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Between individuals faster sprinting speeds are achieved by applying greater 

stance average forces against the running surface.  Recent evidence further indicates that 

elite level performers also strike the ground with leg kinematics that differ from those of 

non-elites and that these leg movements act to enhance the force transients occurring in 

the milliseconds following foot-ground impact.  I investigated whether sprint 

performance could be enhanced through a short term gait intervention, consisting of 3 

laboratory training sessions wherein subjects (n = 6) completed 5 high-speed runs on an 

instrumented force treadmill at 90% of their measured top sprint.  The subjects received 

immediate visual feedback of the previous bout of sprinting by reviewing the video 

record obtained from a laterally positioned camera with a frame rate of 1000 Hz.  The 

subjects also received verbal cues throughout their participation, which were focused on 

encouraging leg postures more suitable for applying greater vertical forces into the 

ground. Incremental tests to top speed were administered on the force treadmill prior to 

and following the gait intervention. Paired sample t-tests were used to analyze the pre- vs. 

post-intervention variables which included; ground contact time, aerial time, swing time, 

stride time, and step length. Following the gait intervention top speeds increased by 6.7% 

[SD 1.3] and ground reaction forces increased by 0.03 xWb.  3D video analysis revealed 

that the velocity of the ankle and foot immediately before touchdown also increased by 

7.3%.  This permitted the leg to use a posture better able to apply the high vertical forces 

needed in the first half of stance.  These data indicate that an acute training intervention 

can augment sprinting performance within a time frame that is too brief for the 

improvement to be attributed to changes within the musculature of the individual 

subjects.  I conclude that running speed can be taught by providing knowledgeable cues 

that focus on the mechanics of the foot-ground impact. 
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Chapter 1 -- Introduction 

 

Human runners use a gait cycle that consists of alternating periods of foot ground contact 

and aerial phases in which force is applied by the leg during the stance phase and very little 

muscle force is generated during the aerial phase (Fig. 1).  As individuals run faster, they apply 

greater forces against the ground and do so in decreasing periods of foot-ground contact.  This 

increase in the requirement for force application, primarily for weight support, is due largely to 

the need to provide sufficient aerial time to return the leg for the next stance phase because faster 

locomotion frequencies are achieved by a reduction in the stance as opposed to the aerial phase 

(Robert et al., 1998; Weyand et al., 2000).  Thus, the application of force against the ground is 

the critical element to faster running speeds. 

Muscles hydrolize ATP when they generate force, and during sprint running the forces 

applied against the ground can exceed five times the body’s weight.  Thus the leg muscles of 

terrestrial runners consume tremendous quantities of ATP in order to generate the ground forces 

needed during locomotion (Taylor & Heglund, 1982).  Cursorial animals reduce the demand for 

energy by storing and releasing elastic energy within the muscles and tendons of the leg. 

(Cavagna et al., 1977).  This storage and release of elastic energy is known as the spring-mass 

model of bouncing gaits (McMahon et al., 1987) and involves the lengthening of muscle-tendon 

units as the spring is loaded in the first portion of stance and subsequently released during the 

second half (Dickinson et al., 2000; Taylor 1994; Taylor & Heglund, 1982).  It is the movements 

at the center of mass that create the compression and extension of the leg necessary for spring to 

function. 
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Recently, Clark and colleagues (2014) recognized that the spring mass model does not 

describe the motion of the body’s center of mass during sprint running.  Accordingly, these 

authors modified the existing quantitative understanding to more accurately reflect the realities 

of high speed running.  The main addition to the spring mass model is the inclusion of a 

collisional term that affects the shape of the ground reaction force in the milliseconds following 

the beginning of stance.  This effect is harnessed by elite sprinters to enhance their foot-ground 

collision when compared to recreational runners.  By increasing the lower limb’s velocity prior 

to touchdown and reducing deceleration time during impact, elites increase the collisional 

impulse and total ground reaction forces that are needed to attain faster speeds.   

Experienced sprinters tend to contact the ground when the foot is placed below the center 

of gravity (Mann & Herman, 1985).  With this limb geometry, it is likely that the foot ground 

collision will avoid unwanted horizontal force.  These kinematic positions are typically referred 

to as back-side and front-side sprinting mechanics and are widely considered in applied settings 

as contributing factors to top speed running.  At the instant of touchdown, the swing knee should 

be equal with or in front of the stance knee (Mann, 2008).  This is considered ideal front side 

mechanics.  Thus, both the scientific and this instructional coaching framework highlight the 

importance of the lower leg and ankle at the instant of touchdown (Mann, 2008).  Because 

sprinters spend most of the stance period on the toes (Mann & Hagy, 1980), this position 

dramatically increases the torque acting at the joint, in addition to the important role played in 

weight support by the rest of the extensors.  Finally, because sprinters typically strike the ground 

with the ball of their foot, the torques and forces necessary at the ankle increase substantially.  

Because the opposing torque needed to stabilize the joint is the product of muscle force and the 
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essentially constant distance between the center of the ankle and the Achilles tendon, large 

torques require huge muscle forces (Weyand et al., 2010).   

To achieve elite sprinting speeds, fast muscle tension development is needed, yet the 

faster muscle fibers and motor units present in the legs of these runners do not allow the legs to 

be repositioned noticeably faster (Weyand et al., 2000).  Although swing times at top speeds do 

not very among different individuals or their levels of experience, the aerial phase is important to 

prepare for the next foot-ground contact.  Passive energy transfer is thought to be necessary to 

reposition the swing leg instead active muscular power contribution (Weyand et al., 2010).  

Being able to quickly reposition the limb into the correct position is crucial to achieving the 

augmented collision that is characteristic of elite sprinting performance.  This provides the 

preparation for the next impact and is thought to be most effectively done by using a high knee 

lift, wherein the shank of the swing leg is able to be driven rapidly into the ground (Clark & 

Weyand, 2014). 

Improved collisions result in more rapid rise of the ground reaction force, consequently 

greater forces are the result.  Elite sprinters apply more force in the first half of ground contact 

(2.65 xWb) than recreational sprinters (2.21 xWb), which is what separates the level of 

experience (Clark et al., 2014).  Moreover this is essentially the only difference, since the forces 

applied in the second half of stance are virtually identical between these groups.  Thus at every 

speed sprinters apply more force than recreational runners, which explains their long observed 

poor economy, differing by only body weight, but they do so only in the first half of stance. 

  We initiated this study to determine whether the sprinting performances of human 

runners could be improved with a short gait intervention.  The properties that confer elite 

sprinting performance are neuromuscular and the mechanics of gait.  Here, the brevity of this 
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intervention targets the gait mechanics as a source of performance enhancement.  Properties used 

during sprinting are under the control of either muscle physiology or the mechanics of gait.  It is 

important to recognize that previous interventions that alter the gait of runners have been found 

to have negative performance effects.  For instance, McMahon and colleagues (1987) studied the 

effectiveness of altering vertical leg stiffness on performance when running.  They found that 

when vertical stiffness was reduced and knees were in a flexed position, less force was applied to 

the ground and oxygen consumption increased by as much as 50% (McMahon et al., 1987).  In 

addition, these investigators discovered that when the mass strikes the ground with less velocity, 

gravity is relatively unimportant in determining the vertical force during the collision (McMahon 

et al., 1987).  A second gait intervention aimed at changing the stride frequencies used by 

runners found that with either higher or lower frequencies, the spring-mass model became less 

effective and the storage and recovery of elastic energy use was reduced and oxygen costs were 

increased (Farley et al., 1991).   

We therefore asked whether or not it is possible to teach speed or if a training-induced 

muscle physiological response is the only avenue to augment speed?  We hypothesized that a 

short training program, targeting the swing mechanics of sprinters to augment the effectiveness 

of their foot ground collision would improve the measured speeds.  Finally, we asked if we can 

enhance the foot-ground collision of the subjects, will it make them faster?  It suggests that 

sprinting ability is a learned activity rather than a natural occurrence.    



 

 
 

6

Chapter 2 -- Methods 

Human Subjects 

Four women and four men ages 19-23 provided written, informed consent, in accordance 

with the guidelines of the University of Montana Institutional Review Board before participating 

in this study.  The subjects were recruited and participated voluntarily.  Measures of body weight 

were taken before and after the intervention.  Six of the subjects were collegiate athletes 

accustomed to short duration sprinting exercise.  The other two participants were recreational 

runners.  One collegiate male and one recreational male withdrew prior to the study completion, 

one due to a viral illness unrelated to the testing procedure and the other experienced soreness.  

Treadmill Protocol 

Subjects participated in a minimum of six sessions (Fig. 2).  Day one was a treadmill 

acclimation day. For all testing, subjects wore an upper-body harness to prevent injury in the 

event of a fall.  They then performed their individual warm-up.  On the second day, participants 

performed a speed incremented test to top speed, increasing in increments of 0.2 m s
-1

.  At each 

speed, subjects lowered themselves onto the treadmill by transferring their weight from the 

handrails while initiating the leg movements necessary to begin running on the moving treadmill 

belt.  A minimum of eight steps were needed at each speed interval with no backwards drift to 

count the trial as successful.  While the subjects ran on the treadmill the forces they applied to 

the running surface were measured using a high-speed instrumented treadmill (Bundle et al., 

2015).   

Days three through five consisted of a gait intervention which included five sprinting 

trials on the treadmill at 90% of the measured top speed.  The intervention also consisted of three 
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drills chosen to maximize ankle stiffness at touch down and rapid knee drive (Gary Winckler, 

pers. comm.).  They were collected and modified from the coaching styles of Gary Winckler and 

the USATF.  Each drill was performed 3 times over a distance of 22 meters each time.  The first 

drill was a double leg quick hop, drill two a skip with a pause, and drill three was a rapid single 

leg high knee.  After the interventions, participants performed the five treadmill sprints at 90% of 

top speed and received video feedback following sprints 1, 3, and 5.  Feedback consisted of 

verbal communication to the subjects to apply as much force as possible when sprinting and to 

drive the knee as high as possible while watching 1000Hz high speed video.  Day six was a post-

test to top speed.  Top speed was determined if the subjects could not physically maintain form 

while sprinting on the treadmill or there was considerable backwards drifting before the 8 steps 

were achieved.   

Gait kinetics 

Stance-average forces: The average vertical ground reaction force applied during the contact 

period was determined from the time during which the vertical force signal exceeded a threshold 

of 50 N.  Forces expressed as multiples of the body’s weight (xWb) were determined by dividing 

the force recorded during each trial by the weight of the subject recorded on a platform scale 

immediately before treadmill testing (Weyand et al., 2010).   

Contact times:  The times of foot-ground contacts were determined from the continuous periods 

during which the vertical treadmill reaction force exceeded 45 N. 

Aerial times:  Aerial times were determined from the time elapsing between the end of the one 

period of foot-ground contact and the beginning of the subsequent period. 
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Step times:  Step times were determined from the time taken to complete consecutive foot-

ground contact and aerial periods. 

Swing Times: Swing time was the time that a given foot was not in contact with the ground and 

was determined by subtracting the contact time from the total stride time. 

Stride times:  Stride time was defined as Cavagna and colleagues (1977) described as the time 

between consecutive footfalls of the same foot. 

Step length:  Step length, or the distance the belt traveled between consecutive periods of foot-

ground contact, was determined by dividing the treadmill speed by step frequency. 

Step frequency:  Step frequency, the number of steps taken per second, was determined from the 

inverse of step time. 

The interventions were performed over an in-ground force plate pit along the length of 22 meters 

in which the first 3 meters of the drill ground forces were recorded.  Pre- vs. post-intervention 

measures were analyzed using paired sample t-tests and study means.   

Gait kinematics 

Three-dimensional video was captured using two Fastec cameras at a rate of 1,000 frames 

per second.  One camera faced the lateral aspect of the body and a second camera faced to the 

back right half of the subject’s body.  A 3-dimensional calibration cube was used to digitize the 

62 points of interest using MATLAB per Hedrick (2008).  The images were re-calibrated using 

the calibration cube to calculate the DLT lens coefficients.  Joint axes of rotation of the hip, 

knee, ankle, forefoot, and hind-foot were identified by palpation and marked with reflective tape 
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to acquire position data from the video record.  Limb kinematics were taken from the right limb 

during the trials (Weyand et al., 2010). 
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Chapter 3 -- Results 

Gait kinetics 

Top Speed Performance:  Each of the 6 subjects attained faster top speeds during the post- 

versus pre-intervention testing. The average increase in speed was 0.57 [SD 0.14] m s
-1

, 

representing an average individual improvement of 6.7 [SD 1.3] % (Table 1 & Fig. 3).   

Stance-average forces:  At top speed the mean stance average vertical force, measured 

from 8 consecutive steps, did not differ between the pre- and post-intervention testing, and  was 

2.21 [SD 0.15] xWb during the pre-intervention testing compared to the post-test value of 2.23 

[SD 0.20] xWb.  The highest observed stance average vertical force was 2.46 xWb for subject #1, 

at a top speed of 9.0 m s
-1

.  The lowest observed stance average force was 1.88 xWb from subject 

#6, at a top speed of 7.2 m s
-1

 (Fig. 4).  

Contact times (Tc): The pre- vs post- measures of foot-ground contact durations were similar, 

and occurred in 0.111 [SD 0.008] s and 0.108 [SD 0.009] s, respectively.  The longest post-

intervention, top speed contact time was 0.121 s for subject #6, the briefest was observed from 

subject #5; 0.097 s at his top speed of 10.2 m s
-1 

(Table 2 & Fig. 4)).      

Aerial times (Taer): Following the intervention the subjects used flight, or aerial, times that 

were 5 ms briefer than those prior to the intervention, and were 0.136 [SD 0.014] s vs. 0.131 [SD 

0.013] s, respectively during the top speed tests.    The longest observed top speed aerial time 

was 0.146 s at a top speed of 9.0 m s
-1

; whereas, the briefest aerial time was 0.107 s at a top 

speed of 7.2 m s
-1

 (Table 2 & Fig. 4).      

Step times (Tstep): The step durations were statistically similar but were generally 7 ms 

briefer following the intervention, with pre- vs post step times of 0.246 [SD 0.010] s and 0.239 
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[SD 0.009] s, respectively.  The maximum observed step time at top speed was 0.250 s for 

Subject #1, and the minimum was 0.227 s for Subject #6
 
(Table 2).     

Swing times (Tswing): The duration necessary to replace the limb in readiness for the next foot 

contact, or the swing time, was 0.383 [SD 0.022] s compared to 0.371 [SD 0.021] s in the pre- vs. 

post-intervention, respectively.  This is a 12 millisecond reduction in the leg repositioning time.   

On an individual basis the maximum measured swing time from the post intervention testing was 

0.398 s from subject #1 and the minimum observed was 0.335 s from subject #6 (Table 2).      

Stride times (Tstride): Following the intervention the stride times were generally 15 milliseconds 

more brief and were 0.493 [SD 0.020] vs. 0.478 [SD 0.018] in the pre- and post-testing 

respectively.  The longest step time was 0.501 s from subject #1 and the briefest was 0.455 s 

measured from subject #6 at a top speed of 7.2 m s
-1 

(Table 2). These stride times correspond to 

stride frequencies of 2.03 [SD 0.08] Hz and 2.09 [SD 0.08] Hz at tops speed in the pre- vs post-

testing. 

Step length (Tstep): The step lengths, or the distance traveled by the body during the contact 

phase, were 5 cm longer following the intervention and were 0.92 [SD 0.07] m and 0.97 [SD 0.07] 

m, respectively for the pre- and post-intervention testing.  The greatest extent of center of mass 

travel was 1.09 m from subject #3 while the shortest steps were taken by subject #6 and were 

0.87 m. 

 

Gait kinematics 

We analyzed the joint kinematics (Fig. 6) to determine the velocity of the ankle in the instant 

before touchdown to determine whether the intervention resulted in the greater shank velocities 
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necessary to engage the elite force augmentation strategy of interest.  Following the intervention 

the vertical velocities of the ankle increased from 2.18 [SD 0.41] m s
-1

 to 2.34 [SD 0.34] m s
-1

 and 

the overall ankle velocity in the YZ-plane increased from 4.65 [SD 0.78] m s
-1

 to 4.99 [SD 1.09] 

m s
-1

 (Fig. 7). 
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Chapter 4 -- Discussion 

The purpose of this study was to determine whether it is possible to beneficially alter the 

gait dynamics of human runners.  Here, we used the recent discoveries of Clark and Weyand 

(2014) who have found that elite sprinters apply more vertical forces to the ground during the 

first half of foot-ground contact than non-elites.  Thus our gait intervention targeted the events 

occurring in the first half of the stance phase, here we found this phase to last 0.054 [SD 0.005] s.  

As an indication of how rapid this event is, the 0.054 s interval is only slightly longer than the 

minimum period of roughly 0.033 s needed for the fastest afferent signals to reach the spinal 

cord following the foot strike (Mense, 2010).  Thus virtually all of the adjustment in stance 

dynamics must occur in the absence of neural feedback and are likely determined prior to the 

foot ground contact.  After the gait intervention was complete, subjects had a combined average 

increase in top speed of 6.7[SD 1.3] %.  This is a considerable improvement for such a short 

intervention of time.  The brevity of the intervention suggests that the performance improvement 

was achieved in the absence of altered muscle physiology, because the typical length of time to 

achieve muscle adaptation is roughly 12 weeks when using resistance exercise (Raue et al., 

2012).  Moreover, because most of the subjects were accomplished sprint performers it is 

unlikely that the intervention elicited the motor control response that is typical of novice 

performers and accounts for their rapid strength gains following the introduction to a novel task 

(Sampson et al., 2012).  Thus, the performance improvements realized through this study are 

likely attributable to altered gait mechanics. 

The gait intervention consisted of 3 drills that aimed at maintaining dorsiflexion and 

generating a rapid and high knee drive in order to generate as much vertical force as possible.  

The improvements in speed ranged from 0.4 m s
-1 

to 0.7 m s
-1

, although virtually nothing is 
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known about how individual performers alter their gait in response to training programs, when 

considered between performers a 1 millisecond reduction in stance duration leads to 0.10 m s
-1 

improvement in sprint speed (Clark & Weyand, 2014).  If this rule of thumb is applied to our 0.6 

m s
-1

 improvement result, we would expect to observe a reduction in foot contact durations of 6 

milliseconds, twice as large as 3 millisecond reduction we observed. Further, the increased 

running speeds would be expected to require an increase in ground reaction forces applied, 

however the average ground reaction forces following the intervention were only increased by 

about 0.03 xWb (Fig. 5). 

Our results are consistent with the focus on the first half of stance as the portion of the 

gait cycle in which elite sprinters apply greater vertical forces while the second half of foot-

ground contact is similar between runners of different experience levels.  We did observe a slight 

increase of about 1.2 xWb (P=0.5048) in vertical forces applied to the ground in the first half of 

foot-ground contact post-intervention (Fig. 5). Although the stance average forces comparing the 

first half of stance with the second half of stance pre- to post-intervention were not significant 

with a P=0.5048 for the first half of stance and a P=0.8128 comparing the second half of stance. 

This is likely due to the considerable variance present in the capabilities of the subjects rather 

than the lack of effect.  A recognition, likely responsible for the many comparisons in this study, 

a priori level of statistical significance was not achieved despite a considerable percentage 

change following the intervention.  From our data it is not possible to determine whether the 

improved performance may be attributed to the intervention drills, or the 3D gait kinematic 

subject feedback, or a combination of these methods.   

Nonetheless, following the intervention subjects reduced their aerial phases by 5 

milliseconds and similarly reduced their stride durations 15 milliseconds.  The greater emphasis 
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on leg position during swing allowed the subjects to collide with the ground with ankle velocities 

that were 0.34 m s
-1

 more rapid, an improvement of 7.3%.  A response that is necessary to 

achieve the greater forces in the instant following impact that is common to elite sprinters.  

Finally we note that the runners increased their step lengths by roughly 5 cm, although this 

measure doesn’t explain how the performance was achieved, Weyand and Bundle (2009) have 

previously suggested that step length increases translate to 1.0 m s
-1

 of tops speed for every 10 

cm of increase, a ratio that is supported by these results. 

Perspectives and Significances 

 Future work includes a control group ideally with a homogenous subject pool.  Do these 

results transfer to other mediums?  Speed and force work should be done over ground.   

Concluding Remarks 

After conducting this study, it is concluded that it is possible to beneficially alter gait 

despite predictions and results that have been previously published (McMahon et al., 1987). The 

most effective part of this intervention study was the video feedback that allowed subjects to see 

their gait and then instantaneously try to alter these movements in accordance with the verbal 

feedback during the very next bout of treadmill sprinting.  This warrants further study with a 

control group, possibly with homogeneous subjects.  This would reduce the performance 

difference seen with the current study and allow for significant comparisons in the pre- vs post-

tests.  
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Table 1 

 

Table 1: Pre- and post-test top speeds (m s
-1

) of the 6 subjects with percent change.  
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Table 2 

 Pre- Post- 

Tc 0.111 

 

0.108 

Taer 0.136 

 

0.131 

 

Tstep 0.246 

 

0.239 

 

Tswing 0.383 

 

0.371 

 

Tstride 0.493 

 

0.478 

 

Step length 0.92 

 

0.97 

 

Table 2: Study means of the variables compared pre- vs post-intervention in s.  
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Figure Captions 

Figure 1: The phases of the running gait over time (s).  Stance phase is when one leg is in 

contact with the ground producing vertical and horizontal forces (N).  Aerial phase is when the 

body is in flight and no force is being applied.  Leg swing is the leg cycle moving through two 

aerial phases and a stance phase of the contralateral leg.  Figure 2: Flow chart of experimental 

understanding; Day 1 pre-test to top speed, Days 3, 4, 5 gait intervention and treadmill sprints, 

and Day 6 post-test to top speed.  Figure 3: Change in top speeds (m s
-
1) comparing the pre- vs 

post-intervention.  Figure 4: Data from subject #1 displaying contact time (s), aerial time (s), 

and reaction forces (xWb).  As speed increased, contact times decreased slightly (1 millisecond), 

aerial times stayed the same, and ground reaction forces increased (1.2 xWb).  Figure 5:

 Average vertical forces (xWb) are greater in the first half of foot-ground contact 

compared to the second half.  Post-intervention, average vertical forces in the first half of foot-

ground contact increased (2.23 xWb).  Figure 5A is a waveform of the average of 8 steps.  Figure 

6: Axis joint (mm) positions pre- (black dotted line) vs post- (red line) intervention.  

Subjects were able to better reposition the limbs for a more effective foot-ground contact.  

Figure 7: Vertical ankle velocity (m s
-1

) just before touchdown pre- vs post- intervention.  

Overall change in velocity of the YZ plane of 0.34 m s
-1
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 
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