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 Forest fire risk assessment becomes critical for developing forest and fire management 

strategies in Korea since the magnitude of damage from fires significantly increased over 

the past decades. Fire behavior probability is one of the major components in quantifying 

fire risk, and is often presented as burn probability. Burn probability estimation requires a 

proper estimation of fire occurrence probability because fire spread is largely influenced 

by ignition locations in addition to other environmental factors, such as weather, 

topography, and land covers.  

   

The objective of this study is to assess forest fire risk over a large forested landscape in 

and around the City of Gyeongju, Republic of Korea, while incorporating fire occurrence 

probability into estimation of burn probability. A fire occurrence probability model with 

spatial covariates and autocorrelation was developed using historical record of fire 

occurrence between 1991 and 2012 and a spatial point processing (SPP) method. A total 

of 502 fire ignition points were generated using the fire occurrence probability model.  

Monte Carlo fire spread simulations were performed from the ignition points under the 

95% extreme weather scenario, resulting in burn probability estimation for each land parcel 

across the landscape. Finally, the burn probability was combined with government-

appraised land property value to assess potential loss value per land parcel due to forest 

fires. 

 

 The density of forest fires of the study landscape was associated with lower elevation, 

moderate slope, coniferous land cover, distance to road, and higher tomb density. A 

positive spatial autocorrelations between the locations of fire ignition was also found. An 

area-interaction point process model including the spatial covariate effects and interpoint 

interaction term appeared to be suitable as a fire occurrence probability model. A 

correlation analysis among the fire occurrence probability, burn probability, land property 

value, and potential value loss indicates that fire risk is largely associated with spatial 

pattern of burn probability (Pearson’s correlation 𝑟=0.7084). These results can provide 

forest and fire management authorities in the study region with useful information for 

decision making. It is also hoped that the methodology presented here can provide an 

improved framework for assessing fire risk in other regions. 
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Overview 

Increased potential risk of forest fires has been one of the main concerns in forest 

management. Real and visible threats of fires often attract public attention on the need to assess 

and address fire hazard in forested lands especially near urban, suburban, rural and agricultural 

lands. A long tradition of fire suppression and prevention lead to the excessive accumulation of 

flammable fuels in many landscapes around the world, partly causing larger and more severe fires. 

This “wildfire paradox” calls for a strategic fire risk assessment (Calkin et al., 2014), which 

includes clear objectives and integrated approaches in understanding physical, ecological and 

social aspects of fire (McCaffrey et al., 2013).  

The process of forest fire risk assessment generally includes the estimation of potential loss 

and probability of the loss taking place (McCaffrey, 2006). Finney (2005) and Tutsch et al. (2010) 

presented these two components as fire effect and fire behavior probability, respectively. Fire 

behavior probability is often measured as burn probability, the number of times a unit area burned 

against the total number of burning. It is important to distinguish burn probability from fire 

occurrence probability which indicates the relative frequency of fires, even though they are often 

used interchangeably. Fire occurrence probability does not involve a likelihood of fire spread, thus 

provides limited sight of fire risk assessment. On the other hand, burn probability cannot be 

evaluated adequately without involving an estimation of fire occurrence probability, because fires 

are not randomly ignited. The occurrence of fire is influenced by numerous environmental factors 

such as topography, fuels, and human accessibility while the spread of fire is influenced by 

weather, topography, and fuels. Previous research efforts were mostly put into assessing forest fire 

risks either based on fire occurrence probability as a surrogate for fire behavior probability, or by 

analyzing fire behavior probability without adequately incorporating fire occurrence probability.  
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Relying on only one measure in fire risk assessment certainly limits our ability to fully understand 

potential fire risks (Finney, 2005; Bar Massada et al., 2009). 

The goal of this study is to provide a consolidated insight into forest fire risk assessment 

by integrating fire occurrence probability, burn probability and social values of a given study 

landscape. This study is anticipated to serve the needs of constructing a more accurate and 

comprehensive fire-risk map (Carmel et al., 2008) which would help in forest planning and 

decision-making on resource allocation for fire management. This study consists of two major 

parts: 1) construction of a forest fire ignition density model for a given study landscape, and 2) 

estimation of burn probability in each land parcel across the landscape.  The city of Gyeongju 

located in Gyeongsangbuk-do, Republic of Korea (Korea) was used as a study landscape because 

of its abundant fire records over the past 20 years. The two major parts of the study are presented 

in detail in Chapters 1 and 2, respectively.  

A spatial point processing (SPP) was used to develop a forest fire ignition density model 

that estimates the likelihood of fire occurrence based on fire history and local characteristics of the 

study landscape. Topography, land cover, and the accessibility to public transportation and 

community infrastructure (e.g. roads and structures) for the study landscape were selected as the 

variables influencing the fire occurrence probability.  A large number of fire ignition locations 

were derived from the density model and used to simulate fire spreads across the landscape.  The 

areas burned from each simulated fire during a given fire duration were recorded and used to 

estimate burn probability in each 10m x 10m pixel on the landscape. A forest fire spread model 

developed by Lee et al. (2011) was used as a fire simulator. Burn probability was then combined 

with government-appraised property value of each pixel on the study landscape to estimate 

potential loss.  
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 The density of forest fire ignition points in Gyeongju was found to be associated with 

lower elevation, lower slope, coniferous land cover, distance to road, and higher tomb density. An 

indication of additional clustering of ignition points was observed after taking into account the 

spatial trends. Thus, an inhomogeneous area-interaction point process model with both the spatial 

covariates effect and a positive interpoint interaction term was developed to estimate the likelihood 

of fire occurrence over the study landscape. The resulted point process model exhibited better 

goodness of fit and performance compared to an inhomogeneous Poisson point process model and 

a spatial logistic regression model. 

A total of 502 fire ignition points were generated using the fire occurrence probability 

model for Monte Carlo fire spread simulation. Burn probability calculated per pixel ranged from 

0.0 to 0.076, and revealed forest lands around Geumo and Gumi mountains as high burn probability 

areas.  Potential loss estimated as a product of burn probability and government-appraised land 

property value ranged approximately between 0 and 19,000 won per 𝑚2. The results showed that 

the potential loss was more affected by burn probability (Pearson’s correlation 𝑟 = 0.7084, 𝑝 <

0.0001) than property value. 

This study demonstrates that it is practically feasible to estimate burn probability using 

Monte Carlo fire spread simulation while incorporating fire occurrence probability. It is hoped that 

the fire risk assessment approach developed in this study, as well as the end product of the study, 

a spatial distribution of fire risk represented by potential loss, can provide useful information for 

forest and fire management planning across a large landscape.  
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Chapter 1. Modeling forest fire ignition pattern in Gyeongju, Korea 

1.1 Introduction 

Predicting the occurrences of forest fire has long been examined with a variety of different 

methodologies. Frequently, analyses involve investigations of spatial patterns of fire occurrences 

as a consequence of several spatial covariates (e.g., topography, weather and human activities) or 

physical properties of fire (e.g., propagation and spotting). With advanced geographical 

information systems (GIS) and spatial statistical analysis tools, recent studies have been attempting 

to respond to needs for accurate prediction of natural or human caused fire occurrences.   

There are several factors that generally influence forest fire ignition, including elevation, 

weather, fuel characteristics, and accessibility to public transportation and community facilities 

(such as roads, buildings, and campsites). These natural and human environmental factors have 

been commonly analyzed as variables in past studies on fire occurrence (e.g., Chou et al., 1993; 

Vega-García et al., 1993; Pew et al., 2001; Preisler et al., 2004). However, their influences on fire 

occurrence may vary vastly across ecosystems, both spatially and temporally (Yang et al., 2007), 

Therefore, distinctive site-specific features should be identified for different regions and accounted 

for as environmental variables that affect fire occurrence. In Portugal, where agriculture residue 

burning is a common practice, agricultural land use was found to be a significant predictor of fire 

ignition (Catry et al., 2010). Conversely, density of goats and sheep was linked to fire ignition in 

a region of central Spain (Romero-Calcerrada et al., 2008). Mercer and Prestemon (2005) linked 

socio-economic variables such as poverty and unemployment with occurrence of wildfires. Police 

density or whether it is Saturday or not were considered as potential predictos of arson-caused 

wildfires in Florida (Prestemon and Butry, 2005). Likewise, many previous studies agree that 
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cultural characteristics and behaviors should also be considered to derive appropriate explanatory 

variables for forest fire ignition. 

In Korea, most forest fires are anthropogenic. No naturally occurring forest fire was 

reported in Korea during the recent 3 decades (Lee et al., 2006). Korea is a mountainous country 

with almost 70% of its territory being forested. The country is unique in that there are many 

fragmented croplands and a large number of tombs located on forestlands. Both of these 

characteristics are closely related with forest fire events in Korea. According to the annual report 

of forest fire statistics (Korea Forest Service, 2012), an average of 387 forest fires burned 733.77 

hectares across the entire territory of Korea annually from 2002 to 2011. The major causes of these 

forest fires were campers and hikers (44%), followed by incineration of garbage (8%), agricultural 

residues (7%), and tomb visitors (7%). Although tomb visitors accounted for only 7% of the total 

forest fire occurrence in these statistics, its proportion could be larger because 4% of forest fires 

in Korea started with improperly discarded cigarettes, likely from hikers and tomb visitors. Thus, 

densities of tombs and croplands as well as roads or hiking trails could potentially be related to the 

occurrence of forest fires in Korea. 

Environmental, developmental, and cultural attributes of the region may thereby be 

associated with each other and collectively influence the fire occurrences. Conventionally, 

previous studies have adopted a logistic regression modeling approach involving these factors for 

spatially estimating forest fire probability (Prestemon et al., 2013) (e.g., Pew et al., 2001; Garcia 

et al., 1995; Catry et al., 2010; Preisler et al., 2004; Chou, 1993), since the occurrence of fire can 

be regarded as binary (i.e. presence-absence). The method postulates a finite number of randomly 

selected absence points (or pixels) to compare them with cases of presence. However, Pearce and 

Boyce (2006) noted that most geographical distribution data are actually presence-only data rather 
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than presence-absence, and warned that logistic regression models might not be appropriate in 

most instances because of this "pseudo-absence" problem. The term pseudo-absence indicates that 

randomly generated absence points of an event do not necessarily represent true absence and may 

thus introduce bias in prediction. Warton and Shepherd (2010) later encouraged the use of spatial 

point processes (SPP) for the construction of “specificationally, interpretatively, and 

implementationally sound” modeling, and proved the asymptotic equivalence of logistic 

regression to Poisson point process modeling. 

The main idea of an SPP is to consider the locations of objects of interest (e.g. trees, cells, 

animals, etc.) as points, and derive inferences about the pattern of those points with or without 

parameters (Illian et al., 2008). The pattern refers to the configuration of a set of finite points in a 

multidimensional (usually two) space. The points may be randomly distributed across the plane, 

clustered, or dispersed. The parameters influence the spatial arrangement of points and may 

incorporate spatial trends of auxiliary variables, spatial dependence of the response variable itself 

(i.e. spatial autocorrelation), or both. The advance of computational techniques and statistical tools 

have promoted the use of SPP in analyzing spatial data with complicated covariates using different 

model-based and simulation-based approaches. Various extensions of SPP models are available, 

including homogeneous or inhomogeneous Poisson, Gibbs, Cox, and marked point process 

models, which have been widely used to explain natural or artificial events such as species 

distribution patterns in forestry (Stoyan and Penttinen, 2000).  

In terms of analyzing the patterns of forest fires, Podur et al. (2003) initiated the application 

of spatial point pattern analysis to occurrences of lightning-caused forest fires in Ontario, Canada, 

finding that locations of fires are clustered at a relatively small scale, but regularly spaced at a 

larger scale. Genton et al. (2006) and Hering et al. (2009) demonstrated useful implementations of 
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extensions of the K-function (e.g., L-function, inhomogeneous K- and K-cross function) on cause-

specific wildfire ignition locations in a region of Florida. Turner (2009) also employed the use of 

point process modelling techniques in analysis of forest fire location data. Yang et al. (2007) 

examined the influence of several spatial covariates involving topography, ownership, and 

municipalities on human-caused forest fires in the Missouri Ozark highlands and developed a point 

process model of fire occurrence probability under an assumption of a heterogeneous spatial trend.  

These previous studies successfully contributed to the introduction of the SPP to forest fire 

analysis. However, their application is limited by either a narrow focus on statistical properties of 

forest fires or, exclusive of social and ecological perspectives, does not fully utilize the statistical 

information available. For example, the occurrence of spatial dependence among the response 

variables themselves (especially at small scales), often referred to as spatial autocorrelation, has 

been widely used in interpreting ecological data. However, only a few existing studies have 

adequately addressed this aspect of forest fire occurrence (e.g., Chou et al., 1993; Hering et al., 

2009; Juan et al., 2012). 

In this study, we aimed to model the density of forest fire ignitions using SPP while taking 

advantage of both statistical and environmental information available. Environmental factors 

affecting the occurrence of forest fire, as well as the interactions between fire occurrences were 

considered simultaneously in the forms of spatial covariates and autocorrelations, respectively, in 

order to derive more accurate predictions of fire probability. To address these objectives, we 

examined forest fire ignition data from 1991 to 2012 over a study landscape in Korea. The 

locations of forest fire ignition during the past 21 years were recorded as a point pattern and 

analyzed based on the theory of SPP.  The fundamentals of this theory will be expanded upon in 

the next section. Using factors such as topography (elevation, aspect, and slope), land use, forest 
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type, and human accessibility (distance to road and structures), the density of fire ignition points 

was modeled and the influence of each variable on forest fire occurrence addressed. The densities 

of tombs and croplands were also considered in the model as variables to take into account any 

site-specific and cultural characteristics. Spatial autocorrelation of ignition locations was examined 

in order to verify the attributes of the forest fire ignition point pattern at both small- and large-

scales. To account for all these factors, three possible models were suggested in phases: 1) 

homogeneous Poisson model (null model, involving neither spatial trends nor autocorrelation), 2) 

inhomogeneous Poisson model (spatial trends without autocorrelation), and 3) inhomogeneous 

area-interaction model (spatial trends with autocorrelation). We compared the performances of the 

three models with different structures, as well as the conventional logistic regression model, and 

chose the best model based on AIC to obtain a more reliable prediction for forest fire ignition 

probability in the study landscape. The estimation of fire ignition density provided by the final 

model is expected to be useful for further investigation of forest fire risk assessment for the study 

region. 

 

1.2 Spatial Point Process Modeling 

Spatial point process (SPP) modeling is the most common method for analyzing spatial 

point process data. The collection of locations, 𝑥𝑖 (𝑖 = 1, … , 𝑛), representing an object or event of 

interest (e.g. forest fire ignition location) forms a point pattern 𝐱 = {𝑥1, … , 𝑥𝑛} in a bounded 

region. Usually a point location 𝑥𝑖 is denoted as an event in order to distinguish it from an arbitrary 

point location 𝒖 (Diggle, 1983).  

The goal of a SPP model is to elucidate and model the spatial structure of event locations 

in a stochastic manner. The structure of a set of finite point locations (i.e. point pattern) is 
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categorized by its first- and second- order spatial structure. The first-order property is the intensity 

of the process, λ, which denotes the density of events per unit area. The intensity λ at any point 𝒖 

in the region is represented as: 

 
λ(𝒖) =  lim

|𝑑𝒖|→0
{

E(𝑛(𝑑𝒖))

|𝑑𝒖|
}, (1) 

where 𝑑(𝒖) denotes a small region around the point 𝒖, 𝑛(𝑑𝑢) is the number of events in 𝑑(𝒖), 

E(𝑛(𝑑𝒖)) is the expected number of events in 𝑑(𝒖) and |𝑑𝒖| is the area of 𝑑(𝒖). The intensity of 

a point pattern can be either constant or variable over the domain. Intensity given as a function of 

location allows for environmental conditions to vary by location, resulting in spatial trend (Law et 

al., 2009). 

The second-order property represents the variability in the relative frequency of pairs of 

events. In other words, it measures how the location of one event 𝑢𝑖 is related to another event 𝑢𝑗  

either positively (i.e. attraction) or negatively (i.e. inhibition), and is defined as: 

 
γ(𝑢𝑖 , 𝑢𝑗) = lim

𝑑𝑢𝑖,𝑑𝑢𝑗→0
{

E(𝑛(𝑑𝑢𝑖)𝑛(𝑑𝑢𝑗))

|𝑑𝑢𝑖||𝑑𝑢𝑗|
}. (2) 

Again 𝑑𝑢𝑖 and 𝑑𝑢𝑗  denote infinitesimal areas around the points 𝑢𝑖 and 𝑢𝑗  respectively (𝑖 ≠

𝑗). Under an assumption of stationarity, this function depends only on the difference between 𝑢𝑖 

and 𝑢𝑗  in distance and direction, not on their absolute locations; thus, this second-order property 

is described as the covariance (or correlation) between the points. 

A point pattern is one realization of a process regulated by the mixture of the first-order 

and the second-order properties. That is, the probability that an event is found at a given location 

is determined conditionally by the effect of spatial covariates (i.e. spatial trends), the relative 

position to the other events (i.e. covariance/correlation structure), or both. The intensity of such a 
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process will vary conditionally as a function of location 𝒖 and the configuration of the point pattern 

𝐱. This is called the Papangelou conditional intensity (Papangelou, 1974) λ(𝒖, 𝐱), specified as; 

 

λ(𝒖, 𝐱) = 𝑏(𝒖) ∏ 𝑐(𝒖, 𝑥𝑖)

𝑛(𝐱)

𝑖=1

 (3) 

where 𝑏(𝒖)  denotes the spatial covariate effects and ∏ 𝑐(𝒖, 𝑥𝑖)
𝑛(x)
𝑖=1  refers to the product of 

interactions between point 𝒖 and every event 𝑥𝑖 in the process 𝐱 where 𝒖 ≠ 𝑥𝑖. The equation can 

then be written in a log-linear form and parameterized by = (𝜃1, 𝜃2) as: 

 logλ𝜃(𝑢, x) = 𝜃1𝐵(𝑢) + 𝜃2𝐶(𝑢, x) (4) 

such that the set of parameters 𝜃 can be estimated. For Poisson processes, maximum likelihood is 

used to estimate parameters (Berman and Turner, 1992), and for other exponential families of 

distributions maximum pseudolikelihood is used (Baddeley and Turner, 2000, extended by Besag 

et al., 1982). The resulting intensity is viewed as the probability density function of the event over 

the area. With a proper sampling procedure, point patterns can be simulated from the density 

function estimated by Eq. (4). An application of the probability density function and simulation 

from this function will be described in the next chapter. 

1.2.1 Homogeneous Poisson Processes and Complete Spatial Randomness 

When the first order intensity of a process is constant over the region (i.e. λ(𝑢) = λ in Eq 

(1)) and the locations of events are independent of each other (i.e. γ(𝑢𝑖 , 𝑢𝑗) = λ2 for any pairs of 

locations 𝑢𝑖 and 𝑢𝑗  in Eq. (2)), the point pattern is equivalent to a set of points with randomly 

generated x- and y- coordinates from a uniform distribution. Under this setting, the numbers of 

events in a region with area |A| are Poisson distributed with mean λ|A|. This is the simplest type 

of spatial point pattern, termed a homogeneous Poisson point process. A homogeneous Poisson 

point process is said to exhibit complete spatial randomness (CSR) which often serves as the null 
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hypothesis in a point pattern analysis. Other more complicated point processes such as Cox (Cox 

and Isham, 1980), Markov models (Van Lieshout, 2000), and space-time point processes (Ogata, 

1998) are deemed generalizations of the homogeneous Poisson process.  

1.2.2 Inhomogeneous Poisson Process 

The assumption of invariant intensity across the region, known as stationarity, is not 

usually satisfied in real applications. Most natural and social phenomena are closely related to 

spatial locations of other covariates. For example, incidence of disease may be associated with a 

factory pollutant (Lloyd et al., 1985), and locations of animals are likely to be affected by  locations 

of predators or competing species (Stein and Georgiadis, 2006). Therefore, the probability an event 

occurs at a given location may fluctuate over a given region according to some spatial covariates. 

The conditional intensity in this case is λ(𝒖, 𝐱) = λ(𝒖) , instead of λ(𝒖, 𝐱) = λ  (as in the 

homogeneous Poisson process). Note that this still retains independence between the occurrences 

of events. A point process with such attributes is characterized as an inhomogeneous Poisson 

process. 

Consider a set of points representing the locations of trees scattered over an area. When a 

finite number of trees is randomly distributed within the region, they exhibit CSR and are assumed 

to arise from a homogeneous planar Poisson process (Figure 1a). However, if there is variation in 

moisture content associated with proximity to a river, trees are more likely to be situated in the 

vicinity of the river (Figure 1b). The probability density function here may be based on the 

Euclidean distance to the river, and the pattern of trees is regarded as one realization of an 

inhomogeneous Poisson process. Consequently, a cluster of trees appears near the river. The 

conditional density of the inhomogeneous Poisson process is estimated as logλ𝜃(𝒖, 𝐱) = 𝜃1𝐵(𝒖) 

in Eq. (4) where 𝐵(𝒖) denotes the Euclidean distance of location 𝒖 to the river. Note that the 
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locations of points are still independent in this process. In other words, there is no interaction 

between the locations of trees (i.e. 𝐶(𝒖, 𝐱) is set to 0 in Eq. (4)). Therefore, some clustering or 

dispersion among the points may be present in an inhomogeneous Poisson process purely as a 

consequence of a particular spatial covariate. 

 

Figure 1.1. (a) Point patterns reflecting the effects of complete spatial randomness, (b) spatial trend 

of moisture content as a function of Euclidean distance to river, (c) spatial trend with attractive 

interpoint interaction, and (d) spatial trend with inhibitory interpoint interaction. 
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1.2.3 Markov Point Process: Area-Interaction Process 

It often becomes difficult to interpret patterns of points using only the effect of covariate 

spatial trends, especially when there appears to be excessive aggregation or regularity among the 

events. For instance, a situation may arise in which points naturally cluster themselves (e.g. due to 

short-distance dispersal of seeds from a plant) (Figure 1d), or inhibit one another (e.g. due to 

canopy cover for shade intolerant species) (Figure 1c). The location of one event is no longer 

independent of the locations of other events, especially of neighbors. Spatial trends can also be 

incorporated into a model for the interaction among the events, though it may be difficult to 

separate the two sources of spatial structure in practice. 

Markov models are types of point process models that deal with dependence among events 

as a pairwise interaction within the extent of a pre-defined neighborhood. The term “Markov 

property” indicates that an event is influenced only by nearby events. Markov processes thus 

postulate a range of influence for neighbors to exert an effect, usually within a disc of a certain 

radius 𝑟 centered at the point in two dimensions. The Papangelou conditional intensity for Markov 

models is the product of spatial trend and interaction expressed as Eq. (3) where 𝑐(𝒖, 𝑥𝑖) is the 

pairwise interaction function. Generally 𝑐(𝒖, 𝑥𝑖) = 𝑐(𝑥𝑖, 𝒖) (i.e. symmetric pairwise interaction) 

and 𝑐(𝒖, 𝑥𝑖)  depends only on the distance between 𝒖  and 𝑥𝑖 , not their actual locations. The 

interaction function 𝑐(𝒖, 𝑥𝑖) is defined differently in different Markov models. For example, in the 

Strauss model, a prototype of the Markov point process model suggested by Strauss (1975), the 

function is expressed as: 

 𝑡(𝒖, x) = #{𝑥𝑖 ∈ 𝐱 ∶ ‖𝒖 − 𝑥𝑖‖ ≤ 𝑟} (5) 
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such that interacting events are no more than 𝑟 units apart. Writing ∏ 𝑐(𝒖, 𝑥𝑖)
𝑛(𝐱)
𝑖=1  as 𝛾𝑡(𝒖,𝐱) and 

𝑏(𝒖) as 𝛽 for constant parameters 𝛽 & 𝛾 in Eq. (3), the conditional intensity for the Strauss model 

is simplified as 

 λ(𝒖, 𝐱) = 𝛽𝛾𝑡(𝒖,𝐱) . (6) 

The resulting probability density function for a univariate Strauss point process is 

expressed as: 

 
𝑓(𝐱) = {

𝛼𝛽𝑛(𝐱)𝛾𝑠(𝐱) 𝑖𝑓 𝛾 > 0

𝛼𝛽𝑛(𝐱) 𝑖𝑓 𝛾 = 0
 (7) 

where 𝑛(𝐱) is the number of points in a point pattern 𝐱 and 𝑠(𝐱) is the number of pairs of points 

within the range of 𝑟 in 𝐱. The parameter 𝛽 represents the first order intensity, 𝛾 represents the 

direction and magnitude of interaction, and 𝛼 is a normalizing constant. When 𝛾 = 0 the process 

exhibits extreme inhibition (i.e. hard core process). When 0 < 𝛾 < 1 the points exhibit repulsion 

and when 𝛾 > 1 the points exhibit attraction. If 𝛾 equals to 1, the Strauss process is a Poisson 

process. 

Kelly and Ripley (1976), however, noted that the Strauss function is not integrable for 

parameter values 𝛾 > 1 and is thus inappropriate for a clustered pattern. An alternative called an 

area-interaction point process was introduced by Baddeley and Van Lieshout (1995). The 

fundamental difference between the area-interaction process and the Markov models is that the 

area-interaction function is based on the area of a neighborhood (i.e. influence zone) rather than 

the Euclidean distance of each pair of points. The general form of the density function in an area-

interaction process is specified as 

 𝑓(𝐱) = 𝛼𝛽𝑛(𝐱)𝛾−|𝑈(𝐱,𝑟)| (8) 
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where |𝑈(𝐱, 𝑟)| denotes the area of the union of discs of radius 𝑟 centered at 𝑥𝑖 such that 𝑥𝑖 ∈ 𝐱. 

Mathematically |𝑈(𝐱, 𝑟)| is expressed as 

 
|𝑈(𝐱, 𝑟)| = ⋃ 𝐵(𝑥𝑖, 𝑟)

𝑛

𝑖=1

 (9) 

where 𝐵(𝑥𝑖, 𝑟) = {𝑎 ∈ ℜ2: ‖𝑎 − 𝑥𝑖‖ ≤ 𝑟} (i.e. a disc of radius 𝑟 centered at event 𝑥𝑖). 

The conditional intensity at an event 𝑥𝑖 of an area-interaction process is  

 λ(𝑥𝑖, 𝐱) = 𝛽𝛾−𝐵(𝑥𝑖,𝑟)\|𝑈(𝐱,𝑟)| . (10) 

The area described here (the exponent of 𝛾 in Eq. (10)) represents the area of the disc with 

radius 𝑟 centered on an event 𝑥𝑖, which is not covered by the other discs centered at 𝑥𝑗 where 𝑖 ≠

𝑗 in a point pattern 𝐱. In other words, it indicates the area further added by event 𝑥𝑖 to the existing 

area of the union of discs centered at 𝑥𝑗. For a fixed radius 𝑟, if the points are clustered together, 

the sum of 𝐵(𝑥𝑖 , 𝑟)\|𝑈(x, 𝑟)| will be small and the overlapping area will be larger, causing the 

term 𝛾 to be greater than 1. If the points are spatially dispersed, the sum of single occupancy by 

each event will be maximized while the multiple occupancy would be minimized, so the term 𝛾 is 

expected to be smaller than 1. When 𝛾 = 1 it is equivalent to the Poisson process, which has no 

interaction, similar to the Strauss process. Unlike the Strauss model, however, the area-interaction 

model is known to be stable and well-defined for all values of 𝛾, producing stable models for both 

clustered and dispersed point patterns. 

Baddeley and Van Lieshout (1995) asserted that the area-interaction process may be a 

reasonable model to explain many biological phenomena such as territorial exclusion by individual 

animals or a herd of prey running away from predators. Despite drawbacks such as the ambiguity 

of interpretation for parameter 𝛾 in practical applications, use of area-interaction process models 
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and their extensions appear widely (e.g. Picard et al. 2009; Juan et al. 2012; Uria-Diez et al. 2013) 

due to their stability and flexibility in dealing with natural patterns of features.  

1.2.4 Summary Statistics and Model Diagnosis 

1.2.4.1 Ripley’s K- (L-) function 

An analysis for a SPP typically starts by investigating to what extent a given point pattern 

departs from a null hypothesis of CSR (i.e. homogeneous Poisson process). Useful graphical 

summary statistics for examining the nature of point patterns are available, such as a smoothed 

kernel density for the first-order global intensity, or the �̂�- and �̂�-functions for the second-order 

property (Diggle, 1983). Ripley’s K-function (Ripley, 1977) is the most widely used tool for 

examining both the first- and second- order properties of a homogeneous SPP simultaneously. The 

idea of the K-function is to calculate the average number of events within a radius 𝑟 of a randomly 

chosen event. Letting this radius 𝑟 vary, the K-function is specified as a function of 𝑟 as: 

𝐾(𝑟) = 𝜆0
−1𝐸[# of events within distance 𝑟 of a randomly chosen event] 

where 𝜆0  is the mean number of events per unit area. Under the null hypothesis of CSR the 

expected number of events within a distance 𝑟 from each event is theoretically equivalent to the 

area of a circle of radius 𝑟  (𝜋𝑟2 ), yielding 𝐾(𝑟) = 𝜋𝑟2 . If there is clustering of events, the 

observed number of neighbors is likely to be larger than the mean number of events per unit area 

(i.e. 𝐾(𝑟) > 𝜋𝑟2). If the events are regularly spaced, on the other hand, fewer neighbors will 

appear (i.e. 𝐾(𝑟) < 𝜋𝑟2) especially at short distances. The Ripley’s L-function (Besag, 1977; 

Ripley, 1991) is a transformation of the K-function which normalizes 𝐾(𝑟) to 𝐿(𝑟) = √𝐾(𝑟)/𝜋 −

𝑟 . The L-function converges to 0 when the null hypothesis is satisfied; 𝐿(𝑟) > 0  indicates 

clustering while 𝐿(𝑟) < 0 indicates regularity. 
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Although the hypothesis of CSR provides a basic understanding of point pattern, most 

natural and human phenomena are not expected to be completely homogeneous throughout space. 

Clustering of events is usually due to underlying environmental heterogeneity, as seen in the 

example of Figure 1b (clustering of tree locations in areas with higher moisture content). Thus, we 

may instead be concerned with clustering (or inhibition) over and above the underlying spatial 

trends or interaction, rather than against CSR. The inhomogeneous K- (L-) function enables 

detection of departure from a non-stationary point process such as an inhomogeneous Poisson (or 

inhomogeneous Markov) model. This K-function is intensity-reweighted in relation to the location 

of an event and its neighboring events, and again involves second-order summary characteristics. 

The inhomogeneous K-function is thus defined as: 

𝐾𝑖𝑛ℎ𝑜𝑚(𝑟) =
1

|𝐴|
𝐸 ( ∑ ∑

𝐼(‖𝑥𝑖 − 𝑥𝑗‖ ≤ 𝑟)

λ(𝑥𝑖)λ(𝑥𝑗)
𝑥𝑗∈x\{𝑥𝑖}𝑥𝑖∈x∩A

) 

where |𝐴| denotes the area of a bounded Borel set within which the points are distributed and 𝑥𝑖 

and 𝑥𝑗 denote any pair of events with 𝑖 ≠ 𝑗 in point pattern 𝐱. The right-hand side of the equation 

represents the mean number of points within a disc of radius 𝑟 from each point with a second-order 

property (see Eq. (2)). The local intensities (i.e. λ(𝑥𝑖) and λ(𝑥𝑗)) are estimated nonparametrically 

(e.g. using a kernel smoothed density) around each point rather than using the constant λ. The 

normalized inhomogeneous L-function is analogously defined as: 𝐿𝑖𝑛ℎ𝑜𝑚(𝑟) = √𝐾𝑖𝑛ℎ𝑜𝑚(𝑟) 𝜋⁄ −

𝑟. 

Assessing whether a given point pattern departs from a null hypothesis (whether stationary 

or non-stationary) is achieved by constructing the extrema of empirical K-functions (typically 95% 

confidence bands) obtained through Monte Carlo random sampling. We can also use the K-

function with a hypothesized point process model to examine goodness-of-fit for SPP models 
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(Stoyan and Penttinen, 2000). Inhomogeneous K-function supports, in particular, an inspection of 

interpoint interactions after allowing for spatial trends of a point pattern (Baddeley et al., 2000).  

1.2.4.2 Residual Analysis: Four-panel Plot and Residual Q-Q Plot 

Baddeley et al. (2004) proposed techniques for conducting a residual analysis for spatial 

point process models which are analogous to those for classical regression models. The four-panel 

residual plot provides integrated presentation of diagnostic plots for both spatial trends and 

residuals. The plot contains panels with a marked plot, a contour plot of the smoothed residual 

field and a lurking variable plot for the location coordinates. The marked plot displays the intensity 

λ which is constant or conditionally varying over the region, with a greyscale map with circles 

whose radius is proportional to the residual mass. The contoured image plot shows a smoothed 

kernel density of the residuals accounting for an edge effect. The smoothed residual field at a 

location 𝒖 will be approximately 0 if the model is correctly fitted. The lurking variable plot depicts 

the cumulative residuals as a function of the x & y coordinates and uses confidence envelopes to 

assess whether the model requires inclusion of any particular variables, or the process exhibits 

heterogeneity. These plots facilitate investigation of quality of fit for the fitted model and effects 

of spatial covariates, and provide a visual way of evaluating the goodness-of-fit of the model. 

The four-panel plot, however, is only for assessing spatial trends and is inappropriate for 

detecting the effect of interaction between events. Baddeley et al. (2004) devised a diagnostic tool 

for interpoint interaction using properties of the joint distribution of the residuals in a generalized 

linear model. This procedure compares the empirical quantiles of the smoothed residual field 

values to the expected quantiles obtained by Monte Carlo simulations of a given point process 

model, giving a type of Q-Q plot. If the model specifies the interpoint interaction correctly, the 
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point-wise residual quantiles of the simulated model will be equivalent to that of the original point 

pattern and will approximately depict a 45-degree line. 

1.2.4.3 Model Selection 

The Akaike information criterion (AIC) (Akaike, 1974) is one of the most widely used 

model selection tools, valued for its inferential and restrictive competence (Bozdogan, 1987). It is 

defined as 

AIC = −2max (log˗likelihood) + 2 ∗ (number of parameters) 

where the 2nd term in the sum represents a penalty on the number of model parameters. Generally, 

models with smaller AIC values provide a better fit for the data. AIC can also be used to choose 

the best model among several proposed models, as long as their log-likelihoods are tractable. 

 

1.3 Application of SPP to model the density of forest fire ignitions  

In this study, we examined the past forest fire ignition locations recorded for 21 years (1991 

~ 2011) in Gyeongju, South Korea to develop a fire ignition density model using an SPP. We first 

hypothesized that the intensity of forest fire ignition points (i.e. first-order property) exhibits 

spatial trend over the region. The null model was a homogeneous Poisson process. The kernel 

smoothed density and the estimated L-function for the point pattern of forest fire ignition locations 

were calculated with 200 iterations of Monte Carlo simulation to examine whether or not there 

was a departure from CSR, and if there was, whether the departure approached clustering or 

regularity.  

Subsequently, we explored the use of several spatial covariates (e.g. topography, land 

cover, and human accessibility within the study area) likely to affect the density of forest fire 

ignition points. The ignitions of forest fires are expected to occur more frequently in areas with 
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lower elevation, gentle slopes, and south facing aspects, as these topographical attributes are 

related to higher population density. Proximity to public transportation and community 

infrastructures such as roads and buildings are also associated with higher density of forest fires, 

due to greater accessibility by humans. Additionally, the density of tombs and croplands were 

incorporated into this model because of their unique cultural characteristics and historic role in fire 

ignition. The species composition of forest stands may also be relevant to the occurrence of forest 

fires, since pine dominated stands are more likely to catch fire from resin characteristics (Bradley 

et al., 1992). Among these possible spatial covariates, significant predictors of intensity for forest 

fire ignition points were selected through the use of numerical & graphical tools such as AIC and 

lurking variable plots resulting from an inhomogeneous Poisson process model fit.  

After modeling the density of the point pattern using the spatial covariates, the goodness-

of-fit of the model was evaluated by estimating the inhomogeneous L-function and conducting a 

residual analysis with multiple simulations. The null model in this case was an inhomogeneous 

Poisson process including only the selected covariates, not any interpoint interaction. However, if 

there was any evidence indicating that the local intensity of the ignition points was not fully 

explained by incorporation of spatial trends – particularly that there was potential for interaction 

between the points – an inhomogeneous area-interaction process could be considered as an 

alternative. Estimation of the inhomogeneous L-function and construction of the four-panel plot 

and residual Q-Q plot were also considered for the area-interaction model to verify model 

performance. 

Among the three different models (homogeneous Poisson, inhomogeneous Poisson, and 

inhomogeneous area-interaction model), a final model was chosen which exhibited the most 

adequate fit based on the diagnostic plots and which presented the smallest AIC value. 
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Furthermore, the AIC of a spatial logistic regression model for the same dataset was included to 

highlight the value of SPP models against the classic lattice-based models for predicting density 

of forest fire ignition locations. The map displaying the spatial distribution of modeled fire density 

and the corresponding realization of fire locations was developed as the end product of this study. 

This map is used for further investigation related to fire spread in the next chapter. All the spatial 

analysis and modelling procedures were implemented using the R package “spatstat” (Baddeley 

and Turner, 2004). The overall flow of the analysis procedure is shown in Figure 2. 
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Figure 1.2. Flowchart for analyzing and modelling procedures of the point pattern of forest fire 

ignition locations in Gyoengju, Korea (1991~2012). 

 

1.4 Study Landscape and Data Description 

The study landscape, Gyeongju, is located in Gyeongsangbuk-do, in the southeast part of 

Korea (Figure 3). The geographic location of the study landscape ranges approximately from 

128.58° E to 129.29° E, and from 35.38° N to 36.30° N. The entire landscape is about 1,320 km2, 

including several urban areas with a total population of approximately 270,000 (Gyeongju-si, 

2012). Almost 70% of the study landscape (i.e. 919.90 km2 ) consists of forested lands. The 

landscape has a temperate climate, with primarily mixed forests and pine trees (Pinus densiflora) 

as the dominant tree species (Table 1). The elevation ranges widely, from sea level to 1,013 m 

(e.g. Mt. Moonbok, the west side of the region). The Hyeongsan-gang is a large river flowing 

longitudinally across the landscape. 

There were a total of 142 forest fires reported in Gyeongju between 1991 and 2012, a period 

of 21 years (Figure 4a). The map coordinates of forest fire ignition points (including source of 

ignition) were obtained from the Korea Forest Service (KFS) and the Korea Forest Research 

Institute (KFRI). 

The overall characteristics and trend of forest fires in the study landscape are summarized 

in Table 2 and Figure 5. The number of fires per year fluctuates, ranging from 1 to 16, although, 

recent fire prevention efforts, such as new restrictions on fire use during forest recreation activities 

and education programs, seem effective in reducing anthropogenic fire occurrences (Korea Forest 

Service, 2012). The majority of historical fires occurred in spring (March to May), the driest season 

in Korea. The leading cause of fires are hikers, accounting for over 57% of all occurrences. 

Incineration of waste or cropland residues ranks as the next highest cause at 20%. 
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Other spatial datasets for the landscape such as topography, forest stand type, community 

infrastructures, and local environment variables were also obtained from KFRI in the form of 

digitized maps. The digital elevation model (DEM), slope, and aspect of the study landscape were 

reclassified into raster data with a 100 × 100 m spatial resolution (Figure 4b, 4c, and 4d, 

respectively). The original forest stand type map included 17 classes of forest land cover based on 

dominant tree species. To simplify the data, we reclassified them into four major stand types: 

coniferous forests, deciduous forests, mixed forests, and non-forested areas (Table 1). The 

reclassified land cover was then rasterized into a 100 m-resolution raster dataset (Figure 4e). The 

aspect raster was also classified into three categorical variables: flat, low potential solar radiation 

(North, Northeast, Northwest, and East facing plane), and high potential solar radiation (Southeast, 

Southwest, South, and West facing plane). All geoprocessing operations were performed using 

ArcGIS 10.2 (ESRI, 2012). 

To address the effects of human activity on forest fire occurrence, distances from roads and 

buildings were considered as explanatory variables. The maps of roads and buildings in the study 

landscape were obtained and rasterized into 100-m resolution grid cells with an attributed 

Euclidean distance from these map features (Figure 4f and 4g). The densities of tombs and 

croplands across the landscape were calculated per hectare and rasterized with the same resolution 

(Figure 4h and 4i). Since the distributions of these grid cell values (i.e. Euclidean distance to roads 

and buildings, densities of tombs and croplands) are heavily right-skewed, logarithmic 

transformations were performed for these values.  
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Table 1.1. Land classification in Gyeongju based on dominant tree species. 

Dominant Species Class 
Percentage (%) of 

Total Forested Area 

Pinus densiflora 

Pinus koraiensis 

Pinus rigida 

Larix kaempferi 

Other coniferous species 

Coniferous Forest 

30.51 

3.02 

2.91 

2.81 

0.09 

Quercus 

Bambuseae 

Camellia sinensis 

Castanea crenata 

Other deciduous species 

Deciduous Forest 

0.08 

0.01 

0.01 

<0.01 

22.05 

Mixed Forest Mixed Forest 35.16 

Grassland 

Cultivated land 

Wilderness 

Others 

Non-forested Area 

0.97 

1.68 

0.07 

0.63 

 

Table 1.2. Distribution of forest fires by cause. 

Cause Number of Fire 
Percentage 

(%) 

Hikers 81 57.04 

Incineration of Garbage 

& Croplands Residue 
28 19.72 

Tomb Visitors 10 7.04 

Cigarettes 6 4.23 

Arson 3 2.11 

Others 14 9.86 

Total 142  
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Figure 1.3. Study landscape of Gyeongju, located in Gyeongsangbuk-do, South Korea. 
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Figure 1.4. (a) Point pattern of forest fire ignition locations from 1991 to 2012 in Gyeongju, and 

(b through i) spatial distribution and range of eight covariates. 

 



 

 
28 

 
Figure 1.5. Annual and monthly distributions of forest fires in Gyeongju (a and b, respectively). 

The monthly distribution is presented with average temperature and humidity. 
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1.5 Results and Discussions 

1.5.1 Homogeneous Poisson model 

Assuming a null hypothesis of CSR, the accumulated intensity of forest fire ignition points 

across the landscape over 21 years (1991 to 2012) was 5.12 × 10−5 fires ha−1 year−1 on average. 

This means that every hectare cell in the landscape had approximately 0.005% probability of fire 

occurrence each year. The kernel smoothed density map of the forest fire ignition points (Figure 

6) showed higher density at the upper and lower center of the study area. The far east of the study 

region experienced comparatively more frequent fire incidences, while the westernmost area 

exhibited the least amount of fires.  

The comparison of the L-function (Figure 7a) between the observed point pattern and the 

null model (homogeneous Poisson process) indicates that the ignition points tend to be clustered 

(i.e. 𝐿(𝑟) > 0). Notably, the departure from CSR escaping the pointwise confidence envelope 

appears at two different scales, e.g., at relatively close scale (range of 800~1400 meters from each 

ignition) and broad scale (over 3500 meters). This suggests that the complex clustering pattern 

may originate from different sources of aggregation, either from the effect of spatial trends or 

positive interactions between the ignition points.  

Residuals of the null model are described by the four-panel plot in Figure 7b. The marked 

plot (upper left panel) displays the constant intensity (λ̂(𝒖) = 1.0143 × 10−7) over the region. 

The smoothed residual field (lower right) and the lurking variable plots along with the x- and y- 

coordinates (lower left and upper right panels respectively) show large Pearson residuals (outside 

the 2-standard deviation limits, noted by the dotted line) in the western and mid-upper area of the 

study landscape. The intensity of fire ignition points on the west side is overestimated, which 

indicates poor fit of the homogeneous Poisson model.  
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These results indicate that the forest fire ignition points in Gyeongju are not randomly 

distributed. Rather, they are clustered over the region, and the homogeneous Poisson process is 

inadequate to explain the pattern of fire ignition. The spatially clustering pattern of forest fire 

ignition points may be induced either by spatial aggregation of fire-causative factors (i.e. trend), 

positive dependence among fire ignitions (i.e. interaction), or both. 

1.5.2 Spatial Covariate Effects 

Successful inclusion of spatial trends is determined by checking the dependence of ignition 

locations on individual covariates. Partial residual plots for candidate variables are commonly used 

to determine which variables should be included in a linear model. In a point process, the lurking 

variable plot which depicts the cumulative residuals against each covariate functions similarly 

(Baddeley et al., 2004). The residual function should be approximately zero if the fitted model is 

correct.  If the cumulative residuals under CSR deviate far from zero (e.g. over 2𝜎 of the residuals) 

for a particular covariate, the density of the point pattern is highly associated with the covariate 

and the covariate should be considered in the model as a predictor. The result of lurking variable 

plots (Figure 8) with six continuous spatial covariates (elevation, slope, distance to road, distance 

to building, tomb density, and croplands density) illustrates that fire ignition point density is 

dependent only on elevation, slope, distance to road, and tomb density. To be precise, the 

cumulative Pearson residuals for elevation under the hypothesis of CSR (Figure 8a) increase 

sharply from 70m to 250m, indicating that ignitions occur more frequently at this range, and are 

clustered at 200~400m of elevation. The density of ignition points is less than expected on lower 

slopes, only starting to increase at a slope of 8 degrees (Figure 8b), indicating that fires are less 

likely to ignite on flat topography. For the covariate of distance to road, the cumulative residual 

curves are below the −2𝜎 threshold of error bounds (dotted line, < 150m (i.e. log 5) from the 
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road in Figure 8c), which implies that fewer forest fires occur within close proximity to a road. 

The density of ignition points is overestimated at sites with 15~150 (i.e. log 2.7 ~ log 5) tombs per 

ha−1 (Figure 8e) and the cumulative residuals increases rapidly after that, indicating the forest fire 

ignition is associated only with a high density of tombs. The categorical variables (forest stand and 

aspect) are both associated with density of fire ignition point. Coniferous forest lands experience 

more frequent fire occurrences when compared to deciduous, mixed forest and non-forested areas. 

South-facing terrain exhibits a higher density of ignition points relative to other aspects. Distance 

to buildings and cropland density were not found to be significant factors influencing the density 

of fire ignition points (Figure 8d and 8f). 

Low elevation terrain is highly accessible to humans, and our results correspond with 

preconceived beliefs, as well as with many previous studies (e.g. Vega-García et al., 1993; Cardille 

et al., 2001; Syphard et al., 2008; Catry et al., 2010). South-facing aspects in northern hemisphere 

are more exposed to heat from sunlight, and this condition is in favor of fire ignition. Increased 

susceptibility of coniferous forests to forest fire has already been well documented in previous 

research (e.g. Chou et al., 1993; Bar Massada et al., 2009). Given the primary causes of forest fires 

(Table 2), it seems reasonable that areas with higher tomb densities maintain a higher likelihood 

of fire ignition. However, it was unexpected to find that the covariates of distance to road and slope 

are positively associated with the density of forest fires. We speculate the reason for this is that the 

road coverage used in this study contains only major road networks, excluding forest roads or trails 

that are typically used by hikers. Because hiking trails likely do not coexist with major traffic 

roads, the Euclidean distance from trails to roads may be large.  This may partly explain higher 

fire ignition in remote areas from the existing roads. Gentle slope areas are usually used for 
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residential or agricultural lands, and this seems to be reflected in the low forest fire ignition 

potential.  

1.5.3 Inhomogeneous Poisson model 

We proceeded to include the selected covariates (elevation, slope, aspect, forest stand, 

distance to road and tombs density) as potential predictors of spatial trend in an inhomogeneous 

Poisson model. The results of fitting this model are provided in Table 3 and Figure 9. The lurking 

variable plots plotted against each selected covariate (Figure 9) show that the effect of the 

covariates are successfully accounted for as part of the spatial trend, except for a slight overfitting 

of the slope variable (Figure 9b). 

A 95% pointwise confidence band for the L-function obtained by 200 Monte Carlo 

simulations (grey area) captured the majority of observed L-statistics (black solid line, Figure 10a) 

when compared to those of the homogeneous Poisson model (Figure 7a). This suggests that the 

majority of the clusters from the ignition point pattern on our study landscape can be explained by 

the modeled spatial trend. It is worth noting that the extra clustering observed at broad scales (over 

3500 meters in Figure 7a) is well-explained by the fitted model, while there remains some 

clustering at closer scales (1000~1200 meters in Figure 7a). The AIC value for the inhomogeneous 

Poisson model (AIC=4552.4) is considerably smaller than that for the null model (AIC=4585.8) 

(Table 4), exhibiting improvement as a model for ignition point density. 

Four-panel residual analysis was also conducted (Figure 10b) to check goodness-of-fit of 

the inhomogeneous Poisson model. In comparison with the homogeneous Poisson model, the 

vertical and horizontal sums of Pearson residuals (lower left and upper right panels in Figure 10b) 

show reduced model lack of fit after incorporating the spatial covariates. However, some 

deviations of residuals from the inhomogeneous model at the upper-center part of the region still 
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exist, located around [390000, 280000] metric coordinate (lower right panel in Figure 10b). This 

suggests either the possibility of misspecification of current spatial covariates or the need for 

additional covariates associated with the density of fire ignition points, or interaction among the 

points.  

The Q-Q plot for the residual distribution (Figure 11a) assists in detecting possible 

interpoint interaction by comparing empirical quantiles of the smoothed residual field and 

expected quantiles under the fitted model. The circles represent empirical quantiles of the 

smoothed residual field for the original data against expected quantiles of the corresponding order 

statistic under the inhomogeneous Poisson model. The expected quantiles are supplied by 

calculating the sample mean of ordered residuals obtained by multiple simulated realizations of 

the fitted model, i.e., 100 iterations of Monte Carlo simulation. The distribution of empirical 

residual data shows marginal fit to the 95% prediction intervals of the inhomogeneous Poisson 

model (the red dotted lines) with a slightly longer right tail and more variability. This indicates a 

positive interaction between the points.  

Combined, these findings indicate that clustering of fire ignition point patterns only at close 

scales (1000~1200 meters in Figure 7a) may be accounted for by an attractive interpoint 

interaction. Therefore, we introduced the effect of this interaction (i.e. spatial autocorrelation) into 

the fire ignition density model. 

1.5.4 Inhomogeneous area-interaction model 

In order to fit a non-Poisson model containing interaction terms, the range of interaction 

(i.e. radius 𝑟 from each point) needs to be determined. Generally the decision is made rather 

intuitively and heuristically, since no theoretical estimation or particular optimization method has 

been established (Mølle and Waagepetersen, 2007). We tested several disk radii 𝑟  (e.g. 𝑟 =
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100, 200, 500, 1000, and 2000 𝑚), and selected 𝑟 = 500𝑚 because it produced the best result 

based on diagnostic plots. 

The results of fitting an inhomogeneous area-interaction model to the given point pattern 

with the specified interaction radius 𝑟 = 500𝑚  are summarized in Table 3. The calculated 

interaction parameter γ is larger than 1 (Table 3, γ = 2.3553 with 𝑝 < 0.0001 in a likelihood 

ratio test) as expected. This indicates strong evidence of additional attraction between fire ignition 

points within a radius of 500m from each ignition point given the spatial covariates. The pointwise 

confidence envelopes for the inhomogeneous L-function for the modeled area-interaction process 

successfully capture the observed L-statistics (Figure 12a) even at short ranges (1000~1200m) 

where the inhomogeneous Poisson model failed to provide an adequate model (refer to Figure 

10a). The radius for broad scale clustering of ignition points (3500 meters and greater) is accounted 

for by the inhomogeneous Poisson process, while close scale clustering around 1000 m range is 

removed after the incorporation of this neighborhood effect. In an area-interaction process this can 

be interpreted as broad-scale clustering representing the effects of spatial trend, while relatively 

close-scale clustering results from positive dependence between ignition points. 

The recognition of forest fire ignition locations as clustered point patterns agrees with 

previous studies (e.g. Podur et al., 2003; Yang et al., 2007; Turner, 2009; Juan et al., 2012). 

However, there has been little effort to differentiate the small-scale interactive behavior from 

large-scale trend-based aggregation. It is difficult to distinguish spatial autocorrelation and spatial 

trend (Legendre, 1993), and therefore aggregation in point patterns is often regarded as a result of 

environmental heterogeneity through a univariate analysis (Perry et al., 2006). Our results suggest 

a potential distinction between spatial trend and autocorrelation by means of modeling the 

inhomogeneity at different scales. 
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Figure 12b illustrates the four-panel residual analysis of the area-interaction model. The 

statistical package used throughout this study does not support significance bands for lurking 

variable residual plots for non-Poisson models. Hence, a direct reading from the plot is unavailable. 

Nevertheless, relative comparisons with Figure 10b indicate that the goodness-of-fit of the 

inhomogeneous area-interaction model is even better than for the inhomogeneous Poisson model, 

demonstrated by the mitigation of point intensity overestimates near the top center of the region. 

The Q-Q plot for the smoothed residuals of the area-interaction model (Figure 11b) displays an 

adequate fit relative to by the 95% confidence bands, indicating that the incorporation of the 

interaction term is appropriate to offset additional clustering detected in the inhomogeneous 

Poisson model.  

A slight deviation of Pearson residuals from zero still exists around the center top of the 

region (e.g., [405000, 290000] metric coordinates of lower right panel in Figure 12b), suggesting 

that there is still unexplained variation in the density of ignition points. This may be due to 

unknown variables which are not included in our model, such as population density and 

microclimate condition. However, since it is infeasible to assess the effects of every possible 

covariate and the unexplained variation is greatly reduced by the construction of the model, we 

assert that the area-interaction model allows more reliable predictions of fire occurrence 

probability. 

The AIC value of the area-interaction model is 4230.025, which is considerably smaller 

than that of the inhomogeneous Poisson model (4552.422) (Table 4). It should be noted, however, 

that the maximized log-pseudolikelihood approximation is used here to calculate the AIC value as 

it is difficult to compute the log-likelihood for non-Poisson models (Huang and Ogata, 2002). This 
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implies that a direct comparison between the Poisson and non-Poisson model based on the AIC 

value might be misleading.  

1.5.5 Model selection 

Comparisons among the different point process models for the fire ignition point density 

in Gyeongju are summarized in Table 4 based on their log-likelihood and AIC values. The spatial 

logistic regression model slightly outperforms the inhomogeneous Poisson point process model 

when the same covariates are included. If the interaction term is added, however, the point process 

model can be more efficient than the logit model, especially when the spatial weight matrices are 

hard to derive directly. Again, the log-pseudolikelihood for the area-interaction model may be 

incomparable to the log-likelihood in the Poisson process or logistic regression model. In general, 

the use of log-likelihood estimators are recommended over the log-pseudolikelihood for stability 

and unbiasedness, although the log-pseudolikelihood estimators can also be unbiased and 

consistent under certain conditions. Unfortunately, the application of a log-likelihood for the non-

Poisson point process model is not yet viable (Baddeley and Turner, 2000).  

Considering the overall model performance and fitness discussed earlier, it is clear that the 

area-interaction point process model with a trend to account for the inhomogeneity performs the 

best of the three models. The predicted fire ignition point density of the study landscape and a 

realization of the fire ignition point pattern under the final model are provided in Figure 13. These 

estimation and simulation results are expected to be integrated into forest fire management 

planning as well as further research, such as the analysis of fire propagation to assess fire risks 

across a landscape. 
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Table 1.3. Summary of spatial covariates and interaction fitted in inhomogeneous Poisson model, 

inhomogeneous area-interaction model, and spatial logistic regression model. 

 
Inhomogeneous 

Poisson 

Inhomogeneous 

Area-interaction 

(r=500m) 

Spatial Logistic 

Regression 

Variables 
Fitted 

Coefficient 
S.E. 

Fitted 

Coefficient 
S.E. 

Fitted 

Coefficient 
S.E. 

Intercept -18.0945 1.3390 -18.5274 1.6830 -16.8252 1.2947 

Forest 

Stand 

Coniferous 

Deciduous 

Mixed 

Non-forested 

area 

N/A 

-0.6280 

-0.3611 

-0.8028** 

N/A 

0.3493 

0.2266 

0.2654 

N/A 

-0.4303 

-0.3671 

-0.7163** 

N/A 

0.3607 

0.2843 

0.2802 

N/A 

-0.7064 

-0.3098 

-1.2980** 

N/A 

0.3535 

0.2164 

0.2803 

Aspect 

Flat 

South-face 

North-face 

N/A 

1.6601 

1.4143 

N/A 

1.0313 

1.0318 

N/A 

1.5697 

1.3242 

N/A 

1.0492 

1.0508 

N/A 

1.4889 

1.3260 

N/A 

1.0131 

1.0123 

Elevation -0.0028** 0.0011 -0.0024** 0.0010 -0.0037** 0.0011 

Slope 0.0152` 0.0159 0.0079 0.0172 0.0103 0.0160 

Distance to Roads 0.0810* 0.0394 0.0811* 0.0468 0.0503* 0.0374 

Tombs Density 0.2294` 0.1973 0.2922` 0.2423 0.0591 0.1871 

Interaction - - 2.3733*** 0.7670 - - 

*** p<0.001 ** p<0.01 * p<0.1 ` 

 

Table 1.4. Comparison of AIC and log-likelihood values among the models. Note that log-

pseudolikelihood is presented for area-interaction model. 

Model Structure D.F. AIC Log-likelihood 

Homogeneous Poisson - 1 4585.849 -2291.925 

Inhomogeneous Poisson Trend 10 4552.422 -2266.211 

Logistic regression Trend 10 4524.901 -2252.451 

Area-interaction (r=500m) Trend + Interaction 11 4230.025 -2104.012 
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Figure 1.6. Kernel smoothed density (points per 𝑚2) for the forest fire ignition data in Gyeongju, 

from 1991 to 2012. 

 

 
Figure 1.7. L-function for the fire ignition point pattern in Gyeongju observed from 1991 to 2012 

(solid line in Figure 7(a)) and estimated 95% pointwise confidence envelope (grey area) for the 

homogeneous Poisson process (red dashed line in Figure 7(a)). The envelope was obtained 

through 200 Monte Carlo simulations. Four-panel Pearson residual plot for the homogeneous 

Poisson process (b). 
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Figure 1.8. Lurking variable plots depicting cumulative Pearson residuals against the following 

six spatial covariates: above sea level elevation in meters (a), slope in degrees (b), distance to 

road in meters (c), distance to buildings in meters (d), tombs density per hectare (e), and 

croplands density in % per ha (f). Note that the variables of distance to road, distance to 

buildings, tombs density and croplands density are in a log scale. The solid line represents 

observed residual values, and the dashed lines are 2𝜎 error bounds for CSR. 

 
Figure 1.9. Lurking variable plots of cumulative Pearson residuals against selected spatial 

covariates under fitted inhomogeneous Poisson model including above sea level elevation in 

meters (a), slope in degrees (b), distance to road in meters (c), and tombs density per hectare (d). 

Note that the variables of distance to road and tombs density per hectare are in a log scale. The 

solid line represents observed residual values, and the dashed lines are 2𝜎 error bounds for IPP. 
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Figure 1.10. Inhomogeneous L-function for the empirical fire ignition point pattern (solid line in 

Figure 10a) and estimated 95% pointwise confidence envelope (grey area in Figure 10a) for the 

inhomogeneous Poisson process with six spatial covariates (red dashed line in Figure 10a). The 

envelope was obtained through 200 Monte Carlo simulations. Four-panel Pearson residual plot 

for the inhomogeneous Poisson model (b). 

 
Figure 1.11. Residual Q-Q plots for the inhomogeneous Poisson model (a), and inhomogeneous 

area-interaction model when 𝑟 = 500𝑚 (b). The smoothed residual fields are dotted against the 

average of expected empirical quantiles obtained by 100 simulations under each fitted model. 

Dashed lines represent 95% prediction intervals. 
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Figure 1.12. Inhomogeneous L-function for the empirical fire ignition point pattern (solid line in 

Figure 12 a) and estimated 95% pointwise confidence envelope (grey area in Figure 12a) for the 

inhomogeneous area-interaction process with the range of neighborhood 𝑟 = 500𝑚 and six 

spatial covariates (red dashed line in Figure 12a). The envelope was obtained through 200 Monte 

Carlo simulations. Four-panel Pearson residual plot for the inhomogeneous area-interaction 

process (b). 

 

 
Figure 1.13. Predicted forest fire ignition point density based on the final model (i.e. 

inhomogeneous area-interaction process with 𝑟 = 500𝑚) (a), one realization of point pattern 

provided by implementation of the final model (b). 
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1.6 Conclusion 

In this study, we modeled the density of forest fire ignition points in Gyeongju, Korea using 

SPP models. The modeling process was designed to derive fire occurrence probability in terms of 

spatial covariates such as topography and land cover of the study landscape, and in terms of spatial 

dependence between the ignition points themselves. The distribution of fire ignition points was 

clustered depending on spatial inhomogeneity of the covariates involved, and exhibited positive 

spatial autocorrelation among the locations of ignition points. The results indicate that the 

inhomogeneous area-interaction model, which contains both spatial covariates and local 

neighborhood effects is the most informative when compared to the other models tested. A map 

of forest fire ignition point density predicted by the final model and a possible set of estimated 

ignition locations were developed as the result of this study. 

The utilization of SPP models allows direct incorporation of spatial trends and 

autocorrelations within a model, yielding flexible models such as the inhomogeneous Poisson 

model and the Markov point process area-interaction model. In comparison with the spatial logistic 

regression model, the area-interaction model seemed to perform better. Although the comparison 

does not provide numerical evidence, use of a SPP appears to be the best choice when addressing 

“presence-only data” (such as fire occurrence data), owing to its more sensible model specification, 

and ease of interpretation and implementation (Warton and Shepherd, 2010). The potential of point 

process models will be fully identified in the future as new methodological developments are 

underway. 

Spatial prediction of forest fire ignition probability can provide useful information not only 

for fire management planning and resource allocation for fire suppression activities, but also as a 

stepping stone for further research. The second portion of this research utilizes the density of fire 
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ignition to produce a plausible set of ignition points for multiple fire simulations and estimate the 

burn probability of each pixel across the landscape. The details of the second part of this study are 

described in the next chapter. 
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Chapter 2. Assessing Fire Risk Using Monte Carlo Fire Spread 

Simulation 
 

2.1 Introduction 

Forest fire risk assessment is critical in allocating resources towards avoidance of potential 

devastation through sustainable forest management. As the magnitude and severity of fire escalates 

from changing climates, resulting in considerably higher costs per fire, it is becoming increasingly 

important to provide accurate information on fire risk (Liu et al., 2010). Following a longstanding 

drought starting in 2009, the Korean government has encouraged special countermeasures 

addressing prevention of forest fires (Korea Forest Service, 2011). These measures include 

enhancement of systems for fire surveillance and suppression, which aren’t feasible without an 

adequate estimate of fire susceptibility and impact for a given area of interest. 

The risk of forest fire is usually defined by two different components: fire behavior 

probability and fire effects (Finney, 2005). Fire behavior probability refers to the manner in which 

fire would burn a specific parcel of land (i.e. burn probability). It should be distinguished from fire 

occurrence probability, which denotes the relative frequency of ignition within an area. Fire 

behavior probability primarily addresses the propagation and intensity of an already ignited fire, 

while fire occurrence probability focuses on the environmental processes leading up to ignition. 

More specifically, the spread of fire is dependent on the ignition of fire as well as environmental 

conditions such as weather, topography, and fuels. This means that an estimate of fire ignition 

probability should precede an appraisal of the burn probability, and that fire ignition probability 

alone does not adequately surrogate fire behavior probability.  

Due to their substantial uncertainty and variability, however, fire ignition probability and 

burn probability tend to be treated independently of one another (Thompson and Calkin, 2011). 
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The majority of fire spread models assume fixed ignition locations, which becomes a primary 

limitation of model applications in assessing potential fire risks for regions where fire ignition 

locations are uncertain. Some past studies have attempted to use empirical ignition locations or 

random ignition points for performing multiple fire spread simulations. In the Niokolo Koba 

National Park in Senegal, a set of randomly distributed fire sources were used in assessing risk of 

fire propagation in savanna ecosystems (Mbow et al., 2004). The burn probability in a wildland-

urban interface (WUI) region in northwestern Wisconsin was obtained based on numerous 

individual fire spread simulations with random ignition locations (Bar Massada et al., 2009). Ager 

et al. (2007) extracted 1000 random ignition points to calculate burn probability in central Oregon 

to analyze wildfire risk to the northern spotted owl. Carmel et al. (2009) created 80% of ignition 

points within a vicinity of roads and small trails while 20% were chosen randomly within the study 

area in Mt. Carmel, Israel, based on the assumption that all forest fires in that region are 

anthropogenic. However, these studies do not adequately reflect a likelihood or spatial pattern of 

fire ignitions in their study regions. In this regard, Bar Massada et al (2009) pointed out that 

inappropriate ignition locations may potentially cause significant errors and biases in fire risk 

assessment. In research investigating influential factors of fire spread pattern, locations of forest 

fire ignition was the strongest and most direct variable affecting the area of fire spread (LaCroix 

et al., 2006). Unfortunately, little research has explored the concept of extracting ignition points 

based on a specific fire occurrence probability for fire spread simulations. 

In this study, we attempted to form a link between burn probability and fire occurrence 

probability in order to derive fire behavior probability. The density of fire ignition points was 

modeled using a landscape in Gyeongju, Korea, using spatial point processing methods described 

in the previous chapter. We obtained a set of possible fire ignition locations from the model to 
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perform Monte Carlo fire spread simulations to calculate burn probability. We expect this 

connection between fire ignition and fire spread to provide more reliable risk assessments for forest 

fires. Details on our approach and results will follow in Section 2.2 and 2.3. 

Obtaining a tangible set of expected fire ignition locations from an estimated fire 

occurrence probability model requires additional effort, as the majority of likelihood of fire 

occurrence outputs are expressed as a continuous and arbitrary population. The number of possible 

points is infinite and probability density functions fluctuate within each region. Methods for 

sampling discrete points from continuous and multi-dimensional distributions have been addressed 

using stochastic and mathematical methods in applied statistics. Spatial point processes adopt one 

of these procedures as a simulation process, allowing for easy realizations of the point pattern 

through Markov chain Monte Carlo (MCMC) simulation (Stoyan and Penttinen, 2000). We 

utilized the MCMC realizations of the point pattern as ignition locations of forest fires. In other 

words, fire spread simulation is constructed on the basis of ignition probability. Further details for 

the point pattern simulation process will be provided in section 2.2. 

Vegetation, terrain, and weather conditions are critical determinants of both fire spread and 

fire behavior. In general, rates of fire spread accelerate with steepness of slope and high velocity 

of wind (Rothermel, 1972; Weise and Biging, 1997). Land cover, often referred to as a fuel model, 

is also a well-documented influence of fire spread (Anderson et al., 1982). Grass-dominated land 

cover is typically more prone to fire spread than forested areas, and dense forests burn more 

quickly than forests with wide dispersal of trees. Weather is one of the most critical elements 

manipulating fire behavior, both directly and indirectly. Temperature and humidity affect fuel 

moisture, while simultaneously interacting with each other. In addition, two or more environmental 

variables often collectively create different effects on fire spread. For example, Andrews (1986) 
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determined that the effect of wind speed on the rate of fire spread was an outcome of wind and 

slope combined. Likewise, fire behavior is also a consequence of intricate interactions among 

various factors, and can never be fully accounted for. Hence, it is common in fire spread simulation 

studies to treat temporally dependent variables, weather especially, as a fixed situation with the 

average extreme scenario (e.g., Bar Massada et al., 2009; LaCroix et al., 2006; Haas et al., 2014) 

due to convenience and more conservative risk assessment. 

Advances in computational techniques have promoted development of a number of 

physical, empirical and mathematical fire behavior models and simulators, offering a broad range 

of options (for reviews, see Sullivan, 2009a~c). Implementations of geographical information 

systems (GIS) have also greatly simplified the process of fire simulations (Pastor et al., 2003). 

These fire simulation models are useful in providing practical and easily interpreted information 

for relevant authorities (Sullivan, 2009c). We employed FOREST FIRE SPREAD MODEL V4 

(FFSM) developed by Lee et al. (2011) as the simulator to pursue this research, as the model is 

adapted and optimized to the study landscape. FFSM is a GIS-running fire spread calculation 

model applying Rothermel’s equation (Rothermel, 1972) and the theory of elliptical wave 

propagation (Anderson et al., 1982). It is analogous to Farsite in the United States (Finney, 1994), 

Prometheus in Canada (Tymstra, 2002) and SiroFire in Australia (Coleman and Sullivan, 1995). 

As fire spread is greatly influenced by local environment, it is important to select a simulator that 

best describes the study landscape. 

Fire effect indicates an expected outcome of a fire burn, both negative and positive (Finney, 

2005). The outcome is often converted into economic, environmental, and social values, which 

diverge widely according to the stakeholders’ interests. Mapping the pattern of fire behavior 

without considering resources of concern may provide less complete information about fire risks 
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(Thompson et al., 2011). Since these resources at risk have a vast range of applications, from 

housing and commercial timber to ecosystem services such as biodiversity and air quality (Ohlson 

et al., 2006), it is critical to be able to present reliable fire behavior estimations that can respond 

flexibly to various needs of stakeholders who may wish to deploy their own management strategies 

against fire. 

The work we describe in this chapter adopted land property value as the fire effect to 

estimate potential loss for a given probability of fire spread, yet the value can be replaced by any 

others desired. By combining fire effect with an estimate of fire behavior probability based on fire 

occurrence probability we hope to consider the comprehensive elements of Finney’s risk definition 

and provide an example of forest fire risk assessment. We expect to draw conclusions with respect 

to 1) how the burn probability is influenced by the environment across the region, 2) what is the 

spatial distribution of forest fire risk in the study area, and 3) which factor among the fire behavior 

probability and fire effect primarily contributes to the risk of forest fire. 

 

2.2. Data and Method 

2.2.1. Study area and data 

The forested area within the administrative boundary of Gyeongju, Korea is the target study 

landscape for the fire spread simulation (Figure 2.1). For details on the study area, see chapter 1.4. 

To take the effect of terrain and land cover on the behavior of forest fires into account, a digital 

elevation model (DEM) and forest type map (fourth edition, Korea Forest Research Institute 

(2005)) were utilized as parameters describing topography and fuel models. The map of forest type 

contains digitized information on tree species composition, age, density, and diameter class, 
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allowing for consideration and control of vegetative influences on fire spread simulation. Both 

DEM and forest type map are set to default environments in the fire spread simulator FFSM V4. 

Weather is regarded as the most influential factor on fire behavior (Prestemon et al., 2002). 

It is common in many fire simulation studies to assume an extreme weather scenario in order to 

anticipate the greatest risk (Finney, 2005; Bar Massada et al., 2009). In this study we configured a 

95% extreme weather condition throughout the fire spread simulations. In Korea, the occurrence 

of forest fires is reported most frequently during the dry spring season (from April to May) 

according to the Statistical Yearbook of Forestry (Korea Forest Service, 2011). We therefore 

aggregated the records of daily weather in April and May from the past 5 years (i.e. from 2008 to 

2012) from Yeongchun Weather Observatory located near the study landscape (Figure 2.1) and 

computed the 95th percentile extreme in temperature, relative humidity, and wind speed. Wind 

direction, which has a large impact on the direction of fire spread, was assumed to be the prevailing 

wind direction during the season. The weather scenario used for the simulation is summarized in 

Table 2.1. The weather condition was assumed to remain constant for duration of the fire. 

For the purpose of providing an example of risk assessment, the government-appraised 

land property values were acquired from the municipal office of Gyeongju to serve as the fire 

effect. The data were spatially coded using the administrative parcel information number and then 

rasterized with 10-m resolution using ArcGIS 10.2 software (ESRI, 2012). Among a total of 

approximately 500,000 individual pieces of land included in the study landscape, about 110,000 

parcels were analyzed in this study while the remaining land was excluded as non-forested lands 

(e.g., residential area) or unvalued parcels. 

2.2.2. Derivation of fire ignition points: Metropolis-Hastings algorithm 
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Given the density of forest fire occurrence (Figure 1.13a) a possible suite of points is required to 

establish start locations of fire spread in simulation. In other words, we need one – or as many as 

necessary–sets of fire ignition points that form the same point density distribution as those 

modeled. Spatial point processes adopt a simulation method called the Metropolis-Hastings 

algorithm to realize a point pattern for a given density function (Geyer and Møller, 1994). The 

basic strategy of the M-H algorithm is to propose a trial distribution (i.e. proposal distribution) to 

randomly sample candidate points and accept or reject the candidate points with a probability 

proportional to the target distribution. If the acceptance (or rejection) of the candidate points occurs 

sequentially and iteratively (i.e. Markov Chain Monte Carlo simulation), the distribution of points 

eventually converges to the target density. The algorithm produces reliable samples even for an 

unnormalized density function (such as the Markov point process utilized in this study) using 

MCMC simulations (Illian et al., 2008). For details, see Geyer and Møller (1994). 

In our case, the density function of the area-interaction model is expressed as; 

 𝑓(𝑥) = 𝛼𝛽𝑛(𝑥)𝛾−|𝑈𝑥,𝑟| (1) 

with a normalizing constant 𝛼 and where 𝛽 and 𝛾 denote the trend and interaction parameters 

respectively, shown in Table 1.4 in the previous chapter. This function is equivalent to the target 

distribution. Assuming that there is a set of points with a fixed number 𝑛 (𝑥 = {𝑥1, 𝑥2, … , 𝑥𝑛}) and 

a proposal distribution is given as 𝑞(𝑥,∙) > 0 , any randomly selected point 𝑥𝑖  such that 𝑖 ∈

{1, 2, … , 𝑛} can be replaced with a candidate point, say 𝑦, which is randomly drawn from the 

proposal distribution 𝑞𝑖(𝑥, 𝑦). Whether the candidate point is accepted or rejected is determined 

with a probability of 𝛼𝑖(𝑥, 𝑦) = min{1, 𝑟𝑖(𝑥, 𝑦)} such that 

 
𝑟𝑖(𝑥, 𝑦) =

𝑓((𝑥\𝑥𝑖) ∪ 𝑦)𝑞𝑖((𝑥\𝑥𝑖) ∪ 𝑦, 𝑥𝑖)

𝑓(𝑥)𝑞𝑖(𝑥, 𝑦)
. (2) 
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𝑟𝑖(𝑥, 𝑦) is called the Hastings ratio and 𝛼𝑖(𝑥, 𝑦) is referred to as acceptance probability. If 

the candidate is accepted, the current state is updated as 𝑥′ = (𝑥\𝑥𝑖) ∪ 𝑦 =

{𝑥1, 𝑥2, … , 𝑥𝑖−1, 𝑦, 𝑥𝑖+1, … , 𝑥𝑛}  and the next point 𝑥𝑚  is selected to be replaced by 𝑦′  with a 

probability of 𝛼𝑚(𝑥′, 𝑦′) (i.e. Markov chain). With sufficient iterations of these processes (i.e. 

Monte Carlo simulation), the chain will typically converge to 𝑓(𝑥) regardless of the initial state 𝑥. 

Thus, the Hastings ratio denotes the probability density of proposing a move from 𝑥𝑖 to 𝑥𝑚, and 

simultaneously assures the irreducibility and reversibility of the chain for any 𝑓(𝑥). 

We demonstrated the M-H algorithm based on the density of forest fire ignition points 

presented above. The number of iterations was set at 100,000 with a 50,000 burn-in period (i.e. 

excising some prior chains as testing processes for enhancing reliability). Tracking the process of 

the algorithm is provided in Figure 2.2 at iterations 50,000, 70,000, 90,000, and 100,000. We 

obtained a point pattern and discarded points on non-target areas such as residential zones and 

incombustible areas (e.g., road surface and water body) regarding them as not being ignited. 

Consequently, a total of 502 points were extracted and converted into a vector containing (x, y)-

coordinates representing ignition locations in fire spread simulations (Figure 2.1). The process of 

point pattern generation was conducted using the ‘spatstat’ package (Baddeley and Turner, 2006) 

in R software (R Development Core Team, 2010). 

2.2.3. Fire spread simulation framework and fire risk assessment 

FOREST FIRE SPREAD MODEL V4 (FFSM) developed by Lee (2011) was used to 

simulate the spread of individual fires across the landscape. FFSM is a vector-based simulation 

model defining fire propagation as an expanding polygon. The computation of fire spread in this 

simulator is based on Alexander’s 2-dimensional elliptical shape of forest fire model (1985) and 

Richards’ partial differential equation (1990).  FFSM is a user-friendly tool that requires only a 
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few input data, including the locations of fire ignition points, weather parameters, terrain, and fuels 

(Figure 2.3). 

In total, 502 fire simulations were conducted. Each simulation resulted in a unique fire 

spread pattern, stored in multiple polygons representing cumulative burn areas over a given fire 

duration. To analyze the effects of time on burn probability, four ascending time periods were 

established (e.g. 5, 10, 15, and 20 hours) during the full 20-hour fire duration. According to past 

data, 20 hours is the 95th percentile of time taken for fire suppression (Korea Forest Service, 2011). 

Consequences of fire spread from each ignition point were recorded separately, and sorted by 

corresponding time sequences. By overlaying all 502 individual fire spread results and averaging 

them, a burn probability (BP) for a specific time period in a given pixel was calculated as 

 
𝐵𝑃 (%) =

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑢𝑟𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠 (502)
× 100. (3) 

We considered the fire effect to result in loss of land property values. Thus, the risk of 

forest fire is evaluated as the potential loss value for a given location in the following manner:  

 𝐿𝑎𝑛𝑑 𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦 𝑉𝑎𝑙𝑢𝑒 (𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑎𝑟𝑒𝑎) × 𝐵𝑃 = 𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑉𝑎𝑙𝑢𝑒 𝐿𝑜𝑠𝑠. (4) 

The obtained maps of BP for each time lag and the potential loss were then rasterized with 

10-m resolution to visually describe spatial patterns of fire risks across the study landscape. 

2.2.4. Statistical analysis of the risk-related factors 

Four outputs regarding 1) fire ignition point density, 2) burn probability, 3) land price data, and 4) 

potential loss value map, are aligned to compute the covariance and correlation matrices for the 

purpose of investigating association of each risk element (i.e. fire probability, burn probability, 

and fire effect) with the resulting assessment. Pearson’s correlation between any two factors is 

calculated as follows: 
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𝐶𝑜𝑟𝑟𝑖𝑗 =

𝐶𝑜𝑣𝑖𝑗

𝛿𝑖𝛿𝑗
 (5) 

where 𝛿𝑖 denotes the standard deviation of the 𝑖th pixel values and 𝐶𝑜𝑣𝑖𝑗 means the covariance 

between raster layers 𝑖 and 𝑗 (𝑖, 𝑗 = 1, … , 4). 

 

Table 2.1. The 95th percentile extreme weather condition used in fire spread simulation. 

Temperature Relative Humidity Wind Speed Wind Direction 

16.3° 32.3% 4.2m/s WNW 

 

 
Figure 2.1. Locations of Yeongchun weather observatory (128.57.5°E. 35.58.38°N) and 502 

ignition points derived from the estimated fire probability. 
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Figure 2.2. Realizations of point pattern using M-H algorithm under a given area-interaction model 

(constructed in the previous chapter). With 100,000 iterations and 50,000 burn-in iterations, the 

progress of the algorithm was tracked for the 50,000, 70,000, 90,000, and 100,000th iteration, 

respectively. A sub-total of 139 points are obtained as the first simulation set, and used as fire 

ignition points with three other sets of points obtained by the same algorithm setting. Some points 

distributed on noncombustible areas (e.g., residential area, water bodies, and etc.) were excluded 

during the fire spread simulation procedure, resulting in a total of 502 individual fire spread 

patterns. 
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Figure 2.3. The control screen of fire spread simulator, FFSM. 

 

2.3. Result and Discussion 

2.3.1. Burn Probability Maps 

The aggregation of 502 individual fire spread simulation results is presented in Figure 2.4 

in order of time elapsed. Burn probability for overall fire durations ranged from 0 to approximately 

7.6%, indicating that the highest frequency of burn on the same piece of area was 38 times out of 

502 simulations under an extreme (95th percentile) weather condition. When the fire lasted for 5 

hours, about 52 hectares of forest were burned on average per fire. This is an extreme result 

considering that the average burn area is reported as only 2.7 ha per fire with 1 hour and 47 minutes 

of average suppression time (Korea Forest Service, 2011). Our simulation didn’t account for fire 

extinction efforts, which, along with the extremity of weather used in simulation, contributed to 

our high estimate of area burned. As the duration of fire increases, the rate of spread in area (ha/hr) 
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also increases (Table 2.2). This can be attributed to the expansion of fire lines as fire duration 

increases, despite consistent fire spread rate in distance under the constant weather scenario. These 

results correspond well to previous research (Weber, 1989).  

Examining the most extreme case of fire duration (i.e. 20 hours) (Figure 2.7), 74.9% of the 

entire area suffered from the spread of fire at least once during the simulation. The risk of forest 

fires under extreme conditions is classified into five successive stages (Table 2.3). The spatial 

distribution of burn probability in Gyeongju consists of mostly moderate level of risk (<2%) area. 

The relatively high risk area with the burn probability of 2~4% (i.e. 5 to 10 times of fire spread 

during 502 simulations) accounts for 2.37% of the entire region, and 0.96% of the region is at even 

higher risk. It is remarkable that the extreme rate (e.g. >6%, 30 or more times of fire spread during 

502 simulation) of fire risk occupies up to 2.84% of the region, a percentage greater than for the 

‘High’ and ‘Very high’ risks. This reveals that the risk of forest fire is spatially clustered at specific 

locations of the region. 

The 'hot spots' containing high burn probabilities are mostly concentrated on the forest 

around Geumo-san and Gumi-san, the lower and upper center part of the study landscape (Figure 

2.7). This is likely due to the close proximity of these forests to urbanized areas. According to the 

density of simulated ignition points (Figure 2.6), it appears that the distribution of burn probability 

is largely associated with high frequent fire occurrence areas. However, the forest around Geumo-

san (marked in Figure 2.1) seems to have a relatively small number of fire occurrences in contrast 

to its excessively large burn frequencies, implying that burn probability may not be entirely 

dependent on the fire occurrence probability. 

2.3.2. Risk assessment using land price data 
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The government-appraised land property value per unit area (𝑚2) of forested land in 

Gyeongju is presented in Figure 2.8. The lands with high value are primarily located in the center 

of the study landscape, in close proximity to urbanized areas, whereas the westernmost part of the 

landscape has relatively low values. As aforementioned, we considered land property loss from 

forest fire to describe the fire effect. This can be an example that presents relative risks in value 

among different locations of the landscape.   

The final result of risk assessment, based on land property value combined with burn 

probability (with 20 hours of fire duration), shows fire risk as a function of fire effect and burn 

probability. Some areas with high fire risk potential shown in Figure 2.9 (i.e., orange to red colors) 

have either extremely high property values or extremely high burn probability. Although some 

areas have low property values (e.g., the area around Geumo-san), they appear to have relatively 

high fire loss because of their extreme burn probability (Figure 2.7). The circumstance where some 

areas with low property values have high fire risk due to a high burn probability suggests that fire 

risk is not dependent solely on either the burn probability or the fire effect.   

2.3.3. Factors affecting the risk of forest fire 

Pearson’s correlations among the fire probability, burn probability, land price, and 

expected loss are provided in Table 2.4. Note that the variables used for correlation calculation are 

log-transformed. The expected loss value showed the highest correlation rate (𝑟 = 0.7084) with 

the burn probability, followed by the land price data (𝑟 = 0.4169) and the fire probability (𝑟 =

0.3969). This result indicates that the amount of loss from forest fires is largely affected by the 

burn probability, and the effect of actual property values is relatively subsidiary. It also implies 

that the burn probability calculated as a combination of fire ignition and fire spread provides more 

precise information than the ignition probability alone in assessing risk of forest fire. The burn 
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probability shows a considerable correlation with the density of ignition points (𝑟 = 0.3960) but 

not exclusively, implying that the pattern of fire spread is influenced by the fire occurrences to 

some extent (i.e. weak to moderate), but are separate processes. Meanwhile, the spatial distribution 

of land price has little connection with the fire probability (𝑟 = 0.1323) or burn probability (𝑟 =

0.0240).  

2.3.4. Further approach 

In this study, government-appraised land property values were utilized as the value of loss 

from forest fires, but other loss values such as potential resource damages, environmental and 

social values can be easily incorporated with our approach. Fire may influence land property values 

(Donovan et al., 2007; Mueller et al., 2009), but the entirety of the land value would not be lost 

from fire. It thus may not be appropriate to assess fire risks based on land values. In application, 

the amount of government compensation for property damage from forest fire can be based on the 

value of forest stock.  However, estimates of loss to forest stock cannot completely represent injury 

either, since it does not fully address all of the other economic, ecological, and social losses 

involved. Future research should address and quantify potential fire losses that are sensitive to 

location, fire severity, land use, population, and other ecological and social values in order to better 

reflect the real costs of forest fires. 

Weather is one of the primary factors influencing fire behavior, both directly and indirectly 

by affecting fuel condition and availability (Bessie and Johnson, 1995). Microclimate is subject to 

change minute by minute, complicating prediction of fire spread. In this study, weather was 

assumed to remain constant during the fire duration for simplicity of simulation. Even though this 

assumption is not uncommon in many simulation studies (e.g., Stephens, 1998; Mbow et al., 2004; 

Schmidt et al., 2008), it may cause bias –usually toward overestimation –in fire spread prediction. 
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Previous research has made attempts to diversify weather scenarios by averaging temperature and 

humidity of each month and distributing fire ignitions among monthly fire occurrence rates (e.g. 

Bar Massada et al., 2009), or by using climate records of randomly selected date (Carmel et al., 

2009). Consideration of weather variance in analyzing fire behavior (e.g., using wind field or 

remotely sensed data) would allow more realistic fire risk assessment. However, such 

considerations inevitably demand more capacity for computational time and load, and add layers 

of complexity to an already complex fire spread simulation process. 

 

Table 2.2. Parameters of burn area resulted from fire spread simulations for each level of fire 

duration. 

Fire Duration 

(hour) 

Mean Area 

(ha) 

Min. Area 

(ha) 

Max. Area 

(ha) 

S.D. 

(ha) 

Rate of Spread in 

Area (ha/hr) 

5 51.9749 0.7505 259.0731 36.8299 10.3950 

10 170.0403 0.8206 902.4563 124.7508 34.0081 

15 329.0854 0.8206 1644.9086 243.1726 65.8171 

20 514.6184 0.8206 2402.8163 380.6499 102.9237 

 

Table 2.3. Classification of fire risk according to the range of estimated burn probability. 

Fire Risk Range of Burn Probability Percentage to Total (%) 

Low 0% 25.10 

Moderate 0~2% 68.72 

High 2~4% 2.37 

Very high 4~6% 0.96 

Extreme >6% 2.84 

 

Table 2.4. Pearson’s correlation between the log-transformed values of resulted raster layers. 

 Fire Probability Burn Probability Land Price 
Expected 

Loss Value 

Fire Probability 1    

Burn Probability 0.3960 1   

Land Price 0.1323 0.0239 1  

Expected Loss Value 0.3969 0.7084 0.4169 1 
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Figure 2.4. Simulated mean, maximum, and minimum burned area corresponding to fire duration. 

Note that the 10% of data were trimmed from each time duration to exclude extreme cases. The 

scale of y-axis is logarithmic. 
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Figure 2.5. Spatial distributions of burn probability estimated from 500 fire spread simulations for 

the duration of (a) 5 hours, (b) 10 hours, (c) 15 hours, and (d) 20 hours. 
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Figure 2.6. Estimated density of forest fire ignition points (i.e. fire probability) in Gyeongju, 

Korea. 
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Figure 2.7. Estimated burn probability in Gyeongju, Korea. 
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Figure 2.8. Spatial distribution of land property value in Gyeongju, Korea. 



 

 
69 

 
Figure 2.9. Potential fire loss estimated from the burn probability and land property values. 
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2.4. Conclusion 

This study assessed risk of forest fires in Gyeongju, Republic of Korea based on Finney’s 

definition of wildfire risk (Finney, 2005). Fire behavior probability in each land parcel across the 

landscape was estimated using Monte Carlo fire spread simulation that considered fire ignition 

locations, topography, land cover, and a 95th percentile weather condition. A suite of fire ignition 

locations were derived from the fire ignition point density model described in the previous chapter. 

Fire effect was included in the form of land property value, which can be substituted by any other 

variables of concern depending on stakeholder’s interest. Forest fire risk assessed as a product of 

burn probability and property value, has a higher association with burn probability than land 

property value. Burn probability was related to the fire ignition point density to some extent, but 

not dominated by it. These findings support our initial speculation that fire behavior probability 

differs from fire occurrence probability, and both elements of forest fires should be considered in 

assessing the full spectrum of fire risk. 

Incorporation of fire occurrence potential into burn probability estimation seems logical 

and necessary, yet a direct comparison is not made in this study between burn probability with and 

without fire occurrence potential considered.  Quantifying the effects of fire occurrence 

consideration on burn probability estimation and a comparison with the effects of random ignitions 

would be warranted in future studies.   

 

 

 

  

 



 

 
71 

2.5 References 

Ager, A. A., Finney, M. A., Kerns, B. K., & Maffei, H. (2007). Modeling wildfire risk to 

northern spotted owl (Strix occidentalis caurina) habitat in Central Oregon, USA. Forest Ecology 

and Management, 246(1), 45-56. 

Alexander, M. E. (1985, April). Estimating the length-to-breadth ratio of elliptical forest fire 

patterns. In Proc. 8th Conf. Fire and Forest Meteorology (pp. 287-304). 

Anderson, D. H., Catchpole, E. A., De Mestre, N. J., & Parkes, T. (1982). Modelling the spread 

of grass fires. Journal of the Australian Mathematical Society, 23, 451-466. 

Andrews, P. L. (1986). BEHAVE: fire behavior prediction and fuel modeling system-BURN 

subsystem, Part 1. 

Baddeley, A., & Turner, R. (2006). Modelling spatial point patterns in R. In Case studies in 

spatial point process modeling (pp. 23-74). Springer New York. 

Ball, G. L., & Guertin, D. P. (1992). Improved fire growth modeling. International Journal of 

Wildland Fire, 2(2), 47-54. 

Bar Massada, A., Radeloff, V. C., Stewart, S. I., & Hawbaker, T. J. (2009). Wildfire risk in the 

wildland–urban interface: a simulation study in northwestern Wisconsin. Forest Ecology and 

Management, 258(9), 1990-1999. 

Bessie, W. C., & Johnson, E. A. (1995). The relative importance of fuels and weather on fire 

behavior in subalpine forests. Ecology, 76(3), 747-762. 

Carmel, Y., Paz, S., Jahashan, F., & Shoshany, M. (2009). Assessing fire risk using Monte Carlo 

simulations of fire spread. Forest Ecology and Management, 257(1), 370-377. 

Coleman, J., & Sullivan, A. (1995). SiroFire. the CSIRO Bushfire Spread Simulator. Proc Inst 

Forest Aust 16th Biennial Conf, Canberra. 

Donovan, G. H., Champ, P. A., & Butry, D. T. (2007). Wildfire risk and housing prices: a case 

study from Colorado Springs. Land Economics, 83(2), 217-233. 

ESRI 2012. ArcGIS Desktop: Release 10.2. Redlands, CA: Environmental Systems Research 

Institute. 

Finney, M. A. (1994, October). Modeling the spread and behavior of prescribed natural fires. In 

Proceedings of the 12th Conference on Fire and Forest Meteorology (pp. 138-143). 

Finney, M. A. (2005). The challenge of quantitative risk analysis for wildland fire. Forest 

Ecology and Management, 211(1), 97-108. 

Geyer, C. J., & Møller, J. (1994). Simulation procedures and likelihood inference for spatial 

point processes. Scandinavian Journal of Statistics, 359-373. 

Haas, J. R., Calkin, D. E., & Thompson, M. P. (2014). Wildfire risk transmission in the Colorado 

Front Range, USA. Risk analysis.  



 

 
72 

Illian, J., Penttinen, A., Stoyan, H., & Stoyan, D. (2008). Statistical analysis and modelling of 

spatial point patterns (Vol. 70). John Wiley & Sons. 

Korea Forest Service. (2011). Statistical Yearbook of Forestry 2011, Daejeon, Republic of Korea 

LaCroix, J. J., Ryu, S. R., Zheng, D., & Chen, J. (2006). Simulating fire spread with landscape 

management scenarios. Forest Science, 52(5), 522-529. 

Lee, B. D., Lee, Y. H., Lee, M. B., & Albers, H. J. (2011). Stochastic Simulation Model of Fire 

Occurrence in the Republic of Korea. Journal of Korean Forestry Society. 

Liu, Y., Stanturf, J., & Goodrick, S. (2010). Trends in global wildfire potential in a changing 

climate. Forest Ecology and Management, 259(4), 685-697. 

Mbow, C., Goı̈ta, K., & Bénié, G. B. (2004). Spectral indices and fire behavior simulation for 

fire risk assessment in savanna ecosystems. Remote Sensing of Environment, 91(1), 1-13. 

Miller, C., Landres, P. B., & Alaback, P. B. (1999, June). Evaluating risks and benefits of 

wildland fire at landscape scales. In Proceedings of the Joint Fire Science Conference and 

Workshop:“Crossing the Millennium: Integrating Spatial Technologies and Ecological 

Principles for a New Age in Fire Management,” Boise, Idaho (pp. 78-87). 

Mueller, J., Loomis, J., & González-Cabán, A. (2009). Do repeated wildfires change 

homebuyers’ demand for homes in high-risk areas? A hedonic analysis of the short and long-

term effects of repeated wildfires on house prices in Southern California. The Journal of Real 

Estate Finance and Economics, 38(2), 155-172. 

Ohlson, D. W., Berry, T. M., Gray, R. W., Blackwell, B. A., & Hawkes, B. C. (2006). Multi-

attribute evaluation of landscape-level fuel management to reduce wildfire risk. Forest Policy 

and Economics, 8(8), 824-837.  

Pastor, E., Zarate, L., Planas, E., & Arnaldos, J. (2003). Mathematical models and calculation 

systems for the study of wildland fire behaviour. Progress in Energy and Combustion Science, 

29(2), 139-153. 

Prestemon, J. P., Pye, J. M., Butry, D. T., Holmes, T. P., & Mercer, D. E. (2002). Understanding 

broadscale wildfire risks in a human-dominated landscape. Forest Science, 48(4), 685-693. 

R Development Core Team. (2010). R software. 

Richards, G. D. (1990). An elliptical growth model of forest fire fronts and its numerical 

solution. International Journal for Numerical Methods in Engineering, 30(6), 1163-1179. 

Rothermel, R. C. (1972). A mathematical model for predicting fire spread in wildland fuels. 

Schmidt, D. A., Taylor, A. H., & Skinner, C. N. (2008). The influence of fuels treatment and 

landscape arrangement on simulated fire behavior, Southern Cascade range, California. Forest 

Ecology and Management, 255(8), 3170-3184. 

Stephens, S. L. (1998). Evaluation of the effects of silvicultural and fuels treatments on potential 

fire behaviour in Sierra Nevada mixed-conifer forests. Forest Ecology and Management, 105(1), 

21-35. 



 

 
73 

Stoyan, D., & Penttinen, A. (2000). Recent applications of point process methods in forestry 

statistics. Statistical Science, 61-78. 

Sullivan, A. L. (2009a). Wildland surface fire spread modelling, 1990–2007. 1: Physical and 

quasi-physical models. International Journal of Wildland Fire, 18(4), 349-368. 

Sullivan, A. L. (2009b). Wildland surface fire spread modelling, 1990–2007. 2: Empirical and 

quasi-empirical models. International Journal of Wildland Fire, 18(4), 369-386. 

Sullivan, A. L. (2009c). Wildland surface fire spread modelling, 1990–2007. 3: Simulation and 

mathematical analogue models. International Journal of Wildland Fire, 18(4), 387-403. 

Thompson, M. P., & Calkin, D. E. (2011). Uncertainty and risk in wildland fire management: a 

review. Journal of Environmental Management, 92(8), 1895-1909. 

Thompson, M. P., Calkin, D. E., Finney, M. A., Ager, A. A., & Gilbertson-Day, J. W. (2011). 

Integrated national-scale assessment of wildfire risk to human and ecological values. Stochastic 

Environmental Research and Risk Assessment, 25(6), 761-780. 

Tymstra, C. (2002). PROMETHEUS—the Canadian wildland fire growth model. Initial Attack, 

2002, 8-9.  

Wallace, G. (1993). A numerical fire simulation-model. International Journal of Wildland Fire, 

3(2), 111-116. 

Weber, R. O. (1989). Analytical models for fire spread due to radiation. Combustion and flame, 

78(3), 398-408. 

Weise, D. R., & Biging, G. S. (1997). A qualitative comparison of fire spread models 

incorporating wind and slope effects. Forest Science, 43(2), 170-180. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

 
74 

Concluding Remarks 

Forest fire is a complicated event affected by multiple factors and their interactions. 

Because of the complexity, most previous studies dealt with exclusively either fire occurrence 

potential or burn probability to assess fire risks. This research attempted to incorporate fire 

occurrence potential into burn probability estimation, while exploring a new approach to model 

fire ignition locations using point patterns in SPP modeling. The resulted burn probability map 

appears to successfully involve fire occurrence probability in a statistically rational way (e.g. M-

H algorithm), and can be combined with any measure of loss that is of importance to stakeholders 

(e.g. forest stocks, structures, social and cultural value of properties).  

Both occurrence and behavior of forest fires are riddled with uncertainty, and a myriad of 

errors may exist in predicting them, not only during each of stages but also as a colligated process. 

Errors may originate from statistical methodology of modeling, performance of the simulator, or 

even measurement of data. In addition, there would be a bias in assessing forest fire risk if both 

occurrence and behavior of fire are not considered simultaneously. This research was aimed to 

reduce such bias by combining modeled fire ignition density with fire spread simulations.  

The presented study suggested implementations of SPP as an intuitive way for estimating 

fire occurrence probabilities. With the model performance which is similar or better than 

conventional logistic model, SPP could be a good alternative method to solve a pseudo-absence 

problem in estimating fire occurrence probability. If a numerical evidence of better performance 

of SPP models compared to conventional logit models is available (e.g., pseudo-likelihood for 

both Poisson and non-Poisson models), the use of SPP would be more justifiable. 

Future studies should build on this study to improve the current limitations. Incorporation 

of microclimate variation would result in more realistic fire behavior probability modeling. 
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Addressing temporal effects on changes in burn probability due to vegetation growth and forest 

management activities over time could provide another piece of important information that would 

be useful for forest landscape management. Incorporating various economic, environmental, and 

social fire effects could provide better representations of fire risks.  

Despite several limitations previously mentioned, our modeling approach has the ability to 

generate spatial distribution of fire occurrence, burn probability and potential fire loss, and can 

provide useful information for forest planning and resource allocation in fire management and 

suppression. Effective decision-making on allocation of finite resources for fire management 

requires a quality estimation on high-risk areas and their values at risk. With further improvement, 

we hope that our approach can serve this purpose. 
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