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ABSTRACT
McCune, Bruce, K.A. March, 1979 
B)tanf
Comparative ecology of structural groups: compositional
patterns in the Swan Valley forests, Montana
Director: James R. Habeck

The compositional patterns of structural groups in the 
Swan Valley are very weakly correlated* Evidence in 
support of this was derived from 1) correlations of 
dissimilarity matrices, 2) correlations of stand placement 
on ordinational axes, and 3) comparison of stand groups 
defined by cluster analysis* dhile one can roughly predict 
tie composition of one layer based upon the composition of 
another layer, different structural groups do not change
composition across environmental gradients at the same 
"rate" or in the same pattern*

Several reasons for this poor correlation are suggested* 
Tie various structural groups are controlled by different 
sets of environmental factors* Rates of biotic response to 
disturbance differ between structural groups* Essentially 
random historical factors probably weaken compositional 
parallels between structural groups*

Species richness was greatest in the bryoid layer, 
decreasing sequentially in higher strata. Species 
equitability was roughly the same for all structural
groups* Beta diversity paralleled species richness for all 
structural groups except for epiphytes* Epiphytes had a 
high alpha diversity but low beta diversity* Differences 
in species diversity between structural groups were related 
to differences in the degree of environmental 
differentiation at the levels of each structural group* 

independently defined types for structural groups were 
not related by either a simple hierarchy or a one-to-one 
correspondence* Groups defined by cluster analysis did not 
correspond strongly with a regional system of habitat
types*

Hryophytes and lichens are of questionable utility as 
indicator species for purposes other than air pollution 
indication* The statement that hryophytes and lichens are 
more sensitive (narrower tolerance ranges) to their 
environment than vascular plants is apparently without
substantial support except with respect to air pollution*

11
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CHAPTER I 
INTRODUCTION

A. The existence of compositional integrity between 
structural groups is an implicit assumption of many 
vegetation studies. Plants of one layer are generally
considered to be faithfully associated with other layers, 
for example, we often think of dougias fir in western 
Montana as having certain characteristic shrub and herb 
associates, the assemblage of species oelng determined for 
the most part by the environmental characteristics of the 
site. While this is certainly true in part, I believe that 
this line of reasoning has been invoked to an unrealistic 
degree. This research was directed towards two problems 
that result from overextending such deterministic 
explanations for observed patterns in vegetation.

1. Compositions of forest layers are not
necessarily correlated with each other within the
hyperspace of environmental gradients.

2. A given site may he capable of supporting 
different communities of shade tolerant plants depending 
upon the history of disturbance and dispersal events.

The first problem allowed a fairly rigorous approach. 
Howevar, the second problem arose in ray raind as a
consequence of my research on the first, and therefore, is 

treated here in only an intuitive manner. Hopefully the 
problem can be more rigorously attacked in the future.

3. The location chosen for this study was the Swan
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Valley in northwestern Montana. This choice was made for 
two main reasons:

1. 1 thorough study of the upland vascular
vegetation of the area by Antas (1977) laid a solid
groundwork for further research. His work provided 
valuable insights into the important factors controlling 

compositional patterns and community dynamics*
2, The upland forests on the valley floor and 

lower slopes have a low enougd beta diversity to allow 
meaningful approach to the objectives of this study.

C. It was also of interest to me to compare 
descriptive community parameters as applied to structural 
groups. Diversity parameters included were species 
richness, equitability, and beta diversity.

D. An understanding of communities is necessarily 
dependent upon an understanding of the ecological behavior 
of species. Thus, as far as was possible, I have attempted 
to add to our knowledge of the ecology of the macrophytic 

species occurring in the Swan Valley, particularly the 
bryophytes and lichens. At the same time, 1 attempt to 

relate the distribution of bryophytes and lichens to that 

of vascular plants.
S. Bryophytes and lichens are frequently considered 

to be sensitive Indicators of environment (Lambert and 
Maycock, 1968; Stringer and Stringer, 1974; Shacklette,
1961; Scott, 1970; Phillips, 19bl; Jesberger, 1973;
Cantlon, 1953; Culberson, 1955). This has been shown
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repeatedly in the numerous studies relating air pollution 
to the distribution of lichens and bryophytes (Ferry fit 
âl»r 1973/ Hawksworth and Rose, 1976). However, it is 
unclear whether or not species in these groups have 
narrower tolerances along other environmental gradients. I 
approached this problem by comparing estimates of beta 
diversity of structural groups in the Swan Valley forests.

F. Studies directed at the above objective allow the 
approach of another objective: evaluation of structural
groups, as well as individual species, as to their 
usefulness in defining community types and assessment of 
their value as indicator species.
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CHAPTER II 
LITERATURE REVIEW 

Comparing the ecology of structural groups has been 
part of quite a feu vegetation studies in North America. A 
comparison of compositional patterns has been discussed by 
Phillips (1951), Whittaker (I960), Lambert and Maycock 
(1968), Hoffman and Kazmierski (1969), and La Roi and 
Stringer (1976). Although a consensus does not exist, the 
strength of compositional parallels between structural 
groups has been seriously questioned (Sams, 1918? Gleason 
1926, 1939? Cain, 1936? Lippmaa, 1939? Whittaker, 1960? 
McIntosh and Hurley, 1964? Daubenraire, 1968? Hoffman and 
Kazmierski, 1969). Their doubts are opposed to the 
viewpoint of communities as having compositional 
integrity— an organisaal or quasi-organismal nature of 
plant communities (Clements, 1936? Tansley, 1935). I 
attempted to approach the problem quantitatively through 
statistical comparisons of similarity indexes. Comparisons 
were made between all macrophytic groups.

Diversity relations of structural groups have been 

compared by Whittaker (1956, 1960, 1965, 1970), La Rol

(1967), Auclair and Goff (1971), Zobel ei ai. (1976), and 
Ac huff and La Roi (1977). In general, diversity of 
structural groups is poorly correlated between groups. 

Previous North American studies have included discussion of 
the factors controlling diversity of forest structural 
groups, but in none of these studies have all the
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aacroDhyte groups been included.
Studies of interactions between structural groups are 

many —  too numerous to list here. Literature relevant to 
specific interactions will be brought out in the discussion 
be low.

Prior to a study by Antos (1977), the vegetation in 
the Swan Valley had been studied only superficially. His 
work identifies the important environmental gradients 
within the tolerance range of Aaies 9LâOdiS and discusses 
the dynamics of the vascular vegetation, geographical 
relationships, and management implications. Antos 
concluded that site moisture is the primary physical factor 
controlling community composition in the Swan Valley but 
that temperature sets the upper elevational limit for AUifiS 
gcgadia* He also proposed that high intensity replacement 
burns initiate the second major compositional trend. The 
nigh frequency of burns results in a mosaic of serai 
communities as the natural state of the vegetation. More 
of Antos' conclusions concerning the Swan Valley vegetation 
are included in the descrlotion of the study area. The 
literature review in Antos (1977) should be consulted for 

summaries of the observations of early visitors to the Swan 
Valley. He also included accounts of the relevant and more 
recent literature from nearby areas.

Probably the most important works that allow the 

reader to put the Swan Valley vegetation into a regional 

perspective are Antos (1977), Habeck (1967), Pfister aJ; al.
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(1977), and Ross and Hunter (19/6). This perspective is 
developed briefly in the description of the study area 
be low.

Most of the studies including bryophytes in the 
northern Rockies do not deal extensively with ecological 
relationships. Reports on bryophyte ecology in this area 
are limited to ecologically annotated lists (Hermann, 1969? 
Hong, 197b, 1977), and a few ecological studies (Cooke, 
1955? A. Steele, 1974, 1978; McCune, 1977), and
ecological notes in a regional flora (Lawton, 1971). Some 
liverwort specimens from the Swan Valley are cited by Hong 
(1968, 1975, 1977).

The lichens of the Swan Valley are poorly known 
taxononically, much less ecologically. Published floristic 
reports of lichens in Montana are mainly limited to 

scattered specimen citations in the literature- An early 
list of cryptogams from Montana included some lichens 
collected in the Swan Valley (Harris and Harris, 1904). 

Imshaug (1957) published keys and range maps of western 
alpine macrolichens, including two collecting sites in 

Montana. Geological studies including lichens in the 

northern Rockies are few (Flint, 1932? Cooke, 1955; 

Habect, 1963? Hamberg and Major, 1968? McCune, 1977).
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CHAPTEK til 
STUDY AREA

A comprehensive description ot the geography, climate, 
geology, and soils of the Swan Valley may be found in Antos 
(1977); these features of the area are briefly described 
be low.

Geology: Figure 1 depicts the major geographic
features of the Swan Valley and its surroundings. The 
valley was formed by high angle olocc faulting and was 
subsequently altered by continental glaciers in the valley 
and mountain glaciers in the Hisslan and Swan Ranges. The 
bedrock is Precambrian mudstones to sandstones showing 
various degrees of slight metamorphism. Much of the 
bedrock is calcareous although non-calcareous strata are 
common. Glacial till mantles the lower slopes and valley
floor. A sectional view and surface geological map of the
area are shown in figure 2.

Soils; Soils in the study area were derived primarily 
from partially calcareous glacial till and volcanic ash. 
Little profile development has occurred in these immature 

soils. Antos (1977) reports a typical soil profile under 

grand fir stands as having a 2-6 cm mor humus layer on the 
surface, an intermittent ash-gray A2 horizon less than 1 cm 

thick; a loose, low-density reddish brown andic (Bir)
horizon, usually 15-25 cm thick; and underlain by greyish 
rocky till sometimes showing some horizon development. The 
andic horizon is important in that it is relatively
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Figure 2. Geological features of the study area. (A) East-west 
section, (b ) Surface map (after Ross, et al., 1955).
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Figure 3. Monthly averages for temperature and precipitation
at Swan Lake Weather Station, elevation 960 m. 20 yr 
means from Antos (1977).
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njtriant rich, has a high water holding capacity, and a 
high cation exchange capacity. Antos (1977) also suggests 
that the soils influence the vegetation primarily through 
moisture effects, nutrient status being generally good as 
compared with many coniferous forest soils.

Climate: A north-south climatic gradient exists in
the Swan Valley. The north end of the valley is relatively 
moist, as a result of orographic effects and the position 
ot prevailing storm tracks. Sines the Mission Range crest 
falls from about 2700 m at the south end of the valley to 
H OC m in the north, the effectiveness of the range as a 
moisture barrier decreases northward. Mean annual 
precipitation at low elevations in the Swan Valley is 
roughly 75 cm, the winter months aid June being relatively 
wet, while rain in the summer months averages only 3-5 cm 
per month. Snow accumulation records do not exist for the 
Swan Valley lowlands. However, a snowpack over 1 m deep 
may be typical for much of the study area (Antos, 1977). 
Mean January and July temperatures are approximately -5%C 
and 17&C respectively. Figure 3 summarizes climatic data 

for Swan Lake (elevation, 950 m). Antos (1977) should be 

consulted for further climatic information on the Swan 
Valley.

Vegetation: The Swan Valley Is predominantly forested

with the exception of wetland and aquatic habitats. In 
mature forests, A&lsa a£ai3dl§ is the most abundant tree on 

modal upland sites. On drier sites Zseudofsuga Efioiifisii
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and EiûJi£ are more prominent while moist sites

frequently support ibuja Biicala or laiiaa brfixilaila- At 
higher elevations and In frost poctets dominance shifts to 

iaaiacaiea and eicsa aoaaimaooii. Llaua CBDlatla and 
La-CiX aCBldfiOlails are the most important serai trees. 
üïBUiua Icamulaidaa and E« tLlchaiacaa frequently dominate 
the river bottoms and other areas with easily accessible 
ground water. Elnus müülîcaia Is a frequent, although 
generally minor, component of moist forests at lower 
elevat ions.

Shrubs are a common understory component and 
occasionally reach dominance. Sail* SQüul&Ll^n^ SbfBëfdla 
&aaad&a&i&f and àCâL aiabfum are important components of 
young stands. ïacciûiua aiabuiâLS increases in importance 
in dry old stands. Old stands on moist sites are conducive 

to daazls&ia I&ixuglxiaa* Basa gymDasaxea, Seixaaa 
BîluilfaJLiâ/ Eacbislima myxalDltea, and alabcum occur
in nearly all stands although the first two become 
relatively infrequent in wetter stands.

Herbs vary from nearly absent to abundant in the Swan 

Valley forests. Tightly closed canopies or dense shrub 

layers reduce herb cover greatly. Considerable diversity 

and variation exists in the herb layer. Lâ&üStQaulQQ 
Blcaiat, Ciiolaaia uolliaxa, aisincyi bBBk^xi, flBady&xa 
Biianaltaiia, several Eyc&ia species, saiiiâiiiQa ataiiata, 

Vioia OfbiCUlala, and aaxoebtiium taoaa are frequent 
mambers of the herb layer.
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r he moss layer is highly variable in both total cover 

acid composition. &cacb%lbSCium species, RbXlldladfilBhUS 
tdgystiya, Sbylidiaesia isüuala, lo iiii sBloylaaum, âuiia 
sâ Ddbaiail, Eieuraziwm scbifibarlr and QlciaDus ssagaclyo 
are most treguent. The large toliose lichens £fiJliflûX5 
CiQîQâ and R. IfiUCûablabîâ are often present in this 
layer.

Epiphytes are typically well developed in all but the 
youngest stands. Lichens predominate in this structural 
group although the bryophytes BiCEaoym laillicya and 

DUicbüflimym are common in wetter stands. In 
addition, epiphytic QiîbflXticbUîD species are found in 
deciduous riparian communities. Species of Brvoria# 
àiyglBTia, ï%ES3%mDiat and RaCBSllSRsia as well as 
£lall54Dalia glawca and Carmeiia gylcala are generally the 
most abundant components of this structural group*

The Swan Valley is interesting phytogeographically as 
many species associated with moist Pacific air approach 

their eastward range limit in the area (&g. Ihuia Plicata, 

gfaadia, laxus biyyiiaiia, and layga lislëcoBb%ila). 
«ni le species with west coast affinities are well 
represented, boreal elements also make a significant 
contribution to the flora (Habeck, 1967).

àQtb£ûE.aafiûiS. ialluaacas: Gentle terrain in the Swan
Valley and good growth of trees have promoted intensive 
logging of the area. Much of the old growth timber has 
already been removed. Other anthropogenic Influences are
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relatively minor except for fire suppression. Records of 
early visitors to the Swan Valley indicate that fire 
contributed significantly to the vegetation mosaic. The 
impact of fire suppression is not clear; loss of habitat 
for serai species may occur, but clearcuts may offset to a 
degree the loss of habitat incurred by fire suppression.
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CHAPTER IV 
METHODS

A. Composition sampling: From tlie b6 stands selected
by Antos for his study (1977), I chose 42 for further work. 
Tne stands were chosen In Antos' study to represent the 
range of communities and environmental conditions in which 
AGifS fllâDdlS is found in the Swan Valley. Only stands 
free from direct human influences were included. Cover 
data for vascular species were obtained by Antes, while I 
revisited his stands, sampling epiphytes and the moss

layer.
Antos outlined his sampling procedure as follows:
A

each
understory species 
following classes 
after Dauhenmire 
2=5-25%, 3=25-50%, 
species was in the

375 square meter circular plot was laid out in
stand. The canopy coverages of each vascular, 

in the plot were recorded by the
(Pfister al. 1974, as modified 

1959): T=0-1% coverage, 1=1-5%,
4 = 50-75%, 5=75-95%, 6=95-100%, if a 
stand, but not in the plot, a 

was recorded. For tree species in the plot, canopy 
coverage classes were recorded separately for each of 
the three diameter size classes (<10 cm d.b.h., 10-30 
cm d.b.h., and >30 cm d.b.h.) using the same system.
In addition, all trees in the plot were tallied by 5 
cm diameter intervals. Trees less than 1.4 m tall
were counted in the entire 375 square meter plot.

fJsually a number of trees were cored to obtain 
stand age as well as the ages of smaller trees in the 
understory. In general, at least oie individual of 
each species in the overstory and various sized
individuals of understory trees (especially grand fir) 
were bored. Grand firs too small to core were cut at 
the base to ootain age. In all cases the increment
cores were taken as close to the ground level as
feasible. The diameters and heights of all trees 
sampled for age determination were recorded.

Along with these quantitative vegetational
characteristics other attributes of the stand were 
noted, such as the amount of insect damage and dwarf 
mistletoe infestation, extent of wildlife browsing and 
trails, evidence of past fires, and degree of 
windthrow. The physical parameters of the site such 
as elevation, slope aspect and inclination.
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topographie position, exact location, and other 
physiographic information that seemed relevant were 
recorded. Only very cursory examination was made of 
the soils in the plots.

In 1^77, two years after the vascular plant data was 
gathered/ I visited the plots, sampling epiphytes and the 
moss layer, and measuring percent canopy cover 
photographically. Figure 4 shows the sampling arrangement 
tor each plot, as explained in the text below.

The moss layer was sampled with approximately 100, 10 x 
30 cm quadrats arranged at regular intervals along three 
transects through the original circular plot. Cover of each 
spades in each quadrat was estimated to the nearest 0.5 
dm dccurrences with less than 0.25 drâ  were assigned a 
cover value of 0.1 dm2 or 0.2 dm2. Individual values were 
then combined to yield a single percent cover value for each 

species for each plot. Quadrats falling on rotten wood or 
rock ware excluded in order to standardize the samples as 
much as possible.

Accurate sampling of the moss layer was complicated by 
tha tendency for many species to have low, patchy cover. 
For this reason, the sample design was that of many 

dispersed small quadrats within each stand. For the most 
part, species in the moss layer in the Swan Valley were 
readily distinguishable in the field with the naked eye or 

haid lens. The single major exception to this was in the 

moss genus üLachythaclym* was kept separate

while all other species (S. iëib&cmilf B.
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Figure 4. Sampling arrangement used for all stands. The large 
circular plot was used by Antos (1977) for sampling 
vascular plants. Tick marks on the transects represent 
quadrat locations used for bryoid layer ampling. Photo 
points for determining canopy cover are indicated by 
"P". All trees within the circular plot were point- 
sampled for epiphytes.

.8m

5m

5m

90'
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saleGcasum, B. siackei, à* coilioum, and a* aibicaos)
were lumped in the data.

Quantification of epiphytes presents special problems. 
The bulk ot epiphyte biomass was attached to branches, the
trunk generally supporting a lichen community with lower 
biomass per unit area. However, only the trunk at breast 
height was used for epiphyte sampling in this study. The 
conplications and inaccuracies involved in attempting to 
quantify epiphytes on branches were deemed to be 
insurmountable in the interest of reasonably rapid sampling. 
Thus, it should be kept in mind throughout this study that 
the epiphyte sample may not be representative of that 
structural group as a whole.

Epiphytes were point-sampled oi trunks at breast height 
within each circular plot by wrapping a tape around each 
tree over 12 cm OBH. Hits were then recorded by species at 
2.5 c=a intervals along the tape. Most plots were sampled
with at least 1000 points although individual plots ranged
from 750 to 2000 points. Percent cover for each species in 
each stand was calculated as the proportion ot hits on a 
given species to the total number of points tor that stand. 

Trae species and diameters were recorded during point 
sanpling to allow evaluation of some aspects of 
host-epiphyte relations.

Crustose lichens were excluded from the sampling 

because of difficulties in field identification and 
evaluation of whether or not a lichen thailus was actually



19

present beneath a point* This problem arises from thalli 
wnich are often barely apparent or immersed within the hark, 
the lichen's presence evidenced onlf by scattered apothecla*

A single lichen genus, proved difficult in
sampling* This large and often confusing genus was 
recombined into the following groups far the purposes of 
this study: sorediate thalli with the exception of #*
fre wont i\ were comoined, most of the thalli being referable 

to B* fll5£SSCSD5« S* fCgmSQlll was combined with £* 
E5a:udûf=U5CfiS£fiD§ in another group* While a* is
readily distinguishable from all the others when it is 
sorediate, it usually was esorediate and often difficult to 
separate from &* in the field. Ü*
âÙ2££l£iâiâ and Ü* capilJaris were maintained as separate 
entities in the data as they are generally distinctive in 
ap? earance.

Replicate samples of the bryoid and epiphyte groups 
were taken for five stands, using tie same plot centers, but 

orienting the transect axes at 45 degrees to the first 
sample* Replicates were made between one and two months 

after the first sample was taken. Dissimilarity between 

replicate samples was rather high, averaging 38% for 
epiphytes and 32% for the bryoid layer. Roth within-plot 
inhomogeneities and sampling error contributed to this 

dissimilarity between replicate samples.
Canopy density was measured photographically using five 

photo points per stand as Illustrated in Figure 4. High



20

spaed 35 ff.m black and white film was used for the most part# 
setting the exposure to maximize depth ot field. Exposures 
were made by holding the camera at ground level and pointing 
tha 28 mm lens vertically. After processing, the negatives 
were projected by half-frames onto a 30 x 60 cm plane 
divided into .5 x 1 dm rectangles. The area covered by the 

canopy image in each rectangle was then estimated to the 
nearest 10%. The resulting 360 canopy cover values for each 
stand were then averaged to arrive at a single canopy cover 
value for each stand.

Nomenclature of vascular plants follows Hitchcock and 
Cronqulst (1973). Nomenclature of mosses follows Lawton
(1971) in part and Crum gt âi* (1973) in part (see Appendix 
A for a list of names with authorities). Nomenclature of 
liverworts follows Stotler and Crandall-Stotler (1977). 
Nomenclature of lichens follows Hale and Culberson (1970) 

except for the genera [l&lulacl&lia, EàLiaÜâ^
Ebizaciaca, and laDtbODaimgiia which follow, 

respectively, 8rodo and Hawksworth (197/), Bowler and Rundel 
(1977), fcsslinger (1977), Fsslinger (1978), Leuckert si ai*

(1976), and Hale (1974) (see Appendix B for a list of names 
with authorities).

Data analysis: Species were assigned to structural

groups for the purpose ot comparing the compositional 

patterns of those groups. 4ost spades were easily 
assignable to one of the groups as defined below, with the 
exception of those species intermediate in form between
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herbs and shrubs. Noody sub-shrubs (Qfitîifîjiis ££SâQS and 
SsiCAsa balUiilailA) were placed with tie herb group as were 
the smaller suffrutescent species (&g. Glbiaaühiia yabëiiala 
ani Liiaaaa bacaaiia).

The term "structural groups" Is frequently used In this 
report instead of the terms "layers" or "strata". The more 
general term was chosen because tha epiphytic communities 
did not have a planar form. The host of terms coined by 
various authors for community fractions Ceq.
"mi crocoenoses" - Korchagin (1964)/ "stratocoenoses"
Ballogh (195%)/ and "synusia" - 8raun-Blanquet (1928)3 were 
avoided because of ambiguities (üarkman, 1973) and certain 
connotations associated with those terms.

Trees were defined as species over 3 m tall at maturity 
and usually having a single woody trunk. Species usually 
having multiple woody stems or shorter single woody stems 
over I m tall at maturity were classified as shrubs. Herbs 
included all other rooted vascular plants. The bryoid layer 
was defined as the non-rooted ground surface layer including 
bryophytes and lichens. Those non-parasitic species growing 

on trees or shrubs are defined here as epiphytes. Tn the 

Swan Valley the epiphytes are primarily lichens with only a 
few bryophytes/ the reverse oeing true 1 or the bryoid layer. 

Further restrictions on these groups were imposed by the 
sampling methods (see above).

A stand dissimilarity matrix based on species cover was 

constructed for each structural group using the
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dissimilarity index ot 3ray and Curtis (1957). These 
matrices were then used to compare compositional patterns of 
the structural groups by 1) correlating elements of all 
matrix pairs, 2) correlating stand placement on polar 
ordinations (Bray and Curtis, 19b/) for each structural 
group, and 3) by comparing stand groups defined for each 
layer by agglomerative cluster analysis using the algorithm 
outlined in Mue I ler-Doraboi s (197 4).

Tde Bray-Curtis ordination technique using percent 
dissimilarity as the distance measure was chosen in 
preference to other ordination techniques. It has been 
consistently found to be the best ordination technique in 
comparative studies using simulated coerioclines (fCessell and 
Whittaker, 1976; Gauch and Whlttarer, 1972; Whittaker and 
Gauch, 1973).

The degree of internal association was calculated for 
the bryoid and epiphyte groups. Bnfortunateiy, similar data 
was not available for the other groups. The average percent 
similarity between replicate samples was used as a measure 
of internal association.

A Pearson product-moment correlation matrix was 

constructed for all scalar environmental variables measured 
and for cover of all species occurring in five or more 
stands# This matrix proved valuable as an aid to the 

interpretation of the distributional patterns of individual 
species and structural groups. In addition, constellation 

diagrams for each layer were constructed from the
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correlation matrix to indicate species groups.
Alpha and beta diversities were calculated for each 

structural group. Alpha diversity was derived in two ways: 
the first using the Shannon index (Shannon and Weaver, 1949) 
which combines species richness with an equilability 
component; the second, simply by averaging species counts 
as estimates of species richness. Species counts are 
emphasized in the results and discussion in preference to 
the Shannon index. Species counts are more readily 
interpretable; the Shannon index confounds species richness 
and equitability, and information theoretical indices are of 
questionable biological significance (Uurlbert, 1971). The 
equitaoility component (Pielou, 1966) was also computed 
separately to allow comparison of the overall distribution 
of dominance in each structural group. Beta diversities 
were estimated for each group by dividing the total number 
ot species encountered in all stands oy the average number 
ot species per stand. This is the simplest and a generally 
appropriate measure ot beta diversity (hhittaker, 1960, 
19/0). However, Bratton (1975) points out that beta 

diversity may be viewed as a function rather than as a 

single value. Her work indicates tiat oeta diversity is not 
necessarily constant along environmental gradients. As 
calculated in this study, beta diversity values Indicate 

only the average rate of change across environmental 
gradients.
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CHAPTER V 
RESULTS AMD DISCUSSION 

A. Compositional Correlations Between Layers.
Compositional patterns of structural groups were found 

to be very weakly correlated with each other. Several lines 
ot evidence derived from species* cover values support this 
conclusion: poor correlation of dissimilarity matrices,
weak correlation of stand placement on ordinational axes, 
and widely divergent stand clusterings based on similarity 
mat rics s.

Correlation of dissimilarity matrices: Table 1
presents r-squared and significance values for correlations 
of dissimilarity matrices for all group pairs. In most 
cases the r̂  values range between .03 and .14 with p<. 00001. 
A scatter diagram and simple regression line are shown for a 
typical group pair in Figure 5. It can be seen from this 
graph that a stand pair that is 90% dissimilar in one layer 
could be less than 15% dissimilar in the other layer and 
vice-versa. Thus, knowing the similarity between two stands 
for one layer would allow one to predictively say little 
about the similarity between the two stands for any other 

layer.

Tne assumption of independent pairs of values required 

for Pearson correlations was violated to a degree. However, 

I jo not believe that the degree of dependence is large 
enough to significantly affect my results. Each pair of 
values is partially dependent on only about 10% of the other
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pairs. furthermore, the effect af that dependence on the 
correlation would probably be to increase the r-squared 
values. Thus, my conclusion that the correlation is 
remarkably poor is probably valid.

Heterogeneity within each plot and sampling error 
weaken the correlation between dissimilarity values of 
structural groups. However, these sources of variability 
were lot strong enough in themselves to account for the 
observed independence of layers. The importance of this 
effect was investigated by correlating dissimilarity values 
based on replicate samples with dissimilarity values based 
on averaged cover values from the original and replicate 
samples. This correlation was stroig for the bryoid layer 
(r2r.71, p<.005). Similar analyses were not performed for
the vascular groups because replicate samples were not 
obtained for those groups. However, if we assume that the 
above coefficient of determination is typical for all the 
structural groups, and that it roughly represents the 
minimum strength correlation possible given only sampling 
error and within-stand heterogeneity, my conclusion as 

stated above stands: compositional patterns of structural

groups are very weakly correlated.

Correlation of stand placement on ordinational axes: 
The weak correlation between compositional shifts of 

structural groups is further supported by correlations of 
stand placement along ordinational axes (Bray and Curtis 
(1957) polar ordination). A stand dissimilarity matrix.



26

Table 1. Coefficients of determination 
dissimilarity values of structural groups, 
one marked (*), p < 10"5.

(r̂ ) for correlations between 
n all cases except the

Epi­
phyte Bryoid Herb Shrub

T ree .14 .03 .08 .11
Shrub .04 .00* .08
Herb .09 .06

Bryoi d .04



figure 5. Scatter diagram with simple regression line for 
correlation between stand dissimilarity values 
based on the herb layer and stand dissimilarity 
values based on the tree layer. Numbers are substi­
tuted where more than one point share a position.
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Table 2. Coefficients of determination (r ) for correlations 
between stand placement on an ordinational axis (moisture). 
Significance at the .05 and .005 levels is indicated by (*) and (**)

Table 3.

Epi - 
phyte Bryoi d Herb Shrub

T ree .01 .05 .15** .35**
Shrub . 06'* .26** .39**
Herb .03 . 17**
Bryoid . 30**

2
ents of determination (r ) for corre 
:ement on an ordinational axis (stand 
le .05 and .005 levels is indicated b

Epi­
phyte Bryoi d Herb Shrub

Tree .28** .09* .20** .35**
Shrub .51** .10* .26**
Herb .14* .15**
Bryoid .01
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prepared trom cover data ot ail vascular species, was used 
as the basis for endstand selection. Sndstand pairs were 
selected that provided a readily interprétable 2-dimensional 
ordination, roughly orthogonal gradient axes, and a high 
correlation between stand dissimilarity and distance on the 
ordination (r2».62, p<.01). Moisture and stand age

gradients are the primary factors corresponding to the two 
ordinational axes, as deduced from plots of species and 
environmental factors on the ordination (Antes, 1977). The 
sane endstands were then used for stand ordinations based on 
each structural group. Stand positions along a given 
ordinational axis were compared for each pair of structural 
groups by Pearson product-moment correlations of stand 
distances on the axes.

Tables 2 and 3 show and significance values for
correlations between structural groups on the moisture and 
stand age axes. In both cases, r̂  yalues are low for most 
pairs. Correlation of stand rankings on ordinational axes 
had even lower r2 values. It is important to realize that 
the results from these correlations are probably highly 
dependant upon choice of endstands. I do not think that the 

r 2 values for structural group pairs are worthy of 

comparison with each other. The important point, is that 
they are generally low. Indicating weak compositional 

parallels between structural groups.
It is notable that a pair of groups that is well 

correlated on one axis is not necessarily well correlated on
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ansther axis. For example, trees and epiphytes had a 
relatively high correlation on the age axis but none at all 
on the moisture axis. This implies that the moisture 
gradient controlling tree distribution las relatively little 
direct control over epiphyte distribution. The pattern of 
epiphyte distribution is not, therefore, simply related to 
the moisture gradient that in part controls tree 
distribution. 1 do not think that the cause for the 
ditference can be extracted trom these results: I merely
wish to point out that distributional patterns of different 
structural groups are evidently not controlled directly by 
the same factors.

Cluster analysis: Aggiomerative cluster analysis of
old stands (>150 yr since the last burn) was used as a
comparative tool with only moderate success. In general, 
group separation was only fair. Group separation might have 
Dean improved by using a different computational algorithm 
(Robertson, 1978). Nevertheless, those stand groups that 
were wall defined in one layer showed little resemblance to 
discernible groups in other layers (Figures 6 through 9). 

Clusters were defined at the 60-70% similarity level in most 

cases. The dendrogram for the herb layer is not included 

because clusters were formed predominantly at low levels of 
simliari ty.

Correlations of structural groups in the literature: 

Thî correlation between structural groups has rarely been



F i g u r e  6 .  C l u s t e r  a n a l y s i s  o f  t h e  t r e e  l a y e r  co mp are d w i t h  t h e  M o n t a n a  H a b i t a t  T y p e s  ( P f i s t e r ,  e t  a 1 . ^
1977) an d s t a n d  c l u s t e r s  b a s e d  on o t h e r  s t r u c t u r a l  g r o u p s .  S t a n d  g r o u p s  f o r  t h e  t r e e  l a y e r  a r e  i n d i c a t e d
w i t h i n  t h e  d e n d r o g r a m ;  c l a s s i f i c a t i o n s  b a s e d  on o t h e r  s t r u c t u r a l  g r o u p s  a r e  shown a t  l e f t .

ABBREVIATIONS

Shrub Bryo. EpI.
Montana 

Habi tat type
1

Tb/Tb Rr/Rr Be/AI Abgr/Clun-Clun 9
Vg/Vg * Bf/Bc Abgr/CIun-Clun 54

Vg/Wg Rr/* Bf/Bf Abgr/Clun-Xete 34

Vg/Rg Bf/Bf Abgr/CIun-Xete 22
Ag/Rg B/Ta Bc/AI Abgr/Clun-Clun 23

Ag/Rg Ps/Bf Abgr/CIun-Xete 10

Vg/Rg Rr/* Bc/AI Abgr/Clun-Clun 24
Vg/Rg Rr/Rr Bc/AI Abgr/Clun-Clun 28

Rr/Rr Bc/AI Abgr/Clun-Clun 38
Vg/Rg B/Bh Bf/Bc Abgr/Clun-Xete 55

Rr/Rr Bc/AI Abgr/CIun-Arnu 21
Afl/Tb Rr/Rr Bc/AI Tshe/Clun-Clun 49

Ag/Tb B/Ta Bc/As Abgr/Clun-Clun 2
Tb/Tb Rr/A As/Dt Abgr/Clun-Clun 4
Tb/Tb Rr/* Bc/AI Abgr/Clun-Clun 6
Ag/Rg Ot/As Abgr/CIun-Arnu 8
Tb/Tb Rr/Rr Bc/AI Abgr/Clun-Clun 26

Tb/Tb Rr/Bh Bc/AI Abgr/CI un-Amu 25
Ag/Hf Rr/Bh Bc/AI Abgr/CIun-Clun 47

* Rr/Rr Bc/AI Thpl/Clun-Clun 16
Ag/Tb * Ps/Bf Thpl/Clun-Clun 29

* * Bc/AI Abgr/CIun-Arnu 3
Vg/Vg Rr/Bh Bf/Bc Thpl/Clun-Clun 52

* Rr/* Bc/AI Thpl/Clun-Clun 18
* Bc/AI Thpl/Clun-Clun 33

Oh/Oh Bs/PI As/Ot Thp1/Opho 15

90
% Similarity, Trees
80 70 60 50 40 30 20

Pm/Ag

Ao/Pm

Ag/Ag

Ag/PI

Ag/AI 
Ag/Pe 
Tp/Ag
Tp/Ag Lj 
Al/Ag 
Tp/AI

Tp/Tp

Tree
Ag - Abies grandis
AI - Abies laslocarpa
Pe - PIcea engelmanni1
PI - PInus montlcola
Pm ■ Pseudotsuga menzlesi1
Tp - Thuja piIcata

Shrub
Ag - Acer glabrum
Mf - Menzlesia ferruglnea
Oh - Opiopanax horrldum
Rg - Rosa gymnocarpa
Tb - Taxus brevlfolla
Vg - Vacclnlufl) globulare

Bryoid
B - Brachytheclum spp.
Bh - Brachytheclum hylotapetun
Bs - Bryum SandbergII
PI - PI agi omnium Insigne
Rr - Rhytldlopsis robusta
Ta - TImmla austrlaca

Epiphyte
AI - Alectorla Imshaugl1
As ■ Alectorla sarmentosa
Be - Bryorla capi1 laris
Bf - Bryorla fuscescens
Ot - Otcranum taurlcum
Ps - Parmella sulcata

* • group not defined

Habitat types
Abgr - Abies grandis 
Arnu ■ Aral la nudlcaulls 
Cl un ■ Cllntonia wnI flora 
Opho - Opiopanax horrldun 
Thpl ■ Thuja pllcata 
Tsha ■ Tsuga heterophylla 
Xate ■■ Xerophylluffl tenax



F i g u r e  7 .  C l u s t e r  a n a l y s i s  o f  t h e  sh r u b  l a y e r  c om pare d  w i t h  t h e  M o n t a n a  H a b i t a t  T y p e s  ( P f i s t e r ,  e t  a l . ,
1 9 7 7 )  and  s t a n d  c l u s t e r s  b a s e d  on o t h e r  s t r u c t u r a l  g r o u p s .  S t a n d  g r o u p s  f o r  t h e  t r e e  l a y e r  a r e  i n d i c a t e d
w i t h i n  t h e  d e n d r o g r a m ;  c l a s s i f i c a t i o n s  bas e d  on o t h e r  s t r u c t u r a l  g r o u p s  a r e  shown a t  l e f t .

Tree Bryo. Epi.
Montana 

Habitat type
Pm/Ag * Bf/Bf Abgr/Clun-Xete
Ag/Pm Rr/* Bc/AI Abgr/Clun-Clun
Ag/Pm Rr/Rr Bc/AI Abgr/Clun-Clun
Ag/Pm B/Bh Bf/Bc Abgr/Clun-Xete

Ag/PI Ot/As Abgr/Clun-Arnu
Pm/Ag B/Ta Bc/AI Abgr/Clun-CIun
Pm/Ag Ps/Bf Abgr/Clun-Xete

Ag/Ag B/Ta Bc/As Abgr/Clun-Clun
Ag/Pm Rr/Rr Bc/AI Tshe/Clun-Clun
Tp/Ag Ps/Bf Thpl/Clun-Clun

Pm/Ag Rr/Rr Bc/AI Abgr/Clun-Clun
Ag/Ag Rr/* As/Dt Abgr/Clun-Clun
Ag/PI Rr/Rr Bc/AI Abgr/Clun-Clun
Ag/Ag Rr/* Bc/AI Abgr/Clun-Clun
Ag/AI Rr/Bh Bc/AI Abgr/CIun-Arnu

Ag/Pe Rr/Bh Bc/AI Abgr/Clun-Clun

Pm/Ag Rr/* Bf/Bf Abgr/Clun-Xete
Tp/AI Rr/Bh Bf/Bc Thpl/Clun-Clun
Pm/Ag Bf/Bc Abgr/Clun-Clun

80 70
% SImllarlty, Shrubs 
60 50 40 30 20 10

22

::3 Vg/Rg

10
MLRg

Ag/Tb

Tp/Tp Bs/PI As/Dt Thpl/Opho

6

25

47

34
52
54

21

3
16
33
38
IB
15

Tb/Tb

Ag/Mf

V9/V9

ABBREVIATIONS

Ag Abies grandis
AI Abies laslocarpa
Pe PIcea engelmanni1
PI PInus montlcola
Pm Pseudotsuga menzlesi1
Tp Thuja pllcata

Shrub
Ag Acer glabrum
Mf Menzlesla ferruglnea
Oh Opiopanax horrldum
Rg Rosa gymnocarpa
Tb Taxus brevlfolla
Vg Vacclnlum globulare

Bryoid
B Brachytheclum spp.
Bh Brachytheclum hylotapetun
Bs Bryum sandbcrgll

. PI Plagiomnlum Insigne
Rr Rhytldlopsis robusta
Ta TImmla austrlaca

Epiphyte
AI Alectorla ienhaugll
As Alectorla sarmentosa
Be bryorla capI1 laris
Bf Bryorla fuscescens
It Dlcranum taurlcum
Ps Parmella sulcata

Hablft tvpgs
Abgr - Abies grandis 
Arnu - Aral la nudlcaulls 
Cl un - Cllntonia uni flora 
Opho - Opiopanax horrldum 
Thpl ■ Thuja pllcata 
Tshe ■ Tsuga heterophylla 
Xete “ Xerophylliaa tenax

* “ group not defined WN)



F i g u r e  8 .  C l u s t e r  a n a l y s i s  o f  t h e  b r y o i d  l a y e r  comp are d w i t h  t h e  M o n t a n a  H a b i t a t  T y p e s  ( P f i s t e r ,  e t  a l . ,
1977) and s t a n d  c l u s t e r s  b a s e d  on o t h e r  s t r u c t u r a l  g r o u p s .  S t a n d  g r o u p s  f o r  t h e  b r y o i d  l a y e r  a r e  I n d i c a t e d
w i t h i n  t h e  d e n d r o g r a m ;  c l a s s i f i c a t i o n s  b a s e d  on o t h e r  g r o u p s  a r e  shown a t  l e f t .

Tree Shrub Epi.
Montana 

Habitat type
1

Pm/Ag Tb/Tb Bc/AI Abor/C1 un-Cl un 9
Tp/Ag Bc/AI Thpl/Clun-Clun 16

Ag/Pm Bc/AI Abgr/Clun-Arnu 21

Ag/Pm Bc/AI Abgr/Clun-Clun 38
Ag/PI Tb/Tb Bc/AI Abgr/Clun-Clun 26

Ag/Pm Vg/Rg Bc/AI ' Abgr/Clpn-Clun 28

Ag/Pm Ag/Tb Bc/AI Tshe/Clun-Clun 49

Ag/AI Tb/Tb Bc/AI Abgr/CI un-Amu 25 '
Ag/Pe Ag/Mf Bc/AI Abgr/Clun-Clun 47
Tp/AI Vg/Vg Bf/Bc Thpl/Clun-Clun 52

Tp/Tp Oh/Oh As/DI Thpl/Opho 15

Ag/Ag Tb/Tb Bc/AI Abgr/Clun-Clun 6
Tp/Tp Bc/AI Thpl/Clun-Clun 18

Ag/Ag Tb/Tb As/DI Abgr/Clun-Clun 4
Ag/Pm Vg/Rg Bc/AI Abgr/Clun-Clun 24
Pm/Ag Vg/Vg Bf/Bf Abgr/Clun-Xete 34

33
Ag/Ag Ag/Tb Bc/As Abgr/Clun-Clun 2
Pm/Ag Ag/Rg Bc/AI Abgr/Clun-Clun 23

10
54

8
Ag/Pm Vg/Rg Bf/Bc Abgr/Clun-Xete 55

29 •
3 . 

22 '

2 80 70

% similarity Bryoid Layer 
60 50 40 30 20 10

Rr/Rr

Rr/Bh

B»/P!

Rr/*

Rr/*

B/Ta

*
ft k - |ft

B/Bh

ABBREVIATIONS

Tree
Ag - Abies grandis
AI - Abies laslocarpa
Pe - PIcea engelmanni1
PI - PInus montlcola
Pm ■ Pseudotsuga menzlesi1
Tp - Thuja pllcata

Shrub
Ag - Acer glabrum
Mf - Menzlesla ferruglnea
Oh - Opiopanax horrldum
Rg - Rosa gymnocarpa
Tb - Taxus brevifolla
Vg - Vacclnlum globulare

Bryoid
B - Brachytheclum spp.
Bh - Brachytheclum hylotapetun
Bs - Bryum sandbcrgll
PI - Plagiomnlum Insigne
Rr - Rhytldlopsis robusta
Ta - Tlpmla austrlaca

Epiphyte
AI - Alectorla Imshaugl1
As - Alectorla sarmentosa
8c - Bryorla capi1 laris
Bf - Bryorla fuscescens
Ot - Dlcranum taurlcum
Ps - Parmella sulcata

* ■ group not defined

Habitat type»
Abgr <■ Abies grandis 
Afnu - Aral la nudlcaulls 
Cl un ■ Cllntonia uni flora 
Opho “ Opiopanax horrldum 
Thpl • Thuja pllcata 
Tshe - Tsuga heterophylla 
Xete ■ Xerophyllum tenax



F i g u r e  9 .  C l u s t e r  a n a l y s i s  o f  t h e  e p i p h y t e  g r o u p s  c om pare d  w i t h  t h e  M o n ta n a  H a b i t a t  T y p e s  ( P f i s t e r ,  e t  a l . ,
1 9 7 7 )  and s t a n d  c l u s t e r s  bas e d  on o t h e r  s t r u c t u r a l  g r o u p s .  S t a n d  g r o u p s  f o r  t h e  e p i p h y t e s  a r e  i n d i c a t e d
w i t h i n  t h e  d e n d r o g r a m ;  c l a s s i f i c a t i o n s  b a s e d  on o t h e r  g r o u p s  a r e  shown a t  l e f t .

Tree Shrub Bryo.
Montana 

Habitat type
1

Ag/Pm Vg/Rg Rr/* Abgr/Clun-Clun 24
Ag/Pm Vg/Rg Rr/Rr Abgr/Clun-Clun 2B
Ag/Ag Tb/Tb Rr/* Abgr/Clun-Clun 6
Pm/Ag Ag/Rg B/Ta Abgr/Clun-Clun 23
Al/Ag * Abgr/Clun-Arnu 3
Pm/Ag Tb/Tb Rr/Rr Abgr/Clun-Clun 9
Tp/Ag Rr/Rr Thpl/Clun-Clun 16
Ag/Pm Rr/Rr Abgr/Clun-Arnu 21
Ag/AI Tb/Tb Rr/Bh Abg r/CI un-Amu 25
Tp/Tp Rr/* Thpl/Clun-Clun IB
Ag/Pm Ag/Tb Rr/Rr Tshe/Clun-Clun 49
Tp/Tp Thpl/Clun-Clun 33
Ag/Pe Ag/Mf Rr/Bh Abgr/Clun-Clun 47
Ag/PI Tb/Tb Rr/Rr Abgr/Clun-Clun 26
Ag/Pm Rr/Rr Abgr/Clun-Clun 38

Ag/Ag Tb/Tb Rr/* Abgr/Clun-Clun 4
Tp/Tp Oh/Oh Bs/PI Thpl/Opho 15
Ag/Ag Ag/Tb B/Ta Abgr/Clun-Clun 2
Ag/PI Ag/Rg * Abgr/Clun-Amu 8
Pm/Ag Ag/Rg Abgr/CIun-Xete 10
Tp/Ag Ag/Tb * Thpl/Clun-Clun 29

Pm/Ag Vg/Rg * Abgr/Clun-Xete 22
Pm/Ag Vg/Vg Rr/* Abgr/Clun-Xete 34

Pm/Ag Vg/Vg * Abgr/Clun-Clun 54
Ag/Pm Vg/Rg B/Bh Abgr/Clun-Xete 55
Tp/AI Vg/Vg Rr/Bh Thpl/Clun-Clun 52

BO 70__ 60
% similarity Epiphytes 
50 40 30 20 10

ABBREVIATIONS

23---- 1

z y

hit

Bc/AI

Dt
Bc/As
Ot/As

Ps/Bf

Bf/Bf

Bf/Bc

Tree Habitat types

Ag Abies grandis Abgr ■ Abies grandis

AI Abies laslocarpa Arnu ■ Aral la nudlcatil Is

Pe PIcea engelmanni1 Clun - Cllntonia uni flora

PI PInus montlcola Opho ■ Opiopanax horrldum

Pm Pseudotsuga menzlesi! Thpl ■ Thuja piIcata

Tp Thuja piIcata Tshe ■ Tsuga heterophylla

Shrub Xete - Xerophyllum tenax

Ag Acer glabrum
Mf Menzlesla ferruglnea
Oh Opiopanax horrldum
Rg Rosa gymnocarpa
Tb Taxus brevlfolla
Vg Vacclnlum globulare

»ryold
B Brachytheclum spp.
Bh Brachytheclum hylotapetum
Bs Bryum sandbergll
PI Plagiomnlum insigne
Rr Rhytldlopsis robusta
Ta TImmla austrlaca

Epiphyte
AI Alectorla Imshaugl1
As Alectorla sarmentosa
Be Bryorla cap!1 laris
Bf Bryorla fuscescens
Dt Dlcranum taurlcum
Ps Parmella sulcata

* “ group not defined
InOJr-
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approached directly.
Wilttalcer (1960) found that "Although percentage 

similarities for the tree stratum and undergrowth are 
necessarily correlated, lack of any strict consistency of 
these is evident in the data." He further stated that "This 
fact is consistent with what has already been observed on 
the lack of strong correlation between different strata and 
community fractions." Dauhenmire (1968) strongly stated that 
"In tie northern Rockies, forest overstory and undergrowth 
occupy the land independently." McIntosh and Hurley (1964) 
reported that "stands on quite different site types may have 
similar understory vegetation as measured by the index of 
similarity." Yet they state that understory and overstory 
ordinations were significantly correlated at the 1% level, 
using the Spearman rank correlation coefficient. Only the 
tea most frequent understory plants were included in their 
herb layer ordination. Bratton (1975) found that indirect 
ordinations of understory and overstory vegetation along a 
moisture axis had similar stand sequences but quite 
different positions along that axis.

Several other authors have commented briefly on 

correlations between structural groups. Hoffman and 
Kazmierski (1969) state that "a close relationship between 

them Cepiphytes and vascular plaits! may break down under 

scrutiny." Yet they allow for the usefulness of herbaceous 

species indicating conditions favoring certain epiphytic 

communities. Phillips (1951) noted that "epiphytic
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brfopti/tes are not always correlated with forest tree 
climaxes." His explanation for this is that tree climaxes 
are distributed over a wider variety of habitats. Yet he 
later states that "Many bryophyte communities are much more 
widely distributed than the tree species upon which they 
occur.. ."

Although the Independence of forest layers has been 
observed by ecologists striving to classify vegetation, that 
awareness has not been satisfactorily incorporated into the 
methods and philosophy of classification. Recognition of 
the independence of layers prompted a move towards separate 
classifications by layers (Gams, 1918; Du Riet/., 1936; 
Lippmaa, 1935, 1939; Cain, 1936). This approach to
classification has largely been abandoned since their time. 
Some recent efforts towards classification of forest 
communities have recognized the independence of layers 
(Dauhenmire, 1968; Pfister ât ai*, 1977) but classify the 
vegetation using combinations of characteristic overstory 
and understory vegetation. Oaubenmimre (1968) justifies 
combining the layers with the reasoning that that method 

allows the recognition of more ecologically distinct areas 

than could be recognized on the basis of the understory or 
overstory alone.

I suspect that the problem of poor correlation between 
structural groups has been encountered more frequently than 

is evidenced by the literature. The assumption that 
structural groups are well correlated is, perhaps, a
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confortable notion that many ecologists have not critically 
exanined in the past. ®‘or instance, Lambert and Maycock 
(1968) state "It is reasonable to assume that species of 
lichens occurring in the understories of stands of this 
shifting forest complex Ca moistura gradient] might also 
show patterns similar to the tree species." The view of 
plant communities as "super-organisms" (in a Clementsian 
sense) may also have contributed to an unrealistic view of 
the correlation between structural groups.

Why are structural groups poorly correlated? Three 
lines of reasoning provide a tentative explanation for the 
poor correlation between structural groups. The first 
suggests that the independence of compositional patterns of 
structural groups are due to differences in the patterns of 
environmental factors operating at different levels in the 
forest. The second is based on differences in rates of 
biotic response during succession. The third invokes a 
degree of essentially random factors responsible for plant 
distribution. These three, non-contradictory ideas are 
explored below.

The environmental factor complex in a given location is 

expressed differently towards each structural group. 
Overstory trees experience the gross macroclimate of a site 
while successively lower layers experience environments 

increasingly modified by other structural groups. Shrubs 
and understory trees occupy an aerial space modified by the 
overstory but might share a similar root zone. Herbs occupy
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an aerial environment drastically modified by higher layers, 
including modifications of light, temperature, moisture, and 
nutrient regimes. Soil factors are less likely to directly 
affect the bryoid layer. Epiphytes are strongly dependent 
on the host, both from the standpoint of immediate substrate 
differences between host species, and from differences in 
microclimates induced by the hosts' canopies. Specific 
details of some of these factor effects are discussed below. 
The important point is that different structural groups 
experience radically different factor complexes and I see no 
reason why the factor complexes should vary in concert. 
Therefore, it seems reasonable that compositional patterns 
of structural groups are weakly correlated.

The rate of response by each layer of vegetation to 
fire differs between structural groups, weakening the 

compositional correlation between them. For instance, 
middle aged stands (say 75 to 103 yr) will support a herb 
flora often quite similar to older stands on similar sites. 
Yet the shade intolerant pioneer trees still dominate the 
overstory. Thus, the tree layer of that stand is similar in 
composition to younger stands, while the herb layer is 

already more similar to older stands. Achuff and La Roi
(1977) state that the faster recovery rate of lower strata 

is due to their faster rates of maturation and turnover. 
This is certainly supported by examples such as 

accidealalis/ a pioneer species, persisting for hundreds of 
years into late serai communities. However, the situation
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is complicated by several considerations* For instance# 
dispersal rates way differ greatly Between structural groups 
(can "climax** mosses immigrate as easily as "climax" 
herbs?). Differences In colonization strategies also 
complicate considerations of maturation rates and turnover 

the tendency for many shrubs to resprout after fire 
while mosses may be destroyed completely over small areas)* 

Essentially random distributional accidents may also 
contribute to the weak correlation between structural 
groups. Apparently# only a few authors have recognized the 
influence of historical factors on the composition of 
relatively stable communities (Falmgren# 1922? Kujala#
1925; Gleason# 1926# 1936; Braun# 1950). I believe# as
did Gleason (1926# 1936)# that ecologists have been somewhat 
carried away with deterministic explanations of plant 
distribution. Gleason (1926) gave due recognition to the 
importance of essentially random factors in control of 
vegetation: **... the vegetation of an area is merely the
resultant of two factors# the fluctuating and fortuitous 
immigration of plants and an equally fluctuating and 
variable environment." Braun (1953) states that# "Climatic 

control# although determining the relative positions of the 
several major climaxes# does not In general appear to 

determine regional boundaries. Instead# most of these

appear to be determined largely by historical 
factors— changing climates and physiography of past ages." 

No doubt exists as to the validity of many environmental
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explanations of plant distribution- However, as the width 
of the environmental variation being considered decreases, 
thf* relative importance of random sources of variation
increases- These random sources of variation include
dispersal "accidents", variations in disease and fire 
history, and variation In nearby propagule sources at the 
critical times of earlier stand initiations- Distributional 
accidents may be perpetuated to a degree through successive 
fire cycles in the northern Rockies- The composition of a 
regenerating stand is often largely dependent upon the 
composition of the pre-burn stand (Lyon and Stickney, 1976)- 

The preceding paragraph points to a problem of scale 
that arises when comparing compositional patterns of 
structural groups. It seems likely that the correlation
between structural groups would increase with broader 
geographic or environmental scale- That is, as the beta 
diversity of the sample increased, I would expect the 
correlation between compositional shifts of structural 

groups to increase. This would be manifested by increasing 
correspondence between stand groups as defined by cluster 
analysis- Probably the most important reason why this might 

be true is that the proportion of compositional variation 

due to essentially random historical events would be 
minimized relative to environmental differences- In the

Swan Valley the overall beta diversity was rather low- At 
that scale of variation in community and environment, 

uncoupling of compositional patterns of structural groups
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was rather pronounced. Essentially random historical events 
may ha/e contributed significantly to tiat uncoupling.

I do not mean to imply that community composition is
unpredictable. On the contrary, cover of most species was
readily predictable from the cover values of species in
another structural group. Prediction equations from
multiple regression analysis aith coefficients of 
determination near 1.0 were usually possible with ten or 
fewer species as independent variables- Thus, while
compositional patterns may be predictable, structural groups 
did not shift composition along environmental gradients at 
the same rate or in the same pattern.

E. Diversity.
Tie following section explores the differences between 

structural groups in alpha diversity, beta diversity, and 
species equitability in the Swan Valley forests. Whittaker 
(I960) states that "diversity relations to environment are 

clearly different for different community fractions and 
groups of organisms." Control of floristic diversity is 
comple* and poorly understood (Whittaker, 1960, 1965, 1972)
and has been the subject of much study and speculation. Yet 

it remains a community parameter of considerable interest to 
ecologi sts.

Pronounced differences in alpha aid beta diversities 

were found between the structural groups (Table 4). 
Differences in species equitability were slight.
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Table 4. Species counts, beta diversity, and equitability 
for each structural group.

average
species
count

beta
diversity

average
equitability

Tree 6.5 2.0 .64

Shrub 8.2 2.9 .60

Herb 20.7 4.3 .71

Bryoid 28.1 5.8 .72

Epiphyte 28.7 3.0 .73
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Alpha diversity: Alpha diversity was calculated here
as the mean number of species in a given layer for all 
stands. Differences in sampling methods used for vascular 
and nonvascular plants complicate the comparison. Within 
each stand, the area sampled for nonvascular plants was 
considerably smaller than the area sampled for vascular 
plants. To adjust for this difference, nonvascular species 
lists for four stands were used to calculate a correction 
factor (2.7 for epiphytes and 3.6 for bryoids). These 
correction factors were multiplied against the richness 
values based on the smaller saiples, thus deriving a 
comparable estimate of species richness for the two 
non-vascular groups.

Alpha diversity was greatest in the epiphytes. An 
interesting trend is apparent: a high species count in the
br/oid layer, decreasing through the herb and shrub layers, 
to the lowest value for trees. Similar results were 
reported tor vascular strata by Whittaker (1960), La Roi 
(1967), and Zobel fil ai. (1976), although Glenn-Lewin 
(1975) found the lowest richness in the shrub layer. Achuff 

and La Roi (1977) reported another instance of the vertical 

trend in species richness and extended it by including the 

bryoid layer. A reasonable explanation for this result is 
that saecies diversity parallels environmental diversity. 

This explanation is consistent with del Moral's suggestion
(1972) that "hypotheses based on habitat heterogeneity, 

environmental rigor, and competition may be most relevant to
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understanding patterns of diversity within a small region." 
I feel that the higher habitat heterogeneity of lower forest 
layers is the result of two primary factors: microclimatic
differentiation and substrate diversity. Microcliraatic 
differentiation is greater at lower layers, in part because 
ot the variability induced by the irregularity in cover of 
higher layers. The wider range of substrate orientation and 
form also contributes to microcliuatic differentiation. 
Counteracting these effects is the moderating influence of 
vegetative cover (Geiger, 1950). A wider range of
substrates is present in the lower layers particularly the 
bryoid layer. Most stands had primarily four substrates 
available to the bryoid layer: litter-covered forest floor,
rock, bare soil, and rotting logs. Gach substrate type 
supports a characteristic group of species. Species 
comprising the lower layers are able to occupy these
microhabitats only by virtue of their size. Continued
survival and success of the bryoid layer has been guaranteed 
by adaptation to utilizing resource fragments left in the 
wake of the competitive trend towards increasing

vascularization and size.

Beta diversity: Beta diversity, or the rate of species
change across environmental gradients, was lowest in the 

tree layer and was progressively greater in lower layers. 
Beta diversity paralleled alpha diversity except that 
epiphytes had a low beta diversity yet a high alpha 

diversity. In other words, while many epiphyte species are
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present in most stands, the same species are likely to be 
present in the majority ot stands- This differs from the
bryoid and herb layers in that a large number of species are 
present in each stand but compositions of these layers are
wore variable across the range of stands sampled.

The pattern of increasing beta diversity in lower 
strata was reported by Whittaker (1956, I960) and Bratton 
(1975) tor vascular plants, Whittaker also noted that alpha 
and beta diversities increased and decreased in parallel- 
My results are in agreement with his and extend the
conclusion to the bryoid layer as well. However, epiphytes 
did not show this parallel between alpha and beta diversity, 
as discussed below.

It is tempting to invoke differences in tolerance 
amplitudes as an explanation for the differences in beta 
diversity- For instance, one could say that mosses are more 
sensitive to differences in environment than are trees. 
Such a statement has, in fact, been made repeatedly in the 
literature, although there has been little evidence to that 
effect. It seems more likely that the differences in beta

diversity between layers may be explained largely on the 

basis of the range of environmental variation present at the 
scale of that structural group. In other words, the forest 

structure creates a wide variety of small-scale differences 
in haoitats- The variety of microhabitats is reflected by 
the diversity relations of the structural groups- Trees, by 
virtue of their size, must exist ia a narrower range of
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habitats than the smaller plants, within the multi-layered 
forest structure. Therefore, the beta diversity of trees 
would ne expected to be low, reflecting the relatively 
uniform environment at the scale of trees. Clearly, this 
line of reasoning cannot be extended to all forests. In the 
case of tropical forests, the diversity relations are 
probably under greater control by biotic factors (Ashton, 
1969).

Bata diversity of epiphytes does not neatly fit the 
size-diversify pattern shown by the other structural groups. 
Based )n the hypothesis that uniformity in environment 
results in less species diversity in my study area, the fact 
that epiphytes had a high alpha diversity and low beta 
diversity may be explained as follows. The high alpha 
diversity is the result of a wide variety of possible 
microhabitats created by the structure of trees. These 
microhabitats are readily observable in the field and have 
been documented in many cases (^y. Barkman, 1958; Pearson 
and Lawrence, 1965; Hoffman and Kazmierski, 1969; Hale, 
195 2, 1965). However, the range of microhabitats shifts
less for epiphytes than for bryoids or herbs across 

environmental gradients. This relative insensitivity of 
epiphytes to the environmental differences expressed by 

other structural groups, may result fro* a similarity in the 

microhabitats present on trees growing in a variety of 

habitats. Thus the surface of &&12S gcao&ia in drier stands 
may have a similar range of microhabitats to the surface of
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Abies aLaDdlS in wetter stands. For example, in almost any 
forest in the Swan Valley a microhabitat exists that will 

support the lichen ttxeeeXIOOie imsbauali* However, the 
position ot suitable microhabitats varias depending on such 
factors as the moisture status of the site and available 
hosts, b# Imabauaii may be abundant at low levels in open 
Eiays CfiBlSIiâ forests but present only on higher exposed 
branches in wetter forests.

Exceptions to this were observed. For instance, trees 
bordering streams in narrow gorges or other areas with high 
humidity often support a distinctive epiphyte flora. 

Lbtiacla Buimaoacia, BsBbfama bsiKalicym, and a*
ca&UBiaalym, otherwise uncommon in the study area, were 
locailf common in these pockets of high humidity. 
Furthermore, the success of these species appears to be 
somewhat dependent upon the canopy openings associated with 
stream courses. Nevertheless, much of the epiphyte biomass 
in such locations is composed of relatively rank growth of 
species common in the drier forests of the Swan Valley <ea.

The wide range of epiphytic haoitats in a given stand 

complicates the study of their compositional patterns. In 
the wettest of the stands, fallen branches may be observed 

that support an epiphyte flora typical of drier stands in 

the area (eg. Lst&âlla Süi&laâ, abbc&%iata, and
GeLcaCia BiatZSbKila)* Thus, the range of epiphytic
microhabitats in a given upland stand may approach the range
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ot epiphytic microhabitats present in a much broader
geagraphical area.

Ëqultability: Species equltabillt/# or the evenness
with which the total estimated cover is spread among
species, was very similar for the herb, bryoid, and epiphyte 
groups (Table 4). Species cover in the tree and shrub 
layers was somewhat less equitable than the other structural 
groups. This possibly bears on the question of competitive 
relationships within groups as discussed below. However,
Whittaker (1965) reported quite variable dominance 
concentrations (dominance concentration is inversely related 
to equitability) for vascular strata in a variety of Great 
Smoky Mountain forests. In addition, no marked correlations 
were found between dominance concentrations for the three 

lay ers.
Dominance-diversity curves are presented tor the total 

Swan Valley sample, as well as for each structural group, in 
Figures 10 and 11. The curves for the tree, shrub, herb, 

epiphyte, and the combined groups approach a geometric 
series. The curve for the bryoid layer differs in that it 

has a decreased slope at the lower end of the curve. 

However, I believe that that is an artifact introduced by 

the sampling method? specifically, the assignment of trace 
cover values to the numerous species that were infrequently 

encountered in sampling and had very low cover within 
quadrats. Similar curves have been found by Whittaker
(1965) although he reported sigmoid curves for most



Figure 10. DornI nance-divers Ity curve for the total Swan Valley sample. Species are ranked by 
percent cover on a logarithmic scale.
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Figure 11. Dominance-divers Ity curves for each structural group, the species within each group 
ranked by percent cover on a logarithmic scale. The curves were placed within the 
same axes for ease of comparison. The horizontal position of the curves is arbitrary
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communities. Whittaker suggests that the geometric series 
ma/ be a "plausible representation ot competitive relations 
••• in some communities with few species.”

Tie geometric series may be a reasonable, though 
oversimplified, mode I for resource utilization and 
competitive relations ot species in the Swan Valley forests. 
Such a model Implies that the most successful species 
utilizes a fraction of the total environmental resources, 
the second utilizes the same fraction of the remainder, and 
so on (Whittaker, 1965). It appears that the model is 
appropriate in this case for the structural groups 
considered alone or combined. However, one should be 
cautious in this interpretation because cover is not an 
accurate measure of resource utilization when making 
comparisons between structural groups.

Correlation of species counts between all pairs of 
structural groups revealed no strong positive or negative 
correlations (Table 5). This result has also been found for 
vascular strata by Zobel si ai. (1976), Whittaker (1956, 
19)0), and Daubenmire and Oaubenmire (1968). A contrary 

result was reported by Auclair and Goff (1971) from the 

Great Lakes area where herb and shrub diversities were 
positively correlated. Whittaker (1965) states that he sees 

no reason why diversity relations for different strata 

should parallel one another: different strata are "subject
to different environmental factors and haodes of population 

limitation. "
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2
Table 5- Coefficients of determination (r ) for correlations 
between species richness of structural groups. Significant 
positive correlations at the .05 level is indicated by (*).

Epi­
phyte Bryoid Herb Shrub

T ree .03 .00 .00 .00

Shrub .00 .00 .10*
Herb .10* .02

Bryoid .01
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C. Resource Utilization by Structural Sroups
Vegetation structure affects the availability of 

resources to the structural groups. In particular I was 
concerned with structural effects on the light and moisture 
factors. It is clear that canopy density affects the 
success of individuals below the canopy, although the 
mechanism of control is uncertain. In more general terms, 
increased cover in higher levels results in decreased cover 
at lower levels (Reiners, 1967). My results are somewhat 
equivocal on this point. Total cover ot a structural group 
was negatively correlated with canopy cover in only the herb 
layer (r^=.24, p<.001). Attempts to correlate cover of a 
given layer with the sum of the higher layers were 
abandoned. Difficulties were encountered in attempting to 
sum cover values derived from the different sampling methods 
used for the various structural groups. Observational 
evidence, however, supports the hypothesis of high cover in 
a given layer suppressing cover of lower layers.

Canopy openings support a ground flora differing in 
composition from areas of canopy closure. Dense canopies 

may affect lower layers by decreasing light and moisture and 

increasing litter fall. There is a long history of debate 
on whether light or moisture or bath cause the observed 
differences in composition (Anderson ai., 1969). Many 

authors state emphatically that understory growth is 
controlled by light (eg. Rowe, 1956). However, most 
quantitative and experimental studies indicate that
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variations in throughfall precipitation are of greater 
importance, although low light also limits understory growth 
to a degree (Anderson at at., 1969; Tourney, 1931; Fricke, 
190 4; Fabricius, 1927, 1929).

I set up trenched plots in the study area in order to 
assess the relative importance of light and moisture in 
understory suppression within the study area. The two 
stands chosen for study have dense canopies with very sparse 
understories. It is too early to raport the results of this 
experiment. Nevertheless, qualitative observations allow a 
preliminary assessment of the problem in the Swan Valley.

It seems likely that moisture is usually an important 
limiting factor for undergrowth development in dense forests 
of the Swan Valley, based on the following rationale. Rain 
showers in the Swan Valley tend to be relatively gentle or 

brief during the summer season whei soil moisture levels 
become critical. Summer showers are often largely 
intercepted by the canopy. At the same time, root 
competition has reduced soil moisture to low levels, and the 
surface litter and humus are dry. Under such conditions 
survival of herbaceous species, especially early in their 

life history, is probably dependent upon addition of 
moisture to the soil by précipitâtl3n. Because canopy cover 

is so effective in intercepting the normally light and/or 
brief summer showers, I feel that canopy cover is probably 

important in determining survival of young or shallow-rooted 
vascular plants. Interception of snowfall by canopies may
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also be important in locally decreasing soil moisture and 
affecting understory success.

Some canopy openings In the Swan forests are dominated 
by shmbs/ some by herbs, others by bryophytes. The factors 
controlling which structural group dominates below a canopy 
opening remain uncertain. Tbe circumstance during stand 
initiation may affect the contribution of shrubs to the 
stand and In turn, to canopy openings. In any event, the 
composition of understory layers under the surrounding 
canopy may be of primary inportance in deterraing which 
structural group will dominate under a canopy opening. 
However, in some cases the mosses tend to dominate because 
ot local thin spots in the soil mantle over bedrock. In 
those situations thinly buried rocc creates and temporarily 
maintains the opening. Still other sites may have a soil 
depth adequate for the success of rooted plants, yet support 
mainly mosses. Light compensation points may be relatively 
low for mosses. Thus, these sites may allow enough moisture 
for mosses or herbs but not enough light for significant 
development of the herb layer. However, limited data 
indicate that the light compensation points for forest floor 

bryophytes and shade-grown vascular plants may be similar 
(Stalfelt, 1960).

The vertical gradient in light Intensity in a forest is 
closely related to a gradient in plant form. Plants 
successfully growing in lower layers tend to have 
proportionately greater photosynthetic tissue than plants in
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higher layers* Trees and bryophytes are at the two 
extremes: the former with much respiring but
non-photosynthetic support tissues, the latter with 
virtually all photosynthetic tissue.

Lichens, however, do not fit this pattern, having 
relatively tew photosynthetic cells. Perhaps lichens are 
plentiful under the canopies of the Swan Valley forests by 
virtue of a strategy of slow and intermittent growth* Long 
term resistance to decay and herbivory is probably afforded 
by high internal concentrations of "lichen substances", 
predominantly organic acids. This protection plus 
physiological adaptation for survival at low thallus water 
contents permits opportunistic photosynthesis— a facility 
that apparently is required for an epiphytic existence in 
this study area*

Some hypotheses as to the environmental and competitive 
relations of structural groups may be drawn by analysis of 
the species correlation matrix. Taole 6 presents the 
percent of possible within-group and out-of-group 
correlations for each structural group.

Conditions that favor one tree species are unlikely to 

favor another. This is suggested by the uniquely low 
percent of possible within-group positive correlations as 

wel1 as the uniquely high percent of possible within-group 
negative correlations. The abundance of negative 

correlations in the tree layer appears to be due in part to 

ditlerlng environmental requirements and perhaps competitive
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Table 6. Percent of possible interspecific correlations, 
significant at p<. 0 5 .

structural
group

pos itive 
correlations

negative
correlations

within
group

out of 
group

within
group

out of 
group

Tree 4.4 12.2 15.6 3.5
Shrub 19.2 12.6 0.0 2.6

Herb 15.8 11.6 0.3 1.2

Bryoid 17.5 9.2 0.0 0.5
Epiphytes 19.3 11.0 2.9 2.5
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ettects. For instance, Eitfea aiaaiiaaaii is negatively 
correlated with Eiuys GODlQCla, probably because of 
differing environmental requirements. Within the stands 
sampled the former is most common in old ravine stands, the 
latter occurring in young stands over a wide range of 
moisture conditions. conditions. Competition may also 
contribute to the negative correlations. For example, both 
Abiea and Elous ceotGLla may become established soon
after a burn (Antos, 1977). In the early years of 
succession, Eiaua c&Olacla is able to outcompete Ahlfia 

The fir remains as a somewhat suppressed component 
of the stand until the pine begins to die, usually from bark 
beetles. AbifiS orandlg may than increase and assume 
dominance.

Shrubs were distributed more cohesively. In other 

words, conditions favoring one shrub species are likely to 
favor the other shrub species. Supporting evidence from the 
species correlation matrix includes an absence of negative 
within-group correlations and a greater proportion of 
possible positive within-group correlations than 

out-of-group positive correlations.
Bryoids, epiphytes, and herbs also tended towards 

cohesive distributions (listed in order of decreasing group 
cohesion). These groups show similar patterns in Table 6: 
the proportion of positive correlations was high within each 

structural group relative to out-of-group positive 
correlations. For each of these groups, negative
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correlations were rare both within and out of the group.
Thus, with the exception of trees, the general 

observation was that factors favoring a given species are 
more likely to favor other species in the same structural 
group than species of other structural groups.

Overall, noticeably more positive correlations were 
found than negative correlations. This resulted from the 
presence of many zero-cover values in the data matrix. 
Because of this, meaningful comparisons of the number of 
positive to the number of negative correlations within a 
group are not possible.

D. Implications Concerning Habitat Typing.
Habitat type systems exist for much ot the northern 

Rocky Mountain forests (Pfister af af., 1977; Oaubenmire 
and Daubenmire, 1968; R. Steele gf gl., 1976). The basic 
objective of this approach is to provide a classification 
and description of late serai to climax vegetation that 
would allow improved resource management. The general 
philosophy and methodology of this approach is described by 

Daubenmire (1966).
Forest habitat types are generally based on both 

overstory and understory vegetation. This practice was 

probably initiated by Scandanavian and European workers who 
found more variation in the understory than in the canopy 
(Gams, 1918; Du Rietz, 1936; Braun-Blanguet, 1932; 

Cajander, 1909, 1949; Cajander and I Ivessalo, 1921) .
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However it has been recognized that associations of 
undergrowth are not always predictable subgroups of larger 
types defined by trees (Gams, 1918; Cain, 1936; Gleason 
1926, 1936; Lippmaa, 1939; whittaker, I960; McIntosh and
Hurley, 1964> Oaubenmire, 1963; Hoffman and Kazmierski, 
1969; La Roi and Stringer, 1976; Pfister fii ai., 1977; A. 
Steele, 1978). My data are in agreement with their 
observatons: independently defined types for each
structural group are related neither by a simple hierarchy 
nor a one-to-one correspondence. The relationships between 
stratal types in the Swan Valley appear to be quite complex 
(Figures 6 through 9). This lack of correspondence between 
stratal types is even more disturbing in view of the low 
correspondence between the Montaia habitat type system 
(Pfister at ai#, 1977) and the grouos produced by cluster 
analysis of the late serai Swan Valley stands.

I do not mean to belittle the habitat typing efforts. 
While I have doubts concerning the assumptions that that 
approach is based on, I recognize the value of a 
classification scheme for management purposes. However, I 
do wish to emphasize that my results indicate that the 

habitat type systems that we have today should be considered 
to be first approximations. There appears to be a danger of 

mechanistic reliance on habitat types as management units, a 

reliance that overlooks the uncertain status of the 

biological foundation for the types.
Much of the bulk of plant ecological literature is
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directed towards pigeonholing regetation. My results 
Indicate that pigeonholes that work well for one layer are 
not necessarily good for other layers* This Independence of 
layers has long been recognized by Scandanavian and European 
workers in their stratal and synusial approaches to 
vegetation classification (Gams, 1918; Du Rietz, 1936; 
Lippmaa, 1935, 1939; Cain, 193b). In these approaches.
Structural groups are classified independently. However, as 
Krajina (1960) infers, an understanding of ecosystems is not 
possible by studying structural groups separately* As 
discussed above, a satisfactory reconciliation between the 
independence of layers and classification methodology has 
not been reached*

E. Bryophytes and Lichens as Indicator Species.
It has been written, over and over? that bryophytes and 

lichens are exceptionally sensitive to their environment. 
(e.a« Lambert and Maycock, 1968; Stringer and Stringer, 
19/4; Shacklette, 1961; Scott, 19/0; Phillips, 1951; 
Jesberger, 1973; Cantlon, 1953> Culberson, 1955)* 
Furthermore, it has been repeatedly suggested that because 
of that sensitivity they should be good indicator species* 

However, cryptogams have been used as Indicator species in 

relatively few studies in North America (Krajina, 1965, 
1969; Orloci, 1965; Bell, 1965; Brooke, 1965; Brooke && 

ai., 1969; Achuff and La Roi, 1977) Except for the well 
documented sensitivity to pollutants, I am not convinced 

that lichens are more sensitive (l«e* narrower amplitudes
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ot tolerance) to their environment than other life form 
groups. The appearance of sensitivity results from 
frequently high diversity and obvious small-scale 
distributional patterns. As discussed above, these 
observations have an alternative explanation: the high
diversity of cryptogams results from the complex array of 
within-stand microhabitats. Obviously, the presence and 
diversity of microhabitats can only be given visible 
expression by plants small enough to occupy them. Thus, 
cryptogams are more likely to indicate microenvironments 
available primarily to cryptogams than to Indicate 
environments relevant to vascular plants. Perhaps this 
partially explains the large discrepancy between the many 
claims of the utility of cryptogams as indicator species and 
tha rarity of their use as such.

Other difficulties impede the adoption of lichens and 
bryophytes as indicators. In addition to a narrow amplitude 
ot tolerance and constancy within that amplitude, an ideal 
indicator species should be readily identifiable in the
field. Unfortunately, only a few cryptogams in this area

are so distinct in appearance that they could be accurately 

identified by a non-specialist in tie field (eg. Letharia

ïui^iD3r Labaiia puimoDaiia, luibusla, and
S&iaad&aa)" Most species of cryptogams in the 

northern Rockies have closely related species with
significantly different ecological requirements.
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F. Species Responses
Altos (197?) discussed li detail tie species responses 

of vascular plants in the Swan Valley. The main focus of 
tils section is on cryptogamie species.

Figure 12 is a constellation diagram for major species 
from all structural groups. Only those species achieving 
dominance within a structural group in at least one stand 
are included. Lines connecting the species represent 
positive interspecific correlations. Four species groups 
are suggested by the diagram, each group with a 
characteristic dominant tree species, àbias gzaDdls and its 
associated species are typical of modal sites in the Swan 
Valley. Composition on drier sites shifts towards the 
species grouped with £afîUdûlauaà On wetter sits,
especially in stream bottoms, the species grouped with Ihyja 

Diicala may be dominant. Species associated with Eiuiis 
CaatâEtâ may dominate their layer in young stands. The 
positions of vascular species within this diagram are 
consistent with other studies in this area (eg. Antos, 
19/7; Pfister ai al., 1977; Habecic, 1967, 1968),

Epiphytes: Positive interspecific correlations between

epiphytes are shown in Figure 13. The group of species at 
the lower left are characteristic of young Pinus çpqtorta 

stands or dry exposed sites. The mosses Dicranun laiiriaaffl 

and Llliidiym sulctiatcimym are well developed as epiphytes 
only in wetter stands, especially on the bark of leaning, 

old trees. The remainder of the species shown can be found



PSEUDOTSUGA
Figure 12. Constellation diagram showing 

positive interspecific correlations between 
species attaining dominance within their 
structural group In at least one stand. 
Typical canopy dominants and environmental 
characteristics are indicated for each 
species group.
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Figure 13. Constellation diagram showing positive interspecific
correlations between epiphytes. General environmental 
conditions favoring the species groups are indicated.
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in most &&1&5 acaodiS stands in the study area. A list of 
epiphytic lichens is included in Appendix A.

Bryoid layer: Positive correlations between species In
the bryoid layer are shown in figure 14. The species groups 
are roughly related to a moisture gradient as indicated in 
the figure. Some of the more common species found on the 
forest floor are discussed below. A list of all species 
known from this layer in the Swan Valley is Included in 
Appendix H.

Bbylidiagsis la&yala was the most abundant species in 
the bryoid layer. Percent cover of £. CO&U&la ranged up to 
about 20% in individual stands and averaged about 4%. In 
western Montana £. iflbiiSiâ is typical of older stands on 
moist upland sites, and is frequently found in stands 

dominated by gcaodis, l&Mia Biicala, Eicea
Gül&imaooii, or Isuga bsiSCOBbyiia. This robust moss 
appears to a strong competitor ii the bryoid layer and is 
capable of maintaining populations in mature forests. As 

with most of the mosses growing on the forest floor, the 
most luxuriant cover occurs in patches associated with 

openings in the canopy. Eliilu* BCialâzBâSlLBQSis and 

£.i&Ui;fiZiUID SCbiebsii ate also large mosses characteristic of 
wetter forests in the study area, but these species are 

generally less abundant than B.. zaîUSiâ.

&&%lidladaiBbU& iLigy&lCUS has a habit similar to g. 
LBkyâlâ but appears to be tolerant of drier sites. Although 
these two species often grow intermixed, £. triauetyu? is
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commonly found in drier £S£UdalâUaa m&B&l&Sii stands without 
taausla.
I believe that the four species discussed above are 

primarily ^-selected. They spread mainly by vegetative 
growth, can easily overgrow smaller mosses, and are typical 
of matare forests*

SSllUJB SBiDUioaya was present in most stands but reached 
macimui cover in the wetter stands. Because this species is 
relatively small and frequently bears spores, populations of 

S^lQUlSSUi are probably relatively ephemeral and mobile. 
Furthermore, rather than forming continuous cover, this 
species frequently occurs as scattered individuals —  a 
feature probably related to its abundant spore production.

ÜCYUII saadbacaii is similar to lalum in
habit, and frequently grows intermixed with it. I believe 
that the former differs in being mire shade tolerant and 
more restricted to wetter sites. S.. saDdbfixall is one of 
the few plants that can survive under dense stands of 

or yaotisaia laiiuaiaaa*
M31U1 iosiaos is usually found in moist depressions in 

stream bottoms and along spring» or creeks. Wherever 

iûSiâDfî occurs groundwater is at or close to the surface. 
This loss and its substrate are generally wet to the touch 

for most of the year. if. iosiaos occurs in shady wet 
microsites from the wettest to the driest forests in 
northwestern Montana.

bcaCbYthaclum bYialagslua is nearly ubiquitous on
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upland sites in the Swan Valle/• It typically is well 
dispersed throughout a stand, probably because of frequent 
reproduction by spores and a creeping habit. It is able to 
occupy a wide range of substrates but rarely forms 
continuous cover. It was frequently found threaded through 
masses of living or dead plant material, such as clumps of 

KacBBbfiium lanaa. byiata&etya appears to have evolved
the strategy of continual tip growth into favorable 
environments while abandoning old shoots to burial by 
litter. H* byialaealym is probably the most successful 
moss in Abisa SiaDdlS stands having a dense herb layer.

It is unfortunate that several üca&üylbeciua species 
had to be lumped, because those species appear to differ 
ecologically. 2* leibeigil was apparently more abundant in 
the wetter stands, while £. aHaiCittS and Ü. Cûlliauffl were 
found in the driest stands. 3* SâLfihLlSUÛ and g, starkei 
were more restricted to rotten wood, out may also occur on 
the forest floor in moist stands.

The large foliose lichens iëyGa&biëbië and f.
caaioa are common in the Swan Valley in an amazing variety 

of habitats ranging from exposed soil on clearcuts to 

rotting logs along streams in IbUlâ forests. Specimens of 
P. caaiaa from exposed sites approach the morphology, and 

may be, P. tu f f iS C S D S - No attempt was made to separate 
these species during quantitative sampling because of the 
baffling array of specimens with characteristics of both 
species.
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G. Ho3 t-F.plphyte Relations
Lichen cover was found to vary greatly between

different host tree species (Figure 15). Similar
observations as well as cases of host specificity have been 
explained on the basis of barx characteristics including 
roughness, sloughing rates, pH, nutrient status, presence of 
tannins and resins, and moisture absorbance and retention. 
Of course, factors other than bark characteristics also 
influence epiphyte cover on trees, including the
light-temperature-moisture factor complex, canopy
characteristics, host age, air pollution, and so on.
Reviews of factors controlling epiphyte distribution are 
included in Barkman (1958) and Brodo (1974).

I believe that the differences in total cover of 
epiphytes on conifers in the Swan 7a I ley (Figure 15) can be 
adequately explained on the basis of canopy characteristics, 
bark texture, and bark durability. Differences in bark 
chemistry may also be important. However, with the 
exception of alI the hosts were conifers.
Conifers have been shown to have similar bark pH values as 

compared with deciduous trees (Culberson, 1955; Kalgutkar 

ilird, 1969; Patterson, 1940; Billings and Drew, 1938). 

Differences in nutrient status due to stem flow are not 

important in the Swan Valley because stemflow rarely occurs. 

Conifer bark as well as dfilsiia QâüXLÎlâlLa bark are all 
**ol igot rophic” as evidenced by low ash content (Barkman, 

1958). However, tannin content of bark appears to differ
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Figure 15. Mean percent cover of epiphytes on major tree species.
Vertical bars indicate 95% confidence Intervals. The 
number of trees sampled for epiphytes is shown for each 
tree species.
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significantly among conifers and differences in resin 
contents have apparently not been studied (Barkman, 1958).

üi&UÜAlauaâ m&a&la&il had the lighest epiphyte cover. 
This species has a durable bark that becomes very rough and 
absorbent when old, promoting epiphyte development. High 
epiphyte cover on giailS ISOfldaia probably occurs because of 
its dense very durable bark and the tendency for this 
species to have a moderately open crown. flLâûdiS has
a durable bark becoming quite rough with age, although these 
epiphyte-promoting characteristics are offset somewhat by 
its tendency to form dense crowns when in a dominant 
position in the forest. Abiga acâdâis was commonly present 
as small old suppressed trees that often supported a dense 
lichen cover. SiüLis &ont&&ta forests often have thin 
canopies which promote epiphyte development. However, Pjnys 

CaalacLa is relatively short-lived and has a moderately 
flaky bark which tends to reduce the epiphyte cover values.

GaSYlilata has very smooth bark which discourages 
lichen establishment. However, thalli (especially of 

Bâflêiiâ SUlEala) frequently originate on the rough limb 
scars and rapidly expand over the smooth areas. Lichen 

cover is further promoted by the generally thin crown of the 
host during the growing season and the increased light and 

moisture after leaf fall. Ibuia Biicala forms dense 
canopies which tend to retard lichea growth on its trunks. 
Moisture interception by the canopy may be offset to a 

degree by the tendency for Ihula lil&âlâ to grow in
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relatively moist streambottoms. Lacis QCdillfiDJLsiia has very 
loose scaly Dark which strongly reduces lichen cover on its 
trunk. Eissa SOaaiaaDDll had the least epiphyte cover on 
its trunks. It has a moderately flaky bark, but perhaps 
more importantly, it often forms dense canopies that result 
in low trunk illumination and moisture levels.

Epiphyte cover as a function of trunk diameter was 
examined for the two host species, IhlaS arapdis and 
Paaudatauaa maazl&ali, tor which a sample adequate for such 
an analysis was obtained. Quite different patterns were 
found for the two species (Figure 15). à&lëS acaodis had 
higher percent cover on smaller trees, the reverse was true 
of Esaudolsyga meoziesii" it should be realized that 
diameter and height are not well correlated with age for 

aCâDdiS because this species can survive in deep 
shade, maintaining a suppressed condition in the stand 
(Antes, 1977). These small, suppressed grand firs of 
moderate to old age usually support a dense epiphyte cover. 
The canopies of the suppressed individuals are generally 
thin and poorly developed permitting more light and 

throughfall precipitation to reach its trunk, as compared to 

adjacent dominant individuals. The slow rate of bark 
surface expansion resulting from slow growth may also 
contribute to higher cover on the trunks of suppressed 

individuals. While the curve of percent cover as a function 
ot 031 for grand fir is controlled by the tendency for the 
host to exist in a suppressed state? the curve for douglas
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Figure 16. Mean percent cover of epiphytes at breast height on 
trunks of Pseudotsuga menziesii^ and Abies grandis as a function of 
trunk diameter. Vertical lines indicate 95% confidence intervals. 
Sample sizes are shown within each bar.
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fir reflects changes occurring with age. Douglas fir bark 
becomes very thick, soft, and absorbent with age, yet 
remains fairly durable. These changes allow a well 
developed epiphyte flora to expand and persist on older 
individuals. Thus, for the two tree species studied, 
percent cover as a function of diameter appears to be 

dependent not only on changing bare characteristics and 
surface age, but also on the tendency for the tree to exist 
In a suppressed condition.
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APPENDIX A 

BRYOPHYTES UF THE SWAN VALLEY

Bryophyte taxa known for the Swan Valley are listed 
alphabetically in three sections; Musci, Sphagnales, and 
Hepaticae. The list represents nay collections except that 
the Hepaticae section has been supplemented with published 
reports by Hong (1975, 1977). Species reported by Hong but 
not collected by myself are referenced to Hong. A total of 
133 taxa are reported here. Species collected only at high 
elevations 01800 m) are excluded from the list.

MUSCI

Aiblystegium juratzkanum Schimp.

Amphldlum mougeotii (B.S.G.) Schimp.
Antitrichia curtipendula (Hedw.) 3rid.
Atrichum seiwynli Aust.
All lacomnium androgynum Schwaegr.
Aulacomnium palustre (Web. & Mohr) Schwaegr.

Bartrania pomiformis Hedw.
Brachythecium albicans (Hedw.) Brid.
Brachythecium collinum (C.MuIl.) Besch. 
Brachytheclum frigidum (C. Mull.) Besch.
Brachythecium hyiotapetum N. Hig. & 8. Hig. 
Brachytheclum leibergii Grout 
Brachytheclum rlvulare B.S.G.
Brachytheclum salebrosum (Web. & Mohr) B.S.G. 
Brachytheclum starkei (Brid.) B.S.G. 
Brachytheclum turgldum (C.j.Hartn.) Klndb.
Br yoerythrophy Hum recurvirostrum (Hedw.) Chen.
Bryun argenteum Hedw.
Hryum caespltlclum Hedw.
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Hryum caplliare Hedw.
Bryum paiiescens Schwaegr.
Bryum pseudotrlquetrum (Hedw.) Gaertn., Meyer & Schreb. 
Bryum sandbergll Holz.
Bryum turbinatum (Hedw.) Schwaegr.
Bryum weigelii Spreng.
Buxbauiia piperl Best.
Huxbaumla viridis (DC.) Moug. & Nestl.
Calllergon giganteum (Schimp.) Kindb.
Campyilum chrysophyllum (Brid.) J. Lange 
Campylium steilatum (Hedw.) C.Jens.
Ceratodon purpureus (Hedw.) Brid.
CLaopadlum bolanderi Best
Ciimaciuffi dendroides (Hedw.) Web. & Monr.
Cratoneuron falcatum (Brid.) Roth.
Cratofieuron filicinum (Hedw.) Spruce
Dasmatodon obtusifoiius (Schwaegr.) Schimp.
Dichodontlum peilucldum (Hedw.) Schimp.
Dicranelia crispa (Hedw.) Schimp.
Ui crarioweisia crispula var. conteriina (Hoiz.) Grout
Dicrariua fuscescens Turn.
Dicranum polysetum (Holz.) Irel.
Dicranum scoparium Hedw.
Dicranum tauricua Sap.
Distlchium capillaceum (Hedw.) B.S.G.
Drepanocladus aduncus (Hedw.) Warnst.
Orepanociadus uncinatus (Hedw.) Warnst.
Drepanociadus uncinatus (Hedw.) Warnst var. symmetricus 
(3 en. & Card.) Grout

Eurhynchiuffl pulchellum (Hedw.) Jem.
Rurhynchlum stotcesii (Turn.) B.S.G.
Fissidens adianthoides Hedw.
Fissidens bryoides Hedw.
Fissidens grandlfrons Arid.
Funaria hygronietrica Hedw.
Grimmia agassizii (Suli. & Lesq.) .esq. & James 
Grimai a alpestris (Web. & Mohr) Mess
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Grimmia alpicola var. rivularis (Brid.) Wahi.
Grimmia apocarpa var. apocarpa Heda.
Grimmia apocarpa var. stricta (Turn.) rfoolc. & Tayl. 
Grimmia atfinis Hoppe & Hornsch. £5 Hornsch.
Grimmia caiyptrata Hook.
Grimmia montana B.S.G.
Kedulgia ciliata Hedw.
Heterocladium dimorphum (Brid.) B.S.G.
Heterocladium procurrens (Mitt.) Rau & Herv.
Honaiathecium aeneum (%itt.) Laut.
Hoaalothecium megaptilum (Suil.) Robins.
Ho mainthecium nevadense (Lesq.) kei. & Card.
Hygroambiystegium noterophilum (Suil. & Lesq. Suil.) 
Warnst.
H/grohypnum bestii (Ren.) Broth.
H/grohypnum iuridum (Hedw.) Jenn.
Hfgrohypnum ochraceum (Wlls.) Loesce
Hylocomium splendens (Hedw.) B.S.G.
Hfpnu* clrclnale Hook.
H/pnun lindbergii Mitt.
H/pnu® paiiescens (Hedw.)P.Beauv.
H/pnun pratense Spruce 
Hfpnui revolutum (Mitt.) Lindb.
Hypnum subimponens Lesq.
Isopterygium seligeri (Brid.) Dix.
lîothecium spiculiferum (Mitt.) Ren. & Card.
Leptobryum pyriforme (Hedw.) Wils.
Lîptodictyura riparium (Hedw.) Warnst.

Lescuraea incurvata (Hedw.) Lawt.
Lascuraea patens (Llndl.) H.Arn. & C.Jens.
Lescuraea radicosa var. radicosa (4itt.) Moenk. 
Lescuraea stenophyila (Roll.) Kind).
Mnium blytii B.S.G.
Mnium orthorryhnchum Brid.
Mnium spinulosum B.S.G.

Neckera menziesii Orumm.
Oncophorus virens (Hedw.) Hrid.
Drthotrichuffl affine Brid.
Drthotrichum hallii Suil. & Lesq. && Suil.
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Orthotrichum obtus It oiium Brid.
Orthotrichum rupestre Schleich. Schwaegr.
Urthotrichum speciosum Nees.
Philoriotis fontana (Hedw.) Brid.
Flagionnium ciliare (C. Mull.) Kopon.
Plagionnlum insigne (Mitt.) Kopon.
Piagiomnium rostratum (Schrad.) Kopon.
PLagionnium rugicum (Laur.) Kopon.
Piagiomnium venustum (Mitt.) Kopon.
Pi agiothecium dentlcuiatum (Hedw. ) B.S.G.
PIagiothecium laetum B.S.G.
PI agiothecium piliferum (Hartra) B.S.G.
PLeurozium schreberi (Brid.) Mitt.
Pogonatum alpinum var. alpinum (Hedw.) Rohi.
Pogonatum urnigerum (Hedw.) Brid.
Pohlla cruda (Hedw.) Lindb.
Pohiia nutans (Hedw.) Lindb.
Pohlia wahlenbergil (Web. & Mohr) &ndr.
Polytrichum juniperinum Hedw.
Polytrichum piliferum Hedw.
Pseudoleskeela tectorura (Brid.) Roth.
FterigynandruiB filiforme Hedw.
PtiliuB crlsta-castrensis (Hedw.) )e Not.
Rhacoaiitrium canescens Brid. var. ericoides (Hedw.) Hampe 
Rtiacovitrium heterostichum var. heterostichum (Hedw.) Brid. 
Rhaconitrium patens (Hedw.) Huben.
Rtiizosnium nudum (Williams) Kopon.
Rbizomnium personii Kopon.
Rhizomnium pseudopunctatum (Bruch & Schimp.) Kopon.

Rhynchostegium serrulatum (Hedw.) Jaeg.L Sauerb.

khytidiadelphus loreus (Hedw.) Warnst.
Rhytidiadelphus triquetrus (Hedw.) Warnst.
Rhytidiopsis robusta (Hook.) Benth.

Scleropodium obtusifolium (Orumm.) Mac. & Kindb.

Scouleria aquatica Hook.
Tetraghis pellucida Hedw.
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Ttiuidiun recognitum (Hedw.) Lindb.
Tinmla austriaca Hedw.
Tortella tortuosa (Hedw.) Llmpr.
Tortula fflucronitolla Schwaegr.
Tortuia prlnceps De Not.
Tortula rurails (Hedw.) Gaertn.
Tortula ruraliformis (Besch.) Dix.
Tortula subulata Hedw.

SPHAGNALES
Sphagnum spp.

HEPATICAE
Aieura pinguis (L.) Dum.
Apoaetzgeria pubescens (Schrank) Kuwah.
Barbilophozia barbata (Schmid, ex Schreb.) Loeske 
Barbilophozia hatcher! (Evans) Loeske 
Barbilophozla lycopodiodes (Wailr.) Loeske
81epharostoma trIchophyllum (L.) Dum. (Hong, 1975)
Calypogeia muelleriana (Schlffn.) (.Mull. (Hong, 1975)
Cephalozia lunulifolia (bum.) Dum.
Cephalozia pleniceps (Aust.) Lindb. (Hong, 1975)
Chiloscyphus paiiescens (Ehrh.) Du b .  (Hong, 1975)
Cti ilos cyphus polyanthus (L. ) Corda.
Conocephalum conicum (L.) Lindb.

Jsmesoniella autumnalis (DC.) Steph-
Jungernannla atrovirens Dum. C= J. lanceolate Schrad.1 
Jungermannia cordifolia Hook.
Jungermannla pumila With.

Lepidozia reptans (L.) Dum. (Hong, 19/5)
Lophocolea minor Nees (Hong, 1975)
Lophozia ascendens (Warnst.) Schust.
Lophozia collaris (Nees) Dum. C= L. rauelleri (Nees) Jorg.3 
Lophozia gillmanni (Aust.) Schust. (Hong, 1975)
Lophozia guttulata (Lindb. & H.Arnell) Evans [= L. 
porphyroleuca)
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Lophozia heterocolpos (Thed.) M. A. Howe (Hong, 1975) 
Lsphozla Incisa (Schrad.) Dum.
Lophozia longidens (Lindb.) Mac.
Lophozia ventrlcosa (Dicks.) Dum. (Hong, 1975)
Mannia fragrans (Balb.) Frye & Clark
Marchantia polynorpha L.
Hatzgeria pubescens Csee Aponetzgerial
Plagiochila asplenoldes (L.) Dum.
P3relia cordaeana (Hub.) Moore 
Porella platyphylla (L.) Pfeiff.
P)relia roellii Steph. (Hong, 1975)
Ptilidlum callfornicum (Aust.) Underw. (Hong, 1975) 
Ptilidium pulcherrinum (€. Web.) Hampe
Raduia complanata (L.) Dum.
Rlccardia multifida (L.) S.Gray (Hong, 1977)
RLccia fiuitans L.
Ricciocarpus natans (L.) Corda
Scapania unbrosa (Schrad.) Dum. (Hong, 1975)
Scapania undulata (L.) Dum. (Hong, 1975)
Tritoaaria exsecta (Schrad.) Loesica 
Tritonaria exsectiformis (Hreidl.) Loeske 
Tritoaaria scitula (Tayl.) Joerg. (Hong, 1975)
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APPENDIX a 

LICHENS OF THE S#A* VALLEY

A list of the 195 taxa that I collected in the Swan 
Valle/ is presented below. Species collected only at high 
elevations (>1800 m) are excluded from this list. The list 
is admittedly weak with respect to crustose lichens 
occurring on rock. Other groups that are probably more 
diverse than the list would Indicate include the brown 

Pacmaiiaa and
Two of the species listed are particularly interesting 

finds. Giadania Bssydamacilea&a has previously been 
reported from only Japan and Alaska. ClâdûQia
gracliilACmls is new to North America. While C. 

BSSUdomaciiëDla appears to be fairly common in the wetter 
Swan Valley forests, Q. aLacilitaLBlia was collected in 
only one location. Dr. J. W. Thomson has confirmed the 
identity of specimens of both species.

Acarospora chlorophana (Wahl. Ach.) Mass. 
Acarospora fuscata (Schrad.) Arn.
Alectoria imshaugii Brodo & D. Hawcsw.
Alectoria sarmentosa (Ach.) Ach.

Bacidla obscurata (Somm.) Zahlbr.
Bacidia sabuletorum (Schreb.) Lett.
Bacldia sphaeroides (Dicks.) Zahlbr.
Bryoria abbreviata (Mull. Arg.) Brodo S. D. Hawksw, 
Bryorla capillarls (Ach.) Brodo & D. Hawksw. 
Bryoria fremontii (Tuck.) Brodo & 3. Hawskw. 
Bryoria friabilis Brodo & D. Hawksw.
Bryoria fuscescens (Gyeln.) Brodo & D. Hawskw. 
Bryoria lanestris (Ach.) Brodo & 0. Hawskw. 
Bryoria oregana (Tuck.) Brodo & D. Hawskw.
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Bryoria pseudofuscescens (Gyeln.) )rodo & D. Hawskw.
Bjellla paplllata (Somm.) Tuck.
Buellla penichra (Tuck.) Hasse 
Bueliia punctata (Hoffm) Hass.
BiellLa retrovertens Tuck.
Caliclum vlrlde
Caioplaca spp.
Candelariella vlteliina (Ehrh.) Mull. Arg.
Cetraria canadensis (Ras.) Ras.
Cetraria chlorophylla (Wllld.) Vali.
Cetraria ericetorum Opiz 
Cetraria idahoensls Essl.
Cetraria merrillii Du Rietz 
Cetraria orbata (Nyi.) Fink 
Cetraria pinastri (Scop.) S. Gray 
Cetraria platyphylla Tuck.
Cladina arbuscuia (Wallr.) Hale & f.Cuib.
Ciadina mitis (Sandst. ) Hale & W.Culb.
Ciadoiia bacillaris (Ach.) Nyl.
Ciadonia cariosa (Ach.) Spreng.
Cladonia carneola (Fr.) Fr.
Cladonia cenotea (Ach.) Schaer.
Cladonia chlorophaea (Fiorke Somm.)Spreng.
Cladonia coccifera (L.) Wllld.
Cladonia coniocraea (Fiorke) Spreng.
Cladonia cornuta (L.) Hoffm.
Cladonia detormis (L.) Hoffm.
Cladonia ecmocyna (Ach.) Nyl.
Cladonia fimbriata (L.) Fr.
Cladonia furcata (Huds.) Schrad.
Cladonia gonecha (Ach.) Asah.
Cladonia graciliforiais Zahlbr.
Cladonia multiformis Herr.
Cladonia norrlinii Vain.
Cladonia phyllophora Hoffm.
Cladonia pleurota (Fiorke) Schaer.
Cladonia pseudomacilenta Asah.
Cladonia pyxidata (L.) Hoffm.
Cladonia squamosa (Scop.) Hoffm.
Cladonia subulata (L.) Wigg.
Cladonia verticellata (Hoffm.) Schaer.
Collena nigrescens (Huds.) DC.
Colleia tenax (Su.) Ach.

Conlozybe furfuracea (L.) Ach.
Cyphelium inquinans (S«.) Trev.
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Da mat ocarpon mniatum (L.) Mann.
Oerraatocarpon moulinsii (Mont.) Zahlbr.
Oe mat ocarpon retlculatum Magn.
DLtnelaena oreina (Ach.) Norm.
Dimeralla diluta (Pars.) Trev.
Oipioschlstes scruposus (Schreb.) Worm.
Evernla prunastrl (L.) Ach.
Ftstuiarlelia ainuscula (Nyl.) Bowler and Rundel
Kypog/nnia 
Hypogynnia 
Hfpogymnia 
Hy pogynnia 
Hypogy nnia 
Hypogynnia 
Hypogy mnia

austerodes (Nyl.) Ras. 
imshaugii Krog 
netaphysodes (Asah.) Rass. 
occidentalis Pike In ed. 
physodes (L.) Nyl. 
rugosa (Merrill) Pike ii ed, 
tubulosa (Schaer.) Hav.

Icmadophila ericetorum (L.) Zahlbr. 
Lscania syringea (Ach.) Th. F r.
Lecanora 
Le can)ra 
Le canota 
Lecanora 
Le cano ra 
Le canota 
Lecanora 
Lecanora 
Lecanora 
Lecanora 
Le canota 
Le cano ra 
Le cano ta 
Lecanora
Le ci de a 
Lecide a 
Le eide a 
Lecidea 
Lecidea 
Le eide a 
Le eide a 
Lecidea 
Lecide a 
Lecidea

cadubriae (Mass.) Hedl. 
caicatea (L.) Somm. 
cinetea (L.) Somm. 
hageni (Ach.) Ach. 
mutalis (Schreb.) Rabenh 
pacifica Tuck, 
pergibbosa Magn. 
pinipetda Korb. 
polytropa (Ehrh.) Rabenh 
tolleana (Hue) Zahlbr. 
rupicola (L.) Zahlbr. 
subfusca sens. lat. 
varia (Ehrh.) Ach. 
verrucosa Ach.
atrobrunnea (Ram.) Schaer. 
auriculata Th. Fr. 
berengeriana (Mass.) 
cinnabarina Somm. 
dolodes Nyl. 
glomerulosa (DC.) 
granulosa (Ehrh.) 
hypocrita Massai, 
insularis Nyl. 
tessellata (Ach.) Fiorke

Ny l.

Steud.
Ach.

Lepraria spp.

Leptogiua lichenoides (L.) Zahlbr,
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Leptogiua saturnlnum (Dicks.) Nyl.
Letharia coluabiana (Nutt.) Thoms.
Letharla vuLpina (L.) Hue
Lobarla hallii (Tuck.) Zahlbr.
Lobarla puLmonaria (L.) Hoffm.
Lopadium pezizoideum (Ach.) Korb.
Massalongia carnosa (Dicks.) Korb.
Microthelia aterrlma (Anzi) Zahlbr.
M/coblastus sanguinarius (L.) Norm.
Mycocalicium sp.
Nephroma bellum (Spreng.) Tuck.
Nephroma helveticum Ach.
Nephroma parile (Ach.) Ach.
Nephroma resupinatum (L.) Ach.
Ochrolechia paiiescens (L.) Mass.
Panharia microphylla (Su.) Mass.
Parmelia disjuncta Erichs.
Parmelia elegantula (Zahlbr.) Szat.
Parmelia infumata Nyi.
Parmelia multispora Schneid.
Parmelia saxatilis (L.) Ach.
Parmelia sorediosa Almb.
Parmelia subaurlfera Nyl.
Parmelia subelegantula Essl.
Parmelia subolivacea Nyl.
Parmelia sulcata Tayl.
Parmellopsis aleurites (Ach.) Nyi.
Parmeliopsis ambigua (Wulf.) Nyl.
Parmellopsis hyperopta (Ach.) Arn.

Peltigera canina (L.) Willd.
Peltigera collina (Ach.) Ach.
Peltigera elisabethae Gyeln.
Peltigera leucophlebia (Nyl.) Gyeln.
Peltigera malacea (Ach.) Funck 
Peltigera polydactyla (Neck.) Hoffm.
Peltigera rufescens (Weis.) Humb.
Peltigera spuria (Ach.) DC.
Peltigera venosa (L.) Baumg.
Pertusaria amara (Ach.) Nyl.
Pertusaria multipuncta (Turn.) Nyl.
Pertusaria trochisea Norm.
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Ptiaeophyscia constipata (Norrl. Nyl.) Noberg 
Ptaeophyscia decolor (Kashi.) Essl.
Pbaeophyscia imbricata (Vain.) Essl.
Ptiaeo?hyscia sciastra (Ach.) Mobera
Physcia adscendens (Th. Fr.) Oliv.
Physcia aipolia (Ëhrh.) Hampe 
Pbyscia dubia (Hoffm) Lett.
Physcia phaea (Tuck.) Thoms.
Physcia semipinnata (Gnel.) Moberg 
Physcia steilaris (L.) Nyl.
Physconia muscigena (Ach.) Poelt 
Physconia perisidiosa (Erichs.) Moierg
Piatismatia glauca (L.) W.Culb. & I.Culb.
Polychidiura muscicola (Sw.) S.Gray
Psora novomexlcana 3. de Lesd.
Psora rubiformis (Wahl.) Hook.
Psora scaiaris (Ach.) Hook.
Psoroia hyphorum (Vahl) S.Gray
RamaLina tarinacea (L.) Ach.
Ramaiina pollinaria (Westr.) Ach. 
kamalina thrausta (Ach.) Nyl.
Rhizocarpon badioatrum (Florke âjs Spreng.) Th.Fr 
Rhizocarpon disporum (Naeg. ax Hepp) Mull. Arg. 
Rhizocarpon geographicum (L.) OC.
Rhizocarpon grande (Florke Flot.) Arn. 
Rhizocarpon riparium Ras.
Rhizo?iaca chrysoleuca 
Rhizoplaca melanophthalma
Rlnodina exigua (Ach.) S. Gray 
Rinodina pyrina (Ach.) Arn.
Rlnodina turfacea (Wahl.) ax Ach.
Stereocauion albicans Th.Fr.
SCereocauion sp.
Thromoiuffl epiga^um (Pers.) kallr.

Toninia aromatica (Turn.) Mass.
Toninia caeruleonigricans (Lightf.) Th. Fr. 
Toninia Candida (Web.) Th. Fr.

Unbilicaria deusta (L.) 8aumg.
Umbilicaria hyperborea (Ach.) Ach.
Uabilicaria phaea Tuck.
Umbilicaria polyphylla (L.) Baumg.
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Umbilicaria torrefacta (Lightt.) Schrad. 
Umbilicaria vellea (L.) Ach.
Usnea spp.
Verrue aria spp-
XanthDparmelia 
Xanthaparmelia 
Xanthoparmelia

cumberlandia (Cyeln.) Haie 
plittii (Gyeln.) Haie 
sphaerosporella (Mull.Arg.) Haie

Xanthsria candelaria (L.) Th.Fr. 
Xanthoria elegans (Link) Th.Fr. 
Xanthoria polycarpa (Khrh.) Oliv, 
Xanthoria soredlata (Vain.) Poelt


	Comparative ecology of structural groups : compositional patterns in the Swan Valley forests Montana
	Let us know how access to this document benefits you.
	Recommended Citation

	tmp.1459884606.pdf.l0ueC

