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[n this dissertation we propose estimation procedures for generalized linear models and 
time series models with nonparametric correlation coefficients, addressing the issues of 
prediction, estimation and quality control. Nonparametric correlation coefficients are 
introduced in the present study as a comprehensive robust statistical tool. In particular, 
the method of estimation is valid for any correlation coefficient, but it will be illustrated 
using the Greatest Deviation correlation coefficient, r^.  Parameter estimation in
generalized linear models and time series models can be performed using nonparametric 
correlation coefficients. The methodology is demonstrated using health care management 
data. Subsequently we discuss the estimation method for generalized linear models, 
nonlinear models, and time series with nonparametric correlation coefficients. One reason 
for using a nonparametric correlation coefficient is to have the conclusions valid under a 
wider class o f bivariate distributions. Another reason is that the estimation process of
regression adapts the robustness o f the nonparametric correlation coefficient. Parameter 
estimates obtained for several data sets and through simulation show that the new 
methodology compares favorably with other general least squares and likelihood 
estimation methods, when the data are good, but performs robustly when the data have 
numerous suspect values.
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Chapter 1 

Linear Regression and Nonparametric Correlation 

Coefficients

1.1 Introduction

Gideon and Hollister (1987) introduced a nonparametric correlation coefficient that was 

based on the concept of greatest deviations (r^ ) . This new nonparametric correlation

coefficient is defined on ranks and is easy to compute by hand for small to medium 

sample sizes. In comparing it with existing correlation coefficients, it was found to be 

superior in a sampling situation that we called "biased outliers" and hence appears to be 

more resistant to outliers than the Pearson, Spearman, and Kendall correlation 

coefficients. In a correlational study, the Greatest Deviation Correlation Coefficient r■

was compared with the three other correlation coefficients. The Greatest Deviation 

Correlation Coefficient was far more "robust" to outliers than other correlation 

coefficients (Gideon and Hollister, 1987, [20]).

The standard least squares approach in estimating the regression slope b is to minimize a 

squared error distance function with the centered data. Point estimation o f the regression 

coefficient in linear regression is equivalent to finding the value that makes the residual 

vector orthogonal to the vector o f observations o f the explanatory variables. This 

orthogonality condition is identical to Pearson's correlation coefficient between these 

vectors equaling zero. When the correlation coefficient is a robust measure of correlation

I
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such as the Greatest Deviation Correlation Coefficient r^ ,  it results in robust point 

estimates o f the regression coefficient (Gideon and Hollister [20]).

1.2 Definition of Greatest Deviation Correlation Coefficient r&

Let p  = (p ,, p , p s ) be a permutation of the first N  positive integers. For a bivariate 

set of data (x,, >>,);*,, let r(x ,) be the rank of x, among the x data and similarly define 

r (y , ) • We shall assume a continuous distribution for x and y  so that with probability 1 

the ranks are unique. Now order the x data and let p, be the rank of the y  datum that 

corresponds to the i th smallest x value.

Let s s be the symmetric group of degree N. There are .V! possible p  in S s . Let the 

group operation " o" be the composition o f mappings. Thus if both p  = ( p ,, p 2,.... p  v) 

and q = (ql,q2,...,qs ) are in Sv, then p ° q  has as its /th  component p °  q(i) = p (lf ) 

(/ = 1,2,..., iV). For each {X, Y) data set o f size N , the permutation p  is denoted by 

p  = p{X,  T) and formally defined by p rU, = p(r(x,)) = r(y t) ,  where (x ,, y t) is the ; th 

pair in the data set (/ = 1,2,..., N).

There are two permutations in Sv that are of special interest. These are the identity 

permutation, e = ( l , 2 a n d  the reverse permutation e  = (N, N  - 1,...,1). Since 

s{i) = N  + \ - i ,  then f o p  = (JV + l - p l ,...,iV + l - p v) and p ° e  = ( p v,...,p ,). The 

composition e °  p  results from the reversal o f the order o f the y  values. So. 

p { X - Y )  = e  o p{X,  Y). Similarly, the composition p  ° s  results from the reversal of the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



order o f the x  values, and so p ( - X ,  Y) = p (X ,  Y ) ° s . Now we shall explain our 

definition o f the nonparametric correlation coefficient r^.

In comparing the permutation determined by the sample p ( X , Y) with e , we measure 

the deviation at i (for / = 1,2,..., N ) by the number o f p , , p , ,..., p ( that exceed e, = i. 

Definition 1.

Let 1(E) = I if E is true and 0 if £  is false, and let 

d A p)  = ' L I ( i < p )  = T . l (r(x ,) ^ i  <r(y ))— ;=l I

d.(£°  P) = t l ( p ,  < N  + l - i )  = Z I ( i  < N  + 1 -  p  )

Definition 2.

d(p )  = max,£/,(p) • 

d ( s  ° p) = max, d, (£ 0 p)

Definition 3.

r*  ( * ,  n  = (</(£'° P ) - dip)) /(N  / 2]

where p  = p(A', 10, the permutation determined by the sample, and [ ] is the greatest 

integer notation.

Example: For the bivariate set o f data , let the rank of x and y i be

( r i x M iy . ) ) '* ,={(U14), (2,11), (3,16), (4,2), (5,12), (6,13), (7,7), (8,9), (9,10), (10,3), (11,8), 

(12,1),(13,5),(14,6),(15,4),(16,5)}. The permutation o f the first 16 positive integers is p  =

(14,11,16,2,12,13,7,9,10,3,8,1,15,6,4,5). Then, by Definition 1, (dl(p ) ,dz(p),....,diti(p)) 

= (1,2,3,3,4,5,5,6,6,5,4,3,3,2,1,0), e « p =  (3,6,1,15,5,4,10,8,7,14,9,16,2,11,13,12), and 

(d t(^ 0 P ) , d , ( s o p),...,d l6(s °  p)) = ( I ,2,1,2,2,1,2,2,2,2,2,3,3,2,1,0).
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By Definition 2 and Definition 3, d(p)  = 6 and d(s °  p)  = 3 , so that r^  = —-------= - - .
[16/2] 8

1.3 Properties of ru

The nonparametric correlation coefficients have the following properties (Schweizer and 

Wolfe, 1981).

Property!: r ^ ( X , r )  is well defined.

Property 2: -  I < { X , Y ) < +1 

Property 3: r^ (T ,X )  = r^X^Y)

Property 4:

r J - X , Y )  = r„ (Y ,-K ) = - r „ ( j r , n  

Property 5:

rgJ( X  , Y )  = + 1 with probability 1 if and only if Y is a strictly monotone increasing 

function of X.

rgd( X  , Y )  = - 1  with probability 1 if and only if Y is a strictly monotone decreasing

function ofX .

Property 6:

If X and Y are independent, then E[r^{X,Y)\  = 0 

Property 7:

^ ( / ( Y ) ,g ( r ) )  = rtd(X ,  Y) if /  and g  are strictly monotone increasing functions on the 

ranges o f X and Y, respectively.

The above properties were proved by Hollister (Hollister’s Ph.D Dissertation, 1987).

4
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1.4 Simple Linear Regression with Nonparametric Correlation Coefficients

Parameter estimation and hypothesis testing in simple linear regression can be performed 

using any nonparametric correlation coefficient (Gideon, Li and Rummel [19] and 

Rummel [40]). In particular, the method given is illustrated using the Greatest Deviation 

correlation coefficient, r^ , which was developed by Gideon and Hollister, but other 

correlations such as the modified footrule correlation, rm, , developed by Gideon (1992), 

or Spearman’s and Kendall’s correlations could be used in the same manner. There are 

two reasons for doing nonparametric regression. One reason is to have the conclusions 

valid under a wider class of bivariate distributions. Another reason is that the estimation 

process o f r^  regression adapts the robustness and resistance of the nonparametric

correlation coefficient (Gideon and Rummel [19], [40]).

Let the vector notation x,y  denote the random bivariate data (x, ,yi), / = 1,2,...,a . For 

any correlation R , let R(x,y)  be the value o f the correlation coefficient on the data. 

Suppose y , the response variable, and .r, the regressor variable, have a continuous 

bivariate distribution function. Assume the simple linear regression relationship:

E (y \x )  = a  + 0x .  (1.4.1)

The standard least squares approach in estimating /? is to minimize a squared error 

distance with the centered data. This is done by differentiating the sum of squared error 

with respect to /? and equating the result to zero. Let b represent the estimate o f /?; then 

this is equivalent to choosing b to make the residuals y - x b  orthogonal to the vector x , 

when the data are centered, and it is easy to show that this is the same as setting Pearson's 

correlation of the uncentered vectors y  -  xb and x to zero (since the vectors (y -  xb)

5
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and x  are orthogonal, (y -  xb)l~x, the inner product (y -  xb, x)  = 0 , 

( y - x b ,  x)
r = — =------------- = 0 , i.e., Pearson's correlation coefficient is zero).

IIj - sHHIs II

Thus, in order to find the estimated slope b , let b be the solution to the equation

R(-I,y~xb) = 0 (1.4.2)

This estimation method for /? is valid for nonparametric correlation coefficients. In the 

case o f nonparametric correlations, when there is an interval o f solutions, a standard 

approach is to take the midpoint.

In solving equation (1.4.2) with either r ^  or Pearson's r as b proceeds from minus

infinity to plus infinity, R ( x , y - x b ) proceeds monotonically from +1 to - I. For Pearson's

r , the decrease is strictly monotonic while for nonparametric R 's there are intervals of 

constant value. The monotonicity allows b to be found after a few iterations using an 

iterative computer language such as S-Plus or C .

The monotonicity is reviewed in the following section. New estimators of the intercept 

and the residual scale are also developed from correlation coefficients, and used here, but 

the development appears in Gideon et al (1992). Because o f the monotonicity of 

R { x ,y - x b )  as a function of b for a given data set, hypothesis testing and confidence

intervals are possible. These forms of inference are presented in a general fashion and 

illustrated for r  ..P*

The advantage that the Greatest Deviation correlation coefficient method has over other

6
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nonparametric regression methods is that the null distribution o f the correlation 

coefficient can be used for testing and for confidence intervals for j3.

1.4.1 Background and Monotonicity of R ( x , y -  xb) as a Function of b

The monotonicity of R ( x ,y -x b )a s  a function o f b was first discussed by Gideon et. ai.

in 1993. In order to motivate the nonparametric results, the case R = r ,  Pearson's 

correlation coefficient is considered first because the techniques are analogous. It can be 

shown that:

r(x ,y)sy - b s x
r (- I ,y -xb)  = (1.4.3)

The derivative with respect to b is always nonpositive; hence, r ( x . y - x b )  being 

continuous with respect to b is monotonically decreasing. A graph of r ( x . y - x b )  versus 

b is shown in figure 1.1 and details of this computation appear in Rummel (1991).

i » r(x,y-xb)

Figure 1.1 Correlation Coefficient as a Decreasing Function

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



In order to illustrate the calculation of a confidence interval, assume the bivariate normal

distribution with parameter set, (jut , p y , crz, a  y, p ) . Then E(y \ x) = M,~ P(<ry 1 X* -  )

which defines a  and f i . x  and {y -  fix)  are independent random variables, and it 

follows that r ( x , y - f i x )  will have the null distribution for these independent random 

variables. Let -r„ , be the upper v/2 critical value for sample size n, and let bu and b, 

be such that

Then by the monotonicity property,

b <b, <=> r { x , y - x b )  > ry/;!and

b > b u <=> r ( x , y - x b )  < - r v/, .

Thus it follows that (b,,bu) is a 1 -  vconfidence interval because P(b, < b < bu) = 1 -  v .

It was shown in Rummel (1991) that with

In addition, this r -based confidence interval for b is exactly the same as the least 

squares confidence interval using the appropriate t -distribution. The above concepts and 

procedures can be adapted to encompass any correlation coefficients. Nonparametric

r (x ,y~ b ,x )  = ryiz and

y - b „ x )  = -r„ 2 • (see Figure 1.1) (1.4.4)

(1.4.5)

b, = ( r ( x , y ) - h ) - s y / s t and b. =(r(x ,y ) + h)-sy / s t . (1.4.6)

8
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correlation coefficients are decreasing step functions of b , but the geometrical ideas 

remain the same. We will illustrate it in Section 1.4.3.

1.4.2 Definitions, Tied Values, and Review

Let /  be a 0,1 indicator function obtaining a 1 if the event is true. For a bivariate data set 

(x,>0, with no tied values, order the x  data and let t' = be the associated rank

vector for y .  Then for a nonparametric correlation coefficient such as r^ . 

rid {^y )  = r,i(jL’Q where e' = (l,2,...,n) (Gideon, 1992). For convenience and without 

loss of generality consider from here on the (x, y)  data ordered by the x  data. If tied 

values exist in the x and/or y  data, create two non-tied / vectors, one that favors 

positive correlation t ' ,  and a second that favors negative correlation t ~. The vector t ' is 

formed by choosing ranks for the y  data within the restriction o f ties to have the higher

ranks as close as possible to the n th  position; t '  would position the higher ranks as close 

as possible to the first position. An example appears in Gideon and Hollister (1987). Then 

for tied data r^{x ,y )  = («,{*)+ r„  (« ,/ ') ] /2 .  This is called the max-min procedure.

Example: Let the rank of (x , y ) be

X l 2 3.5 3.5 5 6.5 6.5 8 9 10 11.5 11.5

y l 2.5 8 7 4.5 6 2.5 10 4.5 9 12 11

We list these two permutations:

9
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X l 2 3 4 5 6 7 8 9 10 11 12

y(+) l 2 7 8 4 3 6 10 5 9 11 12

y(- ) l 3 8 7 5 6 2 10 4 9 12 11

In both cases r j  =0.5 and r j '  = 0 .5 , so ={rga' + r J/ ) / 2  = 0 .5 .

The definitions of and rmf are now given for non-tied value data. These definitions

appear in Gideon (1992) along with some comparisons to Kendall's and Spearman’s 

correlations.

Let
/=!

d;{Q = Y dI { i < tI ) for 1=1,2,...,n. (1.4.7)

rtu(*>0 = (maxd't (t) -  max d '  (Q) /

and rmf (e,tj = ( £  d;  (r) -  £  d]  (rj) /
n'
T (1.4.8)

For regression, ( will be the function of b , and the vector t{b) has for its i th component 

the rank of y, - b x t among the set o f n residuals. If ties exist among the x 's or the

residuals, then r * (b) and t~ (b) need to be formed. The problem is to determine b so that 

for , say,

V  = + * £ ) /2  = 0 (1.4.9)

10
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For i < j ,  x, <Xj and letting b' = {yj - y l)l(x] - x , )  then y t = y t - x tb‘ . For

small £ > 0 , as b changes from b' - e  to b' + s ,  the ranks o f these two residuals are

interchanged with the higher rank moving towards the beginning o f the residual vector

(beginning rank is / = 1). Nonparametric correlation coefficients will never increase and 

possibly decrease at such a transition. With this max-min method, at b ' , 

r* = U , y ~ x b ' )  = (r^ +rw) / 2  = (infrlrf(x ,> '-x6) + suprirf(x ,;y -x b ) ) /2 .  (1.4.10)
— 4<4* »>*'

1.4.3 Properties of the Estimators for f i

Let b' = sup{6: r^  (x, y - x b ) >  0}

b" =iaf{b:rgd( x , y - x b ) < 0 }

b = (b '+ b ' ' ) /2  (1.4.11)

and define b to be the estimate o f fi  for data (x .y ). Let b(x,y)  denote this estimate.

It follows from the properties o f correlations that for constants d i,d , , c l,c, with d z * 0, 

b{dx I + d z x, c, 1 + c, y ) = (c. / d , )b(x, y ) , (1.4.12)

6 (x ,j/  + ax) = a  + 6(x ,y). (1.4.13)

Theorem: The distribution o f b defined by (1.4.11) is symmetric about the parameter fi 

in a simple linear regression model.

Proof. r ^ ( x , y - x f i )  is symmetric about zero and without loss o f generality by the 

linearity property (1.4.13) above, let fi = 0 . Then (x ,-y ) = - r ^  (x, y ) , a standard 

property o f correlation coefficients, and the null distribution is symmetric about zero (if

ll
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/? = 0 , xand y are uncorrelated). T h u s , (x,y) = ( x , - y )(equal in distribution). This

fact and the earlier statement that b(x,y)  = -b (x , -y )  are enough to show that

4
b(x,y) = b(x ,-y),  i.e., b is symmetric about zero. This shows that b is unbiased for (3 

assuming E(b) exists.

i k rgd(x.y-xb)

Figure 1.2 The Greatest Deviation Correlation Coefficient as a Decreasing Step Function o f b

The Greatest Deviation correlation coefficient ^ ( x . y - x b )  is a decreasing step function 

of b (Figure 1.2). Confidence intervals for (3 are illustrated in Figure 1.2 with and the 

symmetric null distribution o f ^ ( x , y  -x/3).  Let r ./: be such that

p { - rw2 < v ( x , y - x f > ) < r w2} = l - v  (see Figure 1.2)

Then define bm and b, in the equations

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



bu = sup{b' '•rgd(xJy_-xb ')>  - r vl2}

b, = inf{6* ' . r ^ i ^ y - x b ' )  <rvll} (1.4.14)

Then P{b, < b < b u} = 1 - v  and (bn bu) is the confidence interval. From Gideon et al. 

([16]) we have yfnr^ (x, y  -  xfi)—^->#(0,1) and from Gideon and Li (1992) we have 

'[*Xrmf (*> y  ~ xfi) —i~~* N (0,2 /3 ). Then for large sample sizes, asymptotic 1 -v  

confidence intervals can be obtained by solving for b, and bu in 

rgd( x , y - x b l) = z vnJ y f n J

rvt{ x , y - & u) = - Z , l l l J n  (1.4.15)

where Z w, is the upper v /2  percentile for a iV(0.1) random variable.

For b, and bu using rmf solve

rmf( x , y - x b l) = Z„l l /yl2nl2

rmf( x , y - x b u) = - Z , , j S n / 2  (1.4.16)

It has been found that a bisection algorithm works well to find the estimate b for and

rmf in equation (1.4.2). We can find b‘ and b"  in equation (1.4.11) using and rmf as

defined in (1.4.8) and using the max-min method for tied values. A confidence interval is 

obtained for b by again solving an equation like (1.4.2) with the same numerical 

algorithm except the right-hand side gets replaced by upper and lower critical values of 

the null distribution o f the appropriate correlation as explained above. The null 

distribution o f appears in Gideon and Hollister (1987).
13
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1.4.4 Intercept and Residual Scale Estimates

For any correlation coefficient and in particular for the Greatest Deviation correlation 

coefficient r^ , the simple linear regression equation is:

r9/( x , y - b lx) = 0. (1.4.17)

Thus, the regressor variables are uncorrelated with the regression residuals. The intercept 

o f the regression is estimated by taking the median o f these residuals:

bQ = median(y - b xx) (1.4.18)

In order to estimate a , solve the following equation for s ([16]):

r ^ & r e s 0 - s * k )  = 0 (1.4.19)

where res0 is the vector of ordered residuals, k  is the standard Gaussian order statistics.

1.5 Multiple Linear Regression with Nonparametric Correlation Coefficients

The estimations are not strongly affected by the outliers is called the robustness. 

Estimation of the parameters o f a general linear model was proposed by using the

nonparametric correlation coefficient, r^  (Gideon, Rummel and Li [19], Rummel [40]).

In these unpublished research papers, hypothesis and subhypothesis tests were also 

introduced by using this correlation as a multiple correlation coefficient. The efficiency 

o f the estimation and the power of the new test procedure were studied using Monte 

Carlo simulations. Simulation studies showed that these procedures are more robust and 

efficient than the classical least square procedures when the underlying error distribution

14
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is not normal, and they compare well with existing robust methods. In general, any 

nonparametric correlation could be utilized in the same manner.

The least squares estimation procedure and the classical F  test procedure for the 

multiple linear regression model can be restated by using Pearson’s correlation 

coefficient r . We substitute for r in the determining normal equations and study the

resulting effects on the estimation o f the parameters. One reason for this is that it is 

known that the least squares estimation and classical F  test procedures are not robust to 

different error assumptions. The Greatest Deviation Correlation Coefficient is resistant to 

outliers and we used this correlation coefficient in the estimation of parameters in the 

simple linear regression model. We found that the robustness of to outliers and

nonnormality as a correlation coefficient induces robustness in the estimated parameters. 

We extended the estimation method from the simple linear model to the multiple linear 

model.

The general linear model can be written in matrix form as:

y  = X 0  + e  (1.5.1)

where y  is an nx 1 vector of independent observations, X  is an n * ( p  + 1) matrix of 

known constants, f i  is a (p  + l)x l  vector o f unknown regression parameters and 

E(s)  = 0, E ( e s ) = a ' I n, a  > 0 where l n is the identity matrix o f order n .

Section 1.5.1 introduces a robust estimation method for the P parameters. Section 1.5.2 

shows how to estimate the parameters a  and a  ([19], [40]).

15
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1.5.1 Estimation of Parameters

The least squares estimator of /? , say p  can be obtained by solving the following 

equations:

r(x1, y - X f i )  = 0, 

r(x1 , y - X P ) = 0 ,

(1.5.2)

r{xJL, y - X j 3 ) = 0 ,

where r stands for Pearson’s correlation coefficient and X  -  (.t,,* .,...,.^ ), where 

xl,x,, . . . ,xp are column vectors representing the p  predictors.

It is known that Pearson’s correlation coefficient r is not robust to outliers and 

nonnormality; therefore, the least squares estimates o f the P’s are not robust to outliers 

and nonnormality. The estimates of P’s, denoted as (3^ , are defined by replacing

Pearson’s correlation coefficient r  by the Greatest Deviation Correlation Coefficient 

in equations (1.5.2); i.e., by solving the following equations:

y ( w - ^ A , , ) = 0>

(1.5.3)

rp/(Xp’y - X 0 r 0 ) = Q’

16
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where = (/?Vl»/?Vl v , / ^ ) -  The equations in (1.5.3) will be called the normal 

equations.

There is no explicit solution, so a numerical algorithm is needed to solve these equations. 

Let w, and w, be n x 1 data vectors from a continuous bivariate random variable. 

Because r^(w, ,w, ~ w tb) is a non-increasing function o f b for any fixed w, and w ,, 

rgrf(w1*w: -  wi^)  ̂ when b is a large negative number, and rgJ(wl,w2 -  w^b) -> -1

when b is a large positive number (see Rummel, 1991), equations (1.5.3) have a 

solution. C and Splus computer programs which use a bisection numerical method to 

obtain a solution for b in this simple linear regression model have ben written.

For an intermediate set of possible solutions of (1.5.3) /? ,,/ = 1,2,...,/?. let

y , - y - , x , • The i th equation in (1.5.3) is

rpi(x,’y , - xA ) - 0 - ( l -5-4)

Now, r^(.r , y t -x ,/? ,) is a decreasing step function in/?, and a bisection method is used 

to solve for f3t in equation (1.5.4) where the bisection method depends on the possible 

jump points o f the step function, (ytk ~ y hJ)/ (x lk - x , y) where y' ,=(ya  ,— , y lM) and .< 

= (x(1, ..., x in) and (xa  - xt J) * 0. Once /?, is found to satisfy Equation (1.5.4), the 

process is repeated at / +1. Thus, given a set o f initial values (/?,3 f lpa), the equations 

are solved sequentially for / = 1,2,...,p  to obtain a new set o f values (/?, ,...,/?„'). This

GanssSiedel  method has converged under a wide set o f simulations and examples. It has
17
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difficulty when p  is too near n . When p  = 1, a unique solution can be defined by 

averaging the infinum and supremum of the solution set. Since is discrete-valued, the

solution set for the /?,'s when p  > I is a region in p  space, and currently, the solution is 

defined to be the first set o f  values that satisfies equation (1.5.3).

1.5.2 Estimate of Error and Intercept

For any correlation coefficient and in particular for the Greatest Deviation correlation 

coefficient r• , the multiple linear regression equations are:

V  (fj.* y ~ b\ ' h ~ b*iL~  -  ~ bpx_p) = °»‘ = p-  ( 1 -5-5)

Thus, the regressor variables are uncorrelated with the regression residuals. The intercept 

o f the regression is obtained by taking the median o f these residuals:

b0 = median(y -  bx .r, - b 1x 2 - ... -  bp x p) (1.5.6)

where n is the sample size, x, =

( x  \ f t  ^pi
*r. •Vp:
• *
* *

<XuJ

, and for simple linear regression.

p  = 1.

In order to estimate <r, solve the following equation for s :

r^(Jc,res° ~ s * k )  = 0 (1.5.7)

where res0 is the vector o f the ordered residuals, k is the vector o f standard Gaussian

13
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order statistics. For r (l), the / th order statistic from a jV(0,1) random sample, 

k, = £ ( r (0), 1 = 1,2,...,#!.

19
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Chapter 2

Generalized Linear Models and Estimation

2.1 Introduction

For several decades linear models o f the form

y = X 0 + e  (2 .1 .1 )

with the assumption that the elements of e  are iV /D (0, cr: ) have formed the basis of 

most analyses of continuous data. Recent advances in statistical theory and computer 

software allow us to use methods analogous to those developed for linear models in the 

following situations:

• the response variables have distributions other than the normal distribution - they may 

even be categorical rather than continuous;

• the relationship between the response and explanatory variables need not be of the 

simple linear form in (2.1.1).

One o f these advances has been the recognition that many of the 'nice' properties of the 

normal distributions are shared by a wider class o f distribution called the exponential 

family o f distributions. This chapter introduces the exponential family of distributions 

and defines generalized linear models. A second advance is the extension of the 

numerical methods for estimating parameters, from linear combinations like X(3 in

(2.1.1) to differentiable functions o f linear combinations such as g(Xfi) .

20
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In Chapter 1 we discussed linear regression with nonparametric correlation coefficients, 

such as r^ .  The parameters a  and f i  can be estimated by least squares or the 

method. Gideon and Hollister (1987) introduced the Greatest Deviation Correlation 

Coefficient, r^ . Gideon, Rummel, and Li (1993) used this correlation coefficient in the

estimation o f parameters in the simple linear regression and multiple linear regression 

models (Gideon, Li and Rummel [19] and Gideon, Rummel and Li [40]).

Let the vector notation x , y  denote the random bivariate data (x , ,y j-  ‘ = 1,2,•••«. For

Pearson's correlation coefficient r  or the Greatest Deviation correlation coefficient , 

let r(x,y)  or r ^ i x . y )  be the value of the correlation coefficient on the data. Assume the 

response variable y  and the independent variable x , have a continuous bivariate 

distribution with simple linear regression relationship as in (2.1.1). The standard least 

squares approach in estimating (5 is to minimize a squared error distance function with 

the centered data. This is done by differentiating it with respect to (3 and equating the 

result to zero.

Letting b represent the estimate of /?, then this is equivalent to choosing b to make the 

residuals y - x b  orthogonal to the vector x , when the data are centered. This is 

equivalent to setting the Pearson's correlation coefficient o f the uncentered vector y - x b  

and x to zero (see Chapter 1):

r { x , y - x b )  = 0 . (2.1.2)

21
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In solving equation (2.1.2) with either Pearson's r or the Greatest Deviation correlation 

coefficient as b proceeds from -o o m + a o , r ( x , y - x b )  or r ^ { x , y  -  xb) proceeds

monotonically from +1 to -1 (see Figure l .l  and Figure 1.2 in Chapter I).

This monotonicity allows us to find o f b after a few iterations using an iterative 

computer program language such as S-Plus or C for the computation of , which can

then be used to find b . Least squares estimation for generalized linear models and 

nonlinear models can be modified in a natural way to accommodate using the Greatest 

Deviation correlation coefficient . This chapter extends the method developed for

simple linear models to generalized linear models by substituting for r  in the

determining normal equations.

2.2 Generalized Linear Modeb

2.2.1 Exponential Family:

Exponential Family of Distributions:

A distribution belongs to the one-parameter exponential family if it can be written in the 

form:

A y , 0 )  = s { y ) m eaWHe) (2.2.1)

where a,b,s,t  are known functions, and 0 is an unknown parameter.

(2.2.1) can be rewritten in the form:

f ( y ,  0) = exp[a(y)b(0) + c{0) + d  (y)] (2.2.2)

where s(y) = exp[rf(y)], and t{0) = exp[c(0)].
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If a{y) -  y , the distribution in (2.2.2) is said to be in canonical form and b(0) is called 

the natural parameter of the distribution. If there are other parameters in addition to 0 , 

they are regarded as nuisance parameters forming parts of the function a,b.c and d. 

they are treated as though they are known.

Many well-known distributions belong to the exponential family. For example, the 

Poisson, Normal and binomial distributions can be written in the canonical form.

A. Poisson Distribution

/ C M )  = ^ 4 - ,  y  =0,1,2,.... (2.2.3)
y'-

This can be rewritten as:

f ( y , X) = exp[y log k  -  X -  log y \] 

which is in the canonical form with log A as the natural parameter.

B. Normal Distribution, Y ~ N{/u,az)

e x P t - ; — —oo <  y  < ao
1 / t “

(2.2.4)

The canonical form is

f (y -M )  = e x p [ - ^ M I l o g ^ o - 2)]

with the natural parameter ,.

C. Binomial Distribution, Y ~b{n ,x)

(2.2.5)
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The canonical form is

/O ',* )  = exp y  log n  -  y  log(l -  7t) + n log(l -  7t) + log
\ y j

with the natural paranieter log j ~ ,  the log odds ratio.

These results are summarized in Table 2.1.

Table 2.1 Poisson, Normal and binomial distributions as members o f the exponential 

family

Distribution Natural parameters c d

Poisson log A - A -  log y!

Normal (i! a z - i l 0g(2;rc7: ) ~ \ y z i °

Binomial lo g (^ ) « lo g (l- /r)
I f  "1log

\ y

In order to get the normal equations for generalized linear models in Section 2.3.3, we 

need to find the expressions o f E[a{y)] and Var[a(y)].

Consider a continuous random variable Y with the probability density function 

/ (y;0)  depending on a single parameter 6 . The log-likelihood function is the logarithm

of f ( y , 0 ) :

l(9,y) = lo g f ( y ,0 )

24
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The derivative U -  —  is called the score. We can get the moments of U using the 
d9

(2 .2 .6)

identity (Cox & Hinkley, [7]):

d  log f { y ,  9)  1 df{y,Q)
d0 f ( y , 9 )  d9

If we take expectations of (2.2.6) we obtain

J d9  J d0

—  \f(yJ)<ty = — 1 = 0
d0  J  d0

This interchange of the integral and derivative works for any exponential family

distribution due to the Lebesgue Dominated Convergence Theorem.

Hence, £ ((/) = 0 (Cox & Hinkley [7]) (2.2.7)

Also, if  we take expectations of (2.2.6) and differentiate it with respect to 9 . the order of

these operations for any exponential family distribution can be interchanged due to the

Lebesgue Dominated Convergence Theorem, then

d ^ d \ o i ^ e ) n y 0 ) d y  _ j j _ i A y J ) ) d y  „  0  

dd d9 d o *

I <f a  + f { y . m  = 0
d Q~ do

Therefore, £[_ ^ l o g / ( > :g ) ] = £ { [t/ lo g /( > .g ) ];(
d0-  d9

or £ [ - ( / ']  = E[(JZ]. (2-2.8)

Since E(U) = 0 , the variance o f U , which is called the information, is
25
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Var(U) = E(U1) = E( -U ')  (2.2.9)

More generally, consider independent random variables YX,Y,,...,YS whose probability 

distributions depend on parameters 9 {,Gz,...,Gp where p < N . Let /,{B\y, ) denote the 

log-likelihood function o f 9 = [GX,...,6 p\T for Y: . Then due to the independence, the log- 

likelihood function for YX,Y1,...,YS is

l(9-,y) = i l l(9 \y l)/*!

where y  = [yx ,...,ys f . The total score with respect to 6 1 is defined as

ith
dOl % dGt

d m y . )
dG

=  0 ,

and so E(UJ) = 0 for /  = 1,2,..., p. (2.2.10)

The information matrix, Jp*p, is defined to be the variance-covariance matrix of the 

Ul 's, where J  = E(U U T) , U is the vector o f scores Uy,U , ,...,(/ p , i.e., U = [Ux..., U p\r , so 

J  has elements

= (2.2.11) 
dG, dGk dG,oG>

To find the expected value and variance o f a(Y) we use the above results. From (2.2.2),

/ = log /  = a(y)b(G) + c{9) + d(y)

26
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Thus E(U) = b\0)E[a(Y)] + c \0 )

Since E(U) = 0,

E[a(Y)] = - c \ 0 ) / b \ 9 ) .  (2.2.12)

Also Var{U) = E(UZ) = [b \0 ) f  var[a(T)]

and E(-U') = -b\9)E[a{Y)\  -c"(0)

=> Var[a(y)] = { - b \ 9 ) E \ a ( Y ) ) - c \ 9 ) } l [ b \ 9 ) t

= [ b \ 9 ) c \ 9 ) - c \ 9 ) b \ 9 ) \ l [ b \ 9 ) t . (2.2.13)

2.2.2 Generalized Linear Model

Let Y[,---,Yn be independent random variables, each with a distribution from the 

exponential family with the following properties:

•  The distribution o f each Yt *s o f canonical form and depends on a single parameter 0t. 

thus

/ O ' , ; $)  = exP O', b,(9i) + Ci(0i)+d,(yt)]. (2.2.14)

•  The distribution of all the Y,'s is o f the same form so that the subscripts on b,c and d  

are not needed. Thus the joint probability density function o f % Y„ is

f ( y v " , y n-, 0 1 9 n )  = exp[ i y p ( 9 , )  + t c ( 9 , )  + i d  (>-,)]. (2.2.15)
,=i »=t /=i

For a generalized linear model, we consider a smaller set o f parameters:
27
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- (where p < n )  such that a linear combination o f the P ' s is equal to some 

function o f the expected value p t of Y,, i.e.,

g(M,) = x l P  (2.2.16)

where g  is a monotone, differentiable function called the link function;

x, is a p  x 1 vector of explanatory variables corresponding to y , ; and

P  is a py. 1 the vector o f parameters /?p]r

Thus, a generalized linear model has three components:

•  response variables Yi,--,Yn which are assumed to share the same distribution from 

the exponential family;

•  a set o f parameters p  and explanatory matrix: X  =[xir ,—, . r l f

• a monotone link function g  such that

g(p,) = x l P  where p = E { Y t)- 

Such models form the core of this chapter.

2.3 Estimation in Generalized Linear Models

Two of the commonly used approaches to the statistical estimation o f parameters are the 

method o f maximum likelihood and method of least squares. This chapter begins by 

reviewing the principles o f each of these methods and some properties o f the estimators. 

In Section 2.3.3 we will discuss parameters estimation using the Greatest Deviation 

correlation coefficient .
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2.3.1 Method of Maximum Likelihood

Let YX,...,YS be N  random variables with the joint probability density function 

f ( y x,...ys ;9x,...9p) which depends on parameters 9x,...9p. For brevity we denote

l> ,......Xv]r by y  2nd [0\,",oP]T by

Let Q  denote the parameter space, i.e. all possible values o f the parameter vector 9 . The 

maximum likelihood estimator o f 9  is defined as the vector 9 such that 

L(0; y) > L(9; y)  for all 0 e Q .

Equivalently, if l(9;y) = \agL(0;y)  is the log-likelihood estimator, then 9  is the 

maximum likelihood estimator if

1(9; y) > 1(9; y)  for all 9 e Q .

The most convenient way to obtain the maximum likelihood estimator is to examine all 

the local maxima of 1(9;, y ) . These maxima are

51(9;, y)(i) the solution of -— = 0, j  = I,..., p,
69J

such that 9 belongs to Q and the matrix of second derivatives

5zl(9;y)
 — is negative definite; and
d0,dOk

(ii) any values of 9 at the edges o f the parameter space Q which correspond to 

maxima of 1(9;, y).

29
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The value 6  giving the largest o f the local maxima is the maximum likelihood estimator. 

For models considered in this chapter there is usually a unique maximum given by

An important property o f maximum likelihood estimators is that if ip(9) is any function 

of the parameters 9 , then the maximum likelihood estimator o f i// is

y> = K 0 -

This invariance property follows from the definition o f 8 .

23.2  Method of Least Squares

Let YX,...YS be random variables with expected values

E{Y,) = m. ' =

where /? = [/?, (p < N)  are the parameters to be estimated. Consider the model:

Y,=f*,+e„ i = 1,-m.V. 

where e, is the i th random error.

The method o f least squares consists of finding estimators ft which minimize the sum of 

squares o f the error terms

<»i i>i

In matrix notation this is

S  = ( y - M ) r( y - M )
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where y  = [ Y , Ys ]r and n  = [ / r , / / v ]r .

Generally the estimator P  is obtained by differentiating S  with respect to each element

PJ o f p  and solving the simultaneous equations

It is necessary to check that the solutions correspond to minima (i.e. the matrix o f second 

derivatives is positive definite) and to identify the global minimum from among these 

solutions and any local minima at the boundary of the parameter space.

2.3.3 Estimation using Pearson's Correlation Coefficient and the Greatest Deviation 

Correlation Coefficient

We wish to obtain maximum likelihood estimators o f the parameters in /? for the 

generalized linear models defined in Section 2.2.2. The log-Iikelihood function for 

independent responses ^ ,...,TV is

KQ., y) = I  y. K0.) +1 c(0.) +1 d(y.)

where (2.3.1)

and S(M.) ~x ,  P - r j , , (2.3.2)

where g  is monotone and differentiable.

From (2.2.13),

Var{Y.) = [ b \6 , )c'(&) -  e'(&)&'(&)] / [b ' i e f i (2.3.3)

The score with respect to parameter P: is defined as
31
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d l(0 ,y )  * dl,
U j 3 r»

d p ,  ~ d p ,  

where /, = y,b(Q,) + c(Q,) + d ( y )

To obtain U , ,  we use

dl ,  _ d l ,  dQ, d p, 
d p ,  d  Q, d p ,  d p ,

By differentiating (2.3.4) and substituting (2.3.1)

4 ^ -  = y. b 'M )  + c \ 9 )  = b\Q,)(y, - P.) ■ 
dQ,

By differentiating (2.3.1) and substituting (2.3.3)

t j L  = _ i H l  + c = bXe.Warly.)
dQ, b\Q,) [b\Q,))‘

By differentiating (2.3.2)

d p ,  d p ,  d q ,  _ d p ,

d p ,  dr], d p ,  X"drj ,

Hence,
d p ,  d Q . d p ,  dQ, Var(y,) dr],

and therefore = I  ^  " - — (— ) •
•»* Var(Y,) drj,

The elements o f the information matrix are defined by

•/,* = £(£/,£/*)•

From (2.3.8), for each Y, the contribution to J ,k is

(2.3.4)

(2.3.5)

(2.3.6)

(2.3.7)

(2.3.8)

(2.3.9)
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dl,  dl ,

1 * 0 ,  *  A J
= E {y , - M X  x„x,k ( d

{Var{y,))z *n,

x,, X ,k d  M
Var(Y) *n,

Therefore J jk = £  J " * —  ( ^ )
»*• Var(Y) drj ,

(2.3.10)

From (2.3.9), the equations formed by setting U t = 0, j  - 1,...p are non-linear equations

and they have to be solved with iterative numerical techniques.

Using the Newton-Raphson method the m th approximation for b is given by

d 'l

*0,*0>
I f( » - D (2.3.11)

where d''l
*  0  ,*  0  k

is the matrix o f the second derivatives of / evaluated at

0  = bim' {) and U lm~" is the vector of the first derivatives U = evaluated at
'  30,

0  = blm' l). (Note: this is the multidimemential analogue o f the Newton-Raphson method 

for finding a solution o f the equation f { x )  = 0, with m th step:

J")

An alternative procedure which is sometimes simpler than the Newton-Raphson method 

is called the method of scoring ([35]). It involves replacing the matrix of second 

derivatives in (2.3.11) by the matrix o f expected values:
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' d l  d l ' -  F d :l
d P ' d f i ,

d zl

The information matrix:

J  = E[U U r] has the elements:

J ,  = E[utU„] = E 

Thus (2.3.11) is replaced by

(2.3.12)

where J {m~" denotes the information matrix evaluated at b{M' l). Multiplication by J ' m~" in

(2.3.12) gives

+ . (2.3.13)

For generalized linear models the ( /,£ )  th element is written as in (2.3.10).

Thus the information matrix J  can be written as 

J  = X rWX

where W is the N  x N  diagonal matrix with the elements

1 d  u  :
W = — -— (— ) .

V a r { Y ) d n ,

The expression on the right hand side o f (2.3.13) is the vector with elements

v"v' Xi/Xit >(»-n ,
2-Z.Tr 7777'- a ’ ** 2. T. . . I ,  )
* - F a r ( y , )  drj, ■ Var(y , )  gt],

evaluated at this follows from (2.3.10) and (2.3.11). Thus the right hand side of

(2.3.13) can be written as
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f m-l,6( - » + ^(-D  = X TWZ 

where z has the elements

r, = 1  x * * r ,, + 0 ' , - / 0 ( 4 3L) (2.3.14)
‘ Oflt

with n  and evaluated at 61" 'l>.
3/i,

Hence the iterative equation can be written as X T WX b,m) = X TW z . (2.3.15)

Next, we want to obtain estimates of the parameters using the Greatest Deviation 

correlation coefficient .

Let E(y t) =/ut, g(/i,) =r}, = x[P  for i = \2 ,—, p ,

X mp = [ x i> ~ * x j , (2.3.16)

and let W = the diagonal weight matrix where W» = — -7— , W =  D(W.) , D indicates a
a;

diagonal matrix and x,r = vector o f the i* observations on all explanatory variables.

(2.3.14) can be rewritten as z1 = (x,r 6l"‘ l)) + ( j ' r A ) ( ^ r ) '  1 = L2,•••,/!,
ou,

or ± = X  bm~' + -  u) (2.3.17)
ou.

Let = and X '  = W U1X ,  Z' = W uzz .  (2.3.18)

At step m in the iteration, using (2.3.15):

X TWXb{m> = X TWz
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=> x Tw'nw'!'-xtf"'=xTwm«r'n i

=■ X ' r X ' k m  = X ' r i  (2.3.19)

This gives the normal equations for generalized linear models and can be solved by the 

correlation method using Pearson's r .  If we replace r by the Greatest Deviation 

correlation coefficient we have an iterative method as follows:

With Pearson’s r , we had:

K x , £ - * V " >) = 0, (2.3.20)

We can solve equation (2.3.19) for b<m) using the Greatest Deviation correlation 

coefficient r^  as:

for  / = l ,2 .- ,p .  (2.3.21)

2.4 An Example of Simple Linear Regression for Poisson Distributions

The data in Table 2.2 are counts y t observed at various values of a covariate .t (Annette 

J. Dobson (1990) "An Introduction to Generalized Linear Models"). This example is a 

simple linear regression with Poisson responses.

Table 2.2: Poisson regression data

y, 2 3 6 7 8 9 10 12 15

X, -I -I 0 0 0 0 t 1 1

The data are plotted in Figure 2.1

36
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Figure 2 .1 Poisson regression data 

Assume that the responses Y, are Poisson random variables. For the Poisson distribution.

the expected values and variances of the Y,'s are equal:

E{Y)  = Yar(Y.), i = 1,2,..., n.

Let us model the relationship between y, and x,  with a straight line.

E(Y)  = ft, = 0 O + /?, x, = x r, 0

where 0  =
’00 and i ,=

' f
for i  = 1,...,9

A X,

The link function here is g(/i,) = fi, -  xJ0_ -  rj, .

Therefore ^  L  = 1» W, = \  -  = n — »/*7 , Pdr(r,) Po + Ptx,

and from (2.3.18)

z = X  b"~x + y - u  = y?

W U1 = D(sjw^) = D

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



r i 0
' [foJrP\X, 1 Xi

0 I

V / w , * .
.1 X*.

I
0

o  +  P \ X \ y \
y f f i o +  P \  X i

W l l 2 z  = • ■
=

•

o
1 y *

^ x ' rx T  = r Y ,

=> bim) = U ' r x Y x ,Tl

We can then estimate b iteratively from the following equation:

^ ( . r ; , £ - . \ r T ’) = 0, for  j  = 1,2.

The iterative process stops when increments in the elements of the b vector are small 

(<0 .000001).

We can choose initial values bo] = 50,6(,0) = 4.935. Successive approximations are shown 

in Table 2.3.

The r■ -based and r  -based estimates are given for comparison below: 

r^  method to estimate b: b o -  7.7659, b\ = 4.935 (Table 2.2)

least squares method to estimate b: bo -  7.4516,6, = 4.9353 (Table 2.3).
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The two regression fits are shown in Figure 2.2 and Figure 2.3.

Gweraiead Lroar RaorwaicniPauoni wtft Rq 7559. b«4.935

3'

Generated Ixmat R«gmsicn(Pciuan) wim IS a=* 4Si& b*4.935310
10
•,4

1 2 !*

1QF 

- 9h 
Oh

/

• 15 t -35 3 05 l 15 :
X •3.5 3

Figure 2.2 method Figure 2.3 least squares method

Table 2.3 Successive approximations of regression coefficients by :

m 0 1 2 j 4 5 6 7 8 9

b(0m) 50 10.990 8.030 7.788 7.768 7.766 7.766 7.7659 7.7659 7.7659

b\m) 4.9354 4.9354 4.9353 4.9353 4.9353 4.9352 4.9352 4.9352 4.9350 4.9350

Table 2.4 Successive approximations of regression coefficients by least squares:

m 0 1 2 j

7 7.45 7.4516 7.4516

b\m) 5 4.937 4.9353 4.9353
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Table 2.5 Comparison o f r ^  and glm:

X, y, r * : y  .
glm: y

-1 2 2.831 2.5163

-1 3 2.831 2.5163

0 6 7.766 7.4516
0 7 7.766 7.4516
0 8 7.766 7.4516
0 9 7.766 7.4516
I 10 12.701 12.3869
1 12 12.701 12.3869

In this example we fit a simple generalized linear model for Poisson responses. The r^

and least squares methods gave the similar results (see Table 2.5. Figure 2.2 and Figure 

2.3).

2.5 An Example of Simple Linear Regression with rfd

Kenneth Lange and Jannet S. Sinsheimer studied the robust regression applications of 

independent, normal distributions to robust regression ([33], 1993). Lange and 

Sinsheimer studied the properties o f normal/independent distributions and presented 

several results. Consider a positive random variable U  and an independent k  -variate 

normal random vector Z with mean 0 and nonsingular covariance matrix Q. If fi is any

constant £ -vector, then Y  = + is said to be normal/independent ([33]). Certain

families o f normal/independent distributions are particularly attractive for adaptive, 

robust regression. EM algorithms were discussed for use with robust regression based on 

the t , slash, and contaminated normal families. The examples illustrated the performance
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of the different methods on real data and simulated data. They concluded that the slash 

and t methods perform similarly. The contaminated normal and least squares are more 

suspect.

The Slash Distribution ([33]):

The multivariate version of the slash distribution (Rogers and Tukey 1972) has scale 

variable U  with density h(u) = vu"' on [0,1] for v > 0 . The reciprocal moments

£ ( £ / - )  —
v - m

exist for m < v, and the density o f the slash is given by the integral

1
------------------ [uliizy~’~'e~“si'zd u , where Q is a nonsingular covariance matrix.
(2;r)‘/2 | n r  i

The Contaminated Normal Distribution ([33]):

For the multivariate contaminated normal (Tukey I960), the scale variable U is 

concentrated at the two points X < 1 and 1 with masses <f> and 1 —<f>. Clearly.

E(U~”) = + 1 - 0 ,  and P r(J2 < r )  = ^Pr(/*2 < /ir) + ( l - ^ ) P r ( / i  < r).T he density

o f Y  is the mixture

1

(2*)m i o r

The Slash and Contaminated Normal distributions will be used in the following example.
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Example:

In this example the real data set comes from Lange and Sinsheimer. We will use the 

nonparametric correlation coefficient rw method to estimate the parameters, and then

compare it with other methods. Table 2.6 shows the average births and deaths by hour 

over a 30-year period at a certain hospital in Brussels.

Table 2.6 Birth-Death Data Set

hour ( i ) the number of births x, the number of deaths y t at hour /

1 142 228
2 173 253
3 130 230
4 122 242
5 111 213
6 112 217
7 99 248
8 88 207
9 130 228
10 137 311
11 48 n o
12 94 257
13 97 233
14 88 217
15 91 237
16 104 281
17 100 233
18 121 204
19 97 194
20 133 199
21 115 220
22 120 231
23 224 243
24 4 14
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Figure 2.4 A plot o f y  vs. X  

Based on the Figure 2.4, we postulate the linear regression model fit = £(y, ) = a  + ft x,

for /=1,...,24.

This model was fit using a variety of methods, with the fits summarized in Table 2.7. 

Table 2.7 Linear model for birth/death data with and other methods

Parameter

estimates

Logistic Slash t Contaminated

normal

Normal

(LS)

Normal minus 

2 outliers*

a 198.188 147.3 202.7 203.0 201.9 114.95 212.3

P 0.25 0.6645 0.2050 0.2008 0.2040 0.9296 0.1730

* The points (4,14) and (48,110) are outliers.

In this example, the influence of outliers causes P  to be significantly greater than 0 for 

the least squares and logistic methods. Deaths by hour, however, should not be correlated 

with births by hour. When we used the nonparametric correlation coefficient 

methodology, the estimated correlation diminished greatly. The /? estimators for the 

slash, t and contaminated normal also show this feature and show the similar results as
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. The least squares and logistic methods fail to downweight the outliers sufficiently, as 

would be expected (Figures 2 .5 ,2 .6 ,2 .7 ,2 .8 ,2 .9 ,2 .10, 2.11).

LnMr flagrtsjtcn wttfi Rg *=138. !675 9*3.25

i
:CGh

50r

* _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _    j

30 50 ICO 150 200 250X

Figure 2.5 method

Lnaar Ragrasscn *ith  Lagitsc 13*16645 
350.- ■ ■ ■ ■ — ■ ■ ------------------- -

250

200

>

ICC

50h
i

°a £0 100 15C 2C0 25CX

Figure 2.6 Logistic method

Untar Rtgrtuicn vwti Slain >=202.7 9*0.2050

100!-

50

ICO 150
X

200

250r

200

>■

150

350c-
L nw r Ragraascn vrtft t a»203 0.9*32000

250'

:oo
>

tsol

100
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250 50 100 ISO 2C0
x

250

Figure 2.7 Slash method Figure 2.8 t  method
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Figure 2.9 Contaminated normal Figure 2.10 Normal distribution
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Figure 2.11 Normal minus 2 outliers
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In conclusion, the Greatest Deviation correlation coefficient rw method on this example 

is more robust and less sensitive to the extreme outliers than the least squares method. 

The rw , slash and t methods perform similarly. The least squares method is more

suspect.

2.6 Logistic Regression

In this section we consider the special case o f generalized linear models in which the 

outcome variable is measured on a binary scale.

The specific form of the logistic regression model we will use is as follows:

a* fit

x(x)  = —— - ,  or equivalently: (2.6.1)
l + e

l08[r ^ o 1 = a + / & = ^ '  a 6 2 )

The difference between the linear and logistic regression models concerns the conditional

distribution o f the outcome variable. In the linear regression model, we assume that an

observation o f the outcome variable may be expressed as y  = E (Y \x )  + s .  The most

common assumption is that the error e  follows a normal distribution with mean zero and

some variance that is constant across levels o f the independent variable. It follows that

the conditional distribution of the outcome variable given .t will be normal with mean

jx = E{Y\ x ) ,  and a variance that is a constant. This is not the case with a dichotomous

outcome variable. In this situation, we may express the value of the outcome variable

given x  as y  = z{x)  + e . Here the quantity e  may assume one of two possible values. If
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y  = 1 then s  = 1 -  x ( x ) , and if y  = 0 then s  = ~ n (x ) . Thus, e has a distribution with 

mean zero and variance equal to /T (x)[l -  /r(.t)]. That is, the conditional distribution of 

the outcome variable follows a binomial distribution with probability given by the 

conditional mean, n ( x ) .

2.6.1 Fitting the Logistic Regression Model

Suppose we have a sample o f n independent pairs of observations (x,,y ,), i = 1,2,... h . 

where y t denotes the value of a dichotomous outcome variable and x t is the value of the

independent variable for the / th subject. To fit the logistic regression model in equation

(2.6.1) to a set o f data requires that we estimate the values o f a  and/9, the unknown 

parameters.

The maximum liklihood method is the standard approach to estimation for the logistic 

regression model. For k  distinct x, values where there are n, outcomes for x , , / = I k.

the likelihood function for /? is given as:

,_t (2.6.3)

where y , = binomial observation at x , n, of them, k  groups.

The log-likelihood function is:

k
log I  = £  {y, log x, + (n -  y , ) log(l -  it, )} (2.6.4)

=> log I (a , J3) = Y y ,  l o g ( - ^ - )  + ~ K<)
rs| i /*l
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« «

= 2  ̂ ( c t + )  ■ lo§{1+expta + ^
<*l »sl

Differentiating with respect to a :

d lo g l  _ y  y  n, exp[g + /2c,]
3 a  I + exp[a + /2c, ]

= 2 O', “ »,*,) = °  (2-6-6)
i«i

Differentiating with respect to /?:

5 log I  ^  ^  n,x,
dfi “ j* t ?  1 + exp[a + /2c, ]

= Z  x« “  Z  n‘x ‘'r ‘ = 0 (2 -6 J )i>i i-i

= X - r -(>'- - w.;r. ) = 0

i.e., x L (y -y ) .

The residual vector is given by: res = y, -  n y l = y  -  y

where £, = ------------ -----------—. (2.6.8)
{l + exp[-(a + 3x,)]}

Note: Logistic regression is a type o f generalized linear model with link function 

7 = log{ ;r/(l-;r)} .

From equation (2.3.18), we have z - X 'b  = W' z[Xb + D { ^ - ) { y - u ) ] - W l“ X b
ou. -
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= W uzD ( ^ - ) ( y  - u) = W uz D ( ^ - ) ( y  - n tz ) .  For the logistic regression model, we can 
du, ~ ou, ~

rewrite equation (2.3.22) as (x, y  -  y)  = 0 , i.e., r^  (x,res)  = 0.

If we use the nonparametric correlation coefficient method, a  and p are found by 

solving:

r .(x ,re s )  = 0
where res = the residual vector. (2.6.9)

median(res) = 0

2.6.2 Testing for the Significance of the Coefficients

In logistic regression, comparison of observed to predicted values can be based on the log 

likelihood function defined in equation (2.6.4).

One way to compare observed to predicted values using the likelihood function is based 

on the following deviance statistic:

(likelihood o f  the current mod el)
D = -2  log

(likelihood o f  the saturated model)

Let k t = MLE o f ,t under the model o f interest.

For the maximal model, we take the^, s as the parameters to be estimated. Then, 

dl ^  y, n , - y t
d7t, iz, l - ; r ,  

so the solution o f = 0 is y, / n, .

The predicted response in the i* group under the saturated model is: z  = y , /n t .

(2 .6 . 10)
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* y  y
log I ( saturated mod el) -  V  {y, log -  + ( « , -  y ,) log(l — '-)}

TX n, «,

D = -2{log L(current mod el) -  \o%L(saturated mod el)}

= 2 { £  {x (log ̂  -  log £ -) + (n, -  y, )[log(l -  -  log(l -  ̂ ) ] } (2.6.11)
tT  n, n, n, n,

-  2 Z t> . lo8 ( ^ )  + (". - X ) l o g ( ^ ^ ) ] -  
^  y, « , - y ,

This function behaves in much the same way as the residual sum of squares or weighted 

residual sum of squares in ordinary linear models.

Under H 0 (current model is true), D = Deviance = 2[log(saturated model) - log(current 

model)] has an asymptotically x \ . f  distribution, where p  is the number of parameters

in the current model. Assuming k  cells in the full model and 2 parameters in the reduced 

model, a  and p, there are k -  2 degrees of freedom for D . However, "asymptotically" 

here means k  is fixed and n, —> oo for each /. If k is increasing, but the n, remains 

bounded, then this asymptotic result does not hold. In fact, if n, = 1 for all i , then D is

meaningless as a goodness-of-fit statistic.

2.6 J  Examples of Logistic Regression

Example 1. Table 2.8 shows data on the number o f insects dead after five hours's 

exposure to gaseous carbon disulphide at various concentrations (Annette J. Dobson 

[12]).

Table 2.8
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Dose, x, Number o f  insects, n , Number killed, y ,

1.6907 50 6
1.7242 60 13
1.7552 62 18
1.7842 56 28
1.8113 63 52
1.8369 59 53
1.8610 62 61
1.8839 60 60

Figure 2.12 shows a plot o f n, vs. x ,.

1.2

1 - 

! 0.8 - ♦

«
♦

♦

0.6 - 

0.4 , 

0.2 - 

n

•
♦

•

•

1.65 1.7 1.75 1.8 1.85 1.9

Figure 2.12 Plot o f Kt v s. x,

We begin by fitting the logistic model:

The maximum likelihood method results in the following normal equations for a  and p:

t ( y , -* ,* ,)  = 0
/=!

I  x , { y , - n , x , )  =  b
t
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Now y t - n,X' is the i th group residual, res,, so that the first equation says Y.res, ~ 0
1=1

and the second equation says cor(x, res) = 0, i.e., Pearson’s correlation of the .r vector 

with the residual vector is zero. Replacing Pearson’s correlation by , the two equations 

are

median(res) = 0, 

rpl(x,res) = 0.

Table 2.9 shows the parameter estimates o f a  and p using the method.

6<209) = -60.63 » . .
after 209 iterations.

b\209) = 34.34

We used C and S-plus functions to estimate the parameters a  and p. The computations 

converged after 209 iterative steps.

Table 2.9 Fitting the logistic model to the beetle mortality data by r^

m 0 1 10 100 209

b T -63.7 -62.68 -62.59 -61.69 -60.63

b\m) 36.27 32.29 32.38 33.28 34.34

The parameter estimators of a  and f3 using the least squares method were: 

ba = -59.8, bx = 33.672. Since there is no outlier in this logistic example, the method 

and least squares method give similar results, but method is better than least squares

on the left and right tails of the observations (see Figures 2.15 and 2.16). But, if data are 

simulated with two outliers for these data: (1.89, 0.2903) and (1.99, 0.5), The results of
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these two parameter estimation methods are quite different (see Table 2.10 and Figures

2.13 and 2.14).

Table 2.10 Comparison of r^  and least squares methods

without outlier with 2 outliers

method bo = -60.63 bo -  -56.7

b\ =34.34 = 3 2 2 7

LS method b0 = -59.80 60 = -26.134

bi =33.672 b 1 = 14.746

Lsgtsac Regression wttt Rg (wtfti 2 cutters), **“56.70.6*32.27 lc g i» c  Regression wrtn LS (vwtft 2 oufflers).a*-25 *34.2 * 14 7456

a9

a r

0.5r

a i r
ioh

21.7 1.35 191.651.6 1 55 * 35

Figure 2 .13 with 2 outliers Figure 2.14 Least squares with 2 outliers
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Logooc Regression with Rg, **-60.63. b^34.34 LogiaticR^QrwacnwthLS. *s-5aa. b*33.«72

aa

0.7

1.75t.65 155T.SS1.75 1 85 f.S1.8

Figure 2.15 r^  without outlier Figure 2.16 Least squares without outlier

The data set with 2 outliers (Table 2.10) shows the advantage of the robust r^  regression

method. The influence o f outliers causes b to change significantly for the least squares 

method. The least squares method fails to downweight the outliers sufficiently (Figures

2.13 and 2.14).

Example 2: The data for this second example come from 175 Atlanta Braves games from 

the 1992 season. For each game, define

{1 fo r  a win
.

0 fo r  a loss

For each game, the number o f Atlanta hits minus the number o f Opponent hits was 

computed. A frequency table for this variable x , called the hit difference, the variable y  

called the number of wins in n games, are given in Table 2.11.
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Table 2.11 (Data A) Original Data:

V X n
0 -10 2
0 -9 2
0 •8 I
0 -7 5
I -6 6
1 -5 5
j -4 12
5 -j 13
1 .2 10
9 -I 20
14 0 18
11 I 15
9 2 13
11 j 13
10 4 11
9 5 9
5 6 5
5 7 5
4 8 4
2 9 2
1 11 1
I 12 I
I 13 1
1 16 I

We grouped the ends o f  data, see Table 2.12 (Data B).

Table 2.12 (Data B) Ends o f data grouped

wins rundiff weights wins/weights
0 -7 10 0
1 -6 6 0.17
1 -5 5 0.20
j -4 12 0.25
5 -3 13 0.38
1 .2 10 0.10
9 -1 20 0.45
14 0 18 0.78
11 1 15 0.73
9 2 13 0.69
11 j 13 0.85
10 4 11 0.91
9 5 9 1.00
5 6 5 1.00
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It was desired to study how the probability o f winning a game is related to x . Logistic 

regression was used to model this relationship.

Let 7z{x) = the probability of winning a game given x ,  the hit difference. It will be 

expected that /r(0) would be I / 2 .

The logistic model is given bv: x(x)  =  --------r-^------r or logit ;r(.t) =
l + exp[-(a  + /2c)]

l08(T ^ ) ) = “ +^

The maximum likelihood method leads to the following normal equations for a  and (3:

I  ( y , - n . x , )  =  o

I * , t v , - * * , ) « < >

where there are k groups of data based on the k distinct x, values, and k  -  

1
1+ ex p [-(a  + fix, )]

For Data A, we fit the logistic model using both the method and least squares method. 

The results o f these estimation methods appear in the left column of Table 2.13.

For Data A, the method and least squares method are similar in their regression fits

(Figures 2.17 and 2.18). However, if  the outlying data point (5, 0.1) is added to the data, 

the resulting parameter estimates change as seen in the right column of Table 2.13.
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Table 2.13 Comparison of and least squares method

without outlier with one outlier

rw method a = 0.50415, b = 0.47415 a = 0.472, b = 0.447

LS method a = 0.4216, b=0.4635 a = 0.30671, b = 0.33423

Table 2.13 shows the advantage o f the robust regression method. The influence o f the

outlier causes a and b to change significantly for the least squares method. The least 

squares method fails to downweight the outlier sufficiently for logistic regression 

(Figures 2.19 and 2.20).

Consider testing:

t f 0; P=o 

H m: P*0

Recall the deviance statistic, defined as:

Deviance = 2[log(saturated model) - log(constrained model)].

We use the r^  method to compute the Null Deviance and Residual Deviance as follows: 

Null Deviance = 2[log(saturated model) - log(intercept only)] = 90.7, d . f .  = 23 

Residual Deviance = 2[log(saturated model) - log(intercept+slope)] = 11.5, d . f .  = 22 

Null Deviance - Residual Deviance = 2[log(intercept+slope) - log(intercept only)]

= 90.7-11.5

= 79.2, which is x \  i f * s true-

The p-value for this test is:

p(X\ ^  10.83) = 0.001, so the slope is significant, i.e., P*0.
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For Data B, we also fit the logistic model using the and least squares methods.

The resulting estimates and likelihoods evaluated at those estimates are given below: 

method: a = 0.572, b = 0.422, L = 0.572 + 0.422*

least squares: a =0.41779, 6 = 0.45514, L = 0.41779 + 0.45514.x

For Data B, it appears from Figure 2.21 and 2.22 that ther^ method supplies a better fit

than the least squares method.

L3**t»cR«Cf*s»n *tn Rg, MC.5C415. 0*0 474*5 LogisticRtgrvuicn L&OataA), «*C.42te. 500.462$

X

Figure 2 .17 Logistic regression with r^  Figure 2.18 Logistic regression with LS
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U gsoc R«9 vs*on ’Mth Rg(ana ouQitr), a«flt472,b*0.447 Lograoc RegneeonwithLS^one cutlrar). *=0-3067. 6*0.3342

0 9  r

170.7-

f 0 6rI
J

0•1020155 10•15 a

Figure 2.19 Logistic regression with (outlier) Figure 2.20 Logistic regression with LS (outlier)

Lagttftc Rtgrvssian *itr: Rg, *=0572. 6=0422 lcp*ucr*gr»s«cr ISfData 3). 3*0 -*i 79. s=C.4S5U

!

i

1i5 /
0 4 ' 1I

a t r
CKQi

- 6 - 1 - 2  0 2 4 5
Ruidtff

- 4 - 2  0

Figure 2 .2 1 Logistic regression with Figure 2.22 Logistic regression with LS
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Chapter 3

Nonlinear Models and Estimation

3.1 Introduction

The general linear model can be written as:

r  = A + f l x 1+... + A x .+ f f .  (3.1.1)

Any model which is not of the form (3.1.1) will be called a nonlinear model. In general, 

whenever a linear regression model does not appear to adequately represent the 

relationship between variables, then a nonlinear regression model might be appropriate. 

Nonlinear estimation is a general fitting procedure that will estimate the parameters 

defining any kind of relationship between a response variable, and a list o f explanatory 

variables. In general, all regression models may be expressed in the form:

E(.y I £) = /(*i >*2

In most general terms, we are interested in whether and how a response variable is related 

to a list of explanatory variables.

Nonlinear estimation allows us to specify essentially any type of regression model. Some 

common nonlinear models are probit, logit, and exponential growth or decay models. We 

can also use any number o f fitting techniques to estimate the model parameters. More 

precisely, we can use standard least squares estimation, maximum likelihood estimation 

or define some "loss function" to be minimized. In this chapter we will use the
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nonparametric correlation coefficient method to estimate the parameter in several

nonlinear models. Some common nonlinear models are reviewed below:

(1) Growth Rate Model

Some regression models which cannot be transformed into linear ones, can only be 

estimated via nonlinear estimation. The Growth Rates are often affected by many 

variables (other than time), and we can expect a considerable amount of random residual 

fluctuation around the fitted line. If we add this error or residual variability to the model, 

it might be written as follows:

Growth = exp(-6, * Age) + error . (3.1.2)

In this additive error model, we assume that the error variability is independent of age,

i.e., that the amount o f residual error variability is the same at any age. Because the error 

term in this model is additive, we can no longer linearize this model by taking the 

logarithm of both sides. If for a given data set, we were to Iog-transform the variable 

Growth anyways and fit the simple linear model, then we would find that the residuals 

from the analysis would no longer be evenly distributed over the range of ages; and thus, 

a standard linear regression analysis would no longer be appropriate. Therefore, the 

parameters for this model should be estimated using nonlinear estimation techniques.

(2) General Exponential Growth Model

The general exponential growth model, is similar to the example that we previously 

considered:

y  =ba +6, *exp(£>, *x) + error , where b0,bK,bz > 0  (3.1.3)
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This model is commonly used in studies o f any kind of population growth. An example 

where this model would be adequate is when we want to describe healthcare insured 

membership as a function o f time

(3) Models for Binary Responses

We studied binary response models in Chapter 2. It is not uncommon that a dependent or 

response variable is binary in nature, i.e., it can have only two possible values. For 

example, patients either do or do not recover from an injury; job applicants either succeed 

or fail at an employment test, etc. In all of these cases, we are interested in estimating a 

model that describes the relationship between one or more explanatory variables to the 

binary response variable.

Logistic regression

We studied logistic regression in Chapter 2. In the logistic regression model, the 

predicted values for the response variable will never be less than (or equal to) 0, or 

greater than (or equal to) 1, regardless of the values o f the explanatory variables. The 

general form o f the logistic regression model is given below:

E(y  | x) = exp(60 + 6, * x, +... + bn * x„) /{I + exp(60 + bx * x, +... + bn * x„)}. (3.1.4)

We can easily recognize that, regardless of the regression coefficients or the magnitude o f 

the x values, this model will always produce expected values (expected y ’s) in the range 

o f 0 to I.

Suppose we think of the binary response variable y  in terms of its underlying continuous 

probability k  for a given x , ranging from 0 to I .
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7 = log{;r/(l-;r)} . (3.1.5)

The function 7 is also called the link function. Note that 7 can theoretically assume any 

value between minus and plus infinity. Since the logit transform solves the issue o f the 

0/1 boundaries for the original response variable (probability), we could use those logistic 

transformed values as the responses in an ordinary linear regression equation. In fact, if 

we perform the logistic transform on both sides o f the logit regression equation (3.1.4), 

we obtain the standard linear regression model:

7 = 60 + bx *jc, + b2 * x2 +... + bn *xn +e. (3.1.6)

We have listed and described some common nonlinear models. In this chapter we will 

use the Greateast Deviation correlation coefficient r^  method to estimate the parameters

in nonlinear models.

3.2 Nonlinear Model Estimation

3.2.1 Loss Functions

Some common nonlinear estimation procedures are:

(1) Least Squares

We have reviewed some common nonlinear models in the previous section. Now, the 

question arises as to how the parameters in these models are estimated. In the most 

general terms, least squares estimation is aimed at minimizing the sum of squared 

deviations o f the observed values for the response variable from those predicted by the 

model.
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In standard multiple regression we estimate the regression coefficients by "finding" those 

coefficients that minimize the residual variance (sum of squared residuals) around the 

regression line. Any deviation of an observed value from a predicted value signifies some 

loss in the accuracy of our prediction, possibly, due to random error. Therefore, the goal 

o f least squares estimation is to minimize a loss function; specifically, this loss function 

is defined as the sum of the squared deviations about the predicted values. When this 

function is at its minimum, then we get the parameter estimates (regression coefficients). 

Because o f the particular loss function that yielded those estimates, we can call the 

estimates least squares estimates.

There are several common function minimization methods that can be used to minimize 

various types o f loss functions.

(2) Weighted Least Squares

In addition to least squares regression, weighted least squares estimation is a commonly

used estimation technique. Ordinary least squares techniques assume that the residual

variance around the regression line is the same across all values o f the independent

variables. In another words, it is assumed that the error variance in the measurement of

each case is identical. Often, this is not a realistic assumption; in particular, violations

frequently occur in business, economic, or biological applications.

For example, suppose we wanted to study the relationship between the projected cost of

construction projects, and the actual cost. This may be useful in order to gage the

expected cost overruns. In this case it is reasonable to assume that the absolute magnitude

(dollar amount) by which the estimates are off, is proportional to the size o f the project
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and hence nonconstant. Thus, we might use a weighted least squares loss function to fit a 

linear regression model. Specifically, the loss function would be Loss = (Observed- 

Predicted)2 * (1/x2).

In this equation, the loss function first specifies the standard least squares loss function, 

and then weights this loss by the inverse of the squared value of the explanatory variable 

( j c )  for each case. The larger the project ( x ) the less weight is placed on the deviation 

from the predicted value (cost).

(3) Maximum Likelihood

An alternative to the least squares loss function is to maximize the likelihood or log- 

likelihood function (or to minimize the negative log-likelihood function). In most general 

terms, the likelihood function is defined as the product o f the individual probability 

functions:

Maximum Likelihood requires a distributional assumption (normal distribution) on the 

errors.

3.2.2 Function Minimization Algorithms

Now that we have discussed different regression models, and the loss functions that can 

be used to estimate them, we want to know how to minimize the loss functions to find the 

best fitting set o f parameters, and how to estimate the standard errors o f these parameter 

estimates. One very efficient algorithm that approximates the second-order derivatives of 

the loss function to guide the search for the minimum (i.e., for the best parameter

n

( 3 . 2 . 1 )
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estimates, given the respective loss function) is the quasi-Newton method. In addition, 

there are several other general function minimization algorithms that follow different 

search strategies (which do not depend on the second-order derivatives). These strategies 

are sometimes more effective for estimating loss functions with local minima; therefore, 

these methods are often particularly useful for finding appropriate starting values for the 

estimation via the quasi-Newton method.

Start Values, Step Sizes, Convergence Criteria

A common aspect of most nonlinear estimation procedures is that they require the user to 

specify some starting values for the parameters, initial step sizes for the iterative search, 

and a criterion for convergence. These methods will begin with a particular set o f initial 

estimates, which will be changed in some systematic manner from iteration to iteration; 

in the first iteration, the step size determines by how much the parameters will changed. 

Finally, the convergence criterion determines when the iteration process will stop. For 

example, the process may stop when the improvements in the loss function from iteration 

to iteration are less than a specific amount.

Quasi-Newton Method

The slope o f a function at a particular point can be computed as the first-order derivative 

o f the function at that point. The "slope o f the slope" is the second-order derivative, 

which tells us how fast the slope is changing at the respective point, and in which 

direction. The quasi-Newton method will, at each step, evaluate the loss function at 

different points in order to estimate the first-order derivatives and second-order

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



derivatives. It will then use this information to follow a path towards the minimum of the 

loss function.

Nonparametric Correlation Coefficient Method

In Chapters 1 and 2 we illustrated the use o f the Greatest Deviation correlation coefficient 

r^ , which is robust to outliers, in fitting multiple linear and generalized linear regression

models. This chapter will extend the method from linear and generalized linear models to 

nonlinear models. The following sections will illustrate the method o f steepest descent 

with r^  for the estimation of nonlinear model parameters.

3 3  Least Squares in Nonlinear Regression.

Suppose we have a nonlinear model o f the following form:

(3.3.1)

Let

x  = (*, ,• • -,Xk)' ~ observed values for k explanatory variables.

f i  = (/?, ,• • •,/} )' = the vector o f fixed but unknown model parameters.

Then (3.3.1) can be written as

y  = f (x ,J3)+s (3.3.2)

Assume there are n independent observations:

y„ >Xlu ' " y X l a i  » U  1,2,.., tl,

y u = f ( x uifi)+£u (3.3.3)
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where x, = (xi., x2» >• • •, x*Y

The assumption of normality and independence o f errors can now be written as 

e -  iV (0 ,1 a 1) , for a 1 > 0 a fixed but unknown constant.

We define the error sum o f squares for the nonlinear model as:

*(£) = £ b » - / ( £ , , £)12
u « t

The least squares estimate fi  is a value o f /? which minimizes s { 0 ) .

The least squares estimate o f /? is also the maximum likelihood estimate of /? (since

e - m i a - n

The likelihood fimction can be written as:

L(/3,al) = ( 2;r<x:f ' : exp
- s ( f i )

2 o '~
(3-3.4)

where s{fi) = £ [Ya -  fi)]1

If a 1 is known, maximizing L{fi,<j:) with respect to fi  is equivalent to minimizing

s(fi)  with respect to f i .

Differentiating s{fi) with respect to fi  yields the following set of normal equations:

d f i x z P j

3  P.
(3.3.5)

0=0

3.4 Nonlinear Least Squares using the Newton and Steepest Descent Method
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A common unconstrained minimization problem requiring iterative techniques involves 

fitting a nonlinear model to data. If least squares is appropriate, then this problem can be 

written in the form:

where the nonlinear function / y(xt ,...,x,,) represents the residual for the j ' h data point.

Nonlinear least squares is an unconstrained minimization problem, which can be solved 

by a number of iterative numerical techniques, such as Newton’s method or the method of 

steepest descent. These techniques are illustrated below:

Newton's method

Consider the Taylor's series approximation:

where the higher order term is a quadratic function in p . To obtain the step p , we now

(3.4.1)

F (x  + p)  * F(x)  + p TVF(x) + i p TV F ( x ) p  = F{x) + 0 (p ) (3.4.2)

minimize the remainder term Q(p)as  a function of p  by forming its gradient with

respect to p :

Q(p)  = V p ( /  VF( x) + j / v : F(x)p) = VF(x)  + V2 F(x)p, (3.4.3)

and set it equal to zero, giving:

V2F (x )p  = -V F(x). (3.4.4)

This is a set o f n linear equations in the n unknowns p  = (p 1,...,pn)r . These linear

equations are called the Newton equations. Thus at the (k +1) th step:

= X *  + p  = X *  - [ V 2F(Xt)Y 'VF (Xt) . (3-4.5)
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The steepest descent method can be used to produce a convergent method:

Steepest Descent Method

A steepest descent algorithm for performing nonlinear least squares is summarized 

below:

Given an initial value Xo, set k  = 0.

1. At the k th step, compute F* = f ( x i )  and V f t = VF(Xi), the function and gradient 

values at xk. Test for convergence. If converged, i.e., | xk -  xt_, |< specific amount, stop.

2. Compute a descent direction p , i.e., a direction p  such that F (x* + s  ■ p) < F* for e 

small. This is equivalent to requiring that p r V F t < 0.

3. Line search: Find a  > 0 such that F (Xl + cc • p)  < F t • Set Xt„i = Xi + a  • p , return to 

step 1.

It is sometimes possible to guarantee that this Newton method will produce a decent 

direction Suppose that inverse Hessian matrix V2 F~l is positive definite, i.e., it satisfies 

the condition z V2 F “‘- > 0 for all z *0. In this case, the Newton direction is guaranteed 

to reduce F . To see this, note that for some e > 0 :

F(x  + £p) = F(.t) + V F r (ep) + o(£z)

= F(x) + fV F r ( -  V: F '1 V F )+ o (fJ) (From (3.4.4))

= F(x) -  eV F r V2 F '1 V F + o (f :) . (3.4.6)

Since V: F*‘ is positive definite, V F r V2 F ’1 VF > 0  as long as V F  *  0 . Thus if e  is 

small and V F *  0 , then F(x + £p) < F (x ) , i.e., p  is in a downhill direction.
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If we have Bk * V2 Ft  = V2 /r (.ti) , then the step at the k  -th iteration will be defined by 

Bt P = - V  Fk ■

This step p  will be used within the steepest descent method above. After the line search 

obtains = x» + a  • p , Bk is updated to produce the new approximate Bk*i, using the 

values o f  and VF(.x4.,) .

The new Hessian approximation will be chosen so that

Use of this approximation is called the quasi-Newton method. The advantages o f the 

quasi-Newton method over Newton’s method are (1) it is possible to choose Bk to be 

positive definite so that a descent direction is always obtained; (2) only gradient values 

are used, avoiding the calculation of derivatives.

In this chapter we use the quasi Newton's method and steepest descent method for the 

estimation o f nonlinear model parameters and compare with the r ^  method.

3.5 Parameter Estimation with Pearson's Correlation Coefficient and

The Taylor series approximation in (3.4.2) can be rewritten as:

= V Fk~ i -V  Fk (3.4.7)

(3.5.1)

Let / > / ( * , , & ) ,

6a,=P-P,  o,
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0 __ ZlU
d f U , £ )

, so that: (3.5.2)

y a - =  ? «  +  £ , -i-1

This rearrangement results in the following normal equations:

Z o  Z o O o =  Z o  y 0  ’ (3.5.3)

where Z o  =

0  0  
- i i  c i :

1o3 
. 

. 
H

0  0  
_ Z n \  Z n l  ' 1

o
S

-
H

nx p

~ d f

rV
i

1

(L =

n1

•

J ° p . p. 1 1

• 
1a1

We can solve the normal equations by the correlation method using Pearson's r  (least 

squares):

r( .Z j ,y . -Z .0 . )=O,  (3.5.4)

If we replace r  by then we have an iterative method as follows:

I'&izp ~ Zo0o) ~ 0 f o r /  = 1,2,..., p .  (3.5.5)

3.6 Examples of Nonlinear Regression with the r . and Least Squares Methods
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Example 1: The example which follows is taken from an investigation performed at 

Procter and Gamble and reported by H. Smith and S. D. Dubey in "Some reliability 

problems in the chemical industry," (Applied Regression Analysis, N. R. Draper and H. 

Smith). We illustrate how a solution can be obtained for the parameters in a nonlinear 

model using the method. The investigation involved a product A which must have a

fraction 0.50 of Available Chlorine at the time of manufacture. The fraction of Available 

Chlorine in the product decreases with time. The data are given in Table 3.1.

Table 3.1 Per Cent o f Available Chlorine in a Unit o f Product

Length o f Time since produced (weeks) Available Chlorine

8 0.49,0.49
10 0.48, 0.47, 0.48,0.47
12 0.46.0.46,0.45,0.43
14 0.45,0.43.0.43
16 0.44,0.43,0.43
18 0.46,0.45
20 0.42,0.42.0.43
22 0.41,0.41.0.40
24 0.42.0.40,0.40
26 0.41,0.40, 0.41
28 0.41,0.40
30 0.40,0.40.0.38
32 0.41.0.40
34 0.40
36 0.41,0.38
38 0.40,0.40
40 0.39
42 0.39

It was postulated that with y  = available chlorine and x 

(weeks) a nonlinear model o f the form 

y  = a  + (0.49 -  a ) + e

= length o f time since produced

(3.6.1)
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would suitably account for the variation observed in the data, for x > 8. The problem is 

to estimate the parameters a  and P  o f the non-linear model (3.6.1) using the data given 

in the table.

To linearize the model into the form (3.6.1) we need to evaluate the first derivative of

/ ( * , £ )  = a  + (0 .4 9 - a )e -« is -« ' - 

where x„ = length of time since produced (weeks). 

Differentiatng:

6a

— - = -(0.49 -  a )(xu -  8) e 'Piz' *8).

The resulting Taylor series expansion at the m th step is:

-  [1 -  - a . )  *

H 0 .4 9  - o .X * .  -  f i . )

In matrix form, this can be expressed as:

y - f  = Z_ 7(*) a - a m 

P -P m .

Premultiplying both sides by Z {m) gives the normal equations: 

Z{m)T Z (m) 0  = Z^m)T (y - f )  where:

(3.6.2)

(3.6.3)

(3.6.4)
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z(m) =

I _  e-/»„(xr«) _  (0.49 -  a J C r , -  8)

1 -  e ^ " u“-g) -  (0.49 -  a J ( x u -  8)

I _  e-^(x44-«) _  (0.49 -  a m)(x44 -  8) e p^ - l)

and 6  =
a - a m

P - P „

From (3.5.4), we then need to solve:

V ( £ ; , ( y - / ( m , ) - Z 0  =  o

or v ( ^ , ( y - / (m,) - 2 0  = O ; = l ,2  (3.6.5)

The results o f nonlinear regression show as follows:

method: f ix = 0.3902 + (0.49-0.3902)exp(-0.1028*( . r - 8)).

LS with steepest descent method:

/ i ,  = 0.3901 + (0.49 -  0.3901) exp(-0.1016 * (x -  8)).

There are no outliers in this example; hence, the and least squares methods give 

similar results (Figures 3.1 and 3.2). Beginning the iteration with initial guesses of 

a 0 = 0.32 and /?0 = 0.04 and applying equation (3.6.5) iteratively, the estimates

converged after 14 steps and least squares estimates after 4 steps. The iterations for both 

methods are summarized in Table 3.2.
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Table 3.2 Iterative steps for least squares and

least squares method

iteration(j) a , fi, a , fi,
0 0.30 0.02 0.32 0.04

l 0.8416 0.1007 0.3478 0.0568

2 0.3901 0.1004 0.3546 0.1005

3 0.3901 0.1016 0.3581 0.1243

4 0.3901 0.1016 0.3602 0.1237

. . . . . .

13 0.3902 0.1028

14 0.3902 0.1028

Nonlinear Regression with Rg, f=0.3902*(0.49-0.3902)exp(-0. 1028(x~8))
0.5

0 .48

<

10 15 20 25 30 35 40
Length of Time X

Figure 3 .1 Nonlinear Regression with
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In the above example, suppose there exists one outlier, at vV=18 (length o f time since 

produced) and Y =0.8 (available chlorine).

The estimation with and least squares using steepest descent methods gave the 

following results, as summarized in Table 3.3:

method: / / r = 0.3896 + (0.49-0.3896)exp(-0.1022*(.r-8))

LS with Newton and steepest descent method:

/ir = 0.3445 + (0.49 -  0.3445) exp(-0.039056 * (x -8 ))

Table 3.3 Comparison of and LS (Newton or steepest descent method)

with no outlier with one outlier

method a  = 0.3902 a  = 0.3896

f i  =0.1028 ^  = 0.1022

LS method a  = 0.3901 a  = 0.3445

>9 = 0.1016 >9 = 0.0391
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Nonlinear Regression with LS. f=0 3901 -*•(0.49-0.3901 )e*p(-a. 1016(x-8))
0.5

0.48

0.46

0.4

0 .38r

0 36 -
10 15 20 25 30

Length of Time X
35

Figure 3.2 Nonlinear Regression with LS

40

Nonlinear Regression with Rg(one outlier).f=0.3fi96**(0.49-0.3896)«xo(-G lG22(x-8))

0.3 p
i

0.7si-
!

J . a7f
3  0.65r- 
uffl I
I  ° « r

0.55 j-

S QSr

0.45

30 3525
Length o f Time X

40201510

Figure 3.3 Nonlinear Regression with (one outlier)

In this particular example where there is one outlier, the method is clearly more

robust to the effects o f the outlier than least squares (see Figures 3.3 and 3.4). The
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influence of the outlier causes a  and P to change significantly with least squares. The 

least squares method fails to downweight the outlier sufficiently. This example illustrates 

the advantage o f the robust regression method.

Nonlinear Regression with LS(ane autlier),f=0.3445+(Q.49^J3445)exp(-0.03S056(x-S))

0.8

0.75

0.7

-S 0-6

0.5

0.45

0.4

25
Length of Time X

20 35 4015 2010

Figure 3.4 Nonlinear Regression with LS (one outlier)

Example 2. The data set for this second example comes from canine myocardium blood- 

flow calibration (Kenneth Lange and Janet S. Sinsheimer [33], 1993). The 251 cases 

relate a medically invasive measurement of blood flow x, to a non-invasive measurement 

o f extraction times blood flow y i based on positron tomography (We received the 

original data sets from Lang and Sinsheimer).

Based on a scatter plot, we postulate the nonlinear mean function ui = x, 0  -  e %) 

where //, = mean of y t .
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Table 3.4 Blood Flow Calibration

Parameter

estimates

Logistic Slash t Contam

inated

normal

Normal Normal 

minus 4 

outliers

a 0.774 0.7513 0.7435 0.7457 0.7444 0.7818 0.7399

P 270.40 279.3 271.8 274.7 270.8 306.0 2612

In this example, the r ^ ,  logistic, slash, t ,  contaminated normal, and normal minus 4

outliers perform well for blood-flow calibration data. The normal (LS) method, however, 

performed poorly due to the 4 outliers. The parameter estimates for each case are given in 

table 3.4.

Blood-flow Calibration, Rg Model a*Q.774 b=270 4 
4 5 01----------------------- i-----------------------   1----------------------- r

4 0 0 f*

J  300

2  200 

I
§  150
>cIU

100

SO

150 200 25010050
Blood Flow Xi

Figure 3.5 Blood-flow Calibration, model
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Blood-flow Calibration. Logistic Modal 0*0.7513 b»279.3
450r

400 b

350 f

=  200

2  150

100

50

250150 200100SO
Blood Flow Xi

Figure 3.6 Blood-flow Calibration, Logistic model

Blood-flow Calibration. Slasn modal a=0.7435 0=271.8
450

400

3501-

_g 300

250tn
■5 200

150

ICO

50

250150 20010050
Blood Flaw Xi

Figure 3.7 Blood-flow Calibration, Slash model
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Blood-flow Calibration, t model a=0.7457 b=274.7
450j— 

4001" 

3507
>■
j§ 3C0n 
u.T2
£ 2S0r

= 20Cr

50

15010050 2C0 250
Blood Flow Xi

Figure 3.8 Blood-flow Calibration, t  model

Blood-flow Calibration.Contaminated normal model a=Q 7444 0=270 8
4501

4Qor

350r

3 250r

200

150
uj

100

50

250150 20010050
Blood Flow Xi

Figure 3.9 Blood-flow Calibration, Contaminated normal model
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8<ood*ftow Calibration. Normal modal a*0.7818 0^306.0
450

400

350

300

= 200r

I 5 0 r

50C

250150 20050 100
Blood Flow Xi

Figure 3.10 Blood-flow Calibration Normal model

Blood-flow Calibration,Normal minus 4 outliers Model a=0 7399 b=257 2
450

400

350
>■
1  300

50-

200 250100 ISO
Blood Row Xi

Figure 3.11 Blood-flow Calibration, Normal minus 4 outliers model
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Blood-flow Calibration, Rg Modal a=Q.774 b=270.4

400

350

J  300h

2  150r

100

50

ISO 250200
Blood Flow Xi

Figure 3.12 Blood-flow Calibration, model

Blood-flow Calibration. Rg(one mora outliar). a=0.74i, 6=260.75
450

400

350

|  300

250

3  200

S* 150

100

SO

250100 150 20050
Blood Flow. Xi

Figure 3.13 Blood-flow Calibration, model (another outlier)
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Blood-flow Calibration, LS(one more outlier), a=0.58999. b=230.94985
450

350
V
J  300
LL.T3
8  250 CD

E 200

«  150

100

50

15050 100 200 250
Blood Plow. Xi

Figure 3.14 Blood-flow Calibration, LS (another outlier)

Figures 3.5, 3.6, 3.7, 3.8, 3.9, 3.10, 3.11, 3.12 shows the Greatest Deviation correlation 

coefficient r^  estimation method and other methods.

Since the Greatest Deviation r^  is a nonparametric correlation coefficient which is

robust to outliers, the estimates arising from its use in nonlinear regression are also 

resistant to outliers. In this example, suppose that there exists another outlier X  = 934 

(the 251th observation) and y  = 905.7. Estimation using ther^  method and least squares 

method gives the following results:

method: //, = x ,( l-0 .7 4 1 0 e ‘26O75%.).

LS with Newton and steepest descent method:
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M = x,( 1-0.58999 e' m949% ).

The influence o f one more outlier causes a  and p to change significantly for least squares 

with the steepest descent method (see Table 3.5 and Figures 3.13, 3.14).

Table 3.5 Comparison with r^  and least squares

with 4 outliers with 5 outliers

rp, method a  = 0.774 a  =0.741

p  = 270.40 P  = 260.75

LS with the steepest a  =0.7818 a  = 0.58999

descent method p  =360.0 P  = 230.950

C and Splus functions were used to estimate the parameters for these nonlinear models.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 4

Times Series Model and Estimation

4.1 Introduction

A time series is a collection of random variables, say {Y, },r = I,..., iV, ordered in time. A 

time series might be observations on economic variables over time, which can originate 

from various fields of economic and business. Examples of such variables are inflation 

rates, stock market indices, unemployment rates, and market shares. Forecasts for such 

variables are often needed to set policy targets. For example, the forecast for the next 

year's inflation rate can lead to a change in the monetary policy of a central bank. A 

forecast o f a company's market share in the next few months may lead to changes in the 

allocation of the advertising budget. Time series data can display a wide variety of 

patterns. Typically, many macroeconomic aggregates such as industrial production, 

consumption, and wages show upward trending patterns. Stock markets can crash with 

decreases in daily returns that can be as large as -20% , while such markets do not tend to 

boom with similarly sized increases in returns.

ARIMA stands for Autoregressive /ntegrated Moving Average. ARIMA models are 

flexible and widely used models in time series analyses. As a first step in an ARIMA 

process the raw time series is examined to identify one o f the many available models that 

we will tentatively select as the best representation of the time series. The second step in 

the process is to estimate the parameters o f the tentative model. The third step in the
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ARIMA modeling process is to assess the quality o f the model in order to determine 

whether the correct model has been chosen. The final step in the ARIMA modeling 

process is to actually forecast using the chosen model. Figure 4.1 shows the ARIMA 

(Box-Jenkins) process.

Update the 
tentative model

4

Figure 4 .1 ARIMA (Box-Jenkins) process

In summary, there are two general goals of time series analysis: (a) identifying the nature 

o f the phenomenon represented by the sequence of observations, and (b) forecasting. 

Both o f these goals require that the pattern o f observed time series data is identified and
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Raw data

Identify tentative 
model

I
T

i Estimate 
i parameters of I 
|  tentative model j

I
▼ I

I Diagnostic check I 
- for an adequate j 

model

▼
Forecast with the ; 

chosen model j
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described. Once the pattern is established, we can extrapolate the identified pattern to 

predict future events.

Most time series patterns can be described in terms of two basic classes of components:

trend and seasonality. The trend represents a general systematic linear or nonlinear

component that changes over time and does not repeat or at least does not repeat within

the time range captured by our data. The seasonality may have a formally similar nature;

however, it repeats itself in systematic intervals over time. Those two general classes of

time series components may coexist in real-life data. For example, sales o f  a company

can rapidly grow over years but they still follow consistent seasonal patterns. In this
«

chapter, we use several sample series for the illustration of the concepts and models. 

Some simulation data also appear in this chapter.

In time series analysis, it is assumed that the data consist o f a systematic pattern, random 

noise and possibly outliers which can often make the pattern difficult to identify. We 

know that the ordinary least squares and maximum likelihood estimation techniques are 

not robust to outliers, which often lead to specification o f the time series model. The 

estimation process o f regression adapts the robustness o f the corresponding

parametric correlation coefficient. The robust method can ensure that a few outliers 

have not allowed a misspecification of the time series model. Parameter estimates 

obtained for several data sets and through simulation show that the method compares 

favorably with the classical least squares or maximum likelihood estimation methods

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



when the data are well behaved, but performs robustly when the data have numerous 

suspect data.

In this chapter we will discuss parameter estimation and forecasting using the 

nonparametric correlation coefficient method.

4.2 ARIMA Model

ARIMA (Box-Jenkins) models are flexible and widely used models in time series 

analyses. ARIMA models work well for a large variety o f time series. The methods used 

to estimate the parameters o f ARIMA models can be computationally intensive.

4.2.1 Expectations, Autocorrelation, and Stationarity

(A) Expectations and Stochastic Processes

Suppose we have observed a sample o f  size T of some random variable Yt :

For example, consider a collection o f T independent and identically distributed (i.i.d) 

variables:

This is referred to as a sample o f size T from a Gaussian white noise process.

Let [v r 'L .iy ! '-’L .  {y,< n be /  sequences and consider selecting the observation

associated with date t from each sequence:

This would be described as a sample o f /  realizations o f the random variable Y,. This 

random variable Y, has an unconditional density, denoted by f r< {y ,).

\y^yz  y r } (4.2.1)

where e, ~ 1V(0,cr) (4.2.2)
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Under a normality assumption,

1 -  y 1
fr, O',) = / --- 7 exp(—f )  , -  co < y ,  < oo,

V2xo"  LG

with mean: £(K,) = | y , / K( (>f )</y, •
« a

If [Y, r e p r e s e n t s  the sum of a constant p plus a Gaussian white noise process 

then the resulting model is:

K =M + e,, 

where E(Y,) = n + E(e,) = p .

The variance o f the random variable Y, (denoted y M), is defined by

r« =  E(y, - m ,)1 = ](> ', - M . Yf rS y . W ,  •
—a

(B) Autocovariance, Autocorrelation and Partial Autocorrelation

Given a particular realization such as {y,( 1 ) _  on a time series process,

constructing a vector

' y f  

x r  = ■ .

v(l)

The j th autocovariance of Y, is given by:

YJt =£{?' - mM - ,

(4.2.3)

k  •

(4.2.4)

(4.2.5)

(4.2.6) 

consider
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oo co ®

= f J- f( y , - M , - j ) * f r , j ^ ^ l.J(yi’yi-i>---’yi-j)4y,<fy,-\--4y,-j ■ (4-2.7)

For the process in (4.2.4) the autocovariances are all zero for j  * 0:

T ,  = E(Y, ~ m) = E (£ A - , )  = 0 for j * 0

The patterns o f time series can be examined via the autocorrelation function (ACF) which 

consists o f the serial correlation coefficients for consecutive lags in a specified range of 

lags. A useful diagnostic is plot of the ACF versus the lag.

The sample autocorrelation function at lag k . r , , is defined by

r, =     for k = 0,1,2. (4.2.8)

/a I

Another useful method to examine serial dependencies is to examine the partial 

autocorrelation function (PACF) - an extension of the autocorrelation function, where the 

dependence on the intermediate elements (those within the lag) is removed. In other 

words the partial autocorrelation is similar to autocorrelation, except that when 

calculating it, the autocorrelations with all the elements within the lag are removed (Box 

& Jenkins, 1976; McDowall, McCleary, Meidinger, & Hay, 1980).

The partial autocorrelation function for lag k, <f>u , is defined by

=Cor(r„r,_, i (4.2.9)

i.e., is the correlation coefficient in the bivariate distribution o f Y,, Yt_t conditional on 

Y Y Y
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Levinson (1947) and Durbin (1960) gave an efficient recursive equation for obtaining

K'-

4-1

Pk ~ ^ d<̂k-ijPk-J
 S ------------  (4.2.10)

where ^  for j  = 1,2 ,...,4 - 1.

The recursive begins with <j>0 = p x.

(C) Stationarity

If neither the mean n, nor the autocovariences y „ dependent on the time t , then the

process for Y, is said to be covariance-stationary or weakly stationary:

E{Y,) = n  for all t ,

E(Y, -  mXY.-j - P )  = Yj f°r all 1 and any j .

A process is said to be strictly stationary if, for any values of the joint

distribution o f ,Y  ,...,Y,^) depends only on the intervals separating the dates 

( y j , a n d  not on the time itself (/) .

4.2.2 Moving Average Processes

(A) The First-Order Moving Average Process 

Let (f,} be white noise and consider the process

(4.2.11)

where s t ~ i i d  N(0,<yz)
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The expectation of Yt is given by

E{Y, ) = E(p  + s, + &r,_,) = p  + £(£•,) + ££(£•,_,) = p . (4.2.12)

The variance o f Y, is

E ( Y , - p ) z =E{el +9el_[)1

=(\ + 9 z) o z . (4.2.13)

The first autocovariance is

E(Y,-p){Y„x ~M) = E(e, +fc,_1X*,-1 + fe ,.l )

= 9 a z . (4.2.14)

Higher autocovariances are all zero:

E { Y , - mU . j -M )  = E(s , = °  for j >  1. (4.2.15)

The y th autocorrelation o f a covariance-stationary process is defined as the 

j  th autocovariance divided by the variance:

p i = / y0, resulting from: (4.2.16)

r  CovCT, y,
" -  JVw(VjVar(Y,_,) Pr

The first autocorrelation for the M4(l) process is given by

p  = — — —  = — . (4.2.17)
Px (1 + 9 z)o-z (1+ 9 Z)

The method of moments is one of the easiest, if not the most efficient, methods for

obtaining parameter estimates in MA models. The method consists o f equating sample
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moments to theoretical moments and solving the resulting equations to obtain estimates 

o f unknown parameters.

Equating p x to r, using equation (4.2.17):

A
0

r> = (1 + 0 2)

i  l± V l- 4 r , :
9 =

2r,

Only one o f the solutions satisfies the invertibility condition \6\ < 1, namely

0 = 1 ^  4r' - .  (4.2.18)
- r\

If the time series Y, is nearly Gaussian, then p  can be estimated robustly using , via 

r = s in (^  ) .  The population relationship for bivariate normal is p  = sin (^  p ^ ) , where

p ^  = —sin* '(p ), the population parameter p ^  was developed by Gideon et al ([22], 
K

1987). If we use the nonparametric correlation coefficient r ^ ,  then a robust estimate of

1 - J l - 4 s i n : ( ^ r ( / )

Sis:  S „ -  — !------ « • (4-2-19)
"  2 s i n ( y r grf)

Maximum likelihood estimation

Conditional Likelihood Function:

Let 9  = (p,0,cr'')’ denote the population parameters to be estimated for the MA(1) 

model, then:
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U J y , \ s , . , - , i )  = -T = = r ^  P
V 2/r(7*

—Cy, - M - f c . - J '
l a 1

(4.2.20)

We assume that£\, = 0. Then:

{Yt \eo =0)~N{M,<r2).

Given the observation y , , the value of £, is then known with certainty as well: 

s , = y , -  / / ,  and hence:

f i  I ^ 1*̂ 0 ~ ^’0  — fZ r eXP
V2/rcr

- O ' : - M - f c S '
2 a 1

Since £, is known with certainty, e z can be calculated by:

£z =>':

Proceeding in this fashion, it is clear that given the initial knowledge that s 0 = 0 , the full

sequence {£,, e , ,..., e T} can be calculated from {y,, y , ,..., y T} by iterating

e, =y, (4.2.21)

for t = 1,2,...,7, starting from e0 = 0 . The conditional density o f the /th  observation can 

be calculated from (4.2.20) as

ir.-i.ri.j.. .i",.j-0*o O', I y<-i»yi-2»"M.yi»£o -  o,0)

~ (J'i I g»-i»©

V27T(7~
=exp - g ;

2<x:
(42.22)

The sample likelihood would then be the product o f these individual densities:
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rT.rr-i~Xi*o'*Ov? 1̂ 0 0,0)

r

= / ^ » U l f « = o ; ^ n ^
Is2

M -,. .r,.r0 * 0 ( y ,  I y , f 0  = O ; 0 ) .

The conditional log likelihood is:

i(9)  = log /j,KrTr-,. Jil*o>o (4.2.23)

-  ̂  log(2/r) -  j  log(<r: ) -  X  ̂
2 2  /=t 2(7

For a particular numerical value of 9 ,  we thus calculate the sequence o f s 's  implied by 

the data from (4.2.21). The conditional log likelihood (4.2.23) is then a function of the 

sum of squares o f these s 's. The log likelihood is a fairly complicated nonlinear function 

o f fx and 9 , so that an analytical expression for the maximum likelihood estimates o f fi 

and 9 is not readily calculated. We can use numerical optimization methods to find the 

value o f 9  that maximizes i(9) .

(B) The q th-Order Moving Average Process 

A q th-order moving average process, MA(q) is given by

(4.2.24)

with mean:

= M-

The variance o f Y, in an MA(q) process is:

Ya ~ E(Yt -  fi)
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=  E(s, +  9xe + ... +  0 f *,_, )* (4.2.25)

= (1 + 0,2 + 9 {  + ... + 9 *  ) f f - . (4.2.26)

For j  = 1,2,..., ̂ , the covariances are given as: 

y, = E[(e, + 0,*,., + 9,el_l +... + 9 'S l_')

= £ [ * , <  + 1 (4-2-27)

= [ [ ^ + ^ , + ^ : + - + ^ A - J - ° ' : / ° r  / = u , g)
'  [ 0  / o r  y > < ?

For an MA(2) process, the variance and covariances are:

r 0 =[\+9;-+9:]*'- 

r . - f t + W r 1 

^  = [0 :]° '2 
y  3 = r ,  = -  = o

with autocorrelations:

+ 9\ 9^

A =

A ° . 022 ^ . A = A  = -  = 0-

l + 0 f + 0 ‘ 

9 ^
1 + 9 }+ 9 }

(4.2.29)

(4.2.30)

For any values of (0,, ,..., 91) ,  the MA(q) process is thus covariance-stationary.

Assume that

e9 = e .t =... = = 0 . (4.2.31)

From these starting values we can iterate on
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e , = y , - M - 0.*,-. ~ ~ f o r  '  = 12,...,T.

Let ea denote the ( q x I) vector (s0, s . l,...,e_<l̂ y .

The conditional log likelihood is then

* (2 )  =  f o g / r r .rr .,. ..**.« O V . - V r - i Y, I fo  =

= -^ I o g ( i r ) - I |o g ( C T !) - £ ^ T  (4.2.32)
2 2 /*i 2<T

where 0 = (/;, 0,,0,,..., 0f , <x!) '.

The log likelihood is again a fairly complicated nonlinear function of 0 , so that an

analytical expression for the maximum likelihood estimates o f 0 is not readily

calculated. We also can use a numerical optimization method to find the value of 9 that 

maximizes ?(9).

4.2.3 Autoregressive Processes

(A) The First-Order Autoregressive Process

A first-order autoregression satisfies the following difference equation:

+ (4.2.33)

where e, ~ iJ.d N(Q,a~)

In the case where |0| < 1, this is a stationary process for Y,.

Repeated substitution using (4.2.33) yields:

Y, = (c  + f,)  + ̂ -(c  + f ,.l) + ̂ : -(c + f ,. ,)  + ̂ 1 -(c + £■_,) + ...

= [c /(l -  (ft)] + e ,+  (fte,  ̂+ f-e,_z + + ... . (4.2.34)
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Taking expectations using (4.2.34)

£ ( r , ) . [ c / ( l - # )  + 0 + 0 + ...] 

so that the mean of an .4/2(1) process is

/i = c / ( l - ^ ) .  (4.2.35)

The variance is

= E(S, + #£,_, +^3f,.3 + -.):

= (1 + f -  +<t>4 +...)■ a 2

= <x2/ ( l - ^ 2) ,  (4.2.36)

while the j  th autocovariance is 

yJ =E(Y,-n)(yi_i - v )

= E[e, + ^ M +... + <fiJ£,., + <f>‘ i£,.l.{ + ...]

X[*,-, +"1 

= [0'+^w + +...]• <r

= [ ^ / ( l - ^ ) ] - < r 2. (4.2.37)

It follows from (4.2.36) and (4.2.37) that the autocorrelation function follows 

a pattern o f geometric decay:

P, = Y,lY*  y = oa.....

Maximum Likelihood Estimates for the Gaussian AR(1) Process:

The primary principle on which estimation will be based is maximum likelihood.
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Let 0 = (c,^,<7 1) ' . (4.2.38)

Suppose we have observed a sample o f size T (y l, y z,...,yr ). The approach will be to 

calculate the joint probability density:

(4.2.39)

The maximum likelihood estimator (MLE) of 9  is the value for which this sample is 

most likely to have been observed, i.e., it is the value o f 9  that maximizes (4.2.39). 

Consider the probability distribution o f Y, , the first observation in the sample.

From (4.2.35) and (4.2.36), E(YX) = p  = c / ( l -</>) and y 0 = E(Y{ - n ?  = cr2 / ( l - f ' ) .

The density of the first observation is

A O ', ; 0  = A 0 '1; ^ , o - : ) = = e x p - { y { -[c/(\-<f>)]}2
2a-

. (4.2.40)

Consider the distribution of the second observation Yz conditional on observing Yx = y , .

From (4.2.33),

T, =c + <pYx + e , , so that

A,ir, (-Yz I Yi » 0  —
1

•exp
~ ( y 2 - c - f a f  

l a -

(4.2.41)

(4.2.42)

In general,

fr,\Y,.x,r,-i.-A O', I “  Air,., (Yt I .V(-i»0 — eXP

The joint density of the first t observations is then

-O ', -
l a -

(4.2.43)
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The likelihood of the complete sample (sample size T ) can thus be calculated as

fyT.rT,^  r . C ^ f = frSy^Ylfw.Sy,  I y,.,;® (4.2.45)

The log likelihood function is thus:

i(0)  = l o g / ^ O ^  + J ^ l o g / ^ t y ,  |y,_,;0) • (4.2.46)

Substituting (4.2.40) and (4.2.43) into (4.2.46), the log likelihood for a sample size T 

from a Gaussian AR(1) process is:

1 (0  = 4 lo g ff r ) - ilog[o-- /(I -  f - ) ] -  l-l' ' ~ [.C' (|1~ f>*1>'  - [< r-1 ) /2 ] log(2*)
7 2  irr~ ( \ — <h'\2<?‘ K \ - p )

(y, -c- to ,.,):
l a '

(4.2.47)

The MLE 0 is the value for which (4.2.47) is maximized. In principle, this requires 

differentiating (4.2.47) and setting the result equal to zero. Maximization o f (4.2.47) 

requires iterative or numerical procedures. An alternative to numerical maximization of 

the exact likelihood function is to regard the value of y t as deterministic and maximize 

the likelihood conditioned on the first observation.

The joint density of Yn ...,Yz given is:

A-Ti-i- (yr»yr-i»—■’Yi I yi»® = I”I Air,.| (Yt I (4.2.48)
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The loglikelihood of 9  is thus:

T

log  I ^ p 0  = log f l O ' .  I J'.-p©
,»2

O',
2 a :. ^ - l ) / 2]log(2« ) - [ ( r - l ) / 2]lo*(<T!) - 2 L,

Maximization o f (4.2.49) with respect to c and <j> is equivalent to minimization of

l O ' . - c - * , , ) 1 •
/=2

The conditional maximum likelihood estimates of c and <p are given by

(4.2.49)

c ’ T -1
-i

'  Zy .  ‘

A .1  y,.i I J ' m . Zy.-ty,.

c Y —~ T -1 I '  I *  '

A .1  y,.x
*Let =

Therefore, X  ft = z ,

and X TX 0  = X Tz .

These normal equations can be solved by the correlation method using Pearson's r  or

by solving b(m) in the following equation for r  or :

r(xL, z - X b (m)) = 0 or r ^ z - X b ' " " )  = 0, fo r  i = 1,2. (4.2.50)

(B) The Second-Order Autoregressive Process 

A second-order autoregression model, denoted 4i?(2), satisfies:

I ^ c  + ̂ + ^ + f ,  (4.2.51)
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Taking the expectation o f (4.2.51):

E(Y,) = c + *  £ (!;.,) + ) + £(*,)

implying that

p  = c + 0,p + ̂ ,p  + O 

=> p  = c / ( l - 0 ,

To find the second moments, write (4.2.51) as 

o : - / i ) = 4 ( ) : , - / i ) + ^ a : _ : - / / ) + * , .

Multiply both sides by (Y„t -  p ) and lake expectations to give:

r l = h r , - x + to , - i  for y = 1,2.....

The autocorrelations are then found by dividing both sides of (4.2.54) by :

P, = <*,P,-, + t iP ,-2 for y = 1,2,....

For y = l ,  p , = ^ / ( l - ^ , ) .

For y=2, p , = 0 ,A + &

& (! - & )  + #  
l-<*2

The method of moments replaces p, by r, and p , by r, to obtain

If the time series is Gaussian, then r = s in ( |rgl/).(see Gideon, 1987). Using the 

nonparametric correlation coefficient , the estimates are:

(4.2.52)

(4.2.53)

(4.2.54)

(4.2.55)

(4.2.56)

(4.2.57)
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2 s in ( ; v ,) [ l - s in ( ^ ,) ]  . sin(5.r^)-sin2(ir ^ )]
A  = ------^ — t t t z---- :------- . A  = ------ =;— r - 77;— :------ • (4.2.38)

1 -s in 'C y r^ ,) l - s in 'C y ^ , )

(C) The p  th-Order Autoregressive Process

A p  th-order moving average process, AR(p ) , is given by

(4.2.59)

with e, -  i.i.d. iV(0,cr2) .

The Yule-Walker equations:

P , = AP,-x + AP,-z + -  + A P '- p for J = l’2- 

Replace p k by rt in the Yule-Walker equations are:

A 4 *

r, + r\A + ~  + rP-itp
A A A

ri =rrfx +<fi2 +-.. + rp_,j>p

lrP = rP- A  + rP-i<Pi + -  + <PP

(4.2.60)

(4.2.61)

The above linear equations can be solved for (^ ,^ ,,.. . ,0  ) in terms o f ( r , , r , , . . . , r )

If we replace rk by sin(— ),  k  = 1,.., p  in (4.2.61), we can obtain the -based

A A A

estimator for <f>. These linear equations are solved for (<j>x, ,..., tj>p) in terms of

Maximum Likelihood Estimation:

Let 0 = (c,fa,0.,...,0p, a 1y .
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Let a zVp be the (p x  p)  variance-covariance matrix o f (Yx,Y,,...,Yp):

E(YX -  p ) 1 E{YX -  m)(Yz -  M) ... E(YX -  p)(Yp -  M) 
E{Yx-p ){Y 2 - p )  E(Y2 - m)2 ... E(Y2 - M)(Yp - p )

(4.2.62)

E{Yx-n ){Y p - p )  E{Y2 - M)(Yp - m) -  E { Y , - / i ) 2

The density o f the first p  observations is that of a N (p p,a 'V p) variable.

For the remaining observations in the sample, (yp. , , y p.2,—, y r ), the prediction-error

decomposition can be used. Conditional on the first t -1  observations, the t th 

observation is Gaussian with mean c + + Pzy ,.z +... + <(>py,.p

and variance a 1. Only the p  most recent observations matter for this distribution. 

Hence for t>  p,

rlir,.1.r1_2.. .r, (y, I

-O', -e-fry,., -by,.* - - -^y .-p )2
2 a 1
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The likelihood function for the complete sample is then:

 ̂(y  11 y  i-i* y  i-z’""’ y  i’Q)

i

= a  O ', > j v .  .•••.* r f ) x riA ir,.,.. j-,., (J'. I y , ^ y , ^ - y , - p  ;*) • (4.2.64)
i*p+i

The log likelihood function is:

HO) -  - I i o g(2^) -  T-  log(<r: ) + 1log |F ;' | -  ̂ - ( . y ,  -  ! 0 ' v r (> , ~ Mp)

^ ( y , - c - k y , - >  - 4 ly , - z - ~ - t Py , - ,y-  1 ---------------------- — z---------------------• (4.2.63)
tsp+l 40

Conditional Maximum Likelihood Estimates:

Maximization o f the exact log likelihood for an AR(p) process (4.2.65) must be 

accomplished numerically. In contrast, the log of the likelihood conditional on the first 

p  observations assumes the simpler form:

â %frT.rT.x, j .r, (J^r * J^r-i»—** ! -V, >— ’ ^ 1

T - P x  x T - p t , r. ( y . - c - h y , ^ - f . y - 4 py,_p):
 -----4 - lo g (2 ^ )------- M o g ( o " ) -  I   —---2— — • (4.2.66)

2 2 t=p*i 2cr*

The values of c,0, are the same as those that minimize

r

Z c y , - c - h y - i  - h y . - i  - " - t Py,-PY' •

The conditional maximum likelihood estimates of these parameters can be obtained from 

an OLS regression o f y, on a constant and p  o f its own lagged values.
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It is easy to see that the least squares estimators o f say <p can be obtained

by solving the following equations:

r{y,.l , z - X f ) = 0 

r(yt_2, z - X f )  = 0

(4.2.67)

r(y,-p, z - X 4 )  = o

where z = y, and X  = (U ^  = {c,<px,<(>l ,...,<pp)' and r  stands for

Pearson’s correlation coefficient.

Replacing r in these equations by the nonparametric correlation coefficient . an -

based fit can be obtained for the time series parameters:

r (y ,_ \ ,z -  X<j>) = 0 

r{yt_l , z - X # )  = 0

(4.2.68)

r(y,_p, z - X l )  = 0.

4.2.4 Mixed Autoregressive Moving Average Process

An ARMA(p,q) process includes both autoregressive and moving average terms:

Yt = c  + ̂ ir ,.l + 0 : r,_2 + + *, + ^ , . ,  +02s t< + ... + ̂  (4.2.69)

where s, -  iJ.d N (Q ,az).

First, consider an ARMA( 1,1) process:
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Y, = 0Y,_K + £,+ 0£,_,, where e, -  ii.d  /V(0,cr: ) . (4.2.70)

If we multiply both sides o f (4.2.70) by Y„t and take expectations, we have:

/ Q = 0yx + E(s, Y, ) + 0E{st_x Y,) ,  for k  =0

= 0rf  ̂+ \\ + 0(0 + 0)]<tj'1 forfc = 0

Y\ = 07* +9o" for k = l

y k = 0 / k_x for * > 2

(1 + 2 00 + 0 1) ,

( 1 + W ( M )  , v  for/fc

and = (l + 0 M ^  + fl) f or i t > L (4.2.71)
1 +  200 +  0 -

For the method, since r = s in ( |rgd) , noting that = 0 , we can first estimate 0 

as:

s in C ^ V i)

r  • xs m ( - rgdl)

We can solve sin(—r .,) = for # , (4.2.72)
2 " ,y t + 200 + 0 :

Maximum Likelihood Estimation (ARMA(p,q) Process):

Let 0 = (c,0l,0z,...,0p,0%,0z,...,0q,<Tz) ' .
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Taking initial values for m (y0, y  y _^,)' and *  (s a, s_t s _^t) ',  the sequence

can be calculated from {y,,y,,...,yr} by iterating on

for t = l,2,...,7\

The conditional log likelihood is

0 6 )  = log f r

-  ̂  log(2.T) -  T-  log((T: ) -  X  ̂ T" 
2 2 T i le r

(4.2.74)

Box and Jenkins (1976) recommended setting the e ’s to zero but the y ’s equal to their 

actual

values. Thus iteration on (4.2.73) is started at date t = p  + 1 with y ,,y : ,...,y , set to the 

observed values and e „ = e„. = ... = e „ „. = 0.p p-\ P~H*'

Then the conditional log likelihood of y T.—, y p. , is:

The above conditional log likelihood is a fairly complicated nonlinear function of 

6  = ) ,  so that an analytical expression for the maximum likelihood estimates of

6  is not readily calculated. We thus require a numerical optimization method to find the

* ( 0 ) a s t o g / ( y r , . . . , y ;M  \ y p,...,yl,£p =0,... ,e

value o f 9  that maximizes £ ( 0 .

no
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4.3 Forecasting

Forecasting the future values o f an observed time series is an important problem in many 

areas, including economics, production planning, sales forecasting and stock control.

(A) /1£(1) Case

We first illustrate many of the ideas pertaining to forecasting with an AR(l) process with 

nonzero mean satisfies

Y . - n - K Y ^ - A  + s ,.  (4.3.1)

Consider the problem of forecasting 1 time unit into the future.

Replacing t by t +1 in (4.3.1), we have

-/<) + * ,., (4-3.2)

Given Yt, Yl_[,..., Yx, we take the conditional expectation of both sides o f (4.5.2) 

and obtain (f +1) -  fi = <f>[E{Yt \ Y„ Kf_,,..., Yx) -  m \ + E{e„x \ Y,, Y„x,..., Yx) (4.3.3)

In general, the term Yt,d(t + S)  indicates a forecasted value S  time units into the future 

from time t .

From a property of conditional expectation, we have that

E i Y ^ t J . ^ Y J - Y , .  (4.3.4)

Since etrl is independent of Yt , ,..., Yx, we obtain

£(ffw | ^ . . , . . . , ^  = £ ( 0  = 0 (4-3.5)

Thus (4.3.3) can be written as

t , ( /  + D = A + ̂ - / i ) .  (4.3.6)

i l l
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Consider a general 8  time unit into the future from time t , Replacing t by t + S  in

(4.3.1) and taking conditional expectations o f both sides,

t a- (t + 8) = fii + (* + *  -1 ) -  //] for £ > 1 .  (4.3.7)

Iterating backwards on 8  in (4.3.7), we have

+ + (4-3.8)

Consider the forecast error:

( '  +  D  «  Y t t i  ( /  +  D -  L  i f  +  0  =  ¥ X ,  +  M  +  - m ,  - m )  +  M }  =  • (4-3.9)

The forecast error variance is given by:

Var[e,^(t + l)] = <r: . (4.3.10)

The forecast error is given by:

e ^ ( t  +  8 )  =  Y l t 6 ( t  +  5 ) - Y , ^ t  +  8 )  

=  Y , . s { t  +  8 ) - n - < ! > s { Y , - n )

= st.s +... + <f>s-'eltl + f ‘e, +...-#*(£, + </>£,_, + ...)

= e„s + # £ , . ' + f '£ , .s_1 +... + </>*-'£lrl. (4.3.11)

Note that E[e,^(t  + £)] = 0 ; thus the forecasts are unbiased.

From (4.3.11), we have

Var[e,_6(t + <?)] = < r]T  y j  where = </>J . (4.3.12)
j*Q

In particular, for an AR(1) process:
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Var[e,^(t + S)] = <r ll— ~ .  (4.3.13)
1- 0 *

(B) MA{ 1) Case

Consider the M4( 1) case with a nonzero mean:

1' = + (4.3.14)

Replacing t by t +1 and taking conditional expectations o f both sides, we have

(f + 1) = n  -  6E(e, | Yt , ̂ ,..., Yx), (4.3.15)

where E(s, \ Y, , Y„ ,,..., Yx) = s , . (4.3.16)

From (4.3.15) and (4.3.16), we thus have the one-step-ahead forecast for the Al-l(l) 

model:

KM(/ + l) = / / - f e f . (4.3.17)

For longer lead times we have

f a t + S) = M+ £ (* ,*  I S .S., - ^ ) - « (* ,* - ,  | Y , r ,) . (4.3.18)

Both £ and e,^_x are independent o f Yt, Y,_{,..., Yx for 8  > 1. Consequently, these

conditional expectations are zero, and we have

Y,*(t + 8 ) = M  for <5 > 1. (4.3.19)

(C) General ARIMA (p,0,q) Model

For the general stationary ARIMA(/j,0,^) model, the formula for computing forecasts is 

given by:

t s  ( '  +  8 )  =  0 , t < * - »  ( *  -  0  +  ( *  -  2 )  + . . .  +  ( *  “  P )  +
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(4.3.20)

where £ ( f ,.y \Yt ,Yl.i,...,Yl)
0 fo r  j  > 1

As an example, consider an ARIM A(l,0,l) model. We have

(4.3.21)

with r,+2 (r + 2) = <f>Ytrl (r + l) + 0o.

More generally,

y,.s ( ' + *) = ^ - n  (8 - 1)+ 0O for 8 > 2 . (4.3.22)

(4.3.21) and (4.3.22) can also be solved by normal iteration to get the alternative explicit 

expression:

(D) Non-stationary ARIMA Models

A time series {Yt } is said to follow an integrated autoregressive moving average model if 

the c/th difference V JYt is a stationary ARMA process. If V'K, is ARMA(/>,<?), we say 

that Yt is ARIMA (p, I, q) .

Consider an ARIMA(p,\, q) process:

L *  ( ' + 8)  = ft + <t>* (Y, - M ) -  r - l9e, for 5  > 1. (4.3.23)

We can rewrite this as:
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Y, = (1 + < W -. + (& - W - 2  + (* , -< W -3  + -

+ -  tp-1 )Y'-P -  <f>pY,-P-\ + e , -  &x*M -  ̂ * ,-2  -  -  -  • (4.3.25)

Forecasting for non-stationary ARIMA models is quite similar to forecasting for 

stationary ARMA models. The ARIMA (p,l,q)  model can be written as a non-stationary 

ARMA(/? + 1,*?) model. In other words, we can write (4.3.25) as:

K  = < P iY , - \  + < P i Y , - i  + -  +  <Pp+ \Y , -p - \  + Q q + e ,

- 9 xs,.x - 9 2s ,_2 for 1 > ~m (4.3.26)

where q>x = 1 + , (p, = <t>1 -  <f>H , for j  = 2,3,..., p ,

31141 <PP+1 = ~<Pp-

To illustrate forecasting with an ARIMA(p,l,q) model, consider the ARIMA( 1,1,1) 

model:

K , - r M - t f r M - r , _ 2) + 0 o

so that Yt = (1 + f)Y,_x - <j>Yt_2 +90 + et -0 e , .x. (4.3.27)

Thus Y,*x it + 1) = (1 + <t>)Yt -  <f>Y,_x + 0O-  Be, ,

t 2(f + 2) = (l + 0 ) t , ( '  + l ) - ^ , + 0 o ,

and t s  0  + 5)  = (1 + <t>)L(s-xx «  + 1) -  * t (s-2) (t+ S - 2 )  + 9qJ ot6  > 2 .  (4.3.28)

4.4 Estimation and Forecasting using the Greatest Deviation Correlation Coefficient 

r*
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This section continues to show how estimation and forecasting on time series models can 

be performed using any nonparametric correlation coefficient. In particular, the method 

given is illustrated using the Greatest Deviation correlation coefficient, . The reason

to use the Greatest Deviation correlation coefficient, , is that the approach is more

robust and resistant to outliers than the least squares method.

Consider the AR(1) process with a nonzero mean:

(4.4.1)

To minimize the sum of squares of the differences

n

compute S\<f>,n) = X[(K, i “ Z')]2 • (4.4.2)

We first take the derivative of S'(<p,/u) with respect to u :

#1m - /ok- i+«) -  o. (4.4.3)

Solving the above equation (4.4.3) gives:

I W 2 X ,

n n

(4.4.4)
(n-lXl-0 (n-1)(1- )̂

For large n , (4.4.4) becomes approximately:
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Then, taking the derivative o f S '  (<f>, fj) with respect to <f>, and substituting /} for fj. :

f - =-im, - n -w,., - nxr. - n =o. (4.4.6)0(p 1*1

Solving (4.4.6) for <j> gives:

„ U Y . - Y W ^ - Y )
<f> =  ± ---------------------------- .

i ( r . - i - Y ) 1t* 2

Let Ytc = Y, -  Y, Yf_x = Yt_x - Y  be the centered data.

Substituting this into (4.4.6):

f -  = -S2[(i7-<«7-,)rc, =o,
Q (j>  / = :

i.c„ Y . W - W - \ W a  = 0  (4.4.7)
1=2

=> ( r / - ^ : , ) ! ^ : ,  (4.4.8)

=> r(Kf: i ,r ,c -^ y ,: i) = 0. (4.4.9)

Replacing r with the Greatest Deviation correlation coefficient gives:

V W - t . r , = 0 for r = 2,...,n . (4.4.10)

We can then use the r ,  regression routine to estimate the parameter <j> in (4.4.10).
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Because location shifts do not affect the correlation coefficient equation, then to estimate 

the parameters a  and ju, we again use the regression method ([16] and [17]) by 

solving:

for s as an estimate of a . q here is the vector o f iV(0,l) quantiles. If <t> is the N(0,1)

4.5 Residual Analysis

When a model has been fit to a time series, it is advisable to check that the model really 

does provide an adequate description of the data. As with most statistical models, this is 

done by examining the residuals, which are defined by 

residuals = observation - fitted value.

Consider for example an AR(2) model with a constant term:

r^iqXY,' - M U ) *  sq_ )  = 0 (4.4.11)

cumulative distribution function (CDF), then O '1 ( ) = q, , / = 1.2,...,n .
n + 1

An estimate of n  may be found as:

h  = median [(F, -  ) /(I -  <f>)\. (4.4.12)

Having estimated ^ ,,0 ,, and 9a, the residuals are defined as
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If AR(2) model is correct and if the parameter estimates are close to the true values, then 

the residuals should have nearly the properties o f independent, identically distributed, 

normal random variables with zero means and standard deviation a c.

The following assessments on the residuals are essential:

(1) The autocorrelation function (ACF) and partial autocorrelation function (PACF) of 

the residuals should not be significantly different from 0.

(2) The residuals should be without pattern, i.e., they should be white noise.

4.6 Illustrative Examples

Example 1. In this example we follow the monthly inflation rate from January 1970 

through December 1985 (see Figure 4.2). The monthly inflation rate in August 1973 was 

1.8%, which if continued would have produced an annual rate o f over 23%. This was 

higher than any other monthly rate. Such an observation is somewhat unusual and can 

have an effect in conducting a time series analysis.
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Figure 4.2 Monthly Inflation Rate from January 1970 through December 1985 

ARIMA estimation (with the mild outlier):

We will try to develop an ARIMA model for this inflation series. 

(1) Identifying the Model

Inflation Rate

Illin ium f a ]

Centtwiceuiw

U q NumMr

Figure 4.3 ACF o f Inflation Series

This ACF plot starts out with large positive values, which die out very slowly at 

increasing lags. This pattern confirms that the series is not stationary, and that we should 

take differences to attempt to remove this nonstationarity.
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Let v'r, = r,-rM,

where Y, -  time series observation at time / ,

Inflation Rate
10

5

0.0

s

•to

to toI 12 142 4

Conttanca u n to

Lag Number 

Tranaionna: dtffai

Y„t = time series observation at time period t - 1. 

Inflation Rate

0.0

15S 7 9 ttt 3
1610 129 0 142 4

Conftdanc* um ts

(D
l a g  N um ber 

Transforms; dtffai

Figure 4.4 ACF and PACF for Differenced Series 

The ACF o f the differenced series shows a spike at lag 1, while the PACF shows rapid 

attenuation from its initial value. These patterns suggest an MA(1) process (see Appendix 

3, "Guide to ACF/PACF Plots", SPSS Trends). Since we differenced the original series to
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obtain the MA(1) patterns, our ARIMA identification includes one degree of differencing

and a first-order moving average, i.e., an ARIM A(0,l,l) model. 

Table 4.1 ARIMA(0,1,1) output for the inflation series

T e r m i n a t i o n  c r i t e r i a :
F a r a m e t e r  e p s i l o n :  . 0 0 1
SSQ P e r c e n t a g e :  . 0 0 1
Maximum n u m b e r  o f  i t e r a t i o n s :  10

I n i t i a l  v a l u e s :

MAI . 6 5 1 9 9

Sum o f  s q u a r e s  = . 0 0 0 8 9 1 6 4

I t e r a t i o n  H i s t o r y :

I t e r a t i o n  Sum o f  S q u a r e s

1 . 0 0 0 8 9 0 4 1
2 . 0 0 0 8 9 0 3 5

C o n c l u s i o n  o f  e s t i m a t i o n  p h a s e .
E s t i m a t i o n  t e r m i n a t e d  a t  i t e r a t i o n  n u m b e r  3 b e c a u s e :  

Sum o f  s q u a r e s  d e c r e a s e d  b y  l e s s  t h a n  . 0 0 1  p e r c e n t .

FINAL PARAMETERS:

N u m b e r  o f  r e s i d u a l s  131  
S t a n d a r d  e r r o r  . 0 0 2 6 1 0 7 1

A n a l y s i s  o f  V a r i a n c e :

DF Sum o f  S q u a r e s

R e s i d u a l s  13 0  . 0 0 0 8 9 0 3 5

V a r i a b l e s  i n  t h e  M o d e l :

B SEB T-RATIO

MAI . 6 8 4 6 4 5 1 8  . 0 6 4 3 2 2 8 6  1 0 . 6 4 3 8 8 6

R e s i d u a l  V a r i a n c e  

. 0 0 0 0 0 6 8 2

APPROX. PROB. 

. 0 0 0 0 0 0 0
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The output for an ARIM A(0,l,l) least square model fit appear in Table 4.1. The first 

differences in monthly inflation rates followed an ARIMA (0,1,1) process with 0=0.685. 

Verifying that the resulting ARIMA residuals are white noise, consider the ACF and 

PACF shown for the residuals in Figure 4.5.

Error for Inflation Rate From ARIMA(0,1.1)

S

00

3

•to
ri 9 133 t lt

Confidence urn*

4 6 8 10 12 14 16

LagNumMr

Error for Inflation Rate from ARIMA(0,1.1)

i j  j  r  •  it  i i  n
2 * « • 10 12 l< II

LagNumMr

Figure 4.5 ACF and PACF for Residuals

None o f the residual autocorrelations exceeds the confidence limits around 0. Since they 

are not statistically significant at any lag, we have no evidence that the residuals are not a 

white noise process.
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Figure 4.6 shows a sequence chart o f the ARIM A(0,l,l) residuals. In general the 

residuals show no pattern, although the outlier of August 1973 is still present.

atr

5|
ui

02

ot

0.00

• 01

•02
■fcv 'a . 'a. /o. ■'a. 'o. ^  'i*  'a  'a  4

O ats

Figure 4.6 Residuals from ARJMA(O.l.l) including outlier

ARIMA estimation (with the mild outlier) using the r ,  method

First we need to identify the appropriate ARIMA model for use with .

Using the Greatest Deviation correlation coefficient , ACF( 1) = rt =rgJ(Yl,Yl_l) 

ACF(k) = rt = ^ 0 % ^ ) ,  PACF(k) = ru = | *= l ,2„ . . .

From (4.1.10), replacing p  by , the PACF at lag k is:

U — .=

where = rt_l ; -  rur4.u .y for j  = 1,2,..., £ - 1.
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Figure 4.7 ACF and PACF using method

Figure 4.7 shows the ACF and PACF plots using the method. Comparing these plots

with Figure 4.4, we see that using r ,  method has reduced the size of the negative ACF at

lag I. Both the ACF and PACF show declines from their initial value at lag I, rather than 

spikes.

This suggests a model with both autoregressive and moving average components,; hence, 

an ARIMA( 1,1,1) model (see Appendix 3).
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The output for the ARIMA( 1,1,1) model fit for the inflation series using the method 

appears in Table 4.2.

Table 4.2 ARIMA( 1,1,1) using method:

T e r m i n a c i o a  c r i t e r i a :
P a r a m e t e r  e p s i l o n :  . 0 0 1
SSQ P e r c e n t a g e :  . 0 0 1
Maximum n u m b e r  o f  i t e r a t i o n s :  10

I n i t i a l  v a l u e s :

AR1 . 3 3 6 7 4
MAI . 7 2 3 5 7

Sum o f  s q u a r e s  = . 0 0 0 6 7 3 5 9

I t e r a t i o n  H i s t o r y :

I t e r a t i o n  Sum o f  S q u a r e s

1 . 0 0 0 6 6 6 3 5
2 . 0 0 0 6 6 5 3 4
3 . 0 0 0 6 6 5 7 7

C o n c l u s i o n  o f  e s t i m a t i o n  p h a s e .
E s t i m a t i o n  t e r m i n a t e d  a t  i t e r a t i o n  n u m b e r  4 b e c a u s e :  

Sum o f  s q u a r e s  d e c r e a s e d  b y  l e s s  t h a n  . 0 0 1  p e r c e n t .

FINAL PARAMETERS:

N u m b e r  o f  r e s i d u a l s  131 
S t a n d a r d  e r r o r  . 0 0 2 2 6 7 2

A n a l y s i s  o f  V a r i a n c e :

DF Sum o f  S q u a r e s

R e s i d u a l s  12 9  . 0 0 0 6 6 5 7 7

V a r i a b l e s  i n  t h e  M o d e l :

R e s i d u a l  V a r i a n c e  

. 0 0 0 0 0 5 1 4

AR1
MAI

B

. 4 0 9 8 7 9 6 3

. 3 3 2 4 9 6 0 7

SEB

. 1 2 5 8 5 8 0 1

. 0 7 7 7 6 4 8 1

T-RATIO APPROX. PROB.

3 . 2 5 6 6 8 3
1 0 . 7 0 5 3 0 5

. 0 0 1 4 4 0 4 1

. 0 0 0 0 0 0 0 0
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The monthly inflation rates followed an ARIMA (1,1,1) process with 0=0.8325 and 

<j> =0.4098 using the method.

We compared these results with Table 4.1. The standard error o f the residuals is smaller. 

The model estimated using the method seems to be slightly better on these statistical

grounds. That is not surprising, since r^  is resistant to outliers.

Verifying that the resulting ARIMA residuals are white noise process, consider the ACF 

and PACF shown for the residuals in Figure 4.8.

Error for Inflation Rate From A R IM A (1 ,1.1)

A
CF

J  S ? 9  M  t j

2 « 4  4 ’0 12 ’« »«
Lag N um ber

Error for Inflation Rate From A R IM A (1 ,1,1)

P a
rt)
ai
A
CF

Cflitflwnc* Units

t J s r 1 11 13 ts
2 4 8 8 10 12 14 18

Lag N um ber

Figure 4.8 ACF and PACF for Residuals using the r^  method
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Figure 4.8 shows that the residual ACF and PACF for this last model is acceptable. The 

robust r^  method might protect against outliers causing misspecfication o f a time series 

model.

Example 2: Modeling and forecasting the healthcare cost and utilization for the years 

1997 to 2001.

Healthcare Cost

4 0 .06*6

35 .06*6

30 .06*6

25 .06*6

20 .06*8

15.06*6

10.06*6

5 .06*6

00 0 .0 6 * 0

£ J- ^  J#* ^  <£ <? J? ^  jP 5? J? 5.' o'
•j? &  -s* d3" J  -i* d3" /  ^  cf ^  v  d3" ^  ^

Figure 4.9 Monthly Healthcare Cost from Years 1997 to 2001 

Figure 4.9 shows the Blue Cross Blue Shield monthly medical utilization for the years 

1997 to 2001. To identify an appropriate model for these healthcare cost data, an ACF 

plot was created in Figure 4.10.

H ealthcare C ost

5 .10
» ft 13

2 4 S I to 12 14 16

LJQNumMT
Figure 4-10 ACF o f Healthcare Cost
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Figure 4 .11 ACF and PACF o f the differenced Healthcare Cost

The time sequence chart (Figure 4.9) o f healthcare costs suggested that the series was 

not stationary. The autocorrelation plot (Figure 4.10) starts out with large positive 

values, which die out very slowly at increasing lags. This pattern confirms that the 

series is not stationary, and that differences should be taken when analyzing the data.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



In viewing Figure 4.11, the PACF of the differenced series shows one spike at lag I, 

while the ACF shows rapid attenuation from its initial value. These patterns suggest an 

ARIMA( 1,1,0) process (see Appendix 3).

Both the least squares and methods were used with S-plus to estimate the parameters

of the ARIMA( 1,1,0) model. The OLS output is given in Table 4.3.

Table 4.3 Ordinary Least Squares Estimation

T e r m i n a t i o n  c r i t e r i a :
P a r a m e t e r  e p s i l o n :  . 0 0 1
SSQ P e r c e n t a g e :  . 0 0 1
Maximum n u m b e r  o f  i t e r a t i o n s :  10

I n i t i a l  v a l u e s :

AR1 - . 4 1 6 5 9

I t e r a t i o n  H i s t o r y :

I t e r a t i o n  Sum o f  S q u a r e s

1 1 . 5 2 3 4 8 2 1 E + 1 4

C o n c l u s i o n  o f  e s t i m a t i o n  p h a s e .
E s t i m a t i o n  t e r m i n a t e d  a t  i t e r a t i o n  n u m b e r  2 b e c a u s e :

Sum o f  s q u a r e s  d e c r e a s e d  b y  l e s s  c h a n  . 0 0 1  p e r c e n t .

FINAL PARAMETERS:

N u m b er  o f  r e s i d u a l s  52 
S t a n d a r d  e r r o r  1 7 2 5 2 4 6 . 6

A n a l y s i s  o f  V a r i a n c e :

DF A d j .  Sum o f  S q u a r e s  R e s i d u a l  V a r i a n c e

R e s i d u a l s  51 1 . 5 2 3 4 8 2 1 E + 1 4  2 9 7 6 4 7 5 7 9 5 1 3 2

V a r i a b l e s  i n  t h e  M o d e l :

B SEB T-RATIO APPROX. PROB.

AR1 - . 4 1 3 3 5 0 0 4  . 1 2 7 6 4 7 2 5  - 3 . 2 3 8 2 2 1 3  . 0 0 2 1 1 7 6 4
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Table 4.4 Comparison of the method and least squares with original data (one outlier)

0 (B ) ( p  -value

least squares -0.41335004 -3.2382213 0.0021

r* -0.4060088 -3.7371 0.0000

Table 4.4 gives the parameter estimates for the least squares method and r^  method. 

There are no outliers in this example; hence, the method and least squares method give 

similar results.

Suppose that there exists another outlier in this time series. We recalculate the 

coefficients.

Table 4.5 Comparisons o f r^  method and least squares (with another outlier)

0 (B ) t p  -value

least squares -0.4508505 -3.213653 0.002

gd -0.4060088 -3.737100 0.0000

Table 4.5 gives the comparison between the least squares method and method (for 

calculations, see Appendix 4). The method is clearly more robust to the effects o f the 

outlier than least squares.
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Figure 4.12 Forecast using (east squares method
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Figure 4.13 Forecast using Greatest Deviation correlation coefficient method 

We use the formulas in Section 4.3 and Section 4.4 to calculate forecasted values for both 

the least squares and methods for comparison (Figures 4.12,4.13).
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Forecasting three months into the future from May of 2001 for both the least squares and 

methods, the results are summarized in Table 4.6.

Table 4.6 Forecast comparisons o f method and least squares

Date r .  methodP*
Least

Squares
Actual

Prediction 

error ( r ^ )

Prediction 

error (LS)

June 2001 36,135,374 36,992,763
35,975,884 0.4% 2.8%

July 2001 34,616,659 35,405,008 34,837,656 -0.6% 1.6%

August 2001 36,942,358 37,446,625
36,745,892 0.05% 1.9%

In viewing this table, the prediction error is much smaller when we choose the r^  method

as compared to the least squares method. For this example, the r^  method is better than

the least squares or maximum likelihood methods. It performs robustly when the data 

have some suspect values.

Example 3. Trend Analysis and Forecasting Health Insurer Profitability

We use a statistical ARMA model fit with the nonparametric correlation coefficient

and utilize forecasted values of the healthcare cost to project underwriting results. The 

Blue Cross/Blue Shield system reported underwriting losses between 1995 and 1998. The 

prolonged losses were attributable to the low increases in premiums as companies tried to 

gain or maintain market share.
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Figure 4.14 Blue Cross/Blue Shield and Commercial Underwriting Gain/Loss 

Figure 4-14 shows a consistent pattern of three consecutive years of gain followed by

three consecutive years of loss. Breaking the string o f four consecutive years of

underwriting loss ending in 1998, which followed six years of underwriting gain. 1999

showed a marginal gain, well within the range of statistical fluctuation o f another loss

year. Most business cycles, by definition, tend to be recurrent, but do not exhibit the level

of regular periodicity seen in the Blue Cross/Blue Shield underwriting results, at least up

to 1992.

Figure 4.14 illustrates the health insurance gains/losses for commercial carriers compared 

to Blue Cross/Blue Shield plans. These results are not completely comparable because of 

differences in commercial reporting. However, they do exhibit a great deal o f consistency 

in the cyclical patterns.

The Underwriting Cycle:

Underwriting gains and losses are results o f the difference between revenues and

134

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



expenses. The former is represented by the amount o f premiums earned, and the latter is

BLUE CROSS/BLUE SHIELD UNDERWRITING 
GAIN/LOSS VS. HEALTHCARE TRENDS

Percent Cain/Lon
4

0

■4

-8
IT?* 1978 1980 1982 1984 198* 1988 1990 1992 1994 199* 1998

Underwriting G/L Health Cost Index

Figure 4.15 Blue Cross/Blue Shield Underwriting Gain/Loss vs. Healthcare Trends 

measured by the amount of incurred claims and other operating expenses. If revenues are

rising faster than costs, then a gain is likely to occur. Conversely, if  the insurer’s claims

BLUE CROSS/BLUE SHIELD UNDERWRITING  
GAIN/LOSS VS. CHANGE IN HEALTHCARE TRENDS

Percent Gain/Lou

•10

1976 1978 1980 1982 1984 198* 1988 1990 1992 1994 1996 1998

" " B C /B S  Underwriting G/L “ ^ “ Change in Health Cast Index

Figure 4.16 Blue Cross/Blue Shieid Underwriting Gain/Loss vs.

Change in Healthcare Trends
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and expenses rises faster than the premiums charged, a loss will result. Typically, some 

profit margin is built into target premiums. As a result, underwriting gains should occur 

unless expenses and claims rise at a faster rate than revenues plus the margin percentage. 

Figure 4.15 illustrates the Blue Cross/Blue Shield underwriting results compared to 

healthcare cost trends as represented by the Health Cost Index (HCI). It is apparent that 

underwriting results and healthcare trends as measured by the HCI are inversely related. 

This pattern seems to diverge somewhat near the end of the period.

Figure 4.16 portrays a better visualization of this relationship by reflecting the change in 

HCI trends 18 months apart and by reversing the scale (changing positive numbers to 

negative numbers and vice versa) o f the HCI trend graph. This 18 month lag follows the 

premise that cost trends for providers lead health insurance premiums by about 18 

months. This lag is due to the time needed to collect and analyze historical claims data 

and to implement changes in premiums.

HEALTH COST INDEX VS.
EMPLOYMENT COST INDEX
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u
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0
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Figure 4.17 Health Cost Index vs. Employment Cost Index
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Figures 4.17 and 4.18 illustrate the twelve month moving average o f Employment Cost 

Index versus the HCI. Figure 4.17 shows them on the actual time scale, and Figure 4.18 

shows the HCI trends delayed 18 months to correspond more closely with the 

Employment Cost Index.
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Figure 4.18 Health Cost Index vs. Employment Cost Index 

The close correspondence between these two graphs is indicative of the delay that exists
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Figure 4.19 Employment Cost Index Actual vs. Forecast
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between changes in claim cost trends and the insurers' recognition o f these trend changes 

in premium rates. This close relationship has permitted us to build a statistical model for 

future forecasting. We use the nonparametric correlation coefficient method to

forecast the Employment Cost Index shown in Figure 4.19.

Modeling and Forecasting Profitability:

Using the nonparametric correlation coefficient method, the next step is to formulate

a  statistical time series model that enables the forecasting of underwriting profitability. 

We use the formulas in Sections 4.3 and 4.4 to calculate the projected trends. Figure 4.20 

shows the health insurance's billed charge trend, allowed charge trend, paid claim trend, 

and forecast using the nonparametric correlation coefficient method.
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Figure 4 2 0  ARIMA model forecast using m e th o d
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12 Month Moving Trends
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Figure 4.21 ARIMA model forecast using method (one outlier)

Supposed now an extreme outlier is added to the time series in March of 2001. Figure 

4.20 shows the billed charge trend, allowed charge trend, paid claim trend, and 

forecast with the outlier using the nonparametric correlation coefficient method.

12 Month Moving Trends
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Figure 4.22 ARIMA model forecast using least squares (one outlier)
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Figure 4.22 shows the billed charge trend, allowed charge trend, paid claim trend, and 

forecast with the outlier using the least squares method. Figures 4.21 and 4.22 show that 

the method provides much more stable projections and appears to be unaffected 

by the outlier, unlike least squares.

Table 4.7 Comparisons of least squares and methods (with an outlier)

Date Least Squares Method Method Actual Trend

April 2001 13.44% 10.21% 10.56%

May 2001 13.74% 11.07% 1 1 .0 1 %

June 2001 19.14% 10.71% 1 0 .8 6 %

July 2001 14.22% 11.08% 11.03%

Forecasting four months into the future from March of 2001 for both the least squares 

and r^  methods (with an outlier), the results are summarized in Table 4.7. In viewing

this table, the prediction error is much smaller when we choose the method as

compared to the least squares method. For this example, the r^  method is better than the

least squares . It performs robustly when the data have some suspect values.
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Chapter 5 

Main Results and Future Research

5.1 Main Results

We now summarize the main results of this dissertation.

In Chapter 1 we discussed linear regression models, some properties of the Greatest 

Deviation correlation coefficient , and the application of to the estimation of linear

model parameters.

In Chapter 2 and Chapter 3, we studied generalized linear models and nonlinear models 

fit with nonparametric correlation coefficients. Specifically, we investigated the 

robustness of parameter estimates to outliers using the nonparametric correlation 

coefficients method of model fitting. We illustrated that estimation is more robust to 

outliers if  we choose the Greatest Deviation correlation coefficient method, as

opposed to least squares.

In Chapter 4, we reviewed the time series models and estimation. We developed 

estimation methods for the class o f ARIMA time series models using the Greatest 

Deviation correlation coefficient methodology. Parameter estimates obtained for

several data sets show that the nonparametric correlation coefficient methodology is

comparable to least squares and m axim u m  likelihood estimation methods, when the data 

is well-behaved, but performs robustly in the presence o f suspect data.
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5.2 Further Research

In this section, we discuss some further problems for study that follow from this 

dissertation. Nonparametric approaches have become an area with an abundance o f new 

methodological developments in recent years.

Future efforts pertaining to the subject matter in this dissertation will fall into three 

categories: theory, application, and performance. Theoretical research will include 

extensions of the statistical inferences using the Greatest Deviation correlation coefficient 

and the exploration o f the use o f any type of correlation coefficient into all areas of 

statistics. There are many research applications for the Greatest Deviation correlation 

coefficient and others, including financial event prediction, healthcare quality 

improvement research, etc. As the data sets grow larger, the computational effort required 

to implement the Greatest Deviation correlation coefficient methodology is great and 

warrants further study.

There are some other interesting and potential research areas:

1. Comparison o f the methodology to methods using other robust nonparametric

correlation coefficients.

2. Simulation studies (as opposed to using real data) for comparing least squares and 

nonparametric correlation coefficient.

3. Development o f Inference procedures (confidence intervals and tests) using 

nonparametric correlation coefficients for generalized linear models, nonlinear 

models and time series models.
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Appendix 1. C Programs for Estimation in Generalized Linear Models 
and Non-linear Models

#include<stdio.h>
#include"Glim.h"
#include<math.h> 
double exp(double x);

void mainO
{

int choice;
header();
do
{
do
{

printf("\n\nChoose an operation by number.\n\n");
printf("\t**********1. Glimrg(x,y)—Poisson Distribution*********** *\n"); 
printf("\t**********2. Logirg(x,y)— Logistic Regression*************\n"); 
printf("\t**********3. Nonlrg(x,y)—Nonlinear Regression*********** *\n"); 
printf("\t**********4. Linerg(x,y)—Linear Regression***************\n"); 
printf("\t* *********5. Multrg(x,y)—Multiple Regression* ** * ******** *\n");

printf("\t**********0. Quit **************************^^>1̂.
scanf("%d", &choice);

}
while ( (choice < 0) || (choice > 5)); 
switch (choice)
{

easel:
glim_calculationO;
break;
case 2:
log_calculationO;

break; 
case 3:
nonlin_calculation();
break;
case 4:

Linerg_calcuIationO; 
break; 

case 5:
Multrg_calculationO;
break;
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default: 
choice = 0; 
break;

}
}
while (choice != 0);

}

void header(void)
{

*\n");
printf("* This C program uses rg subroutines. \n");
printf("* The C program is used for Generalized Linear Model, Logistic \n"); 
printf("* Regression and Nonlinear Model with rg by iteration. \n"); 
printf("* First choose which calculation you want to execute, then input \n"); 
printf("* the data from a data file. \n");
printf("* Department of Mathematical Sciences \n");
printf("* University of Montana \n");
printf("* Missoula, MT 59812 \n");

p^ntf^"*********************************#**#****##***+***#*#*************

\n");
}

double* logis(double** x,double *y, double* b,double* bb, int* n)
{
int i, ii, j,k,m=0,cnt=l;
double **res,a,c,d,e,aa,aal,aa2,rr,*ress,*bl,*b0,*bi; 
double **xstar,*zstar,ak,bk,bkl,ck,sum,**resl; 
double exp(double x);
res=(double **)malloc((n[0])*sizeof(double*)); 
res l=(double **)malloc((n[0])*sizeof(double*)); 
zstar=(double *)malloc((n[0])*sizeof(double)); 
xstar=(double **)malloc((n[0])*sizeof(double*)); 
ress=(double *)malloc((n[0])*sizeof(double)); 
b0=(double *)malloc(n[l]*sizeof(double)); 
b 1 =(double *)malloc(n[ 1 ] *sizeof(double)); 
bi=(double *)malloc(n[l]*sizeof(double)); 
for(i=0 ;i<n[0] ;++i) {
res[i]=(double*)malloc(2*sizeof(double)); 
res 1 [i]=(double*)malloc(2*sizeof(double));
}
for(i=0;i<n[ 1 ] ;++i) { 
bl[i]=b[i];
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}
while(cnt && (m<2000)) { 
ii=0;
for(i=0;i<n[ 1 ] ;++i) { 
b(i]=bi[i];
}
for(i=0;i<n[0] ;++i) {
xstar[i]=(double* )malIoc((n[ 1 ])* sizeo f(double)); 
res[i]=(double*)malloc(2*sizeof(double));
}
for(i=0 ;i<n[0] ;++i) {
xstar[i][0]=(exp(-b[0]-b[l]*x[i][0]))/pow(l.+exp(-b[0]-b[l]*x[i][0]),2.0); 
xstarfi] [ 1 ]=(x[i] [0]*exp(-b[0]-b[ 1 ]*x[i] [0]))/pow( 1 +exp(-b[0]-b[ 1 ] *x[i] [0]),2.0) 
zstar[i]=y[i]-l ./(l .+exp(-b[0]-b[l]*x[i][0]));
}
for(i=0:i<n[l];-H-i){
bO[i]=bl[i];

for(i=0;i<n[ 1 ];++i) { 
bi[i]=bb[i];
}
for(i=0 ;i<n[ 1 ] ;++i) { 
bl[i]=bi[i]+bO[i];
}
printf("\nslope estimation: \n"); 
for(i=0;i<n[l];++i){ 
printf("\tb I [%d]=%lf\n",i,b 1 [i]);
}
for(i=0;i<n[0];-H-i){
res[i][l]=y[i]*x[i][l];
}
for(i=0;i<n[0];-H-i){
res[i][l]=res[i][l]-x[i][l]/(l.+exp(-bl[0]-bl[l]*x[i][0]));
res[i][0]=x[i][0];
}

ak=rgave(res^i[0]); 
printf("\nrgave(x,res)=%lf',ak); 
for(i=0 ;i<n[0] ;++i) { 
ress[i]=res[i][l];
}
sum=0.;
for(i=0;i<n[0];i++) { 
sum = sum+ res[i][l];
}
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/*printf("\nsum=%lf\n",sum);*/

Qsort(ress,&n[0]); 
for(i=0;i<n[0] ;++i) { 
resl[i][0]=i+l;
if(ress[i]<0) res 1 [i] [ 1 ]=-ress[i]; 
if(ress[i]>=0) res 1 [i] [ 1 ]=ress[i];
}
bk=rgave(res 1 ,n[0]);
printf("\nrgave(e,|sort(res)|)=%lf\n",bk);
ii=0;
k=0;
cnt=0;
aa=bl[0]-b0[0]; 
if(aa<0) aa=-aa; 
w hile(k<n[l]) { 
aal = bl[k]-bO[k]; 
aa2 = bl[k]-bO[k]; 
if(aa2<0.0) aa2=-aa2; 
if(aal<0.0) aal=-aal; 
if(aal>aa) aa=aal; 
if(ak<0) ak=-ak; 
ck=bkl*bk; 
if(ak>0.001 || ck>0 . ) 
cnt=l; 
k++;
}
bkl=bk;
m++;
printf("\n\nthe %d step o f iteration:\n",m);
}
free(res); 
return b l;
}

void log_calculation()
{
int i j ,  n[2] ,c c j l j2;
double **x, **xi,*res,*ress,*b,*bb;
FILE *xfp; 
char filename[20];
printf("Enter the data file name for matrix x and vecter y:\n\n"); 
scanf("%s",filename); 
xfp= fopen(filename,"r"); 
if(xfp =  NULL){
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printf("Error in opening: %s\n",filename); 
exit(l);
}
fscanf(xfp,"%d",&n[0]); 
fscanf(xfp,"%d",&n[l ]); 
b=(double*)malloc(n( 1 ]*sizeof(double)); 
bb=(double* )malloc(n[ 1 ] * sizeof(double)); 
for(i=0;i<n[l];++i) 
fscanf(xfp,"%lf',&b[i]); 
for(i=0;i<n[ I ] ;++i) 
fscanf(xfp,"%lf',&bb[i]); 
x=(double**)malloc(n[0]*sizeof(double*)); 
xi=(double**)malloc(n[0]*sizeof(double*)); 
res=(double* )malloc(n[0] * sizeof(double)); 
ress=(double*)malloc(n[0]*sizeof(double)); 
for(i=0;i<n[0];++i) {
x[i]=(double*)malloc(n[l]*sizeof(double));
for0 =0y<n[l];++j)
fscanf(xfp,"%If’,&x[i][j]);
fscanf(xfp,"%lf',&ress[i]);
res[i]=ress[i]/x[i][n[I]-l];
}
printf("filename is : %s\n\n",filename);
b=logis(x,res,b,bb,n);
printf("\nslope estimation:\n");
fo r(i= 0 ;i< n[l];-H -i)
printf("\t b[%d] = %lf\n",i,b[i]);
fclose(xfp);
free(x);
free(res);
free(b);
}

double* nonlin(double** x, double *y, double *b,double* bb, int* n)
{
int i, ii,ccj,k,m=0,cnt=l;
double **res,a,c,d»e,aa,aal,aa2^r,*ress,*bl,*b0.*bi; 
double * *xstar,*zstar,ak,ak 1 ,bk,bk 1 ,ck,sum,* *res 1; 
double exp(double x);
res=(double **)malloc((n[0])*sizeof(double*)); 
res 1 =(double * *)malloc((n[0])*sizeof(double*)); 
zstar=(doubIe *)malloc((n[0])*sizeof(double)); 
xstar=(double * *)malloc((n[0])*sizeof(double*)); 
ress=(double *)malloc((n[0])*sizeof(double)); 
bO=(double *)malloc((n[ 1 ])* sizeof(double));
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b 1 =(double *)malloc((n[ 1 ])*sizeof(double)>; 
bi=(double *)malloc((n[l])*sizeof(double)); 
for(i=0;i<n[0] ;++i) {
res[i]=(double*)malloc(2*sizeof(double)); 
res 1 [i]=(double* )malloc(2* sizeo f(double));
}
for(i=0;i<n[ 1 ] ;++i) { 
bl[i]=b[i];
}
for(i=0;i<n[0] ;++i) {
xstar[i]=(double*)malloc((n[l])*sizeof(double));
res[i]=(double*)malloc(2*sizeof(double));

}
printf("\nWhich calculation you want to choose?(enter l.2)\n"); 
printf("\t********************* 1. example I 
pnntf("\t********************* 2. example 2 
scanf("%d" ,&cc); 
while(cnt && (m<2000)) { 
ii=0;
for(i=0;i<n[l];-H-i){
b[i]=bl[i];
}
if(cc= l){
for(i=0;i<n[0] ;++i) {
xstar[i] [0]=I .-exp(-b[ 1 ] * (x[i] [0]-8.));
xstar[i][l]=-(0.49-b[0])*(x[i][0]-8.)*exp(-b[l]*(x[i][0]-8.));
zstar[i]=y[i]-b[0]-(0.49-b[0])*exp(-b[l]*(x[i][0]-8.));
}
i

if (c c = 2){
for(i=0;i<n[0];-H-i) {
xstar[i] [0]=-x[i] [0] *exp(-b[ 1 ]/x[i][0]);
xstar[i] [ I ]=b[0]*exp(-b[ 1 ]/x[i][0]);
Zstar[i]=y[i]-x[i][0]*(l.-b[0]*exp(-b[l]/x[i][0]));
}
}

for(i=0;i<n[ I ] ;++i) { 
b0[i]=bl[i];
}
for(i=0 ;i<n[ 1 ] ;++i) { 
bi[i]=bb[i];
printf("\nbi[%d]=%lf\n",i,bi[i]);
}
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/*bi = gsrg(xstar,zstar,bb,n); */

for(i=0 ;i<n[ 1 ] :++i) { 
bl[i]=bi[i]+bO[i];
}
for(i=0 ;i<n[l];++i){ 
printf("\tb[%d]=%lf\n”,i,b 1 [i]);
}
for(i=0;i<n[0] ;++i) { 
res[i][0]=x[i][0];
}
for(i=0;i<n[0] ;++i) { 
for(j=0:j<n[ 1 ];++j) { 
res[i] [ I ]=zstar[i]-xstar[i] [j]*bb[j];
}
}
sum=0.;
for(i=0 ;i<n[0] ;++i) { 
sum+=res[i][l];
}
printf("\nsum o f residuals=%lf\n”,sum);
ii=0 ;
k=0;
cnt=0;
while(k<n[l]){ 
for(j=0y <n[0] ;++j) { 
res(j][0]=xstar(j][k];
}
ak=rgave(res^i[0]);
ck=ak*akl;
printf("\nrgave(xi,y-f-z*theta)=%lf',ak);
if(ak<0) ak=-ak;
if(ak>0.001)
cnt=l;
bl[i]=bi[i]+bO[i];
k++;
}
akl=ak;
m++;
printf("\n\nthe %d step o f iteration: \n"^n); 
}
free(res); 
return b l;
}
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void nonIin_calculation()
{

inti.j,n[2] ,cc jl.j2;
double * *x,* *xi,*res,*ress,*b,* bb;
FILE *xfp; 
char filename[20];
printf("Enter the data file name for matrix x and vector y:\n\n"); 
scanf("%s",filename); 
xfp=fopen( filename,"r"); 
if(x fp =  NULL){
printf("Error in opening:%s\n",filename); 
exit(l);
}
fscanf(xfp,"%d",&n[0]);
fscanf(xfp,"%d",&n[lj);
b=(double*)malloc((n[l])*sizeof(double));
bb=(double*)malloc((n[ I ])*sizeof(double));
for(i=0;i<n[l];-H-i)
fscanf(xfp,"%lf',&b[i]);
for(i=0;i<n[l];-H-i)
fscanf(xfp,"%lf',&bb[i]);
x=(double* * )malloc(n[0] * sizeof(double*));
xi=(double**)malloc(n[0]*sizeof(double*));
res=(double*)malloc(n[0]*sizeof(double));
ress=(double* )malloc(n[0] * sizeo f(double));
for(i=0;i<n[0];-H-i){
x[i]=(double*)malloc((n[l]-l)*sizeof(double));
forO=0;j<n[l]-l;++j)
fscanf(xfp,"%lf’,&x[i][j]);
fscanf(xfp,"%lf',&ress[i]);
res[i]=ress[i];
}
printf("filename is : %s\n\n",filename);
b=nonlin(x,res,b,bb,n);
printf("\nslope estimation;\n");
for(i=0 ;i<n[l];++i)
printf("\t b[%d]=%lf\n",i,b[i]);
fclose(xfp);
free(x);
free(res);
free(b);
}
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double rg(int* ranks,int N)
{

register 1=0; 
int *M, *w, k=N -l;
int num 11=0, num21=0, mnum 11=0, mnum21=0;
M=(int* )malloc(N* sizeo f(int)); 
w=(int* )malloc(N * sizeo f(int)); 
for ( ;I< N;++I) {

M[ranks(T]-l] = I; 
w[I] = 0;

}
for(I=0; I< = k; ++I) 
for ( I =0; K  k; ++I) { 
w[M [I]]=l; 
num 11 -= w[I]; 
num2l -= w[k-I]; 
if(M[I] >= I) 

num 11 +=1; 
if( k - M[I] >= I) 

num21 +=1; 
mnum 11 = (mnumII > numII) ? mnumllrnumll; 
mnum2l = (mnum2l > num21) ? mnum2l:num21;

}
/♦free(M);
free(w);*/
return (mnumll - mnumll)/((double)(N/2));

}

/* Most positive rg correlation with possible tied values. */ 
double rgpos(double** x,int n)
{/* n is sample size, x is a matrix and its first column is the x vector, 

the second is the y vector. */

int ij,*ypos;
Data *Apos;

ypos = (int*)malIoc(n*sizeof(int));
Apos = (Data*)malloc(n*sizeof(struct data));

for(i = 0; i < n; ++i){ I* assign values to data structure */ 
Apos[i].L = x[i][0];
Apos[i].R = x[i][l];
Apos[i].n = i+1;

}
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Qsortpos(Apos,&n, 1); /*sort on first element, if tied,look at
second */ 

for(i = 0; i < n; ++i){
Apos[i].n = i+1; /^initial all third elements as 1 :n *1

}

Qsortpos(Apos,&n,2); /*sort on second element, if tied.look at
first */

for(i = 0; i < n; ++i) { /♦initial all second elements as 1 :n */ 
Apos[i].R = i+1;

}
Qsortpos(Apos,&n,3); /*sort on third element, if tied, look at 

first.*/

for(i = 0; i < n ; ++i){ 
ypos[i] = Apos[i].R;

}
return rg(ypos, n);
/

/* Most negative rg correlation with possible tied values. */ 
double rgneg(double** x, int n)
{/* n is sample size, x is a matrix and its first column is the x vector, 

the second is the y vector. */

int i,j,*yneg; 
double neg;
Data *Aneg;

yneg = (int*)malloc(n*sizeof(int));
Aneg = (Data*)malloc(n*sizeof(struct data));

for(i = 0; i < n; ++i){ /* assign values to data structure */ 
Aneg[i].L = x[i][0];
Aneg[i].R = x[i][l];
Aneg[i].n = i+1;

}

Qsortneg(Aneg,&n, 1); /* sort on first ele.,if tied,look at
second */ 

for(i = 0 ; i < n; ++i){
Aneg[i].n = i+1;
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Qsortneg(Aneg,&n,2); /* sort on second ele. if tied,look at 
first. */

for(i = 0; i < n; ++i) { /* initial all second elements as 1 :n */ 
Aneg[i].R = i+1;

}
Qsortneg(Aneg,&n,3); /* sort on third ele. if tied,look at 

second.*/ 
for(i = 0; i < n ; ++i){ 

yneg[i] = Aneg[i].R;
}
return rg(yneg,n);
1/

/* rg correlation with possible tied values. */ 
double rgave(double** x, int n)
{/* n is sample size, x is a matrix and its first column is the x vector, 

the second is the y vector. */ 
double pos,neg; 
pos = rgpos(x,n); 
neg = rgneg(x,n); 
return (pos+neg)/2;

}

/* do rg simple regression,estimation o f rg slope and intercept. */ 
double rgrg(double ** x, int n)
{/* n is sample size, x is a matrix and its first column is the x vector, 

the second is the y vector. */

int ij ;
int k,m,M, I,R,cnt =0; 
double a,b,**res, *z;
res = (double **)malloc(n*sizeof(double*)); 
for(i = 0; i< n; ++i) 

res[i] = (double*)malloc(2*sizeof(double)); 
z = (double* )malloc((n*(n-l)/2)*sizeof(double));

for( i = 0; i < n - 1; ++i) { 
forO = i+1; j < n; ++j) { 

if(x[i][0] =  x[j][0]) 
cnt++; 

else {
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k =  n*i-((i+ l)* i)/2 + ( j - i ) - c n t - 1; z[k] = (x[i][l] - x[j][l])/(x[i][0] -
xDlCO]);

}
}

}
k++;
Qsort(z,&k); 
m = k; 
k = 0;
for( i = 1; i < m; ++i){ /* delete the tied values */

!=z[k]){ 
z[++k] = z[i];

}
}

i = (n-l)/4; /* skip impossible left 0 solution point. */
m = k - (n-l)/4; /* skip impossible right 0 solution point. */
/* calculate the first 0 solution point. */ 
while(i < m && a != 0)

{
b = (z[i]+z[m])/2; 
for(j = 0; j < n; ++j) { 
resD][0] = x[j][0]; 
resQ][l] = xD][l]-b*xO][0];

}
a = rgave(res,n); 
if(a<0) 

while(z[m] > b) m--; 
if(a >0) 

while(z[i] < b) i++;
}

R = m; /* known closest nonzero solution right point. */ 
while( i < m) { /^bisection method to get the left solution point */ 
b = (z[i]+z[m])/2; 

for(j = 0; j<  n; ++j){ 
res[j][0] = x[j][0]; 
res0 ][l] = x0 ][l] • b*x[j][0];

}
a = rgave(res,n);

if(a <= 0) {
while(z[m] > b) 

m~;
}

else while(z[i] < b)
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i++;
}

I = m; /* m is the left solution point. */
M = min(m+2*n,R); /* M is the possible closest right nonzero solution 

point,we assume that the width of solution 
interval is less than 2*n here. */

/* bisection method to get the right solution point. */ 
while(I < M) { 

b = (z[I]+ z[M])/2; 
for(j = 0; j < n; ++j) 

resU][l] = xG ][l]-xO ][0]*b ; 
a = rgave(res,n); 

if(a >= 0) {
while(z[l] < b)

I++;
}

else while(z[M] > b)
M -;

}
free(z);
free(res);
return (z[m]+z[M])/2;

double rgmean(double* x, int n)
{

int i,m, k[4]; 
double a = 0; 
m = n;
Qsort(x,&m);
k[0] = (n+l)/3; k[l] = (n+3)/3; k[2] = (2*n+2)/3; k[3] = (2*n+4)/3; 
for(i = 0; i < 4; ++i) 
a = a + (x[—k[i]]/4); 
return a;

}

/* do rg generalized linear regression. */
double* glim(double** x,double *y,double* b,int* n)
{
int i,iij,k,m=0, cn t=  1;
double **res,a,aa^r,*ress,*bl,*bO;
double **w,*sw,**sqw,*z,**xstar,*zstar,
res = (double **)malloc((n[0])*sizeof(double*));
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sqw = (double **)malloc((n[0])*sizeof(double*)); 
w= (double **)malloc((n[0])*sizeof(double*)); 
sw= (double *)raalloc((n[0])*sizeof(double)); 
z= (double *)malloc((n[0])*sizeof(double)); 
zstar= (double *)malloc((n[0])*sizeof(double)); 
xstar= (double **)malloc((n[0])*sizeof(double*)); 
ress=(double *)malloc((n[0])*sizeof(double)); 
b 1 =(double*)malloc(n[ 1 ]*sizeof(double)); 
bO=(double*)malloc(n[l]*sizeof(double)); 

for(i=0 ;i<n[ 1 ] ;++i) { 
bl[i]=b[i];
}
while( cut && ( m < 1000)) { 
ii=0;
sw=(double1,,)malloc((n[0])*sizeof(double));
for(i=0;i<n[ 1 ] ;-H-i) {
b[i]=bl[i];
}
for(i=0; i<n[0];++i) {

w[i]=(double*)malloc((n[0])*sizeof( double)); 
sqw[i]=(double*)malloc((n[0])*sizeof(double));

xstar[i]=(double*)malloc((n[l JJ^sizeo^double)); 
res[i]=(double*)malloc(2*sizeof(double));
}
for(i=0;i<n[0] ;++i) { 

sw[i]=0.0 ;

}

for(i = 0; i < n[0]; ++i){ 
sw[i]=0.0;
for(j=0; j  < n [l];+ + j) { 
sw[i]=sw[i]+x[i][j]*b[j];
}
w[i][i]=l./sw(i];
sqw[i][i]=sqrt(w[i][i]);
}

for(i=0; i<n[0]; ++i){ 
z[i]=y[i];
zstar[i]=sqw[i] [i] *z[i];
/*res[i] [ 1 ]=zstar[i] ;*/
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for(j=0;j<n[l];++j){

xstar[i][j] = sqw[i][i]*x[i][j]; /*at step m-1 */

/*res[i][l] = res[i][l] - xster[i][j]*b(j];*/
}
}

for(i=0;i<n[ 1 ] ;++i) { 
bO[i]=b[i];
printf("\nbO [%d]=%lf\n" ,i,bO [i]);
}
b = gsrg(xstar,zstar,b,n); 
for(i=0;i<n[ 1 ] ;++i) {

b l [i]=b[i]; /* at step m */
}
printf("\tslope estimation:\n"); 
for(i=0;i<n[l];-H-i){ 
printf("\tb 1 [%d]=%lf\n",i,b 1 [i]);
}
ii = 0;

for(i=0;i<n[0] ;++i) { 
sw[i]=0.0;
}
for(i=0;i<n[0];-H-i){
for(j=0;j<n[l];++j){
sw[i]+=x[i][j]*bl[j];
}
w[i][i]=17sw[i];
sqw[i][i]=sqrt(w[i][i]);
}

for(i=0; i<n[0];-H-i){ 
z[i]=y[i];
zstar[i]=sqw[i] [i]*z[i]; 
res[i][l]=zstar[i]; 
for(j=0y<n[l];++j){ 
xstar[i][j]=sqw[i] [i]*x[i] [j ];
}

for(j=0y<n[0];-i-+j){
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res[j] [0]=xstar[j] [ii];
}

k = 0; 
cnt = 0;
while(k < n [ l ] ) { 
for(j = 0; j < n[0]; ++j){ 
res[j][0] = xstar[j][k];

}
a=rgave(res,n[0]);

printf("\nrgave(xstar,res)=%lf\n",a); 
printf("b 1 [%d]=%lf,b0 [%d]=% Ifvn” ,k,b 1 [k],k,b0[k]);

aa=bl[k]-b0[k]; 
if(aa < 0.0) aa=-aa;
printf("\nerror = | b(ith step)-b(i-l th step) |=%lf\n",aa);

if(aa >=0.0000001) 
cnt=l;

k++;

}
m++;
printf("\n\nthe %d step of iteration:\n\n\n",m);

}

free(res);
free(w);
free(sw);
free(sqw);
free(z);
return b;
}

double* gsrg(double** x,double *y,double * b,int* n) 
{
int i,iij\k^n=0,cnt=l; 
double **res,a;

res=(double **)mailoc((n[0])*sizeof(double*)); 
for(i=0 ;i<n[0] ;++i)
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res[i]=(double* )malloc(2 * sizeof(double));
for(i=0 ;i<n[0] ;++i) {
res[i][l]=y[i];
forO'=Oy<n[l];++j){
res[i] [ 1 j=res[i] [ 1 ]-x[i] [j] *b[j];
}
}
while(cnt && (m<50)) { 
ii=0;
while(ii<n[l] && cnt){ 
for(j=0;j <n[ 1 ] ;++j) { 
res[j][l]=resjj][l] + xO][ii]*b[ii]; 
res(j][0]=x[j][ii];
}
b[ii]=rgrg(res,n[0]);
for(j=0y<n[0];++j){
resO][l]=res[j][l]-x(j][ii]*b[ii];
}
k=0:
cnt=0;
while(k<n[l] && (c n t=  0) )  { 
if(k != ii) { 
for(j=0y<n[0];++j) { 
res[j][0]=x[j][k];
}
a=rgave(res,n[0]);
if(a)
cnt++:
}
k++;
}
ii++;
}
m-H-;
}
free(res); 
return b;
}

void clear_screen(void){ 
system("clear");

}

void glim_calculationO
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{
int i j ,  n[2],cc j  I j 2,mi,ma; 
double **x,**xi,*res,*ress,*b;
/♦double **xstar,*zstar;*/
FILE ♦xfp; 
char filename[20];
printf("Enter the data file name for matrix x and vector y:\n\n"); 
scanf("%s", filename); 
xfp = fopen(filename,"r''); 
if(xfp =  NULL){ 

printf("Error in opening: %s\n",filename);
exit(l);

}
fscanf(xfp."%d",&n[0]); 
fscanf(xffc>,"%d",&n[ 1 ]); 
b = (double*)malloc(n[l]*sizeof(double)); 
for(i =0; i < n[l]; ++i) 

fscanf(xfp,"%lf',&b[i]);

x = (double**)malloc(n[0]*sizeof(double*));

xi = (double**)malloc(n[0]*sizeof(double*)); 
res = (double*)malloc(n[0]*sizeof(double)); 
ress = (double* )malloc(n[0]*sizeof(double));

for(i = 0; i < n[0]; -H-i){
x[i] = (double*)malloc(n[l]*sizeof(double));
for(i = 0; j  < n[l];+ + j)
fscanf(xfp ,"%lf',&x[i][j]);
fscanf(xfy, "% lf’,&ress[i]);
res[i] = ress[i];

printf ("filename is: %s\n\n",filename);

b = glim(x,ress,b,n);
printf ("\tslope estimation:\n");
for(i = 0; i < n[l]; ++i)
printf("\t b[%d] = %lf\n",i,b[i]);
fclose(xfp);
free(x);
free(res);
free(b);

}
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Qsort(double *x,int* n)
{
char done;
int ip,lv[16],iv[l6],iup,lp; 
register double y;

lv[0] = 0; 
iv[0] = *n - 1; 
ip = 0;

while(ip >= 0)
{if((iv[ip] - lv[ip]) < 1)

{ip-;
continue;}

Ip = lv[ip] - 1; 
iup = iv[ip]; 
y = x[iupj;

for(;;)
{if((iup - Ip) < 2)break; 
if(x[++lp] < y)continue; 
x[iup] = x[lp];

for(;;)
{if((iup— - Ip) < 2)break; 
if(x[iup] >= y)continue; 
x[lp] = x[iup]; 
break;}

}

x[iup] = y;

if((iup - lv[ip]) < (iv[ip] - iup)) 
{lv[ip + I] = lv[ip]; 
iv[ip + 1] = iup - 1; 
iv[ip] = i u p +  1;} 

else
{lv[ip+ 1] = iup+ 1; 
iv[ip + I] = iv[ip]; 
iv[ip] = iup - 1; }
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ip-H-;
}

}

Qsortpos(Data *x,int* n,int options)
{
char done;
int ip,lv[ 16],iv[ 16],iup,lp;
Datay;

lv[0] = 0; 
iv[0] = *n - 1; 
ip = 0;

while(ip >= 0)
{if((iv[ip] - lv[ip]) < I)

{ip--;
continue;}

lp = lv[ip] - 1; 
iup = iv[ipj; 
y = x[iup];

for(;;)
{if((iup - Ip) < 2)break;

/* using positive criteria for comparing. *1 
switch(options)
{
case 1:

if(x[++Ip].L < y.L || (x[lp].L =  y.L && x[lp].R < y.R) 
||((x[lp].L =  y.L) && (x[lp].R =  y.R) && (x[lp].n < y.n))) 
continue; 

x[iup] = x[lp]; 
break; 

case 2 :
if(x[++lp].R < y.R || (x[lp].R =  y.R && x[lp].L < y.L) 

||((x[lp].R =  y.R) && (x[lp].L =  y.L) && (x[lp].n < y.n))) 
continue; 

x[iup] = x[lp]; 
break; 

case 3:
if(x[++lp].n < y.n)continue;
x[iup] = x[lp];
break;
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default:
printf("The choice o f options is just 1,2 or 3\n"); 

exit(l);
}
for(;;)

{if((iup~ - Ip) < 2)break;

/*using positive criteria for comparing. */ 
switch(options)

{
case 1:

if(x[iup].L > y.L || (x[iup].L =  y.L && x[iup].R > y.R) 
||((x[iup].L =  y.L) && (x[iup].R —  y.R) && (x[iup].n >

y-n)))
continue; 

x[lp] = x[iup]; 
break; 

case 2:
if(x[iup].R > y.R || (x[iup].R =  y.R && x[iup].L > y.L) 
||((x[iup].R =  y.R) && (x[iup].L =  y.L) && (x[iup].n >

y-n)))
continue; 

x[lp] = x[iup]; 
break; 

case 3: 
if(x[iup].n > y.n)continue; 
x[lp] = x[iup]; 
break;

}
break;}

}

x[iup] = y;

if((iup - lv[ip]) < (iv[ip] - iup))
{lv[ip + 1] = lv[ip]; 
iv[ip + 1] = iup - 1; 
lvjip] = iup + 1;}  

else
{lv[ip + I] = iup + 1; 
iv[ip + I] = iv[ip]; 
iv[ip] = iup - 1;}

ip++;
}
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}

Qsortneg(Data *x,int* n,int options)
{
char done;
int ip,lv[l 6],iv[ 16],iup,Ip;
Datay;

0

lv[0] = 0; 
iv[0] = *n - 1; 
ip = 0;

while(ip >= 0)
{if((iv[ip] - lv[ip]) < I)

{ip-;
continue;}

Ip = lv[ip] - 1; 
iup = iv[ip]; 
y = x[iupj;

for(;;)
{if((iup - lp) < 2)break;

/♦using negative criteria for comparing. */ 
switch(options)
{
case I:
if(x[++lp].L < y.L || (x[lp].L =  y.L && x[lp].R > y.R) 

||((x[lp].L =  y.L) && (x[lp].R =  y.R) && (x[lp].n > y.n))) 
continue; 

x[iup] = x[lp]; 
break; 

case 2:
if(x[++lp].R < y.R || (x[lp].R =  y.R && x[lp].L > y.L) 

||((x[lp].R =  y.R) && (x[lp].L =  y.L) && (x[lp].n > y.n))) 
continue; 

x[iup] = x[lp]; 
break; 
case 3:
if(x[++Ip].n < y.n)continue;
x[iup] = x[lp];
break;

}
for(;;)
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{if((iup~ - lp) < 2)break;

/*using negative criteria for comparing. */ 
switch(options)
{
case 1:

if(x[iup].L > y.L || (x[iup].L =  y.L && x[iup].R < y.R) 
||((x[iup].L =  y.L) && (x[iup].R =  y.R) && (x[iup].n <

yn)))
continue; 

x[lp] = x[iup]; 
break; 

case 2 :
if(x[iup].R > y.R || (x[iup].R =  y.R && x[iup].L < y.L) 
||((x[iup].R =  y.R) && (x[iup].L =  y.L) && (x[iup].n <

y-n)))
continue; 
x[lp] = x[iup]; 
break; 

case 3:
if(x[iup].n > y.n)continue;
x[lp] = x[iupj;
break;

}
break;}

}

x[iup] = y;

if((iup - lv[ip]) < (iv[ip] - iup))
{lv[ip + 1] = lv[ip]; 
iv[ip + 1 ] = iup - 1; 
lv[ip] = iup + 1;} 

else
{lv[ip + 1] = iup + 1; 
iv[ip + 1] = iv[ip]; 
iv[ip] =iup - 1; )

ip++;
}

}

Header File: Glim.h
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#include<stdio.h>
#include<raath.h> 
double exp(double x); 
struct data { 

double L; 
double R; 
int n;

};
typedef struct data Data;
Qsort(double *x,int* n);
Qsortpos(Data *x,int* n, int i);
Qsortneg(Data *x,int* n,int i);

double* logis(double** x,double* y,double* b,double* bb,int* n);
double* nonlin(double** x,double* y,double* b,double* bb,int* n);
double rgpos(double** x,int n);
double rgpos(double** x,int n);
double rgave(double** x, int n);
double rgrg(double ** x, int n);
double* glim(double** x,double *y,double * b,int* n);
double* gsrg(double** x,double *y,double *b,int* n);
void rgrg_calculationO;
void glim_calculation();
void log_calculationO;
void nonlin_calculation();

void clear_screen(void); 
void header(void);
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Appendix 2. Computational Results and Iterative Steps using rtd

152
0.55 0.40 /^initial value */
0.0005 0.0005 /^iterative step length */
-7 10 0 
-6 6 1 
-5 5 1 
-4 12 3 
-3 13 5 
-2 10 I 
-1 20 9
0 18 14
1 15 11
2 13 9
3 13 11
4 11 10
5 9 9
6 5 5
7 15 15
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* This C program uses subroutines.
* The C program is used for Generalized Linear Model, Logistic
* Regression and Nonlinear Model with by iteration.

* First choose which calculation you want to execute, then input
* the data from a data file.
* Department o f Mathematical Sciences
* University o f Montana
* Missoula, MT 59812 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Choose an operation by number.

********** j Glimrg(x,y)—Poisson Distribution************ 
**********2. Logirg(x,y)—Logistic Regression************* 
**********3 Nonirg(x,y)—Nonlinear Regression************ 
****♦***♦*4. Linerg(x,y)—Linear Regression*************** 
**********5. Multrg(x,y)—Multiple Regression*************

Qiijt **************************

2
Enter the data file name for matrix x and vecter y: 

log2
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filename i s : log2

slope estimation:
bl[0]=0.550500 
b I [11=0.400500

rgave(x,res)=0.285714 
rgave(e,|sort(res)|)=0.142857

the 1 step of iteration:

slope estimation:
bl [01=0.551000 
b l [ l  ]=0.401000

rgave(x,res)=0.285714 
rgave(e,|sort(res)|)=0.142857

the 2 step of iteration: 
slope estimation:

b l [0]=0.551500 
bl [l]=0.401500

rgave(x,res)=0.285714 
rgave(e,|sort(res)|)=0.142857

the 3 step o f iteration: 
slope estimation:

b I [0J=0.552000 
b l [11=0.402000

rgave(x,res)=0.285714 
rgave(e,|sort(res)|)=0.142857

the 4 step o f iteration: 
slope estimation:

b l [01=0.552500 
b l [1]=0.402500

rgave(x,res)=0.285714 
rgave(e,|sort(res)|)=0.142857

the 5 step of iteration: 
slope estimation:
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bl[0]=0.553000
bl[l]=0.403000

rgave(x,res)=0.142857 
rgave(e,|sort(res)|)=0.142857

the 6 step o f iteration: 
slope estimation:

bl[0]=0.553500
bl[l]=0.403500

rgave(x,res)=0.142857 
rgave(e,isort(res)|)=0.142857

the 7 step o f iteration: 
slope estimation:

bl[0]=0.554000 
b l [ l  ]=0.404000

rgave(x,res)=0.142857 
rgave(e,[sort(res)|)=0.142857

the 8 step o f iteration: 
slope estimation:

bl [0]=0.554500 
b l [1]=0.404500

rgave(x,res)=0.142857 
rgave(e,|sort(res)|)=0.142857

the 9 step o f iteration: 
slope estimation:

b l [0]=0.555000 
b l [1]=0.405000

rgave(x,res)=0.142857 
rgave(e,|sort(res)|)=0.142857

the 10 step o f iteration: 
slope estimation:

b l [01=0.555500 
b l [11=0.405500

rgave(x,res)=0.142857 
rgave(e,|sort(res)|)=0.142857
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the 35 step o f iteration: 
slope estimation:

bl[0]=0.568000
bl[l]=0.418000

rgave(x,res)=0.000000 
rgave(e,|sort(res)j)=0.142857

the 36 step of iteration: 
slope estimation:

bl[0]=0.568500
bl[l]=0.4l8500

rgave(x,res)=0.000000 
rgave(e,|sort(res)|)=0.142857

the 37 step o f iteration: 
slope estimation:

bl[0]=0.569000
bl[l]=0.4l9000

rgave(x,res)=0.000000 
rgave(e,|sort(res)|)=0.142857

the 38 step o f iteration: 
slope estimation:

bl[0]=0.569500 
b 1 [ 1 ]=0.419500

rgave(x,res)=0.000000 
rgave(e,|sort(res)|)=0. 142857

the 39 step o f iteration: 
slope estimation:

bl[0]=0.570000 
b l [I]=0.420000

rgave(x,res)=0.000000 
rgave(e,|sort(res)|)=0.142857

the 40 step o f iteration: 
slope estimation:

b l [0]=0.570500 
b l [1]=0.420500
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rgave(x,res)=0.000000 
rgave(e,|sort(res)|)=0.142857

the 41 step o f iteration: 
slope estimation:

bl[0]=0.571000
bl[l]=0.42l000

rgave(x,res)=0 .000000 
rgave(e,|sort(res)|)=0.142857

the 42 step o f iteration: 
slope estimation:

bl[0]=0.571500
bl[l]=0.42l500

rgave(x,res)=0.000000 
rgave(e,|sort(res)|)=0.142857

the 43 step o f iteration: 
slope estimation:

bl[0]=0.572000
bl[l]=0.422000

rgave(x,res)=0 .000000 
rgave(e,|sort(res)|)=0.000000

the 44 step o f iteration: 
slope estimation:

b[0] = 0.572000 
b[l] = 0.422000
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Appendix 3. Guide to ACF/PACF Plots

The plots shown here are those of pure or theoretical ARIMA processes. Here are some 

general guidelines for identifying the process(see SPSS Trends):

(1) Nonstationary time series have an ACF that remains significant for half a dozen or 

more lags, rather than quickly declining to zero. We must difference such a time series 

until it is stationary before we can identify the process.

(2) Autoregressive processes have an exponentially declining ACF and spikes in the first 

one or more lags o f the PACF. The number of spikes indicates the order of the 

autoregression.

(3) Moving average processes have spikes in the first one or more lags of the ACF and an 

exponentially declining PACF. The number of spikes indicates the order of the moving 

average.

(4) Mixed (ARMA) processes typically show exponentially declines in both the ACF and 

the PACF.
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Appendix 4. S-plus Output for ARIMA Model Estimation

Computation for the l11 outlier:

> Data 
Date Cost

1 13515 23351543
2 13546 23397885
3 13574 25184900
4 13605 24075128
5 13635 24525551
6 13666 23695725
7 13696 23065387
8 13727 22416962
9 13758 24351172
10 13788 25111104
11 13819 23873198
12 13849 26747925
13 13880 24385326
14 13911 22915578
15 13939 26967128
16 13970 24575543
17 14000 23981235
18 14031 26514473
19 14061 25019793
20 14092 25453219
21 14123 24093069
22 14153 24606648
23 14184 25895048
24 14214 26482519
25 14245 26261222
26 14276 24789612
27 14304 27145030
28 14335 26845326
29 14365 25618232
30 14396 26640631
31 14426 27146923
32 14457 26172580
33 14488 26246558
34 14518 26022770
35 14549 29703957
36 14579 32942675
37 14610 27336754
38 14641 28058397
39 14670 28618759
40 14701 28379100
41 14731 29204547
42 14762 30065538
43 14792 29078126
44 14823 31302699
45 14854 29705168
46 14884 32879520
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47 14915 30744989
48 14945 33428391
49 14976 33922814
50 15007 31705570
51 15035 35421359
52 15066 39493265
53 15096 34053766

> Y<-Data[,2]
> tsmatrix<-tsmatrix(Y,lag(Y),diff(Y))
> diffY <-tsmatrix[,3]
>diffY
> tsmatrix I <-tsrnatrix(difFY,lag(diffY))
> YTI <-tsmatrix l[,2]
> YT<-tsmatrix 1 [, 1 ]
> YT 1 <-matrix( YT 1)

> gsrgc(YTl,YT)
S intercept:
[1] 175216.9

Sslopes:
[1] -0.4060088

Com putation for the 2ad outlier:

> Data 
Date Cost

1 13515 23351543
2 13546 23397885
3 13574 25184900
4 13605 24075128
5 13635 24525551
6 13666 23695725
7 13696 23065387
8 13727 22416962
9 13758 24351172
10 13788 25111104
11 13819 23873198
12 13849 26747925
13 13880 24385326
14 13911 22915578
15 13939 26967128
16 13970 24575543
17 14000 23981235
18 14031 26514473
19 14061 25019793
20 14092 25453219
21 14123 24093069
22 14153 24606648
23 14184 25895048
24 14214 26482519
25 14245 26261222
26 14276 24789612
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27 14304 27145030
28 14335 26845326
29 14365 25618232
30 14396 26640631
31 14426 27146923
32 14457 26172580
33 14488 26246558
34 14518 26022770
35 14549 29703957
36 14579 32942675
37 14610 27336754
38 14641 28058397
39 14670 28618759
40 14701 28379100
41 14731 29204547
42 14762 30065538
43 14792 29078126
44 14823 31302699
45 14854 29705168
46 14884 32879520
47 14915 30744989
48 14945 33428391
49 14976 33922814
50 15007 31705570
51 15035 35421359
52 15066 39493265
53 15096 34053766

> Y<-Data[,2]
> tsmatrix<-tsmatrix(Y,lag(Y),difffY))
> diffY<-tsmatrix[,3]
> difFY
> tsmatrix l<-tsmatrix(diffY,lag(diffY))
> YTl<-tsmatrixl[,2]
> YT<-tsm atrixl[,l]
> YTK-matrix(YTl)

> gsrgc(YTl,YT)
Sintercept:
[1] 175216.9

Sslopes:
[I] -0.4060088

> lsfit( YT, YT I )Scoef
Y1

Intercept 3.516350e+005 
X I -4.508505e-001

correlation:
Intercept XI 

Intercept 1.0000000 -0.1603314 
XI -0.1603314 1.0000000
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