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  This thesis is comprised of two potential professional papers that were written to be 

independent of one another. Both papers were written in the context of the hydrology of 

the northwestern United States. The snowpack stores winter precipitation and releases it 

in the spring. This snowmelt-dominated streamflow is used by agriculture, municipalities 

and water-reliant ecosystems. Chapter 1 considered the response of unmodified 

snowmelt-dominated streamflow to climate change in the Flathead River basin in 

northwestern Montana from 1940 to 2006. A parameter to quantify annual flow regime 

components was developed. Drivers of natural variability of flow regime were also 

considered. A robust statistical analysis resulted in no significant trends in flow regime 

versus time, and significant trends in flow regime versus annual precipitation. There was 

no evidence for a linear response by flow regime to climate change. There was no 

significant linear trend in flow regime over the study period and flow regime was not 

significantly related to annual temperature in the Flathead River basin. In the upper 

reaches of the Flathead River precipitation is associated with flow regime variability. 

Precipitation, in the Pacific Northwest, is associated with natural climate oscillations. 

Therefore, flow regime variability may be associated with natural climate oscillations 

such as El Nino Southern Oscillation and Pacific Decadal Oscillation. Chapter 2 

compared flow characteristics of dammed and undammed streams for the Flathead River 

Basin from 1954 to 2006. The quantile-derived flow characteristics were broken into a 

pre-dam and post-dam study period. Robust regression was used for trend analysis in the 

post-dam study period. Pearson’s correlation analysis was used to compare variance of 

dammed and undammed streams to downstream streamflow for both the pre-dam and 

post-dam study periods. Trend analysis showed that the trend in the timing of dammed 

streamflow was larger and opposite in sign compared to the undammed streams. In 

general, the dammed streams showed increased variability of the flow characteristics 

compared to the undammed streams. The dammed stream influenced the downstream 

flow early in the water year (October to September), but the undammed streams 

influenced the flow characteristics once snowmelt-dominated streamflow began.  
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INTRODUCTION 
 

 

This thesis is comprised of two potential professional papers that were written to be 

independent of one another. Two of the issues concerning water management and 

ecosystem stability are global climate change and the damming of streams. The effect of 

global climate change on streamflow in the northwestern United States is debated. 

Previous research has suggested that climate change may be affecting the timing of 

snowmelt, and the snowmelt associated streamflow, in the western United States (Cayan 

et al., 2001; Mote, 2003 & 2006; Stewart et al., 2005). This work was contradicted by 

Moore et al. (2007) who reported that the trends in timing of streamflow were more 

significantly related to the annual discharge than with time in the Columbia and Missouri 

River basin. Chapter 1 of this thesis investigates the influence of global climate change 

on the Flathead River basin in northwestern Montana.  

The fact that dams influence streamflow is well known. Dams have been shown to 

modify timing of streamflow characteristics, to increase low flows and reduce the peak 

flow (Magillian and Nislow, 2005; Singer, 2006; Graf, 2006; Lajoie et al, 2007). They 

also reduce daily flow variability (Graf, 2006). Some researchers have suggested that 

under the current climate change models reservoir capacity will need to be increased to 

meet the water needs of the population of the northwestern United States (Payne et al., 

2004; Barnett et al., 2005). Chapter 2 of this thesis compares the trends in the timing of 

quantiles of flow and related flow characteristics for dammed and undammed streams. 

This is to put the dam influenced trends in context with the climate change influenced 

trends in the Flathead River basin in northwestern Montana. 
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CHAPTER 1: FLOW REGIME RESPONSE TO CLIMATE 

CHANGE IN THE FLATHEAD RIVER BASIN, 

NORTHWESTERN MONTANA 

 

 

Introduction 

 

The Mountainous regions of the western United States rely on snowmelt-dominated 

watersheds as a source of water for the population and water dependent ecosystems, such 

as wetlands and riparian habitat, of the western United States. Idaho and western 

Montana receive over 60% of the annual precipitation as snow (Serreze et al., 1999). The 

snowpack provides ‘free’ winter storage until the water is released into the streams as 

runoff in the spring. Recent studies have suggested that global warming is affecting the 

snowpack in the western United States. Most of the recorded global warming has 

occurred in the last 30 years, with a 0.2°C increase per decade since 1975 (Hansen et al., 

2006). Possibly more important for the northwestern United States, the mean spring 

(March through May) temperatures in the mid-latitudes are as much as 1.5°C higher than 

a century ago (Hansen et al., 2006). Mote (2003 and 2006) reported an increase in 

temperature is overwhelming any increase in precipitation, resulting in April 1 Snow 

Water Equivalent (SWE) decreasing over the last 50 years. This may indicate an earlier 

snowmelt season.  

Cayan et al. (2001) reported that the ‘spring pulse’ has been beginning two days earlier 

every decade since 1948, associated with an increase in the mean temperature throughout 

the western United States. Cayan et al. (2001) interpreted the day when the cumulative 

departure from the mean discharge was the most negative as the first day of ‘spring 

pulse’. However, any mean-based algorithm may produce spurious results because the 

mean has a finite breakdown point of 1, meaning it only takes one outlier to make a mean 

arbitrarily large or small (Wilcox, 2001). Stewart et al. (2005) reported the onset of 

‘spring pulse’ throughout the western United States is occurring one to four weeks earlier 
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than in 1948. The trend was related to an increase in global temperature. Stewart et al. 

(2005) used the Cayan et al., (2001) algorithm of the timing of the most negative 

cumulative departure of the mean but had to constrain the timing to between 15 February 

and 15 August. The need for arbitrary constraints on the timing of the parameter indicates 

that it may not be quantifying what it was intended to, i.e., the ‘start of Spring snowmelt 

runoff’. If the algorithm is choosing a day in January as the onset of ‘spring pulse’ it may 

not be working as anticipated. They showed trends in the timing of center of mass, which 

Moore et al. (2007) illustrated was the day of the mean annual flow. So the variable 

(center of mass) may be sensitive to outliers. Stewart et al. (2005) define the onset of 

‘spring pulse’ as the date when the snowmelt-derived streamflow begins. This usage 

implies that there is one day in the year when the snow begins to melt, when runoff from 

melting snow is much more complex: The snowpack accumulates and melts throughout 

the melt season moving towards runoff dominated by snowmelt from that dominated by 

winter baseflow.  

Moore et al. (2007) avoided the ‘spring pulse’ concept by applying a temporally broader 

and procedural scope to their investigation. They examined the day that the 25
th

, 50
th

, and 

75
th

 quantiles of flow occurred. Quantiles of flow are robust to outliers, have some 

conceptual value (e.g., the day that half the flow of the year has passed a stream gage) 

and can be easily examined for changes through time. Using these measures, Moore et al. 

(2007) reported that the trends in the Missouri and Columbia River basins were more 

significantly related to annual discharge than with time and questioned the strong 

response to global warming in snowmelt runoff timing attributed to warming by previous 

authors. However, the day of various quantiles of flow do not directly record changes in 

snowmelt derived streamflow, just changes in the timing of runoff in general.  

This previous research indicates that global climate change (precipitaton and/or 

temperature) may be associated with changes in the timing and amount of snowmelt 

streamflow. The various measures used to monitor this change could be useful to water 

managers, but do not give a deeper understanding how flow regimes are changing in 

response to climate forcing. For example, ecologists that are concerned about the effects 

of changes in streamflow on riparian and riverine ecosystems need additional parameters 
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to understand ecological responses to changes in streamflow. So, from an ecological 

perspective there are a few additional shortcomings of the previous studies on climate 

change effects on streamflow: Cayan et al. (2001) only looks at the start of the snowmelt 

season; Stewart et al. (2005) looks at the timing of the start and middle of the snowmelt 

season, but it still does not define all of the parameters that are of interest to ecologist; 

Measures used by Moore et al. (2007) are hard to interpret ecologically and are not 

represented in the ecological literature.  

Climate change induced alterations to the snowmelt-derived streamflow may affect all 

aspects of riverine and riparian ecology. Salmonid migration and spawning patterns are 

dictated by the timing of a narrow range of stream discharge (Smith, 1978; Heggenes and 

Traaen, 1988), making important the rate of change and duration of high flows, not just 

the beginning of increased flows. Fausch et al. (2001) reported that the ease of invasion 

by rainbow trout is related to rate of change, magnitude and duration of snowmelt-

derived runoff. The success of benthic algae and associated macroinvertebrates can be 

impacted by duration and magnitude of snowmelt-derived streamflow (Peterson et al., 

2001). The riparian vegetation community can also be changed if the rate of change of 

the snowmelt-derived streamflow, and therefore inundation duration, is altered (Auble et 

al., 1994). Riparian vegetation recruitment is also contingent on the timing and rate of 

change of discharge (Mahoney and Rood, 1998; Woods and Cooper, 2005).  

There is a need for a suite of streamflow parameters easily derived from hydrographic 

data to quantify components important to water management and the ecology of systems 

associated with snowmelt-dominated watersheds. A better concept of what we might be 

able to quantify is the first step. Spring pulse has eluded researchers so far, perhaps 

because it does not exist. What may be a more reasonable concept is the time of the year 

when the baseflow is overcome by snowmelt-derived runoff, referred to here as the 

snowmelt-dominated discharge (SDD).  

A suite of hydrological measures that are well identified in the ecological literature define 

‘flow regime’. Poff et al. (1997) identified five ecologically critical components of the 

flow regime of a stream. They are frequency, timing, magnitude, duration, and rate of 
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change of the streamflow. One of the most prominent methods for quantifying these five 

components is the indicators of hydrologic alterations (Richter et al., 1996). Olden and 

Poff (2003) investigated 13 published papers describing hydrologic parameters. Most of 

the parameters were indicators of hydrologic alteration indices or derivatives of the 

indicators of hydrological alterations model. The hydrologic indices investigated included 

the mean, maximum and minimum annual and monthly flows; timing, magnitude and 

duration of ‘low’ and ‘high’ flows; magnitude of ‘high’ and ‘low’ flow; as well as the 

‘high’ and ‘low’ flow variation. They reported that the existing parameters need to be 

used in conjunction with ‘intuitive metrics’ for the system being studied (Olden and Poff, 

2003).  

This study uses mathematical principles to develop and implement a non-arbitrary 

physically-intuitive hydrologic parameter to estimate annual flow regime characteristics 

of unmodified snowmelt-dominated watersheds. First, the SDD is identified and 

separated from the stream discharge record. The SDD is then broken into four flow 

regime characteristics: timing; duration; magnitude; rate of change. The hydrologic 

parameters are then used to investigate the changes in flow characteristics through time in 

the Flathead River basin in the northwestern Montana, United States and whether the 

changes in the flow regime characteristics of the Flathead River are associated with 

global climate change. The trends also will be compared to the natural variation of the 

system.  

The Flathead River basin is an excellent test-bed for hydrologic response to climate 

change (Figure 1). The hydrology is snowpack reliant, and two of the headwater 

watersheds are relatively unmodified. The North Fork and Middle Fork of the Flathead 

River will be used in this study. The North Fork Flathead River drains the Flathead 

National Forest, the Bob Marshal Wilderness and Waterton-Glacier International Peace 

National Park. The Middle Fork Flathead River drains the Great Bear Wilderness and 

Waterton-Glacier International Peace Park.  

There are several SNOTEL stations in or near the basins at different elevations. This data 

is the ideal data to use for investigating relationships between meteorological conditions 
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and streamflow characteristics. SNOTEL data represents meteorological conditions from 

1300 to 2100 meters in the study area. The record is too short, with only about 20 years 

of complete data, to be used exclusively in this study. Continuous daily hydrological 

records beginning in 30 October 1940 for Kalispell, Montana are available. Parameter-

elevation Regression on Independent Slope Model (PRISM) temperature and 

precipitation products are also available for the Flathead River Basin for the study period. 

A correlation analysis will be performed to determine if Kalispell meteorological data or 

PRISM estimates better represent the moderate to high elevation meteorological 

conditions. 

 
Figure 1: The Flathead River Basin in northwestern Montana with the North and Middle Fork 

watersheds delineated. The triangles mark the location of the stream gages used in this study, the 

SNOTEL station are represented by circles and the Kalispell, MT meteorological station is marked 

with a star. Wilderness areas (grey), the Flathead National Forest (dots) and the American 

Waterton-Glacier International Peace Park (hashes) are shown. 

 

Defining and Development of Snowmelt-dominated Discharge Parameters 

 

Determining flow regime characteristics directly from the hydrograph can be difficult 

without an algorithm to reduce subjectivity. This is demonstrated in Figure 2a, choosing 

even the first day of snowmelt-dominated stream flow could lead to a wide range of 
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results. Even on a conceptual/model discharge record choosing the start of SDD is 

difficult (Figure 2b). This study presents an even simpler conceptual model which may 

make estimating the day of the start, peak and end of SDD less of a guessing game 

(Figure 2c). The use of annual cumulative percentage of flow smooth the data and 

removes the quantity of discharge avoiding the complications of analyzing noisy 

hydrographs directly.  

 

Figure 2: Discharge record for Middle Fork for water year 2003 (a) compared to ‘classical’ 

conceptual model of discharge curve (b) and the model proposed by this study (c). 

 

a 

b 

c 
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The common logistic shape of the cumulative percentage of annual discharge in 

snowmelt-dominated streams is exploited in this study (Figure 3). The regular shape of 

the cumulative percentage of discharge allows for the application of a simple algorithm to 

define flow characteristics.  

 

Figure 3: Cumulative percentage of the annual discharge record versus day of water year for the 

Middle Fork of the Flathead River for water year 1940 to 2006. 

 

While the using the cumulative percentage of discharge smoothes the discharge data, the 

complexity of the system is still incorporated within it. In order to reduce the complexity, 

but still retain the general shape, the annual cumulative percentage of discharge is fitted 

with a cubic smoothing spline. This is illustrated in Figure 4, the red curves represent the 

unsmoothed data from the discharge record and the calculations using the smoothed data 

are in blue. The cumulative percentage curves are nearly indistinguishable, but the second 



9 

 

derivatives are significantly different. It is the spline-fitted cumulative percentage of 

annual discharge, referred to as the cumulative percentage of discharge from this point, 

which is used to estimate the flow regime characteristics analyzed in this study. 

The cumulative percentage of discharge is the integral of the annual discharge record 

normalized to the annual discharge; therefore it represents the area under the discharge 

curve (Figure 4a). The area under the discharge curve increases the fastest once the SDD 

has began, creating a convex curve in the cumulative percentage of annual discharge 

(Figure 4b). The addition of area under the curve decreases once the SDD has ended 

giving the end of the cumulative percentage of discharge a concave shape. The timing of 

the start and end of the accelerated area increase is estimated by the maximum and 

minimum of the second derivative of the cumulative percentage of discharge (Figure 4c). 

The inflection point of the cumulative percentage of discharge represents the day in 

which the curve changes directions, in this case goes from convex to concave. The 

inflection point is defined as the point that the second derivative of the cumulative 

percentage of discharge equals zero. The second derivative-derived parameters can 

therefore be interpreted to have some physical meaning in an unmodified snowmelt-

dominated watershed. The maximum and minimum of the second derivative is taken to 

be the day of the start and end of the SDD respectively. The inflection point estimates the 

peak of the annual discharge record or where the SDD transitions from streamflow that 

gains discharge daily to stream discharge is reduces each day.  

Using the estimates of timing of the start, peak and end of SDD the other flow regime 

characteristics can be estimated. The timing of the beginning and end of the SDD of the 

annual water year (01 October 30 September) needs to be identified first. This separates 

the three critical flow regimes of a snowmelt-dominated watershed, the pre-SDD 

streamflow, the SDD, and the post-SDD streamflow (Figure 5).  

Then the flow regime characteristics can be derived. The timing of the beginning, peak, 

and end of SDD can be defined. The model for deriving additional flow regime 

characteristics is presented in Figure 6. The duration of the SDD is the difference 

between the timing of the start of SDD and the end of SDD. The magnitude is estimated 
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as the total stream discharge (km
3
) between the start and end of SDD. The rate of change 

will be estimated as the mean volume of discharge per day that is added to the stream 

between the start and peak SDD (ascending rate of change) or the reduction of volume of 

discharge per day between the peak and end of SDD (descending rate of change). 

 

Figure 4: Developing the flow regime parameters. The estimate start, peak and end of the SDD are 

demonstrated by the dashed lines for the Middle Fork for water year 2003. a) the discharge curve for 

the Middle Fork of the Flathead River for water year 2003. b) The spline-smoothed cumulative 

percentage function (blue) and the unsmoothed cumulative percentage curve (red). c) The second 

derivative of the spline-fitted cumulative percentage function (blue) and the second derivative of the 

unsmoothed (discrete observations) cumulative percentage curve (red). 
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Figure 5: Conceptual model representing the critical regimes of the annual discharge. 

 

 

Figure 6: Conceptual model for the estimation of flow regime parameters using the timing 

parameters derived from the second derivative of the cumulative percentage function. 

 

Datasets 

 

The hydrological data for this study was retrieved from the US Geological Survey 

(http://waterdata.usgs.gov). Daily hydrological data for the Middle Fork Flathead River 

near West Glacier, Montana (12358500) and the North Fork Flathead River near 

Columbia Falls, Montana (12355500) from October 1, 1939 to September 30, 2006 were 

used for this analysis. 
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There are three sources of meteorological data available for the headwaters of the 

Flathead River basin. The SNOTEL network is managed by the United States 

Department of Agriculture’s Natural Resource Conservation Service 

(http:\\www.wcc.nrcs.usda.gov\snow\). The stations take daily measurements of snow 

water equivalent, precipitation and mean temperatures for moderate and high elevations. 

Pike Creek Snotel station at 2100 m (site ID: 13a26s), Emery Creek at 1300 m(site ID: 

13a24s) and Badger Pass snotel station at 2100 m (site ID: 13a15s) were used for the 

correlation analysis. The valley-based meteorological station in Kalispell, Montana 

record (from 1899 to present) is archived by the USHCN 

(http:\\cdiac.ornl.gov\epubs\ndp\ushcn\newushcn.html).This provides daily 

measurements of inches of snow, precipitation and mean temperature. 

Parameter-elevation Regression on Independent Slope Model (PRISM) is maintained by 

the Natural Resource Conservation Service (NRCS) of the United States Department of 

Agriculture and the Spatial Climate Analysis Service at Oregon State. PRISM products 

are grids that represent monthly temperature or precipitation for the contiguous United 

States from 1895 to present. Each cell represents an estimated monthly value of mean 

monthly temperature or accumulated monthly precipitation for a 16 km
2
 area. Monthly 

PRISM mean temperature and accumulated precipitation products (retrieved from 

http://www.wcc.nrcs.usda.gov/climate/prism.html) for October 1939 to September 2006 

were used to estimate annual water year (October to September) meteorological 

parameters for the North Fork and the Middle Fork basin.  

Meteorological Data Selection 

 

Of the three meteorological data sources SNOTEL provides the most relevant daily 

measurements of snow water equivalent, temperature and precipitation representing the 

moderate to upper elevations (1300 m to 2100 m) of the watershed. The three SNOTEL 

stations used in this study are in or near the Middle Fork watershed. The Badger Pass and 

Pike Creek SNOTEL stations are in the Middle Fork watershed. Emery Creek SNOTEL 

station is just outside the basin but used in this study to represent the lower end of the 

watershed. There are no SNOTEL stations in the North Fork watershed. The SNOTEL 
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stations, however, have a relatively short record for use in a climate change study with 

less than 20 years of temperature data and less than 30 years of snow water equivalent 

and precipitation data. The Kalispell, Montana meteorological station has continuous 

daily measurements of temperature and precipitation beginning in 1895. The drawback to 

using this data is that the snow measurements are in inches of snow, which makes it 

difficult to estimate the snow water equivalent from the data. Also, the station only 

represents low elevation (905 meters) processes.  

The PRISM products also have a long record (1895 to present) of temperature and 

precipitation estimates that are gridded and represents the entire basin. The estimates are 

only available in monthly precipitation accumulation and mean monthly temperature 

products. The PRISM products are only available for the contiguous United States. 

Therefore, the northern third of the North Fork, which is in British Columbia Canada, is 

not represented. The PRISM product is a model output and not actual measurements of 

temperature or precipitation.  

Since the SNOTEL stations provide the most ideal data but lacks a sufficient record, a 

correlation analysis was done to determine which of the two remaining data sources best 

represent the meteorological conditions captured by the SNOTEL stations. The 

correlation coefficient used for the analysis was the median of a thousand bootstrapped 

Pearson’s correlation analyses as suggested by Wilcox (2005). The confidence intervals 

were calculated using a bootstrapping with replacement method.  

The mean of the daily measurements at the Badger Pass, Emery Creek and Pike Creek 

SNOTEL stations were used to better represent the moderate to high elevation processes. 

The annual swe and precipitation were calculated by summing the accumulation (m
3
) of 

the averaged daily values of snow water equivalent or precipitation measurements for the 

water year (01 October to 30 September). The mean annual temperature was the mean of 

the daily temperature measurements for the water year. The Kalispell, Montana daily 

temperature and precipitation data was processed in the same manner. The PRISM 

products were clipped to the Middle Fork and North Fork watersheds. The PRISM 

monthly precipitation product is an estimate of the monthly accumulated precipitation for 
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each grid cell. The accumulated annual precipitation was estimated by summing the 

precipitation gridded values for the basin for each water year (October through 

September). The temperature product is an estimate of the monthly mean temperature for 

each grid cell. The mean annual temperature was estimated by finding the mean of the 

grid cells in the basin for each water year.  

The correlation analysis results are shown in Figure 7. The correlation between the 

SNOTEL temperature and the Kalispell meteorological data and the PRISM output were 

basically the same for water years 1940 to 2006 with correlation coefficient of 0.79 and 

0.89 respectively. The confidence intervals for the correlation coefficient between 

SNOTEL precipitation and the precipitation of the other two data sources overlapped. 

Meaning that they basically represent the precipitation at the SNOTEL stations the same. 

The correlation between the SNOTEL swe and Kalispell precipitation was insignificant. 

The correlation between the PRISM precipitation and the SNOTEL swe was small, 0.46, 

but significant. Therefore, the PRISM products may be the better of the two 

meteorological sources with long records at estimating the snow and temperature 

processes.  
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Figure 7: Correlation coefficients, and 95% confidence intervals, for the analysis of PRISM or 

Kalispell annual precipitation versus SNOTEL annual precipitation, PRISM or Kalispell annual 

precipitation versus SNOTEL annual swe, and PRISM or Kalispell mean annual temperature versus 

SNOTEL mean annual temperature. 

 

Statistical Methods 

 

Understanding the changes for flow regime characteristics through time is important from 

a water management and an ecological perspective. Changes in both water management 

strategies and ecosystem management may need to be adjusted eventually if the trends 

cause stream flow characteristics to deviate outside of the natural variation of the system. 

This study used two separate linear statistical models, one for the analysis of the flow 

regime changes through time and a second for the analysis of flow regime versus 

meteorological conditions. Both models were evaluated using the same robust regression 

method. 

The analysis of flow regime versus time uses the multiple linear model 

 y=Bo + B1x1 + B2x2 + ℰ. Where y is any of the flow regime characteristics, x1 is the water 

year and x2 is the total annual discharge. Moore et al. (2007) found that the trends in the 

timing of quantiles of streamflow were significantly influenced by the annual discharge. 
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To account for this a first-order multiple linear model was used to incorporate annual 

discharge into the equation, thereby reducing the influence of annual discharge on the 

trend (Ott and Longnecker, 2001). The specific equations used in this study are as follows 

where WY is the water year and TQ is the total annual discharge:  

Start of SDD=Bo + B1(WY) + B2(TQ)  (1) 

Peak of SDD=Bo + B1(WY) + B2(TQ)  (2) 

End of SDD=Bo + B1(WY) + B2(TQ)  (3) 

Duration of SDD=Bo + B1(WY) + B2(TQ)  (4) 

Rate of Change=Bo + B1(WY) + B2(TQ)  (5) 

Magnitude of SDD=Bo + B1(WY) + B2(TQ) (6) 

The use of a general additive model may improve the results of this analysis by 

smoothing the total discharge. This could account for non-linear relationships between 

total discharge and flow regime. The model for the trend analysis of flow regime versus 

PRISM estimated meteorological conditions was a simple linear model, y = Bo + B1x1 + ℰ. 

Where y is the flow regime parameter, x1 is either the annual accumulated precipitation or 

the mean annual temperature. The specific equations used in this study for this analysis 

are as follows where Met is either the mean annual temperature or the annual cumulative 

precipitation: 

Start of SDD = Bo + B1(Met)  (7) 

Peak of SDD = Bo + B1(Met)  (8) 

End of SDD = Bo + B1(Met)  (9) 

Duration of SDD = Bo + B1(Met)  (10) 

Rate of Change = Bo + B1(Met)  (11) 

Magnitude of SDD = Bo + B1(Met)  (12) 
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A robust regression technique was used to evaluate the models described above. Classical 

regression methods such as ordinary least squares make assumptions about the 

distribution and variance of the data that may not be reasonable given the nature of 

hydrological data. Ordinary least squares assumes that the errors will have a normal 

distribution, the variance is constant (homoscedacity) and the data is independent. Robust 

regression methods do not make assumptions of normality or homoscedacity. It still does 

assume independent data, however. The power of the robust regression technique of 

weighted least squares is not significantly affected by non-normality or heteroscedacity 

(Tuki et al, 1986). Autocorrelation, or dependence between data, is not present in the 

parameters in this study. Therefore, the assumption of independent data is not violated. 

The standard errors of coefficient (SE) are reported in the tables of results for the 

regression analysis in this study. Standard error is measure of the variability of the 

coefficients estimated by the regression method. This is included for completeness.  

Results 

 

Time Series Analysis 

 

The results of the trend analysis comparing flow regime to time are summarized in Table 

1. There was no linear change in the flow regime characteristics from water year 1940 to 

2006 in the headwaters of the Flathead River basin. The median trend p-value was 0.65 

and the minimum and maximum p-value was 0.11 and 0.98 respectively. Trends with p-

values of greater than 0.05 were considered to be indistinguishable from a trend of zero, 

or having no change, for this study. Therefore, none of the trends estimated for the flow 

regime characteristics are discernible from a trend of zero, or having no change through 

time.  
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Table 1: Results of the trend analysis for flow regime characteristics for Middle Fork and North 

Fork versus water year. 

Middle Fork North Fork

Slope SE p-value Slope SE p-value

Start of SDD (day/year) 0.014 0.069 0.85 -0.025 0.066 0.72

Peak of SDD (day/year) 0.010 0.049 0.85 -0.0014 0.053 0.98

End of SDD (day/year) 0.028 0.050 0.59 0.015 0.053 0.80

Duration of SDD

(# days/year)
0.023 1.5x10-4 0.98 0.025 1.4x10-4 0.97

Ascending Rate of Change 

(km3 day-1/year)
1.0x10-5 3.0x10-5 0.23 -1.0x10-4 2.7x10-5 .21

Descending Rate of Change

(km3 day-1/year)
-1.2x10-5 3.1x10-5 0.11 3.0x10-5 2.6x10-6 0.13

Magnitude of SDD 

(km3/year)
-1.3x10-3 1.2x10-3 0.30 -1.1x10-3 1.2x10-3 0.36

 

 

The Middle Fork and the North Fork showed conflicting trends for two of the three 

timing parameters but none of the trends were distinctly different from zero change over 

time. The trend in the Middle Fork timing of SDD indicates that it is occurring later in the 

water year, whereas the North Fork showed an apparent shift toward an earlier SDD 

timing. The change in the start of SDD (equation 1) for the Middle Fork was estimated to 

be one-tenth of a day later every decade since 1940 (p=0.85). The trend in the timing of 

the start of SDD for the North Fork was one-quarter of a day earlier every decade over 

the study period (p=0.72). The range for the day of the year SDD started was 4 April to 

25 May, with the median being 1 May for the Middle Fork. This is a difference of 51 

days. The range of the timing of the start of SDD for the North Fork was 5 April to 16 

May a difference of 41 days. The median day was identical to the Middle Fork, 1 May.  

The trend in the occurrence of the peak of SDD (equation 2) for the Middle Fork implied 

a shift of nearly 0.7 days later in the water year over the study period (p=0.85). The peak 

of SDD in the Middle Fork occurred anytime between 9 May and 16 June, a range of 37 

days. In the North Fork had a trend estimating the peak of SDD to be one-tenth of a day 
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later over the study period (0.98). The peak of SDD in the North Fork was from 9 May to 

15 June, similar to the Middle Fork. The trend in the timing of the end of SDD (equation 

3)in the Middle Fork suggested a shift of three-tenths of a day later every decade over the 

study period (p=0.60). The earliest the end of the SDD occurred was 2 June and the latest 

was 19 July. This is a difference of 47 days. The median day of the end was 1 July. The 

North Fork the trend of the end of SDD was less than two-tenth of a day earlier every 

decade (0.80). The range of the day of the end of SDD was from 1 June to 15 July, a 

difference of 44 days.  

The duration of SDD (equation 4)was estimated by the trends to be 1.5 and 1.7 days 

longer in 2006 than in 1940 for the Middle (p=0.98) and North Fork (p=0.97) 

respectively. The median duration of SDD for the Middle Fork was 59 days long and 

ranged from 38 to 99 days long. The North Fork had a median duration of 57 days with a 

range of 40 to 99 days. The trend in the ascending rate of change (equation 5) for the 

Middle Fork and the North Fork was 1x10
-5

 (p=0.23) and -1x10
-4

 km3/day (p=0.28) per 

year respectively. These trends were a change of less than 0.5% of the record median 

ascending rate of change for the Middle Fork and North Fork. The descending rate of 

change (equation 5) showed a similar result. The trend through time was -1.2x10
-5

 

(p=0.11) and 3x10
-5

 km3/day (p=0.12) for the Middle Fork and North Fork respectively. 

This was less than one-tenth of a percent of the median value of the descending rate of 

change for the study period for both watersheds.  

The trend in the magnitude of SDD versus water year (equation 6) was not 

distinguishable from zero for either watershed. The Middle Fork had a trend estimated 

8.7x10
-3

 km
3
 less discharge in 2006 than in 1940 (p=0.30). This is less than a one percent 

of the SDD discharge for water year 2006. The trend in the North Fork implied a 

decrease of 7.4x10
-3

 km
3
 of the magnitude of flow in water year 2006 than in 1940 

(0.36). This is a change amounting to less than 5% of the magnitude of SDD in 2006.  

Flow Regime versus Meteorological Data 

 

The results of the trend analysis investigating the relationship between temperature and 

the flow regime parameters are summarized in Table 2. PRISM products are a monthly 
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estimate of temperature and precipitation and the discharge data is a daily measurement. 

In order to reduce issues with using data at two different time scales the annually 

averaged meteorological conditions were used in this study. The assumption being made 

is that winter precipitation and spring temperatures will be reflected in the average annual 

precipitation or temperature. The relationships between mean annual temperature and 

flow regime characteristics all had p-values greater than 0.05. The trends comparing flow 

regime characteristics and mean annual temperature were not distinctly different from 

zero change.  

The relationship between the timing of the start of SDD and temperature (equation 7) 

estimated that for every one degree Celsius increase in mean annual temperature the start 

of the SDD occurred 2 days earlier (p=0.20). The range of mean annual temperature for 

the Middle Fork was between -6.6 ⁰C and -2.4 ⁰C. This suggests that temperature 

accounted for only 8 days of variability in the timing of the start of the SDD in the 

Middle Fork. The range of mean annual temperature for the North Fork was -6.5 ⁰Cto-2.8 

⁰C. The trend of the start of SDD occurring 1.6 days earlier for every one degree Celsius 

(p=0.27) increase in the mean annual temperature accounted for 6 days of variability in 

the timing of the start of SDD in the North Fork. The trend in the timing of peak SDD 

showed that the peak (equation 8) occurred 1.75 days earlier for one degree Celsius 

increase (p=0.18) in the mean annual temperature accounts for only 7.4 days of the 

variability in the timing of the peak SDD in the Middle Fork. The trend for the North 

Fork accounted for only 6 days of the variability in the timing of the peak of the SDD. A 

one degree Celsius increase in mean annual temperature shifted the end of SDD (equation 

9) a trend estimated 1.25 (p=0.35) and 0.7 (p=0.59) days earlier in the water year for the 

Middle and North Fork respectively. This accounted for 5 and 3 days of the variability in 

the timing of the end of SDD for the Middle and North Fork.  
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Table 2: Results of the trend analysis for flow regime characteristics for Middle Fork and North 

Fork versus mean annual temperature. 

Middle Fork North Fork

Slope SE p-value Slope SE p-value

Start of SDD (day/ 1 ⁰C) -2.15 1.65 0.20 -1.64 1.47 0.27

Peak of SDD (day/ 1 ⁰C) -1.75 1.29 0.18 -1.44 1.26 0.26

End of SDD (day/ 1 ⁰C) -1.24 1.33 0.35 -0.72 1.33 0.59

Duration of SDD

(# days/ 1 ⁰C)
0.98 1.52 0.52 -0.092 1.30 0.94

Ascending Rate of Change 

(km3 day-1/ 1 ⁰C)
2.0x10-3 1x10-3 0.055 1.1x10-3 1.0x10-3 0.28

Descending Rate of Change

(km3 day-1/ 1 ⁰C)
-1.9x10-3 1x10-3 0.075 1.2x10-3 1.0x10-3 0.23

Magnitude of SDD 

(km3/ 1 ⁰C)
-0.11 0.056 0.061 -0.068 0.060 0.25

 

 

The trend in the Middle Fork estimated duration of SDD (equation 10) was about one day 

longer for every one degree Celsius increase (p=0.52), and in the North Fork was one-

tenth of a day earlier for every degree Celsius increase (p=0.94). The estimated 

relationship between the ascending and descending rates of change and temperature 

(equation 11)accounted for 27% of the variability of the rates of change for the Middle 

Fork and about 15% of the variability in the North Fork. The trend of the magnitude of 

SDD versus mean annual temperature (equation 12) (p=0.066) explained 26% of the 

variability of the magnitude of SDD for the Middle Fork. The trend in the North Fork 

(p=0.25) explained 13% of the variability in the North Fork’s magnitude of SDD.  

The entire suite of flow regime characteristics were significantly (p<0.05) related to the 

annual accumulation of precipitation, with the exception of the duration of SDD. The 

results are summarized in Table 3. The timing of the start, peak and end of SDD in the 

Middle Fork had a similar relationship to annual precipitation. The trend estimated that 

one km
3
 increase in annual precipitation led to a shift of the timing of the SDD between 5 

and 6 day later (p<0.01). The timing of the start and end of SDD (equation 7 and 9)in the 
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North Fork was estimated to be shifted 4.5 days later in the water year for every one km
3
 

increase in annual precipitation (p<0.02). The timing of peak SDD (equation 8) had a 

slightly larger trend, 5.5 days later in the water year, for every one km
3
 increase in 

precipitation (p=0.008) in the North Fork. Annual precipitation explained 35% of the 

variability in the timing characteristics of SDD in both the Middle and North Fork.  

Table 3: Results of the trend analysis for flow regime characteristics for Middle Fork and North 

Fork versus annual precipitation. 

Middle Fork North Fork

Slope SE p-value Slope SE p-value

Start of SDD (day/ 1 km3) 5.9 2.01 4.7x10-3 4.5 1.95 0.024

Peak of SDD (day/ 1 km3) 5.0 1.54 1.6x10-3 4.4 1.62 8.7x10-3

End of SDD (day/ 1 km3) 5.5 1.56 7.8x10-3 5.4 1.67 1.7x10-3

Duration of SDD

(# days/ 1 km3)
-0.65 1.97 0.52 0.65 1.78 0.71

Ascending Rate of Change 

(km3 day-1/ 1 km3)
7.2x10-3 1.1x10-3 2.7x10-10 8.2x10-3 9x10-4 6.4x10-13

Descending Rate of Change

(km3 day-1/ 1 km3)
7.1x10-3 1.1x10-3 8.7x10-9 8.1x10-3 9x10-4 1.0x10-12

Magnitude of SDD

(km3/ 1 km3 )
0.39 0.052 1.9x10-10 0.48 0.054 8.6x10-13

 

 

The annual precipitation explained only 3% of the variability in the duration of SDD 

(equation 10) for both watersheds. The trend in the duration of SDD was 0.65 days 

shorter for every 1 km
3
 increase of precipitation for the Middle Fork (p=0.52) and 0.65 

day longer for the North Fork (p=0.71). The trend in the ascending and descending rate of 

change (equation 11) was a about a 7x10
-3

 km
3
/day increase for every 1 km

3
 of 

precipitation in the Middle Fork (p<0.001). 

The trend in the North Fork was an increase in the ascending and descending rate of 

change by 8x10
-3

 for every 1 km
3 

accumulated (a depth of ~30cm) precipitation 

(p<0.001). The annual precipitation accounted for 70% of the variability in the ascending 

rate of change in the Middle Fork and 75% for the North Fork. The annual precipitation 
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explained 65% of the descending rate of change variability in both the Middle and North 

Fork watersheds. The magnitude of SDD (equation 12) increased by 0.4 km
3
 and 0.5 km

3
 

for every 1 km
3
 in the annual precipitation in the Middle Fork (p<0.001) and North Fork 

respectively (p<0.001). The annual precipitation accounted for about 65% of the 

variability in the magnitude of SDD in both watersheds for the study period.  

Discussion 

 

In order to be considered statistically different from zero, or no change, the p-values must 

be less than 0.05 for this study. The trends of SDD flow characteristics through time had 

p-values of greater than 0.10, indicating that SDD did not significantly change linearly 

between 1940 and 2006. Annual discharge is highly correlated with annual precipitation 

with a correlation coefficient of 0.85 (p<0.0001). The statistical model used in this study 

to evaluate the changes through time ‘removed’ the influence of the annual discharge, 

and thereby some measure of annual precipitation, on changes in SDD. The assumption is 

made that the two major influences on the SDD flow regime are precipitation and 

temperature. Therefore, the model left the mean annual temperature as the major 

influence on changes over the study period in the watersheds.  

The lack of significant trends through time may be associated with the relationship 

between temperature and flow regime characteristics. None of the flow regime 

characteristics exhibited a significant relationship with the mean annual temperature. 

Figure 8 shows the relationships between the mean annual temperature and several flow 

regime characteristics for the Middle Fork and North Fork.  

The PRISM estimated mean annual temperature for the Middle and North Fork was 

between -6 ⁰C and -2 ⁰C, with a median temperature of about -4 ⁰C. This estimate of the 

annual temperature included all elevations of the watersheds for the entire water year. 

This cool mean annual temperature may have prevented a significant relationship 

between temperature and SDD in the Middle and North Fork.  

The time series of the start and end, the duration, the magnitude (Figure 9) graphically 

illustrate the high variability of SDD in the watersheds over time. The lack of apparent 
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change of SDD through time and with temperature may be in part due to the high natural 

variability of the system. Huh et al. (2005) illustrated that moderately variable 

hydrological data requires at least 57 years of data with half measured before the 

‘disturbance’ in order to detect small trends in the discharge. While this study has 67 

years of data, the flow regime in the Flathead River basin is highly variable and small 

trends in streamflow response climate change may be difficult to detect. The relationship 

between flow regime components and temperature may not be linear, as is assumed in the 

statistical models used in this study. This may also explain the lack of relationships found 

in this analysis.  

The six of the seven SDD flow regime characteristics are driven by the annual 

accumulation of precipitation in both watersheds. Figure 10 illustrates the relationship 

between the start, duration, magnitude and ascending rate of change to annual 

precipitation. The relationship between the annual precipitation and timing of the start, 

peak and end of SDD shows that a decrease in precipitation leads to earlier timing 

characteristics (p-values< 0.01) for the Middle and North Fork watersheds. The 

ascending and descending rate of change also showed significant relationship with annual 

precipitation (p<0.0001). The amount of discharge added to the streamflow each day 

increases as the annual precipitation increases, and the decrease in the amount of 

discharge on does up as the annual precipitation goes up. The magnitude of SDD 

increases as the annual precipitation increases. The magnitude of SDD increases as the 

annual precipitation increases. The duration of the SDD had no significant relationship 

with precipitation. Heterogeneity of the snowpack can affect the timing of snowmelt in a 

basin (Luce et al, 1998). The deeper snow drifts lead to snowmelt later into the season.  

This is seen in the comparison of water year 2001 with the accumulated precipitation of 

2.1 km
3
 (depth of 67cm) and the 1954 with 5.1 km

3
 (depth of 165cm) precipitation in 

Figure 11. The annual precipitation in 1954 was 40% greater than in 2001. The start of 

SDD was 5 days earlier in 2001 than in 1954, the peak of SDD was 4 days earlier. The 

timing of the end of SDD was 20 days earlier in 2001 than in 1954. The ascending and 

descending rate of change was 0.03 km
3
/day and 0.02km

3
/day less in 2001 than in 1954. 

Finally, the magnitude of SDD was 1.8 km
3
 less in 2001 than in 1954.  
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The modeled relationship between these parameters for an annual precipitation of 5 km
3
 

compared to an annual precipitation of 2 km
3
 (40% difference) showed similar results. 

The start and peak of SDD in the year with 2 km
3
 compared to a 5 km

3
 of annual 

precipitation were estimated to be 13 days earlier. This is 8 and 9 days earlier than the 

timing in 2001. The discrepancy may be due to the large amount of variation not 

accounted for by the relationship between precipitation and timing of SDD. The end of 

SDD was estimated by the estimated relationship should have been 20 days earlier in 

2001 than in 1954. The ascending and descending rate of change was modeled to be 0.02 

km
3
/day less in the year with 2 km

3
 than in the year with 5 km

3
 precipitation, and the 

magnitude had an estimated difference of 1.44 km
3
. These estimates are very similar to 

actual comparison of 1954 and 2001.  

The relationship between SDD and annual precipitation shows that the change in the 

stream discharge associated with precipitation is more complex than a simple shift in 

timing. This can have implications for the relationship with precipitation, SDD and 

ecology. A decrease in precipitation may lead to lower discharge late in the summer if the 

shift overcomes the lower loss of discharge per day in the descending limb of the 

discharge curve. This may lead to lower velocities which may prevent successful 

migration and spawning (Smith, 1978; Heggenes and Traaens, 1988). The shift in SDD as 

well as the low magnitude may increase the invasability of a stream by rainbow trout by 

decreasing spring discharge velocities which will decrease the mortality of the summer 

emergent fry (Fausch et al., 2000). Benthic algae may suffer during low precipitation 
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Figure 8: Flow regime components versus mean annual temperature for the Middle Fork (right) and 

the North Fork (left) for water year 1940 to 2006. The trend lines represent significant (p<0.05) 

trends. 

 

 



27 

 

 

Figure 9: Time series plots for the start, end, duration, and magnitude for the Middle Fork (left) and 

North Fork (right). There were no significant trends in the flow regime parameters through time for 

either watershed. 
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Figure 10: Flow regime components versus annual precipitation for the Middle Fork (right) and the 

North Fork (left) for water year 1940 to 2006. Cumulative annual precipitation of 3 km
3
 is equivalent 

to a depth of precipitation of ~90 and 95 cm for the Middle and North Fork respectively. Cumulative 

precipitation of 5km
3
 is equivalent to a depth of precipitation of 150 and 160 cm for the Middle and 

North Fork. The trend lines represent significant (p<0.05) trends. 
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Figure 11: Discharge curves for the Middle Fork for a high precipitation year (water year 1954) and 

a low precipitation year (water year 2001). The flow characteristics are similar to what is predicted 

by the conceptual model. The timing of the low precipitation year is shifted earlier in the year, the 

limbs of the curve are gentler and the magnitude is smaller compared to the high precipitation year. 

 

years. A lower SDD magnitude and a decreased rate of change may lead to a higher 

biomass of algae in a stream. This will increase the fecundity of the grazing 

macroinvertebrates. The larger hatch of insects the following year may decimate the 

algae population if it is another low precipitation year (Peterson et al., 2001). A low 

precipitation year will not affect the already established Salix and Populus individuals but 

the gentler rate of change may reduce the recruitment of the new seedlings (Mahoney and 

Rood, 1998; Wood and Cooper, 2005).  

Conclusion 

 

There is no evidence for a monotonic change in the snow-dominated discharge in the 

headwaters of the Flathead River basin between water year 1940 and 2006. There was no 

significant linear trend in any of the flow regime parameters and no significant linear 

trend in temperature during this time. This may be because the flow regime parameters 

were highly variable and this high variability may make it difficult to detect any small 

trend using least squares techniques (Huh et al., 2005) over this length of time. Or 

possibly, the high-elevation headwaters may be too cold to respond to any regional 
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warming suggested by previous authors. However, there were significant relationships 

with precipitation, with the start of SDD, magnitude, and the ascending and descending 

rate of change and the volume of annual precipitation. The duration, however, may not be 

driven by precipitation directly. It may be affected by heterogeneity in the snowpack in 

the watershed (Luce et al, 1998).  

Annual precipitation is a driver of variation in the headwaters of the Flathead River basin. 

In the western United States, precipitation and snowpack is associated with natural 

climate oscillations, linked to Pacific Ocean sea surface temperature, such as El Nino 

Southern Oscillations (ENSO) or Pacific Decadal Oscillations (PDO) (Beebee and 

Manga, 2004; Cayan et al., 1999; McCabe and Dettinger, 2002). The variability in the 

SDD flow regime in the Flathead River basin may be driven by natural climate 

oscillations. An increase in precipitation will shift the SDD later in the year and create 

steeper rates of change of the ascending and descending limbs of the discharge curve of 

SDD. The magnitude of SDD will be increased.  

This suite of parameters allows for the relative trends in critical components of the 

snowmelt-dominated discharge flow regime in unmodified streams. It is an efficient and 

relatively simple method for quantifying the timing, duration, magnitude and rate of 

change of SDD. These SDD flow regime characteristics can be used in water 

management investigations as well as investigations as to how the ecosystems interact 

with stream discharge in snowmelt-dominated watersheds.  

The parameter developed in this study may be a tool for investigating relative changes of 

some flow characteristics but it may be made more sensitive to changes relative to 

‘baseflow’ of the stream. The algorithms estimate of the start of the SDD may be slightly 

later than the one would subjectively estimate as the start of the SDD and a few days 

earlier than a subjectively estimated end. The peak, however, seems to be reasonably 

estimated by the algorithm. This algorithm may be improved by mathematically choosing 

the day where the second derivative begins to rise up, as opposed to the maximum value 

(figure 4c), for an estimate of the start of SDD. A better estimate of the end of SDD 

would be made by being able to objectively choosing the day the second derivative 
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begins to flatten back out again (figure 4c). It seems reasonable that attempts to define 

parameters in a complex system will require a much more complex algorithm.  
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CHAPTER 2: COMPARING THE EFFECTS OF DAM-

MODIFIED AND CLIMATE CHANGE ON STREAMFLOW 

IN THE FLATHEAD RIVER BASIN, NORTHWESTERN 

MONTANA 
 

 

Introduction 

 

The snowpack of the northwestern United States provides large amounts of water storage 

during the winter. In the spring, the water is released and much of it is captured in 

reservoirs and released later in the year for agriculture, hydroelectric power generation, or 

municipal uses. Payne et al. (2004) projected that the effects of climate change in the 

Columbia River basin will eventually lead to a reduced capacity for hydroelectric dams to 

meet power needs in the future because of changes in amount and timing of snow-melt 

runoff. Barnett et al. (2005) reports that the current reservoir storage is insufficient to 

handle the climate model projected shifts in river discharge by 2050. Suggestions that 

climate change may affect water availability are likely to lead toward a push to increase 

the reservoir storage capacities in the western United States as it has in California. The 

California Department of Water Resources has proposed two large dams over concerns of 

global climate change and its effects on snowmelt timing (Boxall, 2007). More rivers of 

northwestern United States may soon be under pressure from reservoir operations and 

climates change.  

Previous workers have attempted to quantify how dam operations influence the 

streamflow of a river. Dam operations have been shown to result in lower and shorter 

duration peaks in discharge (Singer, 2007), and higher low flows (Magillian and Nislow, 

2005; Graf, 2006; Singer, 2007). There is also a shift in the high and low extreme flows 

in dammed rivers (Magillian and Nislow, 2005; Graf, 2006; Lajoie et al, 2007), and 

reduced annual variability (Graf, 2006). Along with direct modification, snowmelt-

dominated streams may be altered by global climate change. The mean global 

temperature increase of 0.8⁰C (Hansen et al., 2006) may decrease snowpack in the 

western United States. Several researchers have reported trends indicating an earlier 
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snowmelt season, due to increased mean temperature, has been occurring since the 

1940’s in the western United States (Cayan et al., 2001; Mote, 2003 and 2006; Stewart et 

al., 2005). Moore et al. (2007) used a rigorous method of data selection and a more robust 

measure of timing – quantiles of flow. They reported that the timing of streamflow in the 

Missouri and Columbia River basins were significantly related to the annual discharge. 

They suggested that annual precipitation, and therefore natural climate oscillations, may 

influence the timing of streamflow.  

The three upper watersheds of the Flathead River have continuous daily stream gage 

records beginning in 1 October 1939. The Flathead River basin drains the relatively 

pristine, high-mountain watersheds of the Waterton-Glacier International Peace Park, the 

Bob Marshall Wilderness and the Flathead National Forest (Figure 12). The basin is an 

ideal region to compare direct and indirect human modifications on the characteristics of 

discharge in snowmelt dominated watersheds.  

 

Figure 12: The Flathead River Basin in northwestern Montana with the headwater watersheds 

delineated and the Hungry Horse Dam is shown. The triangles mark the location of the stream gages 

used in this study. Wilderness areas (grey), the Flathead National Forest (dots) and the American 

Waterton-Glacier International Peace Park (hashes) are shown. 
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The flows in the Middle Fork and North Fork of the Flathead River are relatively 

unmodified by humans and provide an excellent opportunity to investigate global climate 

change on the streamflow. The Hungry Horse dam, a large hydroelectric reservoir, was 

completed on the South Fork of the Flathead River in 1953 in the lower end of the basin 

with unmodified headwaters. This makes it ideal for studying the effects of dam 

operations compared to climate change influence on streamflow characteristics over the 

last c.a. 55 years. The streamflow alterations associated with dam operations to those 

associated with climate change will be compared. The variance of the directly modified 

South Fork and natural-flow North Fork and Middle Fork is compared to examine the 

interannual variability created by dam operations and climate change. The stream gage 

downstream of the confluence of these three forks of the Flathead River has no additional 

tributaries or withdraws between the confluence of the three branches and the main 

branch Flathead River gage. It is included in this study to investigate how the operations 

of the Hungry Horse dam influence the characteristics of stream flow downstream after 

the addition of un-regulated tributaries.  

Datasets 

 

US Geological Survey (http://waterdata.usgs.gov) daily hydrological data from four 

rivers, during the interval from October 1, 1939 to September 30, 2006 were used for this 

study: 1) the Middle Fork Flathead River near West Glacier, Montana (12358500); 2) the 

North Fork Flathead River near Columbia Falls, Montana (12355500); 3) the South Fork 

Flathead River near Columbia Falls, Montana(12362500); 4) the Flathead River at 

Columbia Falls, Montana (12363000). There was relatively little (less than 30 days) data 

missing in the stream gage records. An estimate of the value of the occasional missing 

daily measurements was linearly interpolated using the measurements from the day 

before and after the missing data.  

Parameter Development 

 

While the previous work has focused on the modification of stream flow variables by 

either dams or climate change, little has been done comparing the two modes of 
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streamflow modification. This is often difficult because the variables used to study dam 

modified-streamflow may not fully describe the characteristics of unmodified 

streamflow. Measures estimating snowmelt-influenced discharge or peak of spring 

discharge have very little meaning in dammed streams. The model of an undammed 

snow-dominated stream begins with low flows through the fall and winter. The discharge 

ramps up in the spring as a result of snowmelt. In the late summer the discharge is at low 

flow once again. This difference can be seen in the mean daily discharge averaged over 

the water years 1954 to 2006 (Figure 13). 

 

Figure 13: Mean daily discharge averaged from 1954 to 2006 for the Middle Fork (red), North Fork 

(blue) and the South Fork (black) of the Flathead River. 

 

Olden and Poff (2003) discussed the usefulness of a suite of hydrologic variables 

developed to quantify dam influence on streamflow. They found that the variables should 

be used in conjunction with intuitive parameters for the problem that is being studied. 

The intuitive parameter in this study will be quantiles of flow. They have an intuitive and 

useful meaning for water management and are more robust than measures like the mean 
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daily or monthly flow. Quantiles of flow represent what percentage of flow has already 

passed the stream gage. For instance, the day of the 50
th

 quantile of flow indicates the day 

of the year that half of the discharge had occurred. This is of interest to water managers 

who are responsible for operating the reservoirs effectively.  

Using quantiles as a yearly summary variable leads to a robust variable for analysis. 

Quantiles of flow are not significantly affected by outliers (Wilcox, 2001). Quantiles of 

flow also allow for the comparison among streams and years that have dissimilar flows. 

This hydrologic metric was used to compare the characteristics of flow in dammed and 

un-dammed streams in a paired-basin study in the Flathead River basin. The cumulative 

percentage of discharge for the annual water year (01 October to 30 September) was 

calculated from the discharge records of all four stream gages. The day of the 25
th

, 50
th

 

and 75
th

 quantile of flow were determined from the cumulative percentage of the 

discharge. The day of the 25
th

, 50
th

, and 75
th

 quantile of flow were used to represent the 

early, median, and late timing components of the annual discharge (Moore et al. 2007). 

The cumulative percentage is bound at zero for the first day of the year and at 100 for the 

last day of the year, the quantiles too close to the beginning or end of the year may be 

biased by the boundary conditions. The number of days between the day of the 25
th

 and 

75
th

 quantile of flow was used to estimate the interquantile duration of flow. The median 

flow discharge (km
3
/day) was the volume of flow between the 45

th
 and 55

th
 quantile of 

flow divided by the number of days between the 45
th

 and 55
th

 quantile of flow. The 

interquantile magnitude (km
3
) of flow was the total discharge that occurs between the day 

of the 25
th

 and 75
th

 quantile of flow.  

Statistical Analysis 

 

The annual water year (01 October to 30 September) flow characteristic time series 

trends were calculated for all of the streamflow variables of each of the four stream 

gages. A robust regression technique used bisquares weighting function in the trend 

analysis, which was implemented using weighted least squares. The power of this robust 

regression method is not significantly affected by non-normally distributed errors or 

inconsistent variance (heteroscedacity) (Tiku et al., 1986), which are common in 
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hydrological data. A trend analysis on the post-dam data (water year 1954 to 2006) was 

done to compare the effects of climate change and dam alterations. The simple linear 

statistical model used was y = b0 + b1x1. Where y is the streamflow characteristics and x1 

is the water year.  

A correlation analysis was done to compare the variance between pre-dam (1940 to 1952) 

and post-dam (1954 to 2006) streamflow characteristics. The correlation method was also 

used to estimate the effect of the Hungry Horse dam on the main branch of the Flathead 

River. The correlation coefficient was decided to be the median of 1000 bootstrapped 

Pearson’s correlation analyses on the North Fork or Middle Fork compared to the South 

Forks pre-dam flow characteristics (Wilcox, 2005). Bootstrapping, with replacement, is a 

statistical technique in which the data are randomly selected to develop a new dataset. 

The statistical analysis, Pearson’s correlation analysis in this case, is performed on the 

‘developed’ dataset. The solutions were stored and the procedure was done 1000 times. 

The median of the results was used to represent the correlation between the actual 

datasets. This technique is used to make Pearson’s correlation analysis less sensitive to 

non-normality and non-constant variance. This method assumes no autocorrelation is 

present. Autocorrelation is not notably present in the parameters in this study.  

The median absolute deviation (MAD), a robust method, was used to describe the 

variance of the post-dam streamflow characteristics. MAD has a finite breakdown point 

of 0.5, meaning that it takes 50% of the data to be outliers before the MAD value is 

adversely affected (Wilcox, 2001). The standard errors of coefficients (SE) of the 

regression analysis are reported in the tables of results for completeness. The SE reported 

is a measure of variability of the slope coefficient as estimated by the weighted least 

squares method.  

Results 

 

The squared correlation coefficient estimates the variance in common between two 

variables. The North Fork and the Middle Fork had over 62% of the variance in common 

for the day of the 25
th

 quantile of flow during the pre-dam record (p<0.0001). The three 

rivers had about 90% of the variance for the day of the 50
th

 and 75
th

 quantile of flow in 
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common (p<0.0001). The correlation coefficient comparing the Middle Fork and North 

Fork with the South Fork for the pre-dam interquantile duration was 0.76 and 0.72 

respectively (p<0.0001). The Middle Fork had 80% of its variance in the median flow 

discharge in common with the South Fork (p<0.000). The North Fork shared 60% of the 

variance of the median flow discharge with the South Fork (p=0.003). The correlation of 

the interquantile discharge of flow showed that the Middle Fork shared 80% of its 

variance with the South Fork, and the North Fork shares 70% of its variance (p<0.0001) 

in the pre-dam record.  

The results of the linear trend analysis of the South (dammed), North (un-dammed) and 

Middle (un-dammed) Fork are given in Table 4. The trends for the timing of the 25
th

 

quantile of flow for the dammed stream was opposite in sign, but had similar magnitude, 

compared to the un-dammed streams. Only the North Fork had a significant trend in the 

timing of the 25
th

 quantile of flow. The un-dammed streams had a trend indicating that 

the timing of the 50
th

 quantile of flow was 1.7 days earlier every decade. Whereas, the 

dammed stream showed a trend of being 13 days later every decade. All of the trends in 

the timing of the 50
th

 quantile of flow were significant .The timing of the 75
th

 quantile of 

flow had similar results. The trend in timing of the 75
th

 quantile of flow for the un-

dammed rivers was 5% of the trend in the dammed rivers. Only the dammed stream had a 

significant trend in the 75
th

 quantile of flow. The trend in the dammed stream for the 

interquantile duration was 2 and 4 times larger than the trends in the North Fork and 

Middle Fork respectively. The median flow discharge had similar trends for the dammed 

and un-dammed streams. The trend in the dammed stream was not significant, however. 

The trend in the interquantile discharge was also similar for the dammed and un-dammed 

streams. Only the trend in interquantile discharge for the North Fork was not significant.  

The variance, median and range of the flow characteristic estimates are given in Table 5. 

Figure 14 visually illustrates the magnitude of variance of the timing of the quantiles of 

flow for the three rivers. The variance of the timing of the 25
th

 quantile of flow of the un-

dammed streams is about 50% of the variance of the dammed stream. The median day of 

the 25
th

 quantile of flow is 4 months earlier in the dammed river than in the undammed  
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Table 4: Results of the trend analysis for flow characteristics of the dammed and un-dammed streams versus water year for water year from 1954 to 

2006. 

Middle Fork North Fork South Fork

Slope SE p-value Slope SE p-value Slope SE p-value

Timing of 25th

Quantile (day/year)
-0.20 0.12 0.097 -0.31 0.10 0.0046 0.47 0.30 0.13

Timing of 50th

Quantile (day/year)
-0.17 0.070 0.017 -0.17 0.066 0.012 1.3 0.0004 0.0012

Timing of 75th

Quantile (day/year)
-0.063 0.061 0.31 -0.059 0.062 0.35 1.4 0.35 0.00029

Interquantile Duration 

(# days/year)
0.147 0.11 0.17 0.26 0.095 0.0077 0.6 0.46 0.19

Median Flow 

Discharge (km3/year)
-0.00030 0.0001 0.0073 -0.00040 0.0001 0.0014 -0.0001 0.0001 0.11

Interquantile

Discharge (km3/year)
-0.0054 0.024 0.032 -0.0048 0.0026 0.073 -0.0076 0.003 0.013
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river. The range of the timing of the 25
th

 quantile of flow is 2 times greater for the 

dammed stream than for the un-dammed stream. The variance of the timing of the 50
th

 

quantile of flow is 6 times greater for the dammed stream than for the un-dammed 

streams. The median day of the 50
th

 quantile of flow is 2.5 months earlier in the dammed 

stream. The range of the timing of the 50
th

 quantile of flow is 6.5 times greater for the 

dammed stream than for the undammed streams. The variance of the timing of the 75
th

 

quantile of flow of the dammed stream is 6 times greater than the variance in the Middle 

Fork, and 7 times greater than the North Fork. The median day of the 75
th

 quantile of 

flow was similar for all three streams. The range for the dammed stream was 6.5 times 

greater than in the undammed streams.  

Figure 15 illustrates the variance in the duration, median flow discharge and interquantile 

discharge for the three rivers. The variance of the interquantile duration for the South 

Fork is more than 2 times greater than the variance of the un-dammed streams. The 

median interquantile duration was 3 times greater for the dammed streams than for the 

undammed streams. The range of the interquantile duration for the Middle and North 

Fork was 75% and 50% of the range of the South Fork. The variance for the median flow 

discharge of the dammed streams is 55% of the un-dammed rivers. The median value of 

the median flow discharge for the dammed stream is 40% undammed streams. The range 

of the median flow discharge of the Middle Fork is 1.5 times greater than the South Fork. 

The range of the median flow discharge of the North Fork is 4.3 times the range of the 

dammed stream. The median interquantile discharge was similar between the dammed 

and un-dammed streams, 1.6km
3
 and 1.3 km

3
 respectively. The variance of the 

interquantile discharge was also similar between the three streams. The MAD was 0.3 for 

the dammed stream and 0.2 for the undammed streams. 
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Table 5: Descriptive statistics for the South, North and Middle Fork of the Flathead River from 1954 

to 2006. The comparison of these statistics is based on the water year, where day 1 of the year is 01 

October. 

South Fork North Fork Middle Fork

Timing of 25th

Quantile

median 30-Dec 2-May 1-May

min 6-Nov 2-Mar 6-Mar

max 13-Apr 19-May 28-May

MAD 27.1 11.7 15.0

Timing of 50th

Quantile 

median 13-Mar 27-May 27-May

min 6-Dec 9-May 8-May

max 19-Jul 11-Jun 11-Jun

MAD 36.1 6.0 6.4

Timing of 75th

Quantile 

median 17-Jun 20-Jun 19-Jun

min 15-Feb 6-Jun 5-Jun

max 1-Sep 5-Jul 2-Jul

MAD 39.2 5.6 6.4

Interquantile 

Duration 

(# of days)

median 156 52 52

min 75 35 33

max 225 107 143

MAD 40 10.1 14

Median Flow 

Discharge (km3)

median 0.014 0.035 0.036

min 0.0023 0.014 0.012

max 0.044 0.075 0.20

MAD 0.0070 0.011 0.013
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Figure 14: Time series plots for the timing characteristics of flow for the Middle Fork (left) and 

North Fork (center) and the South Fork (right). The same scales were used to illustrate the range of 

variance of each stream. 

 

The results of the correlation analysis comparing the Middle, North and South Fork to the 

Flathead River for the pre-dam and post-dam records are given in Table 6 and Table 7. 

Pre-dam (water year 1940 to 1952) the Flathead River had over 80% of the variance in 

the timing of the 25
th

 quantile of flow in common with the North, Middle and South Fork 

(p<0.0001). The Flathead River had over 90% variance of the timing of the 50
th

 and 75
th

 

quantiles of flow in common with the Middle, North and South Forks. The interquantile 

duration of the Flathead River shared over 80% of its variance with the other three 

streams pre-dam. The median flow discharge of the Flathead River shared between 85% 

and 95% of its variance with the other three streams. The interquantile magnitude of flow 

for the Flathead River had between 90% and 97% variance in common with the Middle, 
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North and South Forks for the pre-dam record. All of the correlation coefficients for the 

flow characteristics were significant for the pre-dam record.  

The post-dam record was from water year 1953 to 2006. The correlation coefficient 

comparing the Flathead River and the un-dammed rivers for the post-dam timing of the 

25
th

 quantile of flow were not significant. The correlation between timing of the 25
th

 

quantile of flow for the Flathead River and the dammed stream was significant.  

 

 

Figure 15: Time series plots for the interquantile duration, median flow and interquantile discharge 

of flow for the Middle Fork (left) and North Fork (center) and the South Fork (right). The same 

scales were used to illustrate the range of variance of each stream. 
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Table 6: Results from correlation analysis comparing the timing of flow characteristics of the 

Flathead River and the Middle, North and South Fork for the pre-dam (1940 to 1952) and the post-

dam (1954-2006) study periods.  

Flathead

River versus:

Timing of 

25th (day of 

water year)

p-value

Timing of 

50th (day of 

water year)

p-value

Timing of 

75th (day of 

water year)

p-value

Pre-dam
Middle Fork 0.96 <0.0001 0.99 0.0004 0.97 0.0028

North Fork 0.94 <0.0001 0.98 0.0082 0.97 0.0093

South Fork 0.89 <0.0001 0.99 0.0002 0.97 0.0023

Post-dam
Middle Fork 0.21 0.12 0.68 <0.0001 0.51 0.0001

North Fork 0.26 0.058 0.66 <0.0001 0.47 0.0003

South Fork 0.43 0.0011 0.16 0.24 0.63 <0.0001

 

 

Table 7: Results from correlation analysis comparing the interquantile duration, median flow, and 

interquantile discharge of the Flathead River and the Middle, North and South Fork for the pre-dam 

(1940 to 1952) and the post-dam (1954-2006) study periods. 

Flathead

River versus:

Interquantile 

duration (# of 

days)

p-value

Median Flow 

Discharge

(km3)

p-value

Interquantile

Discharge

(km3)

p-value

Pre-dam Middle Fork 0.9632 <0.0001 0.9769 <0.0001 0.9852 <0.0001

North Fork 0.9282 <0.0001 0.921 <0.0001 0.9612 0.0002

South Fork 0.8729 <0.0001 0.9432 <0.0001 0.9471 0.0009

Post-dam Middle Fork 0.1085 <0.0001 0.443 0.0008 0.9203 0.0271

North Fork 0.146 <0.0001 0.5545 <0.0001 0.9062 0.0489

South Fork 0.1777 0.2358 0.0737 0.5966 0.8201 0.9991

 

 

The Flathead and the South Fork shared 19% of the variance, 23% of the pre-dam 

correlation, of the timing of the 25
th

 quantile of flow. The shared variance for the Middle 

and North Fork versus the Flathead River was only 5% of the pre-dam correlation. The 
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variance of the timing of the 50
th

 quantile of flow for the Flathead River was ~45% in 

common with the undammed streams. The correlation coefficient for the timing of the 

50
th

 quantile of flow of the South Fork versus the Flathead River was not significant. The 

Middle and North Fork shared only 45% of the pre-dam common variance of the timing 

of the 50
th

 quantile of flow with the Flathead River. The variance shared by the Flathead 

River and the Middle, North and South Fork for the timing of the 75
th

 quantile of flow 

was 25%, 22% and 39% respectively. This was 27%, 25%, and 40% of the shared 

variance pre-dam. 

The correlation coefficient for the comparison of the Flathead River and the undammed 

streams is significant for the interquantile duration. The variance shared between the 

Flathead River and the un-dammed streams is rather low, less than 2%. This was less 

than 5% of the variance in common in the pre-dam data. The median flow discharge of 

the Flathead River shared only 20% of its variance with the Middle Fork. This is 20% of 

the variance shared between the Flathead River and the Middle Fork pre-dam. The shared 

variance between the Flathead River and the North Fork was 30%. This was 36% of the 

variance in common pre-dam. The South Fork was not significantly correlated with the 

Flathead River for this flow characteristic with a correlation coefficient of 0.005. This is 

about 0.5% of the variance in common between the Flathead River and the South Fork in 

the pre-dam data.  

Discussion 

 

The paired-basin technique allows for the direct comparison of climate change alterations 

to flow and the dam operation alteration of streamflow characteristics. This method 

assumes that the basins have similar characteristics and will behave in a similar manner 

to a given set of conditions. In this case, if the South Fork flow characteristics were 

correlated to the Middle Fork and North Fork pre-dam, they should have continued to 

have correlated if the Hungry Horse dam was not built. Snowmelt runoff tends to show a 

regionally cohesive pattern of discharge timing and magnitude as a result of atmospheric 

circulation in the western United States (Peterson et al., 2000). The forcing for this 

regional organization may be temperature. The previous chapter in this thesis illustrates 
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that the main forcing for variability in the headwaters of the Flathead River basin is 

precipitation. For this reason, a correlation analysis was done to determine if there is a 

relationship in the variability between the three watersheds.  

The analysis of the three rivers during the pre-dam record shows that there was at least a 

55% commonality for the flow characteristics between the variance of the South Fork and 

the other two rivers. The timing characteristics are well correlated with over 62% of the 

variance being in common between South Fork and the Middle Fork or the North Fork 

(p<0.05). The basins are well correlated considering the small sample size of 12 years. A 

paired-basin study seems appropriate in the headwaters of the Flathead River basin 

keeping in mind the relationships between the pre-dam watersheds. 

A trend of all three rivers implied that the total volume of discharge between the 25
th

 and 

75
th

 quantile of flow has decreased since 1954 (Figure 16). This decrease is possibly 

related to Pacific Decadal Oscillations (PDO) shift from a cool phase beginning in the 

mid-1940’s to the current warm phase in mid-1970’s. The cool PDO phase is associated 

with increased snowpack in the Pacific Northwest, whereas the warm phase means 

warmer drier winter (McCabe and Dettinger, 2002). The trend toward a decrease in 

interquartile flow is consistent with the shift in phases of PDO in the northwestern United 

States. 

The undammed streams had a trend implying a shift toward earlier timing of the quantiles 

of flow. Figure 17 shows the trends in the interquantile duration and magnitude, as well 

as the median flow discharge for 1954 through 2006. Moore et al. (2007) reported a 

positive relationship between timing of quantiles of flow and annual discharge. Meaning 

that a decrease in annual discharge will lead to an earlier timing of the quantile of flow. 

The Middle and North Fork trends are consistent with this hypothesis. The trends in the 

un-dammed streams showed a shift toward an earlier timing of the quantiles of flow. This 

is associated by a decrease in the median flow discharge and interquantile discharge. The 

annual discharge for the un-dammed streams had a trend of 0.01 km
3
 decrease per year 

over the post-dam study period (p = 0.09). The timing of the quantile of flow for the 

dammed stream is not behaving in a manner consistent with Moore et al. (2007) 
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hypothesis. The timing of the quantiles of flow is shifting later in the water year. This 

despite a significant trend (p = 0.02) showing a decrease in annual discharge in the South 

Fork.  

The median flow discharge trend estimated a decrease of 0.016 km
3
, 5% of the median 

value, over the study period for the undammed streams. The trend of the dammed river 

implied a decrease of 0.0054 km
3
, 40% of the median value, over the post-dam study 

period. The dammed stream had a trend that indicated a shift in the timing of the 

quantiles of flow later in the water year. The trend implied shift in the timing of the 25
th

 

quantile of flow was 25 days later. The trend in the dammed stream suggested a shift in 

the timing of the 50
th

 and 75
th

 quantile of 73 days later over the post-dam study period.  

The interannual variability of the timing of the quantile of flow was between 2 and 3 

times greater for the dammed stream than for the undammed streams. Dam operations 

have also increased the variance of the interquantile duration. The greater variability of 

flow in the dammed river may have been in part due to the modification of the augmented 

flow regimes beginning in the 1980’s (Bureau of Reclamation, 2002). The dam 

operations reduced the median flow variability compared to the undammed streams. This 

measure indicates that there was much less interannual variability within the flow 

between the 25
th

 and 75
th

 quantile of flow.  

Post-dam these relationships are altered by the dam operation-induced alterations to the 

South Fork flow characteristics. The changes in the shared variance between the Flathead 

River and the three headwater streams indicate that the South Fork is dominating the 

stream flow early in the water year. Post-dam, the day of the 25
th

 quantile of flow on the 

Flathead River is only significantly correlated with the South Fork flow from 1954 to 

2006.  

The spring peak flows of the unmodified rivers overwhelm the major influence of the 

dam. The South Fork River still reduces the variance in common between the Flathead 

River and the Middle and North Fork Rivers. The correlation coefficients denote a less 

common variance between the Flathead River and the Middle and North Fork. The day of 
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Figure 16: Time series plots for the timing characteristics of flow for the Middle Fork (left) and 

North Fork (center) and the South Fork (right). Significant trends (p<0.05) are indicated by trend 

lines. 

 

the 50
th

 quantile of flow for the Flathead River shares only half of the variance it had in 

common with the two unmodified rivers pre-dam. The South Fork is not significantly 

correlated to the Flathead River for the timing of the 50
th

 quantile of flow. The later flow 

is significantly related to all three headwater streams, but the influence of the South Fork 

is still present in the form of reduced correlation coefficients. The common variance for 

the day of the 75
th

 quantile of flow is 25% between the Flathead River and the 

unmodified Rivers. Post-dam, the South Fork shares 30% of its variance with the 

Flathead River compared to the pre-dam r
2
 of 0.75. The interquantile duration of flow 

showed the same reduction in the correlation coefficients.  
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Figure 17: Time series plots for the interquantile duration, median flow and interquantile discharge 

for the Middle Fork (left) and North Fork (center) and the South Fork (right). Significant trends 

(p<0.05) are illustrated with trend lines. 

 

Conclusion  

 

The operation of the Hungry Horse dam on the South Fork produced trends in the timing 

of the quantiles that were significantly different than the trends seen in the un-dammed 

streams. The trends for the dammed stream for the timing were larger in magnitude and 

opposite in sign compared to the un-dammed streams. The un-dammed streams show 

trends that are consistent with the hypothesis that streamflow timing is related to annual 

discharge. A decrease in annual discharge is associated with a shift in the timing earlier in 

the water year. This relationship is just the opposite in the dammed stream. The 

decreasing trend, seen in all three streams, in the interannual magnitude of flow may be 
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related to natural climate oscillations. The post-dam study period begins in a cool PDO 

phase and ends in a warm PDO phase. This indicates that the beginning of the study 

period was wetter and cooler than the end of the study period.  

The interannual variance of the flow characteristics was increased by up to 7 times by the 

Hungry Horse dam operations on the South Fork. The dammed stream showed a greater 

variance in all of the flow characteristics except the median flow discharge. The 

adjustments made to the flow augmentation regimes since the 1980’s implemented for the 

Hungry Horse dam may be responsible for the large interannual variance. Graf (2006) 

reported that the daily variability of the flow in dammed rivers is reduced. This is seen in 

the South Fork. The smaller variance of the median flow discharge in the dammed river 

implies there was less variance within the interquantile of flow from year to year.  

The South Fork appears to influence all of the flow characteristics of the Flathead River 

despite accounting for only 40% of the annual flow of the Flathead River. The most 

obvious affect is the reduction in the percent of variance in common between the three 

streams and the Flathead River for the flow characteristics. The dammed river appeared 

be related to the variance early in the year, as a result of its earlier 25
th

 quantile of flow. 

Once the spring melt begins in the undammed streams dictate the timing of the quantiles 

of flow for the Flathead River. The median flow discharge is associated with the 

undammed streams in the Flathead River.  

Magilligan and Nislow (2005) and Graf (2006) point out that due to release schedules 

tailored to each dam research on a single dam cannot reach any general conclusions about 

dam operations. While it is difficult to make portable conclusions from a study based on 

one dam, this research may add to a larger body of evidence for downstream effects on 

dams. Therefore, this study may contribute to a large understanding of dam operation 

effects on streamflow in combination with other past and future research.  
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