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CHAPTER I 

INTRODUCTION 

While behavioral audiological techniques such as visual reinforced audiometry and play 

audiometry have improved the assessment of auditory function of very young infants or difficult to 

test patients, these techniques are not successful with all patients. As a result investigators have 

attempted to develop physiological tests of auditory function, which has fxused on parameters 

such as heart rate, respiration, pyschogalvonic skin responses (PGSR), acoustic reflex, and 

immittance measures (Worthington and Peters, 1984). One relatively recent physiological 

technique, the auditory brainstem response (ABR), has proven to be an effective clinical tool for 

testing these difficult to test patients (Jacobson and Hyde, 1985). 

Jewett and Williston (1971) described the auditory brainstem response (ABR) as a series 

of seven waves occurring within 10 milliseconds (ms) following the onset of a click stimulus, and 

identified many nonpathological factors that influence the response. Over the past fourteen years, 

numerous investigators have studied the ABR and elaborated on variables which have been found to 

influence the response. These factors include methodological parameters (recording mode, and 

electrode placement), stimulus parameters (the intensity, polarity, rate, duration, and type of 

stimulus), and subject variables (age, sex, body temperature, auditory status, and effects of 

certain chemicals). According to Stxkard, Stockard, Westmoerland and Corfits (1979), most of 

these studies have assumed that "central" auditory conduction time is independent of these 

influential factors. One reason for not challenging this assumption much earlier was, in part, due 

to the "relatively close" inter laboratory agreement of mean Interpeak latencies (IPLs) obtained 
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from normal control groups. Many critical variables (i.e. stimulus intensity and rate) impacting 

the ABR data have been well documented (Fria, 1980; Hall, 1984; Stockard, Stockardand 

Sharbrough, 1978). However, other variables as well as the interation between certain 

variables has been incompletely studied (i.e. stimulus polarity and recording mode). 

Although many differences exist in the reviewed studies, several general trends are 

apparent. Specifically, rarefaction clicks resulted in earlier latencies for waves I through IV and 

clearer separation of waves IV and V; however, there were no statistically significant alterations 

in IPLs. Using the contralateral recording mode, compared to the ipsilateral recording mode, 

resulted in a strongly reduced or missing wave I, shorter latency for wave 111, and a longer latency 

for wave V; thus causing an increased 111-V IPL time. Since both stimulus polarity and recording 

mode have been found to affect the ABR separately, it is important to evaluate and know their 

interaction prior to clinically using comparisons between ipsilateral and contralateral data. 

The primary purpose of the present study was to investigate the interaction between 

ipsilateral and contralateral recording mode and stimulus polarity within a group of normal 

hearing female subjects. Specifically, the study was designed to clarify this interaction on 

absolute latencies of waves 1, 111, and V. Further attention was directed toward revealing any 

effects on the interpeak latency between waves lll-V. 



CHAPTER II 

REVIEW OF THE LITERATURE 

AUDITORY BRAINSTEM RESPONSE: 

Spontaneous and random bioelectric activity is generated by the central nervous system 

(CNS) even in the absence of sensory stimulation. Such activity has long been recorded from the 

surface of the scalp through the placement of electrodes. The subsequently recorded 

electroencephalogram (EE0) is a standard CNS evaluation for a variety of clinical questions. It Is 

also possible to extract bioelectrical events which are related to sensory stimulation from the 

ongoing EEG activity. 

Auditory evoked potentials (AEPs) have been recorded from many sites in and around the ear 

or scalp. AEPs arise from many levels of the auditory system. According to Hyde and Jacobson 

(1985), AEP recordings were first completed by Davis in 1939. Since that time research has 

focused on the problem of separating the AEPs from ongoing background EEG activity. Currently, 

the most successful method to extract AEPs from the random EEG pattern involves the principle of 

algebraic summation (Jacobson and Hyde, 1985). This summation allows for the enhancement of 

the AEP (the signal) relative to the ongoing EEG (noise). Once researchers could make this 

separation of the AEPs from the EEG was completed, it became clear that AEPs had wave 

components which could be accurately described and measured. 

Several different sets of waves have been and continue to be Investigated. Early researchers 

concentrated their attention on the so called "slow" or "late" evoked potentials (latency of 

50-300 milliseconds). Research has also been directed toward the middle latency responses 

(15-50 milliseconds). The most recent research and the area receiving the most clinical 
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attention has fxused upon the auditory brainstem response (Worthington and Peters, 1984, Hall, 

1984). These "early" AEPs occur within the first 10 milliseconds following stimulus onset. 

They are believed to originate from the cochlear nerve and ascending auditory pathways through 

the brainstem. 

According to Jacobson and Hyde (1985), the auditory brainstem response (ABR) W8S first 

recorded by Sohmer and Feinmesser in 1967, while Jewett and Williston in 1971 were credited 

as the first investigators to definitively describe the ABR. They described the occurence of seven 

waves believed to be an auditory response recorded to click stimuli via far-field techniques. The 

waves were labeled with Roman numerals, I through VII (Jewett and Williston, 1971). 

NEUROANATOMY: 

After Jewett and Williston (1971) introduced the labeling of ABR components, 

investigators often mede simple associations between the wave components end successive neurel 

origins within the auditory system. Buchwald and Huang (1975) purposed the following scheme 

of ABR wave component origins: wave I - the auditory aspect of the VII Ith cranial nerve; wave 11 -

cochlear nuclei; wave III - superior olivary complex, wave IV - leterel lemniscus; and wave V -

inferior colliculus. Wave VI and VII are believed to arise from the medial geniculate body and the 

thalamo-cortical areas, respectively. 

Recent evidence indicates that specific generator sites, especially for wave components III, 

IV, V, VI and VII, are not so clearly defined (Moller and Janetta, 1985). Hall (1984) discussed 

four factors that contribute to the confusion of wave origin and laterality. First, 

volume-conducted evoked potentials are not suited for establishing the locus of neural generators. 

Second , the brainstem wave components III through V probabaly arise from multiple concurrently 

active neural sources and not from successive activation of pathways and nuclei, a point well taken 
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when one considers the increasing complexity of the ascending auditory system. Third, most 

anatomical studies are completed on animals other th8n humans. Such data cannot be easily 

generalized to humans. Finally, within single animal species, there are descrepencies in the 

determination of ABR generator sites from the pattern of ABR abnormalities in studies analyzing 

results from defined lesions in the auditory pathways. Research is still needed to adequately 

clarify the sources of the ABR waves. 

NORMAL RESPONSE PARAMETERS FROM HUMANS: 

Basic data obtained from the ABR consist of measures of the morphology of the waveform as 

well as latency and amplitude values from and between various wave components, particularly in 

relation to waves 1,111 and V (Glattke, 1983, Rowe, 1978). These three waves have been found to 

be the most reliable for both experimental and clinical purposes. Of these, wave V is the most 

robust and remains rather easily identifiable at stimulus levels at or near threshold. The earlier 

waves become more difficult to identify at lower stimulus intensity levels and are more 

susceptible to internal background noise, particularly in the case of wave I. 

The latency of an ABR component refers to the time interval between the onset of the acoustic 

stimulus and positive-voltage peak of the component. Latency measures have typically been 

accomplished either by determining the interval from stimulus onset to the wave component 

shoulder immediately before the negative going change. There is no standard or preferred method 

of calculating wave latency (Hall, 1984). Wave latency is highly reliable, however, with little 

intrasubject and intersubject varability (Davis, 1976; Thornton, 1975; Hall, 1984). 

Therefore, even though nonpathologic variables may influence the ABR, the normal ranges for the 

latencies of the major components can be easily established. These ranges vary with the 

particular measurement methods employed, but exhibit relativel "small" variability in measures 



within a given laboratory (approxmately +0.20 ms) (Hall, 1984). 
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Response Morphology 

The response morphology of the auditory brainstem response is a subjective parameter 

referring to the visual appearence of the waveform. By conventions positive waves are typically 

displayed as upward deflections, while negative waves are diplayed as downward deflections. As 

noted, the most prominent and consistently observable wave of the human ABR in response to click 

stimuli is wave V (Fria, 1980; Picton and Fitzgerald, 1979). The morphology of waves II and III 

varies between horizontal and vertical electrode montages; waves III, IV and V are to some degree 

variable between individuals, with wave III sometimes being double-peaked, and waves IV and V 

"fused" together (Stockard, Stockard and Sharbrough, 1978), forming the IV-V complex (Fria, 

1980; Chiappa and Norwood, 1977). 

Although the morphology of the response varies between subjects and with manipulation of 
• 

the stimulus, typically, the normal human ABR to high intensity click stimuli (60-80 dBnHL) 

reveals clearly defined waves I through V; however, waves 11 and IV tend to be more poorly defined 

relative to waves 1, 111 and V. 

Response Latency: 

The response latency of the auditory brainstem response is the temporal relationship 

between any component of the response (Fria, 1980). Absolute latency strictly conforms to this 

definition, while interpeak latency (IPL) is defined 8s the temporal difference between two 

component of the waveforms. Both of these measures are specified in milliseconds (ms). The 

entire ABR occurs within 10 ms following onset of acoustic stimulation of high intensity stimuli. 

A large number of studies have investigated the latencies of this response. Fria (1980) and 
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Glattke (1983) have compared these studies and arrived at a similar conclusion: in spite of 

differences in stimulus rates and recording techniques, the latency values are quite similar across 

these studies and indicate the relationship that as stimulus intensity increases the response 

latency decreases. 

Interpeak latency values have been reported in various combinations. Clinically, the 

tendency is to focus on the l-lll, lll-V and l-V IPLs (Fria, 1980; Glattke, 1983 ; Hall, 1984). 

IPL times are believed to represent the time required to travel between various way stations 

through the peripheral brainstem pathway. The l-V IPL Is generally referred to as the brainstem 

transmission time. Typically the l-lll and lll-V intervals are approximately 2 ms while the l-V 

IPL value is around 4 ms. 

Response Amplitude 

The response amplitude of the auditory brainstem response is defined as the height of a given 

wave component (Fria, 1980). Absolute amplitude measurements are computed from the peak of 

the wave to the following trough (assuming that vertex positive waves are displayed in an upward 

deflection) or from the peak of a wave to the baseline. Relative amplitude refers to the absolute 

amplitude of an ABR component W8ve expressed in relation to the absolute amplitude of another 

wave component within that ABR. Both absolute and relative amplitudes are measured in 

microvolts. Absolute amplitudes tend to be highly variable within and between subjects; 

therefore, are not generally recommended for use in clinical interpretations (Stockard, et al., 

1979; Stockard etal., 1978; Starr and Achor, 1975). Relative amplitude measures have been 

found to be more consistent both within and between subjects, and appear to be better indices for 

com paring amplitude phenomena (Stockard etal., 1978, Starr and Achor, 1975). 
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NONPATHOLOGICAL FACTORS AFFECTING THE ABR: 

1. Subject Characteristics 

Subject charateristics such as age, sex, bod/ temperature and the use of certain drugs have 

been observed to affect the auditory brainstem response. Generally, the mental state of a patient 

has no effect on the response, but will influence the success in recording the response. Normal 

latency and amplitude values can be reliably recorded throughout natural sleep, and sleep 

disorders (i.e. central sleep apnea), while other conditions of mental state may result in abnormal 

ABRs (Hall, 1984; Stockard, 1980). These apparent effects vary and require further study. 

Body temperature and ABR latency are reportedly inversely related in as much as 

systematic increases in absolute latency and IPL are noted as the body temperature decreases 

(Stockard et al., 1978). It is suggested that these changes in the body temperature affect the pre-

and post-synaptic activity and possibly the receptor activity involved in the ABR. 

The effects of gender have also been well documented as affecting the human ABR (Stockard et 

al., 1978; Hall, 1984). Males typically exhibit longer latencies and smaller amplitudes than 

females. These phenomena appear to be greatest for wave V and, as a consequence result, in 

increased IPLs for males relative to females. Although, the reasons for the differences remain 

unclear, some investigators have suggested that head size differences, hormonal status, and body 

temperature may account for many of these differences across gender (Hall, 1984). 

The age of the subject is yet another factor which influences the ABR. The effects are most 

prevelant from birth to 18-24 months of age and after fifty years of age (Hecox and Galambos, 

1974;Salamy, 1984; Schulman-Galambos and Galambos, 1975; Stxkard etal., 1978; Otto and 

McCandless, 1982). Typically, healthy full-term infants demonstrate a progressive shortening of 

waves 1, 111 and V latencies with age. This decrease in latency has been attributed to myelinization 

of the auditory pathway which accompanies development (Salamy, 1984). 
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Between approximately 18 months and fifty years of age, the ABR latency characteristics 

appear to be relatively stable. Then beginning somewhere during the fifth decade of life, there is a 

gradual increase in latency and concurrent decreases in amplitude of the ABR. Furthermore, these 

changes appear to be independent of any sensorineural hearing loss associated with age (Hall, 

1984). The exact nature of these "older" age related ABR changes is unclear at this time. 

Finally anesthetic agents and CNS depressants appear to have little, if any .influence on the 

ABR (Fria, 1980). Conversely, the consumption of alcohol in chronic users seems to alter 

latency; albeit, there is no current conclusive associations between 8lcohol consumption and ABR 

measurements. In addition, toulene sniffers also demonstrate "severe" ABR abnormalities (Hall, 

1984). 

2. Stimulus Parameters 

Various stimulus parameters such as frequency composition, repetition rate, intensity, 

presentation mode, envelope (duration and rise-fall time), polarity, and recording sites may 

influence the ABR. The most effective and widely used stimulus is an acoustic transient or click 

stimulus (Jacobson and Hyde, 1985; Eggermont, 1982), which is generated by a square wave 

pulse or the haversine transformation of a high frequency sinusoid deliverd to an earphone 

transducer. The click essentially has an instaneous onset and brief (1 ms) duration. Because of 

these qualities, it is well-suited for generating the synchronous neuronal firing or onset 

response, which underlies the generation of the ABR (Hall, 1984). As stimulus onset time is 

increased, the ABR latency values increase and amplitude values decrease, which result in a 

deterioration of the waveform morphology. Stimulus fall time has little if any influence on the 

response since the ABR is primarily an onset response. 

A click transduced by standard earphonesyeiIds a wide range of spectral energy. The 1-4 
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kHz region is the most important region for generating a response in the wide range of frequencies 

(Hall, 1984). As lower frequency stimuli require more travel time along the basilar membrane, 

they are typically less effective in stimulating a large numbers of auditory neurons 

synchronously. Consequently, they contribute little, if at all, to the generation of the ABR. 

Tone pips have also been used in ABR testing. Tone pips are filtered clicks produced by 

delivering a rectangular electric pulse (or single sine wave) to a narrow-band pass filter 

adjusted to pass the desired frequency range (Fria, 1980). Although they offer more frequency 

specific information than do the clicks, they yield less distinct waveforms, especially the lower 

frequency tone pips, making the interpretation of the ABR difficult. 

When Jewett and Williston (1971) described the ABR, they also noted changes in the 

response as a function of stimulus repetition rate. In general, an increase in repetition rate 

resulted in reduced wave definition and caused an increase in the absolute latencies of all ABR 

components (Jewett and Williston, 1971; Stockard et al., 1978; Chiappa, Gladstone and Young, 

1979). Although wave V persists with a prolonged latency for rates above 30 clicks/sec., there 

are some questis as to whether the other ABR components persist when rates greater than 30 

clicks/sec. are utilized. It has been suggested that the effect of stimulus rate may be due to a 

central nervous system (CNS) synaptic adaptation mechanism (Hall, 1984). The basis for this 

effect is unclear, however. Clearly, examiners need to individually determine the stimulus 

presentation rate which would be most effective and efficient for each particular case. When one 

is contemplating routine measurements, a stimulus presentation rate of 21.1 clicks/sec. should 

produce, in normal subjects, well defined responses in a minimum of test time (Glattke, 1983) 

ABR measurements are also affected by the mode of presentation (binaural verses 

monaural). There is general agreement that the amplitude of response to binaural stimulation 

exceeds that of the algebraic sum of two monaural responses (Ainslie and Boston, 1980). Some 
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researchers contend that by subtracting the sum of the two monaural conditions from the binaural 

response yeilds a "difference wave" that consists of a main component (vertex-negative) and at a 

latency of approximately 6 ms (Ansile and Boston, 1980). The nature of the difference wave is 

unknown. It has been suggested that such factors as binaural interaction at the level of the 

superior olivary complex or higher centers may be the basis (Hall, 1984; Ansile and Boston, 

1980). 

In addition, different earphones will vary resonance characteristics of the spctrum of the 

stimulus resulting In acoustic signals with significantly different spectral compositions. By 

paying closer attention to the transducers used in various clinical and experimental applications 

the audiologist may obtain additional information with regard to differences in the measurement 

values reported in the literature. 

The polarity or phase of stimulus onset is another stimulus parameter that may influence 

the ABR. This variable will be discussed in considerably more detail in a later section. 

3. Recording Parameters 

In addition to stimulus parameters, variations in recording techniques such as electrode 

location, filtering, response reference points and recording mode (ipsilateral versus 

contralateral) can also influence the auditory brainstem response. Typically, three electrodes 

are used in the following montage: 1) an active electrode placed on the vertex or the forehead 

mid-line at the hairline; 2) a reference electrode placed on the mastoid or earlobe of the test ear; 

3) a ground or common electrode placed on the mastoid or earlobe of the nontest ear (Hall, 1984; 

Olatkke, 1983; Fria, 1980). Optimal recording sites vary with the ABR wave components under 

study. Stxkard et al. (1978) reported an increase in the amplitude of wave I when the responses 

were referenced to the ear lobe rather than the mastoid. They also reported decreased amplitudes 



for waves I and 111, a more prominent wave 11, a clearer separation between waves IV and V, and an 

increased latency for wave V, when using contralateral reference recordings. The implications of 

these findings will be discussed in a subsequent section. 

Various high-pass and low-pass filters are used in ABR testing to eliminate low and high 

frequency noise prior to computer averaging. A standard amplifier bandpass of 150-3000 Hz is 

usually recommended for completing clinical measurements (Hall, 1984; Glattke, 1983; 

Jacobson and Hyde, 1985). Wider bandpass settings allow unwanted neuromuscular activity to be 

included in the ABR recordings. In addition, generally lowering the high frequency limit yeilds 

rounded averaged response peaks and shorter ABR latencies (Glattke, 1983), while lowering the 

low frequency limit to 10-40 Hz allows for an enhancement of wave V. 

In summary, there are several non-pathological factors involving subjects, equipment, 

stimulus characteristics and recording methodology which can influence the measurement of the 

auditory brainstem response. These differences reveal the importance for each facility to generate 

a protocol suited to its needs and to obtain its own normative data prior to making clinical 

judgements about "abnormal" ABRs. Two parameters, stimulus polarity and recording mode, are 

of central concern to this investigator in obtaining normative data. The literature in both areas is 

controversial and warrents further investigation. 

STIMULUS POLARITY: 

Stimulus polarity can be discussed In terms of the electrical drive to the headphone as well 

as the acoustical pressure profile at the tympanic membrane (phase onset). For all practical 

purposes, if the initial stimulus segment yeilds positive pressure, causing inward movement of 

the tympanic membrane, it is referred to as a condensation stimulus or positive polarity. If, on 

the other hand, the initial stimulus segment yeilds negative pressure, thus causing outward 
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movement of the tympanic membrane, it is referred to as a rarefaction stimulus or negative 

polarity. When conducting ABR testing, successive stimuli may be presented with constant (either 

positive or negative) or alternating initial polarity. 

According to Jacabson and Hyde (1985), Stockard et al., (1978), and Coats and Martin 

(1977), a stimulus series that is alternating in polarity between successive stimuli tends to 

reduce stimulus artifact arising from electric field coupling between the transducer and recording 

electrodes. However, condensation and rarefaction stimuli may cause slightly different patterns of 

excitation on the organ of Corti. This alternating polarity may result in observable effects on the 

transient ABRs (Jacobson and Hyde, 1985; Stockard etal., 1978). Another issue relative to 

using alternating click stimuli is that only one direction of movement of the basilar membrane is 

believed to excite the primary auditory neurons (Jacobson and Hyde, 1985). This movement will 

occur at different times for condensation and rarefaction stimuli, causing the components of the 

ABR to have slightly different latencies. Subsequently there may be problems encountered which 

are not well understood when the responses to alternating polarity are averaged together. Finally, 

polarity alternation may reduce the ABR components that exhibit waveform polarity whch is 

determined by the stimulus cochlear microphonic and frequency following response. Although the 

alternation of stimulus polarity allows for reduction of stimulus artifact, it may exhibit 

undesirable side effects such as less defined wave components in the recorded ABR. 

Several investigators (Borg and Lofqvist, 1982; Rosenhamer et al., 1978; Emerson, 

Brooks, Parker and Chippa, 1982; Hughes, Fino and Gagnoon, 1981; and Stockard etal., 1979) 

have compared ABRs evoked by either condensation or rarefaction clicks. While Rosenhamer et al. 

(1978) and Coats and Martin (1977) reported no significant (p > 0.05) latency or amplitude 

differences in ABRs from normals when polarity was reversed, others Stockard et al. (1979); 

Emerson et al., (1982); and Hughes et al., (1981) have reported significant individual variation 
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within groups as well as between groups. Stockard et al. (1979) reported that significant 

condensation-rarefaction differences were obtained in relation to peak latencies on a group of 64 

subjects (30 males and 34 females) between the ages of 18-75 years who were described as 

neurologically and audiometrically normal. The stud/ was completed using broadband click stimuli 

at intensity levels ranging from 35-75 dBnHL with rate varied between 10-80 clicks/sec. The 

study indicated that wave I demonstrated the most sensitivity to the phase of the click stimulus, 

while wave V was the least sensitive to phase characteristics. Rarefaction clicks elicited an 

earlier wave I in 61 % of the subjects. In 17* of the subjects, condensation clicks produced the 

earlier wave I, and in 225? of the subjects there was no observable condensation-rarefaction 

difference in the latencies of wave I. They reported no statistically significant latency changes for 

wave V. 

Stockard et al. (1979) also reported finding within subject variability for amplitude, 

waveform morphology and IPLs. Specifically, when the absolute changes in IPLs within 

individuals were investigated the reversal of stimulus phase resulted in statistically significant 

alterations of the l-lll IPLs for approximately one-third of these normal adults. In addition, they 

reported that rarefaction clicks often produced a broad double-peaked or unrecordable wave I 

when using a 50 dB SL clicks. In addition, each subject who demonstrated this response also 

revealed a similar response in wave III; however, wave V appeared to be unaffected. Finally, 

these authors investigated the rate-phase interactions. The results revealed significant 

(p<0.001) IPL shifts due to rate changes and these affectswere highly dependent on the stimulus 

phase with greater shifts observed in response to rarefaction clicks rather than to condensation 

clicks (Stockard et al., 1979). 

Hughes et al. (1981) examined a single ear from 17 subjects (10 female, 7 male) between 

the ages of 20-50 years. The subjects reportedly had normal hearing and presented no 
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neurological complaints. All ABR testing was completed using click stimuli at a rate of 10 

clicks/sec. Their findings indicated that three components (In, 11 In and IV, where "n" indicates 

that the respective wave component was mesured as a negative deflection) had significantly longer 

latencies (0.1, 0.12, and 0.16 ms, respectively) at the p < 0.05 confidence level when 

rarefaction clicks were used. 

Emerson et al. (1982) and Borg and Loqvist (1982) concentrated their research on the 

effects of click polarity on the wave V component in the ABR. Emerson and his colleagues 

examined forty-five normal adults (17-54 years of age, 25 females, 20 males) using a 

presentation rate of 10 clicks/sec. and an intensity level of 70-80 dB SL. The contralateral ear 

was masked using white noise at 20-30 dB below the intensity of the click stimuli. These 

investigators reported small but statistically significant latency changes in waves I through V. 

Rarefaction clicks produced shorter wave 1, 111 and V latencies compared to condensation clicks. 

However, these earlier latencies did not result insignificant l-lll and l-V IPL differences. 

Finally, the condensation clicks tended to fuse waves IV and V, while the rarefaction clicks 

resulted in two distinct peaks. 

Borg and Loqvist (1982) focused their stud/ on the variability of absolute latency 

differences for wave V in response to click polarity. Utilizing a 75 dBnHL stimulus, seven 

otologically and nuerologically normal adults (sex unreported) were tested. The results revealed 

that the varability of the condensation-rarefaction difference covers a 0.5 ms range. The latency 

difference of wave V ranged from -0.35 to +0.41 (positive values indicate longer condensation 

latencies) across a 95$ confidence level. Roughly 701 the subjects demonstrated shorter 

latencies for rarefaction click stimulus when compared to the condensation click stimulus( Borg 

and Loqvist, 1982). 

In summary the majority of the research indicates a general trend for rarefaction clicks to 
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elicit earlier wave I-IV components; however, the phase of the stimulus does not appear to 

influence wave V. Still, rarefaction clicks separate waves IV and V into two distinct peaks. There 

does not appear to be any statistically significant alterations on IPL intervals. Although no 

statistically significant IPL alterations appear evident, investigators have noted differences, 

which may be attributed to experimental design. All the reviewed studies combined data from both 

genders, which may affect the ABR outcome since differences between the sexes has been 

documented. Additional confounding factors related to methodology exist in that no two studies 

appeared to use the same electrode montage. Furthermore stimulus intensity differed, and 

stimulus rate was varied with the majority of the studies utilizing 10 clicks/sec. Finally, Borg 

and Loqvist (1982) and Hughes et al. (1981) were the only investigators to report stimulus 

polarity from the earphones. 

Although the reviewed studies differed in methodology, sample size, and combined data from 

both genders, each one of these studies reported distinct differences in the parameters of the 

normal adult human ABR as a function of stimulus polarity. Stockard et al. (1979) and Hughes et 

al. (1981) reported a high degree of intersubject variability and concluded that although mean 

values for various wave components and IPLs tend to be similar amoung various laboratories, the 

ranges and limits of normality are the most important considerations in diagnostic applications. 

Clearly these studies provide an arguement stressing the importance of signal polarity of 

the click stimulus during the determination of ABR normative data, and its subsequent application 

to the assessment of clinical populations. Unfortunately, considerable differences exist across 

these published studies. Additional research into the effects of stimulus polarity on the auditory 

brainstem response is warrented. 
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IPSILATERAL-CONTRALATERAL RECORDING MODE: 

Data collection during auditory brainstem response testing is generally completed utilizing 

an ipsilateral recording mode. A small number of investigators have examined the clinical utility 

of contralateral recordings. In one study, Rosenhamer and Holmkvist (1982) obtained ABRs from 

both ears of 16 normal hearing females using unfiltered alternating clicks (20/sec) at 90 dBnHL, 

while another study, Hughes et al. (1981) examined a single ear of 17 subjects( 7 males, 10 

females) using filtered (280-2800 Hz) clicks at a rate of 10/sec., at 80dB SPL. Both studies 

observed the following events during contralteral recording: 

1. wave I appeared in no more than one-third of the subjects; 

2. wave 111 latency was shortened (p<0.001); and 

3. longer lll-V IPL intervals (p<0.001). 

Prasher and Gibson (1980b) evaluated the results from ipsilateral and contralateral recordings 

in 23 normal hearing adults (15 females; 8 males) using 100 microseconds unfiltered 

alternating click stimuli (10/sec) at 90 dB SL. Their results were in agreement with * 1 and 3 

above. In addition, they reported statistically significant (p<0.01) increased wave V latencies 

using a contralateral recording mode. This was quite different from the Rosenhamer and 

Holmkvist (1982) study which observed only a "tendency for wave V to lag and be smaller in 

amplitude" for contralateral ABRs. A possible explanation of this difference may be found in that 

only Prasher and Gibson reported using an electromagnetically controlled environment. 

In summary, while all three studies varied in methodology, each of these investigations 

demonstrated differences between ipsilateral and contralateral recordings. The general trend for 

contralateral recording appeared to be a missing or diminished wave I; an earlier wave 111, and a 

prolonged wave V. Clearly, some of the specific differences may be explained by methodologic 

factors. Rosenhammer and Holmkvist (1982) and Prasher and Gibson (1980b) used alternating 
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polarity, which has been hypothesized to alter patterns of excitation and, thus, possibly cause 

latency shifts of the ABR (Jacobson and Hyde, 1985). In addition, electrode montages as well as 

stimulus intensity and stimulus rate were varied across these studies. Finally, the recorded data 

from both males and females were combined in these studies and, as a result, they may not account 

for any gender differences in the response. 

CLINICAL APPLICATION 

The audttory brainstem response lends itself to a variety of clinical applications for both 

audiological and neurological questions. Until recently, the clinical investigation of any ABR 

abnormality has focused on the correlation between that abnormality and site-of- lesion detection. 

The present focus of research is to determine how the response may be differentially altered by 

specific pathophysiologic processes rather than a site-of-lesion identification. The use of the ABR 

for these new clinical approaches requires two phases: 1) a distinction must be made between 

normal and abnormal results while considering technical and subject parameters and 2) the 

results must be interpreted in conjunction with other related information (i.e. behavioral 

audiometric findings, case history, physical abnormalities, etc.) in order to support a diagnosis of 

a specific lesion, hearing impairment or disease process. 

The literature does suggest very different ABR results for various hearing impairments and 

disease processes. Still several nonpathological factors have not been held constant nor controlled 

within or between studies, and therefore, specific criteria as to what factors influence abnormal 

responses are not consistent or complete. It is not the purpose of this paper to discuss the varying 

results of pathological factors and the interested reader is referred to Hall (1984), Fria (1980), 

Glattke (1983) and Katz (1985) for more detailed discussions as to specific ABR characteristics 

or changes as related to auditory and neurologic impairments. Table 2.10 provides a brief 
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Table 2.10: Possible outcomes of ipsilateral ABR measurements.* 

Results Conclusions/Additonal Questions 

Normal Threshold and 
latency characteristics 

Normal high-frequency hearing 
Sensitivity 

Elevated threshold* normal 
I-V interval, prolonged 
absolute wave V latency 

Probable high-frequency loss 
with no retrocochlear 
component 

Elevated threshold, prolonged 
I-V IPL time 

Abnormal waveform 

Probable retrocochlear component 
Need to determine if ABR is near 

threshold 

No wave I, poor definition 
of wave V 

Conductive loss, severe sensori­
neural loss or a retrocochlear 
disorder 

Need to rule out a dead ear 

*Glattke, 1983. 
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summary of some possible outcomes of ipsilateral ABR measurements (Glattke, 1983). One of 

the main purposes of the ABR testing has been to differentiate cochlear from retrochlear auditory 

dysfunction. However, a review of Table 2.10 indicates that the sensitivity of the response for 

this differentiation is inconsistent and incomplete. Hall (1984) as well as Keith and Jacobson 

(1985) have suggested that condensation and rarefaction stimuli should be utilized in both 

ipsilateral and contralateral recordings during clinical applications.. 

A number of preliminary studies have revealed that polarity may in fact affect the 

Ipsilaterally recorded ABR in clinical populations. Borg and Loqvlst (1982) discussed two 

distinctive features in the ipsilateral ABR relative to retrocochlear pathology: 1) the wave V 

latency range was above 10 ms, which is not seen in subjects with normal auditory sensitivity or 

cochlear losses; and 2) wave V latency is not dependent upon polarity. Hall (1984) reported that 

one of the most powerful ipsilateral ABR characteristics for retrocochlear hearing loss is the 

absence of later wave components (111 to V). Emerson et al. (1979) reported that a wave V 

response while using rarefaction stimulation could not be delineated in 17 of 20 subjects with 

confirmed retrocochlear pathology. In these patients demonstrating a wave V response, the IPLs 

were prolonged in the ear contralateral to the side of the lesion (Hall, 1984; Emerson et al., 

1979). In Hall's review of various ABR studies (Hall, 1984), he estimated that the ABR 

sensitivity in tumor identification to be approximately 90-95$. This is consistent with Turner's 

(1984) estimate as he obtained a 9558 hit rate for ABR test results identifying retrocochlear 

pathology. They also reported a false-positive error rate at 7 and 958, respectively. In 

contrast, Olsen, Noffisigner and Kurdziel (1975) demonstrated that acoustic reflex decay testing 

resulted in a 41% hit rate and a 17.2 % false-positive rate. This is also supported by Turner 

(1984) who reviewed acoustic reflex decay testing and obtained a 5358 hit rate and a&% false 

positive rate for retrocochlear pathology. 
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Investigators have also used ABR procedures with patients demonstrating specific 

neurological disorders such as Down's Syndrome, autism and multiple sclerosis (MS). The 

studies have indicated that these disorders yeild abnormal ABR recordings, as compared to normals 

(Rosenblum, Arick, Krug,,Stubbs, Young and Pelson, 1980; Stein and Kraus, 1985; Tanguagand 

Edwards, 1982). Audiological tests, including physiologcal measures, have not yet proved to be 

helpful in differentiating MS from many other disease processes. This lack of differentiation has 

been attributed to the observation that various abnormalities are found within both the CNS and 

vestibular systems as a result of plaques in the nerve root (Keith and Jacobson, 1985). 

Ipsilateral ABR testing has presented a wide variety of results from the MS patient. These 

reported abnormalities have consisted of asymmetries, delays in latency, fragmented responses, 

decreased amplitudes or absence of peaks, poor reliability,and abnormal responses to rate changes. 

In one study, Prasher and Gibson (1980a) evaluated MS patients using ipsilateral and 

contralateral recording modes. They concluded that the detection of MS using latency criteria 

improved considerably by using both the ipsilateral and contralateral recordings. However, these 

results as well as those reported from Barajas (1982, cited by Keith and Jacobson, 1985) ere 

relatively vague regarding specific abnormalities. Further investigation of recording mode may 

also contribute to detecting the reported subclinical lesions. 

Although ABR testing has provided a means of assessing the integrity of the auditory 

mechanism, the patients are often only adequately served due to limitaitons of existing test 

procedures. Once the complex interactions between recording, stimulus and patient variables are 

understood population-specific normative data may be established (Stockard et al., 1978). With 

this normative data established and with properly interpreted ABR results, critical information to 

differential diagnostic decisions can be obtained. Although the recent literature has demonstrated 

that stimulus polarity and contralateral measurements may contribute more and better 
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information in relation to audiological and neurological disorders, most of the current testing is in 

the ipsilateral recording mode with little regard to stimulus polarity. 

STATEMENT OF THE PROBLEM 

The review of literature on ipsilateral versus contralateral recording modes (Prasher and 

Gibson, 1980; Hughes etal., 1981; Rosenhamer and Holmkvist, 1982) has revealed a significant 

descrepency in to ABR latency measures. In addition, a review of the literature on stimulus 

polarity (Stockard etal., 1977; Coats and Martin, 1977; Emerson et al., 1982; Hughes etal., 

1981; Rosenhamer et al., 1978) has also unvailed discrepencies in ABR latency measures. If 

either variable affects the ABR latency values and/or an interactional affect exists, then the 

clinical interpretation of the obtained results may be influenced. Therefore, the purpose of this 

study was to investigate the effects of recording mode and stimulus polarity on the latencies of the 

ABR wave components III andV in normal hearing women. Specifically, the following questions 

were addressed: 

1. Do differences exist in absolute latency values of ABR wave components 111 and V as a 
function of stimulus polarity? 

2. Do differences exist in absolute latency values of ABR wave components 111 and V as a 
function recording mode? 

3. Does significant Interaction exist between stimulus polarity and recording mode relative 
to latency values of ABR wave components 111 and V? 



CHAPTER III 

METHODS 

SUBJECTS: 

Seventeen female subjects participated in this study. Mean age was 24.5 years with a range 

of 17 and 30 years. All subjects were required to have no history of known hearing loss, chronic 

otological difficulties, head trauma, or problems with the CNS or other neurological difficulty. In 

addition all subjects were in good health and free from any form of medication (see Appendix A). 

Each subject exhibited normal peripheral auditory status based upon the criterion levels 

described below. The criterion test battery was completed prior to subject inclusion in the 

research project. 

1. Each subject demonstrated pure tone air conduction thresholds of 15dB HL or better re: 

ANSI (1969) from 500-6000 Hz, bilaterally. 

2. Pneumatic otoscopy revealed normal appearing and mobil tympanic membranes, 

bilaterally. 

3. Complex oto-admlttance testing required that each ear must demonstrate normal 

appearing tympanograms both in terms of overall shape and amplitude, with middle ear 

pressure between +50 and - 100mm Hp. 

4. Acoustic reflexes were required to be present for each ear during both ipsilateral and 

contralateral stimulation from a 1000 Hz pure tone signal. The contralateral reflex 

threshold was required to be between 70-105 dB HL while the ipsilateral threshold was 

required to be between 70-100 dB HL. 

23 
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5. ABR criterion testing was completed under ipsilateral test conditions for both ears 

utilizing broad-band negative polarity click stimuli presented at a rate of 21.1 /sec. Step 

one utilized a 70 dBnHL presentation level. Under this condition each ear was required to 

demonstrate repeatable ABRs (+.200 microseconds) with well defined waves I, III, and V. 

Step two utilized a 30 dBnHL stimulus and required each ear to demonstrate a well 

defined and repeatable wave V. 

EQUIPMENT: 

All testing was completed at the Child Development and Rehabilitation Center (CDRC), 

Crippled Children's Division (CCD) of the Oregon Health Sciences University (OHSU). A 

Qrason-Stadler 1704 audiometer with Telephonic TDH-50 earphones in Telephonic MX-41 /AR 

cushions were used for the pure tone air conduction testing. Grason-Stadler 1720 B or 1723 

otoadmittance meters and a Macromatics MD-1 microprocessor impedance analyzer were used to 

complete all admittance testing. All pure-tone testing was completed within sound treated rooms 

designed by Industrial Acoustic Corporation (I AC). 

The ABR testing was completed with a Nicolet CA-1000 evoked potential system coupled to 

Telex 1470-A earphones with MX-41 /AR cushions. Grass Instruments E55-H silver cup 

electrodes with hole were applied at the forehead mid-line position at the hairline and at the 

promintory of each mastoid with EEG glue (collodian). EEG jelly was introduced to the skin 

through the hole of each electrode via syringe and blunted * 18 gauge needle. The skin was abraded 

until an inter-electrode impedance of 1000 ohms or less was realized as monitored through a 

Nicolet HGA 200-A physiological amplifier. Electrode integrity was checked preliminary to 

testing and each time following electrode manipulation between right and left ear test conditions. 

Throughout all experimental test conditions, the equipment wss set-up to deliver broadband 
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clicks, 100 microseconds in duration, at an intensity of 70 dB nHL, and at a rate of 21.1 clicks 

per sec until 2000 click repetitions had been averaged. Each response to the click stimulus was 

filtered between 150 and 3000 Hz. A sensitivity level of +.10 microvolts or less, and a common 

mode rejection level of 20* was maintained throughout all analyzed runs. 

Calibration procedures were completed on all equipment and were conducted to conform with 

existing standards (ANSI, 1973a; 1973b). Interrogative checks were completed using a 

Micronta multitesdter, a CA-100 calibrator and the HOA 200 A physiological amplifier. 

The polarity of the signal was checked from the earphone via a sound level meter (SLM) 

(Bruel & Kjaer type 2203) in conjuncton with an oscilloscope (Tektronic) as described by Gorga, 

Abbas and Worthington( 1985). The sound level meter was fitted with a 6 cc coupler and 

microphone. The test earphone was then placed on top of the coupler. Once the test earphone was 

positioned, a condensation signal was created by gently tapping against the back of the earphone 

and the direction of shift was noted on the oscilloscope. The direction of voltage change 

corresponded to the manually induced condensation phase, and indicated that the sound level meter 

did not reverse the phase of signal delivered to its microphone. 

A third octave spectral analysis (500-10,000 Hz, inclusive) of the Telex earphones was 

obtained by recording the sound pressure levels of 100 microsecond duration clicks, presented at 

a rate of 81.1 /sec at an intensity of 70 dBnHL. Equipment used included a Bruel and Kjaer (B &K) 

type 2203 SLM, a one-third octave filter set (B&K type 1616), a type 4152 artifical ear and 

associated 6 cc coupler, and a type 4132 condenser microphone. The earphones were compared 

against one another as well as against a new unused identical head set. The spectral characteristics 

of the click stimulus are presented in Figure 3.1. 
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FIGURE 3.1 

AMPLITUDE SPECTRA OF CLICK STIMULUS 

• PRESENTED THROUGH TDH-50 EARPHONES 

(ONE-THIRD OCTAVE ANALYSIS) 
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PROCEDURES: 

Testing took place in one to three sessions depending upon the time constraints for each 

subject. All subjects were given detailed instructions in each task. Prior to participation in the 

project, each subject or legal guardian read and signed an informed consent form (see Appendix 

C). 

After each subject passed the behavioral hearing screening criterion, they were asked to 

submit to ABR criterion testing. Participants were instructed that they would be subjected to a 

rapid series of click stimuli. Every effort was made to provide reasonable comfort. The test room 

was darkened. Adequate warmth provided. Subjects were 8sked to establish and maintain a calm, 

relaxed state and to sleep if possible. 

In all cases the ABR instrumentation was adjusted, as described above, and to +10 

microvolts or less as determined by subject artifact level. The ABR preliminary testing consisted 

of three runs utilizing the ipsilateral recording mode. The first run was completed using a 

stimulus intensity level of 70 dBnHL • the second was an exact replication; and the third was a 

replication of one and two with the exception of the utilization of a 30 dBnHL stimulus intensity 

level. Upon sucessfull completion of the preliminary screening the experimental testing 

commenced utilizing the conventional ipsilateral recording mode. Experimental testing was 

completed in the following order for each esr: 

1. Ipsilateral condition: negative, alternating, positive. 

2. Contralateral condition: positive, alternating, negative. 

Thus, each subject received a total of 3 preliminary runs and 6 experimental trials per ear. Both 

ears were tested. 

All subject data was stored on floppy disk via a Nicolet DC-2000 Disk Controller for later 

analysis. Following the data collection for each subject, the absolute latencies for waves 1, 111, V 
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and I PL values for lll-V were computed and recorded for each condition in preparation for 

computer entry. 

The latency data was entered on a Harris 8686 system and the means, standard deviations 

and variances were obtained for all conditions: stimulus polarity, and recording mode. A 2 x 3 

analysis of variance (ANOVA) was completed using the Statistical Package for the Social Sciences 

(SPSS) (Nie, Hull, Jenkins, Steinbrenner and Bent, 1975) in order to determine all significant 

(d^O.01) variables and any interactions between the variables. 



CHAPTER IV 

RESULTS 

The statistical analysis of wave III and V absolute latency measures and the lll-Y interpeak 

latency (IPL) interval from the 36 ears of the 18 normal hearing adult females revealed 

significant (p<0.01) statistical differences between recording modes. However, there were no 

statistically significant (p>0.01) differences between stimulus polarities (positive, alternating 

and negative) used in this study, nor was there an interaction between recording mode and 

stimulus polarity. The mean (5T)and standard deviations (sd) for the absolute and interpeak 

latency measures of wave components 111 and V, as a function of recording mode and stimulus 

polarity, are presented in Tables 3.10, 3.20, and 3.30. The 2x3 ANOVA summary of the 

measures are presented in Tables 3.11, 3.21 and 3.31, respectively. A review of the data 

revealed the following about contralateral recordings relative to ipsilateral: 

1. Wave III occurred earlier (decreased in latency) by approximately 0.09 ms; 

2. Wave V occurred later (increased latency) by approximately 0. H ms; and 

3. The 111—V IPL Interval Increased by approximately 0.2 ms. 

Table 3.40 presents the percentage of ears demonstrating longer latency values in response 

to negative versus positive click polarity. The data from wave I W8S based soley on ipsilateral 

recordings due to the low incidence of occurrence during contralateral recordings. Only four 

(11JS) of the 36 ears tested in the contralateral condition demonstrated a wave I ABR component. 

In two of these four ears with an observable wave I under the contralateral condition, the 

morphology of this component was severly diminished making latency determination extremely 

difficult. 
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Although considerable variability existed across all conditions, definite general trends 

emerged from all of the latency measures relative to stimulus polarity. Reviewing tables 3.10, 

3.20 and 3.30, it becomes apparent that negative click polarity 8S compared to positive click 

polarity yeilded shorter wave 111 latency values and longer wave V values. As a result longer 111 - V 

IPL values were observed when the negative click polarity was utilized. These trends were 

observed in both ipsilateral and contralateral conditions. The observed tendency for shorter wave 

111 latency values in response to negative click polarity was slightly greater in the contralteral 

condition as compared to the ipsilateral condition (0.01 and 0.04 ms, respectively). In contrast, 

the tendency for longer wave V latency values in response to the negative click polarity W8S 

relatively the same for both contralateral and ipsilateral conditions (0.02 and 0.01 ms, 

respectively). The 11 l-V IPL interval demonstrated a 0.06 ms increase in latency while using 

negative polarity in the contralateral recording mode relative to the ipsilateral recording mode, 

which revealed a 0.01 ms increase in latency time for the negative click polarity. 
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Table 3.10: Wave III latency means (x) and standard deviations (sd) in 
niiliseconds for recording mode and polarity. 

Stimulus 
Polarity Recording Mode 

Ipsilateral Contralateral Total 

x : ,  3.68 3.57 3.63 
Negatiye 

sd: .155 .144 .158 

x: 3.67 3.59 3.63 
Alternating 

sd: .141 .136 .145 

x: 3.69 3.61 3.67 
Positive 

sd: .142 .150 .148 

x: 3.68 3.59 
Total 

sd: .145 .143 
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Table 3.11: Suraraary ANOVA for wave III latency measures relative to 
recording mode (RM) and polarity (P). 

Source SS df MS F P 

RM .3918519 1 .3918519 33.915 0.01 

P .0050815 2 .0025407 .419 N.S. 

RM x P .0226815 2 .0113407 2.039 N.S. 

error .1890519 34 

Total .6086668 39 

F at df = 1,34;«at 0.01 = 7.44 

F at df - 2 ,34; «at 0.01 = 5.29 
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Table 3.20: Wave y latency means (*) and standard deviations (sd) in 
miliseconds for recording mode and polarity 

Stimulus 
Polarity Recording Mode 

Ipsilateral Contralateral Total 

x:  5.51 5.63 5.57 
Negative 

sd: .140 .173 .166 

x :  5.49 5.60 5.55 
Alternating 

sd: .147 .164 .164 

x: 5.50 5.61 5.55 
Positive 

sd: .173 .160 .165 

x:  5.50 5.61 
Total 

sd: .153 .165 



Table 3.21: Summary ANOVA table for wave V latency measures relative 
to recording mode (RM) and polarity (P). 

Source SS df MS F 

RM .7396741 1 .7396741 95.411 0.01 

P .0273926 2 .0136963 4.915 N.S. 

RM x P .0022370 2 .0011185 .366 N.S. 

error .1038963 34 .0030558 

Total .873200 39 

F at df 1 1, 23; at 0.01 = 7.44 

F at df = 2, 34; °c at 0.01 = 5.29 
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Table 3.30: Wave III-V interpeak latency (IPL) means (x) and standard 
deviations (sd) in milliseconds for recording mode and 
polarity. 

Stimulus 
Polarity Recording Mode 

Ipsilateral Contralateral Total 

x: 1.33 2.06 1.94 
Negatiye 

sd: .130 .130 .171 

x: 1.82 2.02 1.92 
Alternating 

sd: .093 .140 .155 

x: 1.82 2.00 1.91 
Positive 

sd: .114 .128 .152 

x: 1.82 2.02 
Total 

sd: .113 .134 
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Table 3.31: Summary ANOVA table for the III-V IPL measures relative to 
recording mode (RM) and polarity (P). 

Source SS df MS F P 

RM 2.2082667 1 2.2082667 154.370 0.01 

P .0503111 2 .0251556 3.546 N.S. 

RM x P .0149333 2 .0074667 1.179 N.S. 

error .2152000 34 .0063294 

Total 2.4887111 39 

F at df = 1, 34; <*at 0.01 = 7.44 

F at df = 2, 34;oCat 0.01 = 5.29 



Table 3.40: Percentages of ears demonstrating longer latency values 
as a function of stimulus polarity. 

POLARITY WAVE I  WAVE III WAVE V 
% % % 

Negative 61 36 44 

Positive 19 46 35 

No Change 20 18 21 

TOTAL 36 72 72 



CHAPTER V 

DISCUSSION 

The purpose of this investigation was to collect ipsilateral and contralateral auditory 

brainstem response (ABR) data relative to stimulus polarity, on a homogeneous group of normal 

adult females. Specifically the study was designed to determine: 1) wave 111 or V absolute latency 

differences between ipsilateral and contralateral recordings; 2) absolute latency differences of 

wave 111 or V relative to the initial phase of stimulus onset; and 3) any interactional effects 

between the recording mode 8nd the phase of stimulus onset. 

The results of this study showed statistically significant (p<0.01) wave 111 and V absolute 

latency differences when utilizing ipsilateral verses contralateral recording modes for normal 

adult females. There were no statistically significant latency differences in response to the 

polarity of the click stimulus, nor was there any statistically significant interaction between 

recording mode and stimulus polarity. However, trends in latency differences do exist in both 

ipsilateral and contralateral recording modes relative to stimulus polarity. 

The findings that statistical differences did not exist in relation to phase of stimulus onset 

agree with those reported by Coats and Martin (1977) and Roenhamer et al. (1978). However, 

these data are in disagreement with the data reported by Emerson et al. (1982), Hughes et al. 

(1981), Borg and Loqvist (1982) and Stockard et al. (1979). The results from these latter 

studies have ranged from the observations of shorter, or earlier, wave V latency measures in 

response to condensation clicks (Borg and Loqvist, 1982), to shorter wave V latency measures in 

response to rarefaction click stimuli (Emerson et al., 1979). 

Some of these factors which can contribute to these discrepencies in latency changes relative 
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to phase of stimulus onset may lie in the experimental design. First, the present study used only 

female subjects whereas the other studies combined data from both females and males. It has been 

well documented (Stockard et al., 1978, Jewett and Williston, 1971) that the adult male exhibits 

longer absolute latency values, relative to the adult female, even though the IPL times remain 

comparable. Therefore, when attempting to determine the affects of one or two other variables, 

gender should be controlled for in order to more clearly interpret the findings relative to the test 

variables. 

Secondly, although a click Is determined to be of a positive or negative polarity at the 

earphone, there are no standards for click generation (Glattke, 1983), and conceivably one can 

generate different degrees of condensation and rarefaction clicks (Lilly, 1986). Without 

standards for click generation comparisons of normative data across laboratories is compromised. 

Compromises also occur relative to pulse duration, earphone selected, earphone placement on the 

subject, and other factors. These compromises, in turn, may cause differences in the response 

parameters of the recorded ABR and, 8S a result, interpretation of the results is more difficult. I n 

this study, all equipment, including that needed for controlling stimulus polarity at the earphones, 

was checked both at the beginning and end of the study. Many of the reviewed studies, Emerson et 

al., (1979), for example, did not report the calibration protocols of their instrumentation. 

Therefore, when comparing these studies which investigated differences in ABR due to click 

polarity, several questions arise in relation to the click generation and the polarity of the click 

itself. 

In addition, the studies varied in relation to the rate, intensity, and filtering of the auditory 

stimuli. Filter differences ranged from using unfiltered click stimuli (Rosenhamer and 

Holmkvist, 1982; Emerson, et al., 1979) to filtered click stimuli from 20 Hz - 3 kHz (Coats and 

Martin, 1977) to 100 Hz - 3.2 kHz (Stockardet al., 1979). In an unfiltered click, as compared 
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to filtered clicks, more of the basiler membrane is stimulated, and in turn, generates increased 

electrical activity. This spread of excitation along the basiler membrane results in longer ABR 

latency values due to traveling wave mechanics. Thus, filtered clicks depending upon the bandpass 

of the filter generally result s in shorter latency values. Stockard et al. (1979) reported 

statistically significant (p<0.001) rate-phase interactions. Specfically, greater shifits of IPLs 

were noted in response to rarefaction clicks as compared to condensation clicks. In contrast, wave 

I was often unaltered, in response to rarefaction clicks at rates of 80 clicks/sec., while with 

condensation clicks wave I W8S prolonged. In addition, Stockard et al. (1979) reported "dramatic"" 

morphological changes while using a stimulus level of 50 dB SL. Rarefaction clicks produced a 

broad double-peaked or unrecordable wave I. Many responses characterized by poorly defined 

wave I's also demonstrated a similar response pattern for the wave 111 component. However, the 

wave V component showed little morphological differences. Responses at 30 dB SL demonstrated 

similar patterns of effects on the absolute latency values for waves 1, 111, and V (Stockard et al., 

1979). The interaction of stimulus polarity and rate or intensity have not been extensively 

studied and warrents further investigation. 

Finally, all studies differed relative to inter-electrode impedence levels. For example, 

Rosenhamer et al. (1978) required inter-electrode impedence levels to be equal to or less than 

5000 ohms. Emerson et al. (1979) required these impedence values to be equal to or less than 

3000 ohms. The present study required inter-electrode impedence values of less than or equal to 

1000 ohms. The higher the impedence value the more internal and external "noise", relative to 

the subject, is allowed to be averaged within the ABR. With this added "noise', the recorded ABR 

wave components are not as well defined, making the interpretation of the absolute latency values 

difficult, and in some cases impossible. 

Although the phase of stimulus onset was not found to be statistically or clinically 



significant in the present investigation it should not be ignored. First, the literature supports 

both points of view that stimulus phase may or may not be clinically significant. In addition, 

although this stud/ as well as those reviewed revealed high intersubject variability (see table 

3.40), definite trends were observed for all the components measured relative to stimulus 

polarity. Some of this variability as well as those discrepencies noted in the phase literature may 

be due to differences in stimulus intensities as well as subject age, sample size and click 

generation. However, further investigation using carefully controlled experimental design, 

including documentation of stimulus polarity and consistency of click generation techniques with 

normal subjects is needed. 

The results of this study revealed statistically significant (p<0.01) differences between 

ipsilateral and contralateral recordings. This data obtained in relation to recording mode, relative 

to wave III, agrees with that reported by Rosenhamer and Holmkvist (1982), Prasher and Gibson 

(1980b) and Hughes et al. (1982). However, relative to wave V component, the present data 

agrees with Prasher and Gibson's (1980b) finding that wave V increases in latency (lags) under 

contralateral recording conditions. Rosenhamer and Holmkvist (1982) reported a tendency for 

this occurrence, but indicated that it was not a statistically significant (p>0.05) finding. In 

contrast Hughes et al. (1982) reported no significant changes of trends in relation to the lagging 

ABR wave component V. 

Some of the factors which can contribute to these discrepencies in latency changes relative 

to recording mode may again lie in the experimental design. The variables affecting the response, 

relative to stimulus polarity, as discribed above, may also affect the response relative to 

recording mode. For example, as discussed above, differences exist between genders. Females 

demonstrate shorter wave V's relative to males. Thus, careful description of stimulus, subject, 

and methodological variables is important to understand the nature of their affects on the recorded 
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ABR. 

Statistical analyses varied considerably between the reviewed studies and the present 

investigation. This investigation used a 2 x 3 ANOVA with a 0.01 level of confidence. The only 

statistically significant differences evidenced were the differences between the ipsilateral and 

contralateral recording modes. However, when reviewing tables 3.10 through 3.31, questions 

about the actual clinical significance (0.20 ms) of the reported differences are raised. Ipsilateral 

and contralateral mean latency times differed by 0.9 ms, 0.11 ms, and 0.20 ms for wave III, wave 

Y and the 111 - V IPL interval, respectively. Therefore, if 0.2 ms is used as the level of clinical 

significance, the only qualifying level is that of the III-V IPL interval. However, the differences 

between the other measures are consistent among subjects as well as with the general trend of the 

literature, and may offer valuable information. 

In summary, ipsilateral-contralateral ABR latency measures differ in normal adult 

females. The effects of stimulus polarity remain unknown. Since the developmental course of the 

contralateral response is not known (Edwards, Duriex-Smith and Picton, 1985) and the complete 

effects of stimulus phase are undefined, an interaction between these two parameters in normal 

subjects cannot be ruled out. Further investigation is required to answer questions relative to 

stimulus phase effects and the interaction between recording mode and stimulus phase. Once these 

parameters and interactions are more clearly understood in normals, research should turn to the 

investigation of the affects of these paramenters in disordered populations. The current literature 

suggests that people with disorders such as multiple sclerosis (Prasher and Gibson, 1980a), 

Down's Syndrome (Worthenington and Peters, 1984), and autism (Rosenblum et al., 1980) 

exhibit distinct differences in the ABR. If this is the case, data needs to be obtained documenting 

the effects on the response by the variables studied in this investigation. These data, when 
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interpreted with other test results, may then be useful in answering differential diagnostic 

questions. 
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APPENDIX A 

INTAKE INFORMATION 

Name: Identification number: 

DOB: Evaluation Date: 

Present Health: 

Medical History Y£5 NO COMMENTS. 

head injury 

neurological problems 

seizures 

ear problems 

ear surgeries 

accidents 

present medications 

Family History 

hearing loss 

seizures 

neurological 
problems or disease 
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APPENDIX B 

OHSU 

Crippled Children's Division 

INFORMED CONSENT 

Brainstem Evoked Response Audiometry: 
Ipsilateral vs. Contralateral Stimulation of the 

Auditory System of Females 

I, consent to my/my child's participation in a stud/ under the 
supervision of Rodney 0. Pelson, Ph.D> and Nancy Murray, Audiology Intern, at the 
Crippled Children's Division, The Oregon Health Sciences University. The purpose of this 
study is to obtain normative data on a relatively new and unexplored area of brainstem 
evoked response audiometry (BSERA). Electrical brain activity resulting from 
stimulating the auditory system with a broad band "click" stimulus will be recorded using 
electrodes glued to the forehead and behind each ear, upon the mastoid processess. 

This procedure will require the participant to lie on a padded table while wearing 
earphones for approximately one hour. Prior to this testing the participant will be 
required to pass a preliminary audiometric test battery to insure normal peripheral 
hearing sensitivity. The preliminary test battery will take approximately one hour. 

All testing will take place at Crippled Children's Division (CCD), The Oregon Health 
Sciences University (OHSU), in one or two separate appointments. Participation is on a 
volunteer basis with no payments masde or charges assessed to the participant. All 
participants attending school will be tested during non-school hours. There is no 
physical, psychological or social risk inherent in participation in the research study 
described. The only possible slight discomfort is haveing the electrodes glued to the scalp. 
No medications will be used. 

This study will provide me with a professional evaluation of my/my child's hearing 
sataus, and will be made available to me and to medical records upon request. The 
information obtained from the study will be useful to medical science in understanding a 
relatively new and unexplored area of BSERA. I understand that all identifying 
information, including the participant's name, will be held confidential. Dr. Pelson and 
Ms. Murray have offered to answer any questions I might have regarding the study, 
specifficaly the test procedures and the participant's involvement. I may contact them at 
CCD, The OHSU (phone 225-8356). I also understand that the participant is under no 
obligation to complete the stud/, and that withdrawal from the study will not affect the 
participant's relationship with, or treatment at The Oregon Health Sciences University. 

The Oregon Health Sciences University, 8S an agency of the State, is covered by State 
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Liability Fund. If you suffer any injury from the research project, compensation would 
be available to you only if you establish that the injury occurred through the fault of the 
University, its officers or employees. If you have further questions, please call Dr. 
Micheal Baird, M.D., at (503)-225-8014. 

I agree to participate in the study described. 

Participant's Signature Age Date 

Legal Guardian's Signature (if participant is < 18 years if age) Date 

Witness Date 
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