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Pilskalns, Orest J., M.S., August 1998 Computer Science

An Evolutionary, Hill-Climbing Approach to Symbolic Theory Revision (42 pp.)

Director: David W. Opitz

Tliis thesis presents an object-oriented, inductive learning system that is based on 
genetic algorithms and implemented in Java. A Genetic Algorithm (GA) is an 
optimization technique that many times can quickly and efficiently search global 
search spaces. However, their searching ability can suffer when making local 
refinements. Another shortcoming o f GAs is their dependence o f  the initial 
population to contain the proper components to e\'olve the population into a 
more optimal state. Both drawbacks are addressed in this thesis. The learning 
technique applied by this system is a genetic algorithm with the traditional 
recombination and mutation operators and two independent procedures that may 
solve the GA's shortcomings. In order to effectively produce local refinements a 
hill-climbing procedure is used for local optimization that finds the best 
incremental change to an individual before placing the individual back into the 
population. In addition, a "domain theory" that represents an encapsulation o f 
the current knowledge base about a task is used to create an initial population that 
contains the components necessary for an optimal solution. Results show an 
increase in overall performance o f the G A by applying the hill climbing operator 
and the domain theory for generating an initial population.
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C h a p t e r  1

INTRODUCTION

Inductive learning algorithms are optimization techniques that learn from a set o f  

labeled examples. A Genetic Algorithm (GA) is an optimization technique that 

can be used for inductive learning. GAs are an effective global search algorithm 

(Hart, 1994), however, building blocks are hard to find in complex problems 

(Forrest and Mitchell, 1996) and GAs are not effective at localizing (Hart, 1994). 

This thesis presents a new inductive learning system that addresses these 

deficiencies by using a hybrid GA/hill-climbing approach to refining background 

knowledge with a set o f  examples.

GAs, first introduced by Holland (1975), are global search and optimization 

methods. GAs employ an evolutionary' filtering and refinement process 

resembling the biological phenomenon, first observed by Charles Darwin and 

Mfred Russell, referred to as .amiral of the fittest. Individual organisms in a 

population that are well adapted to their environment have a high survival rate 

and tend to reproduce more, those that are not as well adapted are more lil^ely to 

perish. An individual that has the ability to thrive is known as being fit. New 

attributes are produced through biological mutations and reproduction o f higher- 

fit individuals. Offspring o f £t individuals will possibly inherit genetic 

components that are essential for increased sun’ival, thus shifting the population 

to more optimal individuals.

GAs mimic its biological counterpart by talring a population o f candidate 

solutions and evoh ing them into more-optimal solutions. Solutions are encoded 

as individuals or chromosomes, which arc abstract representations o f the
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solution. Each solution or individual is subject to an evaluation function that 

assigns a fitness depending on how well die solution it encodes solves the 

problem at hand. In a traditional GA new and possibly better solutions are found 

by crossing over components or attributes o f individuals producing new 

individuals. New individuals are also created by mutating an individual in a 

population. Mutation and crossover are referred to as genetic operators. A simple 

GA works as follows:

1. generate an initial population of individuals (candidate solutions)

2. calculate the fitness o f each individual in the population

3. using a selection operator apply mutation and crossover to create a new 

population

4. go back to step 2

Each time this process is iterated it creates a new population referred to as a 

generation. An important aspect that has thus far been omitted is how 

individuals are chosen for reproduction. There are several methods used for 

selection. Ih is  tiaesis uses the most common method called fitness proportional 

selection, where individuals are chosen probabilistically proportional to their 

fitness.

1.1 G E N E T IC  ALGORITHM S: SOM E ST R E N G T H S A N D  
W EAKNESSES

The appeal o f  genetic algorithms is found in their simplicity and their ability to 

rapidly find solutions to certain difficult high dimensional problems (Forrest- 

Mitchell, 1993). GAs often are able to identify the most fit part o f a large search 

space quickly and find a good solution (11 art, 1994). However, it has been
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anpm cally demonstrated (Mitchell-HoUand, 1994) that the search for good 

solutions, depending on the landscape o f the search space, may take much longer 

than other optimization techniques such as hill climbing, and yet may still not 

provide an adequate solution.

Genetic algorithms perform well if the initial individuals in the population contain 

basic budding blocks (Holland 1975, Goldberg 1989). A randomly created initial 

population may not contain the budding blocks necessary for the algorithm to 

find good solutions; therefore, some method should be devised to ensure that the 

proper budding blocks are available.

1.2 EVOLUTIONARY M ODELS

Evolution suggests changes or adaptation o f  a species to the environment 

through the influence o f genetic operators. I h e  accepted model for biological 

evolution states that individuals may only inherit innate qualities known as the 

genots'pe or die genetic composition o f  an individual. This disallows die 

possibility' o f  parents passing learned knowledge to a future generation. I h c  

phenotype is the combination o f the genetic innate qualities as well as die 

attributes acquired in a lifetime, jean Batiste de Lamarck proposed a different 

theory, inheritance of acquired characteristics, suggesting the phenotype might also be 

passed on to descendants. As an example, Lamark suggests that a giraffe, 

through its lifetime may elongate its neck by reaching for leaves, and passes this 

acquired attribute onto its offspring. The Lamarckian model has been dismissed 

in the biological realm, however, GAs are in a simulated environment and are not 

constrained by biology. Thus, both models should be considered when 

constructing a GA.
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1.3 TH ESIS STA TEM EN T

The inductive learning system developed in this thesis starts by utilizing a 

traditional GA's crossover and mutation operators (Koza, 1992). The actual 

structure is not represented by bit strings, but by prepositional rules, similar to 

the st}ie used by the programming language Prolog. In order to increase the 

GA's efficiency a hili-cümbing optimization technique is used to supplement the 

GA's local refinement abilities. The hill climbing is similar to the Lamarckian 

evolution model in that individuals in the population keep the local refinements 

made by the hill climbing before being restored into the population.

A domain theory provides the knowledge base or the building blocks that are 

essential for a GA to find more optimal solutions quickly. The domain theory 

contains the available knowledge o f the task to be learned and is encoded in the 

GA's propositional rule format.

The system uses both a test set and a validation set to measure the overall 

accuracy and the fitness o f indh'tduals in the population. I h e  effectiveness o f 

each genetic operator is measured and compared as well as the synergistic effect 

o f  the operators. In addition, the GA/hiU climbing method presented in this 

thesis is compared to a naïve Bayes classifier and an artificial neural network.

Thesis: The genetic algorithm is an effective global search technique while hill 

climbing as been shown to outperform genetic algorithms in local search spaces. 

Thus, combining hill climbing and traditional genetic operators should result in a 

more-optimal inductive learner. In addition, background knoivledge in the form of
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a m k base should provide the essential building blocks to aid the algorithm in 

finding more optimal solutions.

1.4 TH ESIS OVERVIEW

The rest o f  the dissertation describes and empirically tests the genetic inductive 

learning system. The chapters will be arranged as follows:

• Chapter 2 describes in detail the encoding scheme for the individuals, the 

domain theory, and the genetic algorithm and all o f  its constituents. This 

chapter also discusses the object-oriented design o f the entire system.

•  Chapter 3 examines the many results o f the inductive learning system and 

compares the inductive learning system to other inductive learning 

methods.

• Chapter 4 looks at the future work and related issues in genetic theor}  ̂ and 

inductive learning.

• Appendix A contains die domains used in testing and comparing the 

inductive learning system presented in this thesis.
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C h a p t e r  2

THE INDUCTIVE LEARNING SYSTEM

The inductive learning system is the entire software package that contains the 

genetic algorithm examined in this thesis. The system is built from interacting 

objects that the algorithm utilizes, and the algorithm itself is contained inside an 

n-fold cross validation test set environment. In addition, the software package 

sports a graphic user interface that contains visualizations o f the genetic process. 

This chapter will be broken into two parts, the first describes the theoretical basis 

o f  the inductive learning system which includes a detailed look at the conceptual 

mechanics o f the genetic algorithm, the language accepted by the GA, and the 

genetic operators. The second part o f this chapter addresses the application o f  

the theoretical model and the object-oriented design.

2.1 A D O M A IN -T H E O R Y  O R IG IN A T ED  G E N E T IC , M O D IFIE D  
ALGO RITH M  (DOGM A)

llac  genetic algorithm, D O G i\L \, uses background lenowledge, fitness 

proportional selection, crossover, mutation, and hill climbing to optimize a 

population o f solutions. The learning ability in DOGM A can be segmented into 

three areas or methods. First, D O G  AL\ learns from prior knowledge by utilizing 

the domain theoryc Second, the genetic process we have previously discussed 

learns by passing useful information on to future generations through fitness 

proportional selection, crossover, and mutation. The third part in the learning 

algorithm optimizes individuals and passes on the optimized individual into the 

next generation. This could be considered Lamarckian evolution. The second
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and third learning methods can be observed in isolation, however, DOGM A is 

the amalgamation o f  all three methods. Table 2.1 summarizes DOGMA.

Goal: Search for the m ost fit individual in a domain theory initialized population.

1. Set aside a validation set from the training instances.

2. Create each member o f the initial population by randomly perturbing the 
domain theory (section 2.2.1)

3. HiU climb each initial individual (optional).

4. Evaluate the fitness o f each population member.

5. Loop (until stopping criteria is reached)
a. Select individual(s) for reproduction by fitness proportional selection.
b. Create new individual(s) using mutation (section 2.1.3) or crossover 
(section 2.1.4).
c. Hill climb new individuals.
d. Evaluate the fitness o f new individuals using the validation set.
e. Place new individuals into the population and probabilistically remot e 
indii'iduals from the population returning it to its original size.

Tabic 2.1

Before discussing the genetic operators, it is important to discuss DGGNLVs 

encoding o f individuals. Genetic algorithms traditionallv have used bit strings to 

encode the solution to a task, however, DOGM A uses a propositional language. 

The next section describes the propositional language that D O G i\L \ uses.

2.1.1 T H E  LA NG U A G E, D O M A IN  T H E O R Y , A N D  INTIA L  
PO PU L A T IO N

In order to render a problem understandable to DOGNL\, two types o f 

information are necessar}\ The first ty'pe o f information specifies the attributes 

o f the training examples that are used by DOGM A to learn. The second set o f
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information encodes the rules that specify the domain theory or the knowledge 

base that defines the initial population.

Information, used in defining examples, is restricted to nominal features and 

special subclasses o f nominal features. Nominal features are features that have all 

values specified, for example, the feature color may ha\'e three values red, yellow, 

and blue. Binary features are nominal features that have only two values true or 

false. Ordered features are nominal features that are totally ordered, for example, 

the feature sic  ̂might be represented by the set (small, medium, large, very-large). 

Linear features are not presently incorporated into DOGM A, and wiU be 

discussed in Chapter 4 - Future and Related Work.

Information representing the domain theoiy takes the form of propositional 

rules. Propositional rules have a Boolean result, either negative or positive. ITie 

syntax o f the language can best be demonstrated with the set o f rules and the 

corresponding set o f  features and feature values in Table 2.2. Table 2.2 represents 

a hypothetical domain theory to determine if a day is good or bad for sailing. A 

tilde preceding a rule denotes the negation o f a rule and is represented by a black 

line in Figure 2.1.

Propositional Rules Features and Feature Values

Result: . o f  2 (C,~D) 
C: 1 o f  h (f,Edi)
D: ' o f  (gja,0 
E:  ̂ o f
f:: windy = false 
g: oudook = sunny 
h; humidity -  medium 
i: temperature = h it^

outlook; sunny, overcast, rain, 
temperature: high, medium, low. 
humidity; high, medium, low. 
windy: true, false.

T able 2,2
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The rules in Table 2.2 that are denoted by lower case letters can be considered 

inputs. As an example, if  we have an instance where the day that is not windy, 

rule f  would be true. Rules can be formed through N-of-M propositions where at 

least N  o f the M antecedents has to be true for the propositional rule to be 

positive. Antecedents are the conditional members o f the proposition, for 

example, in Table 2.2 i is antecedent o f  E. The rules usually contain a hierarchical 

structure that combines the effect o f  the input features. The rules and features in 

Table 2.1 can be represented graphically as a genetic individual (see Figure 2.1), 

where each node is a rule and the result is the rule that determines the output o f 

the individual. The input nodes are called terminals and the others are referred to 

as intermediate nodes.

humidity

température

Tlie dirccrcd graph above can only be trav escd  upward from rhe inputs (humidity, outlook, . .etc) at the 

bo ttom  to tile ou tp u t (result), therefore containing no C)’cles.

Figure 2.1
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10

The graph must be directed and acyclic (i.e. without cycles), a restriction imposed 

by the language. The acyclic property allows for easy evaluation o f  the graph 

given an example.

The initial population is constructed by using the available domain theory and 

constructing an individual as in Figure 2.1. Currently', the individual should have 

only one output node resulting in conclusions that are Boolean. To ensure 

diversity among the population the initial individual is randomly mutated each 

time an individual is created using the mutation operator as described in section 

2.1.3.

2.1.2 FIT N E SS A N D  FITN ESS PR O PO R T IO N A L  SEL EC T IO N

The fitness function evaluates the correctness o f an individual by mapping an 

individual to a quantifiable numeric value. DOGM A measures fitness by taking a 

test set o f examples and finding tlae number o f  examples that are correctly 

classified by the individual.

The fitness function provides a method o f discovering the individuals that 

contribute possibly useful building blocks to future generations. Fitness 

proportional selection is a procedure that favors the selection o f individuals for 

reproduction based upon the individuals fitness. Fitness proportional 

reproduction can be expressed with the following formula where f  is the fitness 

function that maps an individual to a numeric value.

See t'h itp fc r 4 - Future :ind Related VC ork
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11

.  f M

Equation 2.1

The probability o f  choosing an individual is equal to the individuals fitness in 

relation to the sum o f  the populations fitness. Individuals that are selected to be 

parents for the genetic operations o f  crossover and mutation in step 5a o f 

DOGM A are selected through fitness proportional selection. Individuals that are 

selected to be removed in step 5e are selected through an altered fitness 

proportional selection, where the least fit have the greatest possibility o f  being 

removed.

2.1.3 M UTA TIO N

Mutation is the genetic operator responsible for adding diversity in a population 

and exploring new areas o f  the search space. New features and logical precepts 

can be added to an individual using mutation. The mutation operator randomly 

selects nodes and then adds or deletes antecedents o f these randomly selected 

nodes. Ihe structure o f  the individual may change due to the addition or deletion 

o f new links, which are the connection between a node and its ;intecedent. This 

operator creates a new individual and possibly better solutions.

The mutation operator selects individuals through fitness proportional selection. 

It then selects a random number o f nodes up to one-third the total number. 

Each selected node has the possibility o f being altered by adding or deleting 

antecedents. Deletion is done by randomly choosing and removing an antecedent 

o f  a node. The num ber o f  antecedents changes so the N-of-M ratio also changes, 

dhe  mutation operator changes N to match as closely as possible the ratio before 

M changed due to the deletion. For example, if a node needed 2-of-3
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antecedents or 66"'d o f  the antecedents to be true before the deletion, then N 

would be set to one after the deletion. With N  equal to one, 5091) have to be true 

where as if N was chosen to be two, 1009'o would need to be true. Obviously, 

SO'̂ 'o is closer to 66° 1) than 100%. I f  a node is no longer linked to any other 

nodes, it is deleted. Figure 2.2 demonstrates the deletion o f two antecedents, 

notice that one node is deleted.

Before Deletions After Deletions

humidiiy

H ie  rem peranire aiirecedejit was rem oved from  node B. N orice tliat rlie remperarure node was removed 

since rhene is no m ore links to  ir. The onrlook anfecedenr was rem oved from node D  w irhont any oriicr 

implications.

Adding new antecedents to nodes is another way o f mutating an individual. 

Adding new links between existing nodes can be complex due to the possibility 

o f  circularity. To ensure that no circulant}' is introduced into a mutated
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individual, the new antecedent can only be added if its longest path from the 

output is longer than the longest path o f  the node, that it will have as an 

antecedent. Figure 2.3 demonstrates two additions; a new hnk, and a new node.

B efore A d ditions After A dditions

hnrniiiity

fUTtlnnkcnnlook

A new  antecedent, the newly created tem perature node, wa,s added to the K node. A new link was added 

befwcen the Result node and the outlook node.

Figure  2.3

2.1.4 CROSSOVER

Crossover or recombination takes two parents found by fitness proportional 

selection and swaps sections o f the individuals creating two new individuals. The 

crossover process is responsible for passing possibly good budding blocks onto 

future generations. When discussing complex genetic operators, the terms parent 

and chdd often emerge referring to a nodes antecedent as a chdd and tlie node 

itself as the parent. There are varieties o f methods for completing a genetic
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crossover, the method employed by DOGMA, is summarized in Table 2.3. Most 

methods can usually be divided into to distinct phases; (a) the division o f  the 

individuals and (b) the recombination o f the individuals.

Goal: T o  divide and recombine two individuals creating two new offspring.

1. For each individual:
a. Randomly select an intermediate node as a crossover point
b. Recursively clone the nodes below the crossover point creating a branch
c. Recursively delete the nodes below the crossover point creating a trunk

2. Create two new individuals by;
a. Randomly selecting an intermediate node from each trunk as a 
reconnection point
b. Create a link from the crossover node in the branch to the reconnection 
point in the trunk

Table 2.3

Ihe division process randomly selects an intermediate node from a parent, which 

we will call the crossover node. Tlie crossover node is then recursively cloned 

thus including the graph structure below the node. j\J1 links are kept intact except 

for those links that are dependent upon nodes that do not have the crossover 

node as an ancestor'. The cloned section o f graph will be referred to as a branch. 

The crossover node is then recursively deleted—thus deleting any child nodes that 

arc exclusively dependent upon the crossover node or its descendents. The graph 

that is left after the branch has been separated will be called the trunk. This is 

done to each parent individual creating two branches and two trunks.

The recombination process is direct. Simply take a branch and a trunk and 

reconnect them to create a new offspring. Tlie reconnection takes place between 

a random intermediate node from the trunk and the crossover node from the 

branch. This is done for each branch and trunk creating two new individuals.

- ,\n  ancestor node is a node from  which another noile has descended from through the parent-child 
relationship.
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This method helps preserve the entire sub-graph structure and thus keeps the 

basic building blocks from the domain theory mosdy intact. Figure 2.4 

demonstrates the crossover process.
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l l i e  crossover m odel iibove is color-coded dem otrstrating which part o f  each paren t an offspring receives. 

N otice the redundancy in Inputs, this could  lie elim inated graphically by draw ing extra links, however, this 

does n o t effect D O G M t\, w hich can prcxress either type o f  individual. N o te  that C, the cross over node, m 

parent 1 becom es C 17 (17 is a nam ing schem e that refers to  w hich cccle the algonthm  is on), because a C 

already exists in offspring 2. T lie crossover node for paren t 2 is D .

Figure  2.4

ITie new graphs that emerge from the crossover process could possibly use more 

connections between the newly added branch and the original trunk. Tins
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connection process could be added into the crossover process, however, 

D O G M A  is equipped with a hill climbing operator that can optimize the links in 

an individual.

2.1.5 H ILL CLIM BING

Hill climbing is a greedy search algorithm that finds the optimal local 

improvement to an individual. Mutation and crossover provide a certain amount 

o f  global searching potential (Goldberg 1989), however, may not provide the 

refinements necessary to bring a population close to an optimal state. Hill 

climbing helps the entire population make small directional steps towards a local 

maximum, while mutation and crossover provide the large migratory leaps.

Hill climbing is accomplished by optimizing the linked structure within a 

DOGM A individual. Table 2.4 summarizes the hdl climbing genetic operation.

Goal: Optimize the linked structure and the N-of-M values in an individual.
1. Randomly select an intermediate node to act as the node for optimization.
2. Loop until output is reached.

a. Remove aU parent links from the optimized node.
b. Reconnect optimized node one link at a time to the target^ nodes testing 
fitness and optimizing the N-of-M values for target nodes
c. Select a parent o f  the node that is being optimized and set it as the new 
node for optimization
d. go to the beginning o f 2 and start cycle over_________________________

Tabic 2.4

A random intermediate node is picked from an individual, 'fhis node is then 

disconnected and reconnected incrementally to even' node abo\-e^ it in the 

directed graph. Each time it is reconnected to another node, a target node, the 

value o f  N in the N-of-M context is optimized and the fitness is measured. The

' .Nodes that have a longest path  that is shorter th;in the optim ization node. 

' .tbove  implies rhe longest path is shorter.
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maximi.im fitness determines the configuration that is chosen before continuing. 

The process is continued by randomly selecting a parent o f  the node just 

optimized and optimizing it until the root is reached.

A n alternative hiU climbing method is also implemented called fuU hiH climbing. 

Full hill climbing optimizes every node in the individual, starting witli the layer of 

nodes with the longest path. This method is obviously takes more time, however, 

is more vigorous in its search. The previous method discussed could be called 

partial hill climbing, because not all the nodes are visited.

2.2 T H E  O BJECT-O RIENTED D E SIG N

There are a variety o f  object-oriented modeling practices, symbols, terminolog}', 

and metlaods. Until recently, no standardization or common modeling language 

had been proposed. I h e  Booch and O M T methods have been prominent in 

designing object-oriented models, but have fallen short in certain areas and 

contain disparate terminolog}^ and symbols. I 'he Unified Modeling Language 

(Ui\lL) has encapsulated many o f the .same principles as the Booch and OM T 

methods and has standardized the terminology and symbols. Therefore, UML is 

the obvious choice for presenting the object-oriented design of the inductive 

learning system co\'crcd in this thesis. Ih e re  will be no ovenâew o f UML 

terminology^ and symbols, however, there will be annotation when necessary. 

The entire UML domain is quite vast, so only the logical I'iew will be presented in 

this section.

2.1,1 CLASS RELATIO NSH IPS

The logical view may contain several different diagrams; one o f the m ost useful is 

the class diagram. The class diagram is a static model type that describes the 

system in terms o f  classes and relationships among the classes. One goal o f  the
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class diagram is to define a foundation for other diagrams namely d}'namic 

models. Figure 2.5 is a class diagram that describes the class relationships in the 

system without the detailed attributes o f each class. The only relationships used 

in Figure 2.5 are association relationships. Association relationships represent a 

semantic connection between classes.

The Class View
Ul DatalO

O p e ra to r s ----------- G eneticA lQ onlhm iQ .  ■ . . . O o m a m T h eo fy

P o p u la tio n FourV Jayv iew er

s u p p lie r

TIk ' class view depicts the c lien t/supp lier relationships betw een all classes in the svsrem.

Figure 2.5
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Association implies that a two-way relationship is present between two classes. 

However, Figure 2.5 shows a more restrictive association with client/supplier 

notation indicating only one of the classes accesses the other. The Node class is 

only accessed by the Graph class thus it is said to be contained by the Graph 

class.

2.1.2 The Dynam ic View

The dynamic views rely on an understanding provided by the static class view. 

The distinction between the idea o f a static class and the instantiation o f the class 

resulting in an object must always be maintained, yet, a certain amount o f 

flexibility should be allowed when discussing interactions o f  both. A description 

will be given o f the class-object interactions concluding in sequence diagrams.

'Ihe  main driver o f the system is the UI class. The Ul class, depending on the 

command line parameters, can run in GUI mode non-GUI mode. The UI has 

relationships with only two other classes die GeneticAlgorithm class and the 

D atalO  class. Ihe D atalO  class is responsible for all file interactions. Only the 

UI class and the GeneticAlgorithm class have relationships with DatalO. The 

Genetic Algorithm class orchestrates the genetic process ;ind direcdy or indirecdy 

interacts with all other classes. "Hie genetic individuals themselves are created 

from instantiations o f  the Node class and are represented through the Graph 

class. All genetic operators, such as hill climbing, crossover, fitness and mutation, 

arc contained in the Operators class, which interacts with the Graph Class. The 

DomainTheoiy: class is responsible for constructing an instantiation o f the Graph 

class. ITie Population and Fo urW ay Viewer classes are simple containers and 

visual displays for instances o f Graph classes.

The sequence diagram in Figure 2.6 is demonstrates how objects in the system 

are initially constructed. Figure 2.6 leaves out many o f the details, yet delivers die
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sequence o f main events. The thread o f control in the program can be traced by 

following the arrows. The dotted line indicates the lifeline where the object itself 

is represented by a vertical rectangle. The system is multi threaded thus two 

threads o f  control are present. The diagram indicates this with the notation "new 

thread" when the GeneticAlgorithm object is formed. The UI object still has a 

thread o f  control, but generates a new one with the construction o f the 

GeneticAlgorithm object. The multi-thread o f  control is needed for the UI to be 

active to the user, yet allow the GeneticAlgorithm to run. Figure 2.6 primarily 

shows the construction o f the initial objects such as the population and several 

individuals (Graphs).

Ul GeneticAlaonthm DatalO DomainTheorv Graph Operators Population Graph 1 N

I constructor [

importCommandFile

constructor(DatalO)
---------
(new threacFl importPiies

constructor

<--------
returnst Graph)

constructor

buildPopulationCGraph)

returns(Popuiation)

constructor^

constructor.  ̂ I constructors -31<-

thgure 2.6

Once the population has been created, the FourWayViewer object is constructed 

and the genetic evolution process starts by the GeneticAlgrmtlim object making 

se\ eral method calls to the Operators object. 'I'he First method call to the
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Operators object determines the fitness o f  each individual in the population. 

There is no reference to the data structures that are needed for the fitness 

function, this done to make the diagram readable. The next method call is to the 

fitness proportional selection function, which returns an individual, based on its 

previously calculated fitness. This is followed by method calls to either a mutation 

or crossover function followed by a hill climbing method. Figure 2.7 

demonstrates this process by starting out where Figure 2.6 left off.

Ul GeneticAldOfithm FoutWavViewer Ocerators Population Graph 1 N

a

constructor

Fitness

FitnessProportionalSelection

:rossover(Grsphl

hpllClimbing(Graphl

hillClinibing(Oraph)

FitnessProportionalReolacement(Graph)

show(Graphs)^

suspend

getlndividual

<-
returns(Graph) 

getin dividual

returns(Graph)

setlndividualf Graph)

<-

Figure 2,7

Notice that some objects are missing because diey are no longer used by tlie 

system. Fach time the GeneticAlgorithm finishes the genetic evolution
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operations, it passes the graphs acted upon to the FourWayViewer and then 

suspends itself. The GeneticAlgorithm only continues when the UI, on a 

separate thread o f  control, sends a resume message.
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C h a p t e r  3

THE RESULTS

In this section, D O G  NIA is tested on two real-world problems from the Human 

Genome Project. The genetic operators o f crossover and mutation are evaluated 

and compared to the hill-climbing operator. As a baseline, the accuracy o f  the 

domain theory' for each problem is shown in the results. Operators wiU be 

obser\'cd independently and synergisticaUy within the algorithm. In addition, 

DOGM A is compared to a Naïve Bayes Classifier and an Artificial Neural 

Network, which are otlier inductive learning algoritlims.

3.1 COM PARING CROSSOVER, M U TA TIO N , A N D  H ILL CLIM BING

liais section compares DOGNLVs crossover and mutation operators 

independently and then synergisticaUy witli hill climbing. The Ribosome Binding 

Sites (RBS) and the Promoters domains, both presented in Appendix A, are used 

for testing. ITic crossover operator is responsible for passing useful building 

blocks onto future generations, whüe mutation attempts to find novel solutions. 

Mutation is often considered a secondary' operation tliat is only used sparingly 

(Goldberg, 1987). Figure 3.1 demonstrates the test set accuracy o f the mutation 

and crossover operators independently and synergisticaUy with a population o f 

twenty'.

l l i e  rcsulcs presented are generated from ten-fold cross validation sets. Ten-fold 

cross validation ehiides the examples into ten sections and holds aside one 

section for testing accuraqg and allows the other nine sections to be used for 

training. This process is repeated ten times allowing each section to appear once

23
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as a test set. D O G M A  uses the nine sections to train by setting aside a test set

30.00% 1

25.00%

k  20.00%
2
U l

o  15.00% (rt

25.0%

(A
0»

10 .00%

5.00%

0 ,00%

198%

17,9%^â^17.1'^ 
16.3% 17.5%

16,2%
14.6%

13 8%

g  hill Climbing 
g  crossover
□  mutation/crossover 
m mutation
□  Domain Theory

Ribosome Binding 
Sites

Promoters

for fitness evaluation and using the remaining data for hill climbing.

l-'igiirc 3,1

'I'he m utation/crossover algorithm uses an equal amount o f mutation and 

crossover. Five hundred individuals are considered in each variation o f the 

algorithm (not including the individuals seen by hill climbing). Figure 3.1 

demonstrates that the crossover and mutation operators perform about the same. 

TTie hill climbing is added to the mutation/crossover algorithm by partially hill 

climbing ever}' individual before adding it back into die population.

I fill climbing is time consuming due to the amount o f individuals that must be 

considered to find the optimal incremental change. If the traditional genetic 

algorithm considered the same amount o f  individuals as a genetic algorithm with 

hill-climbing what would be the result? Figure 3.2 addresses this question by
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tracking the num ber o f calls to the fitness function by a traditional genetic

Promoters

ÊUi
«

CO

Ï

30.0%
25.0%
20 .0%

15.0%
10. 0%

5.0%
0 .0%

■ Genetic Algorithm 

• GA + Hill Climbing

Calls to the Fitness Function

algorithm and a hill-climbing genetic algorithm.

I'iuiire 3.:

Figure 3.2 demonstrates that the CîA by itself quickly improves tlie test set error, 

however, it does not improve very quickly after the first 500 cycles. 1 he (1/3 in 

combinauon with the hiU climbing does not improve as quickly, however, it 

maintains improvement as more individuals are considered.

One concern when creating populations o f individuals is the size o f the 

individuals after the crossover operator is applied. The crossover operator is 

designed to keep intact the basic building blocks. I lowever, this could increase 

the size o f individuals to a point where fitness is expensive to apply, and thus hill 

climbing a large individual could take a large amount o f  time. The average size of 

the initial individual is approximately equivalent to the size o f the domain thcor}\ 

Figure 3.3 shows the average size, in terms o f nodes, o f  a population as a 

crossover operator is applied 100 times. I h e  increase in size o f individuals in the
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population is noticeable, but does not appear to present a major problem since 

the increase seems to be linear.

140
120
100

Size (RBS) I 
:: Size(Promoters) i

40
20

25 100
Crossovers

Figure 3.3

The GA with hdl climbing outperforms a Naive Bayes Classifier on the RBS and 

Promoters data sets. However, the GA with hill climbing is not yet able to 

cfjmpete with artificial neural networks. Table 3.1 demonstrates the results o f 

DOGNLA compared to a Naïve Bayes Classifier and a Neural Network.

RBS Promoters
iVrtificial Neural Network 9.7" F 5.1"'"
Naïve Baves Classifier 19.6" F 24.6""
Genetic Ægorithm with Hill Climbing 13.8"', 14.6"',

Table 3,1
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C h a p t e r  4

FUTURE AND RELATED WORK

The subject o f  genetic algorithms and hill climbing methods is immense. There 

are many different avenues to pursue. Three different categories o f  future and 

related work could be followed. First, the hül-climbing algorithm presented in this 

thesis could be optimized to a greater degree. Second, the language accepted by 

D OGM A could be expanded. Finally, a greater variation o f genetic operators 

could be introduced.

Hill climbing aspects are o f the most interest due to the possible increase in 

perff)rmance they provide. Making hill climbing practical, by decreasing the time 

constraints and by optimizing and exploring greedy search algorithms is neccssar)' 

to conduct more expensi\ e experiments. A compiled implementation language 

might be helpful in the testing phase.

The expressiveness o f  the current language accepted by DOGMA could be 

increased. Gurrently, DOGM A only accepts domain theories with Boolean 

outputs, this could be expanded to a larger number o f outputs. In addition, 

DOGM A does not accept real valued features, in the future DOGM A could be 

modified to accept real values.

The power o f the genetic algorithm could be increased by tr}ing several different 

crossover methods. Several could be available, thus allowing the algorithm to use 

certain crossover methods that are effective in special landscapes or instances. 

The mutation operator could also be modified into several different variations 

and applied dynamically within the algorithm.

27
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A  p  p e n d i x  A

EXPERIMENTAL DATA SETS

The inductive learning system presented in thesis is tested on two real-world 

Human Genome problems. The domain theories and data sets are explained in 

this appendix (explanations and figures are mostly directly copied from Opitz, 

1995).

A.1 F IN D IN G  G E N E S IN  D N A  SEQ U EN C ES

The two domains in this appendix are important sub-problems in the computer 

analysis o f DNA sequences. DNA is a linear sequence o f four nucleotides - 

adenine, guanine, thymine, and c}'tosinc - that are commonly abbreviated by the 

letters A, G, T , and C. Genes are subsequences o f  DNA that serve as blueprints 

for proteins, which in turn provide most o f  tlie structure, function, and regulator)^ 

mechanisms o f  cells and are thus the key budding blocks o f  organisms. 

Researchers arc currently sequencing large volumes o f DNA; however, biologists 

are only able to study small sections o f  DNA at a time. Thus, the fluman 

Genome Project (Cooper, 1994) wdl produce long runs o f DNA that have not 

been analyzed biologically. Therefore, it is necessary to develop automated 

techniques that are able to find where genes occur in these unanalyzed sequences.

Figure A.I illustrates the process o f gene expressions. T tis process is broken into 

two phases transcription and translation. Transcription happens when the 

enzyme RNA - polymerase transcribes DNA into an RNA molecule called 

messenger RNA (mRNA). T ie  enzyme does this by first binding to a DNA 

sequence, called a prom oter that precedes the gene. It then transcribes the DNA
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sequence into a similar RNA sequence, except that the nucleotide thymine is 

replaced with the nucleotide uracil (U).

RN A -  po i V ni e rase
I
1

DNA

\  G G r ( r 1 ! A .V (: G G I t r I G C C A G 1

/
Beginning of Gene

\

Transcr ipt ion

/
Ribosome

\

T ranslation

V

Protein

A. I

Translation occurs when the ribosome molecule reads the mllNA strand and 

assembles a protein chain. One common approach to finding genes is called 

search-by-signal (Stormo, 1987). 'th is approach works by trying to indirectly find 

genes through specific signals that are associated with gene expression. Not only 

arc theses signal detentions important for finding genes, they are important in 

their own right to understand the mechanisms o f gene expression. Figure A.2 

illustrates how I represent the search-by-signal problems in a genetic algorithm. 

The genetic individual is given a fixed length window o f DNA with the task o f 

deciding if the desired signal is located at a fixed location in the window. A 

trained individual can tlicn scan a DNA sequence, finding potential points o f 

interest.
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i n p u t  to lenrnini i  a l g o r i th m

sample inflow si /e of 6 base
rt'fcri'nce point

The following sections describe the two search-by-signal domains that are 

important in finding genes: (a) promoter sites and (b) ribosome-binding sites. Sec 

Clraven and Shai'lik (1994a) f)r more details about theses tasks. An expert (M. 

Noordewier generated both o f  the data sets and domain theories from the 

biological literature. Before the domains arc presented, the relevant notation is 

discussed in the next section.

A.1.1 N O T A T IO N

'I’he domain theories presented in this section use a special notation for specifying 

location in a DNA sequence. In this notation, each location is numbered with 

respect to a fixed, biologically meaningful reference point. Negative numbers are 

locations preceding the reference point, while positive numbers are locations that 

follow this point. The following is an example:
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Location number: -3 -2 -1 +1 + 2 + 3

Sequence: A T A  (reference point) C G  A

N ote that the biological literature does no t use a position zero.

D N A nucleotides are often grouped into the following biologically meaningful 

hierarchy;

any

pyrimidinepurine

Rules in the following domain theories refer to a string o f  nucleotides that must 

occur relative to a location number. For instance, @-39"Ri\" means that at 

location -39 there is an A or G, and at location -38 there is an A. /Vlso, in the 

following theories I follow biological convention and use a W to represent A or 

T, and a M to represent A or C. Some domain theories contain M-of-N rules 

(i.e., a rule's consequent is true if at least M o f the rules N antecedents are 

satisfied. These rules are o f  the form:
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conséquent; -M o f (antecedent -list).

For Example, "T: -2 o f  @ -39'AGT." means the consequent, T, is considered true 

if  at least two o f  the three antecedents (i.e. location -39 is an A, location -39 is a 

G, and location -37 is a T _  are satisfied).

A. 1.2 PR O M O TER SITES

The first domain is that o f  recognizing promoter sites in a sequence o f E. coli 

DNA. As stated above, promoters are short D N A  sequences where the RNA- 

polymerase binds to the DNA. This site is located just "upstream" from where 

transcription begins; thus locating promoters helps locate genes

The data set contains 235 positive examples, and 702 negative examples. ITae 

reference point in this case is the transcription-initiation site. The input consists 

o f  57 sequential nucleotides, starting at location 5- and ending at location +7. 

The negative examples are generated from a (putative_ promoter-free head o f  the 

phage lambda that is 4977 bases long.

The approximately correct domain theory is shown in Table A.l and contains 31 

rules that M. Noordewier extracted from biological literature. Briefly, these rules 

are characterized bye a region rich wit A and T  from location -19 to -35, the 

sequence CTFGACA starting at location -37, and finally another region rich with 

A and T  directly preceding the reference location. The five promoter rules differ 

(a) in the type o f  nucleotide located near position -30 and (b) in the exact location 

o f where the sequence TAT/V/VT begins. The domain theory is overly specific; it 

correctly classifies all the negative examples, but only classifies two o f the positive 

examples correctly. Nonetheless, the rules do capture significant information 

about promoters. This domain is available at the University o f  Wisconsin 

Machine Learning (UW-WL) site via the World Wide Web.
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promoter <- bend, minus_35, short_spacer, minus_10_15. 
promoter <- bend, minus_35, short_spacer, minus_10_16. 
promoter <- bend, minus_35, minus_10__17. 
promoter <- bend, minus_35, long_spacer, minus_10_18. 
promoter <- bend, minus_35, long_spacer, minus_10_19.

bend <- 4 of 0-39="WWWWW".

minus_35 <- 6 of @-37="CTTGACA".

short_spacer <- 3 of (homonucl, homonuc2, homonuc3, homonuc4, 
homonucS, homonuc6, homonuc7, homonucS).

long_spacer <- 3 of (heteronucl, heteronuc2, heteronuc3, 
heteronuc4, heteronucS, heteronuc6, heteronuc7, heteronucS).

homonucl
homonuc2
homonucS
homonuc4
homonucS
homonuc6
homonuc7
homonucS

<- 0-3O="RR". 
<- @-29="RR”. 
<- 0-28="RR". 
<- @-27="RR".
<- @-30=”YY". 
<- @-2 9="YY". 
<- 0-28="YY". 
<- @-27=”YY".

heteronucl <- 
heteronucS <- 
heteronucS <- 
heteronuc4 <- 
heteronucS <- 
heteronucb <- 
heteronuc7 <- 
heteronucS <- 
minus_10_15 < 
minus_10_16 < 
minus_10_17 < 
minus_10_13 < 
minus 10 19 <

_"RY "
= "RY"

@-27
@-30
@-29

@-30 
@-29
9-28="RY" 

"RY" 
"YR"

= "YR" 
@-2 3="YR" 
@-27="YR" 

@-11 
@-12 
@-13 
@-14 
@-15

5
5
5
5
5

= "TATAAT"
:"TATAAT" 
: " TATî AT " 
:"TATAAT" 
:"TATAAT"

melt <- 13 of @-15="WWWWWWWWWWWWWWWWWWWWWW".
b ib le  A .l

A. 1.3 R IBO SO M E-BIN D IN G  SITES
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The second domain is tlie task o f  being able to recognize a ribosome-binding site 

(RBS). As previously shown in Figure A .l, RBSs are sites where the mRNA is 

translated into proteins. As stated in Section A l, the ribosome is a complex 

molecule that reads the mRNA strand to produce the proteins chain o f amino 

acids.

The data set contains 366 positive examples and 1,511 negative examples. Each 

instance contains a sequence o f 49 nucleotides with the point o f  reference being a 

ribosome-binding site. The inputs start at location -25, and since there is no 

location zero, end at location +24. I h e  negative examples are generated from a 

head o f the phage lambda that is 1559 bases long and not known include a 

ribosome-binding site. With an input window size o f 49 bases, 1511 (partially 

overlapping) negative examples can be generated. The input sequences are 

defined in terms o f  the DNA nucleotides rather than the corresponding RNA 

nucleotides.

rbs <- tet:ranucleotide start-codon..

tetranucLeotide <- agga-region.
tetranucleotide <- gagg-region.

start-codon <= 0+13="ATG".
start-codon < = @+12="ATG"-
start-codon < = 0+ll="ATG".
start-codon < = 0+lO=”ATG" .
start-codon < - 0+9 ="ATG".
start-codon <= 0+3 ="ATG".
agga-region <- @+2="AGGA".
agga-region <- 0+l="AGGA".
agga-region — f3 —1="AGGA" .
agga-region < — @—2="AGGA".

gagg-region — 0  + 2="GAGG".
gagg-region <- @+l="GAGG".
gagg-region <  — 0  —1="GAGG".
gagg-region <- 2="GAGG".

Table A.2
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Table A.2 shows the domain theoty, extracted from the biological literature by M 

Noordeweier. It contains 17 rules which say that a ribosome-binding site 

contains two parts: (a) either the sequence AGGA or the sequence G AG G near 

the site, and (b) the start codon ATG beginning 8 to 13 nucleotides before the 

site. This domain is available at the University o f  Wisconsin Machine Learning 

(UW-WL) site via the W orld Wide Web.
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