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Pilskalns, Orest J., M.S., August 1998 Computer Science

An Evolutionary, Hill-Climbing Approach to Symbolic Theory Revision (42 pp.)

Director: David W. Opitz @' | Y4 /9/ '

This thests presents an object-oniented, inductive learning system that 1s based on
genetic algorithms and implemented in Java. A Genetic Algonithm (GA) 15 an
optimization technique that many times can quickly and efficiently search global
search spaces. However, their searching ability can suffer when making local
refinements. Another shortcoming of GAs is theirr dependence of the initial
population to contain the proper components to evolve the populaton mto a
more optimal state. Both drawbacks are addressed in this thesis. The learning
technique applied by this system is a genetic algonthm with the traditional
recombmation and mutation operators and two mdependent procedures that may
solve the GA's shortcomings. In order to effectively produce local refinements a
hill-climbing procedure is used for local opumization that finds the best
incremental change to an individual before placing the individual back mnto the
population. In addition, a "domain theory” that represents an encapsulation of
the current knowledge base about a task 1s used to create an mnital population that
contains the components necessary for an optimal solution. Results show an
increasc in overall performance of the GA by applying the hill cimbing operator
and the domain theory for generating an initial populagon.

1
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Chapter 1

INTRODUCTION

Inductive leaming algorithms are optirmzatton technmiques that learn from a set of
labeled examples. A Genetic Algonthm (GA) s an optimizaton technique that
can be used for inductive learming. GAs are an effective global search algonthm
(Hart, 1994), however, building blocks are hard to find in complex problems
(Forrest and Mitchell, 1996) and GAs are not effective at localizing (Hart, 1994).
This thesis presents a new inductive learning system that addresses these
deficiencies by using a hybnd GA/hill-climbing approach to refining background

knowledge with a set of examples.

GAs, fuest introduced by Holland (1975), are global scarch and optimization
methods. GAs employ an  evolutionary fidtering and  refinement  process
resembling the biological phenomenon, first observed by Chades Darwin and
Alfred Russell, referred to as sumiral of the fitest. Individual organisms in a
population that are well adapted to their environment have a hugh survival rate
and tend to reproduce more, those that are not as well adapted are more likely to
pensh.  An individual that has the ability to thnve 1s known as being fit. New
attributes are produced through biological mutations and reproduction of higher-
fit individuals. Offspong of fit mdividuals will possibly mhent genetic
components that are essential for increased survival, thus shifting the population

to more optimal individuals.

GAs mimic its biological counterpart by taking a population of candidate
solutions and evolving them into more-optumal solutons. Solutions are encoded

as individuals or chromosomes, which are abstract representations of the
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solution. Each solution or individual 1s subject to an evaluation function that
assigns a fitness depending on how well the solution it encodes solves the
problem at hand. In a traditional GA new and possibly better solutions are found
by crossing over components or attnbutes of individuals producing new
mdividuals. New mdividuals are also created by mutating an individual in a
population. Mutation and crossover are referred to as genetic operators. A simple

GA works as follows:
1. generate an imtial population of individuals (candidate solutions)

2. calculate the fitness of each individual in the population

.L)J

using a sclection operator apply mutation and crossover to create a new

population
4. go back to step 2

Each time this process is iterated it creates a new population referred to as a
generaton.  An umportant aspect that has thus far been omitted 15 how
individuals are chosen for reproduction.  There are several methods used for
sclection. This thests uses the most common method called fitness proportional
sclection, where individuals are chosen probabilistically proportional to thetr

fitness.

1.1GENETIC ALGORITHMS: SOME STRENGTHS AND
WEAKNESSES

The appeal of genetic algorithms 1s found in ther simplicity and their ability to
rapidly find solutions to certain difficult high dimensional problems (Forrest-
Mitchell, 1993). GAs often are able to dentify the most fit part of a large search

space quickly and find a good soluton (Hart, 1994). However, it has been
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empncally demonstrated (Mitchell-Holland, 1994) that the search for good
soluttons, depending on the landscape of the search space, may take much longer
than other optimization techmques such as hidl chimbing, and yet may stll not

provide an adequate solution.

Genetic algorithms perform well if the mutial individuals 1 the population contain
basic building blocks (Holland 1975, Goldberg 1989). A randomly created mitial
population may not contain the building blocks necessary for the algonthm to
find good solutions; therefore, some method should be devised to ensure that the

proper building blocks are available.
1.2 EVOLUTIONARY MODELS

Evolution suggests changes or adaptaton of a species to the environment
through the mfluence of genetic operators. The accepted modcl for biological
evoluton states that individuals may only inherit innate qualities known as the
genotype or the genetic compositon of an individual.  This disallows the
possibility of parents passing leamned knowledge to a future generation. The
phenotype 1s the combination of the genetic innate qualitics as well as the
attributes acquired 1n a lifettme. jJean Batiste de Lamarck proposed a different
theory, inheritunce of acguired characteristics, suggesting the phenotype might also be
passed on to descendants. As an cxample, Lamarck suggests that a giraffe,
through 1ts lifetime may elongate 1ts neck by reaching for leaves, and passes this
acquired attnbute onto its offspring. The Lamarckian model has been dismussed
n the biological realm, however, GAs are 1n a simulated environment and are not
constrained by biology. Thus, both models should be considered when

constructing a GA.
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1.3 THESIS STATEMENT

The mductive leaming system developed in this thesis starts by utlizing a
traditional GA's crossover and mutation operators (Koza, 1992). The actual
structure 1s not represented by bit strngs, but by propositional rules, similar to
the style used by the programming language Prolog. In order to increase the
GA's efficiency a hill-cimbing optimization technique 1s used to supplement the
GA's local refinement abilities. The hill climbing is similar to the Lamarckian
evolution model mn that individuals in the populaton keep the local refinements

made by the hill chimbing before being restored into the population.

A domamn theory provides the knowledge base or the building blocks that are
essential for a GA to find more opumal solutons quickly. The doman theory
contains the available knowledge of the task to be learned and 1s encoded in the

GA's propositional rule format.

The system uses both a test set and a validaton set to measure the overall
accuracy and the fitness of individuals 1 the populagon. The effectiveness of
cach genetic operator 1s measured and compared as well as the synergistic cffect
of the operators. In addition, the GA/hill climbing method presented in this

thests 1s compared to a naive Bayes classifier and an artificial neural network.

Thesis: The genetic algorithm is an effective global search technigue while hill
climbing as been shown to outperform genetic algorithms in local search spaces.
Thus. combining hill climbing and traditional genetic operators should result in a

more-optimal inductive learner. In addition. background knowledge in the form of
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a rule base should provide the essential building blocks to aid the algorithm in

Jfinding more optimal solutions.
1.4 THESIS OVERVIEW

The rest of the dissertation describes and empirically tests the genetic inductive

learning system. The chapters will be arranged as follows:

e Chapter 2 describes in detail the encoding scheme for the individuals, the
domain theory, and the genetic algorithm and all of its constituents. This

chapter also discusses the object-oniented design of the entire system.

e Chapter 3 examines the many results of the inducuve learmning system and
compares the inductive learning system to other inductive learning

methods.

e Chapter 4 looks at the future work and related ssues 1n genetic theory and

mnductive learning.

e Appendix A contains the domains used 1n testing and comparing the

inductive leamning system presented in this thests.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 2

THE INDUCTIVE LEARNING SYSTEM

The inductive leaming system is the entire software package that contans the
genetic algonthm examined i this thesis. The system is budt from mteracting
objects that the algonthm utihizes, and the algonthm itself 1s contaned inside an
n-fold cross validation test set environment. In additon, the software package
sports a graphic user interface that contains visualizations of the genetic process.
This chapter will be broken into two parts, the first describes the theoretical basis
of the inductive learing system which includes a detaled look at the conceptual
mechanics of the genetic algorithm, the language accepted by the GA, and the
genetic operators. The second part of this chapter addresses the application of

the theoretical model and the object-oriented design.

2.1 A DOMAIN-THEORY ORIGINATED GENETIC, MODIFIED
ALGORITHM (DOGMA)

The genetic algorithm, DOGNM., uses background knowledge, fitness
proportional selection, crossover, mutation, and hill climbing to optimize a
population of solutions. The learning ability tn DOGNMA can be segmented into
three areas or methods. First, DOGMA learns from pnor knowledge by utilizing
the domain theory. Second, the genetic process we have previously discussed
learns by passing useful information on to future generations through fitness
proportional sclection, crossover, and mutation. The thied part in the learning
algonthm optimizes mdividuals and passes on the opumized mndividual nto the

next generavon.  This could be considered Lamarckian evolution. The second
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and third learning methods can be observed n isolauon, however, DOGMA is

the amalgamation of all three methods. Table 2.1 summanzes DOGMA.

Goal: Search for the most fit individual in a domain theory initialized population.
1. Set aside a validation set from the training instances.

2. Create each member of the initial population by randomly perturbing the
domain theory (section 2.2.1)

3. Hill climb each nitial individual {(optional).
4. Evaluate the fitness of each population member.

5. Loop (untl stopping criteria is reached)
a. Select individual(s) for reproduction by fitness proportional selection.
b. Create new individual(s) using mutation (section 2.1.3) or crossover
(section 2.1.4).
¢. Hill cimb new individuals.
d. Evaluate the fitness of new individuals using the validation set.
e. Place new individuals into the population and probabilistically remove
mndividuals from the population returning it to 1ts original size.

Table 2.1

Before discussing the genctic operators, it 18 important to discuss DOGMA's
encoding of individuals.  Genetic algorithms traditonally have used bit strings to
cncode the solution to a task, however, DOGMA uses a propositonal language.

The next section describes the propositonal language that DOGMA uses.

2.1.1 THE LANGUAGE, DOMAIN THEORY, AND INTIAL
POPULATION

In order to render a problem understandable to DOGMA, two types of
information are necessary. The first type of information specifies the attributes

of the traning examples that are used by DOGMA to leamn. The second sct of
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information encodes the rules that specify the domain theory or the knowledge

base that defines the mnitial population.

Information, used in defining examples, is restricted to nomunal features and
special subclasses of nominal features. Nominal features are features that have all
values specified, for example, the feature color may have three values red, yellow,
and blue. Binary features are nominal features that have only two values true or
false. Ordered features are nommal features that are totally ordered, for example,
the feature s/ze might be represented by the set (small, medium, large, very-large).
Linear features are not presently incorporated into DOGMA, and will be

discussed m Chapter 4 - Future and Related Work.

Information representing the domain theory takes the form of propositional
rules. Propositional rules have a Boolean result, etther negative or posituve. The
syntax of the language can best be demonstrated with the set of rules and the
corresponding set of features and feature values in Table 2.2. Table 2.2 represents
a hypothetical domain theory to determine if a day 1s good or bad for saling, A
tilde preceding a rule denotes the negation of a rule and 1s represented by a black

line in Figure 2.1.

Propositional Rules Features and Feature Values
Result: !of & (C,~D) outlook: sunny, overcast, ran.
C: i of 't (FEh) temperature: high, medium, low.
D: "of "t (gh,h) humidity: high, medium, low.
E: "of t (fg4) windy: true, false.

f: windy = tulse

g outlook = sunny

h: hurmdity = medium
i temperature = high

e

Table 2.2
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The rules in Table 2.2 that are denoted by lower case letters can be considered
inputs. As an example, if we have an instance where the day that 1s not windy,
rule f would be true. Rules can be formed through N-of-M propositions where at
least N of the M antecedents has to be true for the propositional tule to be
posiuve. Antecedents are the conditional members of the proposition, for
example, in Table 2.2 71s antecedent of E. The rules usually contain a hierarchical
structure that combines the effect of the mput features. The rules and features in
Table 2.1 can be represented graphically as a genetic individual (see Figure 2.1),
where each node 1s a rule and the result 1s the rule that determunes the output of
the individual. The input nodes are called terminals and the others are referred to

as mtermediate nodes.

P

e
!::’.»@ o7
SONC

Tomidity
(=)
wmdy outlook tempershure

The directed graph above can only be travessed upward from the nputs (humudity, outlook, . -etc) at the

bottom to the output (result), therefore contaming no cycles.

Figure 2.1
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The graph must be directed and acyclic (.e. without cycles), a restriction imposed
by the language. The acyclic property allows for easy evaluaton of the graph

given an example.

The imtial population is constructed by using the available domain theory and
constructing an individual as in Figure 2.1. Currently’, the individual should have
only one output node resulting in conclusions that are Boolean. To ensure
diversity among the population the nitial individual 1s randomly mutated each
time an individual 1s created using the mutation operator as descrbed in section

2.1.3.

2.1.2 FITNESS AND FITNESS PROPORTIONAL SELECTION

. The fitness function evaluates the correctness of an mdividual by mapping an
individual to a quantfiable numeric value. DOGMA measures fitness by taking a
test set of examples and finding the number of examples that are correctly

classified by the individual.

The fitness function provides a method of discovering the individuals that
contanbute possibly useful building blocks to future generations.  Fitness
proportional sclection s a procedure that favors the selection of individuals for
reproduction based upon  the individuals  fitness.  Fitness  proportional
reproduction can be expressed with the following formula where f1s the fitness

function that maps an individual to a numeric value.

1 See Chapter 4 - Future and Relured Work
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f(x,)

Pe =T 5~
EIIEN
Equation 2.1

The probabihty of choosing an individual x,, 15 equal to the individuals fitness in
relation to the sum of the populations fitness. Individuals that are selected to be
parents for the genetic operations of crossover and mutation m step 5a of
DOGMA are selected through fitness proportional selection. Individuals that are
selected to be removed 1n step 5e are selected through an altered fitness
proportional selection, where the least fit have the greatest possibihity of being

removed.
2.1.3 MUTATION

Mutation is the genetic operator responsible for adding diversity i a population
and explorng new arcas of the scarch space. New features and logical precepts
can be added to an individual using mutation. The mutaton operator randomly
selects nodes and then adds or deletes antecedents of these randomly selected
nodes. The structure of the individual may change due to the addivon or deletion
of new links, which are the connecuon between a node and 1ts antecedent. Ths

operator creates a new individual and possibly better solunons.

The mutaton operator sclects mndividuals through fitness proportional selection.
It then selects a random number of nodes up to one-third the total number.
Fach sclected node has the possibility of being altered by adding or deleting
antecedents. Deletion 1s done by randomly choosing and removing an antecedent
of a node. The number of antecedents changes so the N-of-M ratio also changes.
The mutation operator changes N to match as closely as possible the ratio before

M changed due to the deleton.  For example, if a node needed 2-0f-3
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antecedents or 66°v of the antecedents to be true before the deletion, then N
would be set to one after the deletton. With N equal to one, 50% have to be true
where as if N was chosen to be two, 100% would need to be true. Obviously,
50% 1s closer to 66°% than 100%. If a node is no longer linked to any other
nodes, 1t 15 deleted. Figure 2.2 demonstrates the deletion of two antecedents,

notice that one node is deleted.

Before Deletions After Deletions

&
5B O

O @ o™

Yommidt
© e e ©e
wndy outlook

The remperature anfecedent wis removed from node I Notwe that the remperarure node was removed
since there 15 no more links to 1. The ourlook antecedenr was removed from nede D without any other

wnplications.

Figure 2.2
Adding new antecedents to nodes 1s another way of mutating an individual.

Adding new links between existing nodes can be complex due to the possibility

of circularity.  To ensure that no crculanity 15 tntroduced into a mutated
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individual, the new antecedent can only be added if 1ts longest path from the
output is longer than the longest path of the node, that it will have as an

antecedent. Figure 2.3 demonstrates two additions: a new link, and a new node.

Before Additions After Additions

@Qb o &

o6 08

Yopnidi
- @ &
\

windy outlock wvdy outlooks tep erabare

A new antecedent, the newly created temperature node, was added to the F node. A\ new link was added

between the Result node and the outlook node.

Figure 2.3

2.1.4 CROSSOVER

Crossover or recombination takes two parents found by funess proportional
selection and swaps sections of the individuals creating two new individuals. The
crossover process is responsible for passing possibly good building blocks onto
future generatons. When discussing complex genetic operators, the terms parent
and child often emerge referning to a nodes antecedent as a chuld and the node

itsclf as the parent. There are vaneties of methods for completing a genetic
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crossover, the method employed by DOGMA 1s summarized in Table 2.3. Most
methods can usually be divided into to distinct phases: (a) the division of the
individuals and (b) the recombination of the individuals.

Goal: To divide and recombine two mdividuals creating two new offspring.

1. For each individual:

a. Randomly select an intermediate node as a crossover point

b. Recursively clone the nodes below the crossover point creating a branch
c. Recursively delete the nodes below the crossover point creating a trunk
Create two new mndividuals by:

a. Randomly selecting an mntermediate node from cach trunk as a
reconnection point

b. Create a link from the crossover node in the branch to the reconnection
point i the trunk

1o

Table 2.3

The division process randomly selects an intermediate node from a parent, which
we will call the crossover node. The crossover node 1s then recursively cloned
thus including the graph structure below the node. All links are kept intact except
for those inks that are dependent upon nodes that do not have the crossover
node as an ancestor™. ‘The cloned section of graph will be referred to as a branch.
The crossover node is then recursively deleted--thus deleting any child nodes that
arc exclusively dependent upon the crossover node or 1ts descendents. The graph
that 1s left after the branch has been separated will be called the trunk. This 1s

done to each parent individual creating two branches and two trunks.

The recombination process 18 direct.  Simply take a branch and a trunk and
reconnect them to create a new offspring. The reconnecuon takes place between
a random intermediate node from the trunk and the crossover node from the

branch. This ts done for each branch and trunk creating two new individuals.

2 An ancestor node s a node from which another node has descended from through the parent-child
relationship.
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This method helps preserve the entire sub-graph structure and thus keeps the
basic bulding blocks from the domain theory mosty intact. Figure 2.4

demonstrates the crossover process.

Pacenr | Parenr 2 @
ONO

R ——

- ONS

tepehre

OOO
® O ® @
O RS NS BONORONC)

O@ OQ.(@Q

agldolk tmOawse  wmdy

O ¢

windy

HGHONO
CHGRONG

OfZspreng |

The crossover model above is color-ceded demonstrating which paat of each parent an offspring eceives.
Notce the redundancy in inputs, this could be ehiminated graphically by drawing extaa links, however, this
does not effect DOGMA, which can process either type of mdividual. Note that C, the cross over node, in
parent 1 becomes C17 (17 is 1 naming scheme that refers 1o which cycle the algonthm 1s on), because 4 €

already exists in offspring 2. The crossover node for parent 21s D,

Figure 2.4

The new graphs that emerge from the crossover process could possibly use more

connections between the newly added branch and the onginal trunk.  This
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connection process could be added into the crossover process, however,
DOGMA s equipped with a hill chmbing operator that can optimize the links m

an mndividual.
2.1.5 HILL CLIMBING

Hill chmbing is a greedy search algonthm that finds the optimal local
improvement to an mdividual. Mutation and crossover provide a certain amount
of global searching potental (Goldberg 1989), however, may not provide the
refinements necessary to bring a population close to an optimal state. Hill
climbing helps the entire population make small directional steps towards a local

maximurm, while mutation and crossover provide the large migratory leaps.

[l climbing s accomplished by optimizing the linked structure within a

DOGMA mdividual. Table 2.4 summanzes the hidl climbing genetic operation.

Goal: Opumize the inked structure and the N-of-M values m an individual.
1. Randomly sclect an intermediate node to act as the node for optimization.
2. Loop untl outputis reached.
a. Remove all parent links from the optimized node.
b. Reconnect optimized node one link at a time to the target’ nodes testing
fitness and optimizing the N-of-M values for target nodes
c. Select a parent of the node that 1s being optimized and sct tt as the new
node for optimization
d. go to the beginning of 2 and start cycle over

Tuble 2.4

A random ntermediate node 15 picked from an individual. This node 15 then
disconnected and reconnected incrementally to cvery node above' it in the
directed graph. [Each time 1t ts reconnected to another node, a target node, the

value of N in the N-of-M context is optimized and the fitness s measured. The

* Nodes that have a longest path that is shorter than the optimization node.

 Above implies the longest parh is shoder.
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maximum fitness determines the configuranon that 1s chosen before continuing,
The process 15 continued by randomly selecting a parent of the node just

optimized and optimizing it until the root is reached.

An alternative hill climbing method is also implemented called full hill climbing.
Full hill cimbing optimizes every node in the individual, starting with the layer of
nodes with the longest path. This method is obviously takes more time, however,
1s more vigorous in its search. The previous method discussed could be called

partial hill climbing, because not all the nodes are visited.

2.2 THE OBJECT-ORIENTED DESIGN

There are a vanety of object-onented modcehing practices, symbols, terminology,
and methods. Untl recently, no standardizaton or common modchng language
had been proposed. The Booch and OMT methods have been prominent in
desygning object-oriented modcls, but have fallen short in certaun areas and
contun disparate terminology and symbols.  The Unified Modcling Language
(UML) has encapsulated many of the same pricples as the Booch and OMT
methods and has standardized the terminology and symbols. Therefore, UML 15
the obvious choice for presenting the object-onented design of the inductive
learning system covered in this thesis.  There will be no overview of UML
terminology and symbols, however, there will be annotaton when necessary.
The entre UML domain s quite vast, so only the logical view will be presented in

this section.
2.1.1 CLASS RELATIONSHIPS

The logical view may contan several different diagrams; one of the most useful 1s
the class diagram. The class diagram 1s a static model type that describes the

system n terms of classes and relationships among the classes. One goal of the
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class diagram is to define a foundation for other diagrams namely dynamic
models. Figure 2.5 is a class diagram that describes the class relationships in the
system without the detailed attributes of each class. The only relauonships used
in Figure 2.5 are association relationships. Association relationships represent a

semantic connection between classes.

The Class View

Ul Datald
Qperators GenelicAlganthm DomainTheory
N IR Vi
N / ™ ,
.\ ,/ \\ /‘.
\\ Populaton ] Fourviayviewer //
N yd
\\ /,
chent | suppher

The class view depicts the client/supplier elagonships berween all classes in rthe system.

Fyure 2.5
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Association imples that a two-way relationship 1s present between two classes.
However, Figure 2.5 shows a more restactive association with client/supplier
notation indicating only one of the classes accesses the other. The Node class 1s
only accessed by the Graph class thus it is said to be contained by the Graph

class.
2.1.2 The Dynamic View

The dynamic views rely on an understanding provided by the static class view.
The distinction between the idea of a static class and the mstantiation of the class
resulting in an object must always be mantained, yet, a certain amount of
flexibility should be allowed when discussing interactions of both. A description

will be given of the class-object interactions concluding in sequence diagrams.

The man daver of the system s the Ul class. The Ul class, depending on the
command line parameters, can run in GUI mode non-GUI mode. The UI has
relationships with only two other classes the GeneticAlgonthm class and the
DatalO class. The DatalO class s responsible for all file mteractons. Only the
UT class and the GeneticAlgonthm class have celationships with DatalO. The
Genence Algorithm class orchestrates the genetic process and directly or indirectly
interacts with all other classes. The genetic individuals themselves are created
from instantianons of the Node class and are represented through the Graph
class. All genetic operators, such as hill climbing, crossover, fitness and mutation,
arc contaned 1 the Operators class, which interacts with the Graph Class. The
DomanTheory class 1s responsible for constructing an instantiatton of the Graph
class. ‘The Population and FourWayViewer classes are simple contaners and

visual displays for mstances of Graph classes.

The sequence diagram in Figure 2.6 15 demonstrates how obyects in the system

are initally constructed. Figure 2.6 leaves out many of the detals, yet delivers the
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scquence of main events. The thread of control in the program can be traced by
following the arrows. The dotted line indicates the hfelne where the object itself
1s represented by a vertical rectangle. The system 1s multi threaded thus two
threads of control are present. The diagram indicates this with the notation "new
thread" when the GeneticAlgonthm object 1s formed. The UI object stll has a
thread of control, but generates a new one with the construction of the
GeneticAlgonthm object. The mult-thread of control 1s needed for the Ul to be
active to the user, yet allow the GeneticAlgonthm to run. Figure 2.6 primanly

shows the construction of the minal objects such as the population and several

individuals (Graphs).

G
1%
Eg
=

7} GensticAlqorthm Datalo DomainTheory Operators Popuiation Graph 1 N

| i I

| constructor}

‘ampodComm;andFi!e

{rew thread) importFiles

constructor(DatalO) |
: |
]

constructor constructor

~

returns(Graph)

18 [ e — — —

constructor

buildPopulation{ Graph)

|
|
|
|
|
|
|
|
|

sonstructor | constructors

returns{Population)

— s el g

Frigure 2.6
Once the population has been created, the FourWayViewer object 18 constructed

and the genctic cvolution process starts by the GeneticAlgonthm object making

several method calls to the Operators object. The first method call to the
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Operators object determines the fitness of each mdividual in the population.
There is no reference to the data structures that are neceded for the fitness
function, this done to make the diagram readable. The next method call 1s to the
fitness proportional selection function, which returns an individual, based on its
previously calculated fitness. This 1s followed by method calls to either a mutation
or crossover function followed by a hill climbing method. Figure 2.7

demonstrates this process by starting out where Figure 2.6 left off.

ul GeneticAigorthm FourWayViewer Operators Poputation raph 1 N
M ] constructor ! M 2 o
F‘mness
getindividual
h returns(Graph)

FitnessProportionalSelection

getindividual -

Cad ~
returns(Graph}

crossover(Graph)) .
=S
hiiClimbing(Graph)
nilClimbing(Gragh)

1

¥
FitnessProportionalReplacemert(Graph)

P e (Craph, setindividual(Graph}

show(Graphs)

suspend

resume

Figure 2.7

Notice that some objects are mussing because they are no longer used by the

system.  llach time the GeneticAlgorithm  fintshes  the  genctic evolution

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[
o

operations, it passes the graphs acted upon to the FourWayViewer and then
suspends itself. The GeneticAlgorithm only continues when the Ul on 2

separate thread of control, sends a resume message.
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Chapter 3

THE RESULTS

In this section, DOGMA 1s tested on two real-world problems from the Human
Genome Project. The genetic operators of crossover and muration are evaluated
and compared to the hill-climbing operator. As a baseline, the accuracy of the
domain theory for each problem s shown in the results. Operators will be
obscrved mdependently and synergistically within the algonthm. In addition,
DOGMA 1s compared to a Naive Bayes Classifier and an Artficial Neural

Network, which are other inductive leaming algoathms.
3.1 COMPARING CROSSOVER, MUTATION, AND HILL CLIMBING

This  sccgon  compares DOGMA's  crossover and  mutaton  operators
independently and then synergistically with hill climbing, The Ribosome Binding
Sites (RBS) and the Promoters domans, both presented in Appendix A, are used
for westng,  The crossover operator is responsible for passing useful building
blocks onto future generatons, while mutation attempts to find novel solutons.
Mutation 1s often considered a sccondary operaton that 1s only used sparingly
(Goldberg, 1987). Figure 3.1 demonstrates the test set accuracy of the mutation
and crossover operators independently and synergistically with a population of

twenty.

The results presented are generated from ten-fold cross vahdation sets. Ten-fold
cross validation divides the examples mto ten sections and holds aside one
section for resting accuracy, and allows the other nine scctions to be used for

training. This process 1s repeated ten times allowing each secton to appear once

23
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as a test set. DOGMA uses the nine sections to train by setting aside a test set

]
30.00% -
25.00%
= 20.00% & hill climbing ]
. 8 crossover |
o O mutatiorvcrossover |
. © 15.00% | .
i @ 7 mutation
L d
2 @ Domain Theory
| P 10.00% S
!
| 5.00%
; 0.00% : ;
Ribosome Binding Promoters ‘
Sites l

for fitness cvaluation and using the remainig data for hill climbing.
Iyrure 3.1

'The mutation/crossover algorithm uses an equal amount of mutation and
crossover.  Five hundred individuals are considered in each varation of the
algorithm (not including the individuals seen by hill climbing). Figure 3.1
demonstrates that the crossover and mutation operators perform about the same.
The hill climbing is added to the mutation/crossover algorithm by partially hill

climbing every individual before adding 1t back into the populaton.

[fill climbing is time consuming duc to the amount of individuals that must be
considered to find the optimal incremental change.  If the traditional genctic
algorithm considered the same amount of individuals as a genetic algorithm with

hill-climbing what would be the result? Figure 3.2 addresses this question by
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tracking the number of calls to the fitness function by a traditional genetic

Promoters

30.0% ~
25.0% -
20.0% -
15.0%
10.0%

5.0%

0.0% S

S 0 ® & O O &
& & &

—e— Genetic Algonthm
—— GA + Hill Climbing

Test Set Error

T T T T 1

Calls to the Fitness Function

algonthm and a hdl-climbing genctic algonthm.
Figuee 3.2

[igure 3.2 demonstrates that the GA by itself quickly improves the test set crror,
however, 1t does not improve very quickly after the first 500 cycles. The GA
combinanon with the hdl climbing does not mmprove as quickly, however, 1t

maintains improvement as more individuals are considered.

One concern when creating populations of mdividuals 15 the size of the
individuals after the crossover operator 1s apphed. The crossover operator 1s
designed to keep intact the basic building blocks. Flowever, this could increase
the size of individuals to a point where fitness 1s expensive to apply, and thus hill
climbing a large individual could take a large amount of ume. The average size of
the nitial individual 1s approximately equivalent to the size of the domain theory.
Iqgure 3.3 shows the average size, in terms of nodes, of a population as a

crossover operator 18 applied 100 umes. The increase in size of individuals in the
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population is noticeable, but does not appear to present a major problem since

the increase seems to be linear.

140
120-| e i

100 : ' ’
80 ' —o— Size (RBS) |

80 pem— 1 - Size(Promoters)
40 |

20

Nodes

0 25 50 100

Crossovers

Figure 3.3

The GA with hdl climbing outperforms a Nave Bayes Classtfier on the RBS and
Promoters data scts. However, the GA with hdl chmbing 15 not yet able to
compete with artificial ncural networks. Table 3.1 demonstrates the results of

DOGMA compared to a Naive Bayes Classifier and a Neural Networks.

RBS Promoters
Arttfictal Neural Network 9.7 5.1%
Naive Bayves Classifier 19.6"% 246"
Genetic Algorithm with Fill Climbing 13.8"n 14.6" 0

Table 3.1
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Chapter +

FUTURE AND RELATED WORK

The subject of genetic algonthms and hill cimbing methods 1s immense. There
are many different avenues to pursue. Three different categones of future and
related work could be followed. First, the hill-climbing algorithm presented in this
thesis could be optimized to a greater degree. Sccond, the language accepted by
DOGMA could be expanded. Finally, a greater variaton of genctic operators

could be mntroduced.

Fill chimbing aspects are of the most interest due to the possible mcrease in
performance they provide. Making hill climbing practical, by decreasing the time
constraints and by optmuzing and explonng greedy search algonthms 1s necessary
to conduct more expensive expenments. A\ compiled implementation language

might be helpful in the tesung phase.

The expressiveness of the current language accepted by DOGMA could be
increased. Currently, DOGMA only accepts domain theories with Boolean
outputs, this could be expanded to a larger number of outputs. In addition,
DOGMA does not accept real valued features, i the future DOGMA could be

modified to accept real values.

The power of the genetic algorithm could be increased by trying several different
crossover methods. Several could be available, thus allowing the algorithm to use
certan crossover methods that are effective in spectal landscapes or mstances.
The mutaton operator could also be modtfied mto several different vanatons

and applicd dynamically within the algonthm.

27
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Appendix A

EXPERIMENTAL DATA SETS

The inductive learning system presented in thesis is tested on two real-world
Human Genome problems. The domain theones and data sets are explained mn
this appendix (explanations and figures are mostly directly copied from Opitz,
1995).

A.1FINDING GENES IN DNA SEQUENCES

The two domains in this appendix are important sub-problems in the computer
analysis of DNA sequences. DNA 1s a hnear sequence of four muteotides -
adcnune, guamine, thymine, and cytosine - that arc commonly abbreviated by the
letters A, G, T, and C. Genes are subscquences of DNA that serve as blueprints
for protems, which in turn provide most of the structure, functon, and regulatory
mechanisms of cells and are thus the key building blocks of organisms.
Researchers are currently sequencing large volumes of DN.\; however, biologists
arc only able to study small sections of DNA at a time. Thus, the Human
Genome Project (Cooper, 1994) will produce long runs of DNA that have not
been analyzed brologically. Therefore, it s necessary to develop automated

techniques that are able to find where genes occur in these unanalyzed sequences.

Figure A.1 llustrates the process of gene expressions. This process 1s broken into
two phases transcription and translation.  Transcription happens when the
enzyme RNA - polymerase transcribes DNA mto an RNA molecule called
messenger RNA (mRNA). The enzyme does this by first binding to a DNA

sequence, called a promoter that precedes the gene. It then transcribes the DNA
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sequence into a similar RNA sequence, except that the nucleotide thymune 1s

replaced with the nucleotide uracil (U).

RNA-polvmerase

DNA

i e
1

AGGTOCT P T AANCGCACTTGCOC AGT
. / Transcription iBosOme
Rewinning of Gene p Ri'w?\umt
\\)/ )
et
LA AT G e G __J
mRNA

A

o

l 1 Translation
N

{ /i

v

v

Protein

Figuee A1

Translation occurs when the abosome molecule reads the mRNA strand and
assembles a protein chain.  Once common approach to finding genes is called
scarch-by-signal (Stormo, 1987). This approach works by trying to mdirectly find
genes through specific signals that are associated with gene expression. Not only
arc theses signal detentions important for finding genes, they are important in
thetr own night to understand the mechanisms of gene expression.  Figure A2
llustrates how T represent the search-by-signal problems m a genetic algorithm.
The genctic individual 1s given a fixed length window of DNA with the task of
deading 1f the destred signal 1s located at a fixed locaton in the window. A
trained individual can then scan a DNA sequence, finding potential points of

interest.
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Figure A2

The following sections descnibe the two search-by-signal domains that are
important in finding genes: (a) promoter sites and (b) nbosome-binding sites. Sce
Craven and Shavhk (1994a) for more details about theses tasks. An expert (M.
Noordewter generated both of the data scts and domain theories from the
blological hiterature. Before the domains are presented, the relevant notation is

discussed 1n the next section.
A L1 NOTATION

The domain theories presented in this section use a special notation for specifying
location i a DNA sequence. In this notation, cach location is numbered with
respect to a fixed, biologically meaningful reference poimnt. Negative numbers are
locations preceding the reference pomt, while positive numbers are locations that

follow this pomt. The following 15 an example:
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Location number: -3 -2 -1 +1+2+3
Sequence: A T A (reference pont) C G A

Note that the biological literature does not use a position zero.

DNA nucleotides are often grouped into the following biologically meaningful

hierarchy:

any

/

\\ \
N N
NN,

Rules 1n the following domain theories refer to a string of nucleotides that must
occur relative to a locaton number.  For instance, @-39"RA" means that at
locaton -39 there 18 an A or G, and at locatton -38 there 1s an A. Also, 1n the
followtng theones I follow brological convention and use a W to represent A or
T, and a M to represent A or C. Some doman theories contain M-of-N rules
(ie., a rule's consequent is true if at least M of the rules N antecedents are

satisfied. These rules are of the form:
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consequent: -M of (antecedent -list).

For Example, "T: -2 of @-39AGT"." means the consequent, T, is considered true
if at least two of the three antecedents (.e. location -39 1s an A, location -39 s a

G, and location -37 1s a T__ are satisfied).
A12 PROMOTERSITES

The first domain is that of recognizing promoter sites in a sequence of E. coli
DNA. As stated above, promoters are short DNA sequences where the RNA-
polymerase binds to the DNA. This site 1s located just "upstream” from where

transcription begins; thus locating promoters helps locate genes

The data set contains 235 positive examples, and 702 negative examples. The
reference pownt in this case 1s the transcription-mnitation site. The mput consists
of 57 sequential nucleotides, starting at location -5- and ending at location +7.
The negative examples are generated from a (putanve_ promoter-free head of the

phage lambda that 1s 4977 bascs long,

The approximately correct domain theory s shown m Table A1 and contans 31
rules that M. Noordewier extracted from biological literature. Briefly, these rules
are characterized bye a region rich wit A and T from locaton -19 to -35, the
sequence CTTGACA starting at locauon -37, and finally another region rich with
A and T directly preceding the reference location. The five promoter rules differ
(@) in the type of nucleotide located near posion -30 and (b) in the exact location
of where the sequence TATAAT begmns. The domain theory is ovetly specific; it
correctly classifies all the negative examples, but only classiftes two of the positve
examples correctly. Nonetheless, the rules do capture significant information
about promoters. This domain is avalable at the University of Wisconsin

Machine Learnimg (UW-W1) site via the World Wide Web.
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promoter <- bend, minus_ 35, short spacer, minus_ 10 15.
promoter <- bend, minus_35, short spacer, minus_10_16.
promoter <- bend, minus_35, minus 10 17.

promoter <- bend, minus_35, long spacer, minus_10_18.

promoter <- bend, minus_35, long_ spacer, minus_10_189.

bend <~ 4 of @-39="WWWWW",
minus_35 <- 6 of @-37="CTTGACA".

short spacer <- 3 of (homonucl, homonuc2, homonuc3, homonucd,
homonuc5, homonucé, homonuc?7, hemonuc8).

long spacer <- 3 of (heteronucl, heteronuc2, heteronuc3,
heteronucd4, heteronuch, heteronucé, heteronuc?, heteronuc8).

hcmonucl <- @-30="RR".
homonuc? <~ @-29="RR".
homonuc3 <- @-28="RR".
homonuc4d <- @-27="RR".
homonucS <- @-30="YYy",
homonucét <- @-29="YY".
homonuc?7 <~ @-28="YY".
homeonuc8 <- @=-27="¥YY¥Y",

heteronucl <~ @-30="RY".
heteronuc2 <- 2-29="RY".
heteronuc3 <- 3-28="RY".

hetercnucd <- @-27="RY"
heteronucb <- @-20="7YR",
heteronucé <- [(=-29="YR".
heteronuc7? <- @-23="7R".
heteronucs <- @-27="YR".
mirus 10 15 <~ 5 of @-11="TATAAT".
minus_10_16 <- 5 of @-12="TATART".
minus 10 17 <= 5 of @-13="TATAAT".
minus_10 18 <- 5 of @-14="TATAAT".
minus 10 19 <- 5 of @-15="TATAAT".

melt <~ 13 of @-15="WAWWWNWNWWANWNWWWNWAWAWN" .

Table A1

A.1.3 RIBOSOME-BINDING SITES
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The second domain is the task of being able to recognize a ribosome-binding site
(RBS). As previously shown in Figure A.1, RBSs are sites where the mRNA is
translated mto proteins. As stated in Section A1l, the ribosome is a complex
molecule that reads the mRINA strand to produce the protemns chain of amino

acids.

The data set contains 366 positive examples and 1,511 negative examples. Each
wnstance contans a sequence of 49 nucleotides with the point of reference bemng a
nbosome-binding site. The mputs start at location -25, and since there is no
location zero, end at location +24. The negative cxamples are generated from a
head of the phage lambda that s 1559 bases long and not known include a
nbosome-binding site.  With an input window size of 49 bases, 1511 (parually
overlapping) ncgative examples can be generated. The input sequences are
defined mn terms of the DNA nucleotides rather than the corresponding RNA

nucleotides.

rbs <~ tetranucleotide start-ccdon.

tetranucleotide <- agga-region.
tetranuclectide <- gagg-region.

start-codon <= @+13="ATG".
start-codon <= @+12="ATG".
start-codon <= @+11="ATG".
start-codon <= (@+10="ATG".
start-codon <= @+9 ="ATG",
start-codon <= @+8 ="ATG".
agga-region <- @+2="AGGA".
agga-region <~ @+1="AGGA".
agga-region <- @-1="AGGA".
agga—-region <- @-2="AGGA'".

gagg-region <~ @+2="GAGG".
gagg-region <- @+1="GAGG".
gagg-region <- @-1="GAGG".
gagg-region <- @-2="GAGG",

Table A2
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Table A.2 shows the domain theory, extracted from the biological literature by M
Noordeweter. It contains 17 rules which say that a nbosome-binding site
contans two parts: (a) either the sequence AGGA or the sequence GAGG near
the site, and (b) the start codon ATG beginning 8 to 13 nucleotides before the
site. This domain is available at the Unmiversity of Wisconsin Machme Learning

(UW-WL) site via the World Wide Web.
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