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  The purpose of this research was to attempt to identify the population affinity of three 
crania (UMFC 103, 104, and 120), housed at the University of Montana Physical 
Anthropology Lab, using multivariate statistical analyses.  A database collected by Dr. 
Hanihara and another collected by researchers at the University of Michigan were used 
for comparative purposes.  Multiple populations from both databases were chosen so as 
to be representative of various Asian, African, Indian, and Native American populations.  
Two variations of each of the databases were used in the following statistical analyses:  
principal components analysis and discriminant function analysis.  It was shown that the 
Michigan database was more effective at classifying UMFC 103, 104, and 120 into one 
of the predetermined populations than the Hanihara database.   Based on these analyses 
UMFC 103 is tentatively classified as Taiwanese aboriginal and UMFC 120 as South 
Chinese.  These classifications are based on the discriminant function analysis with the 
Michigan database and all show significant typicality probabilities. 
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CHAPTER 1 : INTRODUCTION 

 The attempted classification of unknown individuals into one of many 

predetermined groups through the use of craniofacial measurements is a common task for 

anthropologists, particularly forensic anthropologists (Howells, 1995; Powell and Neves, 

1999; Jantz and Ousley, 2001; Brace et al., 2008).  There has been much debate about the 

effectiveness of various techniques used by anthropologists to accomplish this goal 

(Albrecht, 1992; Wolpoff, 1995; Armelagos and Van Gerven, 2003).  The purpose of the 

research described herein was to attempt to determine the population affinity of three 

biological specimens (University of Montana Forensic Collection 103, 104, and 120) 

housed at the University of Montana Physical Anthropology Lab.    

UMFC 103, 104, and 120 were utilized for this analysis because they typify 

modern human morphology and for this reason are used as learning tools for both human 

osteology and forensic anthropology students at the University of Montana.  These 

skeletons were obtained from Skulls Unlimited International Inc. and are thought to have 

originated from somewhere within the countries of China or India.  For most of the 20th-

century, India was the leading source of human skeletons.  In 1985, after years of internal 

legal challenges, India banned the sale of human remains.  Since that time the few 

skeletons that make it through United States customs legally are from China (Elder, 

2006).  Despite this, Skulls Unlimited International Inc. does not provide any information 

as to country of origin from which a specific skeleton may have been acquired.  

Therefore, the proposed population affinity is not based on any actual paperwork stating 

what country these skeletal remains originated from. 
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There are two basic methods used by anthropologists in osteological analysis of 

human remains:  anthroposcopy and osteometry.  Anthroposcopy, as far as its application 

to estimating ancestry, pertains to visual observation of discernible differences between 

Whites, Blacks, Asians, and other groups.   The second method, osteometry, uses metric 

methods to assess ancestry.  This thesis is an attempt to determine whether or not UMFC 

103, 104, and 120 can be shown within a 95% confidence interval to be of Chinese or 

Indian descent based on multivariate statistical analyses of craniofacial measurements. 

Metric methods have been used for distinguishing ancestry since the early 1900s 

(Krogman, 1962).  These methods typically provide a most probable group for a skeleton 

of unknown ancestry, however, the results from metric techniques can be deceptive in 

their apparent accuracy.  This is because the distribution of measurements used in these 

methods are based on samples which may or may not be representative of the population 

from which the individual originated (Byers, 2005).  This problem is addressed in the 

current research by calculating a discriminant function based on a large number of 

modern Asian populations as UMFC 103, 104, and 120 are thought to be descended from 

an Asian population, specifically Chinese or Indian.   

Eugene Giles and Orville Elliot popularized the use of discriminant functions to 

assess ancestry on the basis of cranial measurements in their pioneering article written in 

1962.  Discriminant function analysis uses any number of measurements to distinguish 

between two or more predetermined groups (Byers, 2005).  A number of anthropologists 

have argued against the use of multivariate statistical techniques to determine population 

affinities (Albrecht, 1992; Wolpoff, 1995).  Both of these authors focused on the 
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problems with attempting to assess population affinities of fossils, but the same problems 

apply when these techniques are used with modern skeletal remains. 

The main criticism against using multivariate statistical analyses to classify 

individuals into a predetermined population is that the prospect that the individual in 

question is not a member of any of the groups represented is generally ignored by 

researchers.  A potential solution to this criticism is to use typicality probabilities which 

do not force an individual to be classified into one of the predetermined groups, i.e. the 

possibility that the individual is not a member of any of the groups is considered 

(Albrecht, 1992). 

Craniofacial measurements are used because they have been shown by many 

researchers to be a good proxy for analyzing genetic variation (Relethford, 1994, 2002, 

2004b; Brace et al., 2001, 2006, 2008).  Relethford (1994) showed that craniometric 

variation is equivalent to the variation exhibited based on genetic markers and 

mitochondrial DNA (mtDNA).   The other reason that craniofacial measurements are 

used is that they can be considered relatively neutral; in other words, they are unaffected 

for the most part by natural selection (Relethford, 1994, 2002, 2004a; Brace et al., 2001, 

2006, 2008; Hanihara and Ishida, 2009).   

Boas (1910, 1911, 1912) was able to show that cranial form is plastic to some 

extent based on various factors; including, nutrition.  However, a number of researchers 

have shown that though cranial plasticity is a real phenomenon, it does not erase or 

obscure population relationships which can be studied through cranial measurements 

(Gravlee et al., 2003a, 2003b; Relethford, 2004a).  Craniofacial measurements are 

thought, therefore, to be a useful measure of assessing population affinities. 
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Currently, discriminant functions using cranial measurements are the most 

popular method for estimating ancestry (Byers, 2005).  This study questions this popular 

practice and raises the question, ‘should this technique be continued and what alternative 

do anthropologists have when faced with attempting to estimate the population affinity of 

an unknown individual?’  Despite the recent publication by Ousley et al. (2009) which 

claims that humans can be accurately classified into groups based on geographic origin, I 

believe that my research demonstrates the need for further research in this area utilizing 

craniometric data other than the, in my opinion, over frequently used Howells dataset.
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CHAPTER 2 : BACKGROUND INFORMATION 

Before I can begin discussing my research it is important to provide some details 

as to the history of craniometric studies.  Although the history presented here is by no 

means comprehensive it is essential to understanding my research, as well as some of the 

motivations for doing this type of research.  It is also necessary to discuss the history of 

“race” as this term has been and continues to be used extensively throughout the 

craniometric literature.  Finally, it is equally important to introduce the statistics that are 

used in this analysis and some of the history of their use especially as they pertain to 

craniometric studies. 

History of Craniometric Research 

 In the perspective of the West European scientific tradition, the first systematic 

application of human data in design was performed by Pieter Camper.  He published An 

Investigation about the Best Kind of Shoes in 1781.   In this analysis, Camper emphasized 

the value of anatomical and anthropometric design criteria over fashion concern in terms 

of the production of shoes.  He is much more famous, however, for his comparison of the 

angles of the facial profile between monkeys, apes, and humans. 

 His famous “facial angle” is produced by drawing a tangent touching the forehead 

and the upper lip and measuring the angle made by that line and a line that intersects the 

ear opening and the juncture of the upper lip and the lower border of the nose (Brace, 

2005).  Camper did not place various human groups into categories, but instead viewed 

these groups as part of a hierarchical continuum. 
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 This view held sway for awhile among Enlightenment thinkers and was certainly 

prominent in the work of Johann Friedrich Blumenbach (Brace, 1982, 2005).  Physical 

anthropology as a discipline can be traced to Blumenbach and he is often given the title 

of “father of physical anthropology” (Brace and Montagu, 1965).  Blumenbach was a 

professor of anatomy at the University of Gottingen, Germany.  He was a pre-Darwinian 

scholar and, as a result, his work was not influenced to any extent by evolutionary 

concepts.  He did, however, attempt to explain human differences by viewing them as 

adaptive responses to differing environments.  Blumenbach’s writings addressed all 

aspects of human variation—skeletal, internal organs, hair, skin, teeth, and similarities 

and differences when compared with nonhuman primates (Brace and Montagu, 1965). 

 Blumenbach’s work has been considered typological in nature (Cook, 2006), but 

that is not completely accurate.  While Blumenbach did recognize five “varieties” of 

humans, he believed that since each grades into the other, it is arbitrary where one 

chooses to draw the lines (Brace, 1982, 2005).  Between 1790 and 1828, Blumenbach 

published a series of detailed descriptions of 65 crania, including provenience 

information as well as engraved illustrations of each.   

 Although Blumenbach’s work cannot be considered craniometric in nature; his 

work was very influential in the American research of Samuel George Morton, who can 

be considered the next major contributor to physical anthropology (Brace, 1982, 2005).  

Morton was a Philadelphia physician-anthropologist working in the early to middle 19th-

century.  It was Morton’s intention to expand on the craniological approach started by 

Blumenbach in his Decades…Craniorum (1790-1828) and devote a major volume to the 

study of cranial form in the Native Americans of the western hemisphere (Brace, 2005).   
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 He accomplished this goal in 1839 with the publication of the monumental 

volume entitled Crania Americana, a study that was designed to address the physical 

diversity of the Native American.  Morton made the assumption that similarities in 

skeletal morphology reflected heritage relationships.  In Crania Americana, Morton 

tested the prevalent theories of New World peoples that attributed the ancient monuments 

of civilization to an extinct race of immigrants from the Old World.  Morton’s findings in 

both, Crania Americana and his study of Egyptian antiquities (1844), are limited to the 

observation that ancient crania are as distinct racially as recent ones.   

 The most important contribution, in terms of craniometrics, that Morton made to 

physical anthropology was in the invention of numerous measurements that he used to 

compare a multitude of specimens from around the world (Brace, 2005).  Morton defined 

10 linear measurements, one angle, and an internal capacity with four component 

measurements in Crania Americana.  He can be said to have initiated the use of metrics 

in comparing human biological forms (Brace, 2005).   

Although Morton’s contributions were largely ignored during the 19th-century, he 

is considered an intellectual ancestor to today’s physical anthropologists (Gould, 1981; 

Brace, 1982, 2005; Cook, 2006).  His work has been re-evaluated by Stephen J. Gould, 

who found that Morton had subconsciously finagled his measurements involving cranial 

capacity in order that his results might meet his preconceived notions.  Despite the fact 

that Morton was a staunch polygenist and thought that human groups could be arranged 

hierarchically with Blacks ranking the lowest; this does not alter the significant 

contribution that he has made to the study of human variation. 
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 The next major contributor to craniometric analysis is the French physician Pierre 

Paul Broca (Brace, 1982, 2005).  Some recognition has been shown for the fact that 

Broca was “heir to both the French and the American traditions of polygenism” [Stocking, 

1968:40].  Yet the extent to which he represented the continuation of Morton’s efforts 

had not been pointed out until Brace did so in 1982.  In 1859, Broca founded the Societe 

d’Anthropologie de Paris and in 1867, the Laboratoire d’Anthropologie.  Then in 1875-

1876, the famed Ecole d’Anthropologie was established.  This federation of society, 

laboratory, and school, known informally as Broca’s institute, was the center of late 19th- 

and early 20th-century French anthropology (Spencer, 1982).   

 Broca’s important contribution to craniometric research was in his standardization 

of measurements and the development of instruments by which those standard 

measurements could be taken on both, living humans and on human skeletons.  In this 

aspect, Broca simply started with the measurements of Morton and added and elaborated 

(Brace, 2005).  Broca’s work was influential in the establishment of physical 

anthropology in America. 

 Ales Hrdlicka studied briefly with a student of Broca’s at the Ecole 

d’Anthropologie.  Based on these few months of training in anthropology, Hrdlicka’s 

goal was to bring the anthropology of France to America.  He wanted to found a school 

of anthropology just as Broca had.  Hrdlicka was never able to fully realize this goal, but 

he did succeed, between 1914 and 1920, in attracting a constant stream of workers to his 

lab at the National Museum of Natural History in Washington, D.C. for instruction in 

anthropology and anthropometric techniques (Spencer, 1982). 
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 During this period, Hrdlicka launched the American Journal of Physical 

Anthropology.  This event was an important landmark in the profession’s history for 

several reasons, including:  1) it had the instantaneous effect of securing the discipline’s 

identity, 2) it provided Hrdlicka with a chance to codify the discipline in broader and 

more modern terms, and 3) it gave him a platform from which to persist with his 

campaign to legitimize physical anthropology as an individual science (Spencer, 1982).     

 Despite Hrdlicka’s profound effect on physical anthropology, the most important 

influence in establishing the discipline of anthropology in America was that of Franz 

Boas.  Boas was born in Germany and earned his doctorate in physics.  He then became a 

protégé of the physician and anthropologist Rudolf Virchow, who was founder and 

director of the Berliner Gesellschaft fur Anthropologie, Ethnologie und Urgeschichte.  

Boas assisted Virchow in the Ethnological Museum in Berlin before he came to America 

in the mid-1880s in search of professional employment (Brace, 2005).   

 Boas played an important role in establishing the intellectual outlook of the 

anthropological programs at Harvard, Columbia, Chicago, and Berkeley.  Boas’ outlook 

was strongly influenced by his anthropological mentor in Berlin, Rudolf Virchow, who 

can be considered the founder of German anthropology.  Virchow based German 

anthropology on the model pioneered in France by Paul Broca.  Virchow’s protégé, Boas, 

was famous for showing the change in metric proportions between ancestors and 

descendants in certain groups (Boas, 1899, 1910, 1911, 1912).  Boas (1911, 1912) used 

craniometric analyses extensively in his work.  He was vital in influencing the future of 

craniometric research, particularly in the United States (Brace, 2005). 
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 Paul Rivet, a Boasian anthropologist, was influential in South America and 

contributed to the organization of physical anthropology as a discipline in Bolivia, Brazil, 

Ecuador, and Mexico (Leon, 1977).  Rivet published four important papers on 

prognathism.  These studies were remarkable in terms of their sample size and 

exhaustiveness (Rivet, 1909b, 1909c, 1910a, 1910b).  Rivet compared several measures 

of the facial angle, beginning with 5615 humans, 151 apes, and 334 monkeys (1909c) 

adding series as the study continued.   

 Rivet demonstrated that the facial angle varied with age and sex; also it had no 

consistent relationship to cranial index and facial index.  Rivet showed that geographical 

races include populations that differ extensively in facial angle, and that the various 

measures of facial projection are not equivalent.  This last finding laid to rest the 

enterprise begun by Camper; arranging races in order of facial projection (Cook, 2006).  

 Rudolf Martin, a German anthropologist in the early 1900s, was of vital 

importance in standardizing craniometric measurements.  Despite the fact that there is no 

clear discussion of his importance in terms of physical anthropology, most likely because 

his work is published in German, his landmarks and measurements are widely used.  He 

published a three volume collection in 1928, which defined numerous landmarks of the 

crania and defined a number of cranial measurements that could be used when studying 

human variation.  The landmarks and measurements defined by Martin have been and 

continue to be widely used in craniometric research.  Woo and Mourant (1934) made 

extensive use of Martin’s landmarks.  Howells (1973) uses Martin’s cranial 

measurements in his study of the cranial variation in man.  Although Martin’s 

contribution has not been explicitly mentioned, it is evident that his measurements are 
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still in use today (Howells, 1973, 1989, 1995; Hanihara, 1997; Brace et al., 2001, 2006, 

2008; Hanihara and Ishida, 2009).  

 The anthropologists mentioned above played a key role in establishing physical 

anthropology and, specifically, craniometric research as a valid field of study.  There are 

a number of other important anthropologists, not mentioned due to time and space 

restrictions, who also played an important historical role in establishing physical 

anthropology.  After this extensive historical background, it is now important to direct 

attention to the paradigm underlying early craniometric studies. 

The Typological Paradigm: The Concept Underlying Early Craniometric Studies 

 In any craniometric study the issue of race is always lingering just below the 

surface.  Early craniometric research was done under the guise of the typological 

paradigm which later developed into the race concept.  Although race has been and still 

remains a controversial topic within anthropology, the concept of race has its root much 

deeper (Armelagos and Van Gerven, 2003).  As early as the 14th-century before the 

Common Era, the Egyptians assigned humans to four categories based on color.  Red was 

representative of themselves, yellow the Asians to the east, white the people to the north, 

and black the African populations to the south (Gosset, 1963).   

 Greek philosophers, in the centuries before the Common Era, imagined a scala 

naturae along which all the byproducts of nature could be arranged in an upward 

progression from inanimate objects through the types of humanity to God (Mayr, 1988).  

By the 18th-century, this envisioned scale became transformed into the “Great Chain of 

Being” (Lovejoy, 1936).  Carolus Linnaeus was instrumental in classifying organisms 
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along this hierarchical chain.  Linnaeus, like most scholars of the Enlightenment, pictured 

the Great Chain as a series of discrete steps, each occupying a unique position in the 

hierarchy in relation to God at the top (Brace, 2005). 

 The placement of humans along the Great Chain was enhanced by the work of 

Camper during the 1790s.  His development of the facial angle was used to classify 

human groups hierarchically.  The lowest races were considered to have the most 

projecting (or animalistic) faces while the higher races had flatter faces.  The ideal was 

said to be the flat face which was represented extensively in Greco-Roman statues 

(Meijer, 1997).  Camper did not, however, make categorical distinctions between various 

human groups so as to make them appear to be members of different species (Brace, 

2005). 

 During this time, two important ideas were brought into focus.  These ideas were:  

races were real and races were rankable.  This led to the question:  Where did races come 

from?   Were races the result of a monogenic or polygenic origin?  In terms of this debate, 

Johann Blumenbach fell squarely on the side of monogenism, but this did not mean that 

he was at all adverse to ranking human groups (Armelagos and Van Gerven, 2003).  

Blumenbach’s understanding of race combined elements from the works of Kant and 

Buffon (Larson, 1994).  Kant attributed human variability to the effects of climate on an 

ideal ancestral type.  Thus, variability was the result of degeneration—meant as an 

accommodation to local conditions—of a single original type that was of intermediate 

skin color (Cook, 2006). 

 A concise statement of Blumenbach’s concept of race is this quotation from the 

English translation of his 1775 work De generis humani varietate native:  “the variations 
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of skin color, stature, body proportions, etc., which we have been able to observe, 

considerable though they may appear at first sight, have no absolute value; they all merge 

gradually one with another and, accordingly, classification into human races is arbitrary” 

[Bendyshe (1865), quoted in Comas (1960:16)].  As presented here, it seems obvious that 

Blumenbach did not agree with the prevailing 17th-century definition of races as constant 

varieties.  It is equally evident that different researchers have arrived at different 

conclusions as to Blumenbach’s ranking or not ranking of human “varieties” based on his 

work.   

 Samuel Morton, contrary to Blumenbach’s monogenism, was a strong proponent 

of the polygenic origin of human races.  Morton (1844) measured crania from around the 

world in an attempt to rank races as well as determine the antiquity of racial types.  

Differences in features like cranial capacity were believed to have great antiquity and, as 

a result, supported polygenesis.  God, it seemed, had fashioned not one human type but 

many unequal kinds (Armelagos and Van Gerven, 2003).   

 The development of evolutionary theory after 1859 and the discovery of 

Mendelian genetics after 1900 had the potential to compel a reevaluation of the concept 

of race.  But that potential was not immediately realized.  Though Darwinism ended the 

monogenesis-polygenesis debate in favor of a new “scientific” monogenesis, 

degenerationists reacted by simply turning their theory upside down.  The fall from Adam 

became an ascent from the ape.  It is not surprising; therefore, that racial determinism 

remained a potent force in the post-Darwinian era (Armelagos and Van Gerven, 2003). 

 Evolutionism did not serve to shift science away from Linnaean taxonomy, but 

actually reinforced taxonomic description (Armelagos and Van Gerven, 2003).  Post-
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Darwinian osteological studies were not ready to abandon race, instead the comparative 

study of race seemed to be the only way in which humans would be able to reconstruct 

our evolutionary history.  During this time, “primitive races” became living fossils and 

were viewed as evolutionary survivors of the different stages through which more 

“advanced” races had evolved.  The key to this was to find a cranial trait or combination 

of traits by which races could be classified and ranked into evolutionary hierarchies 

(Armelagos and Van Gerven, 2003).   

 In order to reach this goal, Paul Broca developed many of the anthropometric 

instruments which were used in racial assessment in the late 1880s.  He also helped to 

define many of the cranial landmarks that were necessary in establishing measurement 

standards.  However, the methods of anthropometry failed to provide answers to many of 

the most basic questions regarding race:  How many races are there?  And in what order 

can these so-called races be ranked (Armelagos and Van Gerven, 2003)? 

 During the first half of the 20th-century, physical anthropology continued to focus 

on issues of race and determining the number and relative value of races.  Earnest A. 

Hooton was vital in keeping the typological paradigm alive in the United States.  Franz 

Boas, on the other hand, criticized the basic tenets of racial typology.  He used his 

research on the plasticity of the cranium in immigrants to the United States to ask 

important questions like:  How can the fixity of human races be accepted when traits such 

as the cephalic index changed in magnitude in the span of one generation (Boas, 1912)?  

Boas also wondered how it was possible to know the number of races or hope to establish 

a ranking among them in lieu of the evidence that he had presented for cranial 

transformation (Armelagos and Van Gerven, 2003).   
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 Although Boas was a major force in the promotion of racial equality, his criticism 

of evolutionists such as L. H. Morgan and E. B. Tylor led him to become a strong anti-

evolutionist (Baker, 1994).  So despite his positive contributions, his antievolutionary 

stance was overwhelming and did not offer a clear alternative to physical anthropologists 

wanting to research human variation.  In fact, his students and followers were forced to 

study questions of diffusion and had few methods to use other than description 

(Armelagos and Van Gerven, 2003).  The time was ripe for change and the introduction 

of a new methodology that could be utilized without assuming racial typologies and 

biological determinism (Caspari, 2003). 

The “Extermination” of the Typological Paradigm: A New Physical Anthropology 

 The early 1950s saw the discovery of the double helix and the emergence of 

population studies, but osteological studies continued to reflect the conflicts of racial 

typology (Armelagos and Van Gerven, 2003).  In 1951, Sherwood L. Washburn 

published “The New Physical Anthropology,” an essay which became a manifesto for the 

modern era.  Washburn made a promise of a “new physical anthropology” that would be 

profoundly different from the old one.  The “old physical anthropology” remained 

descriptive in nature, while new theoretical perspectives would be dominant in the new.  

The most important concept that Washburn introduced was that hypothesis testing based 

on theories of adaptation and evolution would be the hallmark of modern research 

(Washburn, 1951).   

 However, a shift away from race and description would not come easily.  W W 

Howells rejected these attempts.  He stated, “My purpose is not the study of growth but 
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of taxonomy, of the variation between existing recent populations in the dry skull” 

[Howells, 1971:210 quoted in (Armelagos and Van Gerven, 2003:58)].  But in 1964, 

Howells’ student C. Loring Brace pointed out that races, and even populations are 

inadequate for the study of human variation.  Brace advocated the study of individual 

traits; the study of their distribution and the selection that causes their variation.  The 

study of clines became a focus of research rather than races (Caspari, 2003).   

 According to Caspari (2003), the shift in focus from race to population as a unit of 

study must be paired with the elimination of populational thinking to completely move 

away from purely descriptive analyses.  Populations cannot be considered simply another 

term for race; they cannot be thought of as breeding populations, isolated from other 

groups (Caspari, 2003).  The introduction of multivariate statistical analyses was vital in 

wrestling researchers from typological studies, although it did not completely eliminate 

typological analyses of skeletal remains (Armelagos et al., 1982). 

Use of Multivariate Statistics in Craniometric Research 

 In 1896, Pearson first applied his regression analysis to cranial material in an 

examination of the correlation between cranial width and length among different racial 

groups.  These types of correlation analyses continued throughout the 1920s (Armelagos 

et al., 1982).  Pearson and Davin, in 1924, published an investigation that differed 

markedly from earlier studies and has become a classic in both anthropology and 

statistics.  Pearson and Davin used a sample of 1600 Egyptian crania in an attempt to 

determine the major facts accounting for specific patterns of correlations in the human 

skull (Armelagos et al., 1982). 
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 Pearson and Davin (1924) were attempting to use cranial measurements to 

distinguish between “organic” and “spurious” correlations.  Organic correlations 

measured the relationships between distinct regions of the crania and spurious 

correlations were a reflection of redundant measures within the same functional system.  

This division could have laid the groundwork for functional craniology, but its 

application remained largely statistical (Armelagos and Van Gerven, 2003). 

 The earliest analytical methods for crania were predominantly restricted to 

descriptive, or univariate statistics.  Howells (1969:312) emphasized that univariate 

statistics are the statistics of measurements—not individuals or populations.  While 

comparisons between populations may proceed one measurement at a time, or potentially 

two at a time as in the case of an index, the statistics of populations as well as the 

treatment of individual specimens in the context of their parent population had to await 

the introduction of multivariate statistical procedures by Fisher (1936), Hotelling (1933), 

Mahalanobis et al. (1949), and Rao (1948, 1952), among others, starting in the third 

decade of the twentieth century (Pietrusewsky, 2000).   

 Multivariate statistical procedures comprise a family of related mathematical 

procedures that allow for the simultaneous analysis of multiple variables recorded for 

individuals from one or more groups (Pietrusewsky, 2000).  Despite the advantages of 

using multivariate analyses, the analysis of metric data using these procedures was slow 

to gain widespread usage.  Much of the initial reluctance can be attributed to the 

extensive and tedious computations that were involved.  General applications of 

multivariate methods had to wait for the invention of the mainframe computer in the late 

1960s and early 1970s (Pietrusewsky, 2000). 
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There are a number of multivariate statistical procedures that are commonly used 

in craniometric studies.  These include, but are not limited to:  factor analysis, principal 

components analysis, discriminant function analysis, and generalized distance.  The latter 

two procedures are designed to handle two or more groups, while principal components 

analysis, factor analysis, and related techniques are designed to investigate underlying 

patterns in a single group.  The interest in doing these types of analyses using 

craniometric measurements continues to this day as can be witnessed by the number of 

publications over the past three decades (Howells, 1973, 1989, 1995; Relethford, 1994; 

Brace et al. 2001, 2006, 2008) to list a few. 

Howells published a number of studies that utilized multivariate statistical 

techniques on craniofacial measurements (Howells, 1957, 1972, 1973, 1989, 1995).  

Howells (1957, 1972, 1973) used factor analysis and principal components analysis to 

study human variation between populations.  He stated the reasons for the 

appropriateness of multivariate analyses in handling populations very succinctly in 

1973:3-4: 

“Methods of multivariate analysis…allow a skull to be treated as a unit, i.e., as a configuration 
of the information contained in all its measurements.  Next, they allow populations to be treated 
as configurations of such units, taking account of their variation in shape because they in turn are 
handled as whole configurations of individual dimensions.  Finally, the relations and differences 
between all the populations being considered are set forth in terms of their several individual 
multivariate ranges of variation.  Thus it is possible to see the range of the whole species in such 
complete and objective informational terms.  That is the importance of multivariate statistics: 
they fit the model of populations looked on not as centroids or means, but as swarms of the 
varying individuals who compose them; and the differentiation of these swarms from one 
another constitutes a statement of the degree and nature of the difference between the 
populations.  Although the information is ultimately limited by the measurements selected to 
describe the skull, their relationships and their relative taxonomic significance are not otherwise 
biased by the worker [quoted in Pietrusewsky, 2000:378].” 
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The area of craniometric research uses a variety of multivariate statistical analyses.  

Another form of statistical analysis that has seen increased application is the Relethford-

Blangero model (Relethford and Blangero, 1990).  Relethford and Blangero expanded the 

Harpending-Ward model (Harpending and Ward, 1982), which was constructed for allele 

frequencies to include cases of multivariate quantitative traits.  In the Relethford-

Blangero model an R-matrix is estimated for a number of populations using quantitative 

traits.  The diagonal of the matrix provides a standardized distance for each population to 

the centroid, which is the hypothetical group that would exist if the populations were not 

divided from each other (Relethford and Blangero, 1990).   

In the Harpending-Ward model each population has an observed level of 

heterozygosity.  This is replaced with a summary measure of additive genetic variance in 

the Relethford-Blangero model.  In both models, the variance is related negatively to the 

distance to the centroid.  Populations that are near to the centroid have a considerable 

amount of internal variation, while populations far from the centroid have very little 

internal variation.  This is the case because drift and low migration rates in isolated 

populations move the populations away from the centroid and homogenize them 

(Konigsberg, 2006). 

Much more recently, there has been “a revolution in morphometrics” (Rohlf and 

Marcus, 1993) within the last decade based on the analysis of three-dimensional 

coordinate data.  Benfer (1975) first described a caliper-based method for “digitizing” the 

human skull, but this method was awkward and had a high error rate.  As a result, routine 

analysis of three-dimensional coordinate data had to wait for the development of 

relatively inexpensive, reliable, and transportable three-dimensional digitizers 
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(Konigsberg, 2006).  The “new morphometry” has been applied regularly to problems in 

the analysis of human cranial sexual dimorphism and growth, but there have been few 

studies which focus on biodistance analysis among archaeological human skeletal 

samples with the exception of Ashley McKeown’s (2000) dissertation.    

Recent Craniometric Studies 

In recent years there have been a number of studies that have utilized craniometric 

variation to:  compare populations, study population history, and attempt to identify the 

population affinity of an individual (Howells, 1973, 1989, 1995; Relethford, 1994, 2002; 

Hanihara, 1997; Hanihara et al., 2008; Hanihara and Ishida, 2009).   Craniometrics are 

utilized because many studies have shown them to be relatively neutral and, therefore, to 

be mostly unaffected by selective forces (Brace, 1989; Brace et al., 1991; Brace and 

Tracer, 1992; Relethford, 1994; Brace et al., 2001).  Despite the fact that Boas did 

demonstrate that cranial indices are plastic in humans, the majority of researchers today 

believe that though this is true the amount of plasticity is minimal enough as to have no 

major influence on cranial variation in terms of populations (Gravlee et al., 2003a; 

2003b; Relethford, 2004a).    

In 1991 Relethford looked at genetic drift in terms of anthropometric variation in 

various populations in Ireland.  Many early studies tended to focus on the supposed 

resistance of quantitative traits to genetic drift.  Based on the work of Birdsell (1950), 

numerous researchers claimed that because quantitative traits are the result of multiple 

loci, changes resulting from genetic drift at the different loci must cancel one another out.  

As a result of this suggestion, quantitative traits were considered to be relatively immune 
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to the effects of genetic drift.  This belief has become frequent in the anthropological 

literature (e.g., Relethford and Lees, 1982), despite the fact that a number of articles have 

shown that drift does in fact affect quantitative traits in the same way it affects single-

locus characters (Bulmer, 1980; Falconer, 1981; Rogers and Harpending, 1983).   

Relethford (1991), in an extension of previous analyses, considered the potential 

impact of genetic drift on the pattern of among-group variation using a predicted “drift 

distance.”   Body and craniofacial measurements are used for 259 adult males aged 16 to 

75 years.  An R-matrix is used to supply estimates of genetic similarity within and among 

populations relative to the contemporary means of allele frequency in a region.  

Relethford found that genetic drift has had a significant influence on the genetic structure 

of seven populations in 19th-century Ireland.   

In 1994 Relethford analyzed craniometric variation among modern human 

populations using Howells (1989) dataset.  Howells’ (1989) study looked at worldwide 

craniometric variation on the basis of comparisons of modern crania with several archaic 

forms.  He concluded that modern human craniometric variation is fairly limited.  

Relethford’s (1994) analysis made a formal comparison of craniometric variation as 

compared to genetic marker variation.  Many discussions have assumed that there is 

greater morphological differentiation relative to genetic differentiation (Nei and 

Roychoudhury, 1982; Stringer and Andrews, 1988).  Nei and Roychoudhury state that 

morphological variation among major races is “conspicuous” [1982:40].  Stringer and 

Andrews state that our species “shows great morphological variation, however, in 

contrast to this, genetic variation between human populations is low overall” [1988:1264].  

Relethford (1994) presents estimates of the degree of population differentiation among 
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world regions based on craniometric data.  He then compares these estimates to typical 

values found from studies of genetic markers and mtDNA.  Relethford’s findings indicate 

that the degree of differentiation is essentially the same in both genetic markers and 

craniometric data. 

In 1995 Howells used the data that he had collected (1973, 1989) in an attempt to 

assess the effectiveness of classifying an unknown individual into the correct group.  

Howells wanted to use individuals that were not used in the construction of the 

discriminant function.  His results were mixed; however, in terms of the simple purpose 

of estimating affiliation of a modern skull, he considered his results as very good.  In the 

case of classifying prehistoric individuals into a modern sample, the results were not as 

good.  Howells had limited success in distinguishing regions craniometrically, that is in 

setting up regional samples to which an individual can be assigned as successfully as they 

can be affiliated with specific samples.  However, he did find that such samples clustered 

well in accordance with regional expectations.  Overall, Howells suggested that based on 

his results individuals assign themselves better to specific populations rather than to 

“races” or regional samples.   

Brace et al. (2001) studied the old world sources of new world craniofacial 

variation.  The authors state that metric variables record inherited differences in cranial 

and facial form by documenting minor variations in the arrangement of suture placement, 

length, and other minutiae in the construction of the cranial vault and face.  Brace et al. 

(2001) maintain that the various configurations of craniofacial form cluster regionally 

and are not distributed in clinal fashion in relation to the intensity of differing selective 

force strengths (Brace and Hunt, 1990; Brace and Tracer, 1992; Brace et al., 1993).  Also 
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configurations of facial form, once established, seem to stay stable over considerable 

spans of time.   

Jantz and Owsley (2001) looked at variation among early North American crania 

using craniometric measurements.  Fossil crania were compared to the worldwide 

database by Howells (1989) because only three of the Howells’ populations are Native 

American, Jantz and Owsley supplemented the Native American samples with six other 

historic samples.  The analysis was based on 22 measurements which quantify overall 

length, breadth, facial variation, projections from the transmeatal axis, and facial 

projections.  The authors used the posterior probability to determine which of the 

reference groups each fossil cranium was most likely to belong to.  Along similar lines, 

the typicality probability was used to indicate where a given specimen falls in relation to 

the variability of the reference groups.  Based on this analysis, Jantz and Owsley 

concluded that the diversity of early American crania makes it inadvisable to pool them 

into a single Paleoamerican sample for purposes of analysis.  They also deduced that the 

most parsimonious explanation of the demonstrated morphological and genetic 

relationships is that the ancient immigrants were replaced or assimilated by more recent 

ones. 

There has been much debate among anthropologists as to the relative merits of 

posterior versus typicality probabilities in individual classification.  Albrecht (1992) 

suggested that typicality probabilities should be used rather than posterior probabilities 

because they do not eliminate the possibility that the individual in question could be a 

member of a group other than the ones being used for comparison.  By allowing for the 

possibility that the individual may be a member of a group not represented a fossil is not 
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classified based on the fact that it is nearest to that group’s centroid whether or not it is 

outside the range of variation exhibited by that population. 

Relethford (2002) studied global human genetic diversity by looking at 

craniometrics and skin color.  Based on the results obtained, craniometric traits closely 

resemble the components of variation obtained from genetic marker and DNA 

polymorphism data.  The craniometric data used were originally collected by Howells 

(1989) and consist of 57 craniometric measurements on 1,734 crania from 18 populations 

in six major geographic regions.  Relethford concluded that the global patterns of 

craniometric variation can be considered, on average, selectively neutral.   

 In 2002 Sparks and Jantz reanalyzed Boas’ (1910) data set in an attempt to 

determine whether or not cranial plasticity exists among humans.  Sparks and Jantz (2002, 

2003) proposed that the Boas data provided evidence of slight developmental plasticity.  

The authors suggested that Boas had misinterpreted the results of his cranial studies.  

Gravlee et al. (2003a, 2003b) suggested that Boas did get it right and that there was 

evidence of plasticity.  Both sets of authors showed that there was cranial plasticity 

present; however, they differed in their interpretations as to the amount and effects of 

cranial plasticity.  Sparks and Jantz (2002, 2003) found that there was cranial plasticity 

present but that it was so minimal as to be insignificant.  The authors suggested that 

cranial plasticity did not affect population affinities and that there is a strong genetic 

component to craniofacial morphology.  Gravlee et al. (2003a, 2003b) also found that 

plasticity was present in the cranium and that it was slight, but they said that this is what 

Boas had himself stated about his findings.   
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Relethford (2007) says that his reading of the studies suggests that craniometric 

traits do show some evidence of developmental plasticity, but the magnitude of these 

changes is not sufficient to erase patterns of population relationships.  Relethford 

concludes that although plasticity does exist for craniometric traits, it does not as a result 

obscure underlying genetic differences between populations.  This suggests that there is 

continued potential for such traits in the study of human population structure and history.  

Studies performed by Relethford (2004a, 2004b) examined global patterns of 

craniometric variation and found that they reflect both population affinities and natural 

selection.  However, it was shown that natural selection does not obscure the underlying 

patterns of population relationships (Relethford, 2004a). 

 Relethford (2004b) examined measures of genetic similarity for global datasets 

for classical genetic markers, microsatellite DNA markers, and craniometrics.  He found 

the same rate of distance decay, the effects of the isolation by distance model, in all three 

types of data.  As with studies of apportionment of genetic diversity, this close 

association suggests that multivariate patterns of craniometric variation emulate those of 

neutral genetic variation to a large extent (Relethford, 2004b). 

In 2006, Brace et al. performed another craniometric study; this time looking at 

similarities and differences between living human populations and their prehistoric 

predecessors using 24 craniofacial measurements.  The authors believe that because the 

distribution of craniometric variation behaves in a similar fashion to that of genetic 

markers they can be considered neutral and of no adaptive significance.  For this reason, 

they demonstrate the extent of genetically shared relationships between adjacent 

populations.    
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 Hanihara and Ishida (2009) studied the population history of the Jomon, Neolithic 

inhabitants of Japan, using 34 craniofacial measurements.  They used an R-matrix 

analysis to assess the regional diversity of the Jomon skeletal series.  An average 

heritability of 0.55, as proposed by Devor (1987), was used in building the R-matrix.  A 

second R-matrix was built using a heritability of 0.40 which Carson (2006) recently 

found to be more accurate for the specific craniofacial measurements used in the analysis.   

 The authors found that the apportionment of regional diversity estimated from the 

craniometric data indicates that the majority of the diversity of the Jomon people existed 

within regions.  The authors’ findings also suggest that the Jomon ancestors of the 

northern part of Japan might have expanded southward to Honshu Island.  Further 

analyses indicated that the Jomon cranial series share a piece of their ancestral gene pool 

with early north-eastern Asians (Hanihara and Ishida, 2009). 

A particularly important paper in terms of the research presented in the current 

study is Brace et al.’s (2008) analysis of the Kennewick remains.  In this analysis, Brace 

and co-workers attempt to determine which population(s) Kennewick man is most similar 

to.  The measurements craniofacial measurements were converted to Z scores in this 

analysis because this allowed the combination of male and female data without having to 

worry about sex-related differences in sheer body size in the dimensions of the specimens 

measured.   

Brace et al. (2008) created an R-matrix for the Asian and Pacific populations that 

were included in their analysis following Relethford and Blangero’s (1990) method.  The 

authors also performed a discriminant function analysis and examined the canonical 

variates that were obtained.  A posterior probability and typicality probability were also 
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calculated.  The R-matrix values along with those for the Kennewick individual were 

treated by the neighbor-joining procedure and plotted as web-like trees.  Kennewick is 

always shown to be at the end of a long twig.  This is the result of Kennewick being an 

individual specimen with single figures and no standard deviation for each variable, but 

all the other twigs are for groups with mean dimensions and common variance.  The 

results of this study show that the Kennewick individual is consistently on the same twig 

as the Ainu of Japan and Polynesians.  This result is maintained no matter what 

combination of other groups is used.  The typicality probability supports this result.
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CHAPTER 3 : MATERIALS AND METHODS 

Materials 
 The three crania that were used for the current study are housed at the University 

of Montana and are part of the University of Montana Forensic Collection (UMFC).  

They were purchased as complete skeletons from a biological supply company called 

Skulls Unlimited International Inc.  The acquisition numbers assigned to these 

individuals are:  UMFC 103 (Figure 3.1 and 3.2), UMFC 104 (Figure 3.3 and 3.4), and 

UMFC 120 (Figure 3.5 and 3.6).   

 

Figure 3.1. UMFC 103. 
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Figure 3.2. UMFC 103, profile view. 
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Figure 3.3. UMFC 104. 



 31

 
Figure 3.4. UMFC 104, profile view. 
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Figure 3.5. UMFC 120. 
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Figure 3.6. UMFC 120, profile view. 

 

A Microscribe 3.0, 3-dimensional digitizer, was used to collect coordinate data for 

each cranium.  Craniofacial measurements were then calculated from the coordinate data 

for all three individuals.   These measurements were compared to data from two different 

craniofacial measurement databases.  The first database was collected by researchers at 

the University of Michigan and consists of 21 craniofacial measurements (Table 3.1 

below) collected on individuals from populations around the world.  The individuals 

come from modern, historic, and prehistoric populations (Brace et al., 2001, 2006, 2008).  

The second database was collected by Dr. T Hanihara at the Medical School of Saga 

University.  His database consists of 45 craniometric measurements (Table 3.2 below) 
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collected on individuals from different populations worldwide.  The measurements 

compiled in Hanihara’s database are taken from individuals from modern as well as 

historic and prehistoric populations (Hanihara, 1997; Hanihara et al., 2008; Hanihara and 

Ishida, 2009). 

Table 3.1. Michigan Database Craniometric Measurements. 
Craniofacial 
measurement 

Definition Source 

Nasal height  Average height from nasion to the lowest point on the border of the 
nasal aperture on either side.  

Martin No. 55 

Nasal bone height  Length of the nasomaxillary suture. Martin No. 56(2) 
Piriform Aperture 
Height 

Average from the two points on the margin of the piriform aperture 
inferiorly to rhinion. 

Martin No. 55(1) 

Nasion Prosthion 
Length 

Nasion to prosthion. Martin No. 48 

Nasion Basion Nasion to basion. Martin No. 5 
Basion Prosthion Basion to prosthion. Martin No. 40 
Superior nasal 
bone width 

Distance between left and right nasomaxillarae. Martin No. 57(2) 

Simotic width Minimum transverse breadth of the generally hourglass shape of the 
two nasal bones. 

Howells, 1973 

Inferior nasal 
bone width 

Dimension between the right and left inferior terminus of the 
nasomaxillary suture, along the margin of the piriform aperture. 

Martin No. 57(3) 

Nasal breadth Maximum width of the piriform aperture. Martin No. 54 
Simotic subtense Subtense from simotic chord to the nasal bridge. Howells, 1973 
Inferior simotic 
subtense 

Same as above measurement, but taken from points outlined in 
measurement #9. 

Brace and Hunt, 1990 

Fronto-orbital 
width subtense at 
nasion 

Subtense from frontomalare posterior to nasion. Woo and Mourant, 1934 

Mid-orbital width 
subtense at 
rhinion 

Anterior projection of the nose off the facial plane as measured from 
where the maxillo-malar suture crosses the orbital rim to rhinion. 

Woo and Mourant, 1934 

Bizygomatic 
breadth 

Maximum breadth across the zygomatic arches. Martin No. 45 

Glabella 
opisthocranion 

Length from glabella to opisthocranion. Martin No. 1 

Maximum cranial 
breadth 

Maximum breadth of the cranium usually somewhere around the 
parietal eminence. 

Martin No. 8 

Basion Bregma Height from basion to bregma. Martin No. 17 
Basion Rhinion Basion to rhinion. Brace and Hunt, 1990 
Width at 
measurement #13  

Distance from frontomalare temporale to frontomalare temporale. Brace and Hunt, 1990 

Width at 
measurement #14  

Distance from right maxillo-malar suture to left maxillo-malar 
suture. 

Woo and Mourant, 1934 
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Table 3.2. Hanihara Database Craniometric Measurements. 
  Craniometric measurement Source 
  1.  Maximum cranial length (GOL) Howells, 1973 
  2.  Nasion-opisthocranion (NOL) Howells, 1973 
  3.  Cranial base length (BNL) Howells, 1973 
  4.  Maximum cranial breadth (XCB) Howells, 1973 
  5.  Minimum frontal breadth (M9) Martin, 1928 
  6.  Maximum frontal breadth (XFB) Howells, 1973 
  7.  Biauricular breadth (M11) Martin, 1928 
  8.  Biauricular breadth (AUB) Howells, 1973 
  9.  Biasterionic breadth (ASB) Howells, 1973 
10.  Basion-bregma height (BBH) Howells, 1973 
11.  Sagittal frontal arc (M26) Martin, 1928 
12.  Sagittal parietal arc (M27) Martin, 1928 
13.  Sagittal occipital arc (M28) Martin, 1928 
14.  Nasion-bregma chord (FRC) Howells, 1973 
15.  Bregma-lambda chord (PAC) Howells, 1973 
16.  Lambda-opisthion chord (OCC) Howells, 1973 
17.  Basion prosthion length (BPL) Howells, 1973 
18.  Breadth between frontomalare temporale (M43) Martin, 1928 
19.  Bizygomatic breadth (ZYB) Howells, 1973 
20.  Middle facial breadth (M46) Martin, 1928 
21.  Nasion prosthion height (NPH) Howells, 1973 
22.  Interorbital breadth (DKB) Howells, 1973 
23.  Orbital breadth (M51) Martin, 1928 
24.  Orbital breadth (M51a) Martin, 1928 
25.  Orbital height (OBH) Howells, 1973 
26.  Nasal breadth (NLB) Howells, 1973 
27.  Nasal height (NLH) Howells, 1973 
28.  Nasal height (M55) Martin, 1928 
29.  Palate breadth (MAB) Howells, 1973 
30.  Mastoid height (MDH) Howells, 1973 
31.  Mastoid width (MDB) Howells, 1973 
32.  Bicondylar breadth (M65) Martin, 1928 
33.  Bigonial breadth (M66) Martin, 1928 
34.  Maximum projective length of mandible (M68(1)) Martin, 1928 
35.  Height of mandibular symphysis (M69) Martin, 1928 
36.  Corpus mandibulae width (M69(3)) Martin, 1928 
37.  Minimum anteroposterior width of the ramus (M71a) Martin, 1928 
38.  Ramus height (M70) Martin, 1928 
39.  Ramus breadth (M71) Martin, 1928 
40.  Breadth between frontomalare orbitale (M43(1)) Martin, 1928 
41.  Frontal subtense (No 43c) Brauer, 1988 
42.  Minimum horizontal breadth of the nasalia/simotic chord 
(M57, WNB) 

Martin, 1928; Howells, 1973 

43.  Simotic subtense (No 57a, SIS) Brauer, 1988; Howells, 1973 
44.  Breadth between zygomaxillare anterius/Zygomaxillary 
chord (M46b, ZMB) 

Martin, 1928; Howells, 1973 

45.  Zygomaxillary subtense (No 46c, SSS) Brauer, 1988; Howells, 1973 
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 Both of these databases are extremely large and as a result not all of the 

populations sampled are used for comparison in the present analysis.  The populations 

that were used were chosen based on geographic location and the predicted population 

affinity of UMFC 103, 104, and 120.  The commonly held belief that most biological 

supply companies obtained human skeletons from India before 1985 and China after 

1985 led to populations being chosen which were in close geographic proximity to these 

two countries.  The reference populations chosen from the Michigan database are listed in 

Table 3.3 (see below) and the reference populations chosen from the Hanihara database 

are listed in Table 3.4 (see below).  The populations are also displayed on maps (see 

Figures 3.7 and 3.8). 
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Table 3.3. Michigan Database Reference Populations for this Study. 
Population Female 

(#) 
Male 
(#) 

Total (#) 

Mexico 6 9 15 
Japan 77 173 250 
Ainu 23 33 56 
South China  7 20 27 
Polynesia 73 62 135 
Chuckchi 7 12 19 
Thai 27 37 64 
Melanesia 21 28 49 
Philippine Negrito 10 10 20 
Philippine Manobo 12 11 23 
Heilongjiang 8 10 18 
Aleut 15 15 30 
Hong Kong 35 73 108 
Peru 29 26 55 
Vedda 13 15 28 
Tamil 7 10 17 
Tierra del Fuego 7 15 22 
Eskimo 59 72 131 
Athabaskan 27 21 48 
South India 12 23 35 
Buriat 9 7 16 
Hebei 18 15 33 
Henan 6 23 29 
Haida 24 25 49 
Blackfoot 17 15 32 
Taiwan aboriginal 14 22 36 
Maryland 12 14 26 
Merida 23 25 48 
Australia 19 32 51 
Mongolia 54 74 128 
WAfrica 51 54 105 
TOTAL 722 981 1703 
. 
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Figure 3.7. Map of Michigan Database Reference Populations. 
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Table 3.4. Hanihara Database Reference Populations for this Study. 
Population Females (#) Males (#) Total (#) 
Aleut 98 92 190 
North Australia 5 49 54 
South Australia 19 63 82 
Tasmania 6 13 19 
Chile 11 16 27 
Patagonia 11 47 58 
Mexico 33 55 88 
Peru 140 210 350 
Ainu Hokkaido 25 51 76 
Ainu Sakhalin 10 23 33 
North Han 13 57 70 
North China, Manchurian 0 40 40 
Japan 39 113 152 
Eskimo, Alaska 211 241 452 
Vedda 3 12 15 
Buriat 9 21 30 
Chuckchi 2 18 20 
Mongol 51 121 172 
Polynesia Marquesas 20 58 78 
Borneo 5 61 66 
Philippine Negrito 7 20 27 
Sumatra 2 26 28 
Thai 10 29 39 
Gabon 4 60 64 
Ivory 0 21 21 
South Han 0 58 58 
Korea 0 19 19 
Tibet 11 49 60 
Bengal 22 45 67 
Calcutta 0 15 15 
Nepal 5 24 29 
Fiji 3 26 29 
Caledonia 9 30 39 
Solomon 21 50 71 
New Zealand 19 98 117 
Burma 3 68 71 
Iraq 4 15 19 
Cameroon 15 30 45 
Ghana 34 45 79 
Nigeria 1 26 27 
Tanzania 23 71 94 
Somalia 3 42 45 
Kenya 19 60 79 
TOTAL 926 2288 3214 
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Figure 3.8. Map of Hanihara Database Reference Populations. 

Methods 

Data Collected for UMFC 103, 104, and 120 
 

Coordinate data was observed on craniofacial landmarks for each individual using 

the Microscribe 3.0 digitizer.  The landmarks used to calculate the Michigan database 

craniofacial measurements are listed in Figure 3.9 (see below) and those for the Hanihara 

database craniofacial measurements in Figure 3.10 (see below).  The 2-dimensional 

craniofacial measurements were calculated using the Pythagorean Theorem in Microsoft 

Excel.  The 2-dimensional linear craniofacial measurements for the Michigan dataset 



 41

were computed by the DISTANCE3D program by free statistical package R (Umeda and 

Seguchi, 2005).  

 
Figure 3.8. Landmarks for Hanihara Database. 

 

Figure 3.9. Landmarks for Michigan Database. 
 
Figure 3.10. Landmarks for Hanihara Database. 

 

 

 

 

 

 

 

 
1. M: center of the ear hole (left)   33.  Bizygomatic (left) 
2. M: center of the ear hole (right)   34.  Bizygomatic (right) 
3. Nasion     35.  Glabella 
4. Dacryon     36.  Max cranial breadth (left) 
5. Ectoconchion a (left)    37.  Max cranial breadth (right) 
6. ZO (left)     38.  Minimum nasal tip (left) 
7. Subspinale     39.  Minimum nasal tip (right) 
8. Zygomaxillare (left)    40.  Basion 
9. Prosthion     41.  Opisthocranion 
10. p2/M1 (left)    42.  Lambda 
11. Bregma     43.  Inion 
12. Nasal sill (left)    44.  Opisthion 
13. Nasal sill (right)    45.  Lowest point of mastoid process (left) 
14. Superior terminate at nasomaxillary suture (left) 46.  Lowest point of mastoid process (right) 
15. Superior terminate at nasomaxillary suture (right) 47.  Orale 
16. Jugale (left)    48.  Endomalare (left) 
17. Jugale (left)    49.  Endomalare (right) 
18. Nasospinale    50.  Plate cross point 
19. Rhinion     51.  Edge of dental arch (left)  
20. Simotic (left)    52.  Edge of dental arch (right) 
21. Simotic (middle)    53.  m1/m2 inside point (left) 
22. Simotic (right)    54.  m1/m2 inside point (right) 
23. Inferior nasal bone width (left)   55.  c/p1 outside point (left) 
24. Inferior nasal bone width (right)   56.  c/p1 outside point (right) 
25. Nasal breadth (left) 
26. Nasal breadth (right) 
27. Frontomalare temporale (left) 
28. Frontomalare orbitale (left) 
29. Frotomalare orbitale (right) 
30. Frontomalare temporale (right) 
31. Midorbital width (left) 
32. Midorbital width (right) 

 
1. Glabella     27.  Maxillofrontale 
2. Bregma     28.  Ectoconchion 
3. Lambda     29.  Orbital height (upper) 
4. Opisthocranion    30.  Orbital height (lower) 
5. Opisthion     31.  Alare (right)     
6. Basion     32.  Alare (left) 
7. Prosthion     33.  Lowest point on the border of the nasal aperture (right) 
8. Nasion     34.  Lowest point on the border of the nasal aperture (left) 
9. Maximum cranial breadth (right)   35.  Ectomalare (right) 
10. Maximum cranial breadth (left)   36.  Ectomalare (left) 
11. Frontotemporale  (right)   37.  Lowest point on the mastoid process (right) 
12. Frontotemporale  (left)   38.  Right ear hole 
13. Maximum frontal breadth (right)   39.  Mastoid breadth (posterior) 
14. Maximum frontal breadth (left)   40.  Mastoid breadth (anterior) 
15. Auriculare (right)    41.  Frontomalare temporale (right) 
16. Auriculare (left)    42.  Frontomalare temporale (left) 
17. Asterion (right)    43.  Nasion 
18. Asterion (left)    44.  Frontomalare orbitale (right) 
19. Maxillofrontale (right)   45.  Frontomalare orbitale (left) 
20. Maxillofrontale (left)    46.  Simotic chord (right)    
21. Zygion (right)    47.  Simotic chord (left) 
22. Zygion (left)    48.  Nasion 
23. Midfacial breadth (right)   49.  Deepest part of bridge of nose 
24. Midfacial breadth (left)   50.  Zygomaticus anterius (right) 
25. Dacryon (right)    51.  Zygomaticus anterius (left) 
26. Dacryon (left)    52.  Subspinale 
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During digitizing any irregularities of the cranium were noted and an estimation 

of sex was made based on the morphology of the cranium as well as the os coxae.  The 

sex of these three individuals was estimated based on procedures described in Buikstra 

and Ubelaker’s (1994) Standards for Data Collection.  UMFC 103 was estimated to be 

male mainly due to the morphology of the os coxae.  The left os coxa had a narrow 

greater sciatic notch, a broad ischiopubic ramus, and the presence of a faint preauricular 

sulcus.  The same can be said of the right os coxa.  However, the cranium was very 

gracile with small mastoid processes,  very little muscle marking in the occipital region, 

no projection in the brow ridge area, and a greater than 90 degree gonial angle.  Despite 

the fact that the cranium seems more characteristically female in terms of morphology, 

the morphological features of the os coxae indicate that this individual is indeed male. 

 UMFC 104 was estimated to be female based on the combined morphology of the 

cranium and os coxae.  The cranium was very gracile with very few distinct muscle 

markings, the presence of a slightly protruding glabellar region, medium size mastoid 

processes, and sharp eye orbits.  The left os coxa had a wide greater sciatic notch, the 

presence of a ventral arc, and the presence of a fairly shallow preauricular sulcus.  The 

same can be said of the right os coxa.  All of these traits combined indicate that this 

individual is most likely female.   

UMFC 120 is tentatively estimated to be male, however; there are ambiguous 

features present in both the cranium and os coxae.  The cranium is fairly gracile overall; 

there are slight muscle markings in the nuchal region, smooth eye orbits, medium size 

mastoid processes, and a close to 90 degree gonial angle.  The left and right os coxae had 

fairly broad greater sciatic notches, broad ischiopubic rami, no ventral arcs, and slight 
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preauricular sulci.  Overall, there are morphological features which result in conflicting 

sex estimates, but because the os coxae appear to be more male; the sex for this 

individual is estimated as male. 

 UMFC 103 had some disfiguration of the cranium which may have been the result 

of disease processes or the processing of the cranium by Skulls Unlimited.  There was 

thickening present on the outside of the cranium which may be attributed to anemia, 

however, this was not researched any further because it was beyond the scope of the 

current study and was not believed to have detrimentally affected the digitizing of the 

cranium.  A few of the landmarks had to be estimated due to the fact that the nasal bones 

were broken on both the left and right sides.  Also there were no teeth present in the 

maxillary dental arcade and so those landmarks which were to be taken on the dental 

arcade had to be estimated.  There were no irregularities present in either UMFC 104 or 

UMFC 120.  Also all of the bones were present in their entirety so that no landmark 

locations had to be estimated. 

Comparison with Michigan Database 
 The first database with which UMFC 103, 104, and 120 were compared is the 

Michigan database.  Using the statistical program SPSS 16.0 a descriptive analysis was 

run to determine the exact number of individuals in each population and also to determine 

the number of males and females present within each population (see Table 3.3).  

Twenty-one craniofacial measurements were used in the analysis.  Any individuals with 

missing data were eliminated from the analysis.  Those populations with less than 15 

individuals were excluded from analysis because a normal distribution could not be 

assumed for populations with fewer than this number of individuals. 
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 A principal components analysis (PCA) was run using the reference populations 

in an attempt to determine if the craniofacial measurements being used were indeed able 

to show population similarity related to geographic proximity and probable shared 

population history.  A second principal components analysis was then run with SPSS 

16.0 using the populations described above and UMFC 103, 104, and 120.  The second 

PCA was run to look at the potential similarities between UMFC 103, 104, and 120 and 

the reference populations.  The purpose of principal components analysis is to focus on 

the covariation (or interrelationship) among a large number of variables taken from a 

single sample in order to attempt to identify common patterns of variation.  PCA does not 

use any criterion for maximizing differences among groups.  Individual specimens can be 

located on these factors (Pietrusewsky, 2000).  The principal components analysis was 

conducted as an exploratory technique as well as to get an estimate of what 

measurements seem to be important in terms of the variation exhibited by populations.  

The component matrix produced was used to make this determination.   

The statistical program DISCR 2.41 (Oe and Seguchi, 2003) was used to perform 

a discriminant function analysis to classify UMFC 103, 104, and 120.  The discriminant 

function analysis utilized a technique known as cross validation which tests the accuracy 

of the classification of known individuals based on the discriminant functions calculated.  

The 1st and 2nd and 2nd and 3rd canonical variates were graphed to look at variation in 

terms of the selected populations and UMFC 103, 104, and 120.  The canonical variates 

are plotted to show the reference populations and the unknown individuals in order to see 

the allocation of the unknown individuals.  The main purpose of discriminant function 

analysis is to maximize differences between groups.  The new variables which result 
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from discriminant function analysis can be considered uncorrelated or independent.  

Individuals and/or groups can be placed in a multidimensional space after this 

transformation in order to provide a means of visualizing these interrelationships.  In 

most cases, the first few newly calculated variables account for the majority of the 

variation among groups (Pietrusewsky, 2000).   

  Finally, DISCR 2.41 was used to calculate Mahalanobis distances in order to 

calculate typicality probabilities and posterior probabilities for the classification of 

UMFC 103, 104, and 120.  Mahalanobis distance is computed by maximizing the 

difference between pairs of groups.  This is done by maximizing the between-group 

variance to the pooled within-group variance.  This procedure transforms the original 

variables to a new uncorrelated set of variables (Pietrusewsky, 2000).  Posterior 

probabilities assume that the unknown individual belongs to one of the groups included 

in the analysis.  The posterior probabilities, as a result, sum to 1.  Typicality probabilities 

evaluate how likely it is that the unknown individual belongs to any, or none, of the 

groups based on the average variability of all the groups in the analysis (Pietrusewsky, 

2000).  Each of these individuals was assigned to one of the selected populations based 

on statistical similarities.   

 After these initial statistical tests, another statistical analysis was performed in an 

attempt to eliminate the effects of sheer size differences between populations.  An 

analysis was run on this data using a shape transformation described by Darroch and 

Mosimann (1985).  In this transformation, the geometric mean is calculated and then used 

to calculate shape variables for each measurement for each individual.  This 

transformation is said to eliminate size differences to enable the analysis of differences in 
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shape only (Darroch and Mosimann, 1985).  The transformed data was then submitted to 

the same statistical analyses as described above.   

Comparison with Hanihara Database 
 The next step in the analysis was to compare UMFC 103, 104, and 120 to the 

selected populations from the Hanihara database (see Table 3.4).  Although the Hanihara 

database consists of 45 craniofacial measurements, only 34 measurements were used in 

the initial analysis.  The measurements were eliminated in accordance with published 

papers (Hanihara, 1997; Hanihara et al., 2008; Hanihara and Ishida, 2009).  The 

measurements eliminated include all of the mandibular measurements (#s 32-39 in Table 

3.2) as well as measurements #7, #24, and #28.  A descriptive analysis was run using 

SPSS 16.0 as described above; the same procedure was followed in eliminating 

populations from the analysis.  SPSS 16.0 was again used to perform two principal 

components analyses.  Then, DISCR 2.41 was used to run a discriminant function 

analysis as described above.  Posterior and typicality probabilities were again calculated.  

After this initial analysis was performed a second statistical analysis was run by 

performing the geometric mean shape transformation on the 34 individual measurements 

as a way to eliminate size differences between populations (Darroch and Mosimann, 

1985). 
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CHAPTER 4 : RESULTS 

Comparison with Michigan Database using 21 Craniofacial Variables 

 The principal components analysis (PCA) was performed as an exploratory 

method.  Its purpose in terms of this study was to look at the variation present within the 

reference populations.  The 1st three principal components account for 55.59% of the 

variation present within the sample.  The component matrix was used to determine which 

craniofacial measurements were contributing to the 1st three principal components (see 

Table 4.1 below).  The first principal component can be considered to be a result of size 

because all of the loadings are positive and most are fairly high.  The second principal 

component seems to be separating populations based on width of the nasal bones.  The 

third principal component is separating populations on the basis of the subtense 

measurements.  For the purposes of the current analysis, only the 1st three principal 

components were evaluated as a general explanation of variation present in the sample. 
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Table 4.1. PCA Component Matrix: Michigan Database, 21 Variables. 

Component Matrixa 

 Component 

 1 2 3 4 5 

nasal height .685 -.403 .155 .316 .038 

nasal bone height .466 -.470 .157 .358 .150 

piriform aperture height .620 -.072 .457 -.086 -.232 

nasion prosthion length .707 -.394 .104 .235 .085 

nasion basion .789 -.019 -.244 -.374 .228 

basion prosthion .616 .089 -.377 -.421 .100 

superior nasal bone width .252 .686 .041 .409 .375 

simotic width .172 .797 -.008 .309 .304 

inferior nasal bone width .337 .252 -.442 .450 .091 

nasal breadth .322 .265 -.475 .412 -.301 

simotic subtense .398 .476 .534 .034 .128 

inferior simotic subtense .488 .084 .650 .001 -.041 

frontoorbital width subtense 

at nasion 
.385 .491 -.016 -.188 -.213 

mid orbital width subtense at 

rhinion 
.434 .377 .599 -.240 -.169 

bizygomatic breadth .796 -.249 -.078 .185 -.153 

glabella opisthocranion .702 -.030 -.285 -.242 .024 

maximum cranial breadth .467 -.310 .095 .497 -.097 

basion bregma .568 -.193 -.189 -.269 .331 

basion rhinion .828 .021 -.041 -.385 .160 

width at 13 (fronto malar 

temporalis) 
.773 .031 -.222 .078 -.271 

mid orbital width (width at 14) .328 .448 -.220 -.052 -.520 

Extraction Method: Principal Component Analysis.   

a. 5 components extracted.     
 

The 1st three principal components were graphed to visualize the variation present 

within the populations sampled.  The first graph (Figure 4.1 below) shows the variation 
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present based on principal component 1 (PC1) which accounts for 31.64% of the 

variation present within the sample and is a size factor and principal component 2 (PC2) 

which accounts for 13.40% of the variation and is a factor of nasal bone width.  This 

graph shows clear geographic clustering of groups with West Africa, Australia, and 

Melanesia close to each other and many of the Chinese groups are close together as well.  

Also the Indian groups show a pretty clear clustering.  The graph of PC2 vs. PC3 also 

demonstrates clear geographic clustering (see Figure 4.2 below).  Most of the American 

populations are clustered together along with the Indian populations.  The West African, 

Australian, and Melanesian populations cluster towards the bottom of the graph.   

When the PCA is run again, but this time with UMFC 103, 104, and 120 the 

results are not as geographically clear (see Figures 4.3 and 4.4).  The plot of PC1 vs. PC2 

(Figure 4.3) is compressed somewhat because UMFC 103, 104, and 120 appear to be 

much smaller in terms of overall size than the sample populations.  There is a clustering 

of the Chinese samples used and the Buriat, Mongol, Chukchi, and Eskimo populations.  

Other than this general cluster there does not appear to be any clear distribution of 

populations.  UMFC 103 and 104 are closest to the Vedda population.  The second graph 

(Figure 4.4 below) shows the variation present based on PCs 2 and 3.  This graph clearly 

separates populations from North America (except Haida and Athabaskan), South 

America, and India from all other populations and UMFC 103, 104, and 120.  This 

separation is based on PC3 which is a factor of the subtense measurements.  UMFC 103 

and 104 are close to the Australian, Melanesian, and West African populations.  UMFC 

120 is closest to the Eskimo and Chukchi populations. 
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Figure 4.1. PC1 vs. PC2: Michigan Database, 21 Variables. 
 

 

 

 

 

 

   

• Northern Asia and Northern North America: Aleut, 
Athabaskan, Buriat, Chukchi, Eskimo, Haida, Mongolia 

• North and South America: Blackfoot, Maryland, Merida, 
Mexico, Peru, Tierra del Fuego 

• India: South India, Tamil, Vedda 
• SE Asia: Philippine Manobo, Philippine Negrito, Taiwan 

aboriginal, Thailand 
• China: Hebei, Heilongjiang, Henan, Hong Kong, South 

China 
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Figure 4.2. PC2 vs. PC3: Michigan Database, 21 Variables. 
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China 
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Figure 4.3. PC1 vs. PC2: Michigan Database and UMFC 103, 104, and 120; 21 Variables. 
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Athabaskan, Buriat, Chukchi, Eskimo, Haida, Mongolia 
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• India: South India, Tamil, Vedda 
• SE Asia: Philippine Manobo, Philippine Negrito, Taiwan 

aboriginal, Thailand 
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China 
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Figure 4.4. PC2 vs. PC3: Michigan Database and UMFC 103, 104, and 120; 21 Variables. 
 

 

• Northern Asia and Northern North America: Aleut, 
Athabaskan, Buriat, Chukchi, Eskimo, Haida, Mongolia 

• North and South America: Blackfoot, Maryland, Merida, 
Mexico, Peru, Tierra del Fuego 

• India: South India, Tamil, Vedda 
• SE Asia: Philippine Manobo, Philippine Negrito, Taiwan 

aboriginal, Thailand 
• China: Hebei, Heilongjiang, Henan, Hong Kong, South 

China 
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The discriminant function analysis was conducted to look at the potential 

similarities between any of the selected populations and UMFC 103, 104, and 120.  The 

1st and 2nd and 1st and 3rd canonical variates (CV) were graphed (see Figures 4.5 and 4.6 

below).  CV1 accounts for 29.53% of the differences between populations, CV2 15.80%, 

and CV3 12.15%.  The graph of CV1 vs. CV2 (Figure 4.5) shows that UMFC 103 and 

120 are shown to be within the range of variation that is exhibited by the reference 

populations.  UMFC 104, however, is well outside the range of variation exhibited.  The 

CV1 vs. CV3 plot demonstrates the same patterns in terms of UMFC 103 and 120.  

UMFC 104, however, is now nearer to the reference populations, specifically the Indian 

reference populations. 
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Figure 4.5. CV1(29.53%) vs. CV2(15.80%): Michigan Database, 21 Variables. 

 
 

• Northern Asia and Northern North America: Aleut, 
Athabaskan, Buriat, Chukchi, Eskimo, Haida, Mongolia 

• North and South America: Blackfoot, Maryland, Merida, 
Mexico, Peru, Tierra del Fuego 

• India: South India, Tamil, Vedda 
• SE Asia: Philippine Manobo, Philippine Negrito, Taiwan 

aboriginal, Thailand 
• China: Hebei, Heilongjiang, Henan, Hong Kong, South 

China 
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Figure 4.6. CV1 (29.53%)  vs. CV3 (12.15%): Michigan Database, 21 Variables. 
  

• Northern Asia and Northern North America: Aleut, 
Athabaskan, Buriat, Chukchi, Eskimo, Haida, Mongolia 

• North and South America: Blackfoot, Maryland, Merida, 
Mexico, Peru, Tierra del Fuego 

• India: South India, Tamil, Vedda 
• SE Asia: Philippine Manobo, Philippine Negrito, Taiwan 

aboriginal, Thailand 
• China: Hebei, Heilongjiang, Henan, Hong Kong, South 

China 
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The discriminant function analysis classified UMFC 104 as a member of the 

Melanesian group with a posterior probability of 0.682 and a typicality probability of 

0.020 based on an F distribution.  The posterior probabilities, typicality probabilities, and 

Mahalanobis distances for the nearest five populations are shown below in Table 4.2.  

UMFC 120 was grouped with the sample from South China based on a posterior 

probability of 0.448 and a typicality probability of 0.134 (see Table 4.3 below).  Finally, 

UMFC 103 was calculated to be most similar to the Taiwanese aboriginal sample with a 

posterior probability of 0.861 and a typicality probability of 0.134 (see Table 4.4 below). 

 
Table 4.2. Probabilities and Mahalanobis Distances relating UMFC 104 to the five closest groups 
using the reference populations. 
 Melanesia Australia Ainu Vedda Tamil 
PostProb 0.682 0.130 0.070 0.052 0.049 
TypProb 0.020 0.008 0.006 0.007 0.012 
MahDist 37.885 41.877 42.156 43.129 42.540 
 
Table 4.3. Probabilities and Mahalanobis Distances relating UMFC 120 to the five closest groups 
using the reference populations. 
 SChina Eskimo Athabask Chukchi TaiwanAbo 
PostProb 0.448 0.280 0.127 0.054 0.029 
TypProb 0.134 0.071 0.062 0.071 0.035 
MahDist 30.217 32.320 33.929 33.607 36.608 
 
Table 4.4.Probabilities and Mahalanobis Distances relating UMFC 103 to the five closest groups 
using the reference populations. 
 TaiwanAbo PhilNeg SChina Hebei Athabask 
PostProb 0.861 0.037 0.035 0.017 0.017 
TypProb 0.134 0.049 0.040 0.024 0.020 
MahDist 31.259 37.973 37.377 39.566 40.480 
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Comparison with Michigan Database using 21 Craniofacial Measurements 

Transformed by the Geometric Mean 

 The results of the PCA of the Michigan database using all 21 craniofacial 

measurements adjusted by the geometric mean show that there are three principal 

components with eigenvalues of greater than one that account for 66% of the variation 

present in the data set.  The component matrix obtained from the PCA with three 

components extracted is shown below (Table 4.5).  The first principal component seems 

to be separating the cranial measurements from the measurements of the facial 

dimensions.  PC2 can be labeled projection of the nasal area and nasal width.  PC3 

appears to be separating upper facial flatness and nasal bone height measurements. 
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Table 4.5. PCA Component Matrix: Michigan Database, 21 Shape Variables. 

Component Matrixa 

 Component 

 1 2 3 

SVnasoht .716 -.327 -.386

SVnasobn .436 -.389 -.544

SVpoht .295 -.597 .174

SVnaprlng .727 -.304 -.337

SVnasbas .867 .063 .246

SVbaspros .796 .174 .303

SVsupnas -.539 .587 -.286

SVsimwid -.535 .680 -.114

SVinfnasb .382 .494 -.326

SVnasbrdt .558 .476 -.098

SVsimsub -.767 -.183 .063

SVinfsims -.421 -.643 .008

SVfowsb -.010 .258 .515

SVmowsu -.417 -.422 .541

SVbizygo .881 -.079 -.090

SVglabopi .876 .110 .174

SVmaxbred .784 -.023 -.221

SVbasibre .841 .039 .113

SVbasirhi .815 -.084 .324

SVfmtfmt .882 .134 .093

SVmowidt .424 .374 .370

Extraction Method: Principal Component Analysis. 

a. 3 components extracted.  
 

The graph of PC1 vs. PC2 shows some clustering based on geography.  The 

American populations are clustered together as are the Indian populations (Figure 4.7).  

The Chinese populations and surrounding areas also form a cluster.  The plot of PC2 vs. 
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PC3 also demonstrates clustering based on geographic proximity (Figure 4.8).  The 

Indian populations are clearly clustered as are the West African, Australian, and 

Melanesian populations.  The Chinese populations and surrounding areas are clustered 

near the bottom of the graph as well.  Once UMFC 103, 104, and 120 are added the 

distribution of reference populations changes somewhat.  The graph of the 1st and 2nd 

principal components is shown in Figure 4.9 below.  UMFC 103 and 120 are quite distant 

from all of the populations sampled, while UMFC 104 is nearer to the range of variation 

exhibited by the populations.  There is no distinct clustering exhibited.  The graph of PC2 

vs. PC3 shows that UMFC 120 is in the midst of many of the populations.  UMFC 120 is 

close to the South Chinese and Thailand populations (Figure 4.10 below).  UMFC 103 

and 104, on the other hand, are quite distinct. 



 61

 

 
 
 
 
 
 
 
 
 
 
Figure 4.7. PC1 vs. PC2: Michigan Database, 21 Shape Variables. 

• Northern Asia and Northern North America: Aleut, 
Athabaskan, Buriat, Chukchi, Eskimo, Haida, Mongolia 

• North and South America: Blackfoot, Maryland, Merida, 
Mexico, Peru, Tierra del Fuego 

• India: South India, Tamil, Vedda 
• SE Asia: Philippine Manobo, Philippine Negrito, Taiwan 

aboriginal, Thailand 
• China: Hebei, Heilongjiang, Henan, Hong Kong, South 

China 
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Figure 4.8. PC2 vs. PC3: Michigan Database, 21 Shape Variables. 

 

• Northern Asia and Northern North America: Aleut, 
Athabaskan, Buriat, Chukchi, Eskimo, Haida, Mongolia 

• North and South America: Blackfoot, Maryland, Merida, 
Mexico, Peru, Tierra del Fuego 

• India: South India, Tamil, Vedda 
• SE Asia: Philippine Manobo, Philippine Negrito, Taiwan 

aboriginal, Thailand 
• China: Hebei, Heilongjiang, Henan, Hong Kong, South 

China 
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Figure 4.9. PC1 vs. PC2: Michigan Database and UMFC 103, 104, and 120; 21 Shape Variables.  

• Northern Asia and Northern North America: Aleut, 
Athabaskan, Buriat, Chukchi, Eskimo, Haida, Mongolia 

• North and South America: Blackfoot, Maryland, Merida, 
Mexico, Peru, Tierra del Fuego 

• India: South India, Tamil, Vedda 
• SE Asia: Philippine Manobo, Philippine Negrito, Taiwan 

aboriginal, Thailand 
• China: Hebei, Heilongjiang, Henan, Hong Kong, South 

China 
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Figure 4.10. PC2 vs. PC3: Michigan Database and UMFC 103, 104, and 120; 21 Shape Variables. 
 

 

The results of the discriminant function analysis of the Michigan database using 

21 shape variables are shown below (Figures 4.11 and 4.12).  The graph of CV1 vs. CV2 

shows that UMFC 104 is quite distinct from all of the sample populations (Figure 4.11).  

UMFC 103 is close to the Taiwan Aboriginal and Athabaskan samples.  UMFC 120 is 

• Northern Asia and Northern North America: Aleut, 
Athabaskan, Buriat, Chukchi, Eskimo, Haida, Mongolia 

• North and South America: Blackfoot, Maryland, Merida, 
Mexico, Peru, Tierra del Fuego 

• India: South India, Tamil, Vedda 
• SE Asia: Philippine Manobo, Philippine Negrito, Taiwan 

aboriginal, Thailand 
• China: Hebei, Heilongjiang, Henan, Hong Kong, South 

China 
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fairly distinct, but is somewhat near the Eskimo and Heilongjiang samples.  In terms of 

UMFC 103, 104, and 120, Figure 4.12 demonstrates the same relationships. 

Table 4.6. Legend for Reference Populations used in Canonical Variates Plots for Michigan Database, 
21 Shape Variables. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A: Mexico G: Thai  M:HongKong   S: Athaba   Y: Bfoot  AE: WAfric 
B: Japan  H: Melanesia  N: Peru             T: SIndia     Z: TAbo 
C: Ainu  I: PhilNeg      O: Vedda         U: Buriat  AA: Mary 
D: SChina  J: PhilMon      P: Tamil          V: Hebei   AB: Merida 
E: Polynes K: Heilong       Q: Tierra         W: Henan  AC: Australia 
F: Chukchi L: Aleut           R: Eskim         X: Haida      AD: Mongolia 
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Figure 4.11. CV1(30.25%) vs. CV2(17.74%): Michigan Database, 21 Shape Variables. 

 

 
 

• Northern Asia and Northern North America: Aleut (L), 
Athabaskan(S), Buriat(U), Chukchi(F), Eskimo(R), 
Haida(X), Mongolia(AD) 

• North and South America: Blackfoot(Y), Maryland(AA), 
Merida(AB), Mexico(A), Peru(N), Tierra del Fuego(Q) 

• India: South India(T), Tamil(P), Vedda(O) 
• SE Asia: Philippine Manobo(J), Philippine Negrito(I), 

Taiwan aboriginal(Z), Thailand(G) 
• China: Hebei(V), Heilongjiang(K), Henan(W), Hong 

Kong(M), South China(D) 
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Figure 4.12. CV2(17.74%) vs. CV3(11.07%): Michigan Database, 21 Shape Variables. 

 

 

• Northern Asia and Northern North America: Aleut (L), 
Athabaskan(S), Buriat(U), Chukchi(F), Eskimo(R), 
Haida(X), Mongolia(AD) 

• North and South America: Blackfoot(Y), Maryland(AA), 
Merida(AB), Mexico(A), Peru(N), Tierra del Fuego(Q) 

• India: South India(T), Tamil(P), Vedda(O) 
• SE Asia: Philippine Manobo(J), Philippine Negrito(I), 

Taiwan aboriginal(Z), Thailand(G) 
• China: Hebei(V), Heilongjiang(K), Henan(W), Hong 

Kong(M), South China(D) 
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UMFC 104 classified with the Ainu based on the discriminant function analysis.  

The posterior probability was 0.587 and the typicality probability was 0.007 (see Table 

4.7 below).  UMFC 120 was grouped with the Eskimo with a posterior probability of 

0.517 and a typicality probability of 0.013 (see Table 4.8 below).  UMFC 103 was 

grouped with the Taiwanese aboriginals with a posterior probability of 0.243 and a 

typicality probability of 0.013 (see Table 4.9 below). 

Table 4.7. Probabilities and Mahalanobis Distances relating UMFC 104 to the five closest groups 
using the reference populations. 
 Ainu Melanesia Australia Tamil Vedda 
PostProb 0.587 0.363 0.043 0.004 0.002 
TypProb 0.007 0.006 0.002 0.001 0.000 
MahDist 41.788 42.396 46.772 49.194 51.914 
 
Table 4.8. Probabilities and Mahalanobis Distances relating UMFC 120 to the five closest groups 
using the reference populations. 
 Eskimo SChina Chukchi Athabask Hebei 
PostProb 0.517 0.333 0.102 0.014 0.011 
TypProb 0.013 0.019 0.014 0.002 0.003 
MahDist 36.498 36.677 37.014 42.991 43.596 
 
Table 4.9. Probabilities and Mahalanobis Distances relating UMFC 103 to the five closest groups 
using the reference populations. 
 SChina TaiwanAbo Japan Ainu HongKong 
PostProb 0.243 0.242 0.061 0.061 0.061 
TypProb 0.013 0.019 0.014 0.002 0.003 
MahDist 36.498 36.677 37.014 42.991 43.596 
 

Comparison with Hanihara Database using 34 Craniofacial Measurements 

 The results of the principal components analysis for the Hanihara database using 

34 craniofacial measurements are shown below.  The 1st three PCs account for 53.30% of 

the variation present within the sample.  The component matrix (Table 4.10 below) 

calculated by PCA displays the loadings of each of the variables for the eight principal 

components with eigenvalues greater than one.  Only the loadings based on the 1st three 
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principal components will be evaluated for the purposes of this study.  The first principal 

component is clearly a result of size, all of the loadings are positive and the majority of 

them are large.  The loadings of PC2 are difficult to decipher, but generally speaking it 

seems to be separating length measurements from breadth and height measurements.  

PC3, although difficult to decipher as well, can be labeled cranial vault measurements 

versus facial measurements. 
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Table 4.10. PCA Component Matrix: Hanihara Database, 34 Variables. 
Component Matrixa 

 Component 
 1 2 3 4 5 6 7 8 

GOL .759 .347 -.347 .066 -.074 -.162 -.090 .155
NOL .751 .311 -.354 .077 -.060 -.212 -.093 .173
BNL .716 .187 .002 .233 -.315 -.102 .026 -.037
XCB .489 -.590 -.068 -.236 .390 .062 .134 -.044
M9 .607 .236 .191 -.285 .147 -.276 .058 -.056
XFB .548 -.294 -.055 -.444 .376 -.023 .182 -.077
AUB .641 -.608 .089 -.042 .112 .100 .076 .047
ASB .576 -.398 -.043 .038 .304 -.040 .045 .175
BBH .589 .200 -.418 -.014 -.103 .165 .058 -.160
M26 .543 .278 -.413 -.297 -.056 -.107 .123 -.505
M27 .322 .558 -.294 -.403 -.059 .317 .117 .417
M28 .416 -.139 -.485 .414 .384 -.189 -.360 .106
FRC .662 .144 -.404 -.168 -.025 -.101 .168 -.448
PAC .392 .585 -.334 -.363 -.053 .239 .057 .410
OCC .381 -.092 -.528 .376 .354 -.147 -.366 .000
BPL .546 .281 .229 .275 -.277 -.064 -.218 -.030
M43 .815 .099 .360 -.099 -.013 -.202 -.048 .042
ZYB .796 -.382 .153 -.010 .019 .079 .005 .060
M46 .670 -.373 .217 .023 -.084 .276 -.177 -.021
NPH .646 -.445 -.044 .108 -.185 .014 .185 .089
DKB .295 .470 .394 -.295 .270 -.068 -.261 -.026
M51 .724 .003 .252 .030 -.286 -.309 .038 .065
OBH .399 -.465 .005 .045 -.219 -.284 .265 .187
NLB .340 .314 .315 -.231 .171 .127 -.345 -.127
NLH .662 -.395 -.054 .103 -.177 .081 .221 .023
MAB .648 -.022 .214 .082 -.038 .267 -.150 -.078
MDH .495 .235 -.048 .191 .074 .503 .054 -.084
MDB .500 .158 .084 .237 .075 .412 .018 -.061
M431 .784 .152 .408 -.094 -.049 -.232 -.059 .072
No43c .233 .626 .262 .243 .049 -.235 .274 -.023
M57WNB .038 .464 .341 .130 .576 -.072 .161 .026
NO57aSIS .119 .266 .124 .448 .433 .036 .511 .081
M46bZMB .705 -.218 .288 .026 -.052 .283 -.181 -.049
No46cSSS .185 .433 .069 .465 -.087 .221 .185 -.149
Extraction Method: Principal Component Analysis.     
a. 8 components extracted.       

 

 
The 1st three principal components were graphed as described above for visual 

purposes.  The plot of PC1 vs. PC2 shows clear geographic clustering (Figure 4.13 

below).  The African populations are clustered together along with the Australian 

populations.  Also the Aleut, Chukchi, Buriat, Mongol, and Eskimo are all close together 
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which would be expected based on geographic proximity and shared environmental 

conditions.  The graph of PC2 vs. PC3 shows less clear clustering (Figure 4.14 below). 

The African populations are all in the same general region along with the Australian 

populations.  Once UMFC 103, 104, and 120 are added to the PCA the clustering based 

on geographic proximity is obscured.  The graph of PC1 versus PC2 (Figure 4.15) shows 

that most of the populations used in the analysis are clustered together with only a few 

outliers.  These outliers include UMFC 103, 104, and 120 and the Vedda, Bengal, and 

Philippine Negrito populations.  UMFC 103 and 104 are closest to the Vedda and Bengal 

reference populations.  The graph of PC2 versus PC3 (Figure 4.16) again shows one large 

cluster with a few outliers; most notably UMFC 104 and 120.  UMFC 103 is very close to 

the sample from Caledonia. 
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Figure 4.13. PC1 vs. PC2: Hanihara Database, 34 Variables. 

• North Asia and Bering Areas: Aleut, Buriat, Chukchi, 
Eskimo Alaska, Mongol 

• Central and South America: Chile, Mexico, Patagonia, Peru 
• China: North Han, North China, South Han 
• India: Calcutta, Vedda 
• Africa: Cameroon, Gabon, Ghana, Ivory Coast, Kenya, 

Nigeria, Somalia, Tanzania 
• SE Asia: Borneo, Burma, Thailand, Tibet, Philippine 

Negrito, Sumatra 
• Australia and Polynesia: Caledonia, Fiji, Marquesas 

Polynesia, New Zealand, North Australia, Solomon Islands, 
South Australia, Tasmania 
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Figure 4.14. PC2 vs. PC3: Hanihara Database, 34 Variables. 

• North Asia and Bering Areas: Aleut, Buriat, Chukchi, 
Eskimo Alaska, Mongol 

• Central and South America: Chile, Mexico, Patagonia, Peru 
• China: North Han, North China, South Han 
• India: Calcutta, Vedda 
• Africa: Cameroon, Gabon, Ghana, Ivory Coast, Kenya, 

Nigeria, Somalia, Tanzania 
• SE Asia: Borneo, Burma, Thailand, Tibet, Philippine 

Negrito, Sumatra 
• Australia and Polynesia: Caledonia, Fiji, Marquesas 

Polynesia, New Zealand, North Australia, Solomon Islands, 
South Australia, Tasmania 
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Figure 4.15. PC1 vs. PC2: Hanihara Database and UMFC 103, 104, and 120; 34 Variables. 

• North Asia and Bering Areas: Aleut, Buriat, Chukchi, 
Eskimo Alaska, Mongol 

• Central and South America: Chile, Mexico, Patagonia, Peru 
• China: North Han, North China, South Han 
• India: Calcutta, Vedda 
• Africa: Cameroon, Gabon, Ghana, Ivory Coast, Kenya, 

Nigeria, Somalia, Tanzania 
• SE Asia: Borneo, Burma, Thailand, Tibet, Philippine 

Negrito, Sumatra 
• Australia and Polynesia: Caledonia, Fiji, Marquesas 

Polynesia, New Zealand, North Australia, Solomon Islands, 
South Australia, Tasmania 
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Figure 4.16. PC2 vs. PC3: Hanihara Database and UMFC 103, 104, and 120; 34 Variables. 

 

 

The results of the discriminant function analysis for the Hanihara database are 

shown below (Figures 4.17 and 4.18).  In the graph of CV1 vs. CV2 (Figure 4.17 below), 

UMFC 103 and 104 are clustered together completely separated from all other 

• North Asia and Bering Areas: Aleut, Buriat, Chukchi, 
Eskimo Alaska, Mongol 

• Central and South America: Chile, Mexico, Patagonia, Peru 
• China: North Han, North China, South Han 
• India: Calcutta, Vedda 
• Africa: Cameroon, Gabon, Ghana, Ivory Coast, Kenya, 

Nigeria, Somalia, Tanzania 
• SE Asia: Borneo, Burma, Thailand, Tibet, Philippine 

Negrito, Sumatra 
• Australia and Polynesia: Caledonia, Fiji, Marquesas 

Polynesia, New Zealand, North Australia, Solomon Islands, 
South Australia, Tasmania 
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populations used in the analysis.  UMFC 120 is near the Tanzanian, Somalian, and 

Kenyan populations.  In the graph of CV2 vs. CV3 (Figure 4.18 below), UMFC 103, 104, 

and 120 are clearly separated from all other populations.  UMFC 103 and 104 are again 

close together; while UMFC 120 is completely separated. 

 

Table 4.11. Legend for Reference Populations used in Canonical Variates Plots for Hanihara 
Database, 34 Variables. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A: Aleut    N: EskAl  AA: Korea  AN: Ghana 
B: AusN    O: Vedda  AB: Tibet  AO: Nigeri 
C: AusS    P: Buriat  AC: Bengal AP: Tanzan 
D: Tasm  Q: Chukchi AD: Calcutta AQ: Somal 
E: Chile  R: Mongol  AE: Nepal  AR: Kenya 
F: Patagonia S: PolMarq AF: Fiji 
G: Mexico  T: Borneo  AG: Caledonia 
H: Peru  U: PhilNeg AH: Solomon 
I: AinuH  V: Sumatra AI: NZeal 
J: AinuS  W: Thai  AJ: Burma 
K: NHan  X: Gabon  AK: Singapore 
L: NChin  Y: Ivory  AL: Iraq 
M: Japan  Z: HanS  AM: Cameroon 
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Figure 4.17. CV1(33.70%) vs. CV2(11.50%): Hanihara Database, 34 Variables. 
 

 
 
 
 

• North Asia and Bering Areas: Aleut(A), Buriat(P), Chukchi(Z), 
Eskimo Alaska(N), Mongol(R) 

• Central and South America: Chile(E), Mexico(G), Patagonia(F), 
Peru(H) 

• China: North Han(K), North China(L), South Han(Z) 
• India: Calcutta(AD), Vedda(O) 
• Africa: Cameroon(AM), Gabon(X), Ghana(AN), Ivory Coast(Y), 

Kenya(AR), Nigeria(AO), Somalia(AQ), Tanzania(AP) 
• SE Asia: Borneo(T), Burma(AJ), Thailand(W), Tibet(AB), 

Philippine Negrito(U), Sumatra(V) 
• Australia and Polynesia: Caledonia(AG), Fiji(AF), Marquesas 

Polynesia(S), New Zealand(AI), North Australia(B), Solomon 
Islands(AH), South Australia(C), Tasmania(D) 
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Figure 4.18. CV2(11.50%) vs. CV3(7.60%): Hanihara Database, 34 Variables. 

 

• North Asia and Bering Areas: Aleut(A), Buriat(P), Chukchi(Z), 
Eskimo Alaska(N), Mongol(R) 

• Central and South America: Chile(E), Mexico(G), Patagonia(F), 
Peru(H) 

• China: North Han(K), North China(L), South Han(Z) 
• India: Calcutta(AD), Vedda(O) 
• Africa: Cameroon(AM), Gabon(X), Ghana(AN), Ivory Coast(Y), 

Kenya(AR), Nigeria(AO), Somalia(AQ), Tanzania(AP) 
• SE Asia: Borneo(T), Burma(AJ), Thailand(W), Tibet(AB), 

Philippine Negrito(U), Sumatra(V) 
• Australia and Polynesia: Caledonia(AG), Fiji(AF), Marquesas 

Polynesia(S), New Zealand(AI), North Australia(B), Solomon 
Islands(AH), South Australia(C), Tasmania(D) 
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The discriminant function analysis classified UMFC 104 as a member of the 

Vedda group with a posterior probability of 0.987 and a typicality probability of 0 (see 

Table 4.12 below).  UMFC 103 was also classified as Vedda with a posterior probability 

of 0.938 and a typicality probability of 0 (see Table 4.13 below).  UMFC 120 was 

classified as Sumatra with a posterior probability of 0.970 and a typicality probability of 

0 (see Table 4.14 below). 

Table 4.12. Probabilities and Mahalanobis Distances relating UMFC 104 to the two closest groups 
using the reference populations. 
 Vedda Bengal 
PostProb 0.987 0.000 
TypProb 0.000 0.000 
MahDist 442.792 454.918 
 
Table 4.13. Probabilities and Mahalanobis Distances relating UMFC 103 to the three closest groups 
using the reference populations. 
 Vedda Bengal Burma 
PostProb 0.938 0.060 0.002 
TypProb 0.000 0.000 0.000 
MahDist 439.163 447.995 454.535 
 
Table 4.14. Probabilities and Mahalanobis Distances relating UMFC 120 to the five closest groups 
using the reference populations. 
 Sumatra Ivory Kenya Borneo Tibet 
PostProb 0.970 0.007 0.006 0.005 0.005 
TypProb 0.000 0.000 0.000 0.000 0.000 
MahDist 338.696 346.636 349.093 350.555 350.309 
 

Comparison with Hanihara Database using 34 Craniofacial Measurements 

Transformed by the Geometric Mean 

 The principal components analysis for the Hanihara database using 34 shape 

transformed craniofacial measurements shows that 49.04% of the variation present is 

accounted for by the 1st three PCs.  The component matrix calculated from the PCA of 

the Hanihara database using 34 shape transformed craniofacial measurements is shown in 
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Table 4.15 below.  Only the 1st three principal components are shown.  PC1 seems to be 

roughly separating the cranial vault measurements from the facial measurements.  PC2 

and PC3 are uninterpretable; it is not clear exactly which measurement variation is being 

represented.  

Table 4.15. PCA Component Matrix: Hanihara Database, 34 Shape Variables. 
 1 2 3 

SV_GOL .579 .612 -.192 
SV_NOL .608 .575 -.208 
SV_BNL .490 .228 .108 
SV_XCB .694 -.296 -.193 
SV_M9 .402 .273 .406 
SV_XFB .653 -.054 -.046 
SV_AUB .731 -.487 -.061 
SV_ASB .637 -.240 -.187 
SV_BBH .523 .400 -.267 
SV_M26 .505 .542 -.158 
SV_M27 .171 .688 -.046 
SV_M28 .408 .040 -.556 
SV_FRC .603 .406 -.247 
SV_PAC .224 .747 -.067 
SV_OCC .449 .131 -.528 
SV_BPL .277 .201 .331 
SV_M43 .629 .033 .606 
SV_ZYB .733 -.416 .102 
SV_M46 .637 -.407 .150 
SV_NPH .596 -.394 -.152 
SV_DKB -.144 .278 .566 
SV_M51 .638 .045 .408 
SV_OBH .623 -.211 -.067 
SV_NLB .064 .179 .406 
SV_NLH .568 -.381 -.173 
SV_MAB .408 -.167 .204 
SV_MDH -.179 -.036 -.128 
SV_MDB -.149 -.153 -.017 
SV_M431 .564 .075 .677 
SV_No43c -.553 .273 .291 
SV_M57WNB -.718 -.022 .128 
SV_No57aSI
S -.747 -.249 -.242 

SV_M46bZM
B .558 -.358 .260 

SV_No46cSS
S -.385 .123 -.056 

Extraction Method: Principal Component Analysis. 
a. 9 components extracted. 
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The graph of PC1 versus PC2 is shown in Figure 4.19 below.  There are three 

distinct clusters shown.  One of the clusters is composed of the African, Australian, 

Indian, and surrounding area populations.  The second cluster is composed of the New 

World, Chinese, Japanese, and surrounding area populations.  The third cluster is 

composed of the Buriat, Mongol, Chukchi, Aleut, and Eskimo populations.  The graph of 

PC2 vs. PC3 shows two distinct clusters and a few outliers (Figure 4.20 below).  One 

cluster is again composed of the African, Australian, and Tasmanian populations, while 

the other is composed of the remainder of the populations.  The Caledonian, Calcutta, and 

Bengal populations are shown to be outliers.  Once UMFC 103, 104, and 120 are added 

there is some clustering of the African populations based on PC2, but overall there is not 

a distinctive pattern shown (see Figure 4.21 below).  UMFC 103 and 104 are close 

together and are separated from all the population samples.  UMFC 120 is close to the 

Mongolian, Chukchi, Buriat, and Alaskan Eskimo populations.  The graph of PC2 vs. 

PC3 shows that UMFC 120 is distinct from all other populations (see Figure 4.22 below).  

There is distinct clustering present in this graph; the African and Australian populations 

are clustered high on PC3 and to the right on PC2.  UMFC 104 is clustered with the 

African and Australian populations.  UMFC 103 is clustered with the remaining 

populations towards the bottom of the graph. 
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Figure 4.19. PC1 vs. PC2: Hanihara Database, 34 Shape Variables.. 

• North Asia and Bering Areas: Aleut, Buriat, Chukchi, 
Eskimo Alaska, Mongol 

• Central and South America: Chile, Mexico, Patagonia, Peru 
• China: North Han, North China, South Han 
• India: Calcutta, Vedda 
• Africa: Cameroon, Gabon, Ghana, Ivory Coast, Kenya, 

Nigeria, Somalia, Tanzania 
• SE Asia: Borneo, Burma, Thailand, Tibet, Philippine 

Negrito, Sumatra 
• Australia and Polynesia: Caledonia, Fiji, Marquesas 

Polynesia, New Zealand, North Australia, Solomon Islands, 
South Australia, Tasmania 
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Figure 4.20. PC2 vs. PC3: Hanihara Database, 34 Shape Variables. 

 

• North Asia and Bering Areas: Aleut, Buriat, Chukchi, 
Eskimo Alaska, Mongol 

• Central and South America: Chile, Mexico, Patagonia, Peru 
• China: North Han, North China, South Han 
• India: Calcutta, Vedda 
• Africa: Cameroon, Gabon, Ghana, Ivory Coast, Kenya, 

Nigeria, Somalia, Tanzania 
• SE Asia: Borneo, Burma, Thailand, Tibet, Philippine 

Negrito, Sumatra 
• Australia and Polynesia: Caledonia, Fiji, Marquesas 

Polynesia, New Zealand, North Australia, Solomon Islands, 
South Australia, Tasmania 
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Figure 4.21. PC1 vs. PC2: Hanihara Database and UMFC 103, 104, and 120; 34 Shape Variables. 
 

 
  
 

• North Asia and Bering Areas: Aleut, Buriat, Chukchi, 
Eskimo Alaska, Mongol 

• Central and South America: Chile, Mexico, Patagonia, Peru 
• China: North Han, North China, South Han 
• India: Calcutta, Vedda 
• Africa: Cameroon, Gabon, Ghana, Ivory Coast, Kenya, 

Nigeria, Somalia, Tanzania 
• SE Asia: Borneo, Burma, Thailand, Tibet, Philippine 

Negrito, Sumatra 
• Australia and Polynesia: Caledonia, Fiji, Marquesas 

Polynesia, New Zealand, North Australia, Solomon Islands, 
South Australia, Tasmania 
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Figure 4.22. PC2 vs. PC3: Hanihara Database and UMFC 103, 104, and 120; 34 Shape Variables. 
 

The first 1st three canonical variates calculated from the discriminant function 

analysis are graphed below (Figures 4.23 and 4.24).  UMFC 103, 104, and 120 are shown 

to be quite distinct from any of the reference populations.  UMFC 103 and 104 are shown 

to be fairly similar while UMFC 120 is quite distinct on both plots.   

• North Asia and Bering Areas: Aleut, Buriat, Chukchi, 
Eskimo Alaska, Mongol 

• Central and South America: Chile, Mexico, Patagonia, Peru 
• China: North Han, North China, South Han 
• India: Calcutta, Vedda 
• Africa: Cameroon, Gabon, Ghana, Ivory Coast, Kenya, 

Nigeria, Somalia, Tanzania 
• SE Asia: Borneo, Burma, Thailand, Tibet, Philippine 

Negrito, Sumatra 
• Australia and Polynesia: Caledonia, Fiji, Marquesas 

Polynesia, New Zealand, North Australia, Solomon Islands, 
South Australia, Tasmania 
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Figure 4.23. CV1(36.92%) vs. CV2(14.31%): Hanihara Database, 34 Shape Variables. 

 

• North Asia and Bering Areas: Aleut(A), Buriat(P), Chukchi(Z), 
Eskimo Alaska(N), Mongol(R) 

• Central and South America: Chile(E), Mexico(G), Patagonia(F), 
Peru(H) 

• China: North Han(K), North China(L), South Han(Z) 
• India: Calcutta(AD), Vedda(O) 
• Africa: Cameroon(AM), Gabon(X), Ghana(AN), Ivory Coast(Y), 

Kenya(AR), Nigeria(AO), Somalia(AQ), Tanzania(AP) 
• SE Asia: Borneo(T), Burma(AJ), Thailand(W), Tibet(AB), 

Philippine Negrito(U), Sumatra(V) 
• Australia and Polynesia: Caledonia(AG), Fiji(AF), Marquesas 

Polynesia(S), New Zealand(AI), North Australia(B), Solomon 
Islands(AH), South Australia(C), Tasmania(D) 
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Figure 4.24. CV2(14.31%) vs. CV3(12.21%): Hanihara Database, 34 Shape Variables. 

 

 

• North Asia and Bering Areas: Aleut(A), Buriat(P), Chukchi(Z), 
Eskimo Alaska(N), Mongol(R) 

• Central and South America: Chile(E), Mexico(G), Patagonia(F), 
Peru(H) 

• China: North Han(K), North China(L), South Han(Z) 
• India: Calcutta(AD), Vedda(O) 
• Africa: Cameroon(AM), Gabon(X), Ghana(AN), Ivory Coast(Y), 

Kenya(AR), Nigeria(AO), Somalia(AQ), Tanzania(AP) 
• SE Asia: Borneo(T), Burma(AJ), Thailand(W), Tibet(AB), 

Philippine Negrito(U), Sumatra(V) 
• Australia and Polynesia: Caledonia(AG), Fiji(AF), Marquesas 

Polynesia(S), New Zealand(AI), North Australia(B), Solomon 
Islands(AH), South Australia(C), Tasmania(D) 



 88

UMFC 104 classifies with the Vedda group based on a posterior probability of 

0.752 and a typicality probability of 0 (see Table 4.16 below).  UMFC 103 is classified as 

Vedda as well with a posterior probability of 0.571 and a typicality probability of 0 (see 

Table 4.17 below).  UMFC 120 is classified as Sumatra with a posterior probability of 

0.918 and a typicality probability of 0 (see Table 4.18 below).  These results cannot be 

relied upon because the Mahalanobis distances which are calculated are too large. 

Table 4.16. Probabilities and Mahalanobis Distances relating UMFC 104 to the two closest groups 
using the reference populations. 
 Vedda Bengal 
PostProb 0.752 0.247 
TypProb 0.000 0.000 
MahDist 442.813 455.140 
 
Table 4.17. Probabilities and Mahalanobis Distances relating UMFC 103 to the five closest groups 
using the reference populations. 
 Vedda Bengal Burma Calcutta Borneo 
PostProb 0.571 0.415 0.012 0.001 0.001 
TypProb 0.000 0.000 0.000 0.000 0.000 
MahDist 438.192 447.321 453.993 455.818 461.042 
 
Table 4.18. Probabilities and Mahalanobis Distances relating UMFC 120 to the five closest groups 
using the reference populations. 
 Sumatra Kenya Ivory Cameroon Tibet 
PostProb 0.918 0.038 0.026 0.002 0.002 
TypProb 0.000 0.000 0.000 0.000 0.000 
MahDist 339.573 351.282 348.829 360.566 351.46 
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CHAPTER 5 : DISCUSSION 

Principal Components Analysis 

  The graphs of PC1 vs. PC2 using both forms of the Michigan database show that 

groups which share morphological similarities as a result of geographic proximity are 

clustered (see Figures 4.1, 4.2, 4.7 and 4.8).  In these graphs the distribution appears to be 

fairly geographic in nature and is a reflection to some extent of the isolation by distance 

model.  These graphs show that the craniofacial measurements used in the Michigan 

database are effective at examining similarities between populations which are close in 

geographic proximity and are, therefore, likely to have a shared population history. 

However, there is no clear separation of regional groups which gives the overall 

impression of morphological overlap between major geographic regions.  This supports 

Relethford’s (1994) analysis of craniometric variation in the Howells data, which showed 

that around 10% of modern human craniometric variation is among groups, and the 

remaining 90% is within groups. 

 When the PCA is run including UMFC 103, 104, and 120 with the reference 

populations from the Michigan database the geographic distribution becomes less clear 

(see Figures 4.3, 4.4, 4.9 and 4.10).  UMFC 103, 104, and 120 are shown to be quite 

distant from the reference populations in most cases.  In the plots of PC1 vs. PC2, I think 

that the reason for the distinct nature of UMFC 103, 104, and 120 is due to the fact that 

they are very small in terms of overall size.  Although the shape transformation was 

performed as a means of minimizing differences in sheer size, it was not very effective at 

bringing UMFC 103 and 120 into close proximity to the reference populations.  UMFC 
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104 was shown to be somewhat near to the Taiwanese aboriginal, Philippine Negrito, and 

Heilongjiang populations.  This is very interesting because these populations can be 

considered to be small in terms of cranial size as well.   

 The results of the PCA from the Hanihara database using 34 variables also 

demonstrates that the craniofacial measurements used are effective at examining 

population similarities in terms of morphological variation of the cranium.  The graph of 

PCs 1 and 2 based on 34 craniofacial measurements from the Hanihara database shows 

clustering based on geographic distance (see Figure 4.13).  There is some general 

clustering of the African, Australian, and Polynesian samples which indicates that there is 

significant overlap of variation present within these regional populations.  The fact that 

there is really only one large cluster formed with a few outliers suggests that these 

populations are fairly similar to one another in terms of PC1 and PC2. 

The results of the PCA performed on the Hanihara database using the shape 

transformation show very distinctive clustering (see Figure 4.19).  There are three distinct 

clusters which indicates that the populations which compose these clusters are quite 

similar in terms of cranial morphology.  This suggests that these groups have a shared 

population history and have possibly exchanged genes extensively throughout history.  

Once the PCA is run including UMFC 103, 104, and 120 the clear geographic 

distribution is somewhat obscured.  This is due in part to the fact that UMFC 103, 104, 

and 120 are small in terms of overall size which results in PC1 being elongated to 

account for the size difference.  In general, UMFC 103, 104, and 120 are shown to be 

separated from all of the reference populations.  UMFC 120 is shown to be clustered with 
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the Aleut, Buriat, Mongol, Chukchi, and Eskimo in the graph of PC1 vs. PC2 from the 

shape transformed Hanihara database (see Figure 4.21).   

The results of all the principal components analyses can be said to reflect the 

findings of many researchers (Lewontin, 1972; Relethford, 1994) who have shown that 

there is more variation present within populations than among them.  Although in some 

of the plots a clear distribution of populations based on geographic proximity and shared 

population history is shown, overall there is so much overlap in terms of population 

variation that it is difficult to see this clearly using craniofacial measurements; at least in 

terms of this analysis.  A recent study by Hunley et al. (2009) said that there is still debate 

among anthropologists as to whether or not human genetic variation is a factor of 

isolation by distance or long-range migrations and bottlenecks.  In concurrence with 

Hunley et al. (2009), I think that the principal components analyses performed in the 

current study indicate that there will not be a simple resolution to this debate.  It seems 

evident that human genetic variation is a result of both of these phenomena. 

Canonical Variates calculated from Discriminant Function Analysis 

 The plot of CV1 vs. CV2 calculated from the discriminant function analysis for 

the Michigan database using 21 craniofacial measurements shows that UMFC 103 and 

120 are similar to several of the reference populations in terms of morphology (see Figure 

4.3).  UMFC 103 is very close to the Polynesian, Athabaskan, and Taiwanese aboriginal 

samples.  It is extremely interesting because these three populations are not in close 

geographic proximity and so it is difficult to determine why they would appear to be so 

close morphologically.  UMFC 103 does not appear to be closest to the Taiwanese 
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aboriginal sample, but this is again only the plot of CV1 vs. CV2.  UMFC 104 is very far 

away from all of the reference populations, but is closest to the Melanesian and 

Australian samples.  This demonstrates graphically why UMFC 104 is classified as 

Melanesian and why the typicality probability is so low.  The plot of CVs 1 and 2 shows 

some geographic clustering.  UMFC 120 is close to the Chukchi, Eskimo, South Chinese, 

and Heilongjiang reference populations.  The nearness of these reference populations, in 

terms of CV1 and CV2, may suggest that there has been gene flow historically 

throughout South China, the Chukchi Peninsula, and the New World. 

In the plot of CV1 vs. CV2 (Figure 4.7) for the Michigan database using the shape 

transformed variables UMFC 104 is again shown to be distinct.  UMFC 104 is separated 

from the reference populations; however, the closest populations are Melanesia and West 

Africa indicating that there are some morphological similarities to these reference 

populations.  UMFC 120 is also fairly distant from all of the reference populations; the 

closest populations are the Eskimo and Heilongjiang samples.  This is very similar to the 

results seen in the plot of CV1 vs. CV2 (Figure 4.3).  UMFC 120 appears to be 

morphologically similar to these groups because they potentially share a common 

ancestor.  UMFC 103 is very close to the Athabaskan, Taiwanese aboriginal, and 

Japanese reference populations.  This indicates that there may be morphological 

similarities based on underlying genetics between UMFC 103 and these populations.  I 

expected that when the shape transformation was performed UMFC 103, 104, and 120 

would be closer to the reference populations.  This was not the case which suggests that 

size plays an important role in examining differences between populations.  Simply 
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attempting to eliminate its effect does not seem to make the discriminant function any 

more effective. 

 The graph of CV1 vs. CV2 for the Hanihara database with 34 craniofacial 

measurements shows that UMFC 103 and 104 are very similar to each other, but quite 

distinct from all of the reference populations (Figure 4.11).  The plot of CV2 vs. CV3 

demonstrates the same relationship between UMFC 103 and 104 and the reference 

populations (Figure 4.12).  The distinct nature of UMFC 104 is shown in the canonical 

variate plots from both the Michigan and Hanihara databases.  However, UMFC 103 is 

much closer to the reference populations in the canonical variates plot from the Michigan 

database.  The only explanation that I can offer for this difference is that the craniofacial 

measurements used by Hanihara are not useful for assessing these particular unknown 

individuals.   

UMFC 120 is shown to be close to the cluster of African populations in the plot of 

CV1 vs. CV2.  This is quite different from the results obtained using the Michigan 

database.  UMFC 120 is shown to be similar to several Chinese populations.  The plot of 

CV2 vs. CV3 does not bring UMFC 120 any closer to the reference populations in 

question.  Although some of the nearest populations are from Japan, China, and Korea.  

This seems more in line with the results obtained using the Michigan database.  I think 

that the reason for this disparity is that the craniofacial measurements used in the 

Hanihara dataset are much more a reflection of overall size than those measurements 

used in the Michigan dataset.   

In the final discriminant function analysis of the Hanihara database, the results are 

much the same (see Figures 4.16 and 4.17).  The plot of CV1 vs. CV2 shows that UMFC 
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103 and 104 are quite similar on the basis of both the 1st and 2nd canonical variates.  

UMFC 103 and 104 are completely separated from all reference populations in the plots 

of CV1 vs. CV2 and CV2 vs. CV3.  These plots also show that UMFC 120 is quite 

distinct from the reference populations when the shape transformation is used.  It is 

evident from these graphs that eliminating size differences does not aid in identifying 

similarities between individuals and the populations selected for study in the analysis 

from the Hanihara database using the shape transformed variables.   

The results of the discriminant functions analyses as shown by the plots of CV1 

vs. CV2 and CV2 vs. CV3 are different depending on which database is used and 

whether or not the shape transformation is performed on the craniofacial measurements.  

In the analyses using both the Michigan and Hanihara databases the transformation of the 

craniofacial measurements in an attempt to eliminate size differences was not able to 

minimize the differences between UMFC 103, 104, and 120 and the reference 

populations.  In fact the case was the opposite; the differences between UMFC 103, 104, 

and 120 were magnified to an even greater extent.    

Group Classification 

 Overall, in terms of classifying UMFC 103, 104, and 120, I obtained much more 

robust results from the Michigan database (see Table 5.1 below).  The typicality 

probabilities calculated for UMFC 103 and 120 were significant (within the range of 

variation exhibited by a reference population) when the Michigan database was used with 

21 craniofacial measurements.  The classifications resulting from the use of the Michigan 

database with 21 shape transformed craniofacial measurements did not have significant 
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typicality probabilities.  Based on the typicality probability calculated for the most likely 

group classification of UMFC 103 using the Michigan database and 21 craniofacial 

measurements, I am unable to rule out the possibility that UMFC 103 may be closely 

related morphologically to the sample representative of Taiwanese aboriginals.  When the 

shape transformed variables are used UMFC 103 is classified as South Chinese, but the 

typicality probability is less than 0.05 which indicates that UMFC 103 is outside of the 

95% range of variation exhibited by the South Chinese sample.  This suggests that size is 

an important factor when attempting to classify individuals into a specific group. 

 The classifications for UMFC 104 using the variations of the Michigan database 

are less robust.  UMFC 104 is classified as Melanesian when the Michigan database with 

21 craniofacial measurements is used, but the typicality probability is only 0.02.  The 

shape transformed Michigan database classifies UMFC 104 as Ainu with a very low 

typicality probability.  I was unable to obtain any clear indication of group classification 

for UMFC 104.  Although UMFC 104 has fairly high posterior probabilities using the 

two forms of the Michigan database, the typicality probabilities were too low to say with 

any certainty which of the reference populations, if any, UMFC 104 may be 

morphologically similar to. 

 UMFC 120 is grouped with South China in the first analyses using the Michigan 

database and 21 craniofacial measurements and with the Eskimo in the shape transformed 

analysis.  The classification of UMFC 120 as South Chinese has a typicality probability 

which is well within the 95% range of variation exhibited by the South Chinese reference 

population.  The classification of UMFC 120 as Eskimo, however, does not show a 

significant typicality probability.  UMFC 120 is outside of the 95% range of variation of 
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the Eskimo population when the shape transformed variables are used.  Based on the 

typicality probability calculated for the most likely group classification of UMFC 120 

using the Michigan database with 21 craniofacial measurements, I am unable to eliminate 

the possibility that UMFC 120 may be closely related morphologically to the South 

Chinese reference population.   

 The results from the Michigan database seem to indicate that the most likely 

classifications are obtained when 21 untransformed craniofacial measurements are used.  

The results also suggest that size should not be completely eliminated because it is 

extremely important in assessing population affinities.  When the shape transformed 

craniofacial measurements were used the group classifications for all individuals changed 

and the typicality probabilities were outside the 95% range of the reference populations.  

UMFC 103 and 120 are tentatively classified as Taiwanese aboriginal and South Chinese 

based on this analysis.  This is not a definitive classification and I am merely suggesting 

that based on this particular analysis UMFC 103 and 120 may be closely related 

morphologically to these two reference populations.   

 The typicality probabilities calculated for UMFC 103, 104, and 120 using the two 

variations of the Hanihara database are insignificant.  I cannot say with any reliability 

that UMFC 103, 104, and 120 are closely related to any of the populations that were 

chosen for comparison based on the Hanihara database.  Although very high posterior 

probabilities are obtained in many cases, it is clear that this is merely a factor of these 

individuals being forced into one of the predetermined groups.  There are a number of 

explanations for the poor results obtained for the classification of UMFC 103, 104, and 

120 using the Hanihara database.  One potential explanation is that UMFC 103, 104, and 
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120 are not members of any of the reference populations used for this analysis.  Another 

explanation is that due to the small sample size of some of the reference populations the 

Mahalanobis distances could not be accurately calculated and as a result a strong 

classification could not be obtained.   

 
Table 5.1. Posterior and Typicality Probabilities for UMFC 103, 104, and 120.  
Database Individual Group classification Posterior 

probability 
Typicality 
probability 

UMFC 103 Taiwan aboriginal 0.861 0.134 
UMFC 104 Melanesia 0.682 0.02 Michigan 21 
UMFC 120 South China 0.448 0.134 
UMFC 103 South China 0.243 0.013 
UMFC 104 Ainu 0.587 0.007 Michigan 21 

SV UMFC 120 Eskimo 0.517 0.013 
UMFC 103 Vedda 0.938 0 
UMFC 104 Vedda 0.987 0 Hanihara 34 
UMFC 120 Sumatra 0.97 0 
UMFC 103 Vedda 0.571 0 
UMFC 104 Vedda 0.752 0 Hanihara 34 

SV UMFC 120 Sumatra 0.918 0 
 
  

The results of the analyses using both the Michigan and Hanihara databases are 

quite different.  The use of the Michigan database gave significant typicality probabilities 

only when the 21 craniofacial measurements were used without the shape transformation.  

The typicality probabilities calculated for the Hanihara database, both variants, were all 

less than 0.001.  The Michigan database appears to be better able to classify UMFC 103, 

104, and 120.  The populations chosen from both databases are comparable and so the 

difference in group classification of UMFC 103, 104, and 120 does not appear to be a 

result of differences in the populations represented.  A possible explanation for this 

difference is that the craniofacial measurements used in the Michigan database are better 
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suited to classification of unknown individuals.  This may be because the Michigan 

database craniofacial measurements are focused on looking at facial variation rather than 

overall cranial variation.
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CHAPTER 6 : CONCLUSIONS 

This study has demonstrated the difficulties that anthropologists face when 

attempting to determine an individual’s population affinity based solely on examination 

of skeletal cranial remains.  The use of discriminant function analysis and multivariate 

statistics, although widely accepted as an appropriate means of assessing population 

affinity, was shown in this study to be a complicated process at best.  I was able to 

classify UMFC 103 and 120 into a potentially morphologically similar group based on 

the calculation of typicality probabilities, but this was done only tentatively and cannot be 

considered a definitive classification.  

It is clear based on these analyses that the use of different craniofacial 

measurements in multivariate statistical analyses can drastically alter the classification of 

an individual.  This study suggests that the craniofacial measurements used by Dr. Brace 

and his colleagues at the University of Michigan are more effective than those used by Dr. 

Hanihara when used to calculate a discriminant function in order to classify UMFC 103 

and 120.  It is my feeling that this is the case because these measurements are focused on 

the nuances of facial characteristics rather than the entire cranium.  The dataset collected 

by Dr. Hanihara is extensive and it seems that his measurements are quite useful when 

looking at regional variation, but are not particularly effectual in terms of individual 

classifications. 

 It is also evident from these statistical analyses that the shape transformation 

described by Darroch and Mosimann (1985) does not more robustly classify these 

individuals.  It was expected that by performing this shape transformation, particularly 
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with the Hanihara database, I would be able to better assess the similarities in 

morphology between UMFC 103, 104, and 120 and the populations selected for 

comparison.  The results obtained show that this was not the case.  This indicates to me 

that size differences between populations are essential when looking at the variation 

between populations in an attempt at classification of unknown individuals.  It has been 

demonstrated that only 10 to 15% of the total human variation is the result of differences 

between populations (Lewontin, 1972; Relethford, 1994) and it is clear to me that size is 

a large component of this variation.    

 I am unable to say based on the statistical analyses performed that UMFC 103 and 

104 are morphologically similar to Chinese or Indian populations.  I can say that UMFC 

120 may be morphologically similar to the South Chinese sample based on the typicality 

probability calculated using the discriminant function analysis of the Michigan database 

with 21 craniofacial measurements.  UMFC 103 is classified as Taiwanese aboriginal. 

The Taiwanese aboriginal reference population was shown to be very close to the 

Chinese reference populations in the principal components and discriminant function 

analyses.  Although UMFC 103 and 104 are not classified as either Chinese or Indian, 

this does not mean that they are not members of these groups.  Both China and India are 

extremely large countries with large, diverse populations.  UMFC 103 and 104 may be 

members of either of these populations, but the samples that I have used for comparison 

may not be representative of the entire range of variation present within these countries.  

Also several of the reference populations have fairly small sample sizes which could 

contribute to the poor results obtained for the classification of these individuals, 

especially when the Hanihara database was used. 
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 It is evident from this research that classifications obtained from discriminant 

function analyses should not be considered as fact, but seen simply as a possible solution.  

Ousley et al. (2009) were able to show that the use of prior information is very helpful 

when attempting to determine an individual’s ancestry.  However, the use of prior 

knowledge does not help much when prehistoric remains are being analyzed.  Also it is 

impossible to use prior information when the location from which skeletons were found 

or, in the case of biological specimens, acquired is not known.  Relethford (2009) showed 

that it is much easier to clearly separate populations regionally than into specific 

populations.  Therefore, it may be useful to cluster populations regionally before 

attempting a classification based on discriminant function analysis.  There are numerous 

questions about the effectiveness of discriminant function analysis in classifying 

individuals, but it is clear from current research (Konigsberg et al., 2009; Ousley et al., 

2009) that anthropologists are not willing to throw away the baby with the bath water 

quite yet. 
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