
University of Montana University of Montana

ScholarWorks at University of Montana ScholarWorks at University of Montana

Graduate Student Theses, Dissertations, &
Professional Papers Graduate School

1998

An evolutionary hill-climbing approach to symbolic theory revision An evolutionary hill-climbing approach to symbolic theory revision

Orest Jacob Pilskalns
The University of Montana

Follow this and additional works at: https://scholarworks.umt.edu/etd

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Pilskalns, Orest Jacob, "An evolutionary hill-climbing approach to symbolic theory revision" (1998).
Graduate Student Theses, Dissertations, & Professional Papers. 6607.
https://scholarworks.umt.edu/etd/6607

This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of
Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an
authorized administrator of ScholarWorks at University of Montana. For more information, please contact
scholarworks@mso.umt.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Montana

https://core.ac.uk/display/267572759?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.umt.edu/
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/grad
https://scholarworks.umt.edu/etd?utm_source=scholarworks.umt.edu%2Fetd%2F6607&utm_medium=PDF&utm_campaign=PDFCoverPages
https://goo.gl/forms/s2rGfXOLzz71qgsB2
https://scholarworks.umt.edu/etd/6607?utm_source=scholarworks.umt.edu%2Fetd%2F6607&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@mso.umt.edu

m 11 SI m a i #

Maureen and Mike
MANSFIELD LIBRARY

The University of IVIONTANA

Permission is granted by the author to reproduce this material in its entirety,
provided that this material is used for scholarly purposes and is properly cited in
published works and reports.

* * Please check "Yes" or "No" and provide signature * *

Yes, I grant permission
No, I do not grant permission

Author's Signature

Date________

Any copying for commercial purposes or financial gain may be undertaken only with
the author's explicit consent.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

AN EVOLUTIONARY, HILL-
CLIMBING APPROACH TO

SYMBOLIC THEORY REVISION

by

Orest Jacob Pilskalns

presented in partial fulfillment o f the requirements

for the degree o f

Master o f Science

University o f Montana

1998

Approved by:

Chairperson

Dean, Graduate Schfiol

Date

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

UMI Number: EP37408

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

UMT
Oissertatiofi F\jblishing

UMI EP37408

Published by ProQuest LLC (2013). Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code

P r o Q ^ s t :

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 4 8 1 0 6 -1 3 4 6

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Pilskalns, Orest J., M.S., August 1998 Computer Science

An Evolutionary, Hill-Climbing Approach to Symbolic Theory Revision (42 pp.)

Director: David W. Opitz

Tliis thesis presents an object-oriented, inductive learning system that is based on
genetic algorithms and implemented in Java. A Genetic Algorithm (GA) is an
optimization technique that many times can quickly and efficiently search global
search spaces. However, their searching ability can suffer when making local
refinements. Another shortcoming o f GAs is their dependence o f the initial
population to contain the proper components to e\'olve the population into a
more optimal state. Both drawbacks are addressed in this thesis. The learning
technique applied by this system is a genetic algorithm with the traditional
recombination and mutation operators and two independent procedures that may
solve the GA's shortcomings. In order to effectively produce local refinements a
hill-climbing procedure is used for local optimization that finds the best
incremental change to an individual before placing the individual back into the
population. In addition, a "domain theory" that represents an encapsulation o f
the current knowledge base about a task is used to create an initial population that
contains the components necessary for an optimal solution. Results show an
increase in overall performance o f the G A by applying the hill climbing operator
and the domain theory for generating an initial population.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

TABLE OF C O N T E N T S

Abstract.. ii
List o f Figures.. iv
List o f Tables...v
Acknowledgements... vi

1. Introduction.. 1
1.1 Genetic Algorithms: Some Strengths and W eaknesses................................. 2
1.2 Evolutionary Models..3
1.3 Thesis Statem ent.. 4
1.4 Thesis Overview.. 5

2. The Inductive Learning System.. 6
2.1 A Domain-Theor}' Originated Genetically Modified Algorithm................. 6

2.1.1 The Language, Domain T heo^ , and Initial Population.......................7
2.1.2 Fitness and Fitness Proportional Selection.............................. 10
2.1.3 Mutation ... 11
2.1.4 Crossover.. 13
2.1.5 Mill Climbing...16

2.2 ITie Object-Oriented D esign... 17
2.2.1 The Class View... 17
2.2.2 Dynamic Views... 19

3. Results... 23

4. Future and Related W ork...27

5. Appendix A - Experimental Data Sets.. ..28

Bibliography.. 36

m

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

LIST O F FIGURES

Number Page
Figure 2.1 - An Individual... 9
Figure 2.2 - Mutation Deletion...12
Figure 2.3 - Mutation Addition...13
Figure 2.4 - Crossover... :...................15
Figure 2.5 - Class V iew ..18
F^;ure 2.6 - Dynamic View A .. 20
Figure 2.7 - Dynamic View B... 21
Figure 3.1 - GA Mutation, Crossover, and Hill-Climbing Results..........................24
Figure 3.2 - GA and Hill-Climbing Results.................... 25
Figure 3.3 - Size versus Crossovers.............................. 26
Figure A .l - Gene Expression..................... .29
Figure A.2 - Search by Signal..30

IV

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

LIST OF TABLES

Number Page
Table 2.1 - D O G M A ..7
Table 2.2 - Rules and Features..8
Table 2.3 - Crossover...14
Table 2.4 - Hill-Climbing... 16
Table 3.1 - Inductive Learning Systems Compared... 25
Table A.1 - Promoters Domain Theory..33
Table A.2 - Ribosome-Binding Sites...34

V

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

A C K N O W L E D G M E N T S

The arduous task o f completing a graduate project is made possible through the

efforts o f not just one person, but through the help o f an entire supporting cast.

Therefore, I would like to thank my advisor David Opitz for providing the

motivation, advice, and time to make this project possible. I would like to thank

Alden Wright for his insightful comments and taking the time to be on my

committee. I would like to thank Jim Jacobs for taking the time to be on my

committee, for always being supportive o f my educational endeavors, and for

providing intellectual and financial undergraduate support. In addition, I would

like to thank the entire faculty and staff o f the Computer Science Department for

their continual intellectual and financial support.

Most important o f all, I would like to thank my wife Sasha for the love,

encouragement, and help. Without her none o f this would be possible.

VI

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

C h a p t e r 1

INTRODUCTION

Inductive learning algorithms are optimization techniques that learn from a set o f

labeled examples. A Genetic Algorithm (GA) is an optimization technique that

can be used for inductive learning. GAs are an effective global search algorithm

(Hart, 1994), however, building blocks are hard to find in complex problems

(Forrest and Mitchell, 1996) and GAs are not effective at localizing (Hart, 1994).

This thesis presents a new inductive learning system that addresses these

deficiencies by using a hybrid GA/hill-climbing approach to refining background

knowledge with a set o f examples.

GAs, first introduced by Holland (1975), are global search and optimization

methods. GAs employ an evolutionary' filtering and refinement process

resembling the biological phenomenon, first observed by Charles Darwin and

Mfred Russell, referred to as .amiral of the fittest. Individual organisms in a

population that are well adapted to their environment have a high survival rate

and tend to reproduce more, those that are not as well adapted are more lil^ely to

perish. An individual that has the ability to thrive is known as being fit. New

attributes are produced through biological mutations and reproduction o f higher-

fit individuals. Offspring o f £t individuals will possibly inherit genetic

components that are essential for increased sun’ival, thus shifting the population

to more optimal individuals.

GAs mimic its biological counterpart by talring a population o f candidate

solutions and evoh ing them into more-optimal solutions. Solutions are encoded

as individuals or chromosomes, which arc abstract representations o f the

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

solution. Each solution or individual is subject to an evaluation function that

assigns a fitness depending on how well die solution it encodes solves the

problem at hand. In a traditional GA new and possibly better solutions are found

by crossing over components or attributes o f individuals producing new

individuals. New individuals are also created by mutating an individual in a

population. Mutation and crossover are referred to as genetic operators. A simple

GA works as follows:

1. generate an initial population of individuals (candidate solutions)

2. calculate the fitness o f each individual in the population

3. using a selection operator apply mutation and crossover to create a new

population

4. go back to step 2

Each time this process is iterated it creates a new population referred to as a

generation. An important aspect that has thus far been omitted is how

individuals are chosen for reproduction. There are several methods used for

selection. Ih is tiaesis uses the most common method called fitness proportional

selection, where individuals are chosen probabilistically proportional to their

fitness.

1.1 G E N E T IC ALGORITHM S: SOM E ST R E N G T H S A N D
W EAKNESSES

The appeal o f genetic algorithms is found in their simplicity and their ability to

rapidly find solutions to certain difficult high dimensional problems (Forrest-

Mitchell, 1993). GAs often are able to identify the most fit part o f a large search

space quickly and find a good solution (11 art, 1994). However, it has been

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

anpm cally demonstrated (Mitchell-HoUand, 1994) that the search for good

solutions, depending on the landscape o f the search space, may take much longer

than other optimization techniques such as hill climbing, and yet may still not

provide an adequate solution.

Genetic algorithms perform well if the initial individuals in the population contain

basic budding blocks (Holland 1975, Goldberg 1989). A randomly created initial

population may not contain the budding blocks necessary for the algorithm to

find good solutions; therefore, some method should be devised to ensure that the

proper budding blocks are available.

1.2 EVOLUTIONARY M ODELS

Evolution suggests changes or adaptation o f a species to the environment

through the influence o f genetic operators. I h e accepted model for biological

evolution states that individuals may only inherit innate qualities known as the

genots'pe or die genetic composition o f an individual. This disallows die

possibility' o f parents passing learned knowledge to a future generation. I h c

phenotype is the combination o f the genetic innate qualities as well as die

attributes acquired in a lifetime, jean Batiste de Lamarck proposed a different

theory, inheritance of acquired characteristics, suggesting the phenotype might also be

passed on to descendants. As an example, Lamark suggests that a giraffe,

through its lifetime may elongate its neck by reaching for leaves, and passes this

acquired attribute onto its offspring. The Lamarckian model has been dismissed

in the biological realm, however, GAs are in a simulated environment and are not

constrained by biology. Thus, both models should be considered when

constructing a GA.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

1.3 TH ESIS STA TEM EN T

The inductive learning system developed in this thesis starts by utilizing a

traditional GA's crossover and mutation operators (Koza, 1992). The actual

structure is not represented by bit strings, but by prepositional rules, similar to

the st}ie used by the programming language Prolog. In order to increase the

GA's efficiency a hili-cümbing optimization technique is used to supplement the

GA's local refinement abilities. The hill climbing is similar to the Lamarckian

evolution model in that individuals in the population keep the local refinements

made by the hill climbing before being restored into the population.

A domain theory provides the knowledge base or the building blocks that are

essential for a GA to find more optimal solutions quickly. The domain theory

contains the available knowledge o f the task to be learned and is encoded in the

GA's propositional rule format.

The system uses both a test set and a validation set to measure the overall

accuracy and the fitness o f indh'tduals in the population. I h e effectiveness o f

each genetic operator is measured and compared as well as the synergistic effect

o f the operators. In addition, the GA/hiU climbing method presented in this

thesis is compared to a naïve Bayes classifier and an artificial neural network.

Thesis: The genetic algorithm is an effective global search technique while hill

climbing as been shown to outperform genetic algorithms in local search spaces.

Thus, combining hill climbing and traditional genetic operators should result in a

more-optimal inductive learner. In addition, background knoivledge in the form of

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

a m k base should provide the essential building blocks to aid the algorithm in

finding more optimal solutions.

1.4 TH ESIS OVERVIEW

The rest o f the dissertation describes and empirically tests the genetic inductive

learning system. The chapters will be arranged as follows:

• Chapter 2 describes in detail the encoding scheme for the individuals, the

domain theory, and the genetic algorithm and all o f its constituents. This

chapter also discusses the object-oriented design o f the entire system.

• Chapter 3 examines the many results o f the inductive learning system and

compares the inductive learning system to other inductive learning

methods.

• Chapter 4 looks at the future work and related issues in genetic theor} ̂ and

inductive learning.

• Appendix A contains die domains used in testing and comparing the

inductive learning system presented in this thesis.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

C h a p t e r 2

THE INDUCTIVE LEARNING SYSTEM

The inductive learning system is the entire software package that contains the

genetic algorithm examined in this thesis. The system is built from interacting

objects that the algorithm utilizes, and the algorithm itself is contained inside an

n-fold cross validation test set environment. In addition, the software package

sports a graphic user interface that contains visualizations o f the genetic process.

This chapter will be broken into two parts, the first describes the theoretical basis

o f the inductive learning system which includes a detailed look at the conceptual

mechanics o f the genetic algorithm, the language accepted by the GA, and the

genetic operators. The second part o f this chapter addresses the application o f

the theoretical model and the object-oriented design.

2.1 A D O M A IN -T H E O R Y O R IG IN A T ED G E N E T IC , M O D IFIE D
ALGO RITH M (DOGM A)

llac genetic algorithm, D O G i\L \, uses background lenowledge, fitness

proportional selection, crossover, mutation, and hill climbing to optimize a

population o f solutions. The learning ability in DOGM A can be segmented into

three areas or methods. First, D O G AL\ learns from prior knowledge by utilizing

the domain theoryc Second, the genetic process we have previously discussed

learns by passing useful information on to future generations through fitness

proportional selection, crossover, and mutation. The third part in the learning

algorithm optimizes individuals and passes on the optimized individual into the

next generation. This could be considered Lamarckian evolution. The second

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

and third learning methods can be observed in isolation, however, DOGM A is

the amalgamation o f all three methods. Table 2.1 summarizes DOGMA.

Goal: Search for the m ost fit individual in a domain theory initialized population.

1. Set aside a validation set from the training instances.

2. Create each member o f the initial population by randomly perturbing the
domain theory (section 2.2.1)

3. HiU climb each initial individual (optional).

4. Evaluate the fitness o f each population member.

5. Loop (until stopping criteria is reached)
a. Select individual(s) for reproduction by fitness proportional selection.
b. Create new individual(s) using mutation (section 2.1.3) or crossover
(section 2.1.4).
c. Hill climb new individuals.
d. Evaluate the fitness o f new individuals using the validation set.
e. Place new individuals into the population and probabilistically remot e
indii'iduals from the population returning it to its original size.

Tabic 2.1

Before discussing the genetic operators, it is important to discuss DGGNLVs

encoding o f individuals. Genetic algorithms traditionallv have used bit strings to

encode the solution to a task, however, DOGM A uses a propositional language.

The next section describes the propositional language that D O G i\L \ uses.

2.1.1 T H E LA NG U A G E, D O M A IN T H E O R Y , A N D INTIA L
PO PU L A T IO N

In order to render a problem understandable to DOGNL\, two types o f

information are necessar}\ The first ty'pe o f information specifies the attributes

o f the training examples that are used by DOGM A to learn. The second set o f

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

information encodes the rules that specify the domain theory or the knowledge

base that defines the initial population.

Information, used in defining examples, is restricted to nominal features and

special subclasses o f nominal features. Nominal features are features that have all

values specified, for example, the feature color may ha\'e three values red, yellow,

and blue. Binary features are nominal features that have only two values true or

false. Ordered features are nominal features that are totally ordered, for example,

the feature sic ̂might be represented by the set (small, medium, large, very-large).

Linear features are not presently incorporated into DOGM A, and wiU be

discussed in Chapter 4 - Future and Related Work.

Information representing the domain theoiy takes the form of propositional

rules. Propositional rules have a Boolean result, either negative or positive. ITie

syntax o f the language can best be demonstrated with the set o f rules and the

corresponding set o f features and feature values in Table 2.2. Table 2.2 represents

a hypothetical domain theory to determine if a day is good or bad for sailing. A

tilde preceding a rule denotes the negation o f a rule and is represented by a black

line in Figure 2.1.

Propositional Rules Features and Feature Values

Result: . o f 2 (C,~D)
C: 1 o f h (f,Edi)
D: ' o f (gja,0
E: ̂ o f
f:: windy = false
g: oudook = sunny
h; humidity - medium
i: temperature = h it^

outlook; sunny, overcast, rain,
temperature: high, medium, low.
humidity; high, medium, low.
windy: true, false.

T able 2,2

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

The rules in Table 2.2 that are denoted by lower case letters can be considered

inputs. As an example, if we have an instance where the day that is not windy,

rule f would be true. Rules can be formed through N-of-M propositions where at

least N o f the M antecedents has to be true for the propositional rule to be

positive. Antecedents are the conditional members o f the proposition, for

example, in Table 2.2 i is antecedent o f E. The rules usually contain a hierarchical

structure that combines the effect o f the input features. The rules and features in

Table 2.1 can be represented graphically as a genetic individual (see Figure 2.1),

where each node is a rule and the result is the rule that determines the output o f

the individual. The input nodes are called terminals and the others are referred to

as intermediate nodes.

humidity

température

Tlie dirccrcd graph above can only be trav escd upward from rhe inputs (humidity, outlook, . .etc) at the

bo ttom to tile ou tp u t (result), therefore containing no C)’cles.

Figure 2.1

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

10

The graph must be directed and acyclic (i.e. without cycles), a restriction imposed

by the language. The acyclic property allows for easy evaluation o f the graph

given an example.

The initial population is constructed by using the available domain theory and

constructing an individual as in Figure 2.1. Currently', the individual should have

only one output node resulting in conclusions that are Boolean. To ensure

diversity among the population the initial individual is randomly mutated each

time an individual is created using the mutation operator as described in section

2.1.3.

2.1.2 FIT N E SS A N D FITN ESS PR O PO R T IO N A L SEL EC T IO N

The fitness function evaluates the correctness o f an individual by mapping an

individual to a quantifiable numeric value. DOGM A measures fitness by taking a

test set o f examples and finding tlae number o f examples that are correctly

classified by the individual.

The fitness function provides a method o f discovering the individuals that

contribute possibly useful building blocks to future generations. Fitness

proportional selection is a procedure that favors the selection o f individuals for

reproduction based upon the individuals fitness. Fitness proportional

reproduction can be expressed with the following formula where f is the fitness

function that maps an individual to a numeric value.

See t'h itp fc r 4 - Future :ind Related VC ork

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

11

. f M

Equation 2.1

The probability o f choosing an individual is equal to the individuals fitness in

relation to the sum o f the populations fitness. Individuals that are selected to be

parents for the genetic operations o f crossover and mutation in step 5a o f

DOGM A are selected through fitness proportional selection. Individuals that are

selected to be removed in step 5e are selected through an altered fitness

proportional selection, where the least fit have the greatest possibility o f being

removed.

2.1.3 M UTA TIO N

Mutation is the genetic operator responsible for adding diversity in a population

and exploring new areas o f the search space. New features and logical precepts

can be added to an individual using mutation. The mutation operator randomly

selects nodes and then adds or deletes antecedents o f these randomly selected

nodes. Ihe structure o f the individual may change due to the addition or deletion

o f new links, which are the connection between a node and its ;intecedent. This

operator creates a new individual and possibly better solutions.

The mutation operator selects individuals through fitness proportional selection.

It then selects a random number o f nodes up to one-third the total number.

Each selected node has the possibility o f being altered by adding or deleting

antecedents. Deletion is done by randomly choosing and removing an antecedent

o f a node. The num ber o f antecedents changes so the N-of-M ratio also changes,

dhe mutation operator changes N to match as closely as possible the ratio before

M changed due to the deletion. For example, if a node needed 2-of-3

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

12

antecedents or 66"'d o f the antecedents to be true before the deletion, then N

would be set to one after the deletion. With N equal to one, 5091) have to be true

where as if N was chosen to be two, 1009'o would need to be true. Obviously,

SO'̂ 'o is closer to 66° 1) than 100%. I f a node is no longer linked to any other

nodes, it is deleted. Figure 2.2 demonstrates the deletion o f two antecedents,

notice that one node is deleted.

Before Deletions After Deletions

humidiiy

H ie rem peranire aiirecedejit was rem oved from node B. N orice tliat rlie remperarure node was removed

since rhene is no m ore links to ir. The onrlook anfecedenr was rem oved from node D w irhont any oriicr

implications.

Adding new antecedents to nodes is another way o f mutating an individual.

Adding new links between existing nodes can be complex due to the possibility

o f circularity. To ensure that no circulant}' is introduced into a mutated

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

13

individual, the new antecedent can only be added if its longest path from the

output is longer than the longest path o f the node, that it will have as an

antecedent. Figure 2.3 demonstrates two additions; a new hnk, and a new node.

B efore A d ditions After A dditions

hnrniiiity

fUTtlnnkcnnlook

A new antecedent, the newly created tem perature node, wa,s added to the K node. A new link was added

befwcen the Result node and the outlook node.

Figure 2.3

2.1.4 CROSSOVER

Crossover or recombination takes two parents found by fitness proportional

selection and swaps sections o f the individuals creating two new individuals. The

crossover process is responsible for passing possibly good budding blocks onto

future generations. When discussing complex genetic operators, the terms parent

and chdd often emerge referring to a nodes antecedent as a chdd and tlie node

itself as the parent. There are varieties o f methods for completing a genetic

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

14

crossover, the method employed by DOGMA, is summarized in Table 2.3. Most

methods can usually be divided into to distinct phases; (a) the division o f the

individuals and (b) the recombination o f the individuals.

Goal: T o divide and recombine two individuals creating two new offspring.

1. For each individual:
a. Randomly select an intermediate node as a crossover point
b. Recursively clone the nodes below the crossover point creating a branch
c. Recursively delete the nodes below the crossover point creating a trunk

2. Create two new individuals by;
a. Randomly selecting an intermediate node from each trunk as a
reconnection point
b. Create a link from the crossover node in the branch to the reconnection
point in the trunk

Table 2.3

Ihe division process randomly selects an intermediate node from a parent, which

we will call the crossover node. Tlie crossover node is then recursively cloned

thus including the graph structure below the node. j\J1 links are kept intact except

for those links that are dependent upon nodes that do not have the crossover

node as an ancestor'. The cloned section o f graph will be referred to as a branch.

The crossover node is then recursively deleted—thus deleting any child nodes that

arc exclusively dependent upon the crossover node or its descendents. The graph

that is left after the branch has been separated will be called the trunk. This is

done to each parent individual creating two branches and two trunks.

The recombination process is direct. Simply take a branch and a trunk and

reconnect them to create a new offspring. Tlie reconnection takes place between

a random intermediate node from the trunk and the crossover node from the

branch. This is done for each branch and trunk creating two new individuals.

- ,\n ancestor node is a node from which another noile has descended from through the parent-child
relationship.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

15

This method helps preserve the entire sub-graph structure and thus keeps the

basic building blocks from the domain theory mosdy intact. Figure 2.4

demonstrates the crossover process.

i’arcnr t Paivnr 2

0 0

0
tOBpCTBUR

0
tempeiDjR

© 0 © 0
wmitr LcmpeTtfUR Windy uisx9«nojre

< I f r ' s p r : a i g I

tax9»«nluR

© ©
tmtlook teiç«ntuR

0 0 0 0

outlook teopeoturt

©
windy

0 0
0 0 0

WBwV

htgi

taopcxiCan

taoD̂«niuti

outlook
©
wmdy toapencuR

l l i e crossover m odel iibove is color-coded dem otrstrating which part o f each paren t an offspring receives.

N otice the redundancy in Inputs, this could lie elim inated graphically by draw ing extra links, however, this

does n o t effect D O G M t\, w hich can prcxress either type o f individual. N o te that C, the cross over node, m

parent 1 becom es C 17 (17 is a nam ing schem e that refers to w hich cccle the algonthm is on), because a C

already exists in offspring 2. T lie crossover node for paren t 2 is D .

Figure 2.4

ITie new graphs that emerge from the crossover process could possibly use more

connections between the newly added branch and the original trunk. Tins

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

16

connection process could be added into the crossover process, however,

D O G M A is equipped with a hill climbing operator that can optimize the links in

an individual.

2.1.5 H ILL CLIM BING

Hill climbing is a greedy search algorithm that finds the optimal local

improvement to an individual. Mutation and crossover provide a certain amount

o f global searching potential (Goldberg 1989), however, may not provide the

refinements necessary to bring a population close to an optimal state. Hill

climbing helps the entire population make small directional steps towards a local

maximum, while mutation and crossover provide the large migratory leaps.

Hill climbing is accomplished by optimizing the linked structure within a

DOGM A individual. Table 2.4 summarizes the hdl climbing genetic operation.

Goal: Optimize the linked structure and the N-of-M values in an individual.
1. Randomly select an intermediate node to act as the node for optimization.
2. Loop until output is reached.

a. Remove aU parent links from the optimized node.
b. Reconnect optimized node one link at a time to the target^ nodes testing
fitness and optimizing the N-of-M values for target nodes
c. Select a parent o f the node that is being optimized and set it as the new
node for optimization
d. go to the beginning o f 2 and start cycle over_________________________

Tabic 2.4

A random intermediate node is picked from an individual, 'fhis node is then

disconnected and reconnected incrementally to even' node abo\-e^ it in the

directed graph. Each time it is reconnected to another node, a target node, the

value o f N in the N-of-M context is optimized and the fitness is measured. The

' .Nodes that have a longest path that is shorter th;in the optim ization node.

' .tbove implies rhe longest path is shorter.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

17

maximi.im fitness determines the configuration that is chosen before continuing.

The process is continued by randomly selecting a parent o f the node just

optimized and optimizing it until the root is reached.

A n alternative hiU climbing method is also implemented called fuU hiH climbing.

Full hill climbing optimizes every node in the individual, starting witli the layer of

nodes with the longest path. This method is obviously takes more time, however,

is more vigorous in its search. The previous method discussed could be called

partial hill climbing, because not all the nodes are visited.

2.2 T H E O BJECT-O RIENTED D E SIG N

There are a variety o f object-oriented modeling practices, symbols, terminolog}',

and metlaods. Until recently, no standardization or common modeling language

had been proposed. I h e Booch and O M T methods have been prominent in

designing object-oriented models, but have fallen short in certain areas and

contain disparate terminolog}^ and symbols. I 'he Unified Modeling Language

(Ui\lL) has encapsulated many o f the .same principles as the Booch and OM T

methods and has standardized the terminology and symbols. Therefore, UML is

the obvious choice for presenting the object-oriented design of the inductive

learning system co\'crcd in this thesis. Ih e re will be no ovenâew o f UML

terminology^ and symbols, however, there will be annotation when necessary.

The entire UML domain is quite vast, so only the logical I'iew will be presented in

this section.

2.1,1 CLASS RELATIO NSH IPS

The logical view may contain several different diagrams; one o f the m ost useful is

the class diagram. The class diagram is a static model type that describes the

system in terms o f classes and relationships among the classes. One goal o f the

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

1 8

class diagram is to define a foundation for other diagrams namely d}'namic

models. Figure 2.5 is a class diagram that describes the class relationships in the

system without the detailed attributes o f each class. The only relationships used

in Figure 2.5 are association relationships. Association relationships represent a

semantic connection between classes.

The Class View
Ul DatalO

O p e ra to r s ----------- G eneticA lQ onlhm iQ . ■ . . . O o m a m T h eo fy

P o p u la tio n FourV Jayv iew er

s u p p lie r

TIk ' class view depicts the c lien t/supp lier relationships betw een all classes in the svsrem.

Figure 2.5

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

19

Association implies that a two-way relationship is present between two classes.

However, Figure 2.5 shows a more restrictive association with client/supplier

notation indicating only one of the classes accesses the other. The Node class is

only accessed by the Graph class thus it is said to be contained by the Graph

class.

2.1.2 The Dynam ic View

The dynamic views rely on an understanding provided by the static class view.

The distinction between the idea o f a static class and the instantiation o f the class

resulting in an object must always be maintained, yet, a certain amount o f

flexibility should be allowed when discussing interactions o f both. A description

will be given o f the class-object interactions concluding in sequence diagrams.

'Ihe main driver o f the system is the UI class. The Ul class, depending on the

command line parameters, can run in GUI mode non-GUI mode. The UI has

relationships with only two other classes die GeneticAlgorithm class and the

D atalO class. Ihe D atalO class is responsible for all file interactions. Only the

UI class and the GeneticAlgorithm class have relationships with DatalO. The

Genetic Algorithm class orchestrates the genetic process ;ind direcdy or indirecdy

interacts with all other classes. "Hie genetic individuals themselves are created

from instantiations o f the Node class and are represented through the Graph

class. All genetic operators, such as hill climbing, crossover, fitness and mutation,

arc contained in the Operators class, which interacts with the Graph Class. The

DomainTheoiy: class is responsible for constructing an instantiation o f the Graph

class. ITie Population and Fo urW ay Viewer classes are simple containers and

visual displays for instances o f Graph classes.

The sequence diagram in Figure 2.6 is demonstrates how objects in the system

are initially constructed. Figure 2.6 leaves out many o f the details, yet delivers die

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

20

sequence o f main events. The thread o f control in the program can be traced by

following the arrows. The dotted line indicates the lifeline where the object itself

is represented by a vertical rectangle. The system is multi threaded thus two

threads o f control are present. The diagram indicates this with the notation "new

thread" when the GeneticAlgorithm object is formed. The UI object still has a

thread o f control, but generates a new one with the construction o f the

GeneticAlgorithm object. The multi-thread o f control is needed for the UI to be

active to the user, yet allow the GeneticAlgorithm to run. Figure 2.6 primarily

shows the construction o f the initial objects such as the population and several

individuals (Graphs).

Ul GeneticAlaonthm DatalO DomainTheorv Graph Operators Population Graph 1 N

I constructor [

importCommandFile

constructor(DatalO)

(new threacFl importPiies

constructor

<--------
returnst Graph)

constructor

buildPopulationCGraph)

returns(Popuiation)

constructor^

constructor. ̂ I constructors -31<-

thgure 2.6

Once the population has been created, the FourWayViewer object is constructed

and the genetic evolution process starts by the GeneticAlgrmtlim object making

se\ eral method calls to the Operators object. 'I'he First method call to the

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

21

Operators object determines the fitness o f each individual in the population.

There is no reference to the data structures that are needed for the fitness

function, this done to make the diagram readable. The next method call is to the

fitness proportional selection function, which returns an individual, based on its

previously calculated fitness. This is followed by method calls to either a mutation

or crossover function followed by a hill climbing method. Figure 2.7

demonstrates this process by starting out where Figure 2.6 left off.

Ul GeneticAldOfithm FoutWavViewer Ocerators Population Graph 1 N

a

constructor

Fitness

FitnessProportionalSelection

:rossover(Grsphl

hpllClimbing(Graphl

hillClinibing(Oraph)

FitnessProportionalReolacement(Graph)

show(Graphs)^

suspend

getlndividual

<-
returns(Graph)

getin dividual

returns(Graph)

setlndividualf Graph)

<-

Figure 2,7

Notice that some objects are missing because diey are no longer used by tlie

system. Fach time the GeneticAlgorithm finishes the genetic evolution

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

29

operations, it passes the graphs acted upon to the FourWayViewer and then

suspends itself. The GeneticAlgorithm only continues when the UI, on a

separate thread o f control, sends a resume message.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

C h a p t e r 3

THE RESULTS

In this section, D O G NIA is tested on two real-world problems from the Human

Genome Project. The genetic operators o f crossover and mutation are evaluated

and compared to the hill-climbing operator. As a baseline, the accuracy o f the

domain theory' for each problem is shown in the results. Operators wiU be

obser\'cd independently and synergisticaUy within the algorithm. In addition,

DOGM A is compared to a Naïve Bayes Classifier and an Artificial Neural

Network, which are otlier inductive learning algoritlims.

3.1 COM PARING CROSSOVER, M U TA TIO N , A N D H ILL CLIM BING

liais section compares DOGNLVs crossover and mutation operators

independently and then synergisticaUy witli hill climbing. The Ribosome Binding

Sites (RBS) and the Promoters domains, both presented in Appendix A, are used

for testing. ITic crossover operator is responsible for passing useful building

blocks onto future generations, whüe mutation attempts to find novel solutions.

Mutation is often considered a secondary' operation tliat is only used sparingly

(Goldberg, 1987). Figure 3.1 demonstrates the test set accuracy o f the mutation

and crossover operators independently and synergisticaUy with a population o f

twenty'.

l l i e rcsulcs presented are generated from ten-fold cross validation sets. Ten-fold

cross validation ehiides the examples into ten sections and holds aside one

section for testing accuraqg and allows the other nine sections to be used for

training. This process is repeated ten times allowing each section to appear once

23

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

24

as a test set. D O G M A uses the nine sections to train by setting aside a test set

30.00% 1

25.00%

k 20.00%
2
U l

o 15.00% (rt

25.0%

(A
0»

10 .00%

5.00%

0 ,00%

198%

17,9%^â^17.1'^
16.3% 17.5%

16,2%
14.6%

13 8%

g hill Climbing
g crossover
□ mutation/crossover
m mutation
□ Domain Theory

Ribosome Binding
Sites

Promoters

for fitness evaluation and using the remaining data for hill climbing.

l-'igiirc 3,1

'I'he m utation/crossover algorithm uses an equal amount o f mutation and

crossover. Five hundred individuals are considered in each variation o f the

algorithm (not including the individuals seen by hill climbing). Figure 3.1

demonstrates that the crossover and mutation operators perform about the same.

TTie hill climbing is added to the mutation/crossover algorithm by partially hill

climbing ever}' individual before adding it back into die population.

I fill climbing is time consuming due to the amount o f individuals that must be

considered to find the optimal incremental change. If the traditional genetic

algorithm considered the same amount o f individuals as a genetic algorithm with

hill-climbing what would be the result? Figure 3.2 addresses this question by

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

2 5

tracking the num ber o f calls to the fitness function by a traditional genetic

Promoters

ÊUi
«

CO

Ï

30.0%
25.0%
20 .0%

15.0%
10. 0%

5.0%
0 .0%

■ Genetic Algorithm

• GA + Hill Climbing

Calls to the Fitness Function

algorithm and a hill-climbing genetic algorithm.

I'iuiire 3.:

Figure 3.2 demonstrates that the CîA by itself quickly improves tlie test set error,

however, it does not improve very quickly after the first 500 cycles. 1 he (1/3 in

combinauon with the hiU climbing does not improve as quickly, however, it

maintains improvement as more individuals are considered.

One concern when creating populations o f individuals is the size o f the

individuals after the crossover operator is applied. The crossover operator is

designed to keep intact the basic building blocks. I lowever, this could increase

the size o f individuals to a point where fitness is expensive to apply, and thus hill

climbing a large individual could take a large amount o f time. The average size of

the initial individual is approximately equivalent to the size o f the domain thcor}\

Figure 3.3 shows the average size, in terms o f nodes, o f a population as a

crossover operator is applied 100 times. I h e increase in size o f individuals in the

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

26

population is noticeable, but does not appear to present a major problem since

the increase seems to be linear.

140
120
100

Size (RBS) I
:: Size(Promoters) i

40
20

25 100
Crossovers

Figure 3.3

The GA with hdl climbing outperforms a Naive Bayes Classifier on the RBS and

Promoters data sets. However, the GA with hill climbing is not yet able to

cfjmpete with artificial neural networks. Table 3.1 demonstrates the results o f

DOGNLA compared to a Naïve Bayes Classifier and a Neural Network.

RBS Promoters
iVrtificial Neural Network 9.7" F 5.1"'"
Naïve Baves Classifier 19.6" F 24.6""
Genetic Ægorithm with Hill Climbing 13.8"', 14.6"',

Table 3,1

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

C h a p t e r 4

FUTURE AND RELATED WORK

The subject o f genetic algorithms and hill climbing methods is immense. There

are many different avenues to pursue. Three different categories o f future and

related work could be followed. First, the hül-climbing algorithm presented in this

thesis could be optimized to a greater degree. Second, the language accepted by

D OGM A could be expanded. Finally, a greater variation o f genetic operators

could be introduced.

Hill climbing aspects are o f the most interest due to the possible increase in

perff)rmance they provide. Making hill climbing practical, by decreasing the time

constraints and by optimizing and exploring greedy search algorithms is neccssar)'

to conduct more expensi\ e experiments. A compiled implementation language

might be helpful in the testing phase.

The expressiveness o f the current language accepted by DOGMA could be

increased. Gurrently, DOGM A only accepts domain theories with Boolean

outputs, this could be expanded to a larger number o f outputs. In addition,

DOGM A does not accept real valued features, in the future DOGM A could be

modified to accept real values.

The power o f the genetic algorithm could be increased by tr}ing several different

crossover methods. Several could be available, thus allowing the algorithm to use

certain crossover methods that are effective in special landscapes or instances.

The mutation operator could also be modified into several different variations

and applied dynamically within the algorithm.

27

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

28

A p p e n d i x A

EXPERIMENTAL DATA SETS

The inductive learning system presented in thesis is tested on two real-world

Human Genome problems. The domain theories and data sets are explained in

this appendix (explanations and figures are mostly directly copied from Opitz,

1995).

A.1 F IN D IN G G E N E S IN D N A SEQ U EN C ES

The two domains in this appendix are important sub-problems in the computer

analysis o f DNA sequences. DNA is a linear sequence o f four nucleotides -

adenine, guanine, thymine, and c}'tosinc - that are commonly abbreviated by the

letters A, G, T , and C. Genes are subsequences o f DNA that serve as blueprints

for proteins, which in turn provide most o f tlie structure, function, and regulator)^

mechanisms o f cells and are thus the key budding blocks o f organisms.

Researchers arc currently sequencing large volumes o f DNA; however, biologists

are only able to study small sections o f DNA at a time. Thus, the fluman

Genome Project (Cooper, 1994) wdl produce long runs o f DNA that have not

been analyzed biologically. Therefore, it is necessary to develop automated

techniques that are able to find where genes occur in these unanalyzed sequences.

Figure A.I illustrates the process o f gene expressions. T tis process is broken into

two phases transcription and translation. Transcription happens when the

enzyme RNA - polymerase transcribes DNA into an RNA molecule called

messenger RNA (mRNA). T ie enzyme does this by first binding to a DNA

sequence, called a prom oter that precedes the gene. It then transcribes the DNA

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

29

sequence into a similar RNA sequence, except that the nucleotide thymine is

replaced with the nucleotide uracil (U).

RN A - po i V ni e rase
I
1

DNA

\ G G r (r 1 ! A .V (: G G I t r I G C C A G 1

/
Beginning of Gene

\

Transcr ipt ion

/
Ribosome

\

T ranslation

V

Protein

A. I

Translation occurs when the ribosome molecule reads the mllNA strand and

assembles a protein chain. One common approach to finding genes is called

search-by-signal (Stormo, 1987). 'th is approach works by trying to indirectly find

genes through specific signals that are associated with gene expression. Not only

arc theses signal detentions important for finding genes, they are important in

their own right to understand the mechanisms o f gene expression. Figure A.2

illustrates how I represent the search-by-signal problems in a genetic algorithm.

The genetic individual is given a fixed length window o f DNA with the task o f

deciding if the desired signal is located at a fixed location in the window. A

trained individual can tlicn scan a DNA sequence, finding potential points o f

interest.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

30

i n p u t to lenrnini i a l g o r i th m

sample inflow si /e of 6 base
rt'fcri'nce point

The following sections describe the two search-by-signal domains that are

important in finding genes: (a) promoter sites and (b) ribosome-binding sites. Sec

Clraven and Shai'lik (1994a) f)r more details about theses tasks. An expert (M.

Noordewier generated both o f the data sets and domain theories from the

biological literature. Before the domains arc presented, the relevant notation is

discussed in the next section.

A.1.1 N O T A T IO N

'I’he domain theories presented in this section use a special notation for specifying

location in a DNA sequence. In this notation, each location is numbered with

respect to a fixed, biologically meaningful reference point. Negative numbers are

locations preceding the reference point, while positive numbers are locations that

follow this point. The following is an example:

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

31

Location number: -3 -2 -1 +1 + 2 + 3

Sequence: A T A (reference point) C G A

N ote that the biological literature does no t use a position zero.

D N A nucleotides are often grouped into the following biologically meaningful

hierarchy;

any

pyrimidinepurine

Rules in the following domain theories refer to a string o f nucleotides that must

occur relative to a location number. For instance, @-39"Ri\" means that at

location -39 there is an A or G, and at location -38 there is an A. /Vlso, in the

following theories I follow biological convention and use a W to represent A or

T, and a M to represent A or C. Some domain theories contain M-of-N rules

(i.e., a rule's consequent is true if at least M o f the rules N antecedents are

satisfied. These rules are o f the form:

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

32

conséquent; -M o f (antecedent -list).

For Example, "T: -2 o f @ -39'AGT." means the consequent, T, is considered true

if at least two o f the three antecedents (i.e. location -39 is an A, location -39 is a

G, and location -37 is a T _ are satisfied).

A. 1.2 PR O M O TER SITES

The first domain is that o f recognizing promoter sites in a sequence o f E. coli

DNA. As stated above, promoters are short D N A sequences where the RNA-

polymerase binds to the DNA. This site is located just "upstream" from where

transcription begins; thus locating promoters helps locate genes

The data set contains 235 positive examples, and 702 negative examples. ITae

reference point in this case is the transcription-initiation site. The input consists

o f 57 sequential nucleotides, starting at location 5- and ending at location +7.

The negative examples are generated from a (putative_ promoter-free head o f the

phage lambda that is 4977 bases long.

The approximately correct domain theory is shown in Table A.l and contains 31

rules that M. Noordewier extracted from biological literature. Briefly, these rules

are characterized bye a region rich wit A and T from location -19 to -35, the

sequence CTFGACA starting at location -37, and finally another region rich with

A and T directly preceding the reference location. The five promoter rules differ

(a) in the type o f nucleotide located near position -30 and (b) in the exact location

o f where the sequence TAT/V/VT begins. The domain theory is overly specific; it

correctly classifies all the negative examples, but only classifies two o f the positive

examples correctly. Nonetheless, the rules do capture significant information

about promoters. This domain is available at the University o f Wisconsin

Machine Learning (UW-WL) site via the World Wide Web.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

33

promoter <- bend, minus_35, short_spacer, minus_10_15.
promoter <- bend, minus_35, short_spacer, minus_10_16.
promoter <- bend, minus_35, minus_10__17.
promoter <- bend, minus_35, long_spacer, minus_10_18.
promoter <- bend, minus_35, long_spacer, minus_10_19.

bend <- 4 of 0-39="WWWWW".

minus_35 <- 6 of @-37="CTTGACA".

short_spacer <- 3 of (homonucl, homonuc2, homonuc3, homonuc4,
homonucS, homonuc6, homonuc7, homonucS).

long_spacer <- 3 of (heteronucl, heteronuc2, heteronuc3,
heteronuc4, heteronucS, heteronuc6, heteronuc7, heteronucS).

homonucl
homonuc2
homonucS
homonuc4
homonucS
homonuc6
homonuc7
homonucS

<- 0-3O="RR".
<- @-29="RR”.
<- 0-28="RR".
<- @-27="RR".
<- @-30=”YY".
<- @-2 9="YY".
<- 0-28="YY".
<- @-27=”YY".

heteronucl <-
heteronucS <-
heteronucS <-
heteronuc4 <-
heteronucS <-
heteronucb <-
heteronuc7 <-
heteronucS <-
minus_10_15 <
minus_10_16 <
minus_10_17 <
minus_10_13 <
minus 10 19 <

_"RY "
= "RY"

@-27
@-30
@-29

@-30
@-29
9-28="RY"

"RY"
"YR"

= "YR"
@-2 3="YR"
@-27="YR"

@-11
@-12
@-13
@-14
@-15

5
5
5
5
5

= "TATAAT"
:"TATAAT"
: " TATî AT "
:"TATAAT"
:"TATAAT"

melt <- 13 of @-15="WWWWWWWWWWWWWWWWWWWWWW".
b ib le A .l

A. 1.3 R IBO SO M E-BIN D IN G SITES

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

34

The second domain is tlie task o f being able to recognize a ribosome-binding site

(RBS). As previously shown in Figure A .l, RBSs are sites where the mRNA is

translated into proteins. As stated in Section A l, the ribosome is a complex

molecule that reads the mRNA strand to produce the proteins chain o f amino

acids.

The data set contains 366 positive examples and 1,511 negative examples. Each

instance contains a sequence o f 49 nucleotides with the point o f reference being a

ribosome-binding site. The inputs start at location -25, and since there is no

location zero, end at location +24. I h e negative examples are generated from a

head o f the phage lambda that is 1559 bases long and not known include a

ribosome-binding site. With an input window size o f 49 bases, 1511 (partially

overlapping) negative examples can be generated. The input sequences are

defined in terms o f the DNA nucleotides rather than the corresponding RNA

nucleotides.

rbs <- tet:ranucleotide start-codon..

tetranucLeotide <- agga-region.
tetranucleotide <- gagg-region.

start-codon <= 0+13="ATG".
start-codon < = @+12="ATG"-
start-codon < = 0+ll="ATG".
start-codon < = 0+lO=”ATG" .
start-codon < - 0+9 ="ATG".
start-codon <= 0+3 ="ATG".
agga-region <- @+2="AGGA".
agga-region <- 0+l="AGGA".
agga-region — f3 —1="AGGA" .
agga-region < — @—2="AGGA".

gagg-region — 0 + 2="GAGG".
gagg-region <- @+l="GAGG".
gagg-region < — 0 —1="GAGG".
gagg-region <- 2="GAGG".

Table A.2

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

35

Table A.2 shows the domain theoty, extracted from the biological literature by M

Noordeweier. It contains 17 rules which say that a ribosome-binding site

contains two parts: (a) either the sequence AGGA or the sequence G AG G near

the site, and (b) the start codon ATG beginning 8 to 13 nucleotides before the

site. This domain is available at the University o f Wisconsin Machine Learning

(UW-WL) site via the W orld Wide Web.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

36

B IB L IO G R A P H Y

Back, T. Evolutionary Algoritlms in
Theory and Practice. Oxford Press,
NY, 1996

Coreman, T, Leiserson, C. and Rivest,
R. Introduction to Algorithms. MIT
Press, NL\ 1990

Gra\'en, M. and Shavlik J. Learning
Symbolic Rules Using Artificial
Neural Networks. In Proceedings
o f the Tenth International
Conference on Machine Learning
(pp,.73-80), Amherst, NLV. 1993

Eriksson, H. and Pcnkcr, M. UM L
Toolkit. John Wiley and Sons,
NY. 1998

Elanagan, D. Jam !n .4 Nut.éell.
O'Reilly and Associates, GA, 1997

Forrest, S. and Mitchell M. What
Mak.es a Problem Hard fora Genetic
Algorithm I Some . Xnomalmis Kesulls
and Their Explanation, Machine
Ixam ing 13(2), 285-319, 1996

Goldberg, D. Genetic Algorithms in
Search, Optimicytlion, and Machine
learning. Reading MA: Addison -
Wesley. 1989.

Goodrich M. and Tamassia, R. Data
Structures and Algorithms in Java.
John Wiley and Sons. NY. 1998

Hart, W. Adaptive Global Optimisation
with Local Search. Ph.D Thesis,
University o f San Diego,
Department o f Computer Science
and Electrical Engineering.
Technical Report 1281. 1994

Holland, J. Adaptation in Natural and
Artificial Systems, Ann Arbor, MI;
Universitv' o f Michigan, 1975.

Kinnear, K. Advances in Genetic
Programming, MA, MIT Press,
1994.

Koza, J. Genetic Programming.
Cambridge, MA: MIT Press, 1992

Mars, P. Chen, J. and Raghu, N.
Learning .Algorithms, CRC Press,
1996

Mitchell, M. and Forrest, S. Genetic
Aglorithms and Artificial Lfe. San te
Fe Institute Working Papers,
NM.1993

Mitchell, M. and Holland, J. When
W ill a Genetic Algorithm Outperform
Hill-Climbing, In J.Cowan, G.
Tesauro, and J. Mspector (Eds.)
Advances in Neural Information
Processing Systems, Volume 6,
San Mateo, CA Morgan
Kaufman. 1994

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

37

Opitz, D. A.n Anytime A.pproach to
Connectionist Theory Kefinement:
Kefining the Topologies of Knowledge-
Based NeuralNetmrks. Ph. D.
thesis. Computer Sciences
Department, University o f
Wisconsin, Madison, WI. 1995.

Stormo G. Identify Coding
Sequences. In Bishop N. H. &
Rawlings, C.J., editors. Nucleic
Acid and Protein Sequences Analysis:
A Practical Approach. IRL Press,
Oxford England. 1987

To well, G. & Shavlik, J. Knowledge-
Based Artijicial Neural Networks.
Artificial Intelligence, 70: 119-165.
1994.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

	An evolutionary hill-climbing approach to symbolic theory revision
	Let us know how access to this document benefits you.
	Recommended Citation

	tmp.1459884606.pdf.6tqUa

