
University of Montana University of Montana

ScholarWorks at University of Montana ScholarWorks at University of Montana

Graduate Student Theses, Dissertations, &
Professional Papers Graduate School

2008

TESTING xUML: A STUDY OF IMPLEMENTING AND TESTING TESTING xUML: A STUDY OF IMPLEMENTING AND TESTING

MODEL DRIVEN ARCHITECTURE MODEL DRIVEN ARCHITECTURE

Dylan O. Flaherty
The University of Montana

Follow this and additional works at: https://scholarworks.umt.edu/etd

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Flaherty, Dylan O., "TESTING xUML: A STUDY OF IMPLEMENTING AND TESTING MODEL DRIVEN
ARCHITECTURE" (2008). Graduate Student Theses, Dissertations, & Professional Papers. 957.
https://scholarworks.umt.edu/etd/957

This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of
Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an
authorized administrator of ScholarWorks at University of Montana. For more information, please contact
scholarworks@mso.umt.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Montana

https://core.ac.uk/display/267572597?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.umt.edu/
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/grad
https://scholarworks.umt.edu/etd?utm_source=scholarworks.umt.edu%2Fetd%2F957&utm_medium=PDF&utm_campaign=PDFCoverPages
https://goo.gl/forms/s2rGfXOLzz71qgsB2
https://scholarworks.umt.edu/etd/957?utm_source=scholarworks.umt.edu%2Fetd%2F957&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@mso.umt.edu

TESTING xUML: A STUDY OF IMPLEMENTING AND TESTING

MODEL DRIVEN ARCHITECTURE

By

Dylan O Flaherty

Bachelor of Science, Computer Science, University of Montana, Missoula, MT, 2007

Thesis

presented in partial fulfillment of the requirements

for the degree of

Master of Science

in Computer Science

The University of Montana

Missoula, MT

Autumn 2008

Approved by:

Dr. Perry Brown, Dean

Graduate School

Dr. Joel Henry, Chair

Computer Science

Dr. Min Chen

Computer Science

Dr. John Bardsley

Mathematical Science

 ii

Flaherty, Dylan, M.S., Autumn 2008 Computer Science

Testing xUML: A Study of Implementing and Testing Model Driven Architecture

Chairperson: Dr. Joel Henry

 Model Driven Architecture (MDA) is a relatively new and completely different approach

to developing software in which diagrams and formal specifications are written and

then translated into executable programs. Development using this approach takes

longer than using traditional software engineering approaches, but results in products

that more correctly meet user requirements and take less maintenance effort. While

there is considerable information available regarding development using MDA, the

implications for testing have not been fully explored or measured.

 In order to investigate this facet of MDA, a traditional C++ program which had

previously been tested was rebuilt as an MDA model. Metrics for unit, integration, and

system testing on the two systems were then gathered and compared. The MDA model

proved to be moderately easier to test than a traditional system; tools are provided to

assist testers, allowing testing to potentially be accomplished earlier in the life cycle of a

project. Additionally, the MDA approach may make it possible to create a reusable

model which could be used for testing many widely different applications with minimal

effort required to adapt the model between programs.

 Results indicated that developers could expect unit and integration testing of iUML

systems to take slightly less time than testing traditional systems. System testing of the

MDA model is likely to be more expensive in the short term, but payoff over time.

While developing in MDA necessitates overcoming several hurdles and may prove to be

too expensive to be practical, ease of testing is not one of MDA’s shortcomings.

 iii

TABLE OF CONTENTS
TABLE OF FIGURES .. v

ACKNOWLEDGMENTS ... vi

CHAPTER 1 INTRODUCTION ... 1

1.1 Introduction .. 1

1.2 About iUML .. 2

1.3 Structure of an iUML Model ... 4

CHAPTER 2 METHODS AND TEST SETUP .. 14

2.1 Original Program Testing .. 14

2.2 Creating the iUML Model ... 14

2.3 Basis for comparison/effort to keep models comparable ... 18

2.3.1 The Logic Class ... 19

2.3.2 The UI Class ... 20

2.3.3 The Heap Class .. 20

2.3.4 The Contact Class .. 22

2.3.5 The CriteriaMapper Class .. 23

2.4 Final Comparison of Models ... 23

CHAPTER 3 MDA IMPLEMENTATION FINDINGS ... 25

3.1 Strengths .. 25

3.2 Weaknesses .. 26

3.3 Implementation Results ... 27

CHAPTER 4 TESTING THE MODEL ... 30

4.1 Unit Testing .. 32

4.2 Integration Testing ... 34

4.3 Testing the Platform Specific Model .. 36

4.4 System Testing ... 37

CHAPTER 5 RESULTS ... 43

5.1 Results .. 43

5.2 Conclusions ... 43

5.3 Future Directions .. 46

BIBLIOGRAPHY .. 47

 iv

APPENDIX ... 48

Appendix A – Additional Bugs found in iUML .. 48

Appendix B - Restrictions on iUMLite... 48

Appendix C – Test Cases ... 48

Appendix D – C++HeapContact Code ... 50

Logic Class ... 50

Heap Class .. 65

ContactType Class .. 75

Employee Class ... 76

Customer Class ... 80

Shipper Class .. 84

UI Class ... 88

CriteriaMapper Class .. 94

NameMapper Class .. 94

AddressMapper Class ... 96

PhoneMapper Class .. 97

IO Class ... 98

Appendix E - iUML model code .. 100

Logic Class ... 100

Heap Class .. 103

Contact Class .. 107

Employee Class ... 107

Customer Class ... 108

Shipper Class .. 110

UserInterface Class ... 111

CriteriaMapper Class .. 113

NameMapperClass ... 114

AddressMapper Class ... 114

PhoneMapper Class .. 115

Initialization Segment ... 115

Test Methods ... 115

 v

TABLE OF FIGURES
Figure 1: The Domain model for the system. .. 5

Figure 2: A use case model for a system. .. 7

Figure 3: A Sequence diagram for one use case of a model. .. 8

Figure 4: Class Collaboration Diagram .. 9

Figure 5: A State Machine from iUML ... 10

Figure 6: A Class Diagram in iUML... 12

Figure 7: UML Diagram of the original HeapContact implementation in C++ 16

Figure 8: UML Diagram of the HeapContact implementation in iUML 17

Figure 9: A potentially reusable testing model (modified from Henry [2008]). 39

Figure 10: The modified HeapContact program with a bridge between logic and UI. 41

 vi

ACKNOWLEDGMENTS
I would like to thank the students of Dr. Henry’s SQA class for digging through three

years’ worth of homework to find metrics for use in this thesis: Geddy Tarbell, Chap

Alex, and Jonathan Adams.

Above all I would like to thank Dr. Joel Henry for being my mentor throughout my entire

academic career, for his help on this work, and for convincing me not to change my

major five years ago; it’s been fun.

 1

CHAPTER 1 INTRODUCTION

1.1 Introduction

Model Driven Architecture (MDA) is a software development approach in which

developers create detailed diagrams and formal specifications which exactly define the

states and behaviors of a system. iUML is a tool developed by Kennedy Carter which

essentially provides an Integrated Development Environment (IDE) for MDA; within

iUML developers can create interconnected diagrams and define formal specifications

which can then be translated into code and compiled into an executable program

(Raistrick, 2004). Action Specification Language (ASL), an extremely limited and generic

programming language, is inserted throughout the diagrams to specify details of how

the system works, such as decisions and loops. This system of diagrams and ASL code

can be translated into an executable Platform Independent Model (PIM), which can be

run within the iUML simulator. The model can later be translated into a Platform

Specific Model (PSM) in almost any programming language (commonly C). The iUML

tool is extremely complex, with many detailed diagrams that must be interconnected

exactly. Consequently, the learning curve for iUML is very steep and the effort to

develop a system in iUML is considerably higher than traditional approaches.

The MDA approach has the potential to radically change the way software is developed,

especially for safety critical systems. However, the effects of MDA on software quality

assurance have not been thoroughly explored. By comparing metrics of testing effort

 2

on an iUML system with testing effort for a traditional C++ system, this thesis provides a

starting point for analyzing how to approach testing of iUML models, and a gauge for

the expected time to complete testing.

The model which was created for these tests is as similar as possible to a C++ system for

which unit, integration, and system testing metrics were available. After testing the

iUML model and gathering metrics, the metrics were compared with metrics from

testing the original C++ program.

This work draws ideas from NASA’s Orion project, which used iUML for development

(Henry, 2007). Approaches identified for testing iUML used within the Orion project are

partially applied to the model and the usefulness of these approaches is evaluated,

including a new approach to system testing.

Some of the unique features of iUML were explored over the course of testing. Many of

these features were found to have considerable potential and could save significant

testing time. This potential is discussed in the conclusions section.

1.2 About iUML

Tools which support MDA through the use of executable UML models are called

Executable UML, or xUML. Kennedy Carter’s implementation of xUML, which they call

 3

iUML, gained a considerable amount of attention recently when NASA announced that

Lockheed Martin would be using iUML for NASA’s Orion project (Lowry, 2008). It is

likely that NASA was most attracted by MDA’s aptitude for exactly specifying system

requirements –a necessity for critical systems used within Orion. Most of MDA’s key

strengths also target development of critical systems. Orion is likely the largest system

for which the MDA approach has been employed, but several smaller, proof of concept

applications have been developed with it as well (Customer Success, 2008) .

MDA was created by the Object Management Group (OMG) in 2001. One of the main

goals of MDA was to provide exact requirements specification for projects. “Where

implementation is to be carried out by an external party, an executable PIM forms an

ideal specification to hand over to the implementers since it fully specifies required

behavior” (Raistrick et al., 2004). A large proportion of software projects fail because

the developers created the wrong product: the developers created a requirements

specification which their customers approved, but when the project was complete or

nearly complete it was discovered that ambiguities or incompleteness in the

requirements document had caused the project to stray from what the customers

wanted. By creating a system which forces developers to fully specify every aspect of a

system, the OMG hoped to solve the problem of incomplete and incorrect

requirements. Moreover, since with MDA the system is the requirements specification,

there is no chance of a mistake occurring in the translation from requirements to

 4

implementation (a translation that produces significant defects in traditional software

development processes).

A second goal for MDA was to provide a level of abstraction between the system

definition and the code implementation (Mellor, Not Dated). New programming

languages are created every year, and often new languages are faster, more secure, or

otherwise improve on their predecessors. The iUML system allows the system

definition to be translated into any language, so a system could be translated into a

language which does not even exist at the time the system was originally designed.

A third major goal was to reduce the amount of required experience for developers.

Rather than writing code, most developers using iUML would create models of the

system using terms understood and widely used within the application area –a process

which iUML’s creators hoped would be more intuitive, complete, and correct.

1.3 Structure of an iUML Model

The iUML program is divided into two main components, the modeler and the

simulator. The modeler is the development environment component of iUML. This is

where diagrams are created and code is embedded into the diagrams.

The simulator is the portion of iUML which simulates running the PIM. The simulator

environment has several tools included which allow users to monitor the model as it

runs; these tools significantly improved test activities.

 5

An iUML model is defined by 6 different types of diagrams. The diagrams are largely

interconnected; a change in one diagram often results in the change automatically being

reflected in another diagram.

Within the modeler portion of iUML is a “Projects” tree and a “Domains” tree. The

projects tree is primarily for configuration management purposes. The projects tree

contains a domain model diagram, use case diagrams, and sequence diagrams. The

projects tree also contains the code for bridges between domains.

Figure 1: The Domain model for the system.

 6

An iUML model is made up of one or more domains. The domain model (Figure 1)

shows the set of domains for a single project. Arrows between domains indicate the

client/server relationship between the domains. In an iUML model with multiple

domains, domains are connected together via bridges. Bridges encapsulate the

interfaces between domains into a single location. Properly implemented domains are

not dependant on one another (iUML Modeller User Guide, 2003) because the coupling

between them is contained within the bridges. This is done for a number of reasons; by

decoupling the domains, domains can be developed in parallel and integration testing

can be performed at the bridges. Additionally, keeping the domains well encapsulated

and decoupled results in domains which are highly reusable (iUML Tutorial , 2003). The

iUML design process naturally encourages proper domain separation by first allowing

designers to create a domain model, and then forcing them to consider every

interaction between domains when sequence diagrams are created (Luz, Not Dated).

 7

Figure 2: A use case model for a system.

Use case diagrams (Figure 2) and sequence diagrams (Figure 3) are components of the

projects tree portion of iUML, they are not translated into executable code. Instead,

these diagrams provide more exact specification of the system being developed. The

use case diagram specifies what users will need to do with a system, from a black box

perspective. The diagram is composed of actors, use cases, and communications which

tie an actor to one or more use cases.

 8

Figure 3: A Sequence diagram for one use case of a model.

Sequence diagrams (Figure 3) are used to describe the interactions between domains.

Creating this diagram prior to development of the domains portion of the project helps

to ensure that domains are correctly partitioned. This diagram is intended to be a tool

and a reference when developing the rest of the model. Additionally, the sequence

diagram can be a useful tool when planning integration testing.

The domains tree contains class diagrams, class collaboration diagrams, and state

machines. The domains tree is the portion of the program which is compiled to create

the executable model. The work in this thesis focuses on the domains portion of iUML.

 9

Figure 4: Class Collaboration Diagram

As shown in Figure 4, the class collaboration diagram shows the operation calls and

signals that are sent between the classes. Operation calls are solid arrows, signals are

outlined arrows. There are both classes and state machines on the class collaboration

diagram. For each state machine in the diagram there is also a state machine diagram

as shown in Figure 5.

 10

Figure 5: A State Machine from iUML

ASL code is embedded within the diagrams in many different places. Unlike a traditional

program, code is not limited to being within operations. Within the model ASL code can

be inserted into the bodies of operations, but ASL code can also be inserted into the

states of State Machines, dedicated “exception code” areas throughout the model, and

other places.

Inline sections of native code can be inserted within ASL. These sections of native code

are just as powerful as they would be in a traditional program that is implemented in

that language. This is a potential weakness of iUML, since the potential exists for

 11

developers to abuse the inline code to circumvent the restrictions and complex

development of iUML. There is limited ability for data to be transferred between the

ASL and inline code; generally only basic, language-standard types can be moved

between ASL and inline code.

The Class diagram in iUML (Figure 6) has more in common with a diagram of database

tables and foreign key mappings than it does with a traditional UML diagram. This is

because the backend of iUML is in fact a database. Composition relationships between

classes are not permitted in iUML (it is impossible for an attribute of one class to be an

instance of another class). Instead, associations are used to connect classes and queries

similar to SQL are used to find related instances.

 12

Figure 6: A Class Diagram in iUML

Although it is not documented in any of the iUML user guides, some translation may be

necessary to convert values between inline native language code and ASL. This may

have been a roadblock encountered during development of Orion. Kennedy Carter

provides a code generator to convert the model to native code, but the generator often

does not support all of the features of the native language (Hoffman, 2008).

Kennedy Carter’s intent was for the Modeller interface to be more intuitive and provide

a better understanding of an overall system than traditional code. Several syntax

features, such as allowing spaces within operation names, help iUML to be more

appealing to non-programmers. In theory, someone with minimal programming and

 13

software engineering experience should be able to design a system simply by creating

and connecting the diagrams.

The iUML Simulator allows users to run the PIM and provides functionality to observe

the model as it runs. The simulator has some of the same debugging options as normal

IDEs (break points, step over, etc). Additionally, the simulator allows monitoring of the

instances of classes and tracing of state machines. These functions aid greatly in testing.

 14

CHAPTER 2 METHODS AND TEST SETUP

2.1 Original Program Testing

In Autumn of 2006 Dr. Henry’s Software Quality Assurance class was given the source

code for a program written in C++ and instructed to perform Unit, Integration and

System testing on the code. For each of the three types of testing the class documented

the time it took them to write and execute the tests.

The source code which the SQA class performed testing on, “HeapContacts,” was a

relatively simple program consisting of 12 classes and approximately 3100 lines of code

(much of it comments). HeapContacts provided users with a series of command-line

menus, from which they could choose to create lists of contacts which were sorted

using different criteria. Users could create a new list, add a contact to the list, search for

a contact, print all contacts, delete a contact, empty the list, read in contacts from a file,

or delete the list. The program demonstrated several object oriented concepts: it

utilized two inheritance hierarchies and relied heavily on polymorphism.

2.2 Creating the iUML Model

In order to evaluate testing on an iUML system, a model was created in iUML which was

nearly identical to the program tested by the SQA class. This model was subjected to

the same tests as the original C++ code, and the same metrics were gathered.

 15

The model was kept as simple as possible while maintaining equivalence with the

original program. While the iUML system uses 6 types of diagrams to completely define

every aspect of a program, only 3 diagrams are necessary for implementation and code

generation; the other diagrams exist for requirements specification and configuration

management purposes. Only the Class Diagram, Class Collaboration Diagram, and State

Machine Diagram are used to create the iUML PIM implementation of the HeapContacts

program.

 16

Figure 7: UML Diagram of the original HeapContact implementation in C++

Figure 7 shows the class diagram from the original HeapContact program. Several

language-specific features which are impossible to reproduce in iUML can be seen:

extensive use of composition (solid black diamonds), generics (within the ElementType

and Heap classes), and inheritance hierarchies (triangles).

 17

Figure 8: UML Diagram of the HeapContact implementation in iUML

Figure 8 shows the implementation of HeapContact within iUML. This implementation

is clearly different from the one in figure 7, but from a black box perspective the

programs are identical. The implementations were kept as similar as language

differences would allow. The triangles in the diagram (relationships R7 and R4)

represent generalization, as opposed to inheritance as shown in Figure 7. According to

Wilkie [2003], the difference between traditional inheritance and generalization is:

“UML defines generalization simply as a taxonomic relationship between elements…

Inheritance is an implementation mechanism that operates on the generalization

hierarchy.” In a generalization relationship, the “child” classes do not inherit the

attributes of their parents, instead there is a relationship between a child and a parent,

and both are necessary in order to provide the attributes and operations of each. This is

 18

one example of a significant language difference that resulted in a difference in the

iUML implementation of HeapContact. Other differences and changes are explained in

Section 2.3 below.

2.3 Basis for comparison/effort to keep models comparable

The iUML HeapContact model was kept as similar as possible to the original design.

However, minor changes were necessary due to the original program’s use of C++

specific features and the limitations of iUML. All changes from the original design are

detailed here.

One of these factors which dictated changes from the original program design was

restrictions encountered within the iUMLite tool, the free version of iUML which was

used for this thesis. Several of these free version restrictions were encountered during

development of the model and had to be worked around. The main restrictions which

hampered development of the model were that models may contain no more than 10

attributes per class and 8 operations per class. The impact of iUMLite restrictions on

this work was that the design needed to be reengineered to have fewer attributes and

operations in some classes; this generally meant combining two or more operations

together. A complete listing of the restrictions on the free version of iUML can be found

in the appendix.

 19

2.3.1 The Logic Class

Logic is a class which is intended to implement the business rules portion of the

program. By definition, business rules define the application specific interactions

between the classes in an object-oriented design. In a properly designed system with

minimal coupling (which is what this example program strives for), most of the

“integration” portion of a program should be contained within the business rules

portion of the program –in this case, the logic class.

Logic in original HeapContact Equivalent in iUML Model Explanation

Logic() Model Initialization Segment iUML does not have constructors.

Instead, this code can either be

placed within the model

initialization segment (equivalent to

a main method in traditional

programming), or within an

initialization segment in the state

chart.

PerformMainMenuOption Logic State Chart Integration code is better suited to

the state chart than operations.

PerformSubMenuOption Logic State Chart Same as above.

GetHeapType Logic State Chart Same as above.

CreateHeap Logic State Chart Same as above.

ShowHeaps Logic State Chart Same as above.

FindItemInHeap Logic State Chart Same as above.

The fact that the iUML version of Logic accomplishes the same tasks as the methods in

the C++ Logic implementation, but without the use of any operations, speaks to the

capacity of the model to contain operation code in one portion of the model, and

integration code in an entirely different portion of the model. This can correctly be

viewed as taking encapsulation to a new level.

 20

The implications for testing a system that is designed this way are significant. A

developer could easily adopt the standard that most operations must be suitable for

unit testing, and integration code must be put within the state charts or initialization

segments. The advantage of such a standard is that testers could proceed from the

assumption that most operations can be unit tested, unlike the original system, in which

none of logic’s methods can be unit tested, since they all include integration code.

2.3.2 The UI Class

Minimal changes were needed to the structure of the UI class.

UI Equivalent in iUML Model Explanation

ShowMainMenu() Show Main Menu() No Change.

ShowSubMenu() Show Sub Menu() No Change.

GetMenuChoice() NA Included in other menu operations to

reduce coupling.

HeapTypeSelection() Show Heap Type Menu() No Change.

HeapCriteriaOptions() Show Criteria Type Menu() No Change.

PrintError() Show Invalid Input() No Change.

Print() Print() No Change.

PrintInteger() Print Integer() No Change.

GetUnique() NA Implemented within Heap.find() because

the 8 operations per class limit in iUML

was exceeded.

 2.3.3 The Heap Class

Significant changes to the Heap class were necessary when the model was recreated in

iUML. The original implementation of this class leveraged a number of language

features in C++ which were impossible to reproduce in iUML. Among these language

 21

features were the use of generics and arrays. However, the iUML implementation also

utilized a number of features which are unique to xUML (SQL queries, default values).

The result was two implementations which did not necessarily have direct connections

between them, but which were of comparable complexity. Even where methods

accomplished roughly the same task, implementation was radically different. This is to

be expected when using such different solution approaches and significantly different

tools.

Heap Equivalent in iUML Model Explanation

Constructors() NA Replaced with default values in iUML

Heapify() InsertIntoHeap() No Change.

Parent() NA Replaced with SQL Query

Left() NA Replaced with Stack Operations

Right() NA Replaced with Stack Operations

Delete() Delete() No Change.

DeleteAtIndex() NA Replaced with SQL Query

Empty() Empty() No Change.

Find() Find() No Change.

Add() Add() No Change.

Print() Print() No Change.

PrintAll() PrintAll() No Change.

PrintHeapType() PrintHeapType() No Change.

GetHeapType() NA Not necessary since generics weren’t

used.

NA ReadFromFile() Originally implemented within

IO.ReadFromFile, iUML implementation

does not have an IO class due to lack of

arrays.

Due to difficulties with ASL and embedded C code in the iUML model, some heap

operations proved impossible to reproduce. For example, the math.h C library could not

be imported, which was necessary for math.floor() and modf() –operations necessary

for typical array-based heap implementation (where the location of the parent node is

given by: Floor((currentNodeIndex – 1) / 2). The link-list-based implementation of a

 22

heap also could not be implemented due to difficulties with the algorithm needed to

find the next empty spot at the base of the heap. Consequently, a stack data structure

was implemented instead of the heap. While this did simplify the model somewhat, the

differences were minimal (from a testing perspective) since the only methods that were

eliminated (left and right), were very small.

Extreme difficulties with file input/output operations in C code embedded within ASL

prevented file interactions from being implemented as they were in the original

program. Instead, test file contents were hard-coded into the program. Additionally,

limitations of ASL (lack of arrays), prevented this code from being implemented

somewhere other than within the heap class; the FileIO class was consequently not

implemented in iUML. Again, the focus was to reproduce the C++ program where

possible but more importantly meet the same functional requirements with both

programs (C++ and iUMLite).

2.3.4 The Contact Class

Changes to the Contact class were mostly minor and stemmed from language

differences. Some extra operations were included in the iUML version in order to

decrease coupling due to differences in how inheritance/generalization are supported in

iUML.

 23

Contact Equivalent in iUML Model Explanation

Read() Read() No change.

Read(String) ReadFromFile() There is no overloading in ASL

Write() Write() No change.

GetName() NA There are no private attributes in iUML, making getters

unnecessary.

GetAddress() NA Same as above.

GetPhone() NA Same as above.

NA Delete There is no inheritance in iUML, only generalization, which

makes this operation necessary.

NA CreateChild The lack of inheritance in iUML means that locating this

operation here greatly reduces coupling.

2.3.5 The CriteriaMapper Class

The CriteriaMapper class is essentially the same, with some minor changes to reduce

coupling.

CriteriaMapper Equivalent in iUML Model Explanation

Map() Map() No change.

NA PrintCriteriaType() Used in conjunction with Heap.PrintHeapType to reduce

coupling.

NA CreateChild() Used to reduce coupling.

2.4 Final Comparison of Models

After development of the iUML model was complete and the necessary changes from

the original design were implemented, the resulting iUML model was of roughly

equivalent complexity to the original C++ version of HeapContact: the original C++

implementation contained 43 methods in 14 classes while the iUML implementation

contained 39 operations and 5 states in 11 classes. Changes to the level of coupling

meant that a smaller portion of the program would be appropriate for unit testing, and

 24

a larger portion of the program would need to be integration tested. This is detailed in

Chapter 4.

 25

CHAPTER 3 MDA IMPLEMENTATION FINDINGS

While this thesis was primarily focused on the processes and effort involved in testing

xUML via iUMLite, an enormous amount of time was spent developing the model before

it could be tested. The lengthy implementation process revealed many strengths and

weaknesses in iUML. The weaknesses listed below were mostly unexpected and in

some cases radically delayed implementation of the model. Some of these weaknesses

were cases of iUMLite errors, which indicates that the iUML system may not be fully

mature.

3.1 Strengths

Throughout the development process the configuration management features of iUML

were apparent. Developers must check out the portions of the program they wish to

work on, and must check those portions back in with a description of changes when

they’re done.

The task of developing the diagrams, which must be logically connected, naturally

results in a more well-thought-out design process for the system. The iUML process

makes it impossible for developers to bypass the design stage and begin coding. No

code can be written until at least some part of a model is completed.

 26

3.2 Weaknesses

Operation calls in ASL require both the name and number of an operation (UML ASL

Reference Guide, 2003). This means that a small change in a diagram can necessitate

sweeping changes in the ASL. This problem is made worse by the fact that ASL code can

be inserted in so many different places throughout the model, making it difficult to find

the areas that are impacted.

There were numerous user interface quirks throughout iUML which made using the

program extremely frustrating. Call operations are auto-detected and easily

synchronized between the collaboration diagram and the class diagram. However,

there is no facility for dropping a call operation into ASL, which should be easy (and is in

other IDEs). Instead, it is necessary to manually check the call operation invocation

number and key letters, then return to the ASL code and type in the lengthy call

statement. Consequently, developers must constantly switch between diagrams, an

operation which should be quick and simple but is not.

The ASL development environment is not user friendly (it is just an area to type text

into). There is no auto-detect of any kind and any syntax errors are not found until

compile time. Use of external code editors is supported, but was found to be buggy.

iUMLite code does not support any ASL math operations (addition, subtraction, floor,

etc). This differs from other languages which serve similar purposes, such as IBM’s OCL

which does provide math operations and is also designed to be embedded within UML

 27

in an MDA project [Catalog of OMG Modeling and Metadata Specifications, 2008]. This

extreme limitation of ASL forces INL code to have a greater role in the project, since it

becomes the only way to implement much of the functionality.

ASL error messages are often cryptic, and the line numbers where errors are claimed to

be are never correct because lines are offset by auto-generated code. The amount of

auto-generated code is not consistent, so compensating for the offset does not help.

Inheritance is not supported, only generalization (iUML Tutorial, 2003). For example, an

object cannot be passed to an operation as its base type. Despite this limitation,

Polymorphism is supported through some auto-generated code, but implementation is

significantly different from traditional coding and must be carefully managed to prevent

excessive coupling. Several other common programming practices are also not

supported in iUML, including overloaded operators and typecasting.

A number of obvious bugs were found in the iUML environment, they are documented

in the appendix.

3.3 Implementation Results

The model used here is not especially complicated. The 14 classes in the original system

likely would have taken less than 3 hours to develop using C++, C#, Java, or another

modern object oriented language. Implementation of this model in iUML took an

 28

estimated 350+ hours, a testament to the steep learning curve and difficulties in using

iUML.

While iUML attempts to allow non-programmers to design the majority of the system

without ever needing to write any code, it is far too complicated for inexperienced

developers to work with. If anything, the complexity of iUML requires even more

software engineering experience than traditional software design.

According to Hoffman [2008], Lockheed Martin halted the use of iUML as the

development tool for NASA’s Orion project in August of 2008 and the project began

using another tool instead. The specific reasons cited for the switch were difficulties

with inter-domain modeling and problems with the C++ code generator, although an

extensive list of problems was cited. The team had started training on iUML in February

2008, so this tool change came after a significant investment had been made in iUML.

Having invested so heavily in iUML, Lockheed Martin would only switch to another tool

if they believed that it would be more expensive to fix the many problems with iUML

than it would be to discard 7 months of work and start over. The benefits of using iUML

were significant enough to entice Lockheed to make the initial decision to chose iUML as

a development tool, but after development started Lockheed reached the conclusion

that iUML was simply not mature enough to be used for their project.

 29

After completing the model for this thesis a conclusion similar to Lockheed’s was

reached. In order for this relatively simple model to be completed it was necessary to

constantly work around bugs and limitations in the ASL code. Bugs in the interface and

the fact that the interface was generally very difficult to use made the problems even

more frustrating. The iUML system has excellent goals and great potential, but the

software itself behaves like an alpha release and seems to be missing many obvious

features.

 30

CHAPTER 4 TESTING THE MODEL

In addition to allowing placement of code within diagrams, iUML provides for the

creation of test methods and test method sets within their own forms (located within

the domains portion of the modeler). These test forms were used exclusively for unit

and system testing.

While simulating a model, iUML has a feature which allows testers to monitor the

instances of objects. This display reflects the database implementation of the backend

of iUML; instances are shown each on one row of a table, with an attribute in each

column. Additional columns indicate whether the instances are linked to other object

instances in an association relationship. The instance monitoring software is

considerably easier to use and more detailed than equivalents in some Integrated

Development Environments (i.e. Visual Studio, NetBeans). This feature was used heavily

for both unit and integration testing of the HeapContact program to check values as the

test scripts progressed.

Having test scripts rely on the instance monitoring feature for output was convenient

and reduced the amount of time needed to write tests, since it was not necessary to

write output code. Reducing the time needed to write tests may make earlier, more

thorough, and more frequent testing easier in iUML. It should be noted that this will not

help fully automated tests, but automated testing was not possible either for this

implementation of the HeapContact program or the original C++ implementation, due to

 31

the amount of user input required and the poor degree of encapsulation of that user

input.

Use of instance monitoring within test scripts was not only convenient; to a certain

extent it was necessary. ASL is incapable of outputting values to the user, which means

the only other means of outputting values from test cases would have been the heavy

use of inline native language code. If native language code was used for this purpose it

would not only be extremely time consuming (writing inline NLC and moving values

between the ASL and NLC is difficult), it would also break the test scripts if the model

switched to a different native language.

The iUML Simulator has a very interesting feature called Record/Playback. This feature

allows a tester to record all interactions with the simulator, including command-line

input, to a .rec file (essentially a script). Later, the tester can choose to playback the

script and every action the tester took previously will be repeated exactly. This feature

has the potential to be very beneficial for testing. Test plans often have tests which

must be run hundreds of times with slightly different values or combinations of values

each time; at the end of these tests the resulting values must be checked against

expected values. Other tests only need to be run a few times and are designed to test

some unique conditions or paths of execution, where a resulting value is not important.

For these unique tests, the record/playback feature could be used to create tests

 32

without ever needing to write a line of code. For these tests, an error during playback

will indicate a failure of the test.

The record/playback and instance monitoring tools are both useful, but if these features

could be combined and some small modifications included, they could potentially

radically decrease the time required to test a system. In order for these features to be

useful when used in concert, a logging feature would need to be included and the

simulator would need a “log instances” control. With these modifications, it would be

possible for a tester to begin recording a test, then walk through the path of the test

and log the instance values when needed. This single test could then be modified by a

relatively simple script which could go through the recording and change the test values.

This would allow creation of tests with any number of combinations of values, without

writing a single line of code. This approach could be useful for many different types of

testing, with the possible exception of tests that attempt to provide statement, path, or

decision coverage, since the time required for a tester to walk through these

combinations would likely be much longer than the time required to code the tests.

4.1 Unit Testing

Unit testing on a class within an iUML model can commence as soon as the class is

defined in the class diagram and the ASL for the operations within the class is written. A

 33

test method can instantiate that class and test implemented operations without

needing to create the link relationships to other classes. Consequently, the use of iUML

for development should not impact the placement of unit testing within a development

plan.

Due to a slightly higher degree of coupling in the iUML implementation (which could

utilize neither generics nor typecasting), a smaller number of methods in the

HeapContact model were appropriate for unit testing than in the original C++

implementation. This likely reduced testing time somewhat. Three classes were unit

tested in the iUML implementation, while 6 classes were tested by the SQA class.

However, the additional 3 classes were all nearly identical (being in the same

inheritance hierarchy) and had only one method each, so the additional effort to test

these classes would be minimal.

The format of iUML compliments unit testing. Much of the code which is “integration”

in nature tends to be within the “states” of state machines; other code, which is more

stand-alone and suited to unit testing, is in the operations, making it easier to test.

Thus, if the program is logically created, unit-testers should be able to test a greater

percentage of operations than they would normally (assuming that placing code within

state machines eliminates the need for some operations).

 34

Unit tests were organized with one test method per class and sorted into a “Unit Tests”

test method set. Comments were inserted into the script to indicate to testers the

places where they should check the instance monitor with the simulator.

It took 120 minutes to write the test scripts and code and 20 minutes to perform the

tests.

4.2 Integration Testing

Integration testing on iUML must test not only code within operations, but also code

located within state machines. Integration testing on groups of classes can begin as

soon as the classes are implemented and connected by relationships. Testing the state

machine is somewhat more complicated. Integration testing of the state machine

cannot begin until the state machine diagram is complete and portions of the class

diagram and class collaboration diagram are complete.

The HeapContact program is fairly small and consequently the entire program is located

within a single domain. In more complex systems, sets of domains must be tested

together to verify that bridge mappings are working (Raistrick et al., 2004).

Consequently, larger systems may incur an additional testing cost beyond what is

demonstrated in testing the HeapContact program.

 35

A large portion of the code which was integration tested was code within the logic state

machine of the model, as opposed to code within the operations of classes. In order to

test the state machine code it was necessary to create an instance of logic and then

initialize it to a certain state and send it a signal to begin its process for that state. From

the time the signal is sent, the state will continue running asynchronously –unlike a

function call, state machine execution will not return to the test function which made

the call/sent the signal. This may have adverse effects for testing, since everything the

test script needs to do or analyze must be accomplished before the signal is sent to the

state machine. This had no effect on testing for the Heap Contact model, but may affect

larger systems since after a test method (which tests state machine code) begins,

execution cannot return to the test method, making it difficult to capture results and

detect test completion.

In large systems, integration tests will need to be located at the bridges which connect

the domains. As soon as state machines within a domain have completed, execution

will return to the test method at the bridge. It will still not be possible to easily test sub-

portions of domains. This can potentially delay integration testing on some portions of

systems, but additionally, this places a great deal of importance on the design of the

domains. It will be difficult to break a domain up and perform integration tests on

portions of the domain if some of the code is located within state machines. Integration

testing will be easiest if the domains reflect exactly the modules which should be

integration tested.

 36

For integration testing the HeapContact program was divided into logical modules based

on dependencies of classes. Integration tests were created with one test method per

module. It took 5 hours to write the test scripts and code, 30 minutes to perform the

tests, and 30 minutes to document the results.

4.3 Testing the Platform Specific Model

No actual testing of the Platform Specific Model could be performed because iUMLite,

the free version of iUML, does not support compiling the model into a PSM. However,

work with the PIM revealed some details regarding testing of the PSM.

One interesting byproduct of iUML’s ability to convert a platform independent model

into a platform specific model is that the test scripts can also be converted. After the

model is converted to a native language, the test scripts will also be in native language –

and will still work. This ability was recognized during the development of the

Independent Verification and Validation (IV&V) plan for Orion. According to Henry

[2007], the Orion testing plan required testing of the system with the same test

methods on both the PIM and the PSM.

After the test scripts are converted to native code it will no longer be possible to run the

test scripts within the iUML simulator, which means that instance monitoring and other

 37

features of the simulator will no longer be usable. At this point any scripts that rely on

instance monitoring will need to be reworked with native language code in order to

check values. However, despite this rework, it should still be worthwhile to utilize

instance monitoring in PIM tests (rather than inline NLC) for a number of reasons.

1) Instance monitoring takes no effort to incorporate. This feature is fully

incorporated in the simulator, it is not necessary for a developer to write any

code to take advantage of it.

2) It would take more work to incorporate NLC before the transition to PSM than it

would after the transition to PSM. The reason for this is that after the transition

to PSM no translation would be necessary between ASL and NLC. Additionally,

inline tags would not be necessary and include statements would be simpler

after the transition to PSM (include statements for inline NLC require additional

special tags).

4.4 System Testing

The System Testing of the original C++ HeapContact code was traditional black box

system testing. The SQA class wrote test scripts and then ran the program and manually

walked through the tests. Automating these tests would not have been possible due to

the amount of user input required by the program, and the relatively poor

encapsulation of the user interface code.

 38

From a black box perspective, the iUML Heap Contact program is identical to the C++

program. Consequently, black box system testing would have yielded identical results

to testing of the C++ program. Rather than take this trivial approach, iUML’s potential

for more unusual system testing approaches was explored.

An interesting approach to system testing iUML is to create an entire model dedicated

to testing (Henry, 2007). This model could have modules for generating test values and

computing expected results, as well as other modules for storing the data and

outputting test results. The testing model would interface with the model that is being

tested through the bridges. These bridges could be used to pass values in to the model

and then check the results that come back before passing values on to the next domain.

This would provide system testing with no need to make changes to the model that is

being tested.

The main advantage of a testing model in iUML is the potential for reuse. This model

could potentially be adapted to work on many programs. Many of the classes and

domains within the testing model would require rework to adapt the model for another

program, but a large portion of the rework would be just data entry (as in the test data

and expected values domains shown below). The most significant rework required

would be in the bridge terminators which interface the testing model with the system

that is being tested.

 39

Figure 9: A potentially reusable testing model (modified from Henry [2008]).

The effort to develop a testing model such as this would be large, almost certainly much

larger than development of traditional automated system testing. However, the

potential for reuse of this testing model means that the model may take less time in the

long run; once the initial investment is made and the model is completed, only the

bridges and expected values should need to be changed.

We can even envision that it might be possible with iUML for a company to provide “off

the shelf” testing models. A developer could simply pick a testing model that

approximately serves their needs, purchase it, and make modifications to it, rather than

needing to develop it in-house. Similar approaches are already common in industry, a

 40

company might buy a license for a physics engine, graphics library, or other code

module and then incorporate that module into their product. This approach is

becoming more and more common, so obviously it is cost effective. With the use of

iUML, it may be possible to bring that same “off the shelf” approach to testing.

Development of a complete testing model as shown above is beyond the scope of this

thesis. Instead, just the bridges on the test model side were developed and made to

interact with bridges from the original program. In order to accommodate this, the

HeapContact program (which originally had no bridges) was modified. The UI was

separated from the rest of the model and put in its own domain. This was a logical way

to break up the program and promote testing, since it isolated most of the code

requiring input from the user.

Although the use of bridges is supported in the free version of iUML, the iUML

documentation does not provide complete information on how to implement bridges.

Consequently, the bridges implemented here are believed to be correct, but the

program could not be run successfully with bridges in place.

The association terminators shown below form the bridge. This diagram shows how the

signals are translated from one side of the bridge to the other.

 41

Figure 10: The modified HeapContact program with a bridge between logic and UI.

We cannot directly compare the time to create the testing bridges with the time to

system test the C++ program, but this does give us an idea of the time it would take to

adapt a testing model to one specific program. Other changes that would be needed in

the model are changes to the values generator and checker.

It took 50 minutes to implement the bridges for system testing of the model. Again,

this represents only a portion of the rework needed to adapt a testing model to a

program.

The IV&V testing plan for the Orion project included plans to create a testing model like

the one shown above. Henry [2007] identified a number of advantages for creating a

testing model for the Orion project. The main advantages are:

 42

1. Testing domains are created and executed with the xUML environment

eliminating all differences between testing and application environments.

2. Testing domains use the same constructs and are subject to the same constraints

and consistencies as the application domains.

3. Testing domains do not change the application domains in any way.

4. Testing approaches and methods can be added, extended, or modified in any

way as they are independent, and insulated within domains.

5. Testing domains can be translated to Platform Specific Models and testing can

be performed on the translated application domains using exactly the same

translation methods on both types of domains.

6. Testing domains can be created over time as a library of testing approaches.

Bridges can be reused as-is in some cases, with minor modifications in other

cases, and made application specific where unique and critical application

domain testing is needed.

7. Testing domains can be created in parallel with application domains, making

them available as soon as possible during development.

 43

CHAPTER 5 RESULTS

5.1 Results

Metrics for testing of the original C++ program were taken from 2 graduate students.

Their results were very similar and were averaged to provide the numbers below.

Unit Testing Average C++ Testing iUML Testing

Creating Tests 113 120

Running Tests 72 20

Total 185 minutes 140 minutes

Integration Testing Average C++ Testing iUML Testing

Creating Tests 200 300

Running Tests 168 30

Total 368 minutes 330 minutes

System Testing Average C++ Testing iUML Testing

Creating Tests 98 50 (bridges only)

Running Tests 76 Na

Total 174 minutes Na

5.2 Conclusions

Despite the complexities of working with iUML models, testing took less time in the

iUML model than in the C++ implementation. Both unit and integration testing took

moderately less time in iUML, possibly due to minor simplifications in the model,

additional tools available for testing with iUML, or differences in the developers doing

 44

the testing. What this research shows is that the extreme complications of iUML are

primarily in the design phase of a project, testing in iUML need not be more complicated

or time consuming than in a traditional software project.

With regard to an adaptable testing model, it took about one-half as long to create

bridges for system testing in iUML as it did to create complete system tests in C++. The

bridges are where the most significant rework is necessary to adapt the testing model to

work on a new program (the other work is mainly data entry), so these results imply

that the adaptable testing model would be cost-effective in the long term. The

HeapContact program was simple enough that determining test values and expected

results were not difficult. More complicated programs, which require thousands of test

values and combinations of test values, should see even more benefit from the use of

the reusable testing model, since it provides the structure to support these tests.

From an implementation standpoint, placement of unit testing within a development

schedule should not be affected by the use of MDA, and the dependency on complete

class collaboration diagrams should push back integration testing only slightly in the

development plan. However, it is important to note that before the implementation

phase of the project can even begin (creation of the class, class collaboration, and state

machine diagrams), the design phase should first be finished (creation of the domain

model, use cases, and sequence diagrams). The extremely lengthy and detailed iUML

design process was skipped during development of the HeapContact model, but there’s

 45

no doubt that it would have added an enormous amount of time to the project. The

time required to complete this design process, and the fact that it is a prerequisite to

implementation in iUML, would significantly push back testing.

Unit and integration testing of the iUML system was accelerated by the integrated

testing tools within iUML. While these tools were very helpful, some small

improvements could make them tremendously helpful and allow testing time to be

radically reduced. This is an example of the tremendous potential of the MDA

approach, which is only partially realized in the iUML implementation.

Testing of an iUML system does bring complications of its own, and may give designers

less flexibility when creating a system. In particular, it proved extremely difficult to

perform integration testing on large domains with a high dependency of state machines.

This makes it even more imperative that iUML models be well designed and domains

not be inappropriately large.

A decision to use iUML for a large project will result in radically more time being

required for design and implementation. However, testing of the system should not

take longer than it would in a traditional development process, and if a reusable system

testing model is already available, testing may take considerably less time in iUML.

Future improvements in iUML may even result in a radical reduction in the time

required for testing.

 46

5.3 Future Directions

This thesis explored the implications of unit and integration testing in iUML and arrived

at some conclusions that will hopefully be useful to teams evaluating whether or not to

use iUML in the future. Some remaining unknowns with regard to testing iUML systems

are the full cost of developing a reusable testing model and the effectiveness of such a

model.

In order to fully evaluate such a model, it would need to be employed on a much larger

system than the one tested here. Ideally it would be a critical system with several

domains for which formal testing methods can be applied.

There is little doubt that development of such a testing model in iUML would take much

longer than creating test methods in a traditional programming language, so the crucial

question becomes “how reusable would the model be?” The completed testing model

would need to be adapted to test a different system, and the amount of work required

to adapt the testing model would need to be measured.

A reusable testing model, if effective, could be one of the greatest advantages of MDA,

and might help offset the cost of MDA development.

 47

BIBLIOGRAPHY
"Catalog of OMG Modeling and Metadata Specifications." Object Management Group.

OMG. 28 Oct. 2008

<http://www.omg.org/technology/documents/modeling_spec_catalog.htm#ocl>

"Customer Success." Intelligent Solutions for Model Driven Architecture. Kennedy

Carter. 28 Oct. 2008 <http://www.kc.com>.

Henry, Joel. "Verification and Validation in Model-Driven Development." 01 May 2008.

Henry, Joel, Michael Hieber, and Craig Schulenberg. ORION iV&V Approach, Procedures,

and Results. MRI Corporation. Version 2 ed. 2007.

Hoffman, Mark. "Orion SEPG CASE Tool Change." 28 Aug. 2008.

IUML Tutorial. Kennedy Carter. Manual Revision 2 ed. 2003.

IUML Modeller User Guide. Kennedy Carter. Revision 2 ed. 2003.

IUML Simulator User Guide. Kennedy Carter. Manual Revision 1 ed. 2003.

Lowry, Michael. "Intelligent Software Engineering Tools for NASA's Crew Exploration

Vehicle." Lecture Notes in Computer Science. NASA Ames Research Center, Moffett

Field, CA. SpringerLink. 10 May 2008. 28 Oct. 2008

< http://www.springerlink.com/content/91j236610552kgmv/ />.

Luz, Miguel P., and Alberto R. Silva. Executing UML Models. Tech.No. Instituto Superior

Técnico. Not Dated.

Mellor, Stephen J., and Steve Tockey. Software-Platform-Independant Precise Action

Specifications for UML. Tech.No. Project Technology Inc, Rockwell Collins Inc. Not Dated.

Raistrick, Chris, Paul Francis, and John Wright. Model Driven Architecture with

Executable UML. New York: Cambridge UP, 2004.

Wilkie, Ian, Adrian King, Mike Clarke, Chas Weaver, Chris Raistrick, and Paul Francis.

UML ASL Reference Guide. Kennedy Carter. Manual Revision D. Kennedy Carter, 2003.

 48

APPENDIX

Appendix A – Additional Bugs found in iUML

• Floating point values cannot be moved from within NLC to the ASL, this should

be supported but causes the program to crash.

• It is impossible for the user to change the numbers assigned to the states in the

state machine.

• Program sometimes inexplicably does not run, or will not allow user to step

through while checking values. This problem is erratic –it works sometimes and

not others, with no changes in-between.

• Transferring any values from NLC to ASL can cause issues, sometimes there will

not be issues in immediate ASL operation, but there will be problems when the

values are passed or returned to other ASL operations. The most common

problem in these cases is that the value passed will be null or zero. This implies a

problem with addressing values in ASL/NLC.

Appendix B - Restrictions on iUMLite

(From “iUML – Read Me First!” document):

• 5 Domains per database

• 3 Versions per Domain

• 15 Classes per Domain version

• 40 Classes in total per database

• 15 States per state model

• 10 Attributes per class

• 8 Operations per class

• 2 Projects per database

• 3 Versions per project

• 10 Use Case diagrams per database

• 5 Use Cases per database

• 5 Actors per database

• 10 Sequence Diagrams per database

• 100 Interactions per database

Appendix C – Test Cases

 49

Unit Test Cases

Class Name Function Name Test Type Result Severity Proposed Solution

Employee

Write Call function,

Check result

Pass NA NA

ReadFromFile Input values /

Check result

Pass NA NA

Read Input values /

Check result

Pass NA NA

Delete Call function,

Check result

Pass NA NA

Customer

Write Call function,

Check result

Pass NA NA

ReadFromFile Input values /

Check result

Pass NA NA

Read Input values /

Check result

Pass NA NA

Delete Call function,

Check result

Pass NA NA

Shipper

Write Call function,

Check result

Pass NA NA

ReadFromFile Input values /

Check result

Pass NA NA

Read Input values /

Check result

Pass NA NA

Delete Call function,

Check result

Pass NA NA

Integration Test Cases
Module Class Function Test Result Reason

Criteria/Contact

NameMapper Map Send in Contact object, check

return value

Pass

AddressMapper Map Send in Contact object, check

return value

Pass

PhoneMapper Map Send2 in Contact object, check

return value

Pass

Criteria/Heap Heap PrintHeapType Call function, verify that heap

type and criteria type are both

printed.

Pass

Heap/Contact

Heap Find Call function, input contact

name, check that contact info

is written out.

Pass

Heap Delete Call function, input contact

name, verify that contact

instance is deleted.

Pass

Heap Empty Call function, verify that all

contact instances for that

heap are deleted and all their

child classes are deleted.

Pass

Heap ReadFromFile Call function, verify that

contact instances and contact

child instances are created for

that heap

Pass

Heap/Contact/Criteria

Heap Add Call function, input contact

info, check that contact is

created and within heap

Pass

Heap InsertIntoHeap Call add function, input

contact info. Check resulting

ArrayPosition property value

to verify that it is correct.

Pass

 50

Heap PrintAll Call function, check output

against listing of instances of

contacts for that heap. Verify

that contacts are printed in

the same order as their

arrayPosition values.

Pass

Logic/Heap/UI

Logic

State Machine

Set state to Create New Heap.

Input null, alpha, too large a

number, too small a number,

then valid number. Verify that

heap was created. Verify that

state advanced.

Fail Program assumes

an integer will be

input. It can

handle an illegal

integer, but not

nulls and chars.

Logic/Criteria/UI

Logic

State Machine

Set state to User Entered Valid

Heap. Input null, alpha, too

large a number, too small a

number, then valid number.

Verify that criteria instance

was created. Verify that state

advanced.

Fail Program assumes

an integer will be

input. It can

handle an illegal

integer, but not

nulls and chars.

Logic/UI

Logic

State Machine

Set state to Start Program.

Input null, alpha, too large a

number, too small a number,

then valid number. Verify that

state advanced.

Fail Program assumes

an integer will be

input. It can

handle an illegal

integer, but not

nulls and chars.

Appendix D – C++HeapContact Code

Logic Class

//-------------------------Logic.h-----------------------------

// James Fishbaugh CS 441-01

// 10/11/2005

// Last Modified: 10/11/05

//---

// Purpose - This file contains variable definitions and

// function declarations for Logic.cpp.

//---

// If not defined, define

#ifndef INC_LOGIC_H

#define INC_LOGIC_H

// Include files

#include "ContactType.h"

#include "Heap.h"

// Constants

const static int MAX_HEAPS = 10;

class Logic

{ // Begin Logic

 private:

 // Member data

 Heap <ContactType *, char *> *ArrayOfHeaps[MAX_HEAPS];

 int NumberOfHeaps;

 // Private member functions

 int GetHeapType();

 51

 void CreateHeap(int HeapType);

 int ShowHeaps();

 int FindItemInHeap(int HeapIndex);

 public:

 // Default constructor

 Logic();

 // Member functions

 void PerformMainMenuOption(int MenuOption);

 void PerformSubMenuOption(int MenuOption, int HeapIndex);

}; // End Logic

#endif;

//-------------------------Logic.cpp---------------------------

// James Fishbaugh CS 441-01

// 10/11/2004

// Last Modified: 10/13/04

//---

// Purpose - Implements Logic class which defines all the

// logic and control for the other classes

//---

// Include files

#include <stdlib.h> // For exit

#include "Logic.h"

#include "UI.h"

#include "IO.h"

#include "Heap.h"

#include "CriteriaMapper.h"

#include "AddressMapper.h"

#include "NameMapper.h"

#include "PhoneMapper.h"

#include "ContactType.h"

#include "Employee.h"

#include "Customer.h"

#include "Shipper.h"

// Creates a global UI object

UI *ScreenOutput = new UI();

// Creates a global IO object

IO *FileIO = new IO();

//---------------------------Logic-----------------------------

// James Fishbaugh CS 441-01

// 10/11/2005

// Last Modified: 10/11/05

//---

// Calls to: n/a

// Called by: main

//---

// Arguments: void

//---

// Description: Default constructor for Logic

 52

//---

Logic::Logic()

{ // Begin Logic

 NumberOfHeaps = 0;

} // End Logic

//-------------------PerformMainMenuOption---------------------

// James Fishbaugh CS 441-01

// 10/11/2005

// Last Modified: 10/13/05

//---

// Calls to: Logic->GetHeapType()

// Logic->CreateHeap()

// Logic->ShowHeaps()

// Logic->PerformMainMenuOption()

// Logic->PerformSubMenuOption()

// UI->PrintError()

// UI->ShowSubMenu()

// UI->ShowMainMenu()

// UI->GetMenuChoice()

// Called by: Logic->PerformMainMenuOption()

// Logic->PerformSubMenuOption()

// Logic->CreateHeap()

// main()

//---

// Arguments: MenuOption - the menu option the user selected

//---

// Description: This function calls the appropriate function

// to perform the desired main menu option

//---

void Logic::PerformMainMenuOption(int MenuOption)

{ // Begin PerformMainMenuOption

 // The type of heap

 int HeapType = 0;

 // The users new menu choice

 int MenuChoice = 0;

 // What heap we are working with

 int HeapIndex = 0;

 switch (MenuOption)

 { // Begin switch

 // User wants to create a new heap

 case 1:

 // If the user has already the maximum allowed heaps

 if (NumberOfHeaps == MAX_HEAPS)

 { // Begin if

 ScreenOutput->PrintError(4);

 } // End if

 else

 { // Begin else

 HeapType = GetHeapType();

 CreateHeap(HeapType);

 } // End else

 break;

 // User wants to work with an existing heap

 53

 case 2:

 // Finds which heap they want to work with

 HeapIndex = ShowHeaps();

 // If HeapIndex = -1 there are no heaps created

 if (HeapIndex != -1)

 { // Begin if

 ScreenOutput->ShowSubMenu();

 MenuChoice = ScreenOutput->GetMenuChoice();

 PerformSubMenuOption(MenuChoice, HeapIndex);

 } // End if

 // Else there is at least one heap created

 else

 { // Begin else

 ScreenOutput->ShowMainMenu();

 MenuChoice = ScreenOutput->GetMenuChoice();

 PerformMainMenuOption(MenuChoice);

 } // End else

 break;

 // User wants to quit

 case 3:

 // Exits the program

 exit(0);

 break;

 // User entered an invalid number

 default:

 // Show the error message

 ScreenOutput->PrintError(1);

 // Show the main menu again

 ScreenOutput->ShowMainMenu();

 // Get the users choice

 MenuChoice = ScreenOutput->GetMenuChoice();

 // Call itself to perform the menu option

 PerformMainMenuOption(MenuChoice);

 break;

 } // End switch

} // End PerformMainMenuOption

//-------------------PerformSubMenuOption----------------------

// James Fishbaugh CS 441-01

// 10/11/2005

// Last Modified: 10/12/05

//---

// Calls to: Logic->GetHeapType()

// Logic->CreateHeap()

// Logic->ShowHeaps()

// Logic->PerformMainMenuOption()

// Logic->PerformSubMenuOption()

// Logic->FindItemInHeap()

// UI->Print()

// UI->PrintInteger()

// UI->PrintError()

 54

// UI->ShowSubMenu()

// UI->ShowMainMenu()

// UI->GetMenuChoice()

// Employee->Employee()

// Customer->Customer()

// Shipper->Shipper()

// ContactType->Read()

// ContactType->GetName()

// ContactType->GetAddress()

// ContactType->GetPhone()

// Heap->Add()

// Heap->Empty()

// Heap->DeleteAtIndex()

// Heap->Print()

// Heap->PrintAll()

// IO->ReadFromFile()

// Called by: Logic->PerformSubMenuOption()

// Logic->PerformMainMenuOption()

//---

// Arguments: MenuOption - the menu option the user selected

//---

// Description: This function calls the appropriate function

// to perform the desired sub menu option

//---

void Logic::PerformSubMenuOption(int MenuOption, int HeapIndex)

{ // Begin PerformSubMenuOption

 int MenuChoice = 0;

 int HeapType = 0;

 int FoundIndex = 0;

 int i;

 char ** Data;

 int NumberOfContacts = 0;

 switch (MenuOption)

 { // Begin switch

 // User wants to Add

 case 1:

 HeapType = ArrayOfHeaps[HeapIndex]->GetHeapType();

 // Add an Employee with Name criteria

 if (HeapType == 1)

 { // Begin if

 Employee * NewEmployee = new Employee;

 NewEmployee->Read();

 ArrayOfHeaps[HeapIndex]->

 Add((ContactType *) NewEmployee, NewEmployee->GetName());

 } // End if

 // Add an Employee with Address criteria

 else if (HeapType == 2)

 { // Begin else if

 Employee * NewEmployee = new Employee;

 NewEmployee->Read();

 ArrayOfHeaps[HeapIndex]->

 Add((ContactType *) NewEmployee, NewEmployee-

>GetAddress());

 } // End else if

 55

 // Add an Employee with Phone criteria

 else if (HeapType == 3)

 { // Begin else if

 Employee * NewEmployee = new Employee;

 NewEmployee->Read();

 ArrayOfHeaps[HeapIndex]->

 Add((ContactType *) NewEmployee, NewEmployee-

>GetPhone());

 } // End else if

 // Add a Customer with Name criteria

 else if (HeapType == 4)

 { // Begin else if

 Customer * NewCustomer = new Customer;

 NewCustomer->Read();

 ArrayOfHeaps[HeapIndex]->

 Add((ContactType *) NewCustomer, NewCustomer-

>GetName());

 } // End else if

 // Add a Customer with Address criteria

 else if (HeapType == 5)

 { // Begin else if

 Customer * NewCustomer = new Customer;

 NewCustomer->Read();

 ArrayOfHeaps[HeapIndex]->

 Add((ContactType *) NewCustomer, NewCustomer-

>GetAddress());

 } // End else if

 // Add a Customer with Phone criteria

 else if (HeapType == 6)

 { // Begin else if

 Customer * NewCustomer = new Customer;

 NewCustomer->Read();

 ArrayOfHeaps[HeapIndex]->

 Add((ContactType *) NewCustomer, NewCustomer-

>GetPhone());

 } // End else if

 // Add a Shipper with Name criteria

 else if (HeapType == 7)

 { // Begin else if

 Shipper * NewShipper = new Shipper;

 NewShipper->Read();

 ArrayOfHeaps[HeapIndex]->

 Add((ContactType *) NewShipper, NewShipper-

>GetName());

 } // End else if

 // Add a Shipper with Address criteria

 else if (HeapType == 8)

 56

 { // Begin else if

 Shipper * NewShipper = new Shipper;

 NewShipper->Read();

 ArrayOfHeaps[HeapIndex]->

 Add((ContactType *) NewShipper, NewShipper-

>GetAddress());

 } // End else if

 // Add a Shipper with Phone criteria

 else

 { // Begin else

 Shipper * NewShipper = new Shipper;

 NewShipper->Read();

 ArrayOfHeaps[HeapIndex]->

 Add((ContactType *) NewShipper, NewShipper-

>GetPhone());

 } // End else

 ScreenOutput->ShowSubMenu();

 MenuChoice = ScreenOutput->GetMenuChoice();

 PerformSubMenuOption(MenuChoice, HeapIndex);

 break;

 // User wants to Find

 case 2:

 FoundIndex = FindItemInHeap(HeapIndex);

 if (FoundIndex == -1)

 { // Begin if

 ScreenOutput->PrintError(3);

 } // End if

 else

 { // Begin else

 ArrayOfHeaps[HeapIndex]->Print(FoundIndex);

 } // End else

 ScreenOutput->ShowSubMenu();

 MenuChoice = ScreenOutput->GetMenuChoice();

 PerformSubMenuOption(MenuChoice, HeapIndex);

 break;

 // User wants to Print All

 case 3:

 // Print all the information in heap at HeapIndex

 ArrayOfHeaps[HeapIndex]->PrintAll();

 ScreenOutput->ShowSubMenu();

 MenuChoice = ScreenOutput->GetMenuChoice();

 PerformSubMenuOption(MenuChoice, HeapIndex);

 break;

 57

 // User wants to Delete

 case 4:

 FoundIndex = FindItemInHeap(HeapIndex);

 if (FoundIndex == -1)

 { // Begin if

 ScreenOutput->PrintError(3);

 } // End if

 else

 { // Begin else

 ArrayOfHeaps[HeapIndex]->DeleteAtIndex(FoundIndex);

 } // End else

 ScreenOutput->ShowSubMenu();

 MenuChoice = ScreenOutput->GetMenuChoice();

 PerformSubMenuOption(MenuChoice, HeapIndex);

 break;

 // User wants to Empty

 case 5:

 // Empty all the information in heap at HeapIndex

 ArrayOfHeaps[HeapIndex]->Empty();

 ScreenOutput->ShowSubMenu();

 MenuChoice = ScreenOutput->GetMenuChoice();

 PerformSubMenuOption(MenuChoice, HeapIndex);

 break;

 // User wants to Read

 case 6:

 Data = FileIO->ReadFromFile(NumberOfContacts);

 HeapType = ArrayOfHeaps[HeapIndex]->GetHeapType();

 // Calls appropriate functions in UI class to

 // print to the screen

 ScreenOutput->Print("\n");

 ScreenOutput->PrintInteger(NumberOfContacts);

 ScreenOutput->Print(" new elements added to the heap\n");

 // Loop adds all the new contacts the the correct heap

 for (i = 0; i < NumberOfContacts; i++)

 { // Begin for

 // Add an Employee with Name criteria

 if (HeapType == 1)

 { // Begin if

 Employee * NewEmployee = new Employee;

 NewEmployee->Read(Data[i]);

 ArrayOfHeaps[HeapIndex]->

 Add((ContactType *) NewEmployee, NewEmployee->GetName());

 } // End if

 58

 // Add an Employee with Address criteria

 else if (HeapType == 2)

 { // Begin else if

 Employee * NewEmployee = new Employee;

 NewEmployee->Read(Data[i]);

 ArrayOfHeaps[HeapIndex]->

 Add((ContactType *) NewEmployee,

NewEmployee->GetAddress());

 } // End else if

 // Add an Employee with Phone criteria

 else if (HeapType == 3)

 { // Begin else if

 Employee * NewEmployee = new Employee;

 NewEmployee->Read(Data[i]);

 ArrayOfHeaps[HeapIndex]->

 Add((ContactType *) NewEmployee,

NewEmployee->GetPhone());

 } // End else if

 // Add a Customer with Name criteria

 else if (HeapType == 4)

 { // Begin else if

 Customer * NewCustomer = new Customer;

 NewCustomer->Read(Data[i]);

 ArrayOfHeaps[HeapIndex]->

 Add((ContactType *) NewCustomer,

NewCustomer->GetName());

 } // End else if

 // Add a Customer with Address criteria

 else if (HeapType == 5)

 { // Begin else if

 Customer * NewCustomer = new Customer;

 NewCustomer->Read(Data[i]);

 ArrayOfHeaps[HeapIndex]->

 Add((ContactType *) NewCustomer,

NewCustomer->GetAddress());

 } // End else if

 // Add a Customer with Phone criteria

 else if (HeapType == 6)

 { // Begin else if

 Customer * NewCustomer = new Customer;

 NewCustomer->Read(Data[i]);

 ArrayOfHeaps[HeapIndex]->

 Add((ContactType *) NewCustomer,

NewCustomer->GetPhone());

 } // End else if

 // Add a Shipper with Name criteria

 else if (HeapType == 7)

 59

 { // Begin else if

 Shipper * NewShipper = new Shipper;

 NewShipper->Read(Data[i]);

 ArrayOfHeaps[HeapIndex]->

 Add((ContactType *) NewShipper,

NewShipper->GetName());

 } // End else if

 // Add a Shipper with Address criteria

 else if (HeapType == 8)

 { // Begin else if

 Shipper * NewShipper = new Shipper;

 NewShipper->Read(Data[i]);

 ArrayOfHeaps[HeapIndex]->

 Add((ContactType *) NewShipper,

NewShipper->GetAddress());

 } // End else if

 // Add a Shipper with Phone criteria

 else

 { // Begin else

 Shipper * NewShipper = new Shipper;

 NewShipper->Read(Data[i]);

 ArrayOfHeaps[HeapIndex]->

 Add((ContactType *) NewShipper,

NewShipper->GetPhone());

 } // End else

 }

 ScreenOutput->ShowSubMenu();

 MenuChoice = ScreenOutput->GetMenuChoice();

 PerformSubMenuOption(MenuChoice, HeapIndex);

 break;

 // User wants to Delete the entire heap

 case 7:

 // Shift everything to the left

 for (i=HeapIndex; i<NumberOfHeaps-1; i++)

 { // Begin for

 ArrayOfHeaps[i] = ArrayOfHeaps[i+1];

 } // End for

 // Decrement the number of heaps

 NumberOfHeaps--;

 // Return to the main menu

 ScreenOutput->ShowMainMenu();

 MenuChoice = ScreenOutput->GetMenuChoice();

 PerformMainMenuOption(MenuChoice);

 break;

 60

 // User wants to return to main menu

 case 8:

 // Return to the main menu

 ScreenOutput->ShowMainMenu();

 MenuChoice = ScreenOutput->GetMenuChoice();

 PerformMainMenuOption(MenuChoice);

 break;

 // User wants to Quit

 case 9:

 exit(0);

 break;

 // User entered an invalid number

 default:

 // Show the error message

 ScreenOutput->PrintError(1);

 // Show the sub menu again

 ScreenOutput->ShowSubMenu();

 // Get the users choice

 MenuChoice = ScreenOutput->GetMenuChoice();

 // Call itself to perform the menu option

 PerformSubMenuOption(MenuChoice, HeapIndex);

 break;

 } // End switch

} // End PerformSubMenuOption

//------------------------GetHeapType--------------------------

// James Fishbaugh CS 441-01

// 10/12/2005

// Last Modified: 10/12/05

//---

// Calls to: UI->HeapTypeOptions()

// UI->GetMenuChoice()

// UI->PrintError()

// Called by: Logic->PerformMainMenuOption()

// Logic->PerformSubMenuOption()

//---

// Arguments: void

//---

// Description: Finds the type of heap the user wants

// to create and returns that value

//---

int Logic::GetHeapType()

{ // Begin GetHeapType

 int HeapType = 0;

 int MenuChoice = 0;

 ScreenOutput->HeapTypeOptions();

 MenuChoice = ScreenOutput->GetMenuChoice();

 do

 { // Begin do

 if (MenuChoice == 1)

 { // Begin if

 61

 HeapType = 1;

 } // End if

 else if (MenuChoice == 2)

 { // Begin else if

 HeapType = 2;

 } // End else if

 else if (MenuChoice == 3)

 { // Begin else if

 HeapType = 3;

 } // End else if

 else

 { // Begin else

 ScreenOutput->PrintError(1);

 ScreenOutput->HeapTypeOptions();

 MenuChoice = ScreenOutput->GetMenuChoice();

 } // End else

 }while ((MenuChoice < 1) || (MenuChoice > 3)); // End do while

 return HeapType;

} // End GetHeapType

//-------------------------CreateHeap--------------------------

// James Fishbaugh CS 441-01

// 10/12/2005

// Last Modified: 10/12/05

//---

// Calls to: UI->HeapCriteriaOptions()

// UI->GetMenuChoice()

// UI->PrintError()

// Heap->Heap()

// Employee->Employee()

// Customer->Customer()

// Shipper->Shipper()

// Logic->PerformMainMenuOption()

// Called by: Logic->PerformMainMenuOption()

//---

// Arguments: HeapType - Integer which denotes what type

// of heap to create. 1 denotes

// Employee, 2 denotes Customer, and

// 3 denotes Shipper.

//---

// Description: Finds the criteria type and then creates

// the heap

//---

void Logic::CreateHeap(int HeapType)

{ // Begin CreateHeap

 // Integers to hold the menu choice and criteria type

 int MenuChoice = 0;

 int CriteriaChoice = 0;

 // A pointer to a criteria mapper object

 CriteriaMapper * MyMapper;

 // Print out the choices

 ScreenOutput->HeapCriteriaOptions();

 // Get the users selection

 MenuChoice = ScreenOutput->GetMenuChoice();

 62

 // Finds which criteria the user wants

 do

 { // Begin do

 // User wants Name criteria

 if (MenuChoice == 1)

 { // Begin if

 CriteriaChoice = 1;

 } // End if

 // User wants Address criteria

 else if (MenuChoice == 2)

 { // Begin else if

 CriteriaChoice = 2;

 } // End else if

 // User wants Phone criteria

 else if (MenuChoice == 3)

 { // Begin else if

 CriteriaChoice = 3;

 } // End else if

 // User entered an invalid criteria

 else

 { // Begin else

 ScreenOutput->PrintError(1);

 ScreenOutput->HeapCriteriaOptions();

 MenuChoice = ScreenOutput->GetMenuChoice();

 } // End else

 }while ((MenuChoice < 1) || (MenuChoice > 3)); // End do

 // Create the employee heap

 if (HeapType == 1)

 { // Begin if

 Heap <ContactType *, char *> *EmployeeHeap;

 Employee * NewEmployee = new Employee;

 // The criteria is Name

 if (CriteriaChoice == 1)

 { // Begin if

 MyMapper = (CriteriaMapper *) new NameMapper;

 EmployeeHeap = new Heap <ContactType *, char *> (MyMapper, 1);

 } // End if

 // The criteria is Address

 else if (CriteriaChoice == 2)

 { // Begin else if

 MyMapper = (CriteriaMapper *) new AddressMapper;

 EmployeeHeap = new Heap <ContactType *, char *> (MyMapper, 2);

 } // End else if

 // Then criteria is Phone

 else

 { // Begin else

 63

 MyMapper = (CriteriaMapper *) new PhoneMapper;

 EmployeeHeap = new Heap <ContactType *, char *> (MyMapper, 3);

 } // End else

 ArrayOfHeaps[NumberOfHeaps] = EmployeeHeap;

 } // End if

 // Create the customer heap

 else if (HeapType == 2)

 { // Begin else if

 Heap <ContactType *, char *> *CustomerHeap;

 Customer * NewCustomer = new Customer;

 // The criteria is Name

 if (CriteriaChoice == 1)

 { // Begin if

 MyMapper = (CriteriaMapper *) new NameMapper;

 CustomerHeap = new Heap <ContactType *, char *> (MyMapper, 4);

 } // End if

 // The criteria is Address

 else if (CriteriaChoice == 2)

 { // Begin else if

 MyMapper = (CriteriaMapper *) new AddressMapper;

 CustomerHeap = new Heap <ContactType *, char *> (MyMapper, 5);

 } // End else if

 // Then criteria is Phone

 else

 { // Begin else

 MyMapper = (CriteriaMapper *) new PhoneMapper;

 CustomerHeap = new Heap <ContactType *, char *> (MyMapper, 6);

 } // End else

 ArrayOfHeaps[NumberOfHeaps] = CustomerHeap;

 } // End else if

 // Create the shipper heap

 else

 { // Begin else

 Heap <ContactType *, char *> *ShipperHeap;

 Shipper * NewShipper = new Shipper;

 // The criteria is Name

 if (CriteriaChoice == 1)

 { // Begin if

 MyMapper = (CriteriaMapper *) new NameMapper;

 ShipperHeap = new Heap <ContactType *, char *> (MyMapper, 7);

 } // End if

 // The criteria is Address

 else if (CriteriaChoice == 2)

 { // Begin else if

 MyMapper = (CriteriaMapper *) new AddressMapper;

 ShipperHeap = new Heap <ContactType *, char *> (MyMapper, 8);

 64

 } // End else if

 // Then criteria is Phone

 else

 { // Begin else

 MyMapper = (CriteriaMapper *) new PhoneMapper;

 ShipperHeap = new Heap <ContactType *, char *> (MyMapper, 9);

 } // End else

 ArrayOfHeaps[NumberOfHeaps] = ShipperHeap;

 } // End else

 // Increment the number of heaps

 NumberOfHeaps++;

 // Return to the main menu

 ScreenOutput->ShowMainMenu();

 MenuChoice = ScreenOutput->GetMenuChoice();

 PerformMainMenuOption(MenuChoice);

} // End CreateHeap

//-------------------------ShowHeaps---------------------------

// James Fishbaugh CS 441-01

// 10/12/2005

// Last Modified: 10/12/05

//---

// Calls to: UI->PrintError()

// UI->Print()

// UI->PrintInteger()

// UI->GetMenuChoice()

// Called by: Logic->PerformMainMenuOption()

// Logic->PerformSubMenuOption()

//---

// Arguments: void

//---

// Description: Prints out the heaps that currently exist

// and returns the index of the heap array.

//---

int Logic::ShowHeaps()

{ // Begin ShowHeaps

 int HeapType = 0;

 // If there are no heaps

 if (NumberOfHeaps == 0)

 { // Begin if

 ScreenOutput->PrintError(2);

 return -1;

 } // End if

 ScreenOutput->Print("\nChoose one of the following heaps\n");

 ScreenOutput->Print("---------------------------------\n");

 for (int i=0; i < NumberOfHeaps; i++)

 { // Begin for

 // Necessary output for logic class

 ScreenOutput->PrintInteger(i+1);

 ScreenOutput->Print(") ");

 65

 ArrayOfHeaps[i]->PrintHeapType();

 } // End for

 do

 { // Begin do

 ScreenOutput->Print("\nEnter your choice: ");

 HeapType = ScreenOutput->GetMenuChoice();

 if ((HeapType < 1) || (HeapType > NumberOfHeaps))

 { // Begin if

 ScreenOutput->PrintError(1);

 } // End if

 } while ((HeapType < 1) || (HeapType > NumberOfHeaps)); // End do

 // Returns the index of the heap the user wants to work with

 return (HeapType-1);

} // End ShowHeaps

//----------------------FindItemInHeap-------------------------

// James Fishbaugh CS 441-01

// 10/12/2005

// Last Modified: 10/12/05

//---

// Calls to: Heap->GetHeapType()

// Heap->Find()

// UI->GetUnique()

// Called by: Logic->PerformSubMenuOption()

//---

// Arguments: HeapIndex - the index of the heap array

//---

// Description: Searches the heap for given data

//---

int Logic::FindItemInHeap(int HeapIndex)

{ // Begin FindItemInHeap

 int HeapType = 0;

 int IndexFound = -1;

 char * SearchCriteria = new char[20];

 HeapType = ArrayOfHeaps[HeapIndex]->GetHeapType();

 SearchCriteria = ScreenOutput->GetUnique(HeapType);

 IndexFound = ArrayOfHeaps[HeapIndex]->Find(SearchCriteria);

 return IndexFound;

} // End FindItemInHeap

Heap Class

//---------------------------Heap.h----------------------------

// James Fishbaugh CS 441-01

// 09/18/2005

// Last Modified: 10/13/05

 66

//---

// Purpose - This file contains variable definitions and

// function declarations for Heap.cpp

// Implementation provided below. Defines a heap

// data structure and the methods that provide

// heap functionality.

//---

// Compiler directive

#pragma once

// Include files

#include <iostream>

#include <string.h> // For strcmp

#include "CriteriaMapper.h"

using namespace std;

template <class DataType, class CriteriaType> class Heap

{ // Begin Heap

 private:

 // Member Data

 // Small class for data storage

 class ElementType

 { // Begin ElementType

 public:

 DataType ElementData;

 long int Criteria;

 }; // End ElementType

 long int HeapLength;

 int Type;

 ElementType HeapArray[100];

 CriteriaMapper *HeapMapper;

 // Private member functions

 void Heapify(long int Index);

 long int Parent(long int Child);

 long int Left(long int Root);

 long int Right(long int Root);

 public:

 // Default constructor

 Heap();

 // Init constructor

 Heap(CriteriaMapper *MyCriteriaMapper, int HeapType);

 // Member functions

 void Add(DataType Data, CriteriaType Criteria);

 void Print(int IndexToPrint);

 void PrintAll();

 long int Find(CriteriaType Criteria);

 void Delete(DataType Data);

 void DeleteAtIndex(long int IndexToDelete);

 void Empty();

 void PrintHeapType();

 int GetHeapType();

}; // End Heap

 67

// This is the implementation of Heap.h

//---------------------------Heap------------------------------

// James Fishbaugh CS 441-01

// 10/12/2005

// Last Modified: 10/12/05

//---

// Calls to: n/a

// Called by: Logic->CreateHeap()

//---

// Arguments: void

//---

// Description: The default constructor

//---

template <class DataType, class CriteriaType>

Heap<DataType, CriteriaType>::Heap()

{ // Begin Heap

 HeapLength = 0;

 Type = 0;

} // End Heap

//---------------------------Heap------------------------------

// James Fishbaugh CS 441-01

// 09/18/2005

// Last Modified: 10/12/05

//---

// Calls to: n/a

// Called by: Logic->CreateHeap()

//---

// Arguments: *MyCriteriaMapper - A pointer to a

// CriteriaMapper obect

//---

// Description: The initializing constructor

//---

template <class DataType, class CriteriaType>

Heap<DataType, CriteriaType>::Heap(CriteriaMapper *MyCriteriaMapper, int HeapType)

{ // Begin Heap()

 HeapMapper = MyCriteriaMapper;

 HeapLength = 0;

 Type = HeapType;

} // End Heap()

//--------------------------Heapify----------------------------

// James Fishbaugh CS 441-01

// 09/18/2005

// Last Modified: 09/20/05

//---

// Calls to: Heapify()

// Called by: Heap->Heapify()

// Heap->Add()

// Heap->Delete()

//---

// Arguments: Index - The index of the root being looked at

//---

// Description: Heapify takes a partial ordered heap and

// rearranges elements to make it a heap

//---

template <class DataType, class CriteriaType>

void Heap<DataType, CriteriaType>::Heapify(long int Index)

{ // Begin Heapify

 68

 long int Child = Left(Index);

 if ((HeapArray[Child].Criteria < HeapArray[Child+1].Criteria) &&

 (Child < (HeapLength-1)))

 { // Begin if

 Child++;

 } // End if

 if (HeapArray[Index].Criteria >= HeapArray[Child].Criteria)

 { // Begin if

 return;

 } // End if

 // Make the swap of data and criteria

 DataType tempData = HeapArray[Index].ElementData;

 long int tempCriteria = HeapArray[Index].Criteria;

 HeapArray[Index].ElementData = HeapArray[Child].ElementData;

 HeapArray[Index].Criteria = HeapArray[Child].Criteria;

 HeapArray[Child].ElementData = tempData;

 HeapArray[Child].Criteria = tempCriteria;

 // Make a recursive call

 Heapify(Child);

} // End Heapify

//--------------------------Parent-----------------------------

// James Fishbaugh CS 441-01

// 09/18/2005

// Last Modified: 09/20/05

//---

// Calls to: n/a

// Called by: Heap->Add()

//---

// Arguments: Child - the index of the child

//---

// Description: Returns the index of the parent

//---

template <class DataType, class CriteriaType>

long int Heap<DataType, CriteriaType>::Parent(long int Child)

{ // Begin Parent

 return (Child - 1) / 2;

} // End Parent

//---------------------------Left------------------------------

// James Fishbaugh CS 441-01

// 09/18/2005

// Last Modified: 09/20/05

//---

// Calls to: n/a

// Called by: Heap->Heapify()

//---

// Arguments: Root - The index of the root

//---

// Description: Returns the left child of a parent

//---

template <class DataType, class CriteriaType>

long int Heap<DataType, CriteriaType>::Left(long int Root)

{ // Begin Left

 69

 return (Root * 2) + 1;

} // End Left

//---------------------------Right-----------------------------

// James Fishbaugh CS 441-01

// 09/18/2005

// Last Modified: 09/20/05

//---

// Calls to: n/a

// Called by: n/a

//---

// Arguments: Root - The index of the root

//---

// Description: Returns the right child of a parent

//---

template <class DataType, class CriteriaType>

long int Heap<DataType, CriteriaType>::Right(long int Root)

{ // Begin Right

 return (Root * 2) + 2;

} // End Right

//--------------------------Delete-----------------------------

// James Fishbaugh CS 441-01

// 09/18/2005

// Last Modified: 09/20/05

//---

// Calls to: Heap->Heapify()

// Called by: n/a

//---

// Arguments: Data - The object to be deleted

//---

// Description: If the object exists, deltes that object

// from the heap

//---

template <class DataType, class CriteriaType>

void Heap<DataType, CriteriaType>::Delete(DataType Data)

{ // Begin Delete

 // Search for the information

 long int index = Find(Data);

 // If not found

 if (index == -1)

 { // Begin if

 cout<<endl<<"That information wasnt found in the heap."<<endl;

 return;

 } // End if

 // Else if was found

 else

 { // Begin else

 // Shift everything over one to the left

 for(int i=index; i<HeapLength; i++)

 { // Begin for

 HeapArray[i].ElementData = HeapArray[i+1].ElementData;

 HeapArray[i].Criteria = HeapArray[i+1].Criteria;

 } // End for

 // Effectively removes the last item which is now duplicated

 70

 HeapLength--;

 cout<<endl<<"Information successfully deleted."<<endl;

 // Calls Heapify to maintain the heap structure

 Heapify(HeapLength);

 } // End else

} // End Delete

//-----------------------DeleteAtIndex-------------------------

// James Fishbaugh CS 441-01

// 11/12/2005

// Last Modified: 11/12/05

//---

// Calls to: Heap->Heapify()

// Called by: Logic->PerformSubMenuOption()

//---

// Arguments: IndexToDelete - the index of the data to

// delete

//---

// Description: Deletes the data at the index specifed

// if the index exists.

//---

template <class DataType, class CriteriaType>

void Heap<DataType, CriteriaType>::DeleteAtIndex(long int IndexToDelete)

{ // Begin DeleteAtIndex

 // Shift everything over one to the left

 for(int i=IndexToDelete; i<HeapLength-1; i++)

 { // Begin for

 HeapArray[i].ElementData = HeapArray[i+1].ElementData;

 HeapArray[i].Criteria = HeapArray[i+1].Criteria;

 } // End for

 // Effectively removes the last item which is now duplicated

 HeapLength--;

 cout<<endl<<"Information successfully deleted."<<endl;

 // Calls Heapify to maintain the heap structure

 Heapify(HeapLength);

} // End DeleteAtIndex

//---------------------------Empty-----------------------------

// James Fishbaugh CS 441-01

// 09/18/2005

// Last Modified: 10/12/05

//---

// Calls to: n/a

// Called by: Logic->PerformSubMenuOption()

//---

// Arguments: void

//---

// Description: Deletes the heap

//---

template <class DataType, class CriteriaType>

void Heap<DataType, CriteriaType>::Empty()

{ // Begin Empty

 if (HeapLength == 0)

 { // Begin if

 71

 cout<<endl<<"Heap is already empty"<<endl;

 } // End if

 else

 { // Begin else

 HeapLength=0;

 cout<<endl<<"Heap successfully emptied"<<endl;

 } // End else

} // End Empty

//----------------------------Find-----------------------------

// James Fishbaugh CS 441-01

// 09/18/2005

// Last Modified: 10/12/05

//---

// Calls to: strcmp()

// ContactType->GetName();

// Called by: Heap->Delete()

// Logic->FindItemInHeap()

//---

// Arguments: Data - The object of information

//---

// Description: Searches for an object with that name in the

// heap, case sensitive.

//---

template <class DataType, class CriteriaType>

long int Heap<DataType, CriteriaType>::Find(CriteriaType Criteria)

{ // Begin Find

 // The index where the data is found

 // Negitive 1 implies it was not found

 long int IndexFound = -1;

 for(int i=0; i < HeapLength; i++)

 { // Begin for

 // If the criteria is Name

 if ((Type == 1) || (Type == 4) || (Type == 7))

 { // Begin if

 if (strcmp(((DataType)HeapArray[i].ElementData)->GetName(),

 Criteria) == 0)

 { // Begin if

 IndexFound = i;

 } // End if

 } // End if

 // If the criteria is Address

 else if ((Type == 2) || (Type == 5) || (Type == 8))

 { // Begin else if

 if (strcmp(((DataType)HeapArray[i].ElementData)->GetAddress(),

 Criteria) == 0)

 { // Begin if

 IndexFound = i;

 } // End if

 } // End else if

 72

 // If the criteria is Phone

 else

 { // Begin else if

 if (strcmp(((DataType)HeapArray[i].ElementData)->GetPhone(),

 Criteria) == 0)

 { // Begin if

 IndexFound = i;

 } // End if

 } // End else

 } // End for

 return IndexFound;

} // End Find

//----------------------------Add------------------------------

// James Fishbaugh CS 441-01

// 09/18/2005

// Last Modified: 09/20/05

//---

// Calls to: Heap->Heapify()

// Heap->Parent()

// CriteriaMapper->Map()

// Called by: Logic->PerformSubMenuOption()

//---

// Arguments: Data - The oject of information

// Criteria - A string to be sent to the mapping

// function

//---

// Description: Takes the information and criteria sent in

// and correctly places it in the heap based

// on the hash function

//---

template <class DataType, class CriteriaType>

void Heap<DataType, CriteriaType>::Add(DataType Data, CriteriaType Criteria)

{ // Begin Add

 HeapArray[HeapLength].Criteria = HeapMapper->Map(Criteria);

 HeapArray[HeapLength].ElementData = Data;

 long int new_pos = HeapLength;

 HeapLength++;

 while ((new_pos != 0) && (HeapArray[new_pos].Criteria > HeapArray[Parent(new_pos)].Criteria))

 { // Begin while

 DataType tempData = HeapArray[new_pos].ElementData;

 long int tempCriteria = HeapArray[new_pos].Criteria;

 HeapArray[new_pos].ElementData = HeapArray[Parent(new_pos)].ElementData;

 HeapArray[new_pos].Criteria = HeapArray[Parent(new_pos)].Criteria;

 HeapArray[Parent(new_pos)].ElementData = tempData;

 HeapArray[Parent(new_pos)].Criteria = tempCriteria;

 new_pos = Parent(new_pos);

 } // End while

 // Call Heapify

 Heapify(HeapLength);

} // End Add

 73

//--------------------------Print------------------------------

// James Fishbaugh CS 441-01

// 10/12/2005

// Last Modified: 10/12/05

//---

// Calls to: ContactType->Write()

// Called by: Logic->PerformSubMenuOption()

//---

// Arguments: IndexToPrint - the index to print

//---

// Description: Prints a specific item from the heap

//---

template <class DataType, class CriteriaType>

void Heap<DataType, CriteriaType>::Print(int IndexToPrint)

{ // Begin PrintAll

 // Make sure the index exists so we are not reaching

 // for memory that isnt there

 if (HeapLength >= IndexToPrint)

 { // Begin if

 HeapArray[IndexToPrint].ElementData->Write();

 } // End if

} // End PrintAll()

//--------------------------PrintAll---------------------------

// James Fishbaugh CS 441-01

// 09/18/2005

// Last Modified: 09/20/05

//---

// Calls to: cout<<

// ContactType->Write()

// Called by: Logic->PerformSubMenuOption()

//---

// Arguments: void

//---

// Description: Prints all the information in the heap

//---

template <class DataType, class CriteriaType>

void Heap<DataType, CriteriaType>::PrintAll()

{ // Begin PrintAll

 if (HeapLength > 0)

 { // Begin if

 for (int i=0; i < HeapLength; i++)

 { // Begin for

 HeapArray[i].ElementData->Write();

 } // End for

 } // End if

 else

 { // Begin else

 cout<<endl<<"The heap is empty"<<endl;

 } // End else

} // End PrintAll()

//----------------------PrintHeapType--------------------------

 74

// James Fishbaugh CS 441-01

// 10/12/2005

// Last Modified: 10/12/05

//---

// Calls to: cout<<

// Called by: Logic->ShowHeaps()

//---

// Arguments: void

//---

// Description: Prints out the types of heaps

//---

template <class DataType, class CriteriaType>

void Heap<DataType, CriteriaType>::PrintHeapType()

{ // Begin PrintHeapType

 switch (Type)

 { // Begin switch

 case 1:

 cout<<"Employee heap with name criteria"<<endl;

 break;

 case 2:

 cout<<"Employee heap with address criteria"<<endl;

 break;

 case 3:

 cout<<"Employee heap with phone criteria"<<endl;

 break;

 case 4:

 cout<<"Customer heap with name criteria"<<endl;

 break;

 case 5:

 cout<<"Customer heap with address criteria"<<endl;

 break;

 case 6:

 cout<<"Customer heap with phone criteria"<<endl;

 break;

 case 7:

 cout<<"Shipper heap with name criteria"<<endl;

 break;

 case 8:

 cout<<"Shipper heap with address criteria"<<endl;

 break;

 case 9:

 cout<<"Shipper heap with phone criteria"<<endl;

 break;

 } // End switch

} // End PrintHeapType

 75

//-----------------------GetHeapType---------------------------

// James Fishbaugh CS 441-01

// 10/12/2005

// Last Modified: 10/12/05

//---

// Calls to: n/a

// Called by: Logic->FindItemInHeap()

//---

// Arguments: void

//---

// Description: Returns the type of heap

//---

template <class DataType, class CriteriaType>

int Heap<DataType, CriteriaType>::GetHeapType()

{ // Begin GetHeapType

 return Type;

} // End GetHeapType

ContactType Class

//-----------------------ContactType.h-------------------------

// James Fishbaugh CS 441-01

// 10/11/2005

// Last Modified: 10/13/05

//---

// Purpose - This file contains variable definitions and

// function declarations for ContactType.cpp

// which is the abstract base class in an

// inheritance hierarchy.

//---

// If not defined, define

#ifndef INC_CONTACTTYPE_H

#define INC_CONTACTTYPE_H

class ContactType

{ // Begin ContactType

 protected:

 // Member data

 char * Name;

 char ** Address;

 char * Phone;

 public:

 // Pure virtual functions to be implemented

 // by the base classes

 virtual void Read() = 0;

 virtual void Read(char * Data) = 0;

 virtual void Write() = 0;

 virtual char * GetName() = 0;

 virtual char * GetAddress() = 0;

 virtual char * GetPhone() = 0;

}; // End ContactType

 76

#endif;

Employee Class

//-------------------------Employee.h--------------------------

// James Fishbaugh CS 441-01

// 09/18/2005

// Last Modified: 10/13/05

//---

// Purpose - This file contains variable definitions and

// function declarations for Employee.cpp which

// is inherited from ContactType.h

//---

// If not defined, define

#ifndef INC_EMPLOYEE_H

#define INC_EMPLOYEE_H

// Include files

#include "ContactType.h"

class Employee:public ContactType

{ // Begin Employee

 private:

 // Member data

 float Salary;

 public:

 // Default constructor

 Employee();

 // Member functions

 void Read();

 void Read(char * Data);

 void Write();

 char * GetName();

 char * GetAddress();

 char * GetPhone();

}; // End Employee

#endif;

//------------------------Employee.cpp-------------------------

// James Fishbaugh CS 441-01

// 09/18/2005

// Last Modified: 09/20/05

//---

// Purpose - Implements Employee class which stores and

// retrives Employee information.

//---

// Include files

#include <iostream>

#include <stdio.h> // For sscanf

#include "Employee.h"

using namespace std;

// Constants

const int LENGTH_OF_NAME = 20;

const int LENGTH_OF_ADDRESS = 20;

const int ADDRESS_FIELDS = 3;

 77

const int LENGTH_OF_PHONE = 10;

//-------------------------Employee----------------------------

// James Fishbaugh CS 441-01

// 10/11/2005

// Last Modified: 10/11/05

//---

// Calls to: n/a

// Called by: Logic->PerformSubMenuOption()

// Logic->CreateHeap()

//---

// Arguments: void

//---

// Description: Default constructor for Employee

//---

Employee::Employee()

{ // Begin Employee

 // Allocates space for Name

 Name = new char[LENGTH_OF_NAME + 1];

 // Allocates space for Address

 Address = new char * [ADDRESS_FIELDS];

 for (int i = 0; i < ADDRESS_FIELDS ; i++)

 { // Begin for

 // Also allocates space for Address

 Address[i] = new char[LENGTH_OF_ADDRESS + 1];

 } // End for

 // Allocates space for Phone

 Phone = new char[LENGTH_OF_PHONE + 1];

 // Sets the salary to the default value of zero

 Salary = 0.0;

} // End Employee

//----------------------------Read-----------------------------

// James Fishbaugh CS 441-01

// 09/18/2005

// Last Modified: 10/12/05

//---

// Calls to: cout<<

// cin>>

// getline()

// Called by: Logic->PerformSubMenuOption()

//---

// Arguments: void

//---

// Description: Reads in all Employee information

//---

void Employee::Read()

{ // Begin Read

 // Used to hold unwanted characters

 char Dummy[256];

 // Outputs a new line

 cout<<endl;

 // Basically flushes the input buffer so we

 // can get input

 cin.getline(Dummy, 256);

 78

 // Gets the employee name from the user

 cout<<"Enter employee name ("<<LENGTH_OF_NAME<<" chars max): ";

 cin.getline(Name, LENGTH_OF_NAME+1);

 // Loop that gets the address from the user

 for (int i=0; i < ADDRESS_FIELDS; i++)

 { // Begin for

 cout<<"Enter address line "<<i+1<<" ("<<LENGTH_OF_ADDRESS<<" chars max): ";

 cin.getline(Address[i], LENGTH_OF_ADDRESS+1);

 } // End for

 // Get the phone number from the user

 cout<<"Enter phone number ("<<LENGTH_OF_PHONE<<" chars max): ";

 cin.getline(Phone, LENGTH_OF_PHONE+1);

 /// Get the salary from the user

 cout<<"Enter salary: ";

 cin>>Salary;

} // End Read

//----------------------------Read-----------------------------

// James Fishbaugh CS 441-01

// 10/13/2005

// Last Modified: 10/13/05

//---

// Calls to: sscanf()

// Called by: Logic->PerformSubMenuOption()

//---

// Arguments: Data - a character string with the different

// fields seperated by spaces

//---

// Description: Reads in all Employee information as sent

// in as a character array

//---

void Employee::Read(char * Data)

{ // Begin Read

 // Parses Data into the data space of Employee

 sscanf(Data, "%s %s %s %s %s %f", Name, Address[0],

 Address[1], Address[2], Phone, &Salary);

} // End Read

//---------------------------Write-----------------------------

// James Fishbaugh CS 441-01

// 09/18/2005

// Last Modified: 09/20/05

//---

// Calls to: cout<<

// Called by: Heap->Print()

// Heap->PrintAll()

//---

// Arguments: void

//---

// Description: Writes all Employee information

//---

void Employee::Write()

{ // Begin Write

 // Prints the name

 cout<<endl<<"Employee name: "<<Name<<endl;

 79

 // Loop that prints the address

 for (int i=0; i < ADDRESS_FIELDS; i++)

 { // Begin for

 cout<<"Address line "<<i+1<<": "<<Address[i]<<endl;

 } // End for

 // Prints the phone number

 cout<<"Phone number: "<<Phone<<endl;

 // Prints the salary

 cout<<"Salary: $"<<Salary<<endl;

} // End Write

//---------------------------GetName---------------------------

// James Fishbaugh CS 441-01

// 09/18/2005

// Last Modified: 09/20/05

//---

// Calls to: n/a

// Called by: Logic->PerformSubMenuOption()

//---

// Arguments: void

//---

// Description: Returns the name

//---

char * Employee::GetName()

{ // Begin GetName

 return Name;

} // End GetName

//------------------------GetAddress---------------------------

// James Fishbaugh CS 441-01

// 10/11/2005

// Last Modified: 10/11/05

//---

// Calls to: n/a

// Called by: Logic->PerformSubMenuOption()

//---

// Arguments: void

//---

// Description: Returns the first address field

//---

char * Employee::GetAddress()

{ // Begin GetAddress

 return Address[0];

} // End GetAddress

//--------------------------GetPhone---------------------------

// James Fishbaugh CS 441-01

// 10/11/2005

// Last Modified: 10/11/05

//---

// Calls to: n/a

// Called by: Logic->PerformSubMenuOption()

//---

// Arguments: void

//---

// Description: Returns the phone number

//---

 80

char * Employee::GetPhone()

{ // Begin GetPhone

 return Phone;

} // End GetPhone

Customer Class

//-------------------------Customer.h--------------------------

// James Fishbaugh CS 441-01

// 09/18/2005

// Last Modified: 10/13/05

//---

// Purpose - This file contains variable definitions and

// function declarations for Customer.cpp which

// is inherited from ContactType.h

//---

// If not defined, define

#ifndef INC_CUSTOMER_H

#define INC_CUSTOMER_H

// Include files

#include "ContactType.h"

class Customer:public ContactType

{ // Begin Customer

 private:

 // Member data

 float Purchases;

 float AmountDue;

 public:

 // Default constructor

 Customer();

 // Member functions

 void Read();

 void Read(char * Data);

 void Write();

 char * GetName();

 char * GetAddress();

 char * GetPhone();

}; // End Customer

#endif;

//------------------------Customer.cpp-------------------------

// James Fishbaugh CS 441-01

// 09/18/2005

// Last Modified: 10/13/05

//---

// Purpose - Implements Customer class which stores and

// retrives Customer information.

//---

 81

// Include files

#include <iostream>

#include <stdio.h> // For sscanf

#include "Customer.h"

using namespace std;

// Constants

const int LENGTH_OF_NAME = 20;

const int LENGTH_OF_ADDRESS = 20;

const int ADDRESS_FIELDS = 4;

const int LENGTH_OF_PHONE = 10;

//-------------------------Customer----------------------------

// James Fishbaugh CS 441-01

// 10/11/2005

// Last Modified: 10/11/05

//---

// Calls to: n/a

// Called by: Logic->PerformSubMenuOption()

// Logic->CreateHeap()

//---

// Arguments: void

//---

// Description: Default constructor for Customer

//---

Customer::Customer()

{ // Begin Customer

 // Allocates space for Name

 Name = new char[LENGTH_OF_NAME + 1];

 // Allocates space for Address

 Address = new char * [ADDRESS_FIELDS];

 for (int i = 0; i < ADDRESS_FIELDS ; i++)

 { // Begin for

 // Also allocates space for Address

 Address[i] = new char[LENGTH_OF_ADDRESS + 1];

 } // End for

 // Allocates space for Phone

 Phone = new char[LENGTH_OF_PHONE + 1];

 // Sets Purchases and AmountDue to the default value of zero

 Purchases = 0.0;

 AmountDue = 0.0;

} // End Customer

//----------------------------Read-----------------------------

// James Fishbaugh CS 441-01

// 09/18/2005

// Last Modified: 10/12/05

//---

// Calls to: cout<<

// cin>>

// getline()

// Called by: Logic->PerformSubMenuOption()

//---

// Arguments: void

//---

// Description: Reads in all Customer information

//---

void Customer::Read()

 82

{ // Begin Read

 // Used to hold unwanted characters

 char Dummy[256];

 // Outputs a new line

 cout<<endl;

 // Basically flushes the input buffer so we

 // can get input

 cin.getline(Dummy, 256);

 // Gets the customer name from the user

 cout<<"Enter customer name ("<<LENGTH_OF_NAME<<" chars max): ";

 cin.getline(Name, LENGTH_OF_NAME+1);

 // Loop that gets the address from the user

 for (int i=0; i < ADDRESS_FIELDS; i++)

 { // Begin for

 cout<<"Enter address line "<<i+1<<" ("<<LENGTH_OF_ADDRESS<<" chars max): ";

 cin.getline(Address[i], LENGTH_OF_ADDRESS+1);

 } // End for

 // Gets the phone number from the user

 cout<<"Enter phone number ("<<LENGTH_OF_PHONE<<" chars max): ";

 cin.getline(Phone, LENGTH_OF_PHONE+1);

 // Gets the purchases from the user

 cout<<"Enter purchases: ";

 cin>>Purchases;

 // Gets the amount due from the user

 cout<<"Enter amount due: ";

 cin>>AmountDue;

} // End Read

//----------------------------Read-----------------------------

// James Fishbaugh CS 441-01

// 10/13/2005

// Last Modified: 10/13/05

//---

// Calls to: sscanf()

// Called by: Logic->PerformSubMenuOption()

//---

// Arguments: Data - a character string with the different

// fields seperated by spaces

//---

// Description: Reads in all Customer information as sent

// in as a character array

//---

void Customer::Read(char * Data)

{ // Begin Read

 // Parses Data into the data space of Customer

 sscanf(Data, "%s %s %s %s %s %s %f %f", Name, Address[0],

 Address[1], Address[2], Address[3],

 Phone, &Purchases, &AmountDue);

} // End Read

//---------------------------Write-----------------------------

// James Fishbaugh CS 441-01

// 09/18/2005

 83

// Last Modified: 10/11/05

//---

// Calls to: cout<<

// Called by: Heap->Print()

// Heap->PrintAll()

//---

// Arguments: void

//---

// Description: Writes all Customer information

//---

void Customer::Write()

{ //Begin Write

 // Prints name

 cout<<endl<<"Customer name: "<<Name<<endl;

 // Loop that prints address

 for (int i=0; i < ADDRESS_FIELDS; i++)

 { // Begin for

 cout<<"Address line "<<i+1<<": "<<Address[i]<<endl;

 } // End for

 // Prints phone number

 cout<<"Phone number: "<<Phone<<endl;

 // Prints purchases

 cout<<"Purchases: "<<Purchases<<endl;

 // Prints amount due

 cout<<"Amount due: $"<<AmountDue<<endl;

} // End Write

//---------------------------GetName---------------------------

// James Fishbaugh CS 441-01

// 09/18/2005

// Last Modified: 09/20/05

//---

// Calls to: n/a

// Called by: Logic->PerformSubMenuOption()

//---

// Arguments: void

//---

// Description: Returns the name

//---

char * Customer::GetName()

{ // Begin GetName

 return Name;

} // End GetName

//------------------------GetAddress---------------------------

// James Fishbaugh CS 441-01

// 10/11/2005

// Last Modified: 10/11/05

//---

// Calls to: n/a

// Called by: Logic->PerformSubMenuOption()

//---

// Arguments: void

//---

// Description: Returns the first address field

//---

char * Customer::GetAddress()

 84

{ // Begin GetAddress

 return Address[0];

} // End GetAddress

//--------------------------GetPhone---------------------------

// James Fishbaugh CS 441-01

// 10/11/2005

// Last Modified: 10/11/05

//---

// Calls to: n/a

// Called by: Logic->PerformSubMenuOption()

//---

// Arguments: void

//---

// Description: Returns the phone number

//---

char * Customer::GetPhone()

{ // Begin GetPhone

 return Phone;

} // End GetPhone

Shipper Class

//-------------------------Shipper.h---------------------------

// James Fishbaugh CS 441-01

// 09/18/2005

// Last Modified: 10/11/05

//---

// Purpose - This file contains variable definitions and

// function declarations for Shipper.cpp which

// is inherited from ContactType.h

//---

// If not defined, define

#ifndef INC_SHIPPER_H

#define INC_SHIPPER_H

// Include files

#include "ContactType.h"

class Shipper:public ContactType

{ // Begin Shipper

 private:

 // Member data

 int Pickups;

 public:

 // Default constructor

 Shipper();

 // Member functions

 void Read();

 void Read(char * Data);

 void Write();

 char * GetName();

 85

 char * GetAddress();

 char * GetPhone();

}; // End Shipper

#endif;

//------------------------Shipper.cpp--------------------------

// James Fishbaugh CS 441-01

// 09/18/2005

// Last Modified: 10/13/05

//---

// Purpose - Implements Shipper class which stores and

// retrives Shipper information.

//---

// Include files

#include <iostream>

#include <stdio.h> // For sscanf

#include "Shipper.h"

using namespace std;

// Constants

const int LENGTH_OF_NAME = 30;

const int LENGTH_OF_ADDRESS = 20;

const int ADDRESS_FIELDS = 3;

const int LENGTH_OF_PHONE = 10;

//-------------------------Shipper-----------------------------

// James Fishbaugh CS 441-01

// 10/11/2005

// Last Modified: 10/11/05

//---

// Calls to: n/a

// Called by: Logic->PerformSubMenuOption()

// Logic->CreateHeap()

//---

// Arguments: void

//---

// Description: Default constructor for Shipper

//---

Shipper::Shipper()

{ // Begin Shipper

 // Allocates space for Name

 Name = new char[LENGTH_OF_NAME + 1];

 // Allocates space for Address

 Address = new char * [ADDRESS_FIELDS];

 for (int i = 0; i < ADDRESS_FIELDS ; i++)

 { // Begin for

 // Also allocates space for Address

 Address[i] = new char[LENGTH_OF_ADDRESS + 1];

 } // End for

 // Allocates space for Phone

 Phone = new char[LENGTH_OF_PHONE + 1];

 // Sets the pickups to the default value of zero

 Pickups = 0;

 86

} // End Shipper

//----------------------------Read-----------------------------

// James Fishbaugh CS 441-01

// 09/18/2005

// Last Modified: 10/11/05

//---

// Calls to: cout<<

// cin>>

// getline()

// Called by: Logic->PerformSubMenuOption()

//---

// Arguments: void

//---

// Description: Reads all shipper information

//---

void Shipper::Read()

{ // Begin Read

 // Used to hold unwanted characters

 char Dummy[256];

 // Outputs a new line

 cout<<endl;

 // Basically flushes the input buffer so we

 // can get input

 cin.getline(Dummy, 256);

 // Gets the shipper name from the user

 cout<<"Enter shipper name ("<<LENGTH_OF_NAME<<" chars max): ";

 cin.getline(Name, LENGTH_OF_NAME+1);

 // Loop that gets the address from the user

 for (int i=0; i < ADDRESS_FIELDS; i++)

 { // Begin for

 cout<<"Enter address line "<<i+1<<" ("<<LENGTH_OF_ADDRESS<<" chars max): ";

 cin.getline(Address[i], LENGTH_OF_ADDRESS+1);

 } // End for

 // Gets the phone number from the user

 cout<<"Enter phone number ("<<LENGTH_OF_PHONE<<" chars max): ";

 cin.getline(Phone, LENGTH_OF_PHONE+1);

 // Gets the pickups from the user

 cout<<"Enter pickups: ";

 cin>>Pickups;

} // End Read

//----------------------------Read-----------------------------

// James Fishbaugh CS 441-01

// 10/13/2005

// Last Modified: 10/13/05

//---

// Calls to: sscanf()

// Called by: Logic->PerformSubMenuOption()

//---

// Arguments: Data - a character string with the different

// fields seperated by spaces

//---

// Description: Reads in all Shipper information as sent

// in as a character array

//---

 87

void Shipper::Read(char * Data)

{ // Begin Read

 // Parses Data into the data space of Shipper

 sscanf(Data, "%s %s %s %s %s %d", Name, Address[0],

 Address[1], Address[2], Phone, &Pickups);

} // End read

//---------------------------Write-----------------------------

// James Fishbaugh CS 441-01

// 09/18/2005

// Last Modified: 09/20/05

//---

// Calls to: cout<<

// Called by: Heap->Print()

// Heap->PrintAll()

//---

// Arguments: void

//---

// Description: Prints all shipper information

//---

void Shipper::Write()

{ // Begin Write

 // Prints the shipper name

 cout<<endl<<"Shipper name: "<<Name<<endl;

 // Loop that prints the address

 for (int i=0; i < ADDRESS_FIELDS; i++)

 { // Begin for

 cout<<"Address line "<<i+1<<": "<<Address[i]<<endl;

 } // End for

 // Prints the phone number

 cout<<"Phone number: "<<Phone<<endl;

 // Prints the pickups

 cout<<"Pickups: "<<Pickups<<endl;

} // End Write

//--------------------------GetName----------------------------

// James Fishbaugh CS 441-01

// 09/18/2005

// Last Modified: 10/11/05

//---

// Calls to: n/a

// Called by: Logic->PerformSubMenuOption()

//---

// Arguments: void

//---

// Description: Returns the name

//---

char * Shipper::GetName()

{ // Begin GetName

 return Name;

} // End GetName

//------------------------GetAddress---------------------------

// James Fishbaugh CS 441-01

 88

// 10/11/2005

// Last Modified: 10/11/05

//---

// Calls to: n/a

// Called by: Logic->PerformSubMenuOption()

//---

// Arguments: void

//---

// Description: Returns the first address field

//---

char * Shipper::GetAddress()

{ // Begin GetAddress

 return Address[0];

} // End GetAddress

//--------------------------GetPhone---------------------------

// James Fishbaugh CS 441-01

// 10/11/2005

// Last Modified: 10/11/05

//---

// Calls to: n/a

// Called by: Logic->PerformSubMenuOption()

//---

// Arguments: void

//---

// Description: Returns the phone number

//---

char * Shipper::GetPhone()

{ // Begin GetPhone

 return Phone;

} // End GetPhone

UI Class
//---------------------------UI.h------------------------------

// James Fishbaugh CS 441-01

// 10/11/2005

// Last Modified: 10/12/05

//---

// Purpose - This file contains variable definitions and

// function declarations for UI.cpp

//---

// If not defined, define

#ifndef INC_UI_H

#define INC_UI_H

class UI

{ // Begin UI

 public:

 // Member functions

 void ShowMainMenu();

 void ShowSubMenu();

 int GetMenuChoice();

 void HeapTypeOptions();

 void HeapCriteriaOptions();

 void PrintError(int ErrorNumber);

 void Print(char * Message);

 89

 void PrintInteger(int IntToPrint);

 char * GetUnique(int HeapType);

}; // End UI

#endif;

//------------------------UI.cpp------------------------------

// James Fishbaugh CS 441-01

// 10/10/2005

// Last Modified: 10/13/05

//---

// Purpose - The user interface which handles mostly all

// input and output.

//---

// Include files

#include <iostream>

#include "UI.h"

using namespace std;

//-----------------------ShowMainMenu--------------------------

// James Fishbaugh CS 441-01

// 10/11/2005

// Last Modified: 10/11/05

//---

// Calls to: cout<<

// Called by: main

// Logic->PerformMainMenuOption

// Logic->PerformSubMenuOption

//---

// Arguments: void

//---

// Description: Displays the main menu

//---

void UI::ShowMainMenu()

{ // Begin ShowMainMenu

 cout<<endl<<"Main Menu"<<endl;

 cout<<"---------"<<endl;

 cout<<"1) Create a new heap"<<endl;

 cout<<"2) Work with an existing heap"<<endl;

 cout<<"3) Quit"<<endl<<endl;

 cout<<"Enter your choice: ";

} // End ShowMainMenu

//-----------------------ShowSubMenu---------------------------

// James Fishbaugh CS 441-01

// 10/11/2005

// Last Modified: 10/11/05

//---

// Calls to: cout<<

// Called by: Logic->PerformMainMenuOption

// Logic->PerformSubMenuOption

//---

// Arguments: void

//---

// Description: Displays the sub menu

//---

void UI::ShowSubMenu()

{ // Begin ShowSubMenu

 90

 cout<<endl<<"Sub Menu"<<endl;

 cout<<"--------"<<endl;

 cout<<"1) Add"<<endl;

 cout<<"2) Find"<<endl;

 cout<<"3) Print all"<<endl;

 cout<<"4) Delete"<<endl;

 cout<<"5) Empty"<<endl;

 cout<<"6) Read"<<endl;

 cout<<"7) Delete entire heap"<<endl;

 cout<<"8) Back to main menu"<<endl;

 cout<<"9) Quit"<<endl<<endl;

 cout<<"Enter your choice: ";

} // End ShowSubMenu

//-----------------------GetMenuChoice-------------------------

// James Fishbaugh CS 441-01

// 10/11/2005

// Last Modified: 10/11/05

//---

// Calls to: cin>>

// Called by: Logic->PerformMainMenuOption

// Logic->PerformSubMenuOption

//---

// Arguments: void

//---

// Description: Gets the menu choice from the user

//---

int UI::GetMenuChoice()

{ // Begin GetMenuChoice

 int choice;

 cin>>choice;

 return choice;

} // End GetMenuChoice

//-----------------------HeapTypeSelection---------------------

// James Fishbaugh CS 441-01

// 10/11/2005

// Last Modified: 10/11/05

//---

// Calls to: cout<<

// Called by: Logic->PerformSubMenuOption

//---

// Arguments: void

//---

// Description: Prints out heap type options

//---

void UI::HeapTypeOptions()

{ // Begin HeapTypeSelection

 cout<<endl<<"What type of heap do you want to create?"<<endl;

 cout<<"--"<<endl;

 cout<<"1) Employee"<<endl;

 cout<<"2) Customer"<<endl;

 cout<<"3) Shipper"<<endl<<endl;

 cout<<"Enter your choice: ";

} // End HeapTypeSelection

 91

//---------------------HeapCriteriaOptions---------------------

// James Fishbaugh CS 441-01

// 10/11/2005

// Last Modified: 10/11/05

//---

// Calls to: cout<<

// Called by: Logic->CreateHeap()

//---

// Arguments: void

//---

// Description: Prints out criteria options

//---

void UI::HeapCriteriaOptions()

{ // Begin HeapCriteriaOptions

 cout<<endl<<"What type of criteria?"<<endl;

 cout<<"----------------------"<<endl;

 cout<<"1) Name"<<endl;

 cout<<"2) Address"<<endl;

 cout<<"3) Phone"<<endl<<endl;

 cout<<"Enter your choice: ";

} // End HeapCriteriaOptions

//-------------------------PrintError--------------------------

// James Fishbaugh CS 441-01

// 10/11/2005

// Last Modified: 10/11/05

//---

// Calls to: cout<<

// Called by: Logic->PerformMainMenuOption

// Logic->PerformSubMenuOption

// Logic->ShowHeaps()

// Logic->CreateHeap()

// Logic->GetHeapType()

//---

// Arguments: ErrorNumber - the error number to print

//---

// Description: Prints out error messages

//---

void UI::PrintError(int ErrorNumber)

{ // Begin PrintError

 switch (ErrorNumber)

 { // Begin switch

 // Error code 1

 case 1:

 cout<<endl<<"*** Error *** Not a valid menu choice"<<endl;

 break;

 // Error code 2

 case 2:

 cout<<endl<<"*** Error *** No heaps exist"<<endl;

 break;

 // Error code 3

 case 3:

 cout<<endl<<"*** Error *** Data not found in heap"<<endl;

 break;

 // Error code 4

 92

 case 4:

 cout<<endl<<"*** Error *** Already created the max amount of heaps"<<endl;

 break;

 // Should never get to default

 default:

 cout<<endl<<"*** Error ***"<<endl;

 break;

 } // End switch

} // End PrintError

//----------------------------Print----------------------------

// James Fishbaugh CS 441-01

// 10/11/2005

// Last Modified: 10/12/05

//---

// Calls to: cout<<

// Called by: Logic->PerformSubMenuOption

//---

// Arguments: Message - the message to print

//---

// Description: Prints out Message

//---

void UI::Print(char * Message)

{ // Begin Print

 cout<<Message;

} // End Print

//-----------------------PrintInteger---------------------------

// James Fishbaugh CS 441-01

// 10/13/2005

// Last Modified: 10/13/05

//---

// Calls to: cout<<

// Called by: Logic->PerformSubMenuOption

// Logic->ShowHeaps()

//---

// Arguments: IntToPrint - the integer to print

//---

// Description: Prints out an integer

//---

void UI::PrintInteger(int IntToPrint)

{ // Begin PrintInteger

 cout<<IntToPrint;

} // End PrintInteger

//-------------------------GetUnique---------------------------

// James Fishbaugh CS 441-01

// 10/11/2005

// Last Modified: 10/12/05

//---

// Calls to: cout<<

// cin>>

// getline()

// Called by: Logic->FindItemInHeap()

//---

// Arguments: HeapType - the type of heap

//---

 93

// Description: Prints out the correct prompt,gets

// the user input, and then returns it.

//---

char * UI::GetUnique(int HeapType)

{ // Begin GetUnique

 // To get the newline character

 char * Dummy = new char[256];

 char * UniqueString = new char[20];

 cout<<endl;

 if (HeapType == 1)

 { // Begin if

 cout<<"Enter employee name (max 20 chars): ";

 } // End if

 // Find an Employee with Address criteria

 else if (HeapType == 2)

 { // Begin else if

 cout<<"Enter employee address line 1 (max 20 chars): ";

 } // End else if

 // Find an Employee with Phone criteria

 else if (HeapType == 3)

 { // Begin else if

 cout<<"Enter employee phone number (max 9 chars): ";

 } // End else if

 // Find a Customer with Name criteria

 else if (HeapType == 4)

 { // Begin else if

 cout<<"Enter customer name (max 30 chars): ";

 } // End else if

 // Find a Customer with Address criteria

 else if (HeapType == 5)

 { // Begin else if

 cout<<"Enter customer address line 1 (max 20 chars): ";

 } // End else if

 // Find a Customer with Phone criteria

 else if (HeapType == 6)

 { // Begin else if

 cout<<"Enter customer phone number (max 9 chars): ";

 } // End else if

 // Find a Shipper with Name criteria

 else if (HeapType == 7)

 { // Begin else if

 cout<<"Enter shipper name (max 20 chars): ";

 } // End else if

 // Find a Shipper with Address criteria

 else if (HeapType == 8)

 { // Begin else if

 cout<<"Enter shipper address line 1 (max 20 chars): ";

 94

 } // End else if

 // Add a Shipper with Phone criteria

 else

 { // Begin else

 cout<<"Enter shipper phone number (max 9 chars): ";

 } // End else

 cin.getline(Dummy, 256);

 cin.getline(UniqueString, 20+1);

 return UniqueString;

} // End GetUnique

CriteriaMapper Class

//----------------------CriteriaMapper.h-----------------------

// James Fishbaugh CS 441-01

// 09/18/2005

// Last Modified: 10/12/05

//---

// Purpose - This file contains variable definitions and

// function declarations for CriteriaMapper.cpp

// This is an abstract class which provides

// polymorphic functionality.

//---

// If not defined, define

#ifndef INC_CRITERIAMAPPER_H

#define INC_CRITERIAMAPPER_H

class CriteriaMapper

{ // Begin CriteriaMapper

 public:

 // Pure virtual function

 // Makes this an abstract class

 virtual long int Map(char * String) = 0;

}; // End CriteriaMapper

#endif;

NameMapper Class

//------------------------NameMapper.h-------------------------

// James Fishbaugh CS 441-01

// 09/18/2005

// Last Modified: 09/20/05

//---

// Purpose - This file contains variable definitions and

// function declarations for NameMapper.cpp,

// is inherited from CriteriaMapper.h

//---

 95

// If not defined, define

#ifndef INC_NAMEMAPPER_H

#define INC_NAMEMAPPER_H

// Include files

#include "CriteriaMapper.h"

class NameMapper:public CriteriaMapper

{ // Begin NameMapper

 public:

 // Member functions

 long int Map(char * String);

}; // End NameMapper

#endif;

//----------------------NameMapper.cpp-------------------------

// James Fishbaugh CS 441-01

// 09/18/2005

// Last Modified: 10/12/05

//---

// Purpose - Implements NameMapper class provides a hash

// function for heap storage

//---

// Include files

#include "NameMapper.h"

//-------------------------NameMapper--------------------------

// James Fishbaugh CS 441-01

// 09/18/2005

// Last Modified: 09/20/05

//---

// Calls to: n/a

// Called by: Heap->Add()

//---

// Arguments: *String - a char string

//---

// Description: Returns a hash value

//---

long int NameMapper::Map(char * String)

{ // Begin NameMapper

 // A long int to store the hash value

 long int HashValue;

 // The hash function

 HashValue = ((int)String[0] + (int)String[1] +

 (int)String[2]) % 1000;

 // Return the hash value

 return HashValue;

} // End NameMapper

 96

AddressMapper Class
//----------------------AddressMapper.h------------------------

// James Fishbaugh CS 441-01

// 09/18/2005

// Last Modified: 10/12/05

//---

// Purpose - This file contains variable definitions and

// function declarations for AddressMapper.cpp,

// is inherited from CriteriaMapper.h

//---

// If not defined, define

#ifndef INC_ADDRESSMAPPER_H

#define INC_ADDRESSMAPPER_H

// Include files

#include "CriteriaMapper.h"

class AddressMapper:public CriteriaMapper

{ // Begin AddressMapper

 public:

 // Member functions

 long int Map(char * String);

}; // End AddressMapper

#endif;

//---------------------AddressMapper.cpp------------------------

// James Fishbaugh CS 441-01

// 09/18/2005

// Last Modified: 10/12/05

//---

// Purpose - Implements AddressMapper class provides a hash

// function for heap storage

//---

// Include files

#include "AddressMapper.h"

//-----------------------AddressMapper-------------------------

// James Fishbaugh CS 441-01

// 09/18/2005

// Last Modified: 10/12/05

//---

// Calls to: n/a

// Called by: Heap->Add()

//---

// Arguments: *String - a char string

//---

// Description: Returns a hash value

//---

long int AddressMapper::Map(char * String)

{ // Begin Map

 // A long int to store the hash value

 long int HashValue;

 // The hash function

 97

 HashValue = ((int)String[0] + (int)String[1] +

 (int)String[2]) % 1000;

 // Return the hash value

 return HashValue;

} // End Map

PhoneMapper Class

//------------------------PhoneMapper.h------------------------

// James Fishbaugh CS 441-01

// 09/18/2005

// Last Modified: 09/20/05

//---

// Purpose - This file contains variable definitions and

// function declarations for PhoneMapper.cpp,

// is inherited from CriteriaMapper.h

//---

// If not defined, define

#ifndef INC_PHONEMAPPER_H

#define INC_PHONEMAPPER_H

// Include files

#include "CriteriaMapper.h"

class PhoneMapper:public CriteriaMapper

{ // Begin PhoneMapper

 public:

 // Member functions

 long int Map(char * String);

}; // End PhoneMapper

#endif;

//----------------------PhoneMapper.cpp------------------------

// James Fishbaugh CS 441-01

// 09/18/2005

// Last Modified: 10/12/05

//---

// Purpose - Implements PhoneMapper class provides a hash

// function for heap storage

//---

// Include files

#include "PhoneMapper.h"

//------------------------PhoneMapper--------------------------

// James Fishbaugh CS 441-01

// 09/18/2005

// Last Modified: 09/20/05

//---

// Calls to: n/a

// Called by: Heap->Add()

//---

// Arguments: *String - a char string

//---

// Description: Returns a hash value

//---

 98

long int PhoneMapper::Map(char * String)

{ // Begin PhoneMapper

 // A long int to store the hash value

 long int HashValue;

 // The hash function

 HashValue = ((int)String[0] + (int)String[1] +

 (int)String[2]) % 1000;

 // Return the hash value

 return HashValue;

} // End PhoneMapper

IO Class

//---------------------------IO.h------------------------------

// James Fishbaugh CS 441-01

// 10/11/2005

// Last Modified: 10/13/05

//---

// Purpose - This file contains variable definitions and

// function declarations for IO.cpp

//---

// If not defined, define

#ifndef INC_IO_H

#define INC_IO_H

class IO

{ // Begin IO

 public:

 // Member functions

 char ** ReadFromFile(int & NumContacts);

}; // End IO

#endif;

//------------------------UI.cpp------------------------------

// James Fishbaugh CS 441-01

// 10/12/2005

// Last Modified: 10/12/05

//---

// Purpose - Handles the file input.

//---

// Include files

#include <stdio.h>

#include <fstream>

#include <iostream>

#include <stdlib.h>

#include "IO.h"

// The standard namespace

 99

using namespace std;

// Constants

// The maximum number of information that can be read

const static int MAX_DATA_READ = 25;

const static int TOTAL_SIZE = 150;

//------------------------ReadFromFile-------------------------

// James Fishbaugh CS 441-01

// 10/11/2005

// Last Modified: 10/13/05

//---

// Calls to: is_open()

// eof()

// exit()

// getline()

// Called by: Logic->PerformSubMenuOption()

//---

// Arguments: NumContacts - the number of contacts

//---

// Description: Reads info from a file and returns the

// contents in a character array.

//---

char ** IO::ReadFromFile(int & NumContacts)

{ // Begin ReadFromFile

 char * NameOfFile = new char[30];

 char * TypeOfContact = new char[10];

 char * Dummy = new char[256];

 // Allocated below

 char ** TempData;

 char ** ReturnData;

 int NumberOfContacts = 0;

 // Allocates space for TempData

 TempData = new char * [MAX_DATA_READ];

 for (int k = 0; k < MAX_DATA_READ; k++)

 { // Begin for

 // Also allocates space for Address

 TempData[k] = new char[TOTAL_SIZE];

 } // End for

 // Get the name of the file to open from the user

 cout<<endl<<"What is the name of the file (max 30 chars): ";

 cin>>NameOfFile;

 // Creates a new input stream object

 ifstream InputFile (NameOfFile);

 // Checks to make sure everything went ok opening the file

 if (!InputFile.is_open())

 { // Begin if

 cout<<endl<<"*** ERROR *** There was a problem opening ";

 cout<<NameOfFile<<", exiting..."<<endl<<endl;

 // If there was a problem, exit gracefully

 exit(1);

 } // End if

 100

 // Get the type of contact which is the first

 // line of the file

 InputFile>>TypeOfContact;

 // Ignore the rest of the line

 InputFile.getline(Dummy, 256);

 // Keep reading info until the end of file is reached

 while (!InputFile.eof())

 { // Begin while

 // Get the current line and store it in TempData[NumberOfContacts]

 InputFile.getline(TempData[NumberOfContacts], 150);

 // Increment the number of contacts

 NumberOfContacts++;

 } // End while

 // Allocate up the ReturnData char string array so

 // it is the perfect size before it is returned

 ReturnData = new char * [MAX_DATA_READ];

 for (int k = 0; k < NumberOfContacts; k++)

 { // Begin for

 // Also allocates space for Address

 ReturnData[k] = new char[TOTAL_SIZE];

 } // End for

 // Copy TempData to ReturnData

 for (int i=0; i < NumberOfContacts; i++)

 { // Begin for

 for (int j=0; j < TOTAL_SIZE; j++)

 { // Begin for

 ReturnData[i][j] = TempData[i][j];

 } // End for

 } // End for

 // Sets NumContacts (passed by reference) to the NumberOfContacts

 NumContacts = NumberOfContacts;

 // Return the perfectly sized and formated data

 return ReturnData;

} // End ReadFromFile

end

Appendix E - iUML model code

Logic Class

 101

State 1
validInput = TRUE

myUI = find-one UI

[menuSelection] = UI1:Show_Main_Menu[] on myUI

#$INLINE

#printf("The number received back from UI is: %d \n", menuSelection);

#$ENDINLINE

loop

 validInput = TRUE

 switch menuSelection

 case 1

 generate LC1:User_Chose_Create_New_Heap() to this

 break

 case 2

 generate LC6:User_Chose_Existing_Heap() to this

 break

 case 3

 #Need something here

 break

 default

 validInput = FALSE

 [] = UI3:Show_Invalid_Input[] on myUI

 [menuSelection] = UI1:Show_Main_Menu[] on myUI

 endswitch

 if(validInput) then

 break

 endif

endloop

State 2
myUI = find-one UI

validInput = TRUE

loop

 validInput = TRUE

 [menuSelection] = UI2:Show_Heap_Type_Menu[] on myUI

 switch menuSelection

 case 1

 myHeap= create unique Heap with HeapType = 'employee'

 case 2

 myHeap= create unique Heap with HeapType = 'customer'

 case 3

 myHeap= create unique Heap with HeapType = 'shipper'

 default

 validInput = FALSE

 [] = UI3:Show_Invalid_Input[] on myUI

 endswitch

 if validInput then

 break

 endif

endloop

tempHeapNum = myHeap.HeapNumber

this.CurrentHeapNumber = tempHeapNum

 102

generate LC2:User_Entered_Valid_Heap_Type() to this

State 3

myUI = find-one UI

myHeap = find-one Heap where HeapNumber = this.CurrentHeapNumber

tempHeapNum = this.CurrentHeapNumber

myCriteria = create unique CriteriaMapper with HeapNumber = tempHeapNum

link myHeap R6 myCriteria

loop

 validInput = TRUE

 [menuSelection] = UI4:Show_Criteria_Type_Menu[] on myUI

 switch menuSelection

 case 1

 myCriteria.CriteriaType = 'name'

 break

 case 2

 myCriteria.CriteriaType = 'address'

 break

 case 3

 myCriteria.CriteriaType = 'phone'

 break

 default

 validInput = FALSE

 [] = UI3:Show_Invalid_Input[] on myUI

 endswitch

 if(validInput) then

 break

 endif

endloop

[] = CM3:CreateChild[] on myCriteria

generate LC4:User_Entered_Valid_Criteria_Type() to this

State 4

myUI = find-one UI

{heaps} = find-all Heap

heapCount = countof {heaps}

for h in {heaps} do

 []=HP8:PrintHeapType[] on h

endfor

tempHeapNumber = 0

[tempHeapNumber] = UI6:Show_Choose_Heap_Menu[heapCount] on myUI

this.CurrentHeapNumber = tempHeapNumber

myHeap = find-one Heap where HeapNumber = tempHeapNumber

loop

 103

 [menuSelection] = UI5:Show_Sub_Menu[] on myUI

 switch menuSelection

 case 1

 [] = HP1:Add[] on myHeap

 break

 case 2

 [] = HP2:Find[] on myHeap

 break

 case 3

 [] = HP3:PrintAll[] on myHeap

 break

 case 4

 [] = HP4:Delete[] on myHeap

 break

 case 5

 [] = HP5:Empty[] on myHeap

 break

 case 6

 [] = HP6:ReadFromFile[] on myHeap

 break

 case 7

 [] = HP5:Empty[] on myHeap

 delete myHeap

 generate LC7:Return_To_Main_Menu() to this

 break

 case 8

 generate LC7:Return_To_Main_Menu() to this

 break

 default

 #Do Nothing

 endswitch

endloop

Heap Class

Heap - Add

tempHeapNumber = this.HeapNumber

{allContactsInHeap} = find Contact where HeapNumber = tempHeapNumber

tempHeapLength = countof {allContactsInHeap}

#---------------------------------------BEGIN FACTORY

myContact = create unique Contact with HeapNumber = tempHeapNumber & ContactType = this.HeapType

link this R5 myContact

[] = CT5:CreateChild[] on myContact

[] = CT1:Read[] on myContact

#---------------------------------------END FACTORY

[] = HP7:InsertIntoHeap[myContact] on this

Heap - Find

myUI = find-one UserInterface

 104

name = ""

$INLINE

printf("Enter the name of the person you would like to find: \n");

scanf("%s", name);

$ENDINLINE

person = find-one Contact where Name = name and HeapNumber = this.HeapNumber

[temp] = CT2:Write[] on person

[] = UI7:Print[temp] on myUI

Heap – PrintAll

myUI = find-one UserInterface

tempHeapNumber = this.HeapNumber

{contacts} = find Contact where HeapNumber = tempHeapNumber ordered by ArrayPosition

for con in {contacts} do

[temp] = CT2:Write[] on con

[] = UI7:Print[temp] on myUI

#$INLINE

#printf(temp);

#printf("\n");

#$ENDINLINE

Endfor

Heap - Delete

name = ""

$INLINE

printf("Enter the name of the person you would like to delete: \n");

scanf("%s", name);

$ENDINLINE

myContact = find-one Contact where Name = name & HeapNumber = this.HeapNumber

#Delete and unlink the child class

[] = CT4:Delete[] on myContact

unlink this R5 myContact

delete myContact

Heap - Empty

{myContacts} = find Contact where HeapNumber = this.HeapNumber

for con in {myContacts} do

 105

 #Delete and unlink the child class

 [] = CT4:Delete[] on con

 unlink this R5 con

 delete con

endfor

Heap - ReadFromFile

myContact = create unique Contact with HeapNumber = this.HeapNumber & ContactType = 'employee'

link this R5 myContact

[] = CT5:CreateChild[] on myContact

[] = CT3:ReadFromFile["bob 4619Drive 4062430000 11111.00"] on myContact

[] = HP7:InsertIntoHeap[myContact] on this

myContact = create unique Contact with HeapNumber = this.HeapNumber & ContactType = 'employee'

link this R5 myContact

[] = CT5:CreateChild[] on myContact

[] = CT3:ReadFromFile["joe 4619Drive 4062430000 11111.00"] on myContact

[] = HP7:InsertIntoHeap[myContact] on this

myContact = create unique Contact with HeapNumber = this.HeapNumber & ContactType = 'employee'

link this R5 myContact

[] = CT5:CreateChild[] on myContact

[] = CT3:ReadFromFile["ted 4619Drive 4062430000 11111.00"] on myContact

[] = HP7:InsertIntoHeap[myContact] on this

Heap - InsertIntoHeap
#Simplified to highest-priority first stack, since can't use math.h so can't use floor()

myCriteria = find-one CriteriaMapper where HeapNumber = this.HeapNumber

[priority] = CM1:Map[myContact] on myCriteria

myContact.Priority = priority

myContact.ArrayPosition = this.Tail

tail = this.Tail

$INLINE

tail = tail + 1;

$ENDINLINE

this.Tail = tail

parentPos = 0

pos = myContact.ArrayPosition

{contacts} = find Contact where HeapNumber = this.HeapNumber

count = countof {contacts}

if count > 1 then

loop

 pos = myContact.ArrayPosition

 $INLINE

 parentPos = pos - 1;

 $ENDINLINE

 parent = find-one Contact where HeapNumber = this.HeapNumber & ArrayPosition = parentPos

 if(parent.Priority < myContact.Priority) then

 myContact.ArrayPosition = parentPos

 parent.ArrayPosition = pos

 106

 if(parentPos = 0) then

 break

 endif

 else

 break

 endif

endloop

endif

#{contacts}## = find Contact where HeapNumber = this.HeapNumber

#count = countof {contacts}

#if count > 1 then

loop

pos = myContact.ArrayPosition

parentPos = 0

$INLINE

parentPos = pos - 1;

$ENDINLINE

parent = find-one Contact where HeapNumber = this.HeapNumber & ArrayPosition = parentPos

if myContact.Priority > parent.Priority then

myContact.ArrayPosition = parentPos

parent.ArrayPosition = pos

else

break

endif

endloop

#endif

#pos = myContact.ArrayPosition

#printf("POS: ");

#printf(pos);

#printf("\n");

#$INLINE

#printf("PRI: ");

#printf(priority);

#printf("\n");

#$ENDINLINE

test = 0

Heap - PrintHeapType

myCriteria = find-one CriteriaMapper where HeapNumber = this.HeapNumber

switch this.HeapType

 case 'employee'

 $INLINE

 printf("Employee ");

 $ENDINLINE

 case 'customer'

 $INLINE

 printf("Customer ");

 $ENDINLINE

 case 'shipper'

 $INLINE

 printf("Shipper ");

 $ENDINLINE

endswitch

 107

[] = CM2:PrintCriteriaType[] on myCriteria

Contact Class

Contact - CreateChild
switch this.ContactType

 case 'employee'

 myEmployee = create Employee with ContactNumber = this.ContactNumber

 link this R4 myEmployee

 case 'customer'

 myCustomer = create Customer with ContactNumber = this.ContactNumber

 link this R4 myCustomer

 case 'shipper'

 myShipper = create Shipper with ContactNumber = this.ContactNumber

 link this R4 myShipper

endswitch

Employee Class

Employee - Write
base = find-one Contact where ContactNumber = this.ContactNumber

name = base.Name

address = base.Address

phone = base.Phone

salary= this.Salary

data = name

#$INCLUDE_HEADER "string.h"

#$INLINE

#strcat(str," ");

#strcat(str, address);

#strcat(str," ");

#strcat(str, phone);

#printf("WRITE: ");

#printf(str);

#printf("\n");

#data = str;

#$ENDINLINE

Employee - ReadFromFile

base = find-one Contact where ContactNumber = this.ContactNumber

name = ""

address = ""

phone = ""

salary = ""

$INCLUDE_HEADER "stdio.h"

$INLINE

sscanf(data, "%s %s %s %s", name, address, phone, salary);

 108

printf(name);

printf("\n");

printf(address);

printf("\n");

printf(phone);

printf("\n");

printf(salary);

printf("\n");

$ENDINLINE

test = 3

base.Name = name

base.Address = address

base.Phone = phone

this.Salary = salary

Employee - Read

base = find-one Contact where ContactNumber = this.ContactNumber

name = ""

address = ""

phone = ""

salary = ""

$INLINE

printf("Enter Name:\n");

scanf("%s", name);

printf("Enter Address:\n");

scanf("%s", address);

printf("Enter Phone:\n");

scanf("%s", phone);

printf("Enter Salary:\n");

scanf("%s", salary);

$ENDINLINE

base.Name = name

base.Address = address

base.Phone = phone

this.Salary = salary

Employee - Delete
myContact = find-one Contact where ContactNumber = this.ContactNumber

unlink this R4 myContact

delete this

Customer Class

 109

Customer – Write
base = find-one Contact where ContactNumber = this.ContactNumber

name = base.Name

address = base.Address

phone = base.Address

purchases = this.Purchases

amountdue = this.AmountDue

data = name

#$INLINE

#include <string.h>

#strcat(data,name);

#strcat(data," ");

#strcat(data,address);

#strcat(data," ");

#strcat(data,phone);

#$ENDINLINE

Customer – ReadFromFile

base = find-one Contact where ContactNumber = this.ContactNumber

name = ""

address = ""

phone = ""

purchases = ""

amountdue = ""

$INCLUDE_HEADER "stdio.h"

$INLINE

sscanf(data, "%s %s %s %s %s", name, address, phone, purchases, amountdue);

printf(name);

printf("\n");

printf(address);

printf("\n");

printf(phone);

printf("\n");

printf(purchases);

printf("\n");

printf(amountdue);

printf("\n");

$ENDINLINE

test = 3

base.Name = name

base.Address = address

base.Phone = phone

this.Purchases = purchases

this.AmountDue = amountdue

Customer - Read

base = find-one Contact where ContactNumber = this.ContactNumber

 110

name = ""

address = ""

phone = ""

purchases = ""

amountdue = ""

$INLINE

printf("Enter Name:\n");

scanf("%s", name);

printf("Enter Address:\n");

scanf("%s", address);

printf("Enter Phone:\n");

scanf("%s", phone);

printf("Enter Purchases:\n");

scanf("%s", purchases);

printf("Enter Amount Due:\n");

scanf("%s", amountdue);

$ENDINLINE

base.Name = name

base.Address = address

base.Phone = phone

this.Purchases = purchases

this.AmountDue = amountdue

Customer –Delete

myContact = find-one Contact where ContactNumber = this.ContactNumber

unlink this R4 myContact

delete this

Shipper Class

Shipper – Write
base = find-one Contact where ContactNumber = this.ContactNumber

name = base.Name

address = base.Address

phone = base.Phone

pickups= this.Pickups

data = name

Shipper – ReadFromFile

base = find-one Contact where ContactNumber = this.ContactNumber

name = ""

address = ""

phone = ""

pickups = ""

$INCLUDE_HEADER "stdio.h"

 111

$INLINE

sscanf(data, "%s %s %s %s", name, address, phone, pickups);

printf(name);

printf("\n");

printf(address);

printf("\n");

printf(phone);

printf("\n");

printf(pickups);

printf("\n");

$ENDINLINE

test = 3

base.Name = name

base.Address = address

base.Phone = phone

this.Pickups = pickups

Shipper – Read

base = find-one Contact where ContactNumber = this.ContactNumber

name = ""

address = ""

phone = ""

pickups = ""

$INLINE

printf("Enter Name:\n");

scanf("%s", name);

printf("Enter Address:\n");

scanf("%s", address);

printf("Enter Phone:\n");

scanf("%s", phone);

printf("Enter Pickups:\n");

scanf("%s", pickups);

$ENDINLINE

base.Name = name

base.Address = address

base.Phone = phone

this.Pickups = pickups

Shipper - Delete

myContact = find-one Contact where ContactNumber = this.ContactNumber

unlink this R4 myContact

delete this

UserInterface Class

 112

UI – Show Main Menu
menuSelection = 0

$INLINE

printf("\nMAIN MENU \n");

printf("1) Create a new heap \n");

printf("2) Work with an existing heap \n");

printf("3) Quit \n");

scanf("%d", menuSelection);

$ENDINLINE

UI – Show Heap Type Menu
menuSelection = 0

$INLINE

printf("What type of heap do you want to create? \n");

printf("1) Employee \n");

printf("2) Customer \n");

printf("3) Shipper \n");

scanf("%d", menuSelection);

$ENDINLINE

UI – Show Invalid Input
$INLINE

printf("Invalid input. \n");

$ENDINLINE

UI – Show Criteria Type Menu
menuSelection = 0

$INLINE

printf("What type of criteria? \n");

printf("1) Name\n");

printf("2) Address\n");

printf("3) Phone\n");

scanf("%d", menuSelection);

$ENDINLINE

UI – Show Sub Menu
menuSelection = 0

$INLINE

printf("\nSUB MENU \n");

printf("1) Add \n");

printf("2) Find \n");

printf("3) Print All \n");

printf("4) Delete \n");

printf("5) Empty \n");

printf("6) Read \n");

printf("7) Delete Entire Heap \n");

printf("8) Back to Main Menu \n");

printf("9) Quit \n");

scanf("%d", menuSelection);

$ENDINLINE

 113

UI – Show Choose Heap Menu
menuSelection = 0

$INLINE

printf("\nChoose one of the following heaps: ");

scanf("%d", menuSelection);

$ENDINLINE

UI - Print
$INLINE

printf(str);

printf("\n");

$ENDINLINE

UI – Print Integer
$INLINE

printf(num);

printf("\n");

$ENDINLINE

CriteriaMapper Class

CriteriaMapper – Map
Pure virtual

CriteriaMapper – PrintCriteriaType
switch this.CriteriaType

 case 'name'

 $INLINE

 printf("Name");

 printf("\n");

 $ENDINLINE

 case 'address'

 $INLINE

 printf("Address");

 printf("\n");

 $ENDINLINE

 case 'phone'

 $INLINE

 printf("Phone");

 printf("\n");

 $ENDINLINE

endswitch

CriteriaMapper – CreateChild
switch this.CriteriaType

 114

 case 'name'

 myName = create NameMapper with CriteriaNumber = this.CriteriaNumber

 link this R7 myName

 case 'address'

 myAddress = create AddressMapper with CriteriaNumber = this.CriteriaNumber

 link this R7 myAddress

 case 'phone'

 myPhone = create PhoneMapper with CriteriaNumber = this.CriteriaNumber

 link this R7 myPhone

endswitch

NameMapperClass

NameMapper – Map
name = con.Name

switch con.ContactNumber

#1 bob

#2 joe

#3 ted

case 1

 value = 307

case 2

 value = 318

case 3

 value = 317

default

 value = 555

endswitch

#The following code absolutely should work. It does successfully get the value,

#but when it returns it returns a null value for some reason I cannot understand.

#Other sections of code return ints with no problem, but those are always values

#that are inputted by the user. (e.g. UI.mainMenu).

#name = con.Name

#$INCLUDE_HEADER "stdio.h"

#$INCLUDE_HEADER "string.h"

#$INLINE

#int temp;

#temp = (int)((int)name[0] + (int)name[1] + (int)name[2]);

#value = temp;

#$ENDINLINE

#$INLINE

#printf("VALUE: ");

#printf("%d", value);

#printf("\n");

#$ENDINLINE

AddressMapper Class

AddressMapper – Map

switch con.ContactNumber

#1 bob

 115

#2 joe

#3 ted

case 1

 value = 267

case 2

 value = 974

case 3

 value = 395

default

 value = 555

endswitch

PhoneMapper Class

PhoneMapper – Map

switch con.ContactNumber

#1 bob

#2 joe

#3 ted

case 1

 value = 847

case 2

 value = 224

case 3

 value = 943

endswitch

Initialization Segment

This is for initialization and linking purposes.

This cannot be used as a main method.

myLogic = create Logic with Current_State = 'Waiting_For_Program_Start'

myUI = create UI with Current_State = 'Waiting_For_Command'

#link myLogic R1 myUI

generate LC5:Start_Program() to myLogic

Test Methods

Employee Tests
#This Test leverages iUMLs built-in functionality to easily monitor the instances of records in the table

 116

#This test should be run with instance windows open for Contact and Employee tables

#Places where the instance values should be checked are indicated with a comment.

myContact = create unique Contact with HeapNumber = 1 & ContactType = 'employee'

#Check that myContact instance is created

[] = CT5:CreateChild[] on myContact

#Check that Employee instance is created

[] = CT3:ReadFromFile["bob 4619Drive 4062430000 11111.00"] on myContact

#Check values read in to employee instance

[result] = CT2:Write[] on myContact

$INLINE

printf("\nTEST RESULTS -------------\n");

printf(result);

printf("\n--------------------------------------\n");

$ENDINLINE

[] = CT4:Delete[] on myContact

#Verify that Employee record is deleted

delete myContact

#Verify that Contact record is deleted

myContact = create unique Contact with HeapNumber = 1 & ContactType = 'employee'

[] = CT5:CreateChild[] on myContact

$INLINE

printf("ENTER TEST DATA: dan 1234Drive 4062430000 222222.00 \n");

$ENDINLINE

[] = CT1:Read[] on myContact

#Verify employee has appropriate values

[result] = CT2:Write[] on myContact

$INLINE

printf("\nTEST RESULTS -------------\n");

printf(result);

printf("\n--------------------------------------\n");

$ENDINLINE

#Verify data written out.

[] = CT4:Delete[] on myContact

delete myContact

#END OF TEST

Customer Tests
#This Test leverages iUMLs built-in functionality to easily monitor the instances of records in the table

#This test should be run with instance windows open for Contact and Customer tables

#Places where the instance values should be checked are indicated with a comment.

myContact = create unique Contact with HeapNumber = 1 & ContactType = 'customer'

#Check that myContact instance is created

 117

[] = CT5:CreateChild[] on myContact

#Check that Customer instance is created

[] = CT3:ReadFromFile["bob 4619Drive 4062430000 111 222"] on myContact

#Check values read in to customer instance

[result] = CT2:Write[] on myContact

$INLINE

printf("\nTEST RESULTS -------------\n");

printf(result);

printf("\n--------------------------------------\n");

$ENDINLINE

[] = CT4:Delete[] on myContact

#Verify that Customer record is deleted

delete myContact

#Verify that Contact record is deleted

myContact = create unique Contact with HeapNumber = 1 & ContactType = 'customer'

[] = CT5:CreateChild[] on myContact

$INLINE

printf("ENTER TEST DATA: dan 1234Drive 4062430000 222 333 \n");

$ENDINLINE

[] = CT1:Read[] on myContact

#Verify customer has appropriate values

[result] = CT2:Write[] on myContact

$INLINE

printf("\nTEST RESULTS -------------\n");

printf(result);

printf("\n--------------------------------------\n");

$ENDINLINE

#Verify data written out.

[] = CT4:Delete[] on myContact

delete myContact

#END OF TEST

ShipperTests
#This Test leverages iUMLs built-in functionality to easily monitor the instances of records in the table

#This test should be run with instance windows open for Contact and Shipper tables

#Places where the instance values should be checked are indicated with a comment.

myContact = create unique Contact with HeapNumber = 1 & ContactType = 'shipper'

#Check that myContact instance is created

[] = CT5:CreateChild[] on myContact

#Check that Shipper instance is created

[] = CT3:ReadFromFile["bob 4619Drive 4062430000 123"] on myContact

 118

#Check values read in to shipper instance

[result] = CT2:Write[] on myContact

$INLINE

printf("\nTEST RESULTS -------------\n");

printf(result);

printf("\n--------------------------------------\n");

$ENDINLINE

[] = CT4:Delete[] on myContact

#Verify that Shipper record is deleted

delete myContact

#Verify that Contact record is deleted

myContact = create unique Contact with HeapNumber = 1 & ContactType = 'shipper'

[] = CT5:CreateChild[] on myContact

$INLINE

printf("ENTER TEST DATA: dan 1234Drive 4062430000 234 \n");

$ENDINLINE

[] = CT1:Read[] on myContact

#Verify shipper has appropriate values

[result] = CT2:Write[] on myContact

$INLINE

printf("\nTEST RESULTS -------------\n");

printf(result);

printf("\n--------------------------------------\n");

$ENDINLINE

#Verify data written out.

[] = CT4:Delete[] on myContact

delete myContact

#END OF TEST

Criteria-Contact-Module

#This test script should be run with a local varibles window open in order to monitor the "value"

#variable.

myContact = create unique Contact with ContactType = 'employee'

[] = CT5:CreateChild[] on myContact

[] = CT3:ReadFromFile["bob 4619Drive 4062430000 11111.00"] on myContact

NAME

myNameMapper = create unique CriteriaMapper with CriteriaType = 'name'

[] = CM3:CreateChild[] on myNameMapper

[value] = CM1:Map[myContact] on myNameMapper

$INLINE

printf("\nName value should be: 307\n");

$ENDINLINE

 119

ADDRESS

myAddressMapper = create unique CriteriaMapper with CriteriaType = 'address'

[] = CM3:CreateChild[] on myAddressMapper

[value] = CM1:Map[myContact] on myAddressMapper

$INLINE

printf("\nAddress value should be: 267 \n");

$ENDINLINE

PHONE

myPhoneMapper = create unique CriteriaMapper with CriteriaType = 'phone'

[] = CM3:CreateChild[] on myPhoneMapper

[value] = CM1:Map[myContact] on myPhoneMapper

$INLINE

printf("\nPhone value should be: 847\n");

$ENDINLINE

#END OF TEST

Criteria-Heap-Module
heap1 = create unique Heap with HeapType = 'employee'

nC = create unique CriteriaMapper with HeapNumber = heap1.HeapNumber & CriteriaType = 'name'

[] = CM3:CreateChild[] on nC

link heap1 R6 nC

[] = HP8:PrintHeapType[] on heap1

$INLINE

printf("\n");

$ENDINLINE

nC.CriteriaType = 'address'

[] = HP8:PrintHeapType[] on heap1

$INLINE

printf("\n");

$ENDINLINE

nC.CriteriaType = 'phone'

[] = HP8:PrintHeapType[] on heap1

$INLINE

printf("\n");

$ENDINLINE

heap1.HeapType = 'customer'

nC.CriteriaType = 'name'

[] = HP8:PrintHeapType[] on heap1

$INLINE

printf("\n");

$ENDINLINE

nC.CriteriaType = 'address'

[] = HP8:PrintHeapType[] on heap1

$INLINE

printf("\n");

 120

$ENDINLINE

nC.CriteriaType = 'phone'

[] = HP8:PrintHeapType[] on heap1

$INLINE

printf("\n");

$ENDINLINE

heap1.HeapType = 'shipper'

nC.CriteriaType = 'name'

[] = HP8:PrintHeapType[] on heap1

$INLINE

printf("\n");

$ENDINLINE

nC.CriteriaType = 'address'

[] = HP8:PrintHeapType[] on heap1

$INLINE

printf("\n");

$ENDINLINE

nC.CriteriaType = 'phone'

[] = HP8:PrintHeapType[] on heap1

$INLINE

printf("\n");

$ENDINLINE

You should see 9 different combinations of heap and criteria type printed to the console

#End test

Heap-Contact-Criteria-Module
myHeap = create unique Heap with HeapType = 'employee'

myCriteria = create unique CriteriaMapper with HeapNumber = myHeap.HeapNumber & CriteriaType = 'name'

[] = CM3:CreateChild[] on myCriteria

link myHeap R6 myCriteria

#SEED WITH VALUES

myContact = create unique Contact with HeapNumber = myHeap.HeapNumber & ContactType = 'employee'

link myHeap R5 myContact

[] = CT5:CreateChild[] on myContact

[] = CT3:ReadFromFile["bob 4619Drive 4062430000 11111.00"] on myContact

[] = HP7:InsertIntoHeap[myContact] on myHeap

myContact = create unique Contact with HeapNumber = myHeap.HeapNumber & ContactType = 'employee'

link myHeap R5 myContact

[] = CT5:CreateChild[] on myContact

[] = CT3:ReadFromFile["joe 4619Drive 4062430000 11111.00"] on myContact

[] = HP7:InsertIntoHeap[myContact] on myHeap

#ADD

#INPUT THE FOLLOWING INFO: ted 4619Drive 4062430000 11111.00

[] = HP1:Add[] on myHeap

#Check that new Contact and Employee exists.

#INSERT INTO HEAP

#Verify that contact bob is in arrayposition # 2

 121

#PRINT ALL

[] = HP3:PrintAll[] on myHeap

#Verify that they are printed in this order: joe, ted, bob

#END OF TEST

Heap-Contact-Module

myHeap = create unique Heap with HeapType = 'employee'

myCriteria = create unique CriteriaMapper with HeapNumber = myHeap.HeapNumber & CriteriaType = 'name'

[] = CM3:CreateChild[] on myCriteria

#READ FROM FILE

[] = HP6:ReadFromFile[] on myHeap

#Verify that there are 3 contact instances and 3 employee instances, with all fields populated

#DELETE

Input: bob

[] = HP4:Delete[] on myHeap

#Verify that contact bob, and accompanying child class, have been deleted.

#FIND

Input: ted

[] = HP2:Find[] on myHeap

#Verify that program output "ted"

#Empty

[] = HP5:Empty[] on myHeap

#Verify that all contact and child instances have been deleted.

#END OF TEST.

Logic-Heap-UI-Module
#Set state to Create New Heap.

#Input null, alpha, too large a number, too small a number, then valid number.

#Verify that heap was created.

#Verify that state advanced.

#myLogic = create Logic with Current_State = 'Waiting_For_Program_Start'

myLogic = create Logic with Current_State = 'Display_Main_Menu_And_Wait_For_Input'

#myLogic = create Logic with Current_State = 'Display_Type_Of_Heap_Menu_Wait_For_User_Input'

myUI = create UI with Current_State = 'Waiting_For_Command'

#generate LC5:Start_Program() to myLogic

generate LC1:User_Chose_Create_New_Heap() to myLogic

Logic-Criteria-UI-Module
#Set state to User Entered Valid Heap.

#Input null, alpha, too large a number, too small a number, then valid number.

#Verify that criteria instance was created. Verify that state advanced.

myLogic = create Logic with Current_State = 'Display_Type_Of_Heap_Menu_Wait_For_User_Input'

myUI = create UI with Current_State = 'Waiting_For_Command'

myHeap = create unique Heap with HeapType = 'employee'

myLogic.CurrentHeapNumber = 1

 122

generate LC2:User_Entered_Valid_Heap_Type() to myLogic

#myLogic = create Logic with Current_State = 'Waiting_For_Program_Start'

myLogic = create Logic with Current_State = 'Display_Main_Menu_And_Wait_For_Input'

#myLogic = create Logic with Current_State = 'Display_Type_Of_Heap_Menu_Wait_For_User_Input'

myUI = create UI with Current_State = 'Waiting_For_Command'

#generate LC5:Start_Program() to myLogic

generate LC1:User_Chose_Create_New_Heap() to myLogic

Logic-UI-Module
This is for initialization and linking purposes.

This cannot be used as a main method.

myLogic = create Logic with Current_State = 'Waiting_For_Program_Start'

myUI = create UI with Current_State = 'Waiting_For_Command'

#link myLogic R1 myUI

generate LC5:Start_Program() to myLogic

	TESTING xUML: A STUDY OF IMPLEMENTING AND TESTING MODEL DRIVEN ARCHITECTURE
	Let us know how access to this document benefits you.
	Recommended Citation

	Microsoft Word - FlahertyDylan-Thesis.docx

