 

senescent vegetation in 2002 resulted in ASTER NDVI being less correlated with 

biomass. ASTER L2 surface reflectance data are radiometrically calibrated and 

atmospherically corrected. The advantage of ASTER surface reflectance data over 

ETM+ data is that they are immediately useful for quantifying biophysical traits of the 

earth’s surface. Atmosphere corrected sensor data provide a more reliable dataset for 

characterizing most vegetative traits (Turner et al. 1999). The disadvantage of ASTER 

data is the smaller spatial coverage (about 470,610 ha scene"') compared with that of 

ETM+ (about 4,854,299 ha scene"').

The resulting scaled biomass observations were more closely related to MODIS 

PSNnet (Figure 5) than to un-scaled biomass (Table 4). Scaled biomass had the distinct 

advantage of being masked using the grassland habitat map by Jensen et al. (2001) while 

the un-scaled biomass necessarily unmasked. In either case it was difficult to relate 

MODIS PSNnet (a measure of carbon sequestration) to AGGB.

Larger differences were observed within the MODIS PSNnet data than in the 

AGGB. For example, in 2001 zone (Thiesson polygon) 320209 exhibited a 2.2%
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increase in AGGB but a 69% increase in PSNnet (figure 5). The disparity between 

observed AGGB and PSNnet between these two periods might suggest that a potentially 

higher proportion of carbon was being allocated to roots or maintenance respiration, 

which is plausible since maintenance respiration is estimated as a function of air 

temperature in the algorithm (Running et al. 2000). This indicates that estimating 

biomass using MODIS productivity estimates will usually not be appropriate at the scales 

examined in this study because it is not feasible to quantify the root to shoot ratio (though 

estimates could be made (Scurlock et al. 2002)) for entire regions of grassland vegetation. 

Despite this limitation, MODIS PSN„et estimates at regional scales can indicate spatial 

patterns that are not discemable on the ground, thus bolstering the potential strength of 

eight-day summations of PSNnet as a monitoring tool. Another explanation for the 

dramatic increase in PSNnet is inflation of the FPAR response by the contamination of the 

LAFFPAR signal by crops.

Although the MODIS derived PSNnet estimates were confined to represent only 

grassland pixels, it is likely that a number of these pixels contained mixtures of both 

grassland and crop vegetation. This is because developed annual crops are not 

intermingled with standing dead residue from the previous year, thereby proportionally 

increasing the vegetation signal. In this situation crops could possibly boost FPAR, and 

therefore PSNnet, while the scaled AGGB only represented grassland vegetation, thereby 

distorting the AGGB/PSNnet relationship. The situation is further complicated during 

years where unfavorable growth conditions predominate. In a similar study, Wylie et al. 

(1995) reported better relations between satellite data and biomass during favorable years 

(r^ = 0.8 and 0.7) versus non-favorable years (r^ = 0.25 and 0.67). More restricted ranges
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of biomass (as in this study) will usually reduce the r-square statistic due to its sensitivity 

to the range of the independent variable (Wylie et al. 1995). However, if a broad range of 

biomass is examined, the relationship between NDVI and biomass will generally be 

greater. For example, Wylie et al. (2002), related biomass to Thematic Mapper NDVI 

over a broad range of biomass and grassland types resulting in a strong relationship (r^ = 

0.85). Using MODIS PSNnet estimates to compare with such large differences in biomass 

will undoubtedly produce more favorable results when in contrast with regions of small 

differences in productivity.

Regionally averaged Inter-annual trends in NPP were identical to precipitation 

over the same spatial aggregate. The similar trends between NPP and growing season 

precipitation are important as they indicate that MODIS can be used for regional 

grassland assessment, especially where objective coverage from a synoptic perspective is 

a priority. While the inter-annual NPP analysis is based on a large regional average 

(about 2,750,000 ha), the accuracy and precision of primary productivity estimates at a 

particular point is, for some purposes, less useful than temporal trends of NPP (Zheng et 

al. 2003). To this end, MODIS vegetation productivity products provide a regular, 

unbiased source of information for evaluating grassland productivity.

Conclusions

The reliability of productivity estimates for monitoring grassland biomass 

fluctuations is improved during years where plant growth conditions are more favorable. 

Use of MODIS data for characterizing regional vegetation patterns may be more useful 

for addressing administrative, rather than managerial needs given a course resolution and 

regional perspective of the MODIS vegetation products.
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This study presents a framework for linking small-scale field observations to 

improved MODIS PSNnet estimates while simultaneously providing needed insight to the 

response of MODIS productivity estimates to grassland biomass fluctuations. However, 

the large number of ground samples needed to calibrate the proposed scaling models still 

makes similar research a significant investment, especially when the goal is monitoring 

through time as opposed to a single point in the growing season. Despite this cost, with 

the exception of the ETM+ imagery, all data used to construct the model for both years of 

the study were freely available. Both ASTER and ETM-i- provided sufficient spectral and 

spatial detail for constructing the scaling models at the scale of Thiesson polygons used 

in this study (about 185,000 ha). The comparison between scaled and un-scaled AGGB 

and MODIS data demonstrates the importance of interpolating between plots for regional 

remote sensing studies.

The relatively higher correlation between improved MODIS PSNnet and scaled 

AGGB in 2001 compared with 2002 indicates that years with beneficial growing 

conditions, and therefore higher biomass levels, provide more reliable results. This was 

clearly demonstrated in both visual comparison (figure 4) and quantitatively.

Monitoring will be especially difficult if there is a significant amount of senesced 

vegetation in the upper canopy. In addition, monitoring should be conducted at peak 

greenness to enhance the probability of successful monitoring. The similarity between 

differences in precipitation and integrated MODIS PSNnet during peak greenness is 

encouraging and offers evidence that MODIS is a potentially valuable tool for evaluating 

moisture driven grassland biomass fluctuations within a given year. Similarly, the inter

annual differences in NPP agreed with differences in growing season precipitation in the
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same period. Despite demonstrating the utility of MODIS data for characterizing varying 

levels of grassland biomass, this study was limited in scope and applicability because it 

was restricted to northern mixed grass prairie. If the study were designed to characterize 

relations across different expressions of grassland vegetation (e.g., transition from 

shortgrass prairie to sagebrush-steppe communities), a broader range of vegetation 

productivity, and therefore MODIS derived productivity estimates, would have been 

observed, making the findings more universally applicable.
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CHAPTER 3

EVALUATING THE USE AND LIMITATIONS OF MODIS PRODUCTIVITY DATA 
FOR ESTIMATING WHEAT YIELD OF THE NORTHERN GREAT PLAINS

Abstract

Gross primary productivity (GPP) estimates derived from the Moderate Resolution 

Imaging Spectroradiometer (MODIS) are converted to wheat yield and compared with 

observed yield for counties, climate districts and entire states for the 2001 and 2002 

growing season in Montana and North Dakota. Analyses revealed that progressive levels 

of spatial aggregation generally improved the relations between estimated and observed 

wheat yield. However, only state level yield estimates were sufficiently accurate (<5%  

deviation from observed yield). The statewide yield results were encouraging because 

they were derived without the use of retrospective empirical analyses, which constitutes a 

new opportunity for timely wheat yield estimates for large regions. Additionally, this 

study identifies six practical limits to estimating wheat yield using MODIS GPP 

including: (1) positional accuracy within and between successive MODIS GPP estimates, 

compared to a spatially dynamic, agriculturally dominated landscape; (2) spatially and 

temporally invariant physiological parameters in the GPP algorithm; (3) coarse resolution 

GPP and meteorological data; (4) insufficient land cover masks for delineating different 

crop types; (5) no current method for determining growing season length without 

retrospective analaysis and, (6) lack of spatially explicit cultivar data, which called for 

broad assumptions regarding harvest index and root: shoot ratio.
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As a result, I recommend 1) a more appropriate, regionally specific land cover 

classification, 2) more localized meteorology and 3) adaptation of physiological 

parameters to represent wheat.

Introduction

Chapter two demonstrates the strength of MODIS vegetation data for evaluating 

regional rangeland biomass in Western North Dakota. Rangelands are often spatially 

intermingled with agricultural landscapes and can be difficult to adequately differentiate 

using coarse satellite data. Despite this difficulty, agriculture provides unrivaled 

economic benefit to the Northern Great Plains. In particular, wheat is the largest crop in 

terms of acreage and economic gain. In 2003, the total wheat crop in Montana and North 

Dakota was worth 1.7 billion dollars (USDA 2003).

For decades scientists have sought to develop regionally applicable estimators of 

wheat yield (Weigand et al. 1979, Tucker et al. 1980, Hatfield 1983, Laguette et al. 1998, 

Labus et al. 2002), and growth, using models formulated from remote sensing data. With 

a few exceptions most broad scale remote sensing models have used the Advanced Very 

High Resolution Radiometer (AVHRR) Normalized Difference Vegetation Index (NDVI) 

to derive, empirical relationships between NDVI and yield (Benedetti and Rossini 1993, 

Gupta et al. 1993, Labus et al. 2002). The simplicity of NDVI and its inherent link to 

photosynthetic activity, make NDVI a popular tool for monitoring crop activity 

(Benedetti and Rossini 1993), and therefore yield (Doraiswamy and Cook 1995). 

However, while retrospective analyses provide insight into past performance, these do 

little to satisfy the need for timely yield information. Application of these empirical 

NDVI models (e.g., Brocklehurst 1977, Rao et al. 1993) is limited to the regions and time
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frames for which the regression equations were formulated. This means that regression 

models must be carefully re-evaluated each season, limiting their practical utility. 

Furthermore, these empirical models simply link NDVI, a direct measure of radiation 

absorption and reflectance, to wheat yield solely on the basis of indirect inference.

Unlike crops whose yield consists of total above-ground production, wheat yield is 

contained in storage organs and is very sensitive to adverse meteorological conditions at 

critical growth stages, including flowering and grain filling. This means that although 

above-ground biomass may be high and quantified using NDVI, actual grain yield may 

not be commensurately large. Thus, there is niche for a regional wheat yield monitor that 

can be applied in a timely manner and is not solely dependent on empiricism yet provides 

an accurate depiction of spatially explicit regional crop growth and yield. To facilitate 

this endeavor, the Moderate Resolution Imaging Spectroradiometer (MODIS) data are 

combined with meteorological inputs and used to produce daily estimates of gross 

primary productivity (GPP) in a plant growth algorithm. These GPP estimates can 

potentially be used for computing the seasonal growth and final yield of wheat for large 

regions without the need for retrospectively constructing empirical relationships between 

remote sensing data and observed yield.

To date, few if any studies have sought to estimate wheat yield from the MODIS 

GPP product, partly due to the infancy of the MODIS data stream and largely because of 

the difficulties associated with converting GPP to wheat yield for entire regions. For 

example, in agriculturally dominated environments in Montana and North Dakota, land 

cover variability is of smaller scales than can be resolved using the I-km^ spatial 

resolution MODIS land cover product. As a result a MODIS 1-km^ pixel may include
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more than one field, with potentially more than one crop or agricultural practice. In 

addition, the MODIS GPP algorithm was purposely designed for global applicability and 

includes only a generic set of “crop” physiological parameters.

One of the most challenging tasks in converting MODIS GPP to wheat yield is 

determining which pixels of a particular MODIS scene to use and the appropriate spatial 

domain for aggregation. Because large-scale aggregation minimizes landscape 

heterogeneity it seems intuitive that wheat yield estimates made over progressively larger 

regions will be increasingly more accurate (Benedetti and Rossini 1993, Doraiswamy and 

Cook 1995). My study was designed to 1) assess the potential of MODIS GPP for 

estimating wheat yield in Montana and North Dakota and 2) define the practical limits 

within which wheat yield can be sufficiently estimated using these data. To achieve these 

objectives MODIS GPP data were integrated over different time periods within the 2001 

and 2002 growing seasons and converted to wheat yield using simple harvest index logic, 

across three spatial domains including counties, climate districts and states. This research 

is the first of its kind because it provides potential users of MODIS productivity data with 

valuable insight to what can realistically be expected using only standard MODIS 

products for assessing wheat yield in the Northern Great Plains.

Study Area

The study area consists of Montana and North Dakota (figure 1). Most wheat in 

Montana and North Dakota (97 and 99% respectively) is grown under dryland conditions 

(i.e. without irrigation) (USDA 2003). In Montana, most agricultural lands are located in 

the eastern portion of the state while in North Dakota these are distributed throughout 

(figure 2).
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Figure 1. Spatial extent of study area including Montana (MT) and North Dakota (ND) 
and MODIS land tiles HIO V04 and H I 1 V04.

For this study, analysis was confined to counties with > 12,000 ha of wheat 

planted in 2001 and 2002 (figure 3) (USDA 2003). The major wheat growing regions 

within the study area have continental, semi-arid weather patterns, characterized by cold 

winters and hot, dry summers. Regional precipitation during the growing season (1 April 

to 1 September) fluctuates (based on the 50-year mean) from 140-270 mm in Montana 

and 224-369 mm in North Dakota. Figure 4 demonstrates that the wheat growing regions 

within North Dakota are generally wetter than in Montana. As a result, greater wheat 

yields are usually observed in North Dakota. During the 2001 growing season (defined 

as 1 April to 1 September) North Dakota received 9% more precipitation than the 50 year
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mean, while Montana received 12% less. In 2002 the situation was reversed, and 

Montana received an amount of precipitation almost equal to the 50-year mean while 

North Dakota was nearly 3% below the 50-year mean.
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60° N
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102°W114° W 111°W 108°W 105°W
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I I Counties of M ontana (MT) and North Dakota (ND) 
■ ■ A g ric u ltu ra l lands (MODIS land cover)

Figure 2. Distribution of agricultural land use (all crops) within North Dakota (ND) and 
Montana (MT). Agricultural lands were delineated from other land use types 
using the MODIS Type 2 land cover product (University of Maryland 
Classification).
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Figure 3. Counties and climate districts with ^ 12,000 ha of planted wheat in 2001 and 
2002 within the states of Montana (MT) and North Dakota (ND).
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Figure 4. Fifty year mean growing season (1 April -1 September) precipitation at 
selected weather stations in Montana and North Dakota.
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M ethods

Procuring and Processing MODIS Data

The MODIS Collection 4 land cover (Friedl et al. 2002), and GPP (Running et al. 

2000) from tiles HIO V04 and H l l  V04 (figure 1) were used in this study. The spatial 

location of all MODIS tiles can be found in Heinsch et al. (2003) and elsewhere on the 

World Wide Web. The MODIS tiling scheme breaks the earth into 10° by 10° sections. 

Each tile is referenced using horizontal (H) and vertical (V) notation. The starting point 

for this grid in a Sinusoidal projection is the upper left comer. It follows that tile HIO 

V04 is the tenth tile from the left (west side of the system) and the fourth tile from the top 

(north side of the system).

The MODIS productivity algorithm is based on the logic of Montieth (1972,

1977) who suggested that the productivity of a well-watered and fertilized annual crop 

(one year growth cycle) is linearly related to the amount of absorbed photosynthetically 

active radiation (APAR). The amount of APAR depends on the quantity of solar 

radiation reaching a site and the ability of the vegetation to absorb that radiation. 

Monteith’s formulation includes a maximum radiation use efficiency (Emax) that is 

attenuated by the influence of environmental factors postulated to reduce growth 

efficiency (Running et al. 2000) including temperature and vapor pressure deficit (VPD). 

Daily GPP estimates are easily computed in the MODIS productivity algorithm from this 

logic using:

GPP = 8 * PAR * FPAR (I)

where GPP equals daily gross primary productivity (kg C m'^), e is the realized radiation 

use efficiency, PAR is photosynthetically active radiation and FPAR is the fraction of
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absorbed PAR. Further information on the MODIS vegetation productivity algorithm can 

be found in Running et al. (2000) and in Heinsch et al. (2003).

Eight-day summations of gross primary productivity were obtained for the 2001 

and 2002 growing season. The summation is computed by adding all eight days of 

productivity estimates (kg C m'^). Three eight-day composite periods (153-177) were 

missing in June 2001 due to sensor malfunction, thus linear interpolations were used to 

fill in GPP for these missing periods. Precipitation occurring during the missing periods 

would not have induced a significant amount of error in the analysis since this would 

have been manifested as increased FPAR in subsequent periods provided the 

precipitation events were sufficiently intense. Since interpolating the GPP data 

themselves would have produced relatively inaccurate estimates, linear interpolation on 

the MODIS-derived FPAR was performed from the periods before and after the missing 

data. Gross primary productivity was subsequently re-calculated for the missing periods.

All MODIS land products have quality assurance data affiliated with each pixel 

for every composite period. The quality assurance layer provides a means for screening 

all pixels that are not suitable for analysis, either as a result of sensor or algorithm 

performance or atmospheric conditions. In this study, only the best quality GPP pixels 

were retained for further analysis (Table 1). If a pixel was missing for any given eight- 

day period (due to clouds, sensor malfunction or any other reason), GPP was recomputed 

with the MODIS productivity algorithm from interpolated FPAR. Fraction of 

photosynthetically active radiation was estimated for poor quality or missing periods 

through linear interpolation as described above. All MODIS land products were left in 

their native Sinusoidal projection and HDF-EOS format for analysis.
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Table 1. Quality control criteria used for screening MODIS GPP data for 2001 and 2002.
QC flag description Screening criteria
MODLAND_QC < =  1
DEADDETECTOR 0
CLOUDSTATE 0 or 3
SCF_QC < = 3
*A detailed explanation of these criteria can be found in Heinsch et al. (2003).

Identifying Agricultural Land Use

To achieve the objective of computing wheat yield for Montana and North 

Dakota, I isolated areas where wheat was planted by limiting the analysis to counties that 

reported > 12,000 ha of planted wheat in 2001 and 2002. The MODIS land cover product 

was spatially subset to include only agricultural land use (figure 2), using a spatial subset 

derived from MODIS land cover Type 2 data (University of Maryland Classification) 

(Friedl et al. 2002). The Type 2 land cover is comparable to the International Geosphere- 

Biosphere Program (IGBP) global land cover data set (Hansen and Reed 2000).

Obtaining Wheat Yield Observations

Observed wheat yield was obtained from the United States Department of 

Agriculture (USDA) National Agricultural Statistics Survey (NASS). The NASS 

provides crop yield estimates through the Published Estimates Database (PEDB) (USDA 

2003) (http://www.nass.usda.gov:81 /ipedb/1 for counties, states and crop reporting 

districts (climate districts). Yield data for individual counties are gathered using a 

census, thus the original yield data come from individual producers. Detailed reports on 

data accuracy and compilation techniques are available at USDA (2003) and USDA 

(2004). It was necessary to choose the all-wheat, dryland farming category because the 

MODIS Type 2 land cover product does not differentiate irrigated from non-irrigated 

agriculture or different kinds of wheat. This was not considered a problem in the analysis
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because dryland farming comprises >91 % and > 99.5 % of Montana’s and North 

Dakota’s wheat crop respectively (USDA 2003). Furthermore, most irrigated fields 

cover a much smaller spatial extent, rarely exceeding 65 ha.

The all-wheat yield category within each county for both states includes durum, 

spring, and winter wheat as a weighted mean for each county based on their respective 

proportion of area cropped. For example, in 2001, Teton County, Montana reported 

plantings of 2,834, 21,458, and 20,041 ha of durum, spring, and winter wheat 

respectively. Reported yield for these respective types of wheat were 1414.5, 1145.1, and 

1414.5 kg ha'V As a weighted mean the final yield computed for Teton County was 

1284.1 k g h a \

Deriving Wheat Yield From GPP Estimates

Preliminary results indicated that net primary productivity (NPP) from MODIS 

produced wheat yield estimates that were unrealistically low using the formulation 

discussed here. Thus, gross primary productivity was used instead of NPP to estimate 

wheat yield despite the fact that GPP does not account for respiratory losses. A potential 

reason that NPP estimates produce low figures of wheat yield is that the default radiation 

use efficiency (RUE) in the MODIS vegetation productivity algorithm is 0.608 g C MJ ' 

PAR (Heinsch et al. 2003), which is equivalent to 1.208 g biomass MT^ PAR since 

biomass is approximately 50% carbon (Waring and Running 1998). This is just less than 

half of the standard RUE (2.2 g biomass MT^ PAR) used in well known field level wheat 

yield models such as SIRIUS (Jamieson et al. 1998), and that developed by Amir and 

Sinclair (1990). These estimates of gross primary productivity were spatially subset to
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the crop analysis mask and temporally integrated over an apparent growing season 

defined as DOY 81-208, 81-216, 81-225, and 81-233.

Unlike previous studies (Labus et al. 2002), I elected not to use annual integration 

for yield estimation, because it makes little sense to include GPP data from before mid- 

March or after mid-September for wheat yield analysis in the northern great plains unless 

the analysis focuses solely on winter wheat. Since spatially explicit information on date 

of harvest was not available for counties or climate districts, it was assumed that all 

wheat fields in Montana and North Dakota were harvested or physiologically mature by 

21 August (DOY 233). Similarly, no spatially explicit data were available for time of 

emergence, so it was assumed that winter wheat planted in the fall of the previous year 

had emerged and was visibly green by March of the following year, although 

photosynthesis at that time is negligible primarily due to temperature constraints.

Following the masking and temporal integration, GPP data were averaged over 

three spatial domains including counties, climate districts, and entire states (figure 3). 

Wheat yield was computed for individual counties, climate districts and states (Montana 

and North Dakota) using a simple harvest index.

Gross primary productivity estimates from MODIS are given in kg C m'^. These 

units are easily converted to biomass estimates because carbon comprises roughly 50% of 

vegetative biomass (Waring and Running 1998). At physiological maturity, 

approximately 90% of the accumulated biomass of wheat is above-ground while the rest 

is allocated to roots (Jamieson 1999). A review of past research (Fischer and Kohn 1966, 

Puckridge and Donald 1967, Mcneal et al. 1971, Singh and Stoskopf 1971, Syme 1972, 

Fischer and Kertesz 1976, Bauer et al. 1987, Rickert et al. 1987, Entz and Fowler 1988,
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Austin et al. 1989, Martin and Kiyomoto 1989, Flood et al. 1995, Tacettin et al. 1995, 

Moot et al. 1996, Wheeler et al. 1996) indicated that, on average, across many cultivars 

and types of wheat (winter, spring, and durum), a harvest index of 38% can be used to 

estimate the amount of grain present in above-ground biomass. This harvest index was 

included in the wheat yield formulation: 

a
Y ieldest = 2  GPPdoy * 2 * 0.9 * HI (2)

Dor=81

where Yieldest is the yield estimate (kg ha'^), a is an arbitrary growing season end point 

(DOY 208, 216, 225, or 233), GPPdoy is daily gross primary productivity (kg C m"^), two 

is a conversion factor from carbon to biomass, 0.9 (90%) is the annual proportion of GPP 

allocated to above-ground productivity, and HI is the harvest index of 38%.

Results and Discussion

In 2001, period 81-208 and 81-216 produced the highest level of agreement 

between estimated and observed state level yields for Montana and North 

Dakota,respectively. In contrast, period 81-225 produced the highest agreement in 2002 

for both states (Table 2). These periods were established as the standard for subsequent 

county and climate district analyses in this paper.

Table 2. Results of state level wheat yield estimates from MODIS GPP for Montana and 
North Dakota in 2001 and 2002.

State Year Estimated 
yield(SE) 

kg ha'*

Observed 
yield(SE) 

kg ha'*

%
Difference
estimated-
observed

Apparent
Growing
Season*

MT 2001 1520.9+ (62.6) 1500.1+(105.6) 1 81-208
MT 2002 1475.8± (70.9) 1410.0+ (91.1) 5 81-225
ND 2001 2092.8+ (67.0) 2188.8+(141.4) -4 81-216
ND 2002 1640.1+ (41.1) 1700.8+(161.2) -4 81-225

*The apparent growing season that provided the best relationship between estimated and 
observed state level wheat yield for Montana and North Dakota.
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County Level Yield Estimation

Linear regression demonstrated that county level wheat yield estimates from 

MODIS for Montana and North Dakota are only weakly related to observed yield (Table 

3). However, in 2001, and to a lesser degree 2002, the strength of the relation between 

estimated and observed wheat yield increased with progressively longer apparent 

growing seasons (Table 3).

In both years of the study MODIS GPP produced wheat yield estimates that were 

generally too low at high levels of observed yield (figure 5). This is likely due to the low 

RUE discussed above. Gallatin county is a noteable outlier in 2001 and 2002. Yield 

estimates from MODIS for this county were 1751 and 1768 kg ha * for 2001 and 2002 

respectively, while observed wheat yield estimates were 3516 and 3300 kg ha'* over the 

same time period. Of all counties in Montana with > 12,000 ha of planted wheat,

Gallatin has the highest mean elevation of agricultural fields. Temperatures at higher 

elevation will be cooler, which is favourable for wheat especially during the grain filling 

process (Brocklehurst 1977, Sofield et al. 1977, Moot et al. 1996). This indicates a need 

for a variable growing season determined by air temperature instead of using the apparent 

growing season used by Labus et al. (2002) and the current study.
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Table 3. Relationship (r^) between estimated and observed county level wheat yield for 
Montana and North Dakota in 2001 and 2002.

State Year Apparent growing 
season (DOY) r^ p-value

MT 2001 81-208 0.33 0.001
81-216 0.42 0.0
81-225 0.43 0.0
81-233 0.46 0.0

MT 2002 81-208 0.01 0.52
81-216 0.22 0.006
81-225 0.30 0.002
81-233 0.33 0.000

ND 2001 81-208 0.04 0.410
81-216 0.05 0.443
81-225 0.06 0.266
81-233 0.06 0.20

ND 2002 81-208 0.07 0.12
81-216 0.13 0.51
81-225 0.14 0.07
81-233 0.16 0.06

The poor overall performance of the wheat yield model at the county level was 

not surprising because counties are the smallest spatial conglomerate for which the NASS 

provides observed wheat yield data and therefore are highly variable. The 2002 county 

level results of this study generally compare unfavourably with those reported by 

Doraiswamy and Cook (1995), who related observed yield in North and South Dakota to 

summation of NDVI across varying time frames in a retrospective, empirical fashion. In 

their study r-square values describing the relationship between estimated and observed 

county level yield ranged from 0.57 to 0.69 in North Dakota to O.OI to 0.6 in South 

Dakota. In contrast to this study, Doraiswamy and Cook (1995), focused on spring wheat 

only, and utilized a spring wheat mask developed by Brown et al. (1993). Although the 

inclusion of a regionally applicable crop specific analysis mask would have likely 

improved county level results in this study, I limited the analytical inputs to test the
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potential and practical limits of MODIS data alone. Similarly, meterological variables 

such as growing season precipitation could have been included along with MODIS GPP 

in a regression model designed to empirically estimate wheat yield, which would have 

increased predictive ability.
3500

Gallatin County

y  =  0 . 2 8 6 x + 1 0 4 4 . 3

r" = 0 . 4 6

500 1000 1500 2000 2500 3000 3500
Observed wheat yield (kg ha" )̂

Gallatin County

y = 0 . 1 9 8 x +  1 2 5 6 .8

=  0 . 3 3
500

500 1000 1600 2000 2500 3000
Observed wheat yield (kg ha"b

Figure 5. Observed versus estimated county level wheat yield (Kg ha ') for Montana in 
2001 (A) and 2002 (B). The dashed line is a linear least-squares best fit 
regression analysis. Gallatin County is the notable outlier. High yields are 
observed in Gallatin County due to increased grain filling periods resulting from 
high elevation fields.

Again, this would have defeated a major objective of this study, which aims to 

move beyond statistical methods for estimating wheat yield from satellite data.

The poor correlation between estimated and observed county level wheat yield for 

2001 and 2002 is partly due to high intra-and inter-annual variability in observed yield.
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resulting from diverse growing conditions and anomalous meteorological events found 

throughout the study area. Unusual meteorological events resulted in extreme variability 

in the range of reported county level wheat yield (figure 6). The 2001 range in wheat 

yield in Montana has been surpassed only three times over the period from 1951 to 2002, 

while the 2002 range has been surpassed five times (figure 6). Similarly, the range in 

observed North Dakota wheat yield for 2002 has been surpassed only one time during the 

same period (figure 6). In 2001, yield ranged from 491.7 to 4135.7 kg ha in Montana 

and 1414.5 to 3340.9 kg ha in North Dakota. Reported yields in 2002 ranged from 

538.9 to 3704.6 kg ha in Montana and 606.2 to 2761.6 kg ha in North Dakota.

Both years analysed for this study represent unusual conditions caused by atypical 

meteorological events. For example, in 2001, mid-season precipitation events of unusual 

intensity (> 400 mm in 48 hours) were unofficially recorded in some wheat growing 

regions of North Dakota, while other meteorological stations in the vicinity (< 10 

kilometers) may have received as little as 250 nun of total growing season precipitation 

(Edwardson 2003). These aberrant rain storms produced flooding conditions on a 

localized basis which led to crop failure in some areas of North Dakota (Edwardson 

2003). Such variability in precipitation is critical to understanding potential sources of 

error in the county level wheat yield estimates, which are based on measures of above

ground vegetative productivity (Eq. 2).
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Figure 6. Range in county level wheat yield (kg ha'^) from 1950-2002 for Montana and 

North Dakota.

For example, above average preciptation in the 2001 growing season produced increased 

vegetative growth in North Dakota, which is reflected in higher estimates of FPAR and 

may reduce vapor pressure deficit, a key component for determination of realized RUE. 

This, in turn, increased GPP as computed by the MODIS GPP algorithm. Using the 

wheat yield estimation logic presented in this paper (Eq. 2), any pixel exibiting higher 

GPP will have a commensurately higher yield estimate. However, as previously 

mentioned, some of the same areas which experienced high vegetative productivity also 

reported low yield. Crops, such as alfalfa or grass hay, whose yield consists of the 

vegetative parts can be easily and accurately related to satellite derived estimates of 

above-ground productivity. In contrast, crops, like wheat, whose yield consists of storage 

organs, depend on the grain filling rate and duration (Sofield et al. 1977) as well as 

efficiency of the vegetative apparatus to assimilate CO2. Using remote sensing, grain 

crops can only be indirectly related to yield, using primarily remote sensing based
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models, thus posing a serious constraint for estimating wheat yield (Benedetti and 

Rossini 1993).

Climate District Yield Estimation

There were 16 climate districts in the study area (figure 3), but only 14 of these 

were used for analysis due to low area of planted wheat in two of them. The mean size of 

climate districts within the study area was approximately 3.5 million ha compared with a 

mean county size of 320,000 ha. Climate district relationships between estimated and 

observed wheat yield were more tightly coupled than county level yields in 2001 and 

roughly equivalent in 2002 (figure 7). However, both climate district and county level 

wheat yields were either weakly related or not related to observed wheat yield in 2002. 

Longer apparent growing seasons fromDOY 81-208, 81-216, 81-225, and 81-233 

steadily improved the r-square between estimated and observed climate district wheat 

yields from 0.46 to 0.67 in 2001 and 0.0 to 0.33 in 2002.

Factors that prevented a good relationship between estimated and observed yield 

at the county level were also present for climate districts. These factors included 

relatively smaller spatial aggregation, abberrant precipitation leading to widely ranging 

wheat yield, and difficulty relating estimates of above-ground GPP to wheat yield. In 

addition, one inhibiting factor not previously discussed is the potential spectral 

contribution of other crops. North Dakota receives greater growing season precipitation 

statewide than Montana (figure 4), and therefore a more diverse suite of crops is grown 

including broadleaf, cereal and fodder crops. For example, in 2001, approximately 35% 

(2,562,348 ha) of all crops cultivated in North Dakota were broadleaf crops (canola, 

sugar beets, com, soybeans, sunflower, and dry beans) wheat. In Montana,
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only 3.5% (89,635 ha) of the same broadleaf crops were planted compared with 93% 

(2,170,040 ha) of wheat. Since the MODIS land cover product does not distinguish 

among crop types, it is very likely that a portion of the spectral response (and thus FPAR 

and GPP) at a given pixel is dominated by crops other than wheat, especially in North 

Dakota. Although this has negative consequences for yield estimation, these can be
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partially alleviated with a more appropriate analysis mask as demonstrated by 

Doraiswamy and Cook (1995).

State Level Yield simulation

State level wheat yields provided the most favourable results, which indicates 

good potential for use of MODIS GPP to estimate wheat yield for an entire state or region 

of similar size. Estimated wheat yields for both Montana and North Dakota were 

sufficiently accurate and never deviated more than ± 5% from actual yield for the 

duration of the study (Table 2). These results are encouraging and compare favourably 

with those of Doraiswamy and Cook (1995). In addition, the growing season and 

subsequent harvest were estimated to be of longer duration in 2002 (Table 2), which 

matches closely with crop reports issued by the NASS.

Identifying Practical Limits to Wheat Yield Assessment With MODIS GPP Data

While not accurate at smaller scales, MODIS GPP can be used with the simple 

yield formulation shown in this paper for accurate statewide yield estimates. Perhaps 

more importantly, the results of this study did reveal a suite of practical limitations that 

appear to handicap wheat yield estimates from MODIS GPP, especially for smaller 

geographic regions. The following practical limitations deserve careful consideration 

prior to embarking on a research or managerial project aimed at using MODIS GPP for 

deriving wheat yield estimates. These practical limitations fit within the following 

categories: I) sensor, 2) data and 3) wheat yield logic limitations.

Sensor Spatial Limitations

The MODIS provides the most state-of-the-art, globaly applicable satellite data 

freely available. For regional or global applications the spatial resolution of MODIS GPP
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provides a beneficial trade-off among spatial resolution, repeat cycle, and data volume. 

However, the standard GPP product is only available at 1-km^ spatial resolution as eight- 

day summations. For smaller spatial aggregation analyses (e.g. counties and climate 

districts), there are limitations imposed by this 1- km^ resolution. Clearly, most crops are 

not grown at regularly spaced, 1-km^ intervals. In fact, many fields consist of 

intermittent crops and bare ground with wheat stubble (fallow), known as strip cropping. 

This means that computation of FPAR and, therefore, estimated GPP will include the 

effects of photosynthesizing wheat (or other vegetation), bare soil with wheat stubble and 

bare soil. The situation is further complicated by mis-registration errors between scenes, 

though theoretically, each pixel should be accurate within ±0.1 pixels at two standard 

deviations (Running et al. 1994).

Data and Algorithm Limitations

The MODIS sensor was engineered, in part, to produce data for monitoring and 

documenting global biospheric health (Running et al. 2000). Among other things, this 

task requires timely global vegetation productivity estimates, which necessitates several 

noteworthy simplifying assumptions (Heinsch et al. 2003).

The following assumptions limits the ability of researchers to accurately and 

consistently estimate wheat yield for small geographic regions using the standard GPP 

product. First, the crop specific physiological parameters used to compute GPP do not 

vary with space or time. This means that although several cultivars of wheat may be 

grown within a single county, there is nothing in the MODIS GPP algorithm to account 

for varietal differences in physiological performance. Although, the actual maximum 

RUE of wheat declines significantly during the seed growth period of wheat (Amir and
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Sinclair 1990) it is assumed to be constant for the entire growing season in the GPP 

algorithm. Seeond, GPP for a given pixel is dependent upon, among other things, FPAR, 

whieh is an eight-day composite produet. This ensures that although GPP is calculated 

daily, the algorithm neeessarily assumes that FPAR does not vary in a given eight-day 

period. Third, the MODIS vegetation productivity algorithm uses daily meteorological 

data including average and minimum temperature, vapor pressure deficit, and incident 

short wave radiation from the NASA Goddard Spaee Flight Center (GSFC) Data 

Assimilation Office (DAO) (Schubert et al. 1993). Colleetion 4 MODIS data (used in 

this study) use DAO inputs that are provided at 1° x 1.25° spatial resolution. Though 

these DAO data generally agree well with observed meteorology there are differences 

which can potentially induce innacurate productivity estimates, though the effects are 

probably less eonsequential for larger regions of aggregation. Finally, and perhaps most 

importantly, MODIS GPP estimates rely upon land eover data whose classification 

scheme does not differentiate among crop types.

Given these paremeters, espeeially in states such as North Dakota where many 

crop species are grown statewide, estimating wheat yield is challenging. For example, 

the MODIS land cover dataset used in this study did not agree well with observed planted 

area estimates of wheat (figure 8) and is likely a major reason for the disparity between 

estimated and observed wheat yield in this study. In addition, in Montana and North 

Dakota rangeland herbaceous vegetation begins greening-up at approximately the same 

time spring wheat is beeoming established. Similarly, since spring wheat is eultivated in 

the spring, it matures about the same that summer crops such as com, sunflower and 

soybeans are between peak leaf area and the start of senescence.
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Limitations o f Wheat Yield Logic With MODIS GPP

Like the MODIS GPP algorithm itself, the wheat yield logic employed in this 

paper (Eq. 2) relies on several necessary simplifying assumptions implemented due to 

previously mentioned data limitations. Correct application of the wheat yield logic 

requires determination of growing season length. The NASS provides reports that 

indicate the proportion of the current year’s wheat crop which is physiologically mature 

or harvested. Unfortunately, however, these reports are provided on a statewide basis 

only, and are of limited use for determining crop growth stage for smaller regions. 

Without knowledge of growing season length, GPP summation (and therefore wheat 

yield) will be over-or under-estimated.
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During this study, state level yield estimates for North Dakota were found to be 

most accurate over the apparent growing season from DOY 81-216 and 81-225 in 2001 

and 2002 respectively. However, in either year, GPP summation and resulting wheat 

yield computation one composite period before or after these dates decreased accuracy of 

estimates by at least ± 67 kg ha *. An objective of this research was to create a wheat 

yield estimation protocol that did not rely solely on empiricism, and instead computed 

above-ground productivity using a few simple relationships fundamentally linking GPP 

to above-ground biomass and yield. Specifically, the model assumes that by the end of 

the growing season, approximately 90% of the total biomass is above-ground. Further, 

grain yield is fixed at 38% of the above-ground biomass. Local meteorological 

conditions, especially the anomalous events of 2001 and 2002, likely caused significant 

deviation of grain and root allocation in wheat crops from the constants used in this 

study. Again, the impact of such phenomena was likely magnified for smaller 

geographic regions, as the results suggest.

The difficulties of estimating wheat yield using MODIS GPP are numerous.

Thus, I propose several strategies that address some of the stated practical limitations to 

accurate wheat yield estimates, especially for smaller geographic regions. The following 

section describes three suggestions for improving wheat yield estimates for scientists 

willing to re-compute MODIS-derived productivity estimates using regionally specific 

inputs.

First, land cover schemes including different cropping practises can be used as an 

analysis mask for analyzing MODIS GPP data. Doraiswamy and Cook (1995) used the 

land cover scheme created by Brown et al. (1993) to delineate spring wheat, while Labus
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et al. (2002) used the MAPS Atlas to delineate dryland from irrigated farming in 

Montana. Second, observed local meteorological data can be substituted for DAO data in 

the MODIS GPP algorithm for a more accurate depiction of local growing conditions. 

Incorporating local meteorology would also permit estimates of growth stage and length 

of growing season in a timely manner. In particular, the development of spring wheat is 

strongly linked to accumulated growing degree days (Baker et al. 1986, Amir and 

Sinclair 1990, McMaster et al. 1991) most commonly computed as:

E((Tmi„ + T:„ax)/2-0i) (3)

where Tmin and T„ax are the minimum and maximum daily temperature, respectively, and 

0 is the base temperature (°C) for a given phenological stage over the crop cycle 0). 

Finally, the NASS provides reports at the year’s end that summarize the dominant wheat 

varieties planted in each state. Although these data are only available for climate 

districts, these would be useful for improving wheat yield logic. For example, different 

cultivars may posess different physiological characteristics such as harvest index, root 

allocation of sequestered carbon, and response to thermal time. Using these 

characteristics, crop physiological parameters in the GPP algorithm could be modified to 

accommodate different varieties of wheat.

Sum m ary

Neither county level or climate district aggregations of wheat yield estimates were 

sufficiently accurate. However, the state level analysis did provide sufficiently accurate 

results, thereby providing further evidence (in concordance with Chapter two) that the 

appropriate spatial domain for analyzing MODIS data is larger regions. Progressively 

larger regional averages provide more precise measures of vegetation productivity bases

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



74

on the results of Chapter’s two and three. In addition, it makes little sense to develop 

field level wheat yield monitors driven by remote sensing data given the enormous 

amount of calibration and data requirements. Further, farmers are likely to have a very 

good idea about the potential yield of their crop, thereby reducing the need for field level 

wheat yield estimates.

Fortunately, the current study provides a yield estimation framework which, 

unlike its predecessors, does not require retrospective empirical relations to derive yield. 

The merit of this technique (Eq. 2) is a quick tum-around time, which, at most, is ten 

days behind current conditions. For example, since the standard MODIS vegetation 

product (and most other land products) are eight-day composites, and are available 

almost immediately after completion, yield estimates could be computed by the ninth or 

tenth day. This, combined with the fact that state level wheat yield estimates can be 

accurately estimated prior to complete statewide harvest makes MODIS GPP a valuable 

tool for deriving timely estimates of state level wheat yield.

This research represents a preliminary attempt to fundamentally link MODIS GPP 

to wheat yield in Montana and North Dakota while defining the practical limitations to 

this endeavor. The anomalous growing season conditions encountered during this study 

substantiated the definition of practical limitations to accurate wheat yield estimates.

Chief among the limitations outlined in this paper were: (1) positional accuracy within 

and between successive MODIS GPP estimates, compared to a spatially dynamic, 

agriculturally dominated landscape; (2) spatially and temporally invariant physiological 

parameters in the GPP algorithm; (3) coarse resolution GPP and meteorological data; (4) 

insufficient land cover masks for delineating different crop types; (5) no current method
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for determining growing season length without retrospective analaysis and, (6) lack of 

spatially explicit cultivar data, which called for broad assumptions regarding harvest 

index and root:shoot ratio.

The pattern in accuracy of wheat yield estimates from counties to entire states 

demonstrated that these practical limitations are magnified for smaller spatial domains. 

Although these limitations provided a significant barrier to accurate wheat yield estimates 

for smaller regions, strategies are available to move beyond these limitations. These 

suggested improvements which are beyond the scope of the current study are: (1) 

implementation of more appropriate and regionally specific analysis masks to delineate 

wheat from other crops; (2) inclusion of localized, observed meteorological data and; (3) 

adaptation of crop physiological parameters in the current GPP algorithm to more closely 

emulate observed physiological characteristics of commonly grown wheat varieties in the 

region of interest. These recommedations are implemented in Chapter four. 
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CHAPTER 4__________________________________________________________________

INTEGRATING MODIS VEGETATION DATA WITH A MODEL OF SPRING 
WHEAT GROWTH AND YIELD FOR OPERATIONAL USE OVER MONTANA

Abstract

The limitations to accurate wheat yield predictions outlined in Chapter three 

provided the impetus to further this research hoping to improve the yield monitoring 

system. In this light, a simple mechanistic model of spring wheat growth and yield was 

developed for Montana using meteorological observations and MODIS FPAR within a 

GIS framework. Predicted county level yields for 2001 through 2003 are compared with 

observations for all counties with >= 1820 ha of planted wheat and >= 50 % spring 

wheat. County level results are significantly enhanced over previous research but still 

demonstrate the need for improvement in physiological parameter estimates and land 

cover characterization throughout the region. State wide predictions were closely aligned 

with state level observations and were indistinguishable (P<0.05) from one another in 

each year of the study. The improved model predicted (P<0.05) 2001 wheat yield about 

23 days in advance of maturity. This highlights the usefulness of the wheat yield logic 

presented here for accurately characterizing large regions of wheat yield in a timely 

fashion without the need for retrospective empirical analyses.
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Introduction

Agriculture is the leading industry in Montana, currently providing nearly 2.3 

billion dollars for the region in annual revenue. Montana ranks third in the United States 

in spring wheat production (USDA and NASS 2004). From 2001 through 2003, spring 

wheat comprised roughly 60 % of the total wheat crop in Montana. Thus, a regional 

spring wheat monitor would be a beneficial tool for the agricultural industry for several 

reasons. First, grain buyers would benefit by knowing the quantity of production 

available for purchase, especially if the buyer is sourcing from a two to three county area. 

Second, producer’s benefit by knowing how their wheat yields compare to other regions, 

which theoretically could help them fine-tune their management practices. Finally, early 

assessment of potential yield reduction could improve expected yield predictions and 

avert disaster. Once a monitor was created for Montana, it could potentially be applied to 

other areas.

Traditionally, wheat yield models have been intricate, field-based simulators such 

as CERES-wheat (Ritchie and Otter 1985) and SIRIUS (Jamieson et al. 1998). These 

models essentially “grow” a wheat plant from emergence to maturity by simulating 

complex physiological interactions between the wheat plant and surrounding 

environment and have been used successfully for predicting crop yields at the field level 

(Toure et al. 1994, Chipanshi et al. 1997, Jamieson et al. 1998). However, management, 

weather, soil and crop genetic data (responsiveness to environmental stimuli) are usually 

required to achieve accurate yield calculations. Such data are difficult if not impossible 

to obtain for entire regions. On the other hand remote sensing has been investigated and 

promoted as a means of providing information about crop growth (Badwhar
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1980,Choudhury 1987,Manjunath et al. 2002) and yield (Weigand et al. 1979,Tucker et 

al. 1980,Hatfield 1983,Laguette et al. 1998,Labus et al. 2002) while avoiding the use of 

extensive inputs.

Relating Normalized Difference Vegetation Index (NDVI) from the Advanced 

Very High Resolution Radiometer (AVHRR) empirically to yield has been one of the 

most common applications of remote sensing data for regional monitoring. The NDVI 

has been used widely for assessing crop condition and yield owed primarily to its 

inherent link to photosynthetic activity (Choudhury 1987) and simplistic formulation: 

(NIR -  RED)/(NIR + RED) (1)

where NIR and RED are the spectral responses for the near-infrared and red wavebands 

respectively. In a similar study, Doraiswamy and Cook (1995) used accumulated NDVI 

between heading and maturity to predict spring wheat grain yield in North Dakota using 

empirical relationships. Unfortunately, application of these empirical models 

(Brocklehurst 1977, Gao et al. 1993, Doraiswamy and Cook 1995, Labus et al. 2002) is 

limited to regions and time frames for which the regression equations were formulated, 

thereby reducing their value where timely information is needed. Further, as described in 

Chapter three, unlike crops whose yield consists of above-ground production, wheat yield 

is contained in storage organs, and is sensitive to adverse meteorological conditions at 

critical growth stages, principally flowering and grain filling.

The creation and implementation of accurate, timely wheat monitors has been 

limited and remains problematic because past studies have focused on empirical 

retrospective analyses, which only permit inference rather than computation of grain 

yield. More recently, however, Doraiswamy et al. (2003) successfully demonstrated the
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potential for estimating wheat yield for regions (counties) by coupling satellite remote 

sensing data with soil characteristics and meteorological data in the EPIC (Erosion 

Productivity Impact Calculator) crop growth simulation model. In their study 

Doraiswamy et al. (2003) used AVHRR and Landsat Thematic Mapper (TM) to assess 

spring wheat production in North Dakota. Given the advancements of crop remote 

sensing technology, greater emphasis has been placed on exploiting the timely nature and 

regional perspective that satellite remote sensing offers.

Since the year 2000, the Moderate Resolution Imaging Spectroradiometer 

(MODIS) has been providing a suite of global vegetation productivity products. Chief 

among these used in this study is the fraction of photosynthetically active radiation 

absorbed by the plant canopy (FPAR). The MODIS FPAR product is provided as global, 

daily coverage at 1-km^ spatial resolution. Few if any studies to date have utilized 

MODIS products for agricultural applications, partly due to the infancy of the MODIS 

data stream.

In Chapter three however, I constructed a wheat yield estimation protocol for 

Montana and North Dakota, which relied on gross primary productivity (GPP) estimates 

from MODIS. These GPP estimates can be used for computing the seasonal growth and 

final yield of wheat for large regions without the need for retrospectively constructing 

empirical relationships between remote sensing data and observed yield. Despite their 

utility for estimating yield of states, or similarly sized regions, the standard MODIS GPP 

eight-day product is not completely practical for constructing a near-real time functional 

wheat yield monitor due to the lack of growing season length determination. I discovered 

these and other practical limits to accurately estimating wheat yield from MODIS
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products, which led to suggested improvements of inputs and model logic for producing 

timely estimates of wheat yield in Montana. These suggested improvements were: (1) 

implementation of more appropriate and regionally specifie analysis masks to delineate 

wheat from other erops; (2) inclusion of localized, observed meteorological data and; (3) 

adaptation of crop physiological parameters in the eurrent GPP algorithm to more elosely 

emulate observed physiological characteristics of commonly grown wheat varieties in the 

region of interest.

The merit of applying these improvements is that if a few conservative 

relationships are known for wheat varieties grown in a given region, yield ean 

theoretically be modeled in near-real time and potentially anywhere on earth. In light of 

these observations, this paper seeks to improve the wheat yield estimation protocol 

produced in Chapter three through implementation of the suggested improvements, with 

the ultimate goal of devising a simple, mechanistic remote sensing-based spring wheat 

yield model for Montana.

To achieve this objeetive I used a modified version of the eore MODIS vegetation 

productivity algorithm (Running et al. 2000,Heinsch et al. 2003) within the erop 

modeling framework demonstrated by Amir and Sinelair (1991a). This system, hereafter 

referred to as the combined model, was run for the years 2001 through 2003 using 

localized meteorological observations and more appropriate crop physiological 

parameters than those inherent within the standard MODIS productivity algortihm. Yield 

estimates were subsequently masked with a high resolution landeover datset to limit 

analysis to areas dominated by spring wheat production. This masking process is simply 

a means of identyfiying which grid cells, or pixels, are spring wheat. County level wheat
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yields were computed by aggregating each sub-county (pixel-level) prediction in a 

geographic information system (GIS). Estimated wheat yields were subsequently 

compared with observed spring wheat yields at county and state levels.

Background

Common modeling advice is to use the simplest model that meets the objectives 

(Brooks and Tobias 1996). Of the operational field level wheat yield models that I 

examined, the model constructed by Amir and Sinclair (1991a) seemed to be the most 

appropriate to integrate with MODIS derived FPAR. There are numerous theoretical 

advantages of using remotely sensed biophysical parameters as direct inputs to a crop 

growth model. First, it limits some of the need for management information, such as 

fertilization rates because this information is inherently linked to the crop physiological 

response and therefore the remotely sensed imagery. In addition, management, soils, 

environmental parameters, pest infestations and other influences are incorporated into the 

physiological response of the crop. To the extent that the vegetative response is reliably 

quantified via remote sensing, it can be used directly, without the need for retrospective 

calibration. Second, given that MODIS provides global coverage, models could be 

developed for nearly any region. Finally, there are few benefits for predicting wheat 

yield by including excessive detail (Brooks and Tobias 1996, Brooks et al. 2001) in 

regional crop models, particularly when the parameters cannot be reliably initialized.

With respect to the wheat yield model 1 adapted in this research, use of remote 

sensing inputs greatly reduced the complexity of the system. The danger, however, of 

oversimplification is that important aspects of the system may be omitted (Brooks et al. 

2001). The original formulation by Amir and Sinclair (1991a) necessarily estimates LAI
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using plant population and the number of leaves per plant. The ultimate function of this 

routine is to simulate leaf area development so that the amount of intercepted solar 

radiation can be estimated. This logic is deleted in the combined model because I use 

MODIS derived estimates of FPAR. This makes the daily, global MODIS data stream an 

attractive contribution to developing regional crop models.

The combined model portrayed in the current study is an improvement over that 

developed in Chapter three and the numerous empirical models (Hatfield I983,Aparicio 

et al. 1999,Manjunath et al. 2002) in that it provides a mechanistic approach as outlined 

by Amir and Sinclair (1991a) through combination of important processes postulated to 

be taking place in the system. The model built by Amir and Sinclair (1991 a) assumed no 

water or nutrient limitations, though other versions do (Amir and Sinclair 1991b). I made 

similar assumptions.

Because most (about 97 %) (USDA and NASS 2003) spring wheat in Montana is 

grown under rain fed conditions, moisture stress during the growing season is common, 

which cannot be ignored in any yield simulation system. Fortunately, despite the 

contentious use of vapor pressure deficit (VPD) as a direct attenuator of radiation use 

efficiency (RUE), the MODIS productivity algorithm does include a VPD control on 

RUE (discussed later). The VPD scalar serves as a reasonable proxy for moisture stress 

as an attenuator of stomatal aperture due to increased evaporative demand.

Study Area

Because there is no spring wheat mask currently available for Montana, I limited 

the analysis to all counties within Montana where greater than 50 % of the planted 

acreage of wheat is dryland farmed spring wheat and where the total planted spring wheat
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acreage in 2001 through 2003 was greater than 1820 ha (USDA and NASS 2003) (Figure 

1). The total spring wheat acreage grown in Montana was 1,295,325, 1,568,025 and 

1,227,150 ha in 2001, 2002, and 2003 respectively. Because most wheat in Montana is 

grown under rain fed conditions, the seasonal variability in yield is strongly linked to 

rainfall fluctuations and a high range of variability, on the order of about 2300 kg ha * (38 

bu ac'*), between counties has been observed. The major wheat growing regions within 

the study area are characterized by cold winters and hot, dry summers. Regional 

precipitation during the growing season fluctuates (based on the 50-year mean) from 140- 

270 mm. In 2001, favorable temperatures during June and July combined with above 

average precipitation led to higher yields than in 2002 or 2003.

380 Kilometers

m  All counties used In the analysis

Figure 1. Counties of Montana with >= 1820 ha of dryland farmed spring wheat and >= 
50 % of total wheat production as spring wheat.
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Methods

The primary objective of this research was completed in two steps. First I 

modified inputs and parameters in the standard MODIS vegetation productivity 

algorithm. This was necessary because; 1) the standard algorithm has only a generic set 

of crop physiological parameters and no inherent phenology computation, 2) the 

meteorological data used in the standard algorithm are provided at 1° x 1.25° (Heinsch et 

al. 2003), which are too coarse for regional crop yield simulation models, and 3) the 

MODIS land cover does not distinguish wheat from other crops.

Second, the modified MODIS vegetation productivity algorithm was combined 

with a simplified spring wheat yield logic presented by Amir and Sinclair (1991a) to 

permit simulation of ontogenetic development and grain yield. The model by Amir and 

Sinclair (1991 a) was simplified in the current study in order to facilitate extrapolating this 

model across the entire state and make integration of remote sensing parameters possible.

The combined model requires daily inputs of minimum and maximum air 

temperature, solar radiation, vapor pressure deficit, and FPAR. Three processes are 

simulated in the model including crop development, total biomass accumulation, and 

accumulation of biomass in the seed head.

Crop Development

The primary function of the crop development subroutine is for triggering 

significant physiological changes, which occur as a result of aging within the wheat plant. 

Developmental stages simulated are emergence, anthesis, and grain filling. Each stage is 

estimated by accumulated growing degree-days (AGDD) experienced by the crop in each 

period, computed as:
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E((T„,„ + T„,ax)/2-0i) (2)

where Tmin and Tmax are the minimum and maximum daily temperature, respectively, and 

0 is the base temperature (°C) for a given phenological stage over the crop cycle (i). A 

very strong relationship (r  ̂= 0.99) exists between AGDD and the Haun growth stage 

(Edwardson and Watt 1987) and many studies have related AGDD to the development 

and maturation of spring wheat (Angus et al. 1981b, Bauer et al. 1984a, Bauer et al. 

1984b, 1985, Baker et al. 1986).

When planted in moist soil at a depth of about 38 mm in a proper seedbed it takes 

an accumulation of 100 AGDD for the seedling to emerge (Bauer et al. 1984a). Thus in 

the combined model, emergence is estimated to have occurred within 100 AGDD of the 

seeding date (figure 2), which assumes proper soil moisture conditions. After emergence, 

AGDD continues to accumulate and each successive growth stage is determined using a 

phyllochron interval approach.

The phyllochron interval is the number of AGDD necessary to produce another 

leaf on the spring wheat plant. Bauer et al. (1984a), demonstrated that commonly grown 

cultivars of spring wheat on the Northern Great Plains had a phyllochron interval of 

approximately 72 to 80 AGDD, though this can vary (Baker et al. 1986,Amir and Sinclair 

1991a,Cao and Moss 1991,Mosaad et al. 1995). To account for some of this variability, I 

chose a realistic value within the range of expected intervals for cultivars commonly 

planted in this region. For all simulations, the phyllochron interval was held constant at 

80. For example, using a phyllochron interval of 80, the end of main stem leaf growth, 

assuming a standard eight-leaved variety requires about 640 AGDD 

(8 x 8 0  AGDD leaf"').
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The original model by Amir and Sinclair (1991a) introduced a variable time frame 

between the end of main stem leaf growth and anthesis. Three maturity classifications 

were recognized and accounted for as early, medium and late varieties requiring 370,

460, and 520 AGDD from the end of main stem leaf growth and anthesis respectively. In 

a more recent study, Sinclair and Bai (1997) modified these parameters to emulate 

aberrantly high wheat yield in China. This type of maturity classification was omitted 

from my model because it requires spatially explicit knowledge of which cultivars are 

grown in each county. These data do not exist for Montana though the NASS does 

publish the most common cultivar grown in some regions. To circumvent this problem, 

the time from the end of main stem leaf growth to anthesis was estimated using the 

relationship between AGDD and the Haun growth stage for anthesis (11.5) for common 

wheat varieties grown in the Northern Great Plains. Standard eight-leaved varieties in 

this region have completed flowering by about 884 AGDD (Bauer et al. 1984b). Such a 

generalization is necessary without knowledge of spatially explicit cultivar data. 

Doraiswamy et al. (2003) used a similar generic wheat crop approach in North Dakota 

by estimating that every field was mature at 1300 AGDD after emergence (base 

temperature 0°) with apparently little if any deleterious effects on yield estimates.

The duration of the grain filling period is also strongly linked to air temperature 

(Sofield et al. 1977), but post-anthesis development is not a linear function of AGDD 

(Bauer et al. 1985). Bauer et al. (1985) studied grain growth of three spring wheat 

cultivars in five differing environments and found that the linear grain growth period 

ended 630 AGDD after anthesis, while Angus et al. (1981a) indicated approximately 650 

AGDD were required. As a result, the linear grain filling period was estimated as in
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Amir and Sinclair (1991a), where in all simulations, the duration of this period was held 

constant at 550 AGDD. Temperature exerts strong influence on the duration of the grain 

filling period, thus correct estimation of the timing of this event is critical (Jamieson et al. 

1995a).

In the combined model the linear grain growth period begins after a 90 AGDD lag 

phase and is represented by a simple harvest index formulation (figure 2). During the lag 

phase small amounts of carbohydrates are mobilized and translocated to the seed head
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MODEL inputs  
PAR  
VPD  
TMIN 

TMAX 
FPAR

D ay = so w in g  d ay

A G D D  = TAVG - 0  °C 
H aun S ta g e  = A G D D  /  PHINT

A G D D

Y e s  
(e m e r g e n c e )

R UE = R U E m ax T M iN _sca iar  * V PD  sc a la r  
R U E m ax = 2 .2  g  b io m a s s  MJ'  ̂ PAR

A G B _  = FPA R  ’ PA R  * RUE

S G P  = S G P  + A G D D

grain b io m a ss  = BM * HI

i II

HI = d a y s  * 0 .0 1 1  + 0 .1

i

Y e s

A G D D  > A n th e sis  + 9 0

BM = BM + A G B

A bbreviations:
PA R  = P hotosyn th etica iiy  a ctive  radiation  
V P D  = V apor p ressu re  deficit 
TMIN = M inimum daily tem perature  
TMAX = M axim um  daily tem perature
FPA R  = fraction o f a b so rb ed  p h otosyn th etica iiy  a ctiv e  radiation
TAVG = A v e r a g e  daily tem perature
A G D D  = A ccu m u lated  grow ing d e g r e e  d a y s
R U E = R adiation u s e  e ffic ien cy
BM = B io m a ss
HI = H arvest index
A G B daily = A b o v e  ground b io m a ss(d a ily  increm ent)

Figure 2. Flow diagram of combined model adapted from Amir and Sinclair (1991a) 
including data processing, model input and output.
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followed by a constant rate phase of grain filling during which nearly 60 % of final grain 

weight is determined. Higher temperatures increase rates of grain filling but duration of 

grain filling most often decreases under warmer conditions (Wardlaw et al. 1980,

Johnson and Kanemasu 1983, Nicolas et al. 1984, Wardlaw et al. 1989b, Wardlaw et al. 

1995, Wheeler et al. 1996). The question then arises does the increased rate of grain 

filling compensate for the decreased duration? The answer is rarely. This is mainly 

because increasing rates of grain filling are not constant across all temperatures and reach 

a maximum around 30°C beyond which rate of dry matter accumulation decreases 

dramatically (Jenner 1974, Sofield et al. 1977). No explicit relationship linking heat 

stress to reduced grain yield has been included in the model. Instead, it is assumed that 

higher temperatures will increase the rate of ontogenetic development, thereby potentially 

limiting biomass accumulation by shortening the growing season and grain filling period. 

Biomass Accumulation

Biomass accumulation is computed within a modified version of the MODIS 

productivity algorithm, which was spawned from the conservative relationship between 

absorbed photosyntheticaiiy active radiation (APAR) and primary productivity (NPP) 

first proposed by Montieth (1972 and 1977). This original logic, known as radiation use 

efficiency (RUE), has since been studied extensively (Gallagher and Biscoe 1978, 

Jamieson et al. 1995b, Kiniry et al. 1998, Sinclair and Muchow 1999a,b, Nouvellon et al. 

2000) and used in crop simulation models (Amir and Sinclair 1991a,b, Jamieson et al. 

1998, Brooks et al. 2001).

The maximum radiation use efficiency (e^ax) (i-e. without moisture or nutrient 

stress) currently used in common yield simulation models is 2.2 g of above-ground
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biomass MJ‘̂  PAR (Amir and Sinclair 1991a, Jamieson et al. 1998). Consequently this 

£max was used in the current algorithm. This constitutes the first of several significant 

improvements made to the standard MODIS produetivity algorithm for computing wheat 

yield.

In partieular, the EmaxUsed in the standard algorithm (0.00068 kg C M l ' PAR) is 

designed to estimate carbon sequestration rather than biomass. Adjusting this 8max to 

estimate biomass (biomass is about 50 % C (Waring and Running 1998)), still produces a 

figure (1.36 g biomass MJ"' PAR) substantially lower than that used in this study. In 

addition, the MODIS productivity algorithm logic was designed for computing global 

carbon balance for crops and natural systems, which necessitates estimation of respiration 

components in addition to photosynthesis. Fortunately, the £max used in this study is 

essentially calibrated for predicting above-ground biomass, thus eliminating the need for 

complex carbon balance or alloeation theory.

The Emax is retarded by daily minimum temperature (TMIN) and VPD (figure 3). 

Use of VPD to attenuate RUE has been questioned (Sinclair and Muchow 1999a), 

especially for crops, however, the MODIS algorithm was designed for global 

implementation. Since VPD data are globally available on a daily time step (Atlas and 

Luechesi 2000), they are used to attenuate the MODIS Emax in conjunction with minimum 

temperature. 1 recognize that VPD as a direct forcing on Emax niay not be the most robust 

assumption (Sinclair and Muchow 1999a). However, VPD does work as a general scalar, 

and in many areas of the world, serves as the only readily available indicator of moisture 

conditions surrounding the plant canopy. In its’ original formulation, the MODIS 

vegetation productivity algorithm was designed to estimate vegetation produetivity on a
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daily timestep for the entire globe, thereby requiring globally available meteorological 

data.

Thus, in the standard MODIS algorithm and the modified version used in this study, the 

daily estimated RUE is computed as:

RUE = Emax * TMIN_sealar * VPD_sealar (3)

In the combined model, daily biomass is calculated by:

AGBdaily = RUE * PAR * FPAR (4)

Where AGBdaiiy is the daily estimate of above-ground biomass, RUE is the realized 

radiation use efficiency, PAR is photosyntheticaiiy active radiation, and FPAR is the 

fraction of photosyntheticaiiy active radiation absorbed by the plant canopy.

The FPAR used for this analysis is directly provided by MODIS. The MODIS offers a 

weekly (eight-day) composite estimate of FPAR for the globe as a regularly produced 

product. A quality assurance layer accompanies every FPAR file from MODIS. The 

quality assurance layer provides a means of screening all pixels that are not

1.0

H
0.0

TMIN^i„ TMIN,max

1.0

0.0
VPDmax

Figure 3. The TMIN and VPD attenuation scalars are simple linear ramp functions. 
VPDmin and VPDmax used in this study are 650 and 2500 kPa respectively, 
while TMINmin and TMINmax are -8 and 12.02 °C respectively.
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desirable for analysis, either as a result of sensor and algorithm performance, atmospheric

conditions, or cloud contamination. Screening criteria used to filter FPAR used in this

study are included in Table 1. If any FPAR pixel did not pass the quality screening

criteria, its value was determined through linear interpolation between the previous

period’s value and the next period to pass the screening process.

Table 1. Quality control criteria used for screening MODIS FPAR data for 2001 to 2003.
QC flag description Screening criteria
MODLAND_QC < = 1
DEADDETECTOR 0
CLOUDSTATE 0 or 3
SCF_QC ____  < = 3

detailed explanation of these criteria can be found in Heinsch et al. (2003).

The FPAR time series for a given field (pixel) should capture ontogenetic decline 

of the wheat crop. However, the model developed by Amir and Sinclair (1991a) 

explicitly accounted for the loss of photosynthetic capacity of wheat as a result of 

nitrogen translocation from the leaves to the grain by retarding the Emax as a linear 

function of time during the grain filling period. This effect was not simulated in the 

combined model because the loss of photosynthetic capacity is theoretically inherent in 

the spectral response of the crop, and thus the FPAR product.

Grain Growth

Using experimental field data, Amir and Sinclair (1991a) established a very 

strong (r  ̂= 0.99) relationship between time (days) since the start of the linear grain 

filling period and harvest index in spring wheat. As a result, in concordance with Amir 

and Sinclair (1991a), daily grain growth rate is calculated using a harvest index as a 

linear function of time (days) since the start of the linear grain filling period estimated by:
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HI = 0.01(days) + 0 .l ' (5)

where HI is the estimated harvest index and days are the number of days since the onset 

of grain filling. Though simplistic, this empirical formulation has a firm scientific basis 

and thus provides a first approximation for rate of grain filling of spring wheat for a 

region. Given the regional scope of this project, no data were available to calibrate a 

more precise formulation for Montana, but evidence suggests that field data for 

calibration will improve estimates of harvest index and therefore yield (Sinclair and Bai 

1997). This is one of the fundamental limitations to regional modeling with limited 

parameter variation. The implicit assumption with the current logic is that all spring 

wheat cultivars grown in Montana have identical physiological responses to 

environmental stimuli, principally temperature and radiation.

Meteorological Observations

The model requires daily observations of VPD (Pa), solar radiation (MJ), and 

minimum and average temperature (C). Photosyntheticaiiy active radiation (PAR) is 

estimated as 45 % of solar radiation. All meteorological observations are products of the 

Surface Observation Gridding System (SOGS) (Jolly et al. 2004). The SOGS is a spatial 

interpolation program based on kriging, which provides estimates of meteorological 

variables at nearly any spatial resolution depending on station density, but for this study, 

all observations were gridded to a 1-km cell resolution to match the spatial resolution of 

the MODIS derived FPAR. The spatial resolution of SOGS data is a dramatic 

improvement over the standard 1° by 1.25° DAO data used in the standard MODIS 

vegetation productivity product. The National Climate Data Center (NCDC) operated by

‘ The Y-intercept is adapted and estimated from Amir, J. and Sinclair, T.R., 1991a, A model of the 
temperature and solar-radiation effects on spring wheat growth and yield. Field Crops Research, 28,47-58.
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the National Oceanic and Atmospheric Administration (NCAA), provided the primary 

data stream for the gridded surfaces used in this study.

Identifying Spring Wheat

The MODIS land cover schemes do not distinguish spring wheat from other types 

of crops. A diverse suite of crops including canola, sugar beets, com, soybeans, 

sunflower, and dry beans are grown in Montana but these comprise only 3.5 % (89,635 

ha) of all crops planted in 2001, compared with 93 % (2,170,040 ha) of wheat. Thus, to 

achieve the objective of computing spring wheat yield for Montana analysis was limited 

to counties that had greater than 50 % of spring wheat as a proportion of the total wheat 

crop and greater than 1820 ha of planted wheat in each year of the study. Unlike Chapter 

three, here 1 used the Montana GAP analysis instead of the MODIS land cover to identify 

agricultural lands.

The Montana GAP analysis (Fisher et al. 1998), contains a 90 meter spatial 

resolution image dataset depicting land cover types for the state. This was ultimately 

created from high spatial resolution (30-m) Landsat Thematic Mapper imagery. To 

further isolate areas of spring wheat, 1 chose the dryland-farmed land cover type (figure 

4a). Due to the spatial resolution mismatch between the 1km FPAR, and 90 meter GAP 

analysis imagery, the GAP analysis image was resampled to 1-km using the aggregate 

function in ArcGis V. 8.2 (ESRl 2002). As a result of this process, raster cells that had 

greater than 80% coverage by the dryland farmed category were retained as the final 

mask (figure 4b). Essentially, the 80 % mask provided a solid sample using areas of the 

state that had a high probability of being spring wheat. In addition, based on past 

research, 1 assumed the 80 % mask would provide the most reliable results. Spring wheat
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masks could be derived from MODIS reflectance data but this is beyond the scope of the 

current study and at 1-km resolution, use and overall accuracy of this mask would be 

limited as indicated by Doraiswamy et al. (2003). If an accurate spring wheat mask were 

developed for the region, it would likely improve yield estimates.

In Montana alternate cropping systems are common where a wheat field may be 

in production in one year but fallow the next. Since the GAP analysis was created over 

the period from 1994 to 1998 (Fisher et al. 1998) there is no means of determining if a 

field (or pixel) is fallow or in production. To facilitate this decision I relied on MODIS 

FPAR time-series. If the MODIS derived FPAR was less than five % for four periods 

during the growing season, it was assumed the croplands was fallow. In addition, since 

this study focused on dryland farmed spring wheat, spectral contamination by irrigated 

fields was avoided by not using a pixel whose FPAR was greater than 75 % for three 

periods (24 days). Varying these thresholds, however, made little difference in final yield 

calculations.
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Sensitivity Analyses

Sensitivity analyses were executed by first independently varying each of a set of 

model parameters and inputs. All analyses were performed using the 2001 

meteorological data and MODIS FPAR data. After the initial analysis different climate 

scenarios were tested by varying a series of meteorological variables simultaneously.

The aim of this analysis was to determine which model parameters and environmental 

variables were most responsible for determining yield in the model. This was 

accomplished by varying climate parameters in two ways. First, each daily 

meteorological input was varied by fixed amounts designed to emulate the expected 

range of natural variation in each variable (Table 2). Next I created realistic extreme 

climate scenarios by varying up to three parameters at a time. This was done so that the 

effects of climate on maturity and final yield could be emulated. This was a necessary 

step since hot days are generally associated with greater PAR and VPD. Finally, I varied 

physiological parameters across a range of realistic values that have been used in other 

studies.

Each variable was constrained to realistic limits observed in major wheat growing 

regions in Montana. The range of sowing dates between about 10 April and 30 May 

represents the extreme values for wheat in Montana (USDA and NASS 2004) that can 

normally be expected. Thus, sensitivity analysis was performed within this range of 

dates. For meteorological variables five randomly selected weather stations were chosen 

in major wheat growing regions of Montana and subsequently used to determine the 

mean and standard error of daily average and minimum temperatures and vapor pressure 

deficit. Only one station located at 48° north latitude, 105° west longitude, had daily
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observations of solar radiation. At this latitude in Montana, a range of solar radiation was 

observed between about 33 and 2.5 MJ (14.9 and 1.1 MJ PAR m^), while the SE was 

4 MJ PAR day ^ Thus PAR was constrained to be between 16 and 0.5 MJ day ^ 

Additionally, VPD observations are rarely recorded in the field. As a result VPD was 

allowed to vary over the same range (as a percent) as daily average temperature, given 

the fundamental link between these parameters.

Table 2. Parameters used in the combined model for computing wheat yield and for

Parameter Variable
Name

Values used 
for wheat 

yield 
prediction'

Sensitivity
Analysis
Range^

Meteorological parameters
Vapor pressure deficit (Pa) VPD Daily value ±300
Daily incident PAR (MJ m^ 

d ay ')
PAR Daily value ±4

Daily average temperature 
(C)

Management parameters

TAVG Daily value ±6

Sowing date (yearday) 
Physiological parameters

SOWD 115 100-150

Radiation use efficiency (g 
above ground biomass M J'' 

PAR)

RUE 2.2 1.224-2.5

Thermal time from sowing to 
emergence (AGDD base

TTSE 100 85-160

0°C)
Thermal time requirement 

for grain filling period

TTBE 550 383-633

Phyllochron Interval PHINT 80 70 -  125
Rate of increase in harvest 

index
I t t - I ______. t _______• _ . 1 11 _ 1

HISLOPE 0.01 0.68-2.07

^The practical limits to VPD are about 5000 Fa in much of Montana given the highest ever recorder
temperature (47° C) and assuming a dewpoint of 26° C. VPD, TAVG, and PAR were constrained 
between 0 to 5000 pa, 0 to 37 (C), and 0 . 5 - 1 6  MJ"‘ PAR respectively.
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Average temperature between 1953 to 2003 at the five weather stations was about 

16.1° ± 6 C (SE) (about 38%). This variation was constrained to a maximum of 37° C, 

which is the maximum reported daily average temperature during the growing season.

Physiological parameters included in the sensitivity analysis were Emax, thermal 

time from sowing to emergence (TTSE), thermal time beginning to the end of the grain 

filling period (TTBE), rate of increase in harvest index (HISLOPE), and the phyllochron 

interval (PHINT).

The TTSE generally varies between about 100 and 150 AGDD (base temperature 

0° C) (Bauer et al. 1984b,Jamieson et al. 1998). To be sure and encompass the full range 

of expected variation TTSE was varied from 85 to 160 AGDD.

The TTBE for most cultivars should be between about 400 to 550 AGDD, though 

Sinclair and Bai (1997) report estimates of TTBE as low as 340 AGDD (base temperature 

8°C). The TTBE is difficult to characterize due to cultivar dependencies and the 

disparate range of base temperature reported for calculating these figures, which are 

between 0 and 8°C. To ensure the full range of this variation was captured, TTBE was 

examined over the range between 383 and 600 AGDD (base temperature 0° C), which is 

± 15 % of the values used by Amir and Sinclair (1991a) and Sinclair and Bai (1997).

In a similar manner, the rate of change in harvest index is also highly variable and 

sensitive to environmental factors (Mcneal et al. 1971,Fischer and Kertesz 1976,Flood et 

al. 1995,Wheeler et al. 1996). For example, warmer temperatures can result in smaller 

grain weight at maturity because the increase in growth rate may be offset by the negative 

effects of shorter grain filling periods (Sofield et al. 1977). A review of past studies 

revealed a range in HISLOPE between 1.18 (Wheeler et al. 1996) and a low of 0.8 %
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(Sinclair and Bai 1997). To ensure that the full range of expected variability was 

captured 1 tested the effects of HISLOPE over ± 15 % of this range (0.68 -  2.07 % day'^).

Phyllochron intervals typically range between about 75 to 115 AGDD leaf  ̂  To 

encompass the full range of this expected variation, the effects of phyllochron intervals 

were examined at 70 to 125 AGDD leaf  ̂ (base temperature 0°C).

The final physiological parameter analyzed in this sensitivity analysis was 8max- 

As mentioned earlier, the 8max used in the MODIS vegetation productivity algorithm is 

considerably lower than the value commonly used in field level wheat models. Two 

general factors lead to the discrepancy between the RUE used in the standard MODIS 

algorithm (Heinsch et al. 2003) and the value used in field level models.

First, the Emax used in the MODIS vegetation productivity algorithm was 

calibrated to predict net primary productivity globally using coarse resolution 

meteorological data. This complicates the use of the MODIS RUE for predicting above

ground biomass, because it is calibrated to predict total carbon sequestration. To adjust 

the MODIS RUE for predicting above-ground biomass, I assumed a 10 % carbon 

allocation to the roots, resulting in a final £„iax of 1.224 g biomass MT^ PAR (1.36 x 0.9). 

Further, values of Emax used in field level models are generally made responsive to 

fluctuations in soil moisture, which is not an option in a global product like the MODIS 

vegetation productivity algorithm. Second, given the limited information on crop 

distribution on a global basis, the MODIS RUE is an integrated estimate of Emax for all 

crops, and thus does not differentiate wheat.

The upper level for Emax has been directly quantified by Kiniry et al. (1998) as 2.5 

g biomass MJ'^ PAR and used successfully by Sinclair and Bai (1997) to predict high
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wheat yield in the Chaidamu Basin in Northwest China. Therefore, the sensitivity 

analysis of RUE was constrained between 1.224 and 2.5 g biomass MJ'* PAR.

Comparing Predicted and Observed Whea Yield

Model runs were conducted for 2001 through 2003 using the parameters outlined 

in Table 2. The National Agricultural Statistics Survey (NASS) provides county and state 

level spring wheat yield for all counties in Montana (USDA and NASS 2003). Observed 

wheat yield was compared with modeled estimates of yield by computing correlation (r), 

bias and mean absolute error (MAE) for each year during the study. State level yield 

estimates were compared using paired t-tests (Zar 1995) to determine if differences 

(p<0.05) exist between model estimated yield and observations from the NASS Published 

Estimates Database (PEDB).

Yield Forecasting

I wanted to test the ability of the combined model to forecast potential yield. To 

accomplish this, yield simulation were stopped in 12 increments of 50 AGDD prior to 

simulated maturity. This process required that a constant harvest index value be used. 

This is necessary because in the combined model, harvest index, and therefore grain 

yield, is determined as a function of days since the beginning of grain filling. Thus, if the 

analysis is stopped prior to grain filling, no harvest index can be calculated, which, 

results in no grain growth simulated in the model. Given the success of the constant 

harvest index of 38 % for predicting state level yield in Chapter three, this value was used 

in the current analysis for investigating the use of the combined model to predict wheat 

yield in advance of crop maturity. For example, the first simulation was stopped 600 

AGDD prior to maturity. This was done for the year 2001. Each “shortened” simulation
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was tested against yield observations for identical counties aggregated to the state level 

using a paired t-test after testing for homogeneity of variances using the F-ratio test (Zar 

1995).

Results and Discussion

Sensitivity Analyses

The sensitivity analyses were done for two reasons. First I needed to understand 

the effects of dominant model components to facilitate interpretation of final results. 

Second, and perhaps more importantly, the sensitivity analyses provided insight to 

expected future yield based on regional meteorology, which can permit identification of 

critical biotic and abiotic thresholds beyond which crop failure or poor yield could be 

expected. The sensitivity analysis was performed for each pixel (field) in every county 

analyzed in this study. The pixel level predictions were then aggregated to county and 

state levels on an area weighted basis for reporting results. Mean state level prediction, 

root mean square error (RMSE), correlation coefficient (r) and the range are shown in 

Appendices. The RMSE, correlation coefficient, and the range were computed by 

comparing predicted and observed spring wheat yield for each county in the analysis. 

Vapor Pressure Deficit

Sinclair and Muchow (1999a) argue that there is little background supporting the 

postulation that VPD directly controls RUE. In addition, they found in past studies by 

Pettigrew et al. (1990) and others generally fail to demonstrate a statistically significant 

relation between VPD and RUE. For example, Morrison and Gifford (1983) did not 

identify a response to VPD in maize, even at a high level of VPD (about 2.0 kPa). Dai et 

al. (1992), concluded that maize appeared to be insensitive to VPD up to 3.5 kPa.
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Finally, most of the works citing the RUE response to VPD were measured in growth 

chambers with high internal air mixing (usually up to about 4 m s'')(Kawamitsu et al. 

1993), which is generally greater than could be expected for a leaf in most crop canopies 

where wind speed is usually 0.5 m s'  ̂(Lemon et al. 1971). This phenomenon results in 

lower atmospheric vapor pressure on the leaf than would exist under the same VPD 

conditions in the field (i.e. the VPD effect is exaggerated). It seems that across these and 

other studies, a reduction in RUE does not start until approximately 2.5 kPa (Sinclair and 

Muchow 1999a). These works can infer that use of VPD as a direct control on RUE is 

flawed.

However, careful examination of these studies and critical arguments espoused by 

Sinclair and Muchow (1999a), reveals that, most often, the effects of VPD on carbon 

dioxide exchange rate and ultimately RUE are evaluated in very controlled environments 

where water deficit is not a problem. Under these conditions it is clear that VPD is not a 

major driver of RUE. But, in defense of MODIS vegetation productivity algorithm, it is 

very challenging indeed to devise a better scheme given the global, daily requirements 

and data constraints imposed in the productivity algorithm.

As a general scalar, use of VPD as an attenuator of RUE seems to work with 

some level of certainty. For example, during the growing season for most wheat 

producing areas in Montana, when VPD is high (especially for an extended period of 

time) soil moisture is generally limiting. Use of VPD as a scalar for RUE necessarily 

assumes that the leaf relative humidity is 100% and leaf temperature equals air 

temperature. To the extent that these are valid assumptions, the use of VPD as a scalar of
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RUE should work in dryland farmed environments when the goal is regional yield 

simulation.

Not surprisingly, the eombined model is sensitive to VPD. Over the tested range 

of ± 300 Pa, estimated state level spring wheat yield varied from 808 to 1886 kg ha'^ 

across a range of planting dates from 10 April to 25 May. In all cases, increasing 

planting dates and increasing VPD lead to linear decreases in estimated grain yield 

(figure 5b). This is because RUE is attenuated in the algorithm as the cross product of 

the VPD and TMIN attenuation parameters (figure 3). I did not expect a non-linear effect 

on yield by VPD because only accumulated biomass is affected by changes in VPD.

Temperature

The effects of daily average temperature variation were larger in magnitude than 

VPD and non-linear (figure 5a). Temperature is the most pervasive environmental 

variable controlling developmental processes. Further, temperature extremes occurring 

during the periods of spikelet development, anthesis or grain filling can dramatically 

influence final grain yield (Haun Stages 4-5.5, 11-11.5, and > = 12 respectively). Spike 

size is a dominant component determining potential yield of spring wheat and is set s  550 

AGDD (Bauer et al. 1984a, Bauer et al. 1984b). High temperature during this period acts 

to significantly reduce the number of grain spikelets that will potentially produce a viable 

wheat kernel (Frank and Bauer 1996). Frank et al. (1987) found that during the Haun 

Stage between 4-4.5
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(time of formation of double ridge and terminal spikelet), every 3 degree rise in 

maximum daily air temperature decreased the number of spikelets per spike by 1. Due to 

the dependency of this relationship upon site specific factors, however, the combined 

model does not include a routine for heat induced yield reduction. Similarly, the 

combined model does not attempt to account for sterilization of florets as a result of high 

temperature during anthesis, though a clear effect exists (Saini and D. 1982, Al-Khatib 

and Paulsen 1984, Wardlaw et al. 1989a, Wardlaw et al. 1989b). In contrast, the 

combined model does implicitly account for the effects of temperature on grain filling via 

the harvest index.

The harvest index is a function of the rate and duration of grain filling, which is 

ultimately governed by air temperature. Cooler temperatures during the grain filling 

period produce higher yields both physiologically and mathematically in the model. 

Hence, in the combined model, air temperature effects the ontogenetic development, 

which in turn governs the time at which grain filling occurs. In this manner, if 

development occurs too rapidly, the grain filling period could start in July, the hottest 

month of the year. This has the inevitable effect of reducing yield. This phenomenon 

explains the non-linear nature of the estimated yield as a result of temperature variation in 

the sensitivity analysis (figure 5a).

Estimated state average wheat yield resulting from the sensitivity analysis of 

temperature was within the range of observed spring wheat yield in Montana from 1950 -  

2003 (603 to 2479 kg ha‘ )̂. Though the state wide average yield predictions are realistic, 

the range of variation in yield produced during the sensitivity analysis for each individual 

county was not (Appendices). These effects were erratic but explainable.
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A decrease in average daily temperature of -6° C decreases the number of fields 

available for analysis, especially in high elevation areas. However, a decrease in average 

temperature of only -5° C (figure 5a and Appendix A) increases estimated yield, but also 

increases the range (Appendix E). Since the grain filling period is influenced principally 

by temperature, very high yields (> 3705 kg ha'^) were predicted in some higher elevation 

areas because of greatly extended grain filling periods, and therefore harvest index 

values. These pixels were ordinated on the threshold between a lengthy simulated 

growing season, and not enough thermal time for completion of the growing season.

The sensitivity analysis of temperature reinforces its importance as a driver of 

yield. The interactive effects of temperature and planting date are also evident in 

Appendix A. For example, later planting dates can offset the effects of temperature to 

some degree (figure 5a) but this varies greatly on the timing of precipitation.

Surprisingly, at progressively higher temperatures, planting date becomes less important 

as very low yields are estimated. This is demonstrated in figure 5a as the convergence of 

estimated yield curves for all planting dates.

Photosyntheticaiiy Active Radiation

The effects of PAR variation on estimated yield were predictably positive and 

slightly non-linear (figure 5c). The marginally curvilinear relationship depicted in figure 

5c is due to the constraints on PAR observations between 0.5 -  16 MJ (Table 2). 

Interestingly, the simulated planting date had a slightly larger effect than PAR itself.

Ejfects o f Simulated Climate Variation on Predicted Yield

The sensitivity of predicted yield to varying interactive climate scenarios was 

tested to see if thresholds could be detected beyond which, the model would predict
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unrealistically high or low yield. This was important because in the dry summer climate 

of Montana it is not realistic to assume increasing temperature without also increasing 

VPD, unless air masses remain commensurately moist. Thus, the analysis simultaneously 

varied PAR, VPD and TAVG across the range of expected climate variability in major 

wheat growing regions of Montana. The results of this process reinforced my supposition 

that as a regional wheat yield analysis tool, the combined model is quite robust. Running 

the model with extreme climate scenarios (hot, dry and wet, cold) resulted in yield 

predictions very near the highest and lowest yield ever recorded in Montana. From the 

period of 1950 to 2003, the highest recorded state average spring wheat yield was 2490 

kg h a '\  while the lowest was 605 kg ha‘̂  This compares remarkably well with the 

estimated extremes of 2450 kg ha'^ and 600 kg ha'* predicted during the climate variation 

testing. Figure 6 reveals that the coolest and wettest conditions did not produce
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Figure 6. Effects of climate variation on estimated yield. Climate scenarios range from 
hot and dry to cool and moist.
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the highest yield. Indeed, it appears that a temperature decrease of 5° C, produced the 

highest yield. This is likely because at the lowest temperature, the extended grain filling 

period did not compensate for the reduction in growing season length and decreased 

photosynthesis early in the year as a result of cooler temperatures.

Although Montieth’s formulation prescribes a linear increase in biomass, resulting 

from increasing PAR, grain yield does not follow this pattern. Figure 6 reveals that 

temperature is a much stronger determinant of grain yield than PAR. Even as PAR 

decreases, grain yield increases at progressively cooler temperatures. However, the high 

estimated yield may not be entirely realistic because at extremely low temperatures, 

planting dates are likely to be much later due to improper seedbed conditions. Indeed, as 

demonstrated in figure 5, low temperatures coincident with late planting dates may result 

in catastrophically low yield. In contrast, during hot dry growing seasons, the reduction 

in estimated RUE resulting from increased VPD more than compensates for increased 

PAR (figure 6).

Physiological Variables

Estimated yield was generally more erratically responsive to changes in 

meteorological conditions than to the array of physiological details examined. As 

expected, RUE and harvest index had the largest effect on yield. Of these two variables, 

varying harvest index had the largest effect on yield (figure 7) over the range tested. Of 

the other variables tested, TTSE had the smallest effect (figure 8) (Appendix B). Across 

all planting dates the response of yield to changes in TTSE, TTBE and PHINT was 

mostly linear (figure 8).
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Figure 7. Effect of varying RUE and harvest index on estimated state average spring 
wheat yield.
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Yield Simulation

The combined model produced state level wheat yields which closely matched the

observed state level spring wheat yield computed from the same counties. To test for

differences between means, I first ensured that the variances were equal between the

years analyzed using the F-ratio test (Zar 1995). Indeed, there was no difference

(P<0.05) between the variances of predicted and observed wheat yield in any year of the

study (Table 3). The t-tests indicated that in all years of the study, predicted wheat yield

was indistinguishable from observed yield (Table 3). This was encouraging as it provides

evidence that the combined model provides realistic and reliable yield information for

large regions. Though similar conclusions were reached in Chapter three, the combined

model is advantageous over the simple harvest index logic used in Chapter three for two

major reasons; 1) The ability to emulate the effects of differing climate scenarios on yield

and 2) The combined model has a dynamic and spatially unconstrained method for

Table 3. Variance, mean and associated F-ratio test parameters for demonstrating
equality of variances (P<0.05). Means were not significantly different (P<0.05) in

Year
Parameter

2001
Observed Predicted

2002
Observed Predicted

2003
Observed Predicted

Mean 1483 1429 1138 1294 1275 1245
Variance 370118 374873 346271 481696 11642 63350

F 1.0128 1.391 1.841
P(F<=f) 0.4866 0.1983 0.056

F critical 1.882 1.905 1.882

df 29 28 29

computing expected maturity dates for eaeh wheat field identified in the state. This is 

important for characterizing crop growth stage and expected yield in advance of the
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harvest date. These factors make the wheat yield estimation protocol here a potentially 

valuable tool for predicting yield for large areas, in a rapid, unbiased manner.

Despite the capability of the combined model to accurately predict yield for large 

regions, it performs somewhat poorly at the county level. Figure 9 demonstrates the 

relatively poor relationship between predicted and observed spring wheat yield. The 

relationship was strongest in 2001, which corresponds to the results from Chapter three. 

With the exception of 2001, the results of this study compare unfavorably with results 

from a similar study by Doraiswamy et al. (2003) who integrated both TM and AVHRR 

data within the EPIC (Erosion Productivity Impact Calculator) crop growth simulation 

model.

The EPIC model utilizes a soil water balance model to control RUE, which is 

spatially parameterized using the STATSGO electronic soils data base (NRCS 2004). 

Doraiswamy et al. (2003) report extremely good results (r^ between 0.8 -  0.96) by using 

remote sensing data to calibrate leaf area information over the period 1994 to 1998 in 

North Dakota. However, it is not clear if these coefficients of determination are 

computed from the 1 to 1 line or if they are the result of the best fit regression equation.

If the former is true, the r-square reported by Doraiswamy et al. (2003) values could be 

substantially lower. In either case, the great success by Doraiswamy et al. (2003), has not 

been duplicated before or since, and it comes with great surprise that the system is not 

used operationally. It seems likely that if such a system were developed, it would have 

significant proprietary use and value.

One distinct advantage of the combined model used in this study over that used by 

Doraiswamy et al. (2003) is the fast tumaround time on the imagery for near-real time
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yield estimates. For example, the standard eight-day composite MODIS FPAR/LAI 

product can be ready to use about 10 days after acquisition of the first image in the eight- 

day cycle. This means that a yield estimate can be produced within about 10 days behind 

actual field conditions, which is in sharp contrast to empirical retrospective studies, 

which require constant recalibration and are cumbersome for larger regions.

Yield Forecasting

The ability to forecast yield is an extremely desirable aspect of any yield 

simulation model. The F-ratio test indicated that the variance between early predicted 

wheat yield and observations were not significantly different (P<0.05), thereby permitting 

use of the paired t-test, for detecting differences (Appendix L.). When used with an 

assumed harvest index of 38 %, the combined model predicted yield at least 550 AGDD 

(p < 0.05) in advance of actual maturity (figure 10).

1550

r -  1500 
'm
g  1450
So
■>' 1400

1350O)
a.
^  1300

Predicted spring wheat yieid 
—  Observed spring wheat yieid

1250
100 200 300 500 600400

A c c u m u la te d  G row in g  D e g r e e  D a y s  
prior to  m aturity o f  sp r in g  w h e a t

Figure 10. Results of yield forecasting procedure. Beyond the thick black arrow, yield 
forecast is significantly different from observation (P<0.05). Yield is statewide 
average for counties analyzed in this study for 2001.
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Assuming an average temperature of 23.89° C (75° F), this equates to about 23 days prior 

to maturity. This is extremely encouraging, because this methodology could be used to 

facilitate yield forecasting for large regions, and does not require knowledge of cultivar 

specific harvest index values.

Conclusions

The results of this study demonstrate a method of directly using MODIS derived 

FPAR with a simple mechanistic model for accurately computing regional wheat yield. 

Implementing the suggestions based on research presented in Chapter three improved the 

predictive ability of the combined model, making it more robust, yet sensitive to yield 

attenuating factors.

Incorporating the effects of temperature on final yield is an improvement over the 

logic presented in Chapter three and permits quite accurate yield estimates at the state 

level. In addition, if the daily average temperature drops by more than 5° C, 

catastrophically low grain yield can be expected when coupled with later planting dates. 

Given that the combined model is easy to use and requires little management information, 

it can be used as a tool to facilitate interpretation of broad scale wheat yield patterns.

Perhaps the largest benefit to others resulting from this project is the ease of 

operational use and the ability to potentially predict spring wheat yield for Montana about 

23 days in advance. Hopefully, this model will be further refined and made ready for use 

in other areas with the caveat that it be used for regional predictions only.

I was slightly disappointed with the county level performance of the model except 

in 2001, especially since I have spent nearly four years developing these ideas. I contend 

however, that the accuracy and precision of yield estimates at a particular point is, for
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some purposes, less useful than temporal trends of yield and a regional perspective. This 

is because; farmers generally know what the yield on their land is going to be, or 

sometimes even the entire county for that matter. But an individual is not going to have a 

good feel for how the entire region is doing, or perhaps more importantly, how their 

region of interest compares with other dominant wheat growing regions (i.e Sumner 

County, Kansas).

This is especially important from an intemational perspective where little 

information is available regarding crop performance, which leaves commodities markets 

and food banking organizations at the mercy of a foreign administrator who may not 

always be truthful. To this end, the combined model developed and validated as part of 

my research could be used as a tool for consistently characterizing the productivity and 

yield of large regions in an unbiased manner. In spite of this, there are obvious 

limitations and abundant opportunities for improving the logic and data streams available 

for this model.

The largest obstacles to producing consistently good county level yield estimates 

are proper land cover characterization and improved spatially explicit cultivar data. 

Doraiswamy et al, (2003) developed a spring wheat mask using a signature extension 

from TM to AVHRR data. Unfortunately, details regarding this process are lacking. I 

propose that a similar mask developed from MODIS 250-meter NDVI could significantly 

improve yield estimates. Such a mask, however, would likely require re-ealibration each 

year to avoid fallow cropping systems in the analysis. Likewise, given the high 

sensitivity of yield to harvest index, improved knowledge of cultivar information should 

provide more reliable yield estimates for smaller regions. Other cultivar specific

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



121

information would easily improve the estimation of growing season length. Spring wheat 

varieties grown in Montana can vary in thermal time for maturity requirements by as 

much as 300 to 400 AGDD (about 16 days). This extra thermal time requirement could 

significantly alter the amount of simulated accumulated biomass, and grain yield.

The sensitivity analyses indicated that the combined model produces dependable 

results, for large regions, across a diverse suite of meteorological thresholds. This 

analysis combined with the observation that county level results were not as accurate as 

hoped give further merit to the idea that perhaps MODIS 1-km products are most suited 

for regional analyses and not necessarily for characterizing field-or-county level yield. 

This pattern was observed in Chapter’s two and three as well.
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CHAPTER 5

CONCLUDING REMARKS

This final chapter is divided into two sections. The first section reiterates the 

original research questions and how the research presented here was used to answer them. 

The second section includes personal thoughts and suggestions for the next generation of 

similar research using MODIS data 

Overall Research Conclusions

During the course of my Ph.D. research, I sought to answer four general 

questions: To what extent does MODIS vegetation data emulate trends in rangeland 

vegetation dynamics? Can wheat yield be accurately estimated for entire regions using 

only the MODIS vegetation product suite? If not, what changes can be made to the 

modeling environment and input data stream to improve yield estimates? and, what is the 

appropriate spatial domain for characterizing regional rangeland productivity and wheat 

yield from MODIS data?

Seeking to answer these questions, I have evaluated the potential use of MODIS 

vegetation data for characterizing productivity of both rangeland and agriculture 

landscapes. The results presented in Chapter’s two through four revealed several 

noteworthy and unifying themes. The common threads linking these chapters are the 

methods used for aggregating data and identification of proper spatial scale of analysis. 

These themes were espoused at chapter and should help others who intend on using 

MODIS data for similar endeavors. Hence the purpose of this chapter is to provide brief 

concluding remarks and personal thoughts regarding the major findings of this 

dissertation.
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The appropriate scale for evaluating remote sensing data ultimately depends on 

the question being asked. All geographic phenomena, particularly those linked to the 

biophysical properties of the earth’s surface, are considered to be scale dependent. Scale 

dependence refers to situations where (1) representations of spatial pattems may be 

different when observed at different scales; (2) certain pattems and processes may not be 

observable at a particular scale or resolution; and (3) methods used to observe causal 

relationships between variables are affected by the scale of observations. I postulate that 

because all geographic phenomena are scale dependent, different conclusions may be 

drawn from using imagery with different scales and spatial resolution. This was a great 

lesson since, like others, I once believed it was necessary to have global, 1-meter 

resolution, hyperspectral data, twice daily to answer resource based questions. Indeed 

some questions cannot be properly addressed using broad-scale satellite spectral data 

without the use of supplemental ground based reconnaissance. However, the dominant 

theme conveyed in this dissertation is that, in general, increasing the spatial aggregation 

improves the relationships between measures of vegetation abundance and satellite 

remote sensing data.

In Chapter two, I first discovered this while trying to relate ETM+ NDVI to 

biomass observations with little success at the site and transect levels. Next, I aggregated 

both NDVI and biomass observations to the grazing allotment level. Still, relations were 

poor. As a final attempt I created Thiesson polygons around 12 weather stations within 

and adjacent to the Little Missouri National Grasslands and subsequently aggregated 

NDVI and biomass observations within these spatial extents. This level of aggregation 

(about 185,000 ha) provided suitable relationships between NDVI and observed biomass.
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These findings were reiterated while analyzing MODIS PSNnet data and even more so 

after evaluating inter-annual relations between NPP and growing season precipitation.

The results presented in Chapter two indicate that time integrated MODIS PSNnet 

data can be used for analyzing inter-annual productivity differences of large regions. In 

addition, intra-annual productivity differences can be suitably evaluated especially during 

favorable years. In response the first and last of the four research questions outlined in 

Chapter one and above, MODIS data can be used for monitoring rangeland vegetation 

productivity with the following caveats: 1) Inter-annual variation can probably be more 

appropriately characterized than intra-annual differences, 2) Intra-annual differences are 

more easily detected during years with favorable growing conditions and 3) progressive 

spatial aggregation from the pixel level to large regions will provide more precise and 

reliable estimates of productivity. Based on these findings, I devised a testing procedure 

in Chapter three for evaluating the appropriate spatial aggregation of MODIS GPP 

estimates for computing wheat yield estimates in Montana and North Dakota.

Chapter three reveals that progressive aggregation from counties to climate 

districts to states greatly improves wheat yield predictions. The relationship between 

predicted and observed wheat yield at the county level was the strongest (r^ = 0.46) in 

2001, which is also the year of the strongest relationship between MODIS PSNnet and 

observed above-ground green biomass in North Dakota. Subsequent aggregation to the 

state level produced wheat yield estimates which were never more than 5% different from 

observed yield. These results, in part, answer the questions “Can wheat yield be 

accurately estimated for entire regions using only the MODIS vegetation product suite?” 

and “What is the appropriate spatial domain for characterizing regional wheat yield from
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MODIS vegetation data?”. The research presented in Chapter three provides evidence 

that, indeed, MODIS GPP estimates can be used to accurately estimate wheat yield, but 

only for large regions (states). The poor ability of MODIS GPP for estimating yield at 

the county level provided the impetus for improving data inputs and model logic, which 

was discussed in Chapter four. These suggested improvements were (1) implementation 

of more appropriate and regionally specific analysis masks to delineate wheat from other 

crops; (2) inclusion of localized, observed meteorological data and; (3) adaptation of 

crop physiological parameters in the current GPP algorithm to more closely emulate 

observed physiological characteristics of commonly grown wheat varieties in the region 

of interest. These suggested improvements provided the motivation for Chapter four.

The improved model designed in Chapter four permitted more precise estimates 

of wheat yield at the county level than in Chapter three. However, the state level spring 

wheat yield predictions were, once again, the most impressive. In fact, at the state level, 

the combined model produced estimates of wheat yield which were impressively 

indistinguishable (P<0.05) from observations in all years of the study. Thus, I am quite 

confident that MODIS vegetation data can be used for accurately estimating state level 

wheat yield for spring wheat.

Personal Thoughts and Suggestions for Future Research

A suite of satellites has been used to measure and monitor biophysical 

constituents of the earth’s surface, each exhibiting different characteristics. The MODIS 

sensor, however, is unique because it combines both the spatial and spectral resolution of 

several satellites on a single platform. MODIS exhibits greater radiometric resolution 

than traditional sensors providing a broader range of measurement and therefore
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increased sensitivity to small changes in spectral reflectivity. The MODIS offers 36 

spectral channels, as compared to 5 on the AVHRR instrument, 7 on Landsat TM or 8 on 

the Landsat Enhanced Thematic Mapper plus (ETM+). Although Landsat satellites offer 

greater spatial resolution they exhibit a revisit time of 16 days but with clouds, often yield 

only 2 to 3 scenes per growing season. In addition the MODIS offers multi-spatial 

resolution for different applications. Calibration of the sensor is performed on-board 

allowing adjustments to be made while in orbit. In contrast the AVHRR has no 

comparable on-board calibration. Another weakness of the AVHRR data is the lack of 

orbit timing control creating inconsistent overpasses and associated sun-angles. In 

addition, the MODIS earth location algorithm produces eight pieces of information and 

uses ground control points for instrument alignment. Earth location knowledge will be 

accurate within 0.1 pixels at 2 standard deviations for the 1- km bands. In addition to 

improved sensor characteristics and temporal and spatial resolution the MODIS data 

stream undergoes unprecedented processing and quality assurance tests before 

distribution. For example, spectral radiance data are cloud filtered, atmospherically and 

topographically corrected using sun and look angle information to yield an accurate 

surface reflectance. These procedures are part of the unique MODIS data processing 

system.

Does all this mean that MODIS vegetation productivity data are better for 

evaluating rangeland productivity and estimating wheat yield? Not necessarily. In the 

case of assessing rangeland biomass, large differences can be monitored with MODIS 

productivity but not necessarily “better” than with traditional methods. For example, 

early in the eourse of my Ph.D. research I evaluated both EVI and NDVI using the same
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scaled biomass data set for 2001 that was explained in Chapter 2. I related NDVI and 

EVI to scaled above-ground green biomass over grazing allotments and Thiesson 

polygons (the same polygons used in Chapter 2). MODIS vegetation productivity was 

more related (r^ = 0.77) than NDVI (r^ = 0.67) during peak greeness. However, EVI was 

more related (r^ = 0.84), indicating that there is probably a greater likelihood of 

describing spatial variation across the landscape using EVI. A testament to this is the 

relative lack of publications using MODIS derived vegetation productivity for evaluating 

differences across the landscape in either rangeland or agricultural environments.

To be fair, there are many more assumptions being made in the MODIS 

vegetation productivity formulation than in vegetation indices. W hat’s more, if biomass 

estimates are required, use of NDVI or EVI could be more restrictive because regression 

formulations between biomass and these indices would probably have to be re-evaluated 

periodically and applied in a retrospective manner (which may or may not be an issue).

In contrast, MODIS vegetation productivity provides an estimate of carbon sequestration, 

which to the extent that it is accurate, could be converted to biomass on the fly. I don’t 

recommend this given the host of unknown landscape parameters needed but at least it is 

an option without a great deal of retrospect (about 10 days). Having said this, I must re

iterate that if the only monitoring objective is assessment of relative differences across 

the landscape, then vegetation indices might be a superior choice. Specifically, for most 

applications, MODIS 250 meter NDVI would be the most useful but this depends on the 

scope of analysis.

Though I did not explicitly compare AVHRR NDVI versus MODIS vegetation 

indices or vegetation productivity, I believe MODIS has cleaner and more consistent data
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(mostly due to regularized preprocessing). Still, the argument has been made that we are 

no better off than we were 20 -  30 years ago. For example, despite the inherent 

improvements that MODIS data compared with other sources, MODIS is still limited by 

the same factors that beguiled its’ predecessors. There are still limitations imposed by 

spectral mixture problems, atmospheric distortion, clouds and data processing. These 

factors among others still inhibit assessment of earth’s biophysical properties.

For rangeland analysis, I propose three recommendations for future research.

First, I would spend more time sampling fewer allotments rather than less time on more 

allotments. The important concept is to sample the entire productivity continuum, so the 

analyst should purposely sample high, low and moderate productivity allotments. For the 

actual sampling I would definitely recommend clipped plot data unless the entire field 

crew is quite experienced at ocular estimation. During the 2001 field season, I tried 

ocular estimates, digital camera and agricultural digital camera techniques. I found that 

the crew was too inexperienced for precise ocular estimates. The digital cameras were 

impractical because of cloudiness and because without a frame to hold the cameras 

steady, there is no way to ensure that the same area of ground is viewed with each picture 

taken.

Second, development of a MODIS 250 meter NDVI database for Montana with a 

variety of associated metrics would be a very valuable project. The associated metrics 

might be I) phenology, 2) relative “greenness” and 3) departure from normal. 

Development of this type of project would be widely used and appreciated. These data 

will not really help a rancher unless they have the ability to act on it. W hat’s more, the 

individual producer probably already knows what the condition of the vegetation is on
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their pasture. However, information about the spatial variation in rangeland productivity 

would be quite helpful however, especially for insurance companies as it might help the 

adjustor focus resources on problem areas. The remotely sensed vegetation productivity 

could act as a layer in a series of redundant drought threshold indicators. The seasonal 

trajectory and inert-annual variance should quite easily fit into the role the risk 

management agency for drought assessment. Once again, I believe the area for 

aggregation should be large (larger than small ranches). I am not sure how large this 

should be because I have not evaluated the 250 meter product enough to know. But as a 

general measure of variability of vegetation “greenness” the MODIS 250 NDVI does 

offer promising opportunity. Third, more research at different scales of analysis must be 

conducted. For example, a re-analysis of allotment level relationships between MODIS 

data and scaled biomass could be conducted with a different sampling scheme. In 

addition, some logical ecological boundaries could be evaluated such as Bailey’s 

Ecoregions.

For wheat yield analysis, larger spatial aggregates will provide better results but if 

more ancillary data are available, it is possible to evaluate smaller areas than those 

examined in this dissertation. As in the case of rangeland productivity analysis, other 

data streams may be just as useful. For example. In 2000,1 used LAI/FPAR estimates 

from AVHRR to drive the MODIS vegetation productivity algorithm and came very 

close to the observed 1999 state level wheat yield using the simple harvest index 

approach used in Chapter 3. I only tested this for one year but the results were similar to 

those presented in this dissertation, which indicates that the improved technology MODIS 

offers has not necessarily improved our ability to answer research questions posed in this
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document. However, the MODIS products are ready to use “out of the box” which 

eliminates the historic need for relating NDVI to the variable of interest. In short, the 

MODIS vegetation products do enable the researcher to focus more on the biological 

science and less on the remote sensing science.

Maybe yield is not the best target for analysis, though if future research was able 

to compute yield for smaller areas in advance of harvest it could potentially be 

incalculably valuable. The value would not be to the farmer but to the market speculator 

(which often times is a single producer), crop insurance agencies and grain buyers. In 

addition, such an analysis could help avert falsified yield statements by different 

countries as they barter for a better price during negotiation.

In reality, the research community is a long way from this type of program. If 

yield estimation for smaller regions (some level between counties and fields) becomes the 

objective of future research I have four suggestions organized in order of relevance.

First, an accurate wheat mask must be created and an automated system for updating the 

mask should be in place. A decent mask could be created from MODIS because the 

surface reflectance data are consistent, multiresolution and atmospherically corrected.

Second, a water balance should be computed and used to attenuate RUE in place 

of VPD, but only if accurate soils and precipitation are available. I tried computing a 

water balance for wheat yield but the resolution of the STATSGO digital soils database is 

probably too course. In addition, there may not have been enough precipitation to 

reliably drive the water balance. Third, once the other components are in place, I 

perceive good potential for driving a simplified field level wheat yield simulation model 

with MODIS 250 meter FPAR. At some point however, estimating wheat yield using
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remote sensing become uninteresting. For example, focusing on individual fields is of 

little help because a farmer already knows what the yield is and often times cannot do 

anything about it. On the other end of the spectrum if, for example, the level of analysis 

is the entire western united states, I am not certain that would be of much use either.

In closing, MODIS does offer an unprecedented data stream that will not answer 

all research questions relating to wheat yield assessment and rangeland productivity. 

However, I believe that the MODIS data stream has equipped researchers with a timely, 

objective data set that permits more focus on the biological science and less on the 

remote sensing science.
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Appendix A

Mean wheat yield resulting from varying meteorology during sensitivity analysis.
Parameter

10 April
Planting date 

25 April 10 May 25 May
VPD
-300 1853.0 1811.4 1737.5 1653.9
-200 1698.2 1657.8 1586.7 1502.0
-100 1546.9 1508.1 1440.2 1355.8
-50 1472.8 1435.0 1368.8 1285.0
50 1327.9 1292.2 1230.2 1148.4
100 1257.3 1222.7 1162.9 1082.8
200 1119.6 1087.7 1032.6 956.1
300 987.7 958.7 908.4 836.5
Tavg
-6 1885.9 1606.2 1122.0 711.0
-5 2075.8 2085.7 1619.3 1508.4
-4 2024.7 1948.3 1887.0 1434.6
-3 1836.4 1883.7 1762.9 1562.6
-2 1636.4 1636.4 1681.7 1479.6
2 1226.9 1197.9 1141.2 1022.1
3 1134.6 1121.1 1083.6 971.8
4 1042.1 1044.3 1030.1 934.5
5 958.7 969.9 976.1 902.0
6 889.4 899.6 922.5 870.4
PAR
-4 1210.4 1178.4 1123.7 1054.5
-3 1239.0 1206.8 1152.0 1082.1
-2 1265.0 1232.7 1177.7 1107.4
-1 1288.6 1256.3 1201.3 1131.1
1 1329.7 1297.5 1242.7 1170.6
2 1347.1 1315.0 1260.3 1187.4
3 1362.1 1330.2 1275.6 1201.9
4 1375.0 1343.2 1288.7 1214.1
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Appendix B

Mean wheat yield resulting from varying physiological parameters during sensitivity analysis.
Parameter

10 April
Planting Date 

25 April 10 May 25 May
Parameter
RUE
1.224 778.6 758.1 722.4 676.2
1.437 914.2 890.1 848.2 793.9
1.649 1049.1 1021.5 973.4 911.6
1.862 1184.7 1153.5 1099.2 1028.9
2.075 1320.2 1285.5 1225.0 1146.7
2.287 1455.2 1416.9 1350.2 1263.9
2.5 1590.7 1548.9 1476.0 1381.6
HI_slope
0.68 1068.4 1040.1 988.7 917.0
0.958 1356.3 1320.6 1258.1 1177.0
1.236 1644.2 1601.1 1527.5 1436.9
1.514 1955.5 1903.4 1815.3 1717.8
1.792 2214.3 2154.7 2055.7 1935.4
2.07 2498.9 2431.3 2313.9 2154.2
TTSE
85 1470.1 1458.2 1405.3 1376.9
100 1464.4 1438.7 1384.6 1356.2
115 1459.1 1423.3 1364.4 1336.9
130 1451.3 1408.9 1346.5 1313.6
145 1438.7 1393.7 1330.1 1284.5
160 1422.8 1380.8 1314.3 1252.2
TTBE
383 1076.0 1040.1 979.8 873.6
433 1171.8 1136.5 1071.2 966.0
483 1267.2 1232.8 1166.4 1062.1
533 1366.4 1329.3 1265.0 1176.0
583 1502.1 1425.9 1361.6 1293.0
633 1565.2 1527.3 1469.3 1415.6
PHE^T
70 1044.5 1027.6 1013.4 915.2
81 1139.3 1123.2 1104.5 976.2
91 1224.6 1207.4 1169.9 1018.7
103 1321.3 1293.9 1229.7 1092.4
114 1394.4 1357.4 1291.6 1201.6
125 1455.6 1412.2 1387.0 1369.2
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Appendix C

Correlation between predicted and observed county level wheat yield after varying meteorology

Parameter
10 April

Planting Date 
25 April 10 May 25 May

VPD
-300 0.73 0.72 0.70 0.68
-200 0.72 0.71 0.69 0.67
-100 0.71 0.70 0.68 0.66
-50 0.70 0.70 0.68 0.66
50 0.70 0.69 0.67 0.65
100 0.69 0.68 0.66 0.65
200 0.68 0.68 0.66 0.64
300 0.67 0.67 0.65 0.63
Tavg
-6 0.71 0.72 0.75 0.83
-5 0.71 0.71 0.75 0.75
-4 0.86 0.87 0.74 0.69
-3 0.80 0.79 0.85 0.74
-2 0.81 0.81 0.80 0.85
2 0.85 0.85 0.84 0.84
3 0.85 0.86 0.85 0.85
4 0.85 0.86 0.85 0.86
5 0.84 0.85 0.86 0.86
6 0.84 0.85 0.86 0.87
PAR
-4 0.84 0.83 0.82 0.81
-3 0.83 0.83 0.82 0.81
-2 0.83 0.83 0.81 0.81
-1 0.83 0.83 0.81 0.80
1 0.83 0.82 0.81 0.80
2 0.82 0.82 0.81 0.80
3 0.82 0.82 0.81 0.80
4 0.82 0.82 0.80 0.79
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Appendix D

Correlation between predicted and observed county level wheat yield after varying physiological

Parameter
10 April

Planting Date 
25 April 10 May 25 May

RUE
1.224 0.70 0.69 0.67 0.65
1.437 0.70 0.69 0.67 0.65
1.649 0.70 0.69 0.67 0.65
1.862 0.70 0.69 0.67 0.65
2.075 0.70 0.69 0.67 0.65
2.287 0.70 0.69 0.67 0.65

2.5 0.70 0.69 0.67 0.65
HI_slope

0.68 0.70 0.70 0.68 0.66
0.958 0.70 0.69 0.67 0.65
1.236 0.70 0.69 0.67 0.65
1.514 0.70 0.69 0.67 0.65
1.792 0.70 0.69 0.67 0.66
2.07 0.70 0.69 0.68 0.67

TTSE
85 0.69 0.69 0.67 0.66

100 0.70 0.69 0.67 0.66
115 0.70 0.69 0.66 0.66
130 0.70 0.69 0.67 0.66
145 0.70 0.69 0.67 0.66
160 0.70 0.69 0.67 0.66

TTBE
383 0.71 0.70 0.69 0.68
433 0.71 0.70 0.69 0.67
483 0.70 0.70 0.68 0.67
533 0.70 0.69 0.67 0.66
583 0.71 0.69 0.68 0.65
633 0.69 0.68 0.67 0.65

FHINT
70 0.70 0.71 0.72 0.73
81 0.71 0.72 0.73 0.72
91 0.72 0.72 0.71 0.70

103 0.72 0.71 0.70 0.68
114 0.70 0.70 0.67 0.66
125 0.68 0.68 0.66 0.63
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Appendix E

Range of wheat yield predictions after varying naeteorology during sensitivity analysis.
Parameter

10 April
Planting date 

25 April 10 May 25 May
VPD
-300 2129.0 2097.2 2042.0 1965.7
-200 2003.2 1969.3 1909.3 1814.2
-100 1874.9 1839.1 1775.8 1665.5
-50 1810.0 1773.5 1708.9 1592.7
50 1678.5 1641.0 1574.5 1449.4
100 1612.1 1574.5 1507.3 1378.9
200 1478.5 1440.8 1372.9 1239.8
300 1343.5 1306.1 1238.1 1103.7
Tavg
-6 754.2 798.2 1301.7 229.5
-5 4178.5 3950.6 689.2 1135.3
-4 3002.0 3084.3 3490.7 620.1
-3 2323.6 2414.4 2526.7 2814.4
-2 1940.9 1940.9 2088.2 2057.9
2 1530.8 1548.7 1509.7 1310.1
3 1417.9 1434.1 1442.5 1232.9
4 1270.3 1344.0 1375.5 1188.5
5 1125.8 1226.6 1290.9 1158.8
6 1033.3 1111.7 1217.4 1119.7
PAR
-4 1506.1 1474.6 1420.2 1322.9
-3 1551.8 1519.8 1464.2 1365.0
-2 1594.5 1562.3 1505.6 1404.4
-1 1634.6 1602.3 1544.7 1441.0
1 1707.6 1675.5 1616.0 1505.9
2 1739.5 1707.7 1647.2 1533.6
3 1767.4 1735.7 1674.6 1557.5
4 1790.2 1758.6 1697.1 1577.1
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Appendix F

Range of wheat yield predictions after varying physiological parameters during sensitivity
analysis.
Parameter Planting date

10 April 25 April 10 May 25 May
RUE
1.224 970.5 949.9 913.4 846.0
1.437 1139.4 1115.2 1072.4 993.3
1.649 1307.6 1279.6 1230.5 1139.8
1.862 1476.4 1445.0 1389.5 1287.1
2.075 1645.4 1610.3 1548.4 1434.3
2.287 1813.4 1774.8 1706.6 1580.8
2.5 1982.3 1940.1 1865.5 1728.1
HI_slope
0.68 1336.9 1309.9 1258.1 1154.6
0.958 1690.9 1655.1 1591.3 1472.7
1.236 2045.0 2000.3 1924.6 1790.7
1.514 2432.1 2377.7 2289.0 2138.5
1.792 2753.1 2690.7 2591.1 2426.9
2.07 3107.0 3035.9 2924.3 2744.9
TTSE
85 1807.3 1815.1 1745.0 1669.2
100 1806.0 1800.7 1721.9 1637.7
115 1808.4 1782.5 1704.4 1606.7
130 1805.7 1758.8 1695.4 1570.6
145 1795.0 1750.8 1677.8 1539.7
160 1770.9 1737.6 1664.9 1528.3
TTBE
383 1345.8 1307.5 1268.3 1101.7
433 1465.2 1428.1 1374.6 1200.8
483 1583.1 1546.6 1486.9 1317.1
533 1708.4 1665.2 1603.6 1471.6
583 1345.8 1777.1 1718.9 1628.7
633 1941.3 1894.3 1847.6 1792.9
PRINT
70 1257.0 1267.7 1328.3 1224.7
81 1398.1 1410.3 1461.7 1299.2
91 1523.0 1532.2 1545.2 1318.3
103 1664.8 1652.0 1584.4 1388.4
114 1743.8 1702.8 1643.4 1501.7
125 1765.3 1731.6 1736.1 1697.3
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Appendix G

RMSE of wheat yield predictions after varying meteorological during sensitivity analysis.
Parameter

10 April
Planting date 

25 April 10 May 25 May
VPD
-300 559.1 556.4 576.8 617.1
-200 484.2 488.1 518.8 565.7
-100 435.9 446.8 487.3 541.1
-50 423.2 437.4 482.0 538.9
50 420.7 440.2 490.7 552.6
100 430.2 451.8 503.8 567.4
200 468.8 492.6 545.2 610.2
300 527.6 551.6 602.0 666.3
Tavg
-6 1024.6 958.1 1322.4 1307.1
-5 1109.1 1111.8 1161.4 1128.2
-4 776.8 895.6 1134.4 959.5
-3 864.3 941.9 812.1 852.8
-2 643.6 643.6 763.8 699.0
2 355.6 377.8 419.1 484.4
3 380.4 387.4 422.4 486.7
4 423.4 420.2 437.2 492.6
5 475.5 463.7 460.3 504.3
6 521.0 511.5 491.5 520.4
PAR
-4 411.8 434.1 485.1 546.0
-3 417.0 438.6 489.4 549.8
-2 425.1 445.9 496.6 556.3
-1 435.1 455.2 505.8 564.7
1 458.1 477.0 527.7 586.0
2 470.1 488.5 539.3 597.4
3 481.8 499.9 550.9 608.9
4 492.8 510.7 562.0 620.0
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Appendix H

RMSE of wheat yield predictions after varying physiological parameters during sensitivity

Parameter
10 April

Planting date 
25 April 10 May 25 May

RUE
1.224 613.7 633.4 672.4 719.6
1.437 523.2 545.5 590.8 645.4
1.649 454.7 478.2 528.3 588.3
1.862 413.9 436.8 489.0 552.1
2.075 406.5 426.3 477.1 539.2
2.287 433.2 448.0 493.5 550.7
2.5 490.7 499.4 536.8 585.8
HI_slope
0.68 440.9 463.7 513.3 576.5
0.958 409.3 427.8 477.1 537.9
1.236 527.0 534.2 571.2 620.5
1.514 754.1 745.7 757.8 806.7
1.792 989.9 969.6 966.4 965.0
2.07 1270.0 1239.5 1204.0 1121.8
TTSE
85 440.8 459.1 509.1 549.3
100 437.3 456.0 504.2 542.1
115 433.2 451.9 503.5 532.6
130 428.0 447.2 501.0 527.2
145 424.5 444.8 496.3 529.2
160 421.6 442.0 491.6 535.8
TTBE
383 425.3 456.7 503.4 584.8
433 401.7 428.2 475.9 550.2
483 397.1 416.4 464.4 523.4
533 410.0 426.9 476.0 533.3
583 425.3 456.1 489.7 563.0
633 495.7 511.1 534.4 619.1
FHINT
70 436.4 442.4 447.4 506.7
81 393.9 400.4 408.1 483.4
91 372.3 379.6 406.9 488.7
103 374.5 393.8 428.0 500.8
114 415.7 429.5 478.9 534.1
125 479.7 480.5 541.9 639.8
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