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A complete simulation of flowing ice requires knowledge of both the fundamental physical
principles that govern the stress and energy balances and a framework for assimilating data into
a model to help estimate unknown parameters.

Modelling ice is complex, due to the large spatial extent of ice sheets, the multiple scales
at which relevant physics operate, and the coupling between heat, stress, and ice rheology. As
such, it is usually necessary to make approximations to the equations governing ice flow. At
the same time, it is important to have an understanding of the specific assumptions that lead
to these approximations. We develop a variational principle for Stokes flow, and neglect certain
components in order to obtain the variational principle for the first-order approximation for
ice flow. This result is fundamentally the result of assuming bed slopes to be much less than
surface slopes, and that vertical resistive stresses are negligible. From a practical standpoint,
using automatic differentiation tools on this functional yields a compact model of ice flow that
automatically incorporates correct boundary condition. This model is compared to well known
benchmark tests. We also present an improved model of ice thermodynamics that operates
on enthalpy rather than temperature, avoiding many of the difficulties associated with phase
change.

We derive a method for inverting the Blatter-Pattyn ice sheet model in order to solve for the
rate of basal sliding. This method uses the adjoint equations of the forward model to obtain
the gradient of an error functional, and this is minimized using a quasi-Newton method. These
methods are applied to an instrumented streamline of the Greenland ice sheet. We perform
numerical experiments on this geometry in order to assess the sensitivity of thermal conditions
at the ice sheet bed to perturbations in unknwon parameters. The basal thermal regime is
sensitive to changes in geothermal heat flux, with the location of the transition zone between
cold and temperate ice being linear sensitive to changes in it. The temperature field of the ice
sheet is insensitive to downstream changes in sliding speed due to the short length scales over
which longitudinal coupling acts.
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Introduction

Water ice is a complex fluid, made more complex by the context in which it appears on Earth. A

glacier’s dynamics are dependent on its geological, meteorological, hydrologic, and geomorpho-

logical setting, which are circularly influenced by the ice itself. The complexity of glaciological

systems due to interaction with their environment is exacerbated by the constitutive complexities

of the ice itself, among which are a strongly non-linear relationship between velocity and stress,

an equally strong rheological temperature dependence, and the fact that the internal energy

commonly encountered in an ice mass straddles a phase change. These difficulties suggest two

important theses regarding ice sheet modelling.

First, we must possess a rigorous understanding of the correctness and applicability of differ-

ent assumptions about ice sheet physics. In particular, any attempt at modelling ice flow should

incorporate physics that can be derived from first principles. Also, the thermomechanical struc-

ture of the ice needs to be given sufficient consideration, in particular the transition between ice

below the melting point, and ice which is undergoing a phase change.

Second, the modelling of ice sheets needs to be informed by data. There are many poorly

constrained parameters that generate leading order effects on a glacier’s velocity and temperature

fields. Examples of these include geothermal heat flux, the coefficients of static and dynamic

friction at the ice base, and so-called enhancement factors, or changes in ice viscosity induced

by variations in microscopic ice properties. It is unlikely that these parameters will be measured

at a scale such that they will be straightforwardly incorporable into a model.

Simultaneously, there exist data that are widely available, such as surface velocity, temper-

ature, and mass balance. Generally speaking, given only an educated guess about one of these

unknown parameters, the likelihood of reproducing the known data is quite low. Thus meth-

ods that allow data to inform our estimates unknown parameters, while recognizing physical

constraints on those parameters, are sought.

Synoptically, in order for models to represent a plausible approximation of a real ice mass,

the model must incorporate a sound theoretical basis while simultaneously acknowledging that

which is unknown, using data as available to generate defensible guesses to fill in the gaps.
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Objective of thesis

My thesis seeks to further the glaciological community’s understanding of variational methods,

and how they can be applied to practical problems in glaciology. In practice, this means asking

and attempting to answer these questions, among others: Can the flow of glaciers be defined as

a minimization problem? What is an efficient way to solve such a problem? Can an analogous

framework be used to optimize ice sheet models to currently available datasets? These questions

are subservient to the theses stated in the previous section. If we can model ice sheets from

the perspective of minimizing energy dissipation, then we will have obtained a more rigorous

understanding of the ice physics. Second, if similar methods can be applied to data assimilation,

then we will possess a framework for improving our estimation of unknown parameters based on

currently available information. In preparing this thesis, my chief aim has been to generate an

ice sheet model that implements these methods.

Outline

This thesis consists of four chapters. Chapter 1 is this introduction. Chapters 1 and 2 are a

primarily theoretical treatise on variational principles and data assimilation. Chapter 3 docu-

ments an application of these methods and is intended to be an independent manuscript. On

account of this, some level of redundancy in the information presented therein, particularly theo-

retical underpinnings, is unavoidable. These works, although related, are independent, and were

completed at different times. Therefore, assumptions employed in each may be different. Con-

clusions are drawn in each chapter individually, although I believe that they do not contradict

one another. References are presented collectively at the end of the manuscript.

Chapter 1: A variationally derived ice flow model. This chapter presents the theory

and practice of generating of an ice flow model from the perspective of minimizing a functional

representing the rate of energy dissipation. It also includes coupling this model to an enthalpy-

based formulation of ice thermodynamics. I conduct several experiments which show that the

model correctly reproduces several ice sheet model benchmark tests.

Chapter 2: Approximating basal traction using an adjoint-equipped ice sheet

model. This chapter presents the theory behind using variational calculus to efficiently calculate

the gradient of a data dependent cost functional with respect to many control variables. Written

plainly, I show how to make an ice sheet model reproduce measured surface velocities by changing

how fast the ice is sliding at its bed. This chapter also includes a treatment of the influence of

other unknown model parameters on the assimilation procedure.

Chapter 3: Sensitivity of the frozen-melted basal boundary to perturbations of
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basal traction and geothermal heat flux: Isunnguata Sermia, western Greenland.

Published under the same title in Annals of Glaciology with co-authors T. Meierbachtol, J.

Johnson, and J. Harper. In this chapter, I apply the above theory to a section of the Greenland

ice sheet which is currently undergoing an extensive fieldwork campaign. I perturb values of

geothermal heat flux and basal traction, examine the spatial extent of the propogation of these

perturbations, and postulate on fundamental properties of ice sheet physics that explain these

extents.

Contribution to glaciological literature

In order to be clear, I will specifically enumerate some key features of this work that contribute

to glaciology.

1. I derive a novel way which leverages a variational formulation of ice dynamics to arrive at

a common simplification. This method of deriving the simplified equations more transpar-

ently elucidates the assumptions that the simplification implies

2. I implement a model which uses a variational principle as the fundamental physical repre-

sentation of momentum balance, and couple this with automatic symbolic differentiation

in order to solve the equations of motion for an ice sheet.

3. I couple this momentum balance to an advanced treatment of ice thermodynamics. While

the theory behind the enthalpy method is not new (Aschwanden and Blatter, 2009), its

coupling to a higher order momentum balance is.

4. I derive the adjoint method for a higher order ice sheet model with explicit treatment of

the vertical dimension. While authors have presented results based on this, there currently

exist no publications that sufficiently present the theory such that it could be reproduced

(Morlighem et al., 2010).

5. I use the tools listed above to explore the sensitivity of the basal thermal regime of a section

of the Greenland ice sheet to a variety of perturbations in order to better understand how

stable the ice sheet is in its current configuration

3



Chapter 1

A variationally derived ice flow

model

1.1 Introduction

Modern ice sheet models are usually derived from the incompressible Navier-Stokes equations,

coupled with an advection-diffusion equation describing the transfer of heat. Fundamentally, the

equations governing ice dynamics are specialized conservation statements for mass, momentum,

and energy.

1.1.1 Momentum approximations

Approximations are generally made to the governing equations to make them more tractable. In

particular the Navier-Stokes equations are subject to a variety of simplifications which reduce

their formidable complexity to problems which are more tractable given modern computing

power. The first important simplification made is in neglecting the non-linear inertial terms

of the Navier-Stokes equations, yielding the so-called full Stokes model of fluid flow, where all

components of the Cauchy stress tensor are retained, and two variables beyond the ice velocity

are necessary for closure (pressure and a term representing the force which keeps the ice from

falling through the bedrock). This is well justified by the fact that the ratio of inertial to viscous

forces in ice is very low, or that the Reynolds number is much less than one.

The first-order approximation, or Blatter-Pattyn equation, is derived by assuming that pres-

sure is a linear function of depth, and by neglecting vertical resistive forces, or the component

of the stress tensor that resists horizontal changes in vertical velocity (Pattyn, 2003). From this

point, two approximations can be made: The shallow ice approximation, which considers vertical
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shear stress as the only important component of the stress tensor (e.g. Huybrechts et al. (1996)),

and the shallow shelf approximation, which considers only longitudinal stresses (e.g. MacAyeal

et al. (1996)).

These various approximations are the result of asymptotic analyses obtained from non-

dimensionalization of the Stokes equations. The Stokes equations are symmetric, and at least

positive semi-definite, which is an important property in numerical solution. Although a rigorous

mathematical justification for the neglect of certain terms in the first-order approximation has

recently been presented (Schoolf and Hindmarsh, 2010), these approximations make no guaran-

tee that they will inherit the amiable numerical properties of the Stokes equations. The fact

that these properties exist suggest that there is a more fundamental physical statement which

underlies the Stokes equations. This property is the variational principle, which is known to exist

for all self-adjoint (that is, symmetric) linear operators. The Stokes equations with non-linear

viscosity is obviously not linear, but it is provable (Vainberg, 1964) that this type of nonlinear

operator also possesses a variational principle.

The variational principle is a scalar equation which, when minimized, yields the solution cor-

responding to a physical problem. A common example of a variational principle is the Lagrangian

which is taught in elementary classical mechanics to describe the trajectory of a dynamical sys-

tem. The principle in glaciological applications is analogous. There are several advantages in

formulating ice sheet physics in this way. First, the quantities in the variational principle are

physically meaningful, each term representing a component of the ice sheet’s energy balance.

Second, boundary conditions are correctly and consistently incorporated automatically. Third,

the variational principle allows constraints to be applied. Finally, by making approximations to

the original variational principle for the Stokes equations, we can derive various physics approx-

imations in such a way that they are guaranteed to retain the desirable numerical properties of

the full stress balance.

In this work, I implement the variational principle in a model framework, and use it to

characterize the fluid dynamics of ice, both through differentiation of the variational principle

to form the Euler-Lagrange equations, and as a true minimization problem.

1.1.2 Energy treatment

In addition to the equation for momentum balance, an equally important and oft-neglected

component of ice sheet dynamics is the energy balance, or the equation which determines the

distribution of heat throughout an ice mass. From a high level perspective, this is just the

advection-diffusion equation, which usually presents no especially difficult challenge in terms of

its solution. The peculiarities of ice however, make this problem non-trivial.
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Foremost amongst the difficulties in modelling ice heat distribution is the obvious constraint

that ice, if one wishes to continue calling it such, must remain below a certain melting tempera-

ture, which is a function of pressure. The constraint is abrupt, and creates a non-linearity which

is not well handled by the gradient based methods which are usually employed for handling more

continuous non-linearities (such as the non-linearity in the ice viscosity).

An historic approach to handling this problem has been to sidestep it by clever discretizations

of the model domain, and iterative selective application of fluxes into the ice mass. Many of

these are neither well documented nor well justified, as most make no constraint on the diffusion

of heat when the ice is at the melting point, assuming instead that it is small compared to the

heat source terms (e.g. Rutt et al. (2009))

Another approach has been to track the front between ice which is currently at the pressure

melting point, and ice which is colder (referred to hereafter as temperate and cold, respectively).

The first formulation of an ice model which explicitly tracks the boundary between temperate

and cold ice is due to Hutter (1982). In this model, it was assumed that cold ice is modelled

using the simple unconstrained heat-equation, while ice at the melting point contains both ice

and water, and these both influence the rheological properties of the ice. Greve (2005) updated

this model by explicitly considering latent heat in the evolution of the temperate-cold transition

front.

This method, while successful, is very complex, and generates additional degrees of freedom

in the model necessary for tracking the front between cold and temperate ice. More recently,

(Aschwanden and Blatter, 2009) proposed a different method for modelling polythermal ice

without the need for front tracking, and without the hard cap of the melting point present in the

temperature equation. They show that both water content and temperature are unique functions

of specific internal energy, or enthalpy, which can be partitioned into sensible and latent heat.

Sensible heat is transported via the heat equation, while latent heat produces water. The phase

change is manifested as a jump in the diffusivity of the ice at the cold-temperate transition, and

the conversion to temperature and water content is performed after the equation is solved.

This enthalpy formulation is the most appealing of the various methods, as it represents a

self-consistent representation of the energy of an ice sheet, and in keeping with the theme of this

model, is more fundamental than other representations of energy (such as temperature). In this

work, I implement the enthalpy formulation as the model’s energy balance, and discuss methods

by which this still formidably non-linear problem can be solved.
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1.2 Model Physics

1.2.1 A variational principle for momentum balance

A variational principle in the context of fluid mechanics is a functional which describes the

way in which the energy in a given system transitions between types. A functional, in turn,

is a mapping from a vector space to a scalar field, such as the integration of a function over a

geometric domain to yield a scalar. For the particles of classical mechanics, this quantity is known

as the Lagrangian, and is defined by the kinetic energy of a system minus its potential energy.

The system’s governing equations are found by minimizing the Lagrangian. This minimization

yields the so-called Euler-Lagrange equations. We can form a similar construction for ice sheet

models. For Stokes equations, we neglect inertial terms, so we assume that the system has

negligible kinetic energy. This leaves only potential energy and its dissipation into heat to

quantify. Minimizing the rate at which this energy conversion occurs yields a solution for the

mechanics of an ice sheet. Specifically, an ice sheet loses gravitational potential energy to

dissipation as heat.

In what ways can this occur? First, an ice sheet can dissipate energy through viscosity,

which is to say that potential energy is converted to heat by the ice’s tendency to resist internal

deformation. Second, the ice sheet can dissipate potential energy by friction, which is the

generation of heat by sliding over a rough bed. These are the only meaningful ways that potential

energy can be dissipated in ice. Let us formalize these terms. Much of the following derivation

is due to Dukowicz (2011). First, we define an expression for the rate of change of potential

energy for some volume of ice:

V(u) =

∫
Ω

ρg ·u dΩ (1.1)

where ρ is the density of ice, g = (0, g) is the gravitational acceleration vector, and u = (u,w)

is the ice velocity vector. Note that this expression is integrated over the entire ice domain, Ω.

Next, we define an expression for the rate of heat production through viscous dissipation. The

following expression for representing a strain-rate dependent viscosity is due to Bird (1960):

D(ε̇2) =

∫
Ω

2n

n+ 1
η(ε̇2)ε̇2 dΩ , (1.2)

where ε̇2 is the second invariant of the strain rate tensor squared, or written explicitly:

ε̇2 =
∂u

∂x

2

+
∂w

∂z

2

+
1

2

[
∂u

∂z
+
∂w

∂x

]2

+ ε̇0 , (1.3)

where ε̇0 is a small regularization parameter designed to prevent a zero strain rate. To define the
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viscosity η, we need a constitutive relationship for ice, which relates stress and strain. Glen’s

flow law is commonly used and we adopt it here:

η(ε̇2) =
A(T )

2
[ε̇2]

n−1
2n . (1.4)

A(T ) is a temperature dependent rate factor, given by the Arrhenius relation

A(T ) =


3.61× 10−13 e−6.0×104/RT , T ≤ 263.15K,

1.73× 103 e−13.9×104/RT , T > 263.15K,

(1.5)

and R is the universal gas constant (Paterson and Budd, 1982). n is an exponent that controls

the non-linearity of the viscosity, and is commonly taken to be 3 (Glen, 1955). We see that ice

viscosity is a nonlinear function of strain rate. We also need an expression for energy dissipation

as a result of viscous sliding. For our purposes, we assume that basal sliding velocity and basal

shear stress are linearly related by some basal traction coefficient β2, which is always positive.

The following is a general expression for frictional heat generation

F(u) =

∫
ΓB

β2u ·u dΓ . (1.6)

Note that this quantity is integrated over ΓB , which means that this functional is only considered

along the basal boundary. We would not expect frictional heat to be generated anywhere else.

Collecting these expressions yields the functional to be minimized to determine the dynamics of

the ice mass:

A[u] =

∫
Ω

[
2n

n+ 1
η(ε̇2)ε̇2 − ρg ·u

]
dΩ +

∫
ΓB

β2u ·u dΓ . (1.7)

While this statement completely defines the conversion of potential energy into heat within an

ice mass, it is not complete, as it fails to account for two constraints which must be imposed on

the system to maintain physical plausibility. The first of these constraints is incompressibility

of ice, or equivalently, the statement of conservation of mass. This constraint has the form

∂u

∂x
+
∂w

∂z
= 0 . (1.8)

Also, we must enforce the constraint that there be no velocity normal to the hard bed, or that

the ice cannot fall through the bed rock:

uB ·nB = 0 , (1.9)
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where n is the unit normal vector at the bed. One of the appealing aspects of the variational

principle is the ability to easily apply these kinds of equality constraints to the system in the

form of Lagrange multipliers. Adding these constraints to the system, multiplied by a Lagrange

multiplier yields the variational principle for Stokes flow

A[u, P,Λ] =

∫
Ω

[
2n

n+ 1
η(ε̇2)ε̇2 − ρg ·u− P∇ ·u

]
dΩ +

∫
ΓB

[
β2u ·u + Λu ·n

]
dΓ , (1.10)

where we have introduced Lagrange multipliers P and Λ. That we chose the symbol P as the

Lagrange multiplier for incompressibility is no accident. Lagrange multiplier frequently have

a physical interpretation, and in this case, the force which is imposed in order to maintain

incompressibility is simply the pressure. Similarly, Λ also has a physical interpretation, which is

the force that the earth exerts on the ice mass in order to maintain its position.

In order to verify the correctness of A, we must show that minimizing the functional yields

the familiar Stokes equations. Since the functional is positive semi-definite, this is equivalent to

finding any extremal point (as there is no maximum). To find the extremal point of a functional,

we take its first variation, formally defined as the Gateaux derivative:

δA[u, P,Λ] = lim
ε→0

∂

∂ε
A[u + εδu, P + εδP,Λ + εδΛ] . (1.11)

Setting the first variation equal to zero yields the extremal point. The first variation of the

functional after some algebra and an application of integration by parts is

δA[~u, P,Λ] =

∫
Ω

[
∇ · 2ηε̇+ ρg −∇P

]
· δu dΩ +

∫
ΓB

[
β2u + Λn

]
· δu dΓ

+

∫
Ω

[
∇ ·u

]
δP dΩ

+

∫
ΓB

[
u ·n

]
δΛ dΓ , (1.12)

where ε̇ is the strain rate tensor, given by

ε̇ij =
1

2

[
∂ui
∂xj

+
∂uj
∂xi

]
. (1.13)

For arbitrary variations δu, δP , and δΛ, the terms multiplying them must equal zero for A

to be extremal. Setting these coefficients equal to zero yields the following partial differential

equations

∇ · 2ηε̇+ ρg −∇P = 0 (1.14)
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with natural boundary condition

[
2ηε̇− P

]
·n = β2u + Λn (1.15)

along with

∇ ·u = 0 (1.16)

Λ ·n = 0 . (1.17)

These are the Stokes equations coupled with the statements of incompressability and inpene-

trability. Thus a necessary condition for A to be at an extremal point is that Stokes equations

and its constraints must be satisfied. This validates the fact that the variational principle A is a

complete representation of the same ice mechanics captured by Stokes equations, and henceforth,

we will operate on the variational principle, rather than on Stokes equations, as it is simpler and

more fundamental.

1.2.2 Simplifications to the variational principle

While the above form is complete, it is also quite complex, with three variables to account

for (the velocity vector, pressure, and bed normal force). The presence of both constraints

makes the solution of the system inefficient, and at present, few models use this full formulation.

Simultaneously, the presence of the constraints makeA positive semi-definite rather than positive

definite, which implies that the minimization is a saddle point problem since the solutions of P

and Λ are not uniquely defined. It may also be the case that certain components of the stress

balance are unimportant, and simplifications could be made by neglecting them. These ideas

will guide us as we attempt to reduce the Stokes functional to a more easily solved system

Elimination of the Lagrange multipliers

The Lagrange multipliers in A are included to enforce the constraints that the ice be incom-

pressible (or divergence free) and that the bed be impenetrable. These are enforced by P and

Λ respectively. Alternatively, if we drew our solution from a space where these constraints were

already satisfied, we would not have to include them. Consider the equation for incompressability

∂u

∂x
+
∂w

∂z
= 0 . (1.18)

We can easily solve for w as a function of u

w(u) =

∫ z

B

∂u

∂x
dz′ . (1.19)
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Since we’ve incorporated mass conservation into the definition of w, we can eliminate the La-

grange multiplier P . Similarly, for the impenetrability condition, we can express the vertical

velocity at the bed as a function of the horizontal velocity

wB(uB) = uB
∂B

∂x
, (1.20)

where B is the elevation of the basal boundary. If we substitute these into our variational

principle, and neglect the now-unnecessary Lagrange multipliers, we get the following:

A[u] =

∫
Ω

[
2n

n+ 1
η(ε̇2)ε̇2 − ρgw(u)

]
dΩ +

∫
ΓB

β2

[
u2 +

(
u
∂B

∂x
)2
)]

dΓ (1.21)

where the definition of the second invariant of the strain rate tensor is now

ε̇2 = 2
∂u

∂x

2

+
1

2

[
∂u

∂z
+
∂w(u)

∂x

]2

(1.22)

This is now a positive-definite functional, since the saddles induced by the Lagrange multi-

pliers are no longer present. It is also contains integral as well as differential terms. As such, the

corresponding Euler-Lagrange equations are now integro-differential equations, which are not

soluble by traditional numerical methods. It is also useful in that it has properties which make

it more similar to the 1st order approximation of ice physics. It has no pressure or impenetra-

bility, and the vertical velocity is a function of the horizontal velocity. It seems, then a logical

place to start in order to find the reduced functional corresponding to the first-order equations.

There are many ways to arrive at the first-order functional, but this derivation elucidates the

assumptions made in transitioning from the full stress balance to the first-order balance. One

of the features of the first order approximation is that the equations for u and w are uncoupled

entirely, which is to say that u has no dependence on w, and the equation for u can be solved,

after which w is found by simple quadrature over the ice column. Let that guide our efforts to

simplify the unconstrained Stokes functional. Essentially this means that we need to eliminate

the vertical integrals which appear in the functional, corresponding to w(u). We note first that

w(u) appears in the term for the rate of change of potential energy. We would like a way to write

this without having to perform the integration in the vertical. This can be achieved through a

few applications of Leibniz’s theorem and integration by parts (the operations are given explicitly

in Dukowicz (2011), Appendix A). The resulting functional is

A[u] =

∫
Ω

2n

n+ 1
η(ε̇2)ε̇2 +ρg

[
u
∂S

∂x
+uB

∂B

∂x

]
dΩ+

∫
ΓB

β2

[
u2 +

(
u
∂B

∂x

)2]
+ρgHnxu dΓ . (1.23)
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The gravitational potential term has been written as a function of surface slope and horizontal

velocity. The product of the gravitational constant, density, and surface slope is commonly

referred to as the driving stress, and its presence, rather than the direct body force ρg of the

Stokes equations, is another characteristic of the first-order equations. The only other place

where vertical quadrature appears is in the definition of the strain rate tensor. A scale analysis

indicates the horizontal derivatives of vertical velocity (∂w∂x ) are second order in the aspect ratio

(eg. Schäfer et al. (2008)). These are also known as vertical resistive forces, and generally,

they are only of importance in isolated cases, such as grounding line dynamics Morlighem et al.

(2010); Nowicki and Wingham (2008). If we neglect them, only differential operators remain.

ε̇2BP = 2
∂u

∂x

2

+
1

2

(
∂u

∂z

)2

. (1.24)

The final issue is the inclusion of the term uB in the integral over the ice mass, not just

the boundary. This implies a non-local coupling between the boundary and the ice itself, and

if discretized, would yield non-sparse stiffness matrices, an undesirable numerical property. The

first-order approximations make an explicit assumption that the influence of bed slope is negli-

gible (Pattyn, 2003), yielding the functional

ABP [u] =

∫
Ω

2n

n+ 1
η(ε̇2BP )ε̇2BP + ρgu

∂S

∂x
dΩ +

∫
ΓB

β2u2 dΓ . (1.25)

This is the functional corresponding to the first-order equations. Before we show that this

is true, let us return to the assumptions made in deriving it, of which there are two. First,

vertical resistive stresses are negligible, which can be justified by a scale analysis of characteristic

dimensions. Second, that bed slopes are small. This assumption has the effect to assuming that

the pressure distribution within the ice is hydrostatic, which means that it is a function of ice

depth only. This has been justified by various authors (Schoolf and Hindmarsh, 2010; Dukowicz,

2011) by invoking the argument that the dissipation of energy must be a positive definite quantity.

It is not clear how that argument extends to deriving the BP in the way presented above.

Now, we have only to take the variation of the functional and show that it is equal to the

BP equations. Taking the variation yields

δABP [u] =

∫
Ω

[
∇ · 2ηε̇BP + ρg

∂S

∂x

]
δu dΩ +

∫
ΓB

−β2u dΓ , (1.26)

where

ε̇BP =

(
2
∂u

∂x
,

1

2

∂u

∂z

)
. (1.27)

Setting this equal to zero, we must have that given a small perturbation δu, the functional be
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zero. This yields the strong form

∇ · 2ηε̇BP + ρg
∂S

∂x
= 0 (1.28)

with boundary condition

2ηε̇BP ·n = −β2u , (1.29)

which correspond exactly to the first-order equations derived by Blatter (1995) and Pattyn

(2003).

1.2.3 An enthalpy treatment of the energy balance

Impracticality of a variational formulation

While the use of a variational principle for the momentum balance allowed a convenient frame-

work for the analysis of the model physics, the application of such a construct for the enthalpy

equations is less straightforward. The key difference between the two is that the Stokes equa-

tions contained no advective component, as we explicitly neglected it. This neglect is justifiable

by considering the very low Reynolds number of ice flow. The problem became purely one of

momentum-diffusion, so to speak, and was self-adjoint. We can not neglect the non-self-adjoint

portion of a heat transport equation, since the Peclet number (a dimensionless quantity relating

the relative importance of advection and diffusion) is much greater than one for ice sheets. This

means that advection dominates in this system. Since advection is not self-adjoint there is no

way to represent it as a variational principle in a non-contrived way.

Still, there does exist a way to derive a functional such that when its first variation is taken, it

yields the advection-diffusion equation. The derivation does little to inform us about the actual

physics of the system, and the resulting expression contains terms which are of such a magnitude

that they cannot be represented by standard floating point numbers (See, for example, Guymon

et al. (1970) or Zienkiewicz and Taylor (2000)). Instead, we will content ourselves with the

knowledge that this variational principle does exist, and instead operate on its derivative, the

PDE formulation of the enthalpy equations. This is no great loss, since these equations are much

simpler than the momentum balance, have straightforward boundary conditions, and we do not

intend to make any approximations to them.
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The enthalpy method

Like any quantity derived from a conservation principle, enthalpy can be modelled by a transport

equation:

ρ

(
∂H

∂t
+ u · ∇H

)
= ρ∇ ·κ(H)∇H +Q (1.30)

where H is enthalpy or total heat, Q is a term representing heat sources, and κ(H) is the thermal

conductivity of ice. Internal heat generation Q is defined as

2n

n+ 1
η(ε̇2)ε̇2 (1.31)

note that this heat production term is the same as the viscous dissipation term from the varia-

tional principle for Stokes flow. This makes sense from a conservation of energy standpoint; any

potential energy dissipated by viscous dissipation must become heat. This link between heat

generation and viscous dissipation is another advantage of casting the momentum balance in a

variational form.

The thermal conductivity, κ(H) is a function of the enthalpy H, and as such creates a non-

linearity in the model. Specifically, κ changes values between cold and temperate ice. We define

cold ice such that

H < hi(P ) (1.32)

where hi is the enthalpy at which a phase change occurs for a given pressure P

hi(P ) = Cw(h0 − γP )− L (1.33)

and Cw is the heat capacity of liquid water, h0 is the melting enthalpy of ice at atmospheric

pressure, γ is the dependence of melting point on pressure, and L is the latent heat of fusion.

Temperate ice is any ice which is not cold. With these definitions in hand, we can define the

non-linear conductivity as follows:

κ(H) =


k
ρCp

if cold

ν
ρ if temperate

(1.34)

where k is the thermal conductivity of ice below the pressure melting point, Cp is the heat

capacity of ice, and ν is the diffusivity of temperate ice. It is not at all well understood what the

value of ν should be. Both Hutter (1982) and Aschwanden and Blatter (2009) have suggested

that it be a function of both water content and gravity, but as yet it is unknown what the specific

form of such a function should be. In any case, it would have to capture both the diffusion of
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liquid water through the ice matrix, as well as the movement of liquid water through macroscopic

conduits. In the absence of a good hydrologic model for predicting this value, we take ν to be

some constant significantly less than k
Cp

. Its inclusion is important in order to keep the equation

uniformly parabolic. Otherwise, we would have infinite Peclet numbers in temperate ice, and

the equations would become hyperbolic. This is undesirable, as it requires a special numerical

scheme such as upwinding Zienkiewicz and Taylor (2000).

At the surface boundary, we apply a Dirichlet boundary condition of mean annual surface

temperature

HS = CpTma (1.35)

and at the basal boundary we impose a Neumann condition of inward heat flux, given by

κ(H)∇ ·H = qb = qgeo + qfriction (1.36)

where qgeo is inward geothermal heat flux, and is assumed known, while qfriction is the generation

of heat due to sliding at the bed, and is given by the frictional heat dissipation term from the

variational principle for momentum balance

qfriction = β2u ·u (1.37)

Enthalpy is uniquely related to temperature and water content in the following way

T (H,P ) =


C−1
p (H − hi(P )) + Tm(P ) if cold

Tm if temperate

(1.38)

ω(H,P ) =


0 if cold

H−hi(P )
L if temperate

(1.39)

where Tm is the pressure melting point for temperature, and ω is the water content of the ice.

Various authors have considered a dependence of ice rheology on water content, but we neglect

it in this work.

1.3 Solution Methods

1.3.1 Discretization in FEniCS

All subsequent numerical methods are carried out in the finite element package FEniCS (Logg

and Wells, 2010). FEniCS is an open source library for the solution of PDEs using the finite
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element method. Among its many capabilities, we make use of its capacity to perform automatic

symbolic differentiation and its built-in nonlinear solvers.

1.3.2 The finite element method

All PDEs are solved using the finite element (FEM). The FEM is well documented in many books

(e.g. Zienkiewicz and Taylor (2000)) and we will only give a brief overview of the concepts here.

Consider a linear differential operator L and some forcing function B. For some function u for

which we are trying to find a solution, a linear PDE is defined by the equation

Lu = B (1.40)

This is known as the strong form. We can also generate an equivalent weak form by multiplying

the equation by an arbitrary (but non-zero) test function φ, and integrating over the domain Ω.

∫
Ω

[
Lu−B

]
φdΩ = 0 (1.41)

It is apparent that whenever the weak form is satisfied, the strong form is also satsified, since

for non-zero φ, L and B must vanish for the equality to hold. The fundamental assumption in

finite elements is that the solution u can be approximated by a linear combination of piecewise

polynomials

u =

n∑
i=1

φiUi (1.42)

These piecewise polynomials must be defined over some division of the finite domain into finite

elements (hence the name). The most common procedure is to partition the model domain Ω

into a tesselation of disjoint simplices, such that the union of these approximate the domain. A

standard assumption is to use these same piecewise polynomials as test functions. This is known

as the Galerkin approximation, and if we substitute these into the weak form, we get

n∑
j=1

∫
Ω

Lφjφi dΩ Uj =

∫
Ω

Bφi dΩ (1.43)

which leads to n equations in n unknowns, these being the coefficients Uj . Neumann boundary

conditions can be incorporated into the linear operator through integration by parts, and Dirich-

let boundary conditions are incorporated by constructing the test functions such that they satisfy

them. This form naturally lends itself to solution as a matrix equation, where the elements of
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the matrix K and vector F are given by

Kij =

∫
Ω

Lφjφi dΩ (1.44)

Fi =

∫
Ω

BφidΩ (1.45)

respectively, and the solution coefficients U are found at each nodal point in the mesh by solving

the linear system

KU = F (1.46)

1.3.3 A PDE formulation for the Blatter-Pattyn equations

The standard way to solve the momentum balance equations is to discretize the PDE form

(equivalent to minimizing the variational principle) and solve them directly. This involves finding

the Jacobian of the variational form, which we have already done to verify that this result is, in

fact, equivalent to the first order equations from the literature. Although we can obviously do

this by hand, it is more concise and consistent to perform all operations on the variational form,

so that if we make a change to the variational form, this change is automatically incorporated

into the PDE formulation. FEniCS’s capacity for automatic differentiation is well suited to this.

Everytime we wish to run the model, we simply instruct the software to automatically perform

the variation that we did by hand, and discretize those equations as the PDE to be solved. The

relationship between the variational form and the finite element method is such that we can

consider variations to be test functions, which yields the weak form of the equations suitable for

FEM discretization. To review, the discretized equations are

∫
Ω

[
∇ · 2ηε̇BP + ρg

∂S

∂x

]
δu dΩ +

∫
Γ

−β2u δu dΓ = 0 (1.47)

1.3.4 A PDE formulation for the Enthalpy equation

Although we know that a variational principle for the enthalpy equations exists, it includes

terms of such magnitude that it is not possible for a computer to represent it numerically in a

practical way. Because of this issue, in contrast to our automated method for differentiating the

BP equations, for the enthalpy equations, we implement the code for the weak form directly.

Similarly to the first-order equations, the relationship between the variational form and the finite

element method is such that we can consider the arbitrary variation δH to be a test function,

which yields the weak form of the enthalpy equation suitable for FEM discretization. This
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equation is

∫
Ω

[
∇ ·κ∇H − u · ∇H +Q

]
δH dΩ +

∫
Γ

[
qgeo + qfriction

]
δH dΓ (1.48)

1.3.5 A continuous Newton’s method for FEM

Since both the momentum balance and enthalpy equations contain non-linear parameters (vis-

cosity and diffusivity, respectively), we need to use a solver which can handle non-linearity. A

common method for dealing with non-linearities like these is Newton’s method, which is derived

from a Taylor series (Nocedal and Wright, 2006). Newton’s method can be applied in a variety

of ways. In this case, the primary choice is whether to apply it before or after discretization.

We choose to apply the method before, so that FEniCS’s automatic differentiation tools can be

employed. The method works like so: given a PDE in weak form

F(u;φ) =

∫
Ω

(L(u)u−B)φ = 0 , (1.49)

we seek the function u, such that the equality holds. Note the correspondence between the

notation used here and in the previous section. For this solution procedure, we operate on

the operators used in the finite element method. The difference is that now the operator L is

non-linear. Let us expand F in a Taylor series over an update to the solution ∆u

F(u+ ∆u;φ) ≈ F(u;φ) + δF(u; δu, φ)∆u+O(∆u2) (1.50)

where we have retained only terms of O(∆u). δF(u) is the first variation of F(u), or more

formally the Gateaux derivative. A more common name for this construct is the Jacobian, or

J (u). We seek an update ∆u that will make F equal to zero. If we rearrange the expansion,

we find an expression for the update ∆u that approximately satisfies this criterion (to O(∆u)),

given an arbitrary starting point u.

J (u; δu, φ)∆u = −F(u, φ) (1.51)

It is important to note that since we dropped higher order terms, this perturbation will not

lead us directly to solution, but it will lead us to a better approximation. This suggests an

iterative scheme, where we update u by ∆u until the value of F is sufficiently close to zero. The

equation for ∆u is still, of course, a continuous PDE. We have to discretize to solve, and we

do this by recognizing that the perturbation δu is a trial function, and φ, as before, is a test

function. u becomes a vector of function values U defined at nodal points. This yields a bilinear
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form for J (U ; δU, φ) and a linear form F(U, φ), both independent of ∆U . Solving this linear

system yields the estimate for the correction vector. The procedure then becomes the following

algorithm

Initialize Un to an initial guess U0

while max(F(U ;φ)) ≥ TOL do

Solve J (U ; δU, φ)∆U = −F(U ;φ)

Un+ = r∆U

end while

where r is a relaxation parameter which is used to control the size of the step taken in the

direction of the update. TOL is some small number which defines when the approximate solution

is sufficiently close to the actual solution.

1.3.6 Thermomechanical coupling

In order to account for the mutual dependence of velocity and enthalpy, we use a simple Picard

iteration (or Fixed-point iteration). This is the most simple of numerical techniques for dealing

with non-linearities. The procedure is as follows. Given an initial guess for enthalpy, compute

the velocity field. Use this velocity field to compute a new enthalpy. Repeat until neither field

changes more than a specified tolerance. The updates between the two fields tend to be small,

and this procedure usually converges in less than five iterations.

1.3.7 Time stepping/mesh adaptation

To compute the change in ice geometry at a given time, we use a Crank-Nicholson implicit time

stepping scheme (e.g. Zienkiewicz and Taylor (2000)). The continuous equations describing the

change in surface elevation over time is

dS

dt
= u ·n ≈ −u∂S

∂x
+ w (1.52)

are discretized using the Crank-Nicholson finite difference, which is a weighted average of the

function value at the current time step, and at the future time step

Sn+1 − Sn
∆t

=
α

2

[
− u∂Sn+1

∂x

]
+

1− α
2

[
− u∂Sn

∂x

]
+ w (1.53)

where α is a weighting parameter. Note that the future surface elevation is being calculated

in terms of the future surface elevation, so this scheme is implicit for α > 0. If α = 0, this

scheme becomes the simple forward Euler method. If α = 1, then it becomes the backwards

19



L (km) 5 20 80
Max Mean Max Mean Max Mean

Exp. B
This Work 11.3 10.7 47.4 28.01 96.1 39.76
ISMIP-HOM NFS 10.87 10.54 47.85 27.80 96.43 39.76
Exp. D
This Work 16.22 16.2 21.43 18.34 98.1 38.0
ISMIP-HOM NFS 12.86 12.85 21.48 18.33 103.77 38.46

Table 1.1: Max and mean values of ISMIP-HOM B and D for the model considered in this paper
and the various non-full Stokes models which participated in the benchmark.

Euler scheme. An α of 0.5 generally yields the optimal combination of accuracy and stability. In

order to maintain good mesh spacing, Sn+1 is extruded across the model domain as a function.

Then the vertical coordinate of each mesh point Nj is scaled by the following amount

z(Nj) = σ(Nj)Sn+1(Nj) +B(Nj) (1.54)

where σ is a rescaled vertical coordinate between zero and one representing the normalized height

in the ice column. The surface elevation is constrained such that the ice thickness can never

drop below a threshhold Hmin, in order to avoid inverted mesh elements and the non-physical

phenomenon of negative ice thickness.

1.4 Numerical Experiments

In order to verify our solution techniques, we perform the ISMIP-HOM (Pattyn et al., 2008)

benchmarks for flowline ice sheet models. These benchmarks are for isothermal models, so only

the momentum balance’s capacities are tested. In order to verify the energy balance and surface

evolution equations, we apply the model to one of the EISMINT II (Huybrechts et al., 1996)

benchmark experiments.

1.4.1 ISMIP-HOM B and D

Figures 1.1 through 1.6 give the results of this model’s application to the ISMIP-HOM B and D

ice sheet model benchmark experiments for example lengthscales L = {5, 20, 80}. Synoptically,

ISMIP-HOM B considers the case of a sinusoidally varying bed with no basal sliding. ISMIP-

HOM D considers the case of a uniform surface and bed with sinusoidally varying basal traction

coefficient. The experiments are fully outlined in Pattyn et al. (2008). Model statistics compared

to the benchmark results are shown in 1.1. This model reproduces the benchmark results

accurately for all cases, implying that this model produces results which are consistent with the

models that participated in the benchmark.
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Figure 1.1: Surface horizontal velocity and velocity magnitude for the ISMIP-HOM B benchmark
with L = 5km
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Figure 1.2: Surface horizontal velocity and velocity magnitude for the ISMIP-HOM B benchmark
with L = 20km
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Figure 1.3: Surface horizontal velocity and velocity magnitude for the ISMIP-HOM B benchmark
with L = 80km
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Figure 1.4: Surface horizontal velocity and velocity magnitude for the ISMIP-HOM D benchmark
with L = 5km
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Figure 1.5: Surface horizontal velocity and velocity magnitude for the ISMIP-HOM D benchmark
with L = 20km
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Figure 1.6: Surface horizontal velocity and velocity magnitude for the ISMIP-HOM D benchmark
with L = 80km
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Figure 1.7: Clockwise from top left: 1) Temperature profile at the ice divide, 2)Temperature pro-
file halfway between the divide and terminus, 3) Horizontal velocity halfway between the divide
and terminus, 4) Homologous basal temperature for the EISMINT II fixed margin experiment.

1.4.2 EISMINT II

Figures 1.7 and 1.8 gives the results of this model’s application to the fixed margin EISMINT

II benchmark experiment. Steady state conditions were achieved after approximately 25ka of

simulation time. The steady state configuration calculated by this model shows an ice divide

elevation approximately 400m lower than the published mean. This difference might be explained

either by differences in the momentum balance treatment or differences in the treatment of the

free surface. All of the models that participated in the published EISMINT benchmarks used the

shallow ice approximation, which neglects longitudinal stresses. Our inclusion of these stresses

would affect the model results by producing larger effective strain rates. This would yield a lower

ice divide, as ice in the higher order model is more fluid. Alternatively, the Crank-Nicholson

scheme may not be capturing non-linearities. The temperature field predicted by the enthalpy

model matches the benchmark closely, suggesting that the enthalpy scheme produces results

consistent with the models that participated in the intercomparison.
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Figure 1.8: Steady state velocity norm and temperature fields for the EISMINT II fixed margin
experiment.
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1.5 Discussion and Conclusions

Using a variational principle as a starting point for ice sheet modelling provides a robust frame-

work in which to make numerical approximations, explore different solution techniques, and

reason about the fundamental physics which are taken into account in an ice sheet model. We

have shown how this variational principle can be used to generate consistent approximations to

the full momentum balance. Automatic differentiation is a powerful tool in the streamlining of

ice sheet modelling, as changes in model physics can be propogated through the solution process

solely be changing the variational principle, and allowing automated tools to handle the rest. In

this way, we avoid the complex procedure of taking several variations of a complex functional

and possible errors in incorporating boundary conditions.

Simultaneously, we have shown an ostensibly better way to handle ice sheet thermodynamics,

by posing the energy balance in terms of total heat, rather than only sensible heat flux. This

method yields both temperature and water content and avoids the numerically difficult problem

of imposing an inequality constraint on the solution of a nonlinear PDE. Although this model is

a more complete treatement of the energy balance than standard temperature models, there are

yet a number of assumptions in the model that yield unknown parameters. A primary example is

the inclusion of a diffusivity in temperate ice, under the justification that movement of moisture

content through temperate ice yields a diffusive type heat flux. This could be much improved

through the incorporation of an intra-glacial hydrologic model. As of present, no such model

exists, although attempts have been made (Flowers et al., 2002). In general, a more accurate

description of the movement of heat through the glacier as transported by liquid water should

be a non-linear function of water content, gravity, pressure and strain rate.

Here we have developed an implicit-explicit Crank-Nicholson time stepping scheme for solving

the surface transport problem. Oscillation-free results have been achieved with this method that

match the fixed margin EISMINT model benchmark reasonably well. Despite this success, we

are skeptical of our results, especially in the case of a moving margin. More attention needs to

be paid to the validity of free surface solution techniques, as the only benchmarked results use

techniques which are incompatible with higher order physics.
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Chapter 2

Approximating basal traction

using an adjoint ice sheet model

2.1 Introduction

Many physical quantities of leading order relevance to glacier and ice sheet flow are either prac-

tically impossible to collect, or are point measurements which cannot generally be extrapolated

to a broader spatial context. Examples of the former include historic variables such as a detailed

record of surface temperature or ice impurity content at depostion. Examples of the latter in-

clude basal water pressure, basal temperature, enhancement factors, and geothermal heat flux.

A particularly important parameter which as a rule must be estimated is the coefficient of basal

traction, which relates basal shear stress to sliding velocity. In many cases sliding makes up

nearly all of a glacier’s flow (e.g. Weis et al. (1999)), thus any model that wishes to capture

the realistic velocity and thermal structure of an ice sheet must incorporate some sort of pa-

rameterization of this quantity. The availability of widespread surface velocity data, and the

conceptually simple relationship between surface velocity and bed velocity have also made it a

popular subject for inverse modelling, and many examples exist of performing forward ice sheet

model inversions of varying degrees of complexity in order to determine the basal traction coef-

ficient (MacAyeal, 1993; Goldberg and Sergienko, 2011; Larour et al., 2005; Gudmundsson and

Raymond, 2008; Morlighem et al., 2010).

Specific methods for performing the inversion vary. Recently, various authors have had

success with using different types of perturbation analyses to solve for unknown parameters

(Gudmundsson and Raymond, 2008). Statistical approaches have also been used (Chandler

et al., 2006). These models at a basic level make use only of the forward model, which is to say
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that they perform their inversions by iterative use of the diagnostic equations of ice sheet motion.

This is contrasted to an alternative approach which traditionally has been used to great effect in

ice sheet modelling, the use of an adjoint model (MacAyeal, 1993; Goldberg and Sergienko, 2011;

Morlighem et al., 2010). The adjoint model is derived in the context of minimizing a functional,

with the forward model imposed as a Lagrange multiplier. The methods of variational calculus

can then be employed to find the gradient of the functional with respect to a control variable, and

standard optimization techniques such as Newton’s method can be used. The chief advantage

of the use of this method is that the gradient can be found with no more effort than it takes to

run the model forward. Contrast this to the finite difference method, where the forward model

must be run as many times as there are unknown parameters. While the latter is prohibitively

expensive in the case of real applications, the former is trivial once the adjoint equations are

known.

The seminal paper of MacAyeal (1993) on the use of control methods in ice sheet modelling

applied an incomplete adjoint method to the Shallow-Shelf approximation (SSA), where vertical

gradients of horizontal velocity are ignored. More recently, Goldberg and Sergienko (2011)

applied the adjoint method to a so-called L1L2 model (Hindmarsh, 2004), which is vertically

averaged like the SSA, but employs an iterative correction procedure in order to account for the

presence of vertical shear. Their work also represents a jump in analytical complexity, as they

find the complete adjoint of their model, as opposed to MacAyeal, who neglected the nonlinearity

of ice viscosity.

In this paper, we perform the time honored tradition of inverting surface velocities in order

to find the basal traction coefficient. We apply this technique to a flowband of the Greenland

ice sheet corresponding to the outlet glacier of Isunnguata Sermia in Western Greenland. We

selected this particular site due to it being the subject of a present borehole campaign. Thus

in addition to satellite derived surface velocity, model results will eventually be compared to

deformation and temperature profiles taken from the boreholes.

2.2 Theory

2.2.1 The forward model.

The forward model in this case is the first-order model given in Chapter 1.

2.2.2 The adjoint model.

In the construction of the adjoint to the forward model, we use basal traction to explain the

surface velocity uS . Specifically, we wish to minimize the following functional which we will call
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the objective function ∫
ΓS

1

2
(uo − u)2dΓ (2.1)

where uo is some observed surface velocity, or data. Minimizing this functional is obviously

very easy, because there is nothing which states that it must obey the forward model. We can

incorporate the forward model as a Lagrange multiplier, such that for arbitrary variation in the

Lagrange multiplier, the forward model must vanish identically

F =

∫
ΓS

1

2
(uo − u)2dΓ + λ

[ ∫
Ω

∇ · 2ηε̇BP + ρg
∂S

∂x
dΩ +

∫
ΓB

β2udΓ

]
. (2.2)

If we minimize the above functional with respect to the basal traction field β2, then we will

have found the value of β2 that minimizes the misfit between observed and modelled surface

velocity and still satisfies the model physics. In order to perform this minimization, we proceed

as in the previous chapter, by taking the variation of the functional with respect to all three

free parameters in the functional, u, λ, and β2. Note that we treat β2 as a constant, not as a

function of β. The exponent is simply there to remind us that its value must always be positive.

δF =
d

dε

∫
ΓS

1

2

[
uo − (u+ εδu)

]
dΓ

+(λ+ εδλ)

[∫
Ω

∇ · 2ηε̇BP (u+ εδu) + ρg
∂S

∂x
dΩ +

∫
ΓB

(β2 + εδβ2)(u+ εδu)dΓ

]
.(2.3)

Note that we are ignoring the dependence of the viscosity η on the velocity, which is justified by

previous authors (MacAyeal, 1993; Goldberg and Sergienko, 2011) and the fact that the coupling

of surface velocity and basal traction is only slightly effected by changes in viscosity. Making

this approximation will henceforth be called using the incomplete adjoint. We contrast this to

using the complete adjoint, which involves taking the non-linearities in the viscosity into account

when performing these operations. Performing the derivative, and integrating by parts yields

the following expression

δF = δu

[∫
ΓS

(uo − u)dΓ +

∫
Ω

∇ · 2ηξ̇BP dΩ +

∫
ΓB

β2λ dΓ

]

+δλ

[∫
Ω

∇ · 2ηε̇BP + ρg
∂S

∂x
dΩ +

∫
ΓB

β2u dΓ

]

+δβ2

[∫
ΓB

λ ·u dΓ

]
. (2.4)
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The new expression ξ̇BP is the same as ε̇BP , except with velocities replaced with the Lagrange

multiplier λ

ξ̇BP =

(
2
∂λ

∂x
,

1

2

∂λ

∂z

)
. (2.5)

For the functional to be stationary given an arbitrary perturbation in the Lagrange multiplier,

the forward model must be satisfied. Simultaneously, we have another new PDE which needs

to be satisfied for the system to be stationary, the terms multiplying δu. This is known as the

adjoint model. Finally, we can calculate the gradient of the functional with respect to β2 by

performing the quadrature of the terms multiplying δβ2. If we take the arbitrary perturbations

δu, δλ, and δβ2 as test functions, then the equations are already suitable for discretization by

the finite element method, namely they are already in weak form. This is analogous to what

happened when we took the variation of the functionals in chapter 2. Still, it is helpful to look

at the structure of the equations in strong form. First, we repeat the forward model, writing

out the equations in full rather than vector notation:

∂

∂x
4η
∂u

∂x
+

∂

∂z
η
∂u

∂z
+ ρg

∂S

∂x
= 0 on Ω (2.6)

4η
∂u

∂x
nx + η

∂u

∂z
nz = −β2u on ΓB (2.7)

4η
∂u

∂x
nx + η

∂u

∂z
nz = 0 on ΓS . (2.8)

In addition to homogeneous Dirichlet boundary conditions which are a property of the test

functions and do not affect this analysis. Next we write down the strong form of the adjoint

equations.

∂

∂x
4η
∂λ

∂x
+

∂

∂z
η
∂λ

∂z
= 0 on Ω (2.9)

4η
∂λ

∂x
nx + η

∂λ

∂z
nz = −β2λ on ΓB (2.10)

4η
∂λ

∂x
nx + η

∂λ

∂z
nz = (u− uo) on ΓS . (2.11)

The amount of symmetry between the forward and adjoint models is remarkable. The two are

identical aside from their forcing functions; the differential operator is the same. This property

is known as self-adjointness, and all systems which can be derived from a variational principle

are self-adjoint. Note also how the objective function has entered into the adjoint equation. It

is a forcing term at the surface, a momentum flux in the parlance of the forward model. Thus

the adjoint model can be thought of as modelling the propogation of the objective function’s

sensitivity through the model domain. Finally, we analyze the form of the gradient function.

Solving for the forward and adjoint models means that their contributions to the functional go
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to zero and we have

δF = δβ2

∫
ΓB

λ ·u dΓ . (2.12)

Thus the change induced in the objective function by a change in β2 is proportional to the

product of basal velocity and the adjoint variable.

2.2.3 Inversion procedure

Inversions of the flowline model (equivalent to minimizing the functional F) are performed using

a low memory variant of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm subject to

box constraints (Nocedal and Wright, 2006). BFGS is a quasi-Newton method in the sense that

it attempts to minimize the functional by finding the root or zero point of its Jacobian, but

unlike a full Newton method, it does not require an explicit determination of the Hessian matrix

(See chapter 2 for a description of the multivariate Newton’s method). Instead, it computes

successive approximations to the full Hessian by taking the finite difference between successive

function and gradient evaluations and using them to update the inverse of the Hessian with

the Sherman-Morrison formula. For each inversion we select an initial guess and iterate until

the gradient of the objective function is very close to zero. In the case of thermomechanically

coupled experiments, we developed an initial guess for the thermomechanically coupled solution

by first performing the inversion on a fixed temperature run.

2.3 Numerical experiments

2.3.1 ISMIP-HOM D

As we have already shown in chapter 2, our model reproduces the results of the ISMIP-HOM

benchmarks quite closely (Pattyn et al., 2008). In order to test the capacity of our inversion

technique to reproduce a known basal traction field, we apply it to the ‘ice stream’ benchmark

ISMIP-HOM D, which involves a model domain with a constant ice thickness, uniform surface

and bed slope, with a sinusoidally varying basal traction field given by

β2 = 1000 + 1000 sin

(
2πx

L

)
(2.13)

where L is the length of the model domain.

Figures 2.1 and 2.2 show the results of an inversion on ISMIP-HOM D with domain lengths

of 20km and 80km, respectively. We give the convergence profile of the BFGS algorithm, as

well as modelled and target surface velocity, and modelled and target values of β2. The initial

guess for this run was a uniform 104Pa m a−1, which roughly corresponds to a very slow sliding
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Figure 2.1: Results of ISMIP-HOM D at 20km lengthscale. Top: Observed and modelled surface
velocities. Middle: Known and modelled β2. Bottom: Convergence profile of BFGS algorithm
for this inversion
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Figure 2.2: Results of ISMIP-HOM D at 80km lengthscale. Top: Observed and modelled surface
velocities. Middle: Known and modelled β2. Bottom: Convergence profile of BFGS algorithm
for this inversion
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Figure 2.3: Map of flowline extracted from the Greenland ice sheet. Borehole location shown by
a blue star.

regime. Convergence is relatively uniform, although stable modes can be seen in the plateaux,

which are separated from other plateaux by zones of very fast convergence. The β2 field for

the 20km domain is surprisingly smooth, and comes very close to imitating the sinusoid that

it should be. The β2 field for the 80km domain is less smooth, and exemplifies the fact that

solutions to the model inversion are generally non-unique. The surface profiles are very close in

both cases.

The β2 fields, despite being imperfect, are much closer to the target value than those of

previous authors. Goldberg and Sergienko (2011) report wildly oscillatory solutions using an

incomplete adjoint for a 40km experiment, and a failure of their optimization routine for a

length scale of 20km. Also, their results showed a strong dependence of the performance of the

incomplete adjoint method on the choice of an initial β2. Our method shows no such dependence,

and tends to converge to the same solution regardless of initial guess.

2.3.2 Isunnguata Sermia

In this section, we apply our inversion techniques to a flowband extracted from the Greenland

ice sheet, with a terminus corresponding to the outlet glacier Isunnguata Sermia in western
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Figure 2.4: Surface velocity, geometry, mass balance, and mean annual surface temperature
along the flowline.

38



Greenland. Figure 2.3 shows a map of the flowband. The flowband was constructed by defining

a control point on the glacier surface and following streamlines in the satellite derived surface

velocity dataset of Joughin et al. (2010) up to the ice divide and down to the margin. The

control point selected was the site of an instrumented borehole, such that borehole data can

be applied to the flowband. Surface elevations were extracted from a digital elevation model

(DEM) constructed from airborn laser altimetry (Csatho et al. in press) and bed elevations from

a DEM derived from a combination of surface and airborne radar traces (R. Petterson, personal

comm.). These data are shown in Figure 2.4.

In this run, we incorporate thermomechanical coupling, such that the viscosity is now depen-

dent on temperature. However, we still use the same assumption of an invariant viscosity. The

inversion procedure is indepent of temperature except for in the forward model. The mean an-

nual surface temperature used as an upper boundary condition to the thermomechanical model

is extracted from the data-corrected regional climate model of Ettema et al. (2009).

Figures 2.5, 2.6, and 2.7 show the results of this inversion. We give the convergence profile

of the BFGS algorithm, as well as modelled and target surface velocity, and modelled values of

β2. Note that the inversion is performed twice. First, a β2 field is calculated in the absence

of thermomechanical coupling. Afterwards, thermomechanical coupling is included, and the

inversion is performed again using the results from the first step as an initial guess. The tendency

for the BFGS algorithm to take large steps in its line search tends to lead to a divergence in the

thermomechanically coupled model, so a good initial guess for this step is crucial.

Convergence is slower for real data, as is to be expected, since the β2 field and surface velocity

fields are more complex. Ultimately, the method converges to a very close representation of the

actual surface velocity. Values of β2 are less smooth in this application than for the ISMIP-HOM

experiments, which is a function of the irregularity in bed topography.

2.4 Discussion and Conclusions

Performing the inversion procedure on a known basal traction field is important because it gives

us an additional metric by which to judge the quality of the results. It has been shown that

inversion procedures of this type are generally ill-posed, in the sense that they have non-unique

(and perhaps non-existent) solutions (Goldberg and Sergienko, 2011). Within the bounds of

tolerance there are several qualitative patterns which can produce correct surface velocities,

and selecting the correct one may be important in terms of model thermodynamics and the

comparison of model results to borehole data. One possible solution, as suggested by Morlighem

et al. (2010), is to include a Tikhonov regularization term in the objective function, which
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Figure 2.5: Results of an inversion on Isunnguata Sermia, western Greenland. Top: Observed
and modelled surface velocities. Middle: modelled β2. Bottom: Convergence profile for a two-
stage BFGS algorithm for this inversion.

40



Figure 2.6: Modelled velocity norm field for Isunnguata Sermia, western Greenland after inver-
sion for β2.
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Figure 2.7: Modelled temperature field for Isunnguata Sermia, western Greenland after inversion
for β2.
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could essentially penalize the objective function for oscillatory behavior in the β2 field. This

regularization typically takes the form of a weighted squared differential operator, such that the

magnitudes of the first or second derivatives of the β2 field would be added to the objective

function. Note that this change would not change the adjoint model, only the calculation of the

functional gradient.

It is also worth noting that in the case of inversions on real data sets, there will be inherent

flaws in the solutions produced by the inversion procedure due to inconsistencies in the datasets

used to generate it. Generally speaking, surface elevation, bed elevation, surface temperature,

and surface velocity are all collected at different times, but are nonetheless used as if they were

self-consistent and true approximations of the steady state configuration of the ice sheet. This

last assumption is not true in most situations. Despite this, the inversion procedure should at

least capture some sort of average value.

While the use of the adjoint method in the determination of a basal traction field, other

variables could be considered just as easily. Again, the form of the adjoint would not change

except for the values of its forcing functions. In this way, an adjoint model could be used to

invert for say, an unknown basal topography. Another possibility is using borehole deformation

data as a way to determine flow enhancement factors along isochrons. There have been efforts to

perform this in a time dependent setting, using an adjoint model to assess the sensitivity of the

Greenland ice sheet to perturbations in initial conditions (Heimbach and Bugnion, 2009). With

the numerical tools in place, it is now a matter of assembling the relevant datasets to employ

these methods.
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Chapter 3

Sensitivity of the frozen-melted

basal boundary to perturbations

of basal traction and geothermal

heat flux: Isunnguata Sermia,

western Greenland

3.1 Abstract

A full-stress, thermo-mechanically coupled, numerical model is used to explore the interaction

between basal thermal conditions and motion of a terrestrially terminating section of the west

Greenland ice sheet. The model domain is a two-dimensional flow-line profile extending from

the ice divide to the margin. We use data assimilation techniques based on the adjoint model

in order to optimize the basal traction field, minimizing the difference between modelled and

observed surface velocities. We monitor the sensitivity of the frozen-melted boundary (FMB) to

changes in prescribed geothermal heat flux and sliding speed by applying perturbations to each

of these parameters. The FMB shows sensitivity to the prescribed geothermal heat flux below

an upper threshold where a maximum portion of the bed is already melted. The position of the

FMB is insensitive to perturbations applied to the basal traction field. This insensitivity is due

to the short distances over which longitudinal stresses act in an ice sheet.
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3.2 Introduction

At geologic time scales, high latitude countries in the Northern Hemisphere will likely experience

future glaciations. The long term storage of nuclear waste in deep geologic repositories can po-

tentially be impacted by a glaciation via the ice sheet’s influence on the subglacial and proglacial

groundwater system. It is therefore important to consider subglacial hydrological processes and

the role ice sheets play in driving groundwater systems when designing safe storage systems in

northern locations. Subglacial hydrological processes become active and recharge the ground-

water system only where the bed of an ice sheet is melted. Understanding the spatial pattern of

thermal conditions of an ice sheet’s bed is therefore an important design criteria for responsible

nuclear waste disposal in countries like Sweden, Finland and Canada.

The Greenland Ice Sheet (GrIS) is a present day analog to future ice sheets in Scandinavia

and Canada. The thermal state of the bed of GrIS and the accumulation of subglacial water has

been investigated by a variety of methods, but remains poorly constrained. Direct observations

via drilling show that melted conditions exist near the western margin (Luthi et al., 2002), as

well as at a north-central location near the ice sheet divide (Andersen et al., 2004). Conversely,

frozen conditions have been noted at point locations spanning the ice sheet from Camp Century

near the northwest margin (Weertman, 1968), to the centrally located GRIP core, and the

southeast Dye 3 core (Dahl-Jensen et al., 1998). The spatial extent of melted bed conditions as

determined by the few point observations has been extended via interpretation of ice penetrating

radar. Fahnestock et al. (2001) derived spatially variable basal melt rates exceeding 0.15 ma−1

in central GrIS through interpretation of internal radar layering. Using bed reflectivity power as

a proxy for basal water content, Oswald and Gogineni (2008) suggested a spatially heterogenous

basal water distribution along radar transects of the GrIS.

Spatially comprehensive estimates of basal conditions are offered by ice sheet model out-

put. Greve and Hutter (1995) investigated the sensitivity of the basal temperature field on the

Greenland ice sheet to variations in a uniform geothermal heat flux. Their results suggested

that, while increasing heat flux caused an inland migration of temperate basal conditions, the

interior remained frozen, even under the highest heat flux scenario (54.6 mWm−2). This was

complemented by a follow-up investigation of the basal temperature field by matching geother-

mal heat flux to point observations, which implied that the majority of the ice sheet bed was

at the pressure melting point (Greve, 2005). In addition to geothermal heat flux, the sensitivity

of GrIS basal conditions to changes in surface temperatures and mass balance was investigated

by Huybrechts et al. (1996), who found that basal conditions show a pronounced sensitivity to

steady state changes to temperature and mass balance; e.g. a 10◦C drop in surface temperature

resulted in a freezing of the majority of the ice sheet bed, however, the drop in surface mass
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Parameter Symbol Value

Gravitational acceleration g 9.81 m/s2

Thermal conductivity of ice ki 2.1 W/m K
Density of ice ρ 911 kg/m3

Heat capacity of ice cp 2093 J kg−1K−1

Latent heat of fusion of ice L 3.35×105 J kg−1

Triple point of water T0 273.15 K
Pressure dependence of melting b -9.8×10−8 K/Pa
Universal gas constant R 8.314 J/mol K
Seconds per year - 31556926 s a−1

Glen’s flow law exponent n 3
Viscosity regularization ε̇ 10−30 Pa s

Table 3.1: Parameters and physical constants used in the model.

balance associated with a 10◦C lowering of surface temperature resulted in temperate conditions

over nearly 60 percent of the bed. Transient simulations over the last two glacial cycles showed

most of GrIS exhibits frozen conditions at the bed at some point in time. While the models em-

ployed by both Greve and Huybrechts were three-dimensional, both were mechanically limited

to the shallow ice approximation.

In summary, previous studies suggest a spatially distinct frozen-melted boundary (FMB).

The location of the FMB at the bed is the result of a balance between heat sources concentrated

near the bed (frictional heat from sliding, geothermal heat flux, and strain heating), and the

introduction of colder ice through diffusive and advective processes. In the present study, we

investigate the sensitivity of the FMB not only to geothermal heat flux, but also to changes in cold

ice advection resulting from ice motion, including basal sliding. Sensitivity is investigated with

a steady-state, thermomechanically coupled, two-dimensional flow line model which solves the

full-stress equations (a vertically explicit solution that includes membrane stresses). We apply

this model to a profile of Isunnguata Sermia, a terrestrially terminating glacier in western GrIS.

The model is brought into agreement with observation by using adjoint methods for evaluating

gradients of an objective function. Motivation for selecting a terrestrially terminating glacier

stems from the fact that the majority of the GrIS is land terminating, and such a profile removes

additional physical complexities relating to marine-terminating ice. Using the steady state glacier

geometry and surface velocity field, we examine the interactions of heat sources that dictate the

stability of the FMB under different assumptions about geothermal heat flux and the basal

traction fields.
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Figure 3.1: Study site displaying model profile (red line) from the ice sheet divide through
Isunnguata Sermia to the western margin. Surface elevation contours (blue lines) are given in
meters above sea level, and interpolated from Bamber et al(2001). Yellow contour at 1500 m
a.s.l. represents the approximate equilibrium line altitude (ELA) according to van de Wal et al.
(2008).
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3.3 Methods

3.3.1 Field equations

Our model is built upon the continuum mechanical formulation of the laws of conservation of

mass, momentum, and energy for an incompressible fluid. These are, respectively;

∇ ·u = 0, (3.1)

ρ
du

dt
= ∇ ·σ + ρg, (3.2)

dθ

dt
=

1

ρcp
∇ · ki∇θ − u · ∇θ +

Φ

ρcp
. (3.3)

u represents the velocity vector, σ the stress tensor, θ the temperature, and Φ sources of heat

generation in the ice. Physical constants cp, ki, ρ, and g are defined in Table 3.1. Analysis is

restricted to the xz plane, or the vertical profile, making ∇ = ∂
∂x î+ ∂

∂z k̂, where î and k̂ are unit

vectors in the x and z directions, respectively.

Conservation of momentum and mass

The constitutive relation for ice takes the form

τij = 2ηε̇ij , (3.4)

τij is the ij element of the deviatoric stress tensor, which is defined by τij = σij − pδij , and δij

is the Kronecker delta function. Isotropic pressure is defined as p = − 1
3

∑
i σii. ε̇ij represents

the corresponding element of the strain rate tensor, and η the viscosity. The strain rate tensor

is given by, and related to velocity gradients as follows

ε̇ij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (3.5)

A non-Newtonian rheology is used for ice

η =
1

2
A(θ∗)−1/n(ε̇Π + ε̇0)(1−n)/n, (3.6)

with ε̇2Π = 1
2Σij ε̇ij ε̇ij , or the second invariant of the strain rate tensor, and ε̇0 is a regularization

parameter introduced to avoid a singularity at zero strain rate. Glen’s flow law (Paterson, 1994)
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gives n=3. A(θ∗) is the flow law rate factor, given by Paterson and Budd (1982).

A(θ∗) =


3.61× 10−13 e−6.0×104/Rθ∗ , θ∗ ≤ 263.15K,

1.73× 103 e−13.9×104/Rθ∗ , θ∗ > 263.15K,

(3.7)

where θ∗ is the homologous temperature, defined by θ∗ = θ + bp, and R the universal gas

constant.

Under the assumption of steady state, the velocity of the ice is then determined from Stoke’s

flow confined to the xz plane

∇ ·σ = ρg, (3.8)

and the conservation of mass ∇ ·u = 0.

Conservation of energy

Φ, the term in Equation 3.3 which represents internal heat generation, is computed as

Φ = 2ηε̇2Π. (3.9)

Under the assumption of steady state, and uniform thermal conductivity, the temperature of the

ice is given by the following equation:

0 =
ki
ρcp
∇2θ − u · ∇θ +

2ηε̇2Π
ρCp

. (3.10)

3.3.2 Boundary Conditions

Boundary conditions are applied to three distinct regions on the boundary of Isunnguata Sermia;

(1) the surface, (2) the bed, and (3) a vertical boundary at the ice divide.

Conservation of Momentum and Mass Boundary Conditions

The surface of the glacier upholds the neutral or stress free boundary condition

σn̂ = 0, (3.11)

where n̂ is the outward normal unit vector.

The bed of the glacier is subjected to a Weertman style sliding law, where basal velocity and

shear stress are related as

τb = β2u · t̂ (3.12)
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where β2 is a positive scalar, spatially variable parameter representing the magnitude of

frictional forces at the bed, and τb is given by

τb = σn̂ (3.13)

evaluated at the base of the glacier. We constrain the sliding velocity to be tangential to the

bed, that is u · n̂ = 0.

The vertical boundary at the divide, is subject to a symmetry boundary condition,

n̂ ·u = 0 (3.14)

σ · t̂ = 0, (3.15)

where t̂ is the unit vector tangent to the divide.

Conservation of Energy Boundary Conditions

The bed of the glacier is subject to an inward heat flux given by

Q = qg + qf − ql (3.16)

where qg is the geothermal heat flux, qf is heating due to sliding friction, and ql is latent heat

associated with the melting of ice. qg is a prescribed value of 42mW/m2, unless otherwise stated.

Frictional heat is calculated as

qf = u · τb. (3.17)

Latent heat is given by

ql =


qf + qg + ki

∂θ
∂z , θ∗ ≥ 273.15

0, θ∗ < 273.15

(3.18)

This heat interacts with the ice via the Neumann boundary condition

−n̂ · ki∇θ = Q. (3.19)

Note that the inclusion of the latent heat term serves as a temperature constraint on the ice by

counteracting the inward flux from geothermal heat and frictional heat when the basal ice is at

the pressure melting point.

The surface temperature of the glacier is inferred from the dataset of Ettema et al. (2009), and

is imposed as a Dirichlet boundary condition. The vertical boundary at the divide is thermally
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Quantity Value

Mesh Elements 632
Degrees of Freedom 4686
Element Type Lagrange Quadratic
Initial Damping Factor 1×10−4

Minimum Damping Factor 1×10−8

Criterion for Convergence <1×10−6

Table 3.2: Quantities of importance for model numerics.

insulated such that n̂ · [−ki∇θ] = 0.

3.3.3 Model Domain

The geometry for the model domain was derived from surface elevation and thickness data of

Bamber et al. (2001). Since the model used here considers only a vertical profile, we selected

a streamline from the surface velocity data presented in Joughin et al. (2010). We employed

cubic splines to interpolate the glacier geometry between data points, which were spaced at 5

kilometers.

Due to the discrete nature of the original dataset, the profile surface contained numerous

artifacts, manifested as irregularities in slope. In order to produce a more reasonable surface,

we implemented a free-surface evolution scheme, and allowed the model geometry to relax for 50

years. The high driving stresses associated with the slope irregularities quickly diffused, yielding

a surface free from the original artifacts, and still consistent with the data and model physics.

3.3.4 Numerical Considerations

The model uses the finite element method to solve the field equations subject to the boundary

conditions. Lagrange quadratic elements are used (Hughes, 2000), allowing second derivatives

of the velocity to be computed accurately. The non-linearity resulting from the viscosity (Equa-

tion 3.6) is resolved by using the modified Newton’s method iterative solver (Deuflhard, 1974).

The resulting linear systems were solved with UMFPACK (Davis, 2004). Model specific parame-

ters are summarized in Table 3.2. All numerical work was carried out in the Comsol Multiphysics

modeling environment, a commercial package for finite element analysis of general partial differ-

ential equations.

3.3.5 Modeling assumptions

Several assumptions were made in the development of this model, and results must be understood

with these in mind. These assumptions are as follows:
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1. The data sets used in the generation of the model domain geometry are sufficiently accurate,

and the surface smoothing used to reduce artifacts does not introduce additional errors

larger than those resulting from artefacts in surface geometry.

2. Stresses acting transverse to the dominant flow direction are small. This is necessary due

to the effect that these stresses, and associated strains, have on the rheologic properties of

the ice. Given the profile’s location at the center of the ice catchment, and the uniform

width of the streaming feature, this assumption is likely valid.

3. The steady steady state solution generated by the data assimilation process is a reasonable

representation of a long term configuration for the model domain. This assumes that the

modeled region of the GrIS was not in a transient state at the time that data was collected.

4. A constant geothermal heat flux is an appropriate parameterization of the real phenomenon

across the modelled domain. This is to say that given the spatial scale under consideration,

variability in geothermal heat flux is either of a sufficiently low resolution to be considered

in an average sense, or of a sufficiently large scale that it is essentially constant.

5. Steady state solutions which include the data assimilation process are sufficient for probing

the sensitivities of the system with respect to changes in the basal boundary. A more

complete treatment would entail the evolution of the free surface to determine the ultimate

outcome of the perturbation, but that is beyond the scope of this work.

3.3.6 Data assimilation and model initialization

When modeling ice dynamics, there are two issues that must be addressed before numerical

experiments can be conducted. First, fields which have not been directly measured but are

significant in computing flow must be estimated. For instance, the internal distribution of

temperatures are critical to ice dynamics, but are at best known at a few boreholes. We will refer

to this process as model initialization. Secondly, the initialized model should be in agreement

with measurements that are available. We refer to this as data assimilation.

Our strategy in this paper will be to use steady state solutions to conservation equations

to initialize the model subject to the constrains introduced by the data assimilation process.

This is not a new idea, MacAyeal (1993) introduced control methods in the context of ice sheet

modeling. Here, we extend the concepts to solutions which incorporate the full flowline stress

balance.

For data assimilation, we use the adjoint of the linear operator to compute derivatives of an

objective function, and use those slopes to minimize the function. We have defined an objective

52



Figure 3.2: Top panel shows the modelled and observed velocity, as well as the portion of the
modelled velocity accounted for by internal deformation. The middle panel shows the β2 field
derived from the data assimilation procedure. The lowest panel shows the topography underlying
the modelled ice profile.
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Figure 3.3: The velocity (top) and temperature (bottom) fields produced by the data assimilation
process. White lines on the velocity figure indicate flowlines within the velocity field
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function in terms of difference between the observed, uobs(x), and modeled, umod(x) surface

velocities,

g(u, p) =

N∑
i=1

(uobs(xi)− umod(xi))
2 (3.20)

which will be differentiated with respect to a parameter p that we vary in order to minimize

the objective function. In this case the parameter will be p = β(x)2 or the basal traction. Our

introduction follows that of Strang (2007, pages 678-684).

‘Chain rule’ differentiation yields

dg

dp
=
∂g

∂u

∂u

∂p
+
∂g

∂p
, (3.21)

where u is a solution vector containing both velocities and temperatures. The key to efficient

calculation of the derivatives of the objective function is writing

∂g

∂u
= cT (3.22)

or, recognizing that the objective function is linear in u. It is now possible to write the gradient

as

dg

dp
= cT

∂u

∂p
+
∂g

∂p
= cTA−1 ∂b

∂p
+
∂g

∂p
, (3.23)

where that cTA−1 is the result of solving the “adjoint” linear system ATλ = c for λT = cTA−1.

Note that the original problem is assumed to be represented by the system of linear equations

Au = b. Hence, the gradient for each step of an optimization algorithm (we use quasi-Newton)

requires a single extra linear solve, rather than a linear solve for each of the many parameters, p.

This savings makes it possible to do large inverse problems, such as computing a basal traction

for each point in the model domain (see Fig. 2). Figure 3 then corresponds to the initialized

velocity and temperature field, or the steady state solutions to the field equations that assimilate

the data. This will provide the starting point for all numerical experiments. In some cases, such

as determination of the sensitivity to qg, the entire assimilation/initialization process is repeated

with different values.

3.4 Numerical experiments

3.4.1 Sensitivity of the FMB to basal heat flow

In order to determine the sensitivity of the location of the FMB to different values of geothermal

heat flux, we performed the data assimilation procedure over a range of possible values. This
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Figure 3.4: Sensitivity of FMB location to variations in the geothermal heat flux.

experiment is motivated by the observation that basal sliding represents a significant portion

of the total modelled surface velocity, and we wished to determine the geothermal heat flux

required to produce a completely melted bed, in line with the assumption that the bed must be

at the melting point for sliding to occur. We conducted model runs at every 5mW/m2within the

range 0-120mW/m2. Figure 3.4 shows the location of the FMB as a function of the prescribed

geothermal heat flux. The FMB asymptotically approaches the divide as geothermal heat flux is

increased, although the entire bed is not at the melting point under any of the parameter values

considered, even for fluxes which seem unreasonably high. For comparison, previous authors

have used a value of 42mW/m2(Pattyn, 2003), and a structural similarity model by Shapiro and

Ritzwoller (2004) indicates a mean geothermal heat flux of around 58mW/m2along our flowline.

3.4.2 Sensitivity of the FMB to sliding

Previous work suggests that seasonal changes in the glacial drainage system below the ELA

can contribute to changes in basal traction, leading to changes in surface velocity (van de Wal

et al., 2008; Bartholomew et al., 2010; Joughin et al., 2008; Zwally et al., 2002). There is

little agreement between these papers regarding the magnitude of proposed changes in surface
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Figure 3.5: Sensitivity of surface velocity to perturbations to the basal traction field, β2. Equi-
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threshold (LCT) to be the location at which the difference between any two surface velocity
profiles is ≤1 m/a.

velocity. Joughin et al. (2008) suggests that terrestrially terminating glaciers in the region south

of Jakobshavn Isbrae (of which Isunnguata Sermia is one) experience 25% increases in surface

velocity as a result of surface melt water lubricating the bed. Bartholomew et al. (2010) suggest

speed-ups as great as 200%, and that a warming climate and associated surface lowering will

expose greater portions of the bed to surface melt water, increasing the fraction of the ice sheet

exposed to summer speed-ups. van de Wal et al. (2008) acknowledge these seasonal variations,

but present data which show an overall 10% decrease in surface velocities between 1990 and

2007. They also note that surface ablation and velocity show no correlation.

Regardless of the magnitude and sign of such changes in surface velocity, we sought to

determine whether perturbations to the basal traction field, β2, downstream from the ELA,

such as those which would be induced by increased surface meltwater production, would have an

impact on the basal thermal regime, specifically the location of the frozen melted boundary. We

tested this by inflicting constant multiplicative perturbations to β2 downstream from the ELA,

57



ranging between 50% and 200% of the value produced by the data assimilation process. The

location of the FMB was insensitive to all of these perturbations. The reason for this is shown

in Figure 3.5. Noteable changes in the surface velocity (>1ma−1) field extend only 20km, or

around 10 ice thickness, upstream from the extent of the perturbation. Thus, the advection of

heat away from the bed, the dominant mechanism accounting for heat flux at the bed as shown

in Figure 3.6, is unchanged 90km upstream, at the location of the FMB. This short coupling

distance within the velocity field is corroborated by other studies (Bartholomew et al., 2010;

Price et al., 2008).

3.4.3 Heat budget

In order to track the dominant factors which dictate the thermal regime at the bed, we calculated

a heat budget of sources and sinks in terms of flux to the ice sheet base. We performed this

calculation for a model scenario with optimized β2 and a geothermal heat flux of 42mW/m2;

results are displayed in Figure 3.6. Upstream of the FMB, frozen conditions are controlled by

the advection of cold ice. Near the divide, this advection is predominantly vertically directed

from the surface. Moving downstream, advection becomes bed-parallel, so that advective flux

decreases to zero at the FMB as heat sources raise the ice temperature as it flows along the

bed. Throughout the frozen zone, and some kilometers beyond the FMB, the primary source

of heat along the bed is geothermal heat flux. We find that heat generation due to straining at

the bed is a positive contributor but negligible compared to geothermal and frictional sources.

Downstream of the FMB, excess heat generation is accommodated by the consumption of latent

heat associated with the phase transition from ice to water as basal melt occurs. Basal melting

initiates at the FMB and steadily increases to a maximum of nearly 20 mm a−1 near the terminus.

3.5 Discussion

The sensitivity experiments described above indicate strongly different responses by the FMB

to perturbations in geothermal heat flux and basal sliding. The direct response of the basal

thermal regime to changes in geothermal heat flux is an expected result. However the diminishing

sensitivity of the FMB to increasingly higher heat fluxes is worth noting, and likely reflects the

inability of the added heat to overcome cold advected from upstream.

In contrast, longitudinal coupling effects from sliding perturbations below the ELA do not

propagate far enough up-glacier to influence the FMB. The location of the FMB is consequently

insensitive to such perturbations. This interpretation hinges on the assumption that sliding per-

turbations apply only below the ELA which is reasonable considering that the effect of increased
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A)

B)

Figure 3.6: Budget of heat sources (A) and sinks (B) along the profile basal boundary. Latent
heat generation (not shown here), is a negative non-zero term below the FMB, and accommodates
excess heat generated from (A). Strain heat is a positive non-zero term, but negligible compared
to frictional and geothermal heat sources.
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surface melt input to the basal hydrologic system is not likely to propagate a significant dis-

tance upstream along the bed. We hypothesize that the limited distance over which longitudinal

coupling occurs is a result of stress being dissipated at the basal boundary. It is important to

note that sliding in our model is not limited to below the ELA. In fact, our optimization scheme

produces a β2 field with sliding above the FMB to the ice divide, albeit the upstream sliding is

small relative to that occurring near the margin. Migration of melted conditions to the divide

does not occur under very high values of geothermal heat flux, thus the representation of sliding

in our modeled frozen zone begs explanation.

If the bed is in fact frozen we see several potential explanations for our modeled sliding.

First, sliding has been observed over a frozen bed consisting of a till layer (Engelhardt and

Kamb, 1998), or hard bedrock (Echelmeyer and Wang, 1987; Cuffey et al., 1999). Additionally,

substantial deformation has been observed within a frozen till layer, both within the body of the

till itself, (Echelmeyer and Wang, 1987; Engelhardt and Kamb, 1998), as well as along discrete

shear planes (Echelmeyer and Wang, 1987). This mechanism may be taking place if such a

layer exists beneath GrIS. Second, and perhaps more likely, our model could under-represent

velocity from ice deformation, requiring our optimization scheme to over-represent sliding to

maintain the observed surface velocity. Changes in flow due to variable impurity and water

content and grain size of ice are not accounted for in our model, however elsewhere in Greenland

a layer of soft pre-Holocene ice has been observed to enhance flows by 1.7-3.5 fold (Paterson,

1994; Luthi et al., 2002). Alternatively, but in the same vein, the standard constitutive law

we use could under-represent grain-scale ice deformation processes (Goldsby and Kohlstedt,

2001). Finally, the velocity field itself could potentially depict a velocity field out-of-balance

with the current ice sheet geometry. We have no basis to eliminate any of these possibilities.

However, if the magnitude of sliding over frozen bed computed here is not real, it is likely to be

principally accounted for by spatial changes in geothermal heat flux, anisotropies within the ice,

or a combination of the two.

An alternative scenario is therefore a partitioning of the observed surface velocity with en-

hanced ice deformation and reduced sliding velocity. Our heat budget along the basal boundary

suggests the implementation of sliding has a significant influence on the location of the FMB by

increasing the advection of cold ice along the bed. Under this alternative scenario, the associated

drop in sliding velocity combined with additional interior heat generation from enhanced strain-

ing may modulate the cold contribution from advection, pushing the FMB further upstream.

These processes would likely be countered by a decrease in frictional heating, which would force

the FMB towards the margin. A model exploration of FMB migration from this interaction of

heat sources is beyond the scope of this manuscript, and will be the focus of future work.
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3.6 Conclusion

We developed a thermomechanically coupled, 2-dimensional flowline model, which was applied to

a terrestrially terminating glacier profile located in western Greenland. We extracted geometric

information for the model domain from a dataset presented in Bamber et al. (2001), which we

believe to be the best data available at present for the Greenland Ice Sheet. We used adjoint

methods to optimize the basal traction field, such that modelled surface velocities matched

observed values (Joughin et al., 2010) to within 1ma−1.

With an optimized model in hand, we conducted experiments in order to determine the

sensitivity of the frozen-melted boundary (FMB) to perturbations in the basal heat flux and

basal traction downstream of the ELA. We found that the FMB migrates easily under different

assumptions about geothermal heat flux. At values close to 0mW/m2, the FMB moves very close

to the terminus, but part of the bed remains unfrozen due to frictional heating from sliding. At

high values, the FMB asymptotically approaches the ice divide. We found that for reasonable

perturbations to basal traction downstream from the ELA, such as what might be expected

from an increase in surface meltwater production and associated bed lubrication, the FMB was

insensitive. This is a result of the short length scale over which longitudinal stress coupling in

the ice operates (∼10 ice thicknesses). The FMB is significantly further upstream from the ELA

than the perturbations to the velocity field extend, thus advective heat fluxes are unchanged.

Our model predicts that under most assumptions about geothermal heat flux, sliding occurs

over a frozen bed. We see two possible explanations for this: 1) That this sliding is real, and

follows one of the mechanisms proposed by Echelmeyer and Wang (1987), Engelhardt and Kamb

(1998), or Cuffey et al. (1999), 2) Anisotropies or variability in hardness within the ice result in

a preferential flow direction and increased deformation. Additional work is needed to quantify

the sensitivity of the basal thermal regime to the second of these factors.
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Future work

The three previous chapters documented both the theory behind and applications of a state of

the art ice sheet model. I argue that the use of a variational principle as the starting point

for modelling the ice momentum balance is a fundamentally better way to approach ice sheet

modelling. The same is true of the enthalpy formulation compared to previous methods for

solving the energy balance. The coupling of these two methods is another advancement in its

own right. Performing inversions on the first order model is fairly new and the level of success

in inversion is notable. The use of finite elements as a modelling framework is an advancement

over the classical ice sheet model approach of finite differences.

Despite these advances, there a number of ways that the model needs to be improved, as well

as additional scientific work that could capitalize on the developments presented herein.

First and perhaps most importantly, the dynamic component of the model needs to be im-

proved. As it stands, the methods of updating model geometry are crude, and depend on solving

a fundamentally unstable equation. Some of the particular free surface challenges associated with

ice, such as the capacity for ice to override itself, are made explicitly impossible given the cur-

rent method of time stepping. Approaching the problem from a Lagrangian (moving frame of

reference) versus Eulerian (fixed frame) perspective may be a way to overcome these problems.

A starting point to this approach is given by Dukowicz and Baumgardner (2000).

Second, the model must be expanded to three spatial dimensions. The flowline model is

efficient and can provide insight into a number of glaciological problems, but it neglects transverse

effects and is highly limited in terms of its spatial applicability. The way to proceed is to

parameterize the spatial dimensions of the model, such that the physics can be applied in any

number and any combination of dimensions.

Third, a Tikhonov regularization term should be applied to the optimization routine. As

it stands, the model is not penalized for overfitting the basal traction field, and oscillatory

solutions are the result. A penalty function on the second derivative of β2 would help to correct

this. Intuitively, this means adding some stiffness to the line that defines the basal traction field.

If performing the unregularized inversion is akin to laying out a string such that the string forms
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a plot of the optimal values of β2, the regularized inversion is like using a wire. This would lend

confidence to actually drawing conclusions from the structure of the field itself.

Finally, the model should be applied to more glaciological problems. There are a number of

questions that it could help address. How stable is the current configuration of the ice sheet,

given modern temperature and mass balance? How well do the current data sets for bed and

surface elevation conserve mass, under the assumption of a steady state ice sheet? What are

the effects of short scale changes in the basal traction field due to influxes of summer surface

meltwater? Does assuming different rheologic properties at different age layers affect the velocity

structure of the ice sheet? The model presented herein is well-equipped to answer any of these.
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