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CHAPTER 1
REPRESENTATIONS OF RIEMANN SURFACES

In studying algebraic functions, we are interested in a furctior,

W o= w(z), where w is an algebraic function of z, which satisfies an

equation of the form,
Y‘ L3
-Z a.wl = 09
iro 1
with a, € C(z), the field of complex numbers with z adjoined. For the

sake of convenience, this function w will often be represented as

N .

1
.Z a&.w = O,
izo 1

Rational functions are elements of Clz,w), the field of ccmplex

numbers with z and w adjoined. The most general such function has

the form,

with b, and ¢, € c(z).

J

The simplest such function of degree 1 in w is of the form
a,w+a =0, a # 0o

This function is =zingle-valued,; for to each z there corresponds cne

- -
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and only one w,

However; if we have an algebraic function of the second degree

in w;, of the form

2 2
aw" +aw+a =0,a" - 4a2ao# O,

we see

-a, <+ V/ a.% < ha a
1 1 O 24

2a2

and there are two values of w which correspond to each z. In this
casey, w is not a single-valued functiocn of 2.

To see this more clearly, we can simplify the expression

2 .
a,w  + a,w 4 a, = 0O, by letting

M= 2a2w + al.

The expression M is a single-=valued function of we Then we hawve

2 2 2 2
Mmo= 4a2w + hazalw + a; = 0.
Multiplying a2w2 +aw+a = 0 by 4a29 we have

2 2 _ _
4a2w + 4a2a1w + 4a2a0 = O,

2

2 2 2
(bagw” + baja w + ay) - (ay

o ~ 4a2ao) = 0, or

1
M 2 . (ai - 4a2ao) = O,

Then, in general, by use of a linear transformation, we can consider

every second degree equation in w as teing ¢f the form
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-3
M- p(z) =0,

where p(z) is the polynomial in z, ai - 4a2al.

If p(2) = 2z, we have

ie
W = [Z = Te 2 .
If the point z follows a path winding counterclockwise around the
origin, we see that e is constantly increasing, and if z returns to

the starting point, e has increased by 2 7. Thus, on return to the

starting point,

: 2 2 2
w o= J/rel(e + 27) = Te = JTe = = (/Te ’

and w is not single-valued on the z-plane.

As Riemann realized, the simplest way to make this function
single-valued is to define it on a new surface. One way is the
familiar way, cutting the complex plane from O to infinity on the
positive x-axis, placing a similarly cut plane above this "sheet",
and connecting the two sheets in the following way:

Attach the "negative" side (y < 0) of the cut on the bottom
sheet to the "positive" side (y>0) of the cut on the upper sheet.
Then attach the negative side of the cut on the upper sheet to the
positive side of the cut on the bottom sheet.

Then when 2z winds once around the origin, it passes from the

bottom sheet to the upper sheet, as it passes the cut from 0O to
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-l
infinity. When z winds around the origin once again, it goes back to
the lower sheet, across the cut from O to infinity. This corresponds

to the fact that when z winds around the origin twice, e increases by

47, Thus, if w

]
o
-

after z winds around the origin twice, we have

T . ile +
w = \/_=‘/rel(e+w)= Te

ie ie
e . o e
2 2/ 2

In order to make w single-valued on this surface, the lower
sheet is designated as Sheet I, and each point z on this sheet is

renamed

(Zy \lz-)!

o
e )

where z = yTe 4, and O=2=e«2 . The upper sheet is Sheet II,
and each point z on this sheet is renamed

(Z’ 'ﬁ—)’

-JZ corresponding to 22 < e <« 47, Now we have a surface corres-

ponding to the function W = %z, with ordered pairs (z, w), and w
is single valued on this surface.

The surface constructed in this way cannot be realized in three
dimensional Euclidean space, EB. It is desirable to construct a
topologically equivalent surface realizable in EB. We can do this
by first mapping the two sheets, I and II, topologically onto two

spheres,

X" +Y + 2 1.
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To do this, stereographic projzction is used. First, we let the
z-plane coincide with the plane X = O. Then a line is passed through
the point (0, O, 1) and the point (x, y) of the z-plane. The point
(x, ¥, Z), where the line cuts the sphere, is the projection of the
point (x,y) on the sphere. As can be seen, the point (0, 0, 1) is

the image of the point at infinity.

Skéaefiz~

I1l. 1-1

Then the spheres are cut along the meridian circle from the south
pole to the north pole, corresponding to the cuts along the positive
x-axes. (I1l. 1-2). Next, the two spheres are mapped topologically
onto the two hemispheres of a third sphere, called Sphere III. In
order to do this, we first change the rectangular coordinates of the

sphere to spherical coordinates.

o J
. .

Sphevel S pheve Il
I1l, 1-2

We know
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b
X = cos e cos (J

Y = sin e cos (¥

il

Z =sin @7,
where ¢ 1is the angle the line on (X, Y, Z) and (0, 0, O) makes
with the plane Z = O, and e is the angle made by the intersection of
the line through the origin and the point (x, y) on the original
(x, y)-plane, and the x-axis., Thus e is the angle used in changing
rectangular coordinates to polar coordinates, where we have

X =T cos e,

¥ = r sin e.
Now the point (X, Y, Z) on the sphere has the coordinates

(es @)y O 2 0227 -7 2 7,

To take the points on the two spheres into points on the two
hemispheres, for points on Sphere I, we make the transformation I,
with

I:-'[(eea (,0)_]= %9 @) o
For points on Sphere II, we make the transformation r:, with

E(esw) = (2“"'%,49)*’

Now we have a 1-1 mapping of Spheres I and II onto Spherg 1119;
and we shall see that an image of a point z passes from the image
of Sheet I to the image of Sheet II in the same way that z passes

from Sheet I to Sheet II.
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Shee T 1L S‘Fhera..zz 7 Sp

Ille 1-3

The points on Sheet 1 with y > O map into points on Sphere III
with Y > 0, The points with y Z O, but close to 0, map into points
with Y > 0, but close to O, and in spherical coordinates with e
close to, but less than, 7 on Sphere III. The points on Sheet II
with y > 0, but close to O, map into points with ¥ <0, but close to
O, and with the spherical coordinate e less than 2 %, but near 277,

If a point z on Sheet I has x>0, and y « O, but near 0, it
is on the negative side of the cut along the positive x-axis, and
if z continues in a counterclockwise direction, it will pass to
Sheet II across the cut on the x-axis, The image of this point =z
on Sphere I has as its e-coordinate, e < 2 7, but nearly 2 7.
Its image in the hemisphere of Sphere III with O € e £ 2~ has e

very near 2. If it continues in a counterclockwise direction
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direction (e increasing), it will soon pass to the hemisphere with
7 <4 e < 27, which is the image of Sphere II, which is in turn, the
image of Sheet II. Thus the image of z in Sphere III moves from the
image of Sheet I to the image of Sheet II, and passes over the line
@ = 2, which is the image of the cut over which z had to pass,
traveling in a counterclockwise direction, to go from Sheet I to
Sheet II., Similarly, the line e = 2 2" or O is the image of the
line over which z must pass to go from Sheet II to Sheet I, again
traveling in a counterclockwise direction.

Thus the mapping of Sheets I and II onto Sphere III is a 1-1
mapping, under which a point z can wind around the origin in the
same manner as on the original Riemann surface composed of Sheets I
and IT.

If the function w> - p(z) = O is of the form
>
woo=ajz +a,

we cannot make a cut from O to infinity, as before. We know

a
o
= a, + a = fa. [z + —
d 1 o 1 a, °
1
%
If the point 2z winds around the point - o » We can write z as
' 1
% ie
2 m e 4 @
3

As e increases by 27, we have
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H
E;
i
*lo

+
+
w
 oaed
i

i(e + 27)
Ja—lj re _‘]371'\/‘1"'&3 J_ﬁ‘
In order to make a surface on which this function is single-valued,
we proceed as before, except that we make the cut from oao/al to
infinity, along the line through z = 0 and z = =ao/al.

The function

2
woo=a,z + a2+ a

can be factored, so that

wo o= az(z-rl)(z-rz)g

where Ty and r, are the roots of the equation

a 22 + a z +a_ = 0.
o
Then
W = /az !z--rl [z~ e
If z = T+ rele, when z winds arocund Ty but not around r,s SO that

e increases by 27, we have

— [ ile + 27 —
3-2 /I’l + Ire - I"l Z I”2

+- 1

f_ \/Iej'(e + 27) /_—ﬁ“'e Z-T,

ol
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T R

The result is the same when 2z winds around r2 but not rle If =z

winds around both rl and r2, then the arguments of both z-r., and

1

z-r, are increased by 2 77, or

2
w =\/a§jz_=»r+leivfz=—rzei7f
= z-—rzezj'?r - [ [FEL[FE,

Then the cut is made along the line from r, to Tys and the branch

1

points are ry and Toe By attaching Sheets I and II along this cut,

as before, and identifying points on Sheets I and II as usual, w is
single-valued on this Riemann surface. To make this surface realizable
in E5, we map the two sheets onto two spheres; except that this time

we map the points Ty and r2 into (0, 0, =1) and (0, O, 1). This may

be done by first mapping each z-plane into itself by the transforma-
tion

=27 + rlr
M = -
Zl‘l rlr

so that r, goes into 4 = O and r

1 goes into A= =, These images

2
of Sheets I and II are then mapped onto Spheres I and II, which are
in turn mapped onto Sphere III, as before.

However,; if
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the situation is changed. If we factor Zfaizi, we have
=0

W = ag(zer)) (3w,) (ar5),

where Tys Tp and r, are the zmeroes of w. Then

2
X ‘3(
w = /EE' ;ZC Zcri).

If z winds around two of the roots, such as Ty and Tso then the

situation is the same as in the case where p(z) was of degree 2,

namely the argument of (z—rl)(z-rz) changes by 47 and the sign of

to r, and attach

w is not changed. Thus, if we make a cut from Ty o

Sheets I and II as before, when z winds counterclockwise around Ty

OT T, but not both, and not around r z passes from Sheet I to

39

Sheet II., However, when z winds around r, or T but not both,

1

and also around rB, the argument of w2 changes by 4—2} and thus the

sign of w does not change. This suggests z passing from Sheet I

to Sheet II along the cut from r, to Tys and then in some way

1

returning to Sheet I. Therefore, another cut is made from r_, to

3

infinity, along the line through z = 0 and z = rs, and the two
sheets are attached as usual along this cut.

In the same manner, if

= a.z = a Z=T,
- Sa, b 7 ()
by making the cuts from r. to r, and from r_, to Tps and attaching

1 2 5

Sheets I and II as usual,
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w =‘/'a._L: /}:f(z=ri)

is single-valued on this Riemann surface,

However, this new surface, with two cuts instead of one, is
not topologically equivalent to a sphere. On a sphere, any closed
curve may be deformed into a point, but a closed curve on this sur-
face, for instance, which goes from Sheet I to Sheet II over one
cut and continues back to Sheet I over the other cut, cannot be
deformed into a point. However, the two sheets can be mapped onto
a torus, to which the surface is topologically equivalent, as
follows:

First the two planes are mapped stereographically onto Spheres

/

I and II, as beforey; and then cuts are made from r{ to Ty the

images of r, and r2, and from r’ to rl:. (Illo I-4), Next

1 3

Sphere T Sphere /e
111, I-4

/ / .
we imagine the cuts from Ty to rg and from r5 to ré'belng pulled

out in tubes. (I11l., I-5). We know a surface of this type is topo-
logically equivalent to the sphere with the cuts described. Now

there are two spheres with two tubes; each, extended. Next, ri’and
ré'on Sphere I are matched with ri and rég respectively, on Sphere II,
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111, I-5

» 3 ’
Similarly, r. and r4 on Sphere I are matched with r

3

/ ’
and r, on Sphere

3

IT respectively.

Spﬁbrer SP};e,re,ZZ-
I1l. I-6

By imagining this surface to be rubber, as in a balloon,
see that it can be deformed easily in the shape of a torus or

doughnut. {I11l. I-7) !
U

I1l. I-7
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If we have

i 4]
W= ga.z =a TI(z-r,), n 2
28 n 17 (2-74)5 55

to make the usual Riemann surface, we make cuts from Ty to Tps eses

to r eeoy and from T, to =2 if n is odd; or from T, tor

Tok-1 2k ?® -1 n

if n is even, and attach Sheet I to Sheet II in the usual manner. Thus,

n+l

if n is odd, we have the two sheets attached along >

cuts, and if

. n
n is even, along > cuts.

To construct a topologically equivalent surface realizable in
EE, we first map the two sheets stereographically onto two spheres,
as was described for the case when n <4, Then, as in the case when
n =3 or 4, the two spheres are cut along lines corresponding to

the cuts on the two sheets. (Ill. I-8)

heve T S oheve IT
s I11. I-8 prET

Again visualizing the two spheres as rubber balloons, we pull out

n+1

5 o::‘iz-1 tubes, where the cuts were made.

I1i, I-9
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The ends of the tubes are matched as before, and we now have two

n+l

2

1

spheres with tubes, if n is odd, or > tubes, if n is even,

connecting the two spheres., (Il1l. I-10),

Ill. I-10
Again imagining the surfaces to be rubber, we see that the two spheres
can be deformed into one along one of the cuts, and the surface is
still topologically equivalent to our original Riemann.surface. Thus

we have as our Riemann surface for the function

2 »n i
w = 3a.%z
/:Ol
. n+l . . n
a sphere with = - 1 handles, if n is odd, and with 3 - 1 handles,

if n is even. (I1l. I-11). The number of handles is designated by g,

Y

I1i. I-11
and g is called the genus of the Riemann surface which is topologi-
cally equivalent to a sphere with g handles. The corresponding

function
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2
a2w +alw+ao-0

is single-valued on this surface.
It can be shown that the Riemann surface of any algebraic
function is topologically a sphere with g handles, and that the

algebraic function is a single-valued function of the points on this

surface. 1

1 . Ref. (7), page 11.
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CHAPTER 1T
MANTFOLDS

In this section, we are assuming certain elementary topological
ideas and concepts, such as may be found in Hall and Spencer's
ELEMENTARY TOPOLOGY.

To study further the properties of Riemann surfaces, we shall

define and investigate 2-dimensional manifolds, and especially those

manifolds which are analytic. It shall be shown that any Riemann

surface of a given analytic function is an analytic manifold.

DEFINITION 2-1--A'set E is said to be connected if it cannot be
expressed as the union of two non-empty disjoint open sets,

DEFINITION 2-2-=A. 2-dimensional manifold is a connected Hausdorff

space M in which each point of M is contained in an open set U
which is homeomorphic to an open set V in the Euclidean plane E2.
We designate points of E2 by ordered pairs of real numbers,
(x,y)e For P £ U, we let
@(P) = (CPI(P)st(P))s

where qol and 092 are continuous real-valued functions of P and let

@ (B,) = 2, @,(R,) = b
THEOREM 2-1-~A connected Hausdorff space M is a 2-dimensional manifold
if and only if every point of M is contained in an open set homeo-
morphic to a disk K= {(xgy)}(x—a)2 + (y-b)2-< r%?, a, b, and
arbitrary, in E2.

-17-
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-18-
PROOF~--If every point of M is contained in an open set homeomorphic
to a disk in E°, M is by definition a 2-dimensional manifold.
Conversely, if M is a 2-dimensional manifold, let V = §(U),
as &scribed above, with Pog U. Since V is an open set in E2, there
is a gpherical neighborhood of the point (a, b),
K = {(x, 9| (x-a)® + (3-b)® < x°7,

such that KC V. Then B-I(K) is an open set of M containing P_ and

homeomorthic to an open disk of E?

Since the mapping
DU c M -V < B
is 1-1, each ordered pair (x, y) £ V determines one and only one

point P £ U, and therefore (x, y) can be used as the coordinates of

P in U, The ordered pairs (x, y) are called the local coordinates or

ldcél‘parameters of P, under the mapping @. The set of points in M

with local coordinates (x, y), such that

(x—a)2 + (y_b)2 < r°

is called a coordinate disk or parametric disk of radius r about Po.

Some examples of 2-dimensional manifolds are E2 itself, the complex
plane, the sphere, and the torus. The cone
K: 612 + yzz = /K2
is not a manifold, as we can see by considering any open set D in K
containing the point (0, O, O). The set D - {(0, 0, 0)? is
obviously disconnected, However, if K were a manifold, under any

homeomorphism @, the image of D in E2 would contain an open disk A

which would in turn contain the image of (0, O, O). However,
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é_l(A) - {(O, O, 0);? is disconnected and hence its homeomorphic
image

B3 (a) - &0, 0, 0BT =4 - {p(0, 0, 0O)}
is disconnected. But we know that such a punctured disk, A - {§(0, O, 0)%5
is connected. Hence there is no open connected set of E2 which is the
homeomorphic image of D and therefore K is not a manifold.

In general, the set of local coordinates about the point Po is
not unique. First, let o« be a mapping such that
=(x, y) =[;<1(x, Y)’°‘~2(x9 Y)]

is a homeomorphism of V = §(U) onto another Euclidean neighborhocd Ws
Then «¢0, for P £ U, with

<§(P) = =< (P), @ (P)] =

{oc1[®1(®) @ ,(B)] 5 = , [0 () @,(B) ] ¢

is another homeomorphism of U onto an open set of Ezo It can be seen
that DCOQ(P), as given above, is another set of local coordinates of

the point P. In addition, if U1 and U2 are parametric disks containing

P, then Ul/) U, is also a neighborhood of P_. If
b(P) = [ (), @, (P)]
is a local parameter in Ul, and
W(p) = [ v (®), ¢,(P) ]

is a local parameter in 02, then both parameters are valid in Ulﬂ Uz._,,

and

Y[bwl(xs Y)]

defines a homeomorphism of @(Ul N U2) onto \If(Ulﬂ U2)o
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Let G be a region of a manifold M, i. e.; an open, connected
subset of M. Let U be any open set of M such that U/N G £ 4, and U
is homeomorphic to an open set V in E2 under the mapping §. Then
G N U is an open set of M and §(G NU) is an open set in VO E° under
the homeomorphic mapping@9 for open sets map into open sets under a
homeomorphism. Because G is connected; G is also a manifold. Then
we see that a subregion of a 2-dimensional manifold is again a
2-dimensional manifold.

THEOREM 2~2«=Every manifold is arcwise connected.
PROOF-~Let A be the set of points in the manifold M that can be con-
nected to a point Po by a path in M, Every point P in A belongs

to a parametric disk D that is the image under the homeomorphism

ﬁnlof a disk X in Ezo Bach point P, in D can be joined to P by a

1
path that is the homeomorphic image of a radial line in K. There-

fore every point P, in the parametric disk D also belongs to A

1
Thus A is opens But M - A is open, for, if Q£ M - A; Q has about
it a parametric disk Dlg and D' A = ﬁo To see this, if

DN A £ 4, there is a Q, in D /1 A such that Q, can be connected
with PO by a path C in M, However, since D 1is a parametric disk,
there is also a path L in D that connects Ql and Q, such that L
is the image of a radial line L in K /9 the pre-image of D/D

i, eoy QE A, Thus M - & is open. Since M = AU (M - A) and M
is connected, either A or M - A must be empty. Since Po E A,

M -~ A must be empty. Therefore M = A, and thus M is arcwise

connected.
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Because each point P £ M has about it a parametric disk D, the
union of all these disks forms a covering of M.
THEOREM 2-3-~M has a countable base if and only if M has a covering
consisting of countable many parametric disks.

PROOP--Assume M has a countable base G

U 3.7, IfP EM, P has

about it a parametric disk D, and D

H

n

K 4 . o>
YU, U¢ gUnz "2, where

k £ 22, and for some n, P & UI;Q. D. Let Ur: be called UI:(P)o
- . / o=
Then there is a disk D_ such that U/(P) € D_ and §D 3 _, forms
n n n nJh=ys

a countable covering of M.
Assume there is a countable covering of M by parametric

- OO »
disks, znngn; 7 Let V_ be the image of D_ on the Euclidean
plane. Let Rn be the collection of all disks in Vn with points

(bl’ b2) as centers, with bl and b2 rational, and with rational

radii. Then each of the disks in Rn has a pre-image in Dn. Let

Sn be the collection of these preimages in Dno Then

O
ifre = U Sn, G forms a countable set. To show G is a base for
h=/?

My, let VC M be an open set. If p& V, p &€ Dn for some ny, and p
has the local coordinates (cl, 02)0 Since V is open; there is an

¢ > 0 such that the points of the disk D, with local coordinates

(x, y) satisfying
2 2 2
(x-—cl) + (y=02) < &

and b, be rational numbers satisfying:

is in V., Let r, bl’ 5
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r £&9
[p1-01| < %o
Ibz-ezl < f.,

2
. . 2 2 r f
Th th t = § - -
en e parametric disk S (x, y) l(x bl) + (y b2) < =

isanelement of G, and p & SPE G, so that

v= U s..

pev p

Thus every open set of M is the union of open sets of G and

G is therefore a base.

When we are studying a function f defined on a manifold M, we

may consider f as a function of the local coordinates Ewl(P)g(pé(Pljo

where § is the homeomorphism of the open set D containing P onto the
open set K = §(D) in B2, However, if for (x, y) £ K, the mapping A,
with |

Alxs ) = [A 06 305 2005 9) [

is a homeomorphism of K onto A{K) C E29 then 2A°P(P) represents a
change of local coordinates. We must be certain that the properties
we study in terms of a local coordinate system are not lost if we
change to a different coordinate system, as in the homeomorphism
above. For example, f is continuous in a neighborhood U of a

point Po if and only if, for the local coordinate system
3() = [0, (®), @, ()} = (x, ¥)s

valid in U,
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=1
£[87 (= 7) ] = gz, ¥),
is a continuous function of the two variables w and y in @(U)o
If ¥ is the homeomorphism of a set V C M into EZ, and
UNV A4, then, for P €T NV,
TE) = [o, @y, (®)] = (x5 v;)

is a new set of local coordinates of the point P valid in U f)v,, and
=1
(x, ¥) = $0 " (xps 7)) =

@[w‘;l(xly 1) ;1(::19 )] =

ZCPl[‘” Il(xly Yl)swgl(xls yl)]9C02[w Zl(xls yl)vwgl(xls yl)Jg

is a homeomorphism of Y(U N V) into §(U0 V). 1Ir
Q—l(x9 y) = l?l(xla Yl)s

then

ffénl(xs Y)] = f[u?nl(xlv yl)]

= g[u}'l (X19 yl)s ‘\VZ(XISJ yl)] = h(xlv yl)
is still a continuous function of (Xlg yl)o

Since we are interested in analytic functions, and we want to be
able to talk about the differentiability of functions, we find it
convenient to introduce the concept of a differentiable manifold.
DEFINITION 2-3--A real-valued function defined in a region RC E2

is said to be of class _QE if all its partial derivatives of

order <£n exist and are continuous in R.
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If two real-valued functions, f‘l and fzg are defined in a

region R (C EZ, and fl and f2 are of class Gn9 then fl and i‘2

determine a mapping £ of R into a subset of E29
f:R —> f‘l(R) x fz(R),,

which is of class C°.

DEFINITION 2-4--The manifold M is a differentiable of Cl manifold

—

(1) 4if there is given a collection %Iig Qigi‘éls where for some

index set I, iU:,}S seT is an open covering of M and Qi is a
homeomorphism if Ui onto an open set of E2 -=the mapping §i
defines asystem of local coordinates in the set Ui =<and

(2) if, when U, N U, £ 4, the b_é(g'f);l) is a C' mapping of 3,(v,0T,)

into Ej(Uj_ ) Uj)o
The collection ZUi, @3 ieT is said to define a differentiable
structure in the manifold M. Let {Vj“ﬂfj}jaJ be another differen-
tiable structure defined on M, Then{UiS, §i?iaI and %Vj”y,é};jeJ are
said to be the same, if the covering obtained by taking all the
open sets in iUi}i&I and{?-"j}jf_‘]. with their respective mappings
i

9. and ]‘Vj satisfies (1) and (2) above.

A differentiable manifold is defined as a manifoid together

with a set of allowed local coordinates (those defined by

[Cpil(P)’ cpiz(P)]g with ﬁi being an allowed homeomorphism of Ui

onto an open subset of E2)9 which are the only local coordinates

to be used.
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If f is a real-valued function on a Cl manifold M, then in each
parametric disk U, f may be expressed as a funciion of the local
coordinates in U.
DEFINITION 2-5--The function f is said to be of Class gi on M when
f is a C1 function of all the allowed local coordinates of each
parametric disk.
Since the changes of coordinates on a Gl manifold are of class

1, and a C1 function of a C; function is a Gl function, f is still

C
of class C1 on a set UC M under a change of local coordinates.

We remark that even though f is differentiable on a set U with
respect to a given set of local coordinatesy; f may not be differen-
tiable with respect to another set of local coordinates. TFor
example, for P £ U, let

0(P) = (%, ¥)
be a set of local coordinates such that
e[ (x, ¥)] = &(x, ¥)
is a differentiable function of (x, y) in §(U). Then let W ve
another homeomorphism of U into E29 with
V(P) = (xls yl)
and such that

x =/‘41(x19 }'1)9 y = /“2(x19 Yl)s

with /Ml and /42 continuous functions of x. and Yqe However

1
[T (x v ) = el (x5 ¥y)s M (x )] = h(x )

1’ 9N 1V J1le Mty Ji ) = AWKy Ty
may not have partial derivatives, for a differentiable function of a

continuous function may not be differentiable, Therefore more struc-
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ture on the manifold is needed.
DEFINITION 2-6-- The manifold M is called a (complex) analytic
manifold or an (abstract) Riemann surface
(1) if there is given a collection ZUig Qg}ielg where, for the

index set I, ivigiél is an open covering of M and_pi is a

homeomorphism of Ui onto an open set in the complex z-plane; and

(2) if, when Uy N U;j # #, then QJ(@;]') is a conformal, sense-

preserving mapping of (I)i(ui N UJ.) onto @J.(Ui N Uj); that is,
W= ﬁjfézl(z)l = f(z) is an analytic function of z in @i(Uir)Uj)o
Since éj@gl) is 1-1, £'(z) # 0. The mapping ?bi defines local

coordinates in Ui9 and iﬁig O%}iél defines an analytic structure in

the manifold M. Another collection {ﬁjglyhjgeJ defines the same

analytic structure on M if the collection of all open sets {ngiﬁl

and ingng together with the allowed mappings satisfy conditions
(1) and (2). Analogous to the case of differentiable manifolds, a
Riemann surface is a manifold together with a certain set of allowed
local coordinates, and only these coordinates are to be used.

Not only may a point Po € M have several sets of local coor-

dinates, because Po may belong to more than one Ui9 but if
PEU, §(P) = z £ §(U), and if w = £(z) is a 1-1 conformal mapping
of ¢$(U) onto an open set of the w-plane, then f[ﬁ(P)] =W = 9w + iw,

is also a set of local coordinates of P, If @(Po) = z_s then the

parametric disk D = Ezl lzazo‘ < r?g for r sufficiently small, is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



contained in U, Setting

(z - z)

r

w

there is a new local parameter

v = Y(P)
with W(P,) = 0 and fe| £ 1. Thus every point P £ M is the
center of a parametric disk D = iwl[w[ < 130
DEFINITION 2-7--If f is a complex-valued function on M, then f is

called analytic at PO if, in terms of the local parameter,

z = §(P), with §(Po) = 0, the function f[@gl(z)] is an ana- -

Jytic function of z for z < ry > 0. [Notemathere is a series

Ta - c57N (),

convergent for zZ 4TIy, as we knowo]
Since a change of local coordinates involves functions of the

type 6i(§31), which are analytic if M is an analytic manifold, f is

analytic for all sets of allowed local coordinates in U if f is
analytic for the set of coordinates gz =@(P)9 P £ U, because an
analytic function of an analytic function is again analytic.

While the functions considered so far have been mappings of a
Riemann surface into the complex plane, we shall also consider
mappings, f, which take a Riemann surface S1 into a second Riemann
surface S,.

2
Let P, € S, and f(Po) = Q & 8, Let ¢ be the homeomorphism
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of U, containing P_, into the z-plane., Let W be the homeomor-
phism of V, containing Qo, into the z-plane. Let z = @(P) and

w=T(q). Then f is said to be analytic on S, if the composite

function
we TEE()] S = a(2)
is an analytic function of z for all P E:Sl.
DEFINITION 2-8-=Two Riemann surfaces such as S1 and 82 are said to

be conformally equivalent if there is a 1-1 analytic mapping of

Sl onto 82.

From the definition of two conformally equivalent surfaces and
the definition of an analytic complex=valued function on a manifold,
it can be seen that any open set U of an abstract Riemann surface
M with a given allowable mapping @ is conformally equivalent to an
open set of the z-plane; namely, E(U)° Alsoy, if V is another open
set of My, with the allowable mapping ¥, and with U 1V % ﬁp then
U NV is conformally equivalent to both §(U N V) and (U AN V).
Thus, any Riemann surface consists of small neighborhoods patched
together so that overlapping pieces fit together conformally,

When we study analytic functions in the z-plane, we are led to
the construction of Riemann surfaces on which these functions are
single-valued. Usually, these surfaces are pictured as several
s.heets9 each a replica of the z-plane, lying over one another, and
connected appropriately.

In this section, it will be shown that this Riemann surface
is an abstract Riemann surface or analytic manifold. The analytic

functions that have been studied so far have been of the form
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or have been reducible to this form. The most general analytic

function is of the form

P(z-a) = "Zan( z-a)",

These power series will form the building blocks for the Riemann
surface of an analytic function.

The function P(z—a) coverges either in the whole z=plane or in
a disk D = i'z[[z—al 418 and perhaps on part of the boundary.

DEFINITION 2-9--A regular function element is defined as a power

series, P(z-a), which converges to a regular analytic function
in D = az ‘[a—zl <r}9 where r is the radius of convergence. The
point z = a is called the center of the function element.

Since
z - a = (a-b) + (b-a),

we have if l|a=b| < Ty
: n
P(z-a) = 2a (z-a) =
n:on

:-Zooan(z -b+b-a)= :ijoan [(z-b) + b-a)]".

Then we can use the binomial theorem to get

P(z-a) = Q(Zwb) = :ijobn(z—b)ng

where

b = oZo a, ( in)( b-a) i-n

n =N 1
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Because |b-a|l<r and Q(z-b) is simply a rearrangement of the
terms of P(z-a) in the circle {;llz-alé'ry, the radius of conver-
gence of Q(z-b) is at least as great as r - |b-al, or the distance,
on the line through b and a, from b to the nearest point on the
circle {z][z—al = r8% If the radius of convergence of Q(z-b) is
greater than r, it is said the function P(z-a) has been extended
beyond the disk {:zl |z-a| <« I‘?o The function Q(z-b) is called a
direct analytic continuation of P(z=-a).

If we have been successful in continuing P(z=a) beyond

i;||z—a|<.r2, we may be successful in extending Q(z-b) beyond

gé‘lz-b|<:rb}, where Ty is the radius of convergence of Q(z-b).

From this idea we develop the idea of a chain,
DEFINITION 2-10--A chain is a finite sequence of disks,

Kl’ K2, cooy Kn’ so arranged that if ai is the center of
Ki’ i=1; 2, seoy n, and T, is the radius of Ki’ then

Ia |14ri, or the center a,

i+l of the disk Ki+l lies

i~ 41
within the disk K.

DEFINITION 2-ll--Analytic continuation along a chain of disks =--

Let Kl’ K2, vosy Kh be a chain as defined above. Let

P, = Pi(z-ai) be a function element with K, as its disk of

convergence. If Pi+1(zmai+1) is a direct analytic continuation
of Pi’ i=1; 25 cocy Ny Pl is said to have been continued ana--
lytically along the chain of disks, Kig K29 ooy Kna

DEFINITION 2-12--Analytic continuation along a path -~ Let C = (¢, I)
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be a path in the z-plane, with z = o(t), 0< + £ 1, Leb
«(0) = a and ©(1) = b be the end-points of this path. Let

P = Po[z-= d1(0)] = Po(z-a.)
be a function element defined at z =2{0) = a. To each t £ I,
we can associate a function element

P(t) = P, Jz-o(t)],
defined as followss

Let % € I and let r(to) be the radius of convergence of

the function element Pt o If tl has the property that

o
o‘(t) € iZ“Z- (to)] < r(to)}, for to < t < tl” we require

P, +to be a direct analytic continuation of P along C. Thisy

tl to

of course, excludes the necessity of Pt being a direct analytic

continuation of Pt simply because C winds back into the circle
o

of convergence after once leaving it. However, because C is
continuous and because the radius of convergence of

Pto):z- (to)] > O--otherwise Ptofzm (to)J would not be

analytic in a neighborhood (analyticity is not defined for a

point )-=for r(to) > 0, there is a & >0 such that \tmto‘ < &
implies |<=<(t) - oc(to), < (%)

If the conditions listed above have been satisfied, we

say P, = Pl[z«=°t(l)] = Pl(Zwb) has been obtained from

1

P = Pofz-aqc(o)] = Po(z-a) by analytically continuing P_ along

the path C, We could have instead obtained P0 from Pl by

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-32-

continuing P, along the path ¢t,

THEOREM 2-4--Analytic continuation of a given function element Po

along a given curve C always leads to the same function element

Pl.

PROOF-~Let Po be identically equal to ng and let P, and Qt be the

t

continuations of Po and Qb’ respectively, along the path

C = (@< I). Let E be the subset of the interval I = Etlo £t < 1_?

consisting of those t for which Ptf'th The subset E contains

the point t = O; so that E % ﬁo For all tog P and Qt converge

o] o]

t
in a circle, {zllzm (to)) < E(tozgg where E(to) is the minimum

of the radii of convergence of P and Qt » Since C is con-

o o]

t

tinuous, there is a.S(to) such that if |tnto| <,6(to)9 then

|o<(t) -ac(to)l <€(t ). Hence, for lt_tol < &6(t), P, and Q

are direct analytic continuations of P and Qt o respectively,
o

t
o

If t_ € E, then Pto = Q_tos, and P, T Q, for ltwto| < 6 (-to),

Thus E is open relative to I.

I1f to is a limit point of E; then if the minimum of the

radius of convergence of P

v E’ ) .
, and Q% is (‘to)9 there is a

o o g(to)

2 o

/ -
5°(t,) such that if ‘t—to| Z B (to), then ac(t)=.o<(to)|<

Let t, bg a t such that ‘tlatol < g(to), Then

E(t)
Id(tl)-é(toﬂ ’d 20 ; and P, = Q, . However, because

tl 1
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[d(tl)-w(t ” ¢ <:E(to), P, is a direct analytic continuation
° 1

of P and Q‘t is a direct analytic continuvation of Qt « But the

?
to 1 o]
radius of convergence of both P and Qt are equal to or greater
1 1

()  £())
- - > - o . O s
than €(t_) |a<(t1) x(to)l_ E(t)- — 2% or o(t_)

t

belongs to the circle of convergence of Pt = Qt , and in this
1 1

circle Pt z Qt’ so that Pto;-'_' Qtoo Thus t, £ E, and E is both

open and closed, relative to I, so that E = I. Then P, - Q

t t

£ =
for all t I, and thus Pl = Ql.

THEOREM 2-5--The radius of convergence r(a) of the series P(z-a)
is either identically infinite or is a continuous function of
the center a.

PROOF--If r(a) = =0, and Q(z-b) is a direct analytic continuation
of P(z-a), then

r(b) > r(a)-|b-a] = oo =|b-a| ==

If r(a) < =9, choose b such that |b-a]| < %E—Q, and

r(b) 2 (a)- |b-al 2 Z2),

Then |a-b| < ﬂ—g—)— < r(b), so that a lies in the circle of con-
vergence of Q(z-b) and

r(a) 2 r(bv)=] a~b|.
Then

r(b) -r(a) 2 =|b-a
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and
|a=bl 2 r(b)-r(a),
so that
(o)-r(a)| £ [b-al,
and thus for [b-a|arbitrarily swall, |r(b)-r(a)| is arbitrarily
small, and r(a) is a continuous function of a.

THEOREM 2-6--If the continuation of the function element P0 along a
curve C = (°<, I) is possible, it can always be accomplished by
analytic continuation along a finite chain of disks.

PROOF--Since the radius of convergence r [%(t)] of the function
element P, is a continuous function of t, and because rE%(t)) > 0,
it has a lower bound & > 0. Let the sequence O = to < % 49..<tn==1

1

be chosen such that ld(ti+l)=q(ti)|<' & oi=1y 6009 No Then
the sequence of disks K, = gz,|z=cx(ti),< r[éc(ti)lfg

i=0, 1y ooy n, forms a finite chain, and Po’ PJ's g coo P

1 1

form an analytic continuation along this chain of disks.

What happens if P_ is continued along a curve Coéxbg I), from

]

cxo(O] a tocxb(l) = b, and then Q ., with Q = P , is continued
along a second curve, Clexig I) with end points:xl(o) = a and

is "sufficiently"

]

c&(l) b? 1Is QI'E P,? The answer is yes, if C

1 1
close to C .

o
THEOREM 2=T7-=Let 5 be the minimum of the radius of convergence

rE<(t)) of the function element P Let Cléxlg 1) be any other

to
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£

curve witho(l(o) = a and «1(1) = b, such that «l(t)» “o(t) <

(the precise meaning of "sufficiently" close). If Q. is the
function element obtained by continuing P0 = Qo along the curve Cly

then Pl = Q."l.

PROOF--Let ZF{S? s with t. < ¢ =0, t. = 1, be a sequence
i)i=o i n

. & X .
such that for all i, Fx(ti)wa(ti+1) <. If K; is the disk

= i+1° %o

Iz-c&(ti)|.< r(a«c(ti))9 i = 0y eeey Ny then the chain of disks

Ko’ ceey Kh gives us the continuation of Po to Pl by a finite
succession of direct continuations. Let Li represent the line
segment joining cxo(ti) to C*l(ti). If we continue a function
element P, from«d%(t) to any point ¥ such that kx(t)—*v'}41(a<(t)),
along any path lying entirely within the circle K = {ﬂlz~c{(t)l
<r{ex(t)) , the function element P will be the same, for each
such direct continuation is simply a rearrangement of the terms of
the original series. Therefore, if we continue P from a to o<o(tl)

and from a to CKl(tl) and then to c{Q(tl) along L;lp we obtain

the same function element Pt « Next we continue Pt along the
1 1

;. along Lo, to c:(l(tl)9 then along

C, to cxo(tz). If we continue P .

‘ — -1
lerom c%l(tl) to a(i(tz) and then along L7 to 5(0(t2), since

(o< (£,))2 Toc () = [ (0)= = (8,)]

5 > 5
2 x(ex_(0)) - £ 22,
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we see that all a.’j(ti)9 j=0, 1,1 =0, 1, 2, lie within the

radius of convergence of all the function elements P, , i = 0, 1, 2,

12

and Qt s 1 =0, 1, 2, and therefore these function elements are
rearrangements of each other. Similarly, it can be shown that

analytic continuation of Pt
2

= K
on L, from o(t2) to l(tz), on C

¢
along C_ from<m%(t2) to o(tB) and

, from Oi(tz) to‘*i(tB)

and from<Xi(t3) to<7%(t3) on L3 lead to the same function element

P, . Now we have continued Po along two paths to get P We

s s

can continue this process for a finite number of steps, till

we get toczg(l) = b, and P, T Q.

If we cannot continue P_ along a given curve C = &<, I) at a

point t =T, (P0 can be continued for O £ t < t, for t+ <%, but

not for t_ >C ), the point <(T) is called a singular point relative

to C and P .
o

DEFINITION 2-13--Analytic Function (Weierstrass)

The (complete) analytic function is the set A of all
funetion elements obtainable from a given function element by
analytic continuation.

It is easy to see that any function element of A can be
obtained from any other element of A by analytic continuation and
furthermore, from THEOREM 2-6, in a finite number of steps. Also
if two such sets have one element in common, they are the same,
or identical.

If P(z~a), with
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P(a-2z) = a + h?fai(z-a)is

belongs to an analytic function A, then ao is called a vglue of

A at the point z = a, Let P, . (z-b) be a function element continued

10

analytically along a given path, C_ = G:%g I), with endpoints

o(O(O) =b andcxo(l) = a, Obviously, P.. can be continued analyt-

10
ically along any path, C, = Gxi, 1), with‘%i(o) = b and=%&(1) = a,

so that we may have several different function elements of A with
different values at z = a. Let P;j(z—ci(tj)) be the function ele-
ment defined at o<i(1) = a, Thus

s

P._(z-a) = a 432. Z=8 1 i=1; 25 oooe
11( ) qp ’:/3911( ) 9 b4 s g

and the value of Piq at 2z = a is a Therefore the analytic

j0°
function A is multiple-valued at z = a Jjust as was the analytic
function w for which w2 = 7z, the first such function we studied.

Because we want to study A as a single-valued function, we
shall associate with A a manifold, Mﬁg on which A will be a
single-valued function.

Since A is the totality of function elements P({z-a) derived
from a given function element P; we see that the multiple-valuedness
of A arises from different continuations of P along different paths,

giving rise to different function elements, P(z-a), Q(z-a), etc., at

Zz = a, Thus we see we can consider the set of ordered pairs

(a,.P(z-a))° Denote this set M,.

DEFINITION 2-14--We shall call two pairs, (a, P(z-a)) and (b, Q(z-a))

equivalent if
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(1) a=1

(2) P(z-a) = Q(z-b) in their common circle of convergence. To see
that this is an equivalence relation,

(1) Clearly (a, P(z-a)) = (a, P(z-a)) for a = a and P(z~a) = P(z-a)
in {z[h-a[ < r(a)}.

(2) 1If (a, P(z-a)) = (b, Q(z-b)), then & = b means b = a, and if
P(z-a) = Q(z-b) in their common circle of convergence, then

Q(z-b) = P(z-a) in their common circle of convergence, so that

—

(b, Q(z-b)) = (a, P(z-a)).

(3) 1f (a, P(z-a)) = (b, Q(2-b)) and (b, Q(z-b)) = (c, Be-c)), then
a =band b = ¢ implies a = ¢, while if r(a) < r(b), the common
circle of convergence of P(z-a) and Q(z-b) is |z-al < r(a), while
if r(a) 2 r(b), the common circle of convergence is |z-bl < r(b).
Similarly, if r(b) £ r(c), then the common circle of conver-
gence of Q(z-b) and R(z-c) is |z-b| ¢ r(b), while if r(b) = r(c),
the common circle of convergence is |z=cl-< r(ec). If r(a)s r(c)
<r(b), certainly P(z-a) T R(z-c) inside |a-z|< r(a)L |z-cl<r(c),
the common circle of convergence of Q(z-b) and R(z-c). Similarly,
if r(a) € r(v) £r(c), P(z-a) = R(z~c) inside |z-a] « r(a). 1In
fact, inside |z-al < r(§) = min (r(a), r(b), r(c)), we know

P(z-a) = Q(z-b), and Q(z-b) = R(z-c), so that in this circle,

P(z-a) = R(z-b), so that (a,P(z-a)) = (c,R(z-c)).
To make ME an analytic manifold, not Jjust a manifold, we define
a topology in MA'

Let (a, P(z-a)) & M,, and let Kp(a) in the z-plane be any disk

|z-a| L P r<r(a), the radius of convergence of the function
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element P(z-a). A disk D about (a, P{z-a)) is the set of points
Uv, a(z-b) |b & Kg(a) and Q(z-b) is a direct continuation of
P(z—azg. Then we say V C M, is open if for each point (a, P(z-a)) € ¥V,
there is a disk D about (a, P(z-a)) such that D C V. To show the disk
Ddescribed above is open, let (b, Q(z-b)) £ D be any point of D.
Then izq\zib[{p—[a-blg #£ #s for (b, Q(z=-b)) £ D means |b-al > C.
Then, because any such z 7 lies within Kp{a), there is a function
element R(z-z’) that is a rearrangement of the terms of P(z-a).
Because z’ lies within the eircle of convergence of Q(z-b) and since
Q(z-b) is a rearrangement of the terms of P(z-a), R(z-z”") is a
rearrangement of the terms of Q{z-b) and thus a direct analytic
continuation of Q(z-b). Then any point in D has about it a
parametric disk of the same kind as D, and we see D is open.

We now show that this definition makes MA a topological space.

(a) The empty set % is an open sety; since no element of ﬁ fails to
satisfy the condition.

(b) The whole set M, is an open set, for if a point (ayP(z=2)) &€ M,

then a disk D about (a, P(z=a)) contains only elements of the
form (b, Q(z-b)) satisfying the above condition. However every

element of the form (b, Q(z-b)) is an element of M,, so that,

since (b, Q(z-b)) £ D, DC M,. Then by the definition given
above of an open set, MA is open.

(¢) 1If A = U Ax, A, open, then A is open. For if (a, P(z-a)) € A
oc &€ I, there is a D C A such that (a, P(z-a)) £ D C A CA,

and thus A is open.
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; open for all i, then A is open. To

show this, let (a, P(z-a)) € A. Then (a, P(z-a)) &€ Ai” for

N
d) IfA=/NA,, with A
1
MEN

i=1, 2, «esy n. Each such A, also contains points (b, Q),
with [b-a| < Py < r(a) and Q a direct analytic continuation of

.
P. Then A contains all point (b, Q) with \bgal<: min.zfigizf

and with Q a direct analytic continuation of P, and the set of
these points forms a disk about (a, P) in A,

To show MA is not only a topological, but a Hausdorff
space, we must show if (a, P) = (a, P(z-a)) and (b,Q) = (bQQ(zmb))
are two points of M,, then there are two disjoint open sets,

A

V, and VQ’ containing (a, P) and (b, Q), respectively.

We must consider two cases, namely:
(1) a # b and
(2) a =01, but P 7 Q.

(1) if a # b, we can find two disjoint disks in

a-b ?
2 P

E2, Di = iz“z-a]<-2523: D, =={z“z~bl < s and in D

19

we can find contained in D, a disk K(a), with P converging in

K(a) and in D,, a disk K(b), with Q converging in K(b). Then, in

2

M,, let U be the set of points (al, Pl), where a1€ K(a) and P

A 1

is a direct continuation of P, and let V be the set of points

(bl, Ql) where b, & K(b) and Q, is a direct continuation of Q.

Obviously (a, P) £ U, and (b, Q) £ Vo Then UN V = #, because

they are the homeomorphic image of K(a) M K(b) = 4.
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Y,
FP< Mz

I11. 2-1
In the second case, (2), if a = b, P Z Q, let Kp(a) be the
disk containing a = b, on which both P and Q converge. Let U be

the open set consisting of points (al’ Pl) where a, £ Ko(a)

and Pl is a direct continuation of P. Let V be the open set

consisting of points (bl’ Ql) where b16 Kp(a,), and Q,l is a

direct continuation of Q. Then UNYV = g, for if UV £ £,
there is a point (a/, P') =0’, Q) £ TNV, witha ' = b 5

p’= Q’. But this means thaty, in the z-plane, we have continued
P from a to a’ and then back to a = b, never leaving the circle
of convergence Kp(a), and yet have arrived at a different
function element Q. But this is impossible, since every
function element arrived at without leaving Ke(a) is only a

rearrangement of P. Then (a, P) £ U, (b, Q) £ V;, and UN V = 4.

Thus we have shown MA is not only a topological; but a Hausdorff

space.

I1l, 2=2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



T,
DEFINITION 2-15--If the point (a, P) £ M,; then the point a in
the z-plane is called the projection of the point (a,P) on the
z-plane. If V is a set of points in MA’ then the projection of
V on the z-plane is the set of points €z = al(aﬂ P) £ Vji

THEOREM 2-8---IMA is an analytic manifold. TFirst we show that MA

is a manifold. The'projection mapping (@ described above takes
each parametric disk D into the corresponding disk Kg{a) = ¢Z(D),
where (a, P) is the center of the disk D and lb=a|<‘p o for any

(b, Q) £ D, and witthD(al, Pl) = a;, for all points (al9 Pl)a D,

We want to show MA is connected. To do this we show MA is

arcwise connected,
Let (a, P) and (b, Q) be two points of M,o Then there is
a path C = (&, I) in the z-plane such that x(0) = a, (1) = b,

and P = Po’ continued along C by analytic continuation, gives

P, = Q at (1) = b. We want to consider the points
(), Pt) M, and show that the set of these points is indeed a

path joining (a,P) and (b, Q) To show Y= 3<X(t), p)| 0£t213,
is indeed a path, we show &X(t), Pt) is a continuous mapping of

+ &
. Pttt V ittt ¥ »

O +-3 7;::- ot &

7

(°<(ﬁ0)f£

Ili., 2-3
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I-= 0,1 into MA‘ If U is a neighbdrhood of a point
( (to), Pto M, there is a disk, K ( (to)),,
lying within the projection @(U) of U on the z-plane. Let £ be

small enough, also, so that Kp(x(to)) lies within the disk of conver-

gence of the function element P That is,

t o
O

Kobe(t,)) €@ (1) Loffa- (1) & r((t,)) 5 where réc(s,)) is

the radius of convergence of the function element Pt (zw((to))e
o]

Then there is a & >0 such that x(t) £ Kp(«(to))p when |tmt0|< S

If lt-—tol < %9 we know, theny, that Pt is a direct continuation of

P_ , and because A(t) £ Kf’(o((to)) C @(U), we know @E<(t), Pt) € U,
o

Thus €<(t), P,), for 0< ¢ =1, is a continuous mapping of I =[0, 1]

into MA" and MA is arcwise connected and therefore connected.

Therefore MA is a manifold because it is a connected Hausdorff

space, each of whose points is contained in an open set homeomorphic
to an open set in the z-plane which is homeomorphic to Ezo
To show M, is an analytic manifold, we must show M, satisfies:

A A
(1) there is a collection (Uig(,ﬁi) such that the U, form an open

covering of MA and (ﬂi is a homeomorphism of Ui onto an open set of

the z-plane, and

(2) if Uiﬂ I{_j # 4, then on((p;]') is a conformal mapping of QOi(Ui 0 U;‘j)

onto C% (Ui N Uj)o

To show (1) we take for the set of U,C M, the parametric

i A
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disks about the points (ai, Pi) of MA’ and for the mappings (pi

the projection mappings such that Cpi(a.i, Pi) = a; = z. To verify

(2), if Uiﬂ T.B;é #, there is a point (aig Pi) = (ajg Pj) € U, M Uj

a.ndcpi(ai, Pi) = a, wj(ajg Pj) = a5 = 85, Then

27 (a)) = ay

=1
= .\a.)) =wp.la., P.) =@w.(a , P.) = a..
@sko;(2)) = ps(a;s B;) cpJ(ajp PIERS
Thus if Ui n Uj ;4 pfy Cﬂj((p;]') is simply the identity mapping, which

is certainly a conformal mapping.

DEFINITION 2-16--The analytic manifold MA is called the analytic

manifold of the regular function elements of A.

If P(z-a) is an entire function, that is, if P(z-a) converges

for |z-a| < o9, then the analytic manifold M, associated with P{z-a)

is the z-plane, for the pro ection of the disk of convergence of any

function element (a, P) is the disk Kr(a)(a.)s, where r(a) is the

radius of convergence of P(z-a), but in the case of an entire func-

tion, r(a) = =2, so Kr(a)(a) is simply the z-plane, and thus the

z-plane is conformal to MAg the analytic manifold of the function

P(z-a), and thus MA may be considered as the z-plane. )}H_ ez—h‘)
. ?_ —
&

e S
y&"he?
(h
™ (-2 =(Z,V=
\ o N A==

I11l, 2=k
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However, the function yz, which we considered before, is not

single-valued on the fihite plane. Expanding P(z-1) = [z, we have
P(z-1) = VB = 1 + 2(z-1) = £(2-1)% + 2=(2-1)° + ...

and the radius of convergence of this function is 1.

. . 18
If z =1 + re®, P(z-1) = P(re*®) = yTe 2., If we continue
P(z-1) along the path, with r(t) = e’ 3t 0« <1, we find P,

converges in {zllZmez»itI 4.1? and

- a‘”i o - 3 .
P, = o it +-% e t(z—eZ%‘t) »-% e 37>:Lt(z-==,e2?j'-';)2 + ooe
Ift =1,
73 i >
z(1) = P, = e 1(1) = e = 1.

Therefore P; = -P . Then the two points (1, Po) and (1, —PO) of

the analytic manifold of the function 2z have the same projection
27it+2 7
e )

on the z-plane. If Pl is continued along V' with v'(t) =

we find

Z =P, TP,

Pl" 1 o

Then the point (1, Pl,) = (1, PO). Thus we have continued P_

. L7 ¢ i
along the path v" with v"(t) = e » and have arrived at the
original function Po° If we take any point zq % O, we have the
same situation, with the two points (z, VZ) and (z, -/z) £ Nb@?

projecting into the point z of the z-plane, and as z winds around

the origin once, the corresponding point on qu.goes from (z, Vz)

to (z, =/2), and when z winds around the origin a second time,

goes from (z, -/Z) to (z, j57° Thus MJE'haS as one familiar model
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the two planes, connected as usual along the branch line 0 £ x <<u,
Up to now, we have considered functions that can be represented

in the form

£(z) = P(z-a) = 7 a (2-2)%
n.—.on
which are regular for
|z=al < r(a).

Now we are going to consider functions or elements in which a is a

singular point. In such a function we have one or more terms of the
function of the form

a_n(zma)an, n an integer > 0,

so that the function approaches =2 ag z approaches a. Such a
function is called a singular function element and the point a is
called a singular point of this function element. We may represent

a singular function element as

s() 2 - int

= a an integer
Q{’( n=v 1(14 ? Y g 4
and consider the set of ordered pairs

(3-9 S( VK Z"a)) = (a'v S)ksw

where k is 'a positive integer, and a is a singular point of the
function S(u) = S(sr}‘z-a.f. If the point at infinity is a singular
point, we consider the ordered pairs,
@”ab S _];.)) = (Mv S)k°
z
Obviously, if X = 1 and VY 20, S(K z-a) is the regular function

element P(z—a) that we considered before.
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If k £ 1, A = (Jz-a is not single valued, for if

ie i(e+2n?)
Z = atre = atre 9

\/Feie_l:gﬂp n = 09 19 ecay k""lc

Thus g takes on k different values in any sufficiently small
neighborhood of z = a. However, we cannot say this, with certainty,
about S(/u). As a simple example, let us consider S(u) =/L(2, with
k = 4, Then
s(Jz=a) = (Yz=a)? - ve=a.

Thus in a sufficiently small neighborhood of z = a, S{y) = ( z~-=:a,)2
takes on only two values, instead of the four wvalues ?[ﬁ = H takes
on in the corresponding neighborhood.

In order to take care of the general situation of this type,

. =® nd e .
we consider S(/l,() = 3 a i s { a positive integer, and for the
n=v
ordered pair (a, S) K® let (/s k) =m £ 1. Then £=Am and k = & m.

If we let € be a primitive k-th root of 1 €5 =1,E% £ 1, t < k),

we have

S(E&/b(_) - 2 a (E- /u)n X-:.nzzfn(eﬁ//t)nm?\

n=vy

En:zvan(enﬂm% (/Anm7\) = n;ijan/un g _ S(/A)

from above, since Ek =1, If

2 nA
2 u) n:zrarﬂ ?

and if
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s(bzmm) - za ((z-a)*f)nj

from above, then, with k = &mn,

=0 _ oo nA oo nim
7( KJZ-?) Ené‘( an[( zua)_éjn [ :”3% an(ZQa)?\’-Eﬂ__ZV &n(z%am
- o ,
= Fa kT 3 e aatg! = s(fem)

so that T( {Yz?a) and S(}f/ﬁra') represent the same function. In
order to eliminate this occurence, we shall assume S{#) = SE4)
if €5 -1, and £4£ 1.

Similarly for the definition of equivalence of ordered pairs in

M,, we shall define two ordered pairs (a, S)k and(b, T) , S and T

singular, to be equivalent (written (a, S)k == (b, T)¢) if and only if
(1) a=%b, k=4, and
(2) there is an € with £° = 1 such that S(4) = T(c4). This is an

equivalence relation, with each of the ordered pairs (a, S)k

defining an equivalence class. We denote by R the set of equivalence
classes of these ordered pairs. Obviously, as noted before, if

<D

Y 20 and k = 1, (a, S)k = Z an(zua)n is a regular function
M

element, and we see that some points of R are regular function

elements. If (a, S)k is not such a regular function element,

then it is called a singular function element.

(= -]
If S(y) -_-nzfvaﬁqng then terms of the form anan,} with n= 0,
are certainly regular function elements. Let r(S) be the radius

of convergence of the regular terms Z r{“ We define a disk D

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-49-

about the point (a, S)k E Ry a £oo, to be (a, S)k and the set of

regular function elements (b, P) £ R, with |b-al < J?K,_P(\ r(s),
and P = P(z-a) converging to a function identically equal to one
of the k determination of S( %w—a) in their common region of def-
nition. Thus P(z-b) = S(€%z-a), where £ = 1. The length p is

called the radius of the disk D. If (a, S)k = (=2, S)k’ we take
as the disk D the center (=?, S)k and all regular function elements

(b, P), with 'bl-l < p ’3}41”(5)9 and P = P(z-b) converging to a

function identically equal to one of the k determinations of

S(’f/_f_) in their common region of definition.
z

An open set VC R is one in which each point (p, S)k &£ V has
about it a disk, Dp9 as described above, with DC V. It can be
shown, as was done for DC MA’ that Dp itself is open.

Again, as for the set MAy the above definition makes R a

topological space. The first four axioms are easily checked. To

show R is a Hausdorff space, we take two point, (a, S)k and (b, T)¢,

such that (a, s)ké(b, 7). If a # by we can find two disks,

D, and D,, D, = i'z| |z-al < min[lg‘;‘h'l’g r(S)]},, and D, = Zz\\Zubl

< min [J—b%@-‘-, r(T)J}, and the proof follows as the proof, with
a # b, for (a, P) # (b, Q) & M, .

If a = b, let (a, s)k £ C= {z“zwal < P L r(s):g, (b, T) £ TV,

V ={z|z-bl < P < r(T)}. If UNV £ 4, there is a point .
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(ey P) £ TV, and because (¢, P) £ U, P(z-C) = S(Elkzac and

because (¢, P) £ V, P(z-c) = T(€2 K)/z=c), both in some neighborhood

= (b, T) , we let t be an

of z = c.
To show, if UAV £ 4, (a, )y

{
@
Ath-root of K\/z-a chosen so that near ):-(Cma)"‘_]?9 tjz K\/z=a and

ol
,’(/z-a. = tk é) s Where £j is a primitive L-th root of 1 and 0 < =<4,
That is, t- is one of the £-th roots of z-a. Then since S(¥/z-a2) =

¢, and hence in some neigh-

( \I/z—a) in some neighborhood of z
194
borhood of [(c-a)* ng

s(&zmay 7s(tf) =z o( dpma) = T(+R ).
= g 0n-—-

But then S( K\/ z-a) = T( ’?\/zc-a) in the larger disk about 2z =
L
a, for r(S)k Z |e-aly or r(s) 2 |c-a|s Replacing t

taining =

by &,t; we have
) = s((Ew))

T(t€46,) =

¢
s(est%) = s(+?) T(+%5).

1

A
™(Eept )
k
that for some £ =& 4,

1

Let u =é;f'ck° Then
Tlu)

We have (E};)jf- (gj)k =15 - l, so
T() = TEL) -
= 1 and

But previously, we had stated that SM) 7 s8(Ex) if ek _
[ ;4 1. Therefore £= 1. Then 5} = 1 implies there is an
integer m such that mf= k, 1. e., k is a multiple of A,

k ’Pz—a

If we chose t to be a k-=th root of ‘e\lzaa such that t =

£ =Ef:72a, where Ek is a primitive k-th root of 1 and

and t
0 < 8 <ky we can show, by the same procedure,
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nk =,f9 n an integer.
Then £ = nk = nm.f and m and n are two integers such that
mn = 1. But this means m =n =1, and k =.{., Therefore, in a
neighborhood of z = a, we have
s{/z==) =7(y'fe-a)
where nk = 1, Then from the definition of equivalent points on

R, (a, S)k = (b, T)¢» and (a, S)k ard (b, T)¢ represent the same
point on R, contrary to the statement that (a, S)k;?(b9 Tzlg ani

thus we have shown that our assumption U'fIV'% ¢ is false.

Let P(z-a) be a regular function element. By definition.
the analytic function A containing P(z-a) is the set ¢f regular
function elements Q(z-b) which can be obtained from P{z-a) by

[N ]
analytic continuation. Since Q(z-b) = =2 ar(z~b)n = (by Q)s
h=zo

Q(z-b) is a regular function element of R. We know that the set
of pairs (b, Q), where Q is an analytic continuation of P = P(z-a),
is the analytic manifold of the regular function elements of A,

Since the definition of (a, P)Z (b, Q) in M, is the same as the

definition of (a, s)k’——\—f(bg T)p in R, with k =4 = 1, we see the

set of ordered pairs (b, Q) in MA is the set of regular function

elements in R. Therefore MA is a subset of R, which we will zall

Ry. If (b, Q) is a point in Ry, a disk D about (b, Q) consists

of the same elements as a disk about (b, Q) in M, . Then, a se®
in RA is open if and only if it is cpen in R. Since M, = R, is

A A

arcwise connected, RA lies in one component of R,
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DEFINITION 2-17--The totality of function elements (regular or
singular) in the component BA of R which contains the function
elements in the complete analytic function A is called the
ahalxtic configuration of the analytic function A,
THEOREM 2<9«-The analytic configuration of an analytic function A
together with the structure given in terms of the disks in R

defined above is an analytic manifold.

PROOF-~Because RA is a component of R, R, is connected. We know

A
R, and therefore RA as a subset of R, is a Hausdorff space. We
must show there is a homeomorphism of the disks of RA to disks
in Ez, and we must show we can define an analytic struciture on RA°

If (a, P) is a regular function element of RA’

(ay P) > a is a homeomorphism of a disk D containing (a, P)

the prejection

onto an Euclidean disk. However, if (a, S)k s a singular func-
tion element with k # 1, the projection {a, S)k-9 &y, since there
are k k-th roots of (z-a), would have k points projecting to

b £ a, corresponding to each P(z-b) = S(€ ¥z-%), where ek - 1,

in the common region of definition of P(z-b) and S(E ¥z=a). To
make a 1-1 mapping, let (b, P) be a point in the disk of radius
P about (a, S), . Then we know P(z-b) = S(€ 4 z-a), in their
common region of definition, where € withéik = 1, fixes one of
the k roots of z-a in a neighborhood of z = b. Then we map the
point (b, P) into € \b-a of the disk |z|{<p, and the point (a, S)_

goes to 0. If a = =@, (b, P) goes intoéf}% , with (=2, S)k

going into 0. Then instead of k points of R mapping into b, w=

have each of these k points mapping into a different k-th
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root of (b-a). To make this mapping a little more graphic, a
disk about (a, S)k can be thought of as a ramp circling about
(a, S)k k times, then penetrating to the bottom surface, just
as an example, we think of the Riemann surface of w = /E—about

z = 0 as a spiral ramp circling arcund twice and penetrating

again to the bottom sheet. Then we have the homeomorphism

Projectio n

Mapping

I1l. 2-=5

(v, 50*6ﬁ5=a, where (b, P) is a regular function element of the
disk D about (a, S)k9 and £ would correspond to the sheet on
which (b, P) was situated. Then, if we think of the (f+1)-th

sheet in the disk D, because

i(e+2/7) _ is

b = a+re a+re’ .

we have

K : > K—
(b, P)— J@*rel(®+2[ )ua =e X -Jrele

273 2473
= & k a+re’®.a = e k K\/buap

andwesea D /) Sheet ({+1) maps into the sector

274 , . . 22(4+1)

k ~ . k ?
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with |b - al]< £ ¥ < [r(s)%.

Next, we want to show that these local coordinates make RA

into an analytic manifold. ¢2(a, P)k =a if k = 1 and (a, P)
is the center of a disk U, and (b, P) = &£b-a if (b, P)
belongs to a disk D with center (a, S)k" If two disks, D, and
D, , about two singular elements, (b, T)g and (a, S)k9 respec-
tivelyy, have elements in common, from the definition of the
disks D( and Dk’ all of the elements in D, Dk are regular
function elements, If (b, P) & Dy 1 Dk” the parameter in D

at (c, P) is 2 = &, \ly'c-—a, with 5}: 1, and the parameter in

D, is w = ‘Ck Yo-b, with 611: =1, Since ¢ # a, and ¢ £ b, we

K
know z4 = c-a or ¢ = a+z'p, and w = Ek ./z’{+a=bo Then w is an

analytic¢ function of z in D,l N Dkg if (a, S)k is at the center

of D and (bs T)p is at the center of Dy. If (a, P) and

(b, Q) are regular function elements at the center of U and V,
respectively, with U/1V ;é ;6,, then the projection mapping,

(ay P) > a, as described for M,, gives a mapping such that

A
cpi(Cﬂgl), being the identity mapping, is analytic, as previously

described.

DEFINITION 2-18--The Riemann Surface of the analytic function A

is the analytic manifold RA obtained by putting the above
analytic structure on the analytic configuration of A,
THEOREM 2-10-=The regular function elements of the analytic config-

uration of an analytic function A are function elements of A.
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PROOF--If (b, Q) is a regular element of Ry, then (b, Q) can be

joined to any fixed element (a, P) of A by a curve on Ryo We
want to show (b, Q) itself belongs to A. In order to show this,

we show the path from (b, Q) to (a, P) lies in M, < Ry, If

(c, R)k is a function element (regular or singular) of R,, then

RA
about (c, R)k is a disk D, of ordered pairs (d, S), all of which
are regular function elements. Then D - {_(c9 R)k} is open and

F = gkc, R)k[ (e, R)k is a singular function elementz is a set of

isolated points on RA, and has no cluster point on RAa Thus

G = RA - F is open, since it is the union of all the disks

D - z(c, R)#} and the union of all disks D' with regular func-
tion elements as centers., We want to show G is connected.
Agssume G is not connected. Then G = GlL) Gég such that

= o tv G, G.
G, G, # and G, and @, are open. But G; N G, # @, because,

since each element (c, R)k of F has a deleted neighborhood,

D -{c, R)Zin G, R, =G =G, UG, = ;U G If G NG, = 4,

then RA is the union of two closed disconnected sets, contrary

to the statement RA is connected. If p & EI/W'EQQ and if p & Gl9

for example, then G, is a neighborhood of p which contains no

1

points of G,, because G1 is open and Gl fle = do Then

2

P $'6;, because every neighborhood of every point of‘E; has

non-empty intersection with G Similarly, if p € G29 P ¢ 5;0

20

Thus, if p £ G_lf) '6'2', p £ G, U/ G,s and thus p £ R,=(Gy G,) = F,
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orqna—_c_ F. Let p € E-l-ﬂ E; € F. Let D be a disk containing

p such that D-p C€C G, That is, DC R,s so that D-p C RAmF = G,
Then

D-p = D/] (G1U G2) = (DN Gl) U (D ncz)g

which is the union of two open sets with empty intersection, and
is thus disconnected. However, D-p is the homeomorphic image of

a punctured disk in the Buclidean plane and therefore is connected.
Therefore the assumption RAaF is not connected leads to the false
conclusion that the homeomorphic image of a punctured disk in the
Euclidean plane is not connected. Thus we must conclude that

RA'F is connected. Then RA-»F is a manifold and therefore,

from a previous theorem, is arcwise connected. Hence, any two
points in RA-F (the set of regular function elements) may be

jointed by a path in RA»FQ or by a path composed only of regular

function elements, so that RA-F = MAo

If D is a disk about (a, S)kg where (a, S)k is a singular
function element of RA’ then D-(a, S)k contains only regular func-
tion elements, from the definition of the disk D. Then, if
(b, P) £ D, (b, P) has the local coordinates Evg:a:, with&_k =1, and
P(z-b) = S(€ b-a) in their common region of definition.

DEFINITION 2-17--A path (x(t), Pt)

Ef,o((t)aa, t£ I, from £ Jb=a to 0, with P (z-~(t))= s € Yf-a)

0 £¢< 1, in their common region of definition, while

Pl( z-a )= ‘S(Q[z_-z) N

tET° in D, is the line segment
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We have shown that, if (a, S)k is any singular function element

of RA’ (a, S)k can be joined by a path in D to any regular function
element in the disk D about (a, S)ka We have previously shown any

regular function element in RA can be joined by a path in RA to any

other regular function element in RAo Thus we see that any function

element, regular or singular, can be Jjoined to any other function

element by a path in RAo

DEFINITION 2-18--A function element, (a, S)k (regular or singular),
is said to be joined analytically to a regular function element,
(b; P), if there is a path (=, I),x(0) = by o< (1) = a, in the

complex plane (or sphere) such that ((t), Pt)9 04t <1, are

regular function elements forming an analytic continuation of

P and if for all t sufficiently near 1, Pt

a fixed determination of S, while (a, Pl) z (a, s)ko

is identically equal to

Then Ml is a submanifold of regular function elements of the

Riemann surface RA of the analytic function A. The singular func-

tion elements (a, S)k9 k> 1, are called the algebraic branch points

of R,. At such a point (a, A)kp we say the analytic function

(3'9 S)k =§ra‘rﬂn

has the value a, if Y =20, and has the value =<2, if ¥Y< O,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER III
DIRICHLET'S PROBLEM

From the study of analytic functions on a Riemann surface,

we are naturally led to the study of harmonic functions. If

f(z) = £(x,y) = u(x,y) + iv(x,¥), and if £(z) is analytic, we know

u(x,y) and v(x,y) are harmonic, or Au = 0 and Av = 0. However,

if we have a real-valued function u(x,y), such that Au = 0, we

may not be able to find a function v such that Av = 0 in the
entire region under consideration. Therefore our study of analytic
functions leads us to the more general area of harmonic functions,
In this section; we shall study the Dirichlet Problem, the
existence of a solution, and the solution, when it exists.

THE DIRICHLET PROBLEM-=Given a region W, and a real-valued function,
f, continuous on W'y, the boundary of W, is it possible to find a
harmonic function u, such that @« = £ on W' and v is harmonic in
w?

In order to show the solution, when it exists, we shall study

Poisson's Integral, a generalization of Harnack's principle;, and

subharmonic functions, leading to the solution of Dirichlet's

problem by Perron's method.

Recalling Cabichy's Integral formula, if f(z) is analytic,

1 £{z?) dz?
£(2) = g A )

1
where Y is the circle VY = {é‘lzmze‘ = Ygo Since

=58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



~59-

ie ._de
z! = zZ, + TR, dz' = ire” " de,

and we have

(6] z +relé.g
o o

1 27
= 5%/, f(z +re’ )dec

If £(re™®) = U(re °) + 1V(re ®), where U and V are real-valued

. i
functions of re 9,

1J/QD' S 27 is
f(zo) =% U(zo )de +5% iV(z0 + re " )de.
Equating real and imaginary parts, we have then

Y d

e
U(zo) =55 U(z + Te )de,

when U(z) is the real part of an analytic function f(z). Because

f(z) is analytic, U(z) is harmonic, and we are led to the maximum

principle for harmonic functions,

THEOREM 3-1--A non-constant harmonic function has neither a maximum
nor minimum in its region of definition., Therefore, the maximum
and minimum on a closed, bounded set E are taken on its boundary.

NOTE--As we observed before, if we have a harmonic function U(z) given,
and the region under consideration is not simply connected, we
may not be able to find a function V(z) such that U(z) + iV(z)
is analytic in the whole region under consideration. However, in
this proof, we use only simply connected subsets, namely disks,
of the region under consideration, and in such subsets, U(z) is

the real part of a function analytic in the entire disk under
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congideration.

PROOF--It is sufficient to show that if U(z) is not a constant,
its maximum is taken on the boundary of any closed, bounded
set.

Given a closed, bounded set E, assume there is a Z, such

that U(zo) 2 0(z), z £ E, zo¢ E', the boundary of E. Then

there is a disk Y = {_z”z=-zol < r} CE = B'; for r sufficiently
small, such that
1 27 ie
U(zo) =25/ U(zo + re )de.

Also because U(ZO)Z U(zo + I"eie)9 we have
7 .
_ 2 ]‘Z ie
U(Zo) = 5%.) H(zo + re )de

s 1 27
= ) (zo)de = U(Zo)°

2> .
Then %}ﬁU(zo) - U(zo + re198 de = 0, and since

£U(ZO) - U(zo + reie)J-Z O, the integral can be zerc only if
the integrand is equal to zero. This means U(zo) - U(zo + reie)
for all e, or U(z) is a constant.
From this maximum and minimum principle, if two given harmonic
functions, Ul and UZ’ are equal on the boundary of their region of
definition, E, they are identical, To see this, if Ul - U2 and

U2 - Ul = O on the boundary of E, and both are harmonic, then O

is both the maximum and minimum of U1 U29 and thus UIE U2 in E,
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Therefore, if Dirichlet's problem, described above, has a solution,

it is of necessity unique.

Again going back to Cauchy's integral formula,

1 flz*
£f(z) = == V—(Zh,zf)z- dz',

271
we can let ¥ be the circle {zl [z'l =T 03 and let z = relq’ir < T .
/
2z
Z,
=
mi’
g
I11l. 3-1

The inverse Z4 of the point z with respect to the circle can

be written

2
r re 1 z
If f is analytic everywhere in and on the circle, which implies the

real part of £ is harmonic,

'
£(z) _ A, £(=z1) dz',

.Q
27)7Y_ z'=z

but if we replace 2z by Zq9

1Jﬂz'l dz! = O,
2% \(Z'-=-Z

1
for %Z—;)- is holomorphic within and on the circle
71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



62

YV = le lz:| = 1‘0}

and, because this circle is a closed contour, the integral of a

function holomorphic within and on this circle is 0. Since

N’

]

H

@
oy
<

5

[

K

]

iroel¢d§ﬂ= iz'de, we have

‘22'
() = g;ﬁiﬁf;’ - Bl franae
o 1
27

. z! z! .
Looking at oy T and remembering the wvalue of Zyy We have
1
z! z! _ _z! z' __=! 1 3! z_ _-z'l_ ., _Z
zZ'-z z'-zl zZlez zZlaziz!? zZlez 1l=2' 2oz  Z=z' glez @ zl-z
z Z
. : 2 2
' = AP - '3 > T, =T
z Z 2'Z2'=2'Z + 2'2 - 22 o)
then y + == = = = o Therefore we can
zlez ~ zZ'-z 1oz ? : 12
‘z -2z |z az\
write
2 2 27
ie To = T r(re* 4
£f(z) = f(re™") = a@
2 7 . |2
(o Z'=2

2 2 [27 .
e £(xe*?) i@
ST 27 o 2 2 """

r_ = 2r r cos p-e) + r

If £{2) = f(reie) = U(reie) + iV(reie), we have

a.. .

ré - r? U(xr_e*%)

U(ret®) = 2—— &
2 >

> da
o T, =2rrcT cos(¢g-e) + T

This is Poisson's integral formula in polar coordinates, or in

terms of z in the denominator; we have
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rg - 12 U(r s P)

R /A P |

2

2
- z' + 2] o 7T
Since Re [z' — ‘J= \ I2, we make the following definition:
2

DEFINITION 3-1--For any piecewise continuous function U(e) in

0z @ 22, with |z| ¢ 1,

P (z) = //(ﬂ

We readily see

]U(e)deo

Pcv = GPV’ ¢ a constant,

Moreover, for U(e) = 1, we have

>
1 1
Py(z) = 2?i<xgﬁ:ie_z de = 1,

because

!l

Py (2)

2&/ {—-—ﬂu(e)de
2
2%24{<%;é§%§%—- U(e)de

Then remembering how the Poisson integral was derived, we know that

I

for Iz’l= 1, and U(8) = £(z?) 1,

27

27 )
L __;hzbé%_ _1 /(=) ',
] e =2 )
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If £f(z') ¥ 1, we have

ke 2
1‘///'3 1- |z 1 ///-1
— = l de = ~ dz!' = 1
r - o
CLA 1% . 2 271 Yz' z

so that if ¢ is a constant,

P = Co
c
Therefore, if
m< U<,
Because
2
l-|z
>
ie = 0y
e =3
we have
2 2 2
1=z l= |z l=12
£ <
i ie |2 m = | ie |2 U< ‘ ie !2 Vo
e =z e =z e =z
Then

27
Po-m == Ti-]e)” U(e) = £ 1oz’ m de
U 27, ie _|[2 27 ie _[2
O e <=2 o e =g

1 (11212
= |z
= %%/ ETIAE (U(e) = m)de > O,

-2
for the integral of the product of non-negative quantities is

non-negative. Similarly,

so that we have

me PU_éMo

THEOREM 3-2--The function PU(Z) is harmonic for |z|<1, and
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lim gU(z) = U(e,_)

ie
Z e ©°

if U(e) is continuous at e, .

PROOP=-If we differentiate

1 /71022
. - 17
PU(z) =33/ ETIRE U(e)de

under the integral with respect to z, we see that, because U(e)
and de are not changed by a change in z, the only guantity which

is affected by differentiation is

1- [z 2
ie |2 °
e =z
However, we know
1l iz 2 [e19+z}
: = Re[ ==
ie 2 ie
e =z e -z
is the real part of a function analytic for =z l. Then as the
- . Z 2
real part of an analytic functiony To >
" e =z
2
is certainly harmonic for ]z|A<l, i.ee,zﬁ[ﬁ-l§é21~2]= O, Therefore,
e =2
1 /A 102
= fz
A UP(Z) = o A ie 2] U(e)de
o e =2
1 27
= -E-a: A QO U(e)de = Q,

Thus the integral.PU(z) is also harmonie for ‘zl < 1,

To show
lim Py(z) = (e, );

ie
Z—me O
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since U(e,) is a constant, we have PU(Z) - U(e,)

1 pla 1= Z 2
s 2 [ ie |2 (U(e) - U(e)))de. Because
e =2z

U(e) is continuous, for a given £, if \e-—ea l< 8(E), lU(e) ~ U(e,) \ <E,

2 2
Since L-r 5 = 1;.'_9121 5 has a period of 2 ,
1-2r cos(e-e } + e -z\
1 71z)2 ]
-z
57 I e T3 [U(e)nU(eo)] de =
(74 e -2 |

1 *90 |z|2 - ] 1 *Ilm z| 2
) Teiys|[e)-utenlae < [r—"‘—i—.ie_ Z]gde

So—d 1 22980 d )
11l2'|2 [U<e>—n<eo)]ae-5+ % / [ Lol [ue)
- e

g+5 L€ b.rs =2

+
S
?

- U(e,)]de.

If |e-e,|2 § o there is an m{§) such that
leieuz |2 = Iei'a-u-rei%I2 2 m(s5).

Also, since Ule) is sectionally continuous, there is an M such

that [U(e) - U(e,) | < M. Then for 1-r < %ﬁl&, we have

.l ” 1-|z 2 1 1 r2
— = - & = Ve
> for f eie 5 [U(e) U(eo )] de 2 oo~ T‘ﬂ M(27)

-2

< 2(1-1)2 M, 2 m( S )
> m:{ST (5 ) i E =& . Then

. 22+~ 5
2"5-1'45[‘,?&%'—][11(9) - U(e.,)]de< 2 &,
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for an arbitrary €, when 0 < 1 — r 421-2%)-5.

»-
If r = 0, we have PU(O) = -21';. /. U(e) de, so that the value

of a harmonic function at the center of the circle is the average

of its boundary values on the circle.

While we now have a device for solving the Dirichlet problem
in the unit circle for given values on the boundary, we would like
to be able to solve it for the boundary of certain given regions,
To do this, we first solve it for a given circle with center Z

and radius . Let U(e), with U(0) = U{(27), be a continuous function

for the boundary ,z—zol :’zo + e® . Zol = Po We wish to find a

function U'(z), harmonic in Iz—zo|<p s continuous onlz-—zo| = F

and such that
U'(zo +pe®) = U(e).

From Theorem 3-2, Ut(z) is given by

z-z_ |2
u'(z) = Pu(-*-—-—f ) = £ S U(e)de
.~ Z=3Z
ie
L 2'-/)2 _ IZ'Z '2
R S A - U(e)de

2&; Laele _ (Z—ZO)IZ

and we know, from Theorem 3-1l, that this function is unigue.
THEOREM 3-3--A continuous function u(z) in a region f2 which at

all points Z, £ (1 satisfies
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1 ie
u(zo) =55 ) u(zo + re ) de

for all sufficiently small r is necessarily harmonic,

PROOF==If zo{:' 2. 9 there is a fFsufficiently small that

}
1 ie
u(zo) =55/ u(zo +pe )de.

If in the disk D = iz [ lz-—zol < _p3 there were a z., such that

1
u(zl) 2 u(z) for z €D = §z “z-zo|5__p 3 s we could show, as in
the proof of the maximum principle for harmonic functions, using

a sufficiently small £, , that u(z) is a constant in %;z“z-zlls }33.

Thus the maximum principle applies to u(z) in D. Because the
maximum principle applies to any harmonic function defined in
D, it applies to the difference between u(z) and any such har-
monic functione.

Therefore let

1 J}P 2.;, ,z-zo'z ie
v(z) = P (z) === . - u(z +pe de.
u'? 27./0 [ Peleo(z=zo)lz o

Then u(z) - v(z) = 0 on zz“z—zolzj?_gand u(z) - v(z) has no
maximum or minimum in the interior of D. Thus u(z) - v(z) 2 O

or u(z) = v(z) for z £D. However, since z, was arbitrary, we

see u{z) is identically equal to a harmonic function in all of

0y or u{z) is harmonic in .2,

HARNACK'S PRINCIPLE

Before proving Harnack's principle as a theorem, we want to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-69-

prove the following lemma.

LEMMA 3-1--If u(z) is harmonic for |z|<P, then

Iu(z)l < P+I‘

Further, if u(z) > O for [z|£ ¢, then

Z=E u(0) £ u(a) £ ZE u(o),

F +r
Pirst,
FP=r £ Ifeie-z i £ P+
implies
(J"«-r)2 z Ieie-z |2 z (_P+r)2,
and
1 < 1 < 1
CP+r)2 - ,)peie_ZIZ ‘kjp_r)z
and thus
F2—I‘2 . £2 2 . /02'91,2
(P2 T [petoual? T ()P
or
LP-r , o2 g2 e 2 +T
P4+r ~ ﬁeieaz\z T~ Fer °

Then if u{z) is harmonic,

lu(z) | =| & 2P (ret®)ae
2770 Iﬁeleazlz

e e e
< = > u( re lde
27/ ,J’els-z' 2
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¥
1 +r ie
< —2-7?-_%_;0 u(fe )de=)‘§::—i: u(O).

If u(z) = 0, we have

2 2 .
la(z)| = u(z) = f? B u(_Pe*®)de.

7
l P o-r i
Z P, u(_re’®) de,
or, since

f”“ ie T e
, u( pe")de = / [u( pe )lde,

when u(z) >0 for z ¢ |z <9,

- > >
1 p-
5 ﬁfu(ﬁele)de Zu(z) < ::+r u(_~el®)qe.

Since

o
-2-1%()9 ¢'®)de = u(0),

we have

ﬁ u(0) 2 u(z) * ;fltl% u(0).

We can apply this inequality to a series of positive terms, or
to the differences between successive terms of an increasing sequence,
of harmonic functions.

THEOREM 3-4 (Harnack's Principle)--Consider a sequence of functions
un(z), each defined and harmonic in a certain region Jzn‘. Let
L2 be a region such that every point in /2 has a neighborhood
contained in all but a finite number of the /2 n’ and assume

moreover that in this neighborhood un(z) 4 un+1(z) as soon as
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n is sufficiently large. Then there are only two possibilities:
Either un(z) tends uniformly to ©© on every compact (i. e.,
closed and bounded) subset of 2., or un(z) tends to a harmonic
limit function u(z) in _~2 , uniformly on compact sets.

PROOF--First, assume there is at least one point, Zg where
lim un(zo) = 0=, From the assumptions made above, there is

an r > 0 and an m such that for ]z-zol <r and n > m, un(z)

is harmonic and un(z) = un+1(z)° Then applying the left hand

estimate above to un(z) - um(z) 2 0, we have, inside the disk,

iZ“z“Zol £ %5’

r;'g (u (2} = uy(z,)) < uy(z) = uy(a),

2
or

1 - < -
L (u(5,) - uy(ag)) < (=) - u(a).
Thus un(z) goes to infinity uniformly in the disk {z “z-zo‘s ‘g}o

If we have a point z., such that the lim un(zl) < @2, then there

1’
|z-=zll < r'j ’

and for n 2 m', un(z) is harmonic and un(z) < un+l(z). Then

are an r' and an m'! such that inside the disk {z

applying the right hand inequality to un(z) - um,(z) 2> 0, we

have

a () - u(2) € —2 (u (z)) - uy(ay)
=3
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un(z) - um,(z),f B(un(zl) - um,(zl))°

Then un(z)~f Bun(zl) + um,(z) - 3um,(z1)°

Tr .
Thus for ,z-zlls S5 un(z) is bounded, for un(zl) and um,(zl)
are bounded by our assumption, and um(z) is bounded because it

is harmonic for lz~z1| < Ty and thus continuous in this disk.
Therefore it is continuous and hence bounded in the compact
disk, {?llz-zll < {}c This shows that the sets in which

lJim u (z)<.ex> are open and the sets in which lim u (z) Do

,‘..-,od N~ >

are also open.
Since /2 is a connected region and is the union of the two

sets, one of them must be empty. Then, if lim ur(z) = o2 for
hH—=w =2 I
any 2 £ 2, 1im u _(2) = =< for all z £ «2. The uniform conver-
nemoe 1

gence to oo on compact sets follows by use of the Heine-Borel
theorem.

If 11m u (z) < oo at any z€ 2, we know lim u ( ) < ==

”._-;oé

for all z £«2 , and we want to show the convergence is uniform.
Because

un+p(z) - un(z) 23 un+p(zl) + un(zl)

£ £~ and n > m', we have uniform convergence in some

for lz-zll_ 5

neighborhood of every point. By use of the Heine-Borel theorem,
we therefore have uniform convergence on any compact subset

of 4. .
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To show lim un(z) < e is harmonic; we consider, since

un(z) is harmonic for every n,

o "l -
un(z) = Pun(z) = —?flpe (s )l un(}’elg+zo)de.

Also, for z £ 2. and suitable p, we can construct Pu(z), defined

for z & Ez “z-»zol< _p}c 2. If we can show Pu(z) = u(z) for
all z £ <1 ; then we know u(z) is harmonic. For u and u defined

on the circumference of the disk D = gz, Iz«-zol<fg C L2, we

have
Pu(z) - h]iriaPun(z) =n.EEaFU(Z) N Pun(z)]9
since Pu(z) can be treated as a constant in this case, Then

Pu(z) - P (z)
n

) 2
= %/o-l}[ QIZQ l _,_J:r eie)dg -

- (z=z )|2
/) - ]ZQZ l =u (z_ + Peie)dea
. l)’e (zmzo)|2 n-o

Therefore lim [Pu(z) - Pu (Z):\ =
n

n—s o

2& lf -(Izjzz[))l% [u()? el® 4 zo) - un(_P o' 4 zo)]dej°

Then, because the closure D is a compact set, for any £ >0 there

is an N such that if n Z Ny
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0O <|u el'e.;.z - 1 Peie+z ‘<£
-*[ (J’ o) n( o) 4
for all e,

Then

lim [Pu(z) - Pun(z)] <

D> o

1 ,7_)92 -=-[z=-z

2% l)’ele - (zmzo)l2

o

g de=£o

e

Since [}1(}7 e'® + zo) - un(,O e ® + ao)]Z_O forn 2 N,

0 % lim [Pu(z) Pun(z)J <E,

for arbitrary £, so that

0 = Pu(z) —ﬂlim“ Pun(z) = Pu(z) «ﬁl_l}!nboun(z)g

since, because un(z) is harmonic, P, (z) = un(z)9 for all n.
n

Therefore
0= Pu(z) mnliigxwun(z) = Pu(z) - u(z),
or
2. (2) = u(2),
for all z & zz“z—zo[ < P , so that u(z) is harmonic in
izl lz—zol <y3. However, z, and P are arbitrary, so that

u(z) is harmonic in 2 .

Next, we use Harnack's Principle to prove the following more

general theorem:
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THEOREM 3-5--Suppose that a family’u of harmonic functions on a
Riemann surface W satisfies the following condition:
(A) For any uy and u, belonging to ‘Z(there is a u belonging to Uu

with u 2 max (ulg u2) on W. Then the function
U(z) = sup u(z)
we U
is either harmonic or constantly equal to + <<,

PROOF-=Let Z, be an arbitrary point of W. Then there is a sequence,
ol
iu }“/of functions, un 2 ug with

nl‘imw un(zo) = U(zo) .

Let u. = u

1 1* and for each n, choose u such that

n+1l

2 max (u R Then, since each u_ & 7/(
Y+l ( n+l? n)" K n 9

lim E‘(zo) = U(zo)°

N o n

[ ]
Also, the sequence {un is non-decreasing. Then, applying
n

O

Harnack's Principle to the sequence Eﬁ;}n s We have
=7

U (2) = 1im u_ (=
o( ) e rJ_( )

is either harmonic or identically +<< Obviously Uo(zo) = U(zo)°
Let z(") be another point of W. Then there is a sequence of
functions ux'lfl % such that

im u'{z') = U(z").
lim ul(z1) = U(z)

)e

As before, we let :1:3; 4 %be such that .1_1—51..7_ max (u;ﬁ’ Ups Ypa1

Then the limit function
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Us(z) = lim u!(z)
will satisfy U! ZU_ and Ué(zo) = Ub(zo) and Ug(zé) = U(zé), also.
If Uo and U(') are finite, then since UO - U‘;i 0 and
(Uo(zo) - U(')(zo)) =0, U, - U has a maximum at z_, and since
W is a region,; this meane by use of the maximum principle, Uo = Uc')
in W. Because U(z(‘)) = Uo(zé), and because z! is an arbitrary

point of W, U = Uo. Furthery, U is harmonic, since Uo is harmonic
according to Harnack's Principle.

If U = +°% then Ué(zo) = +°7; and since Ué(zé) = U(zé),

U 2 +< since zg is an arbitrary point of W.

SUBHARMONIC FUNCTIONS
DEFINITION 3-2--=1f v is a real-valued function, v is said to be
subharmonic in a plane region W if
(A1) v is upper semicontinuous (u.s.c.) in W;i. e.,

(v(z') 21im v(z) for all z' € W),

(A2) If u is a function harmonic in W' C W, then v-u is
either constant or fails to have a maximum in W',
Because v is real-valued and hence finite for any given z!,
v is bounded on any compact subset of W. Conventionally, a function
v' which takes on the value - & at any or all points in the region
under discussion is also admitted as an u. s. c. function. Thus

an u. s. ¢, function may take on all finite values and -=%, as
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well, but not +e4, If V is any compact subset of W, and v is an
Ue S. ¢o function not identically -o<in V, v has a finite maximum
in V, Alsoy if ¥ is ue S. Coy

n-soc I

P
where Z?;}hd, is a non-increasing sequence of continuous functions,[ij
(The proof is shown for lower semicontinuous functions, but by suit-
ably changing terminology, the theorem applies to u. s. c. functions).

DEFINITION 3-3-=The function v is superharmonic if -v is subharmonic.

If ua is harmonicy; u is both subharmonic¢ and superharmonic. The
converse is also true, but needs further proof.
Since the definition of subharmonicity is of local character,
a function which is subharmonic in a neighborhood of every point
of W is subharmonic on W. Also, subharmonicity is invariant under
conformal mappings. Thus, if v is a subharmonic function defined

in a region W, and if ¢ is a conformal mapping of W onto a region wl

such that for

Cp(XS y) = (x19 yl)Q
v(X9 y) = vl(x19 yl) = Vl(p()(9 y)9

for all (x, y) & W, then v, is a subharmonic function on W,.

If we wish to consider an arbitrary Riemann surface, W, we
can apply the above definition of subharmonicity without change.
Thus a real-valued function v is subharmonic on an arbitrary sur-
face W, if and only if it is subharmonic when expressed in terms

of a local variable, this local variable z being the value assigned

[1] Ref, (4), pg. 103,
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a point w ¢ W under one of the allowed conformal mappings, @, of a
neighborhood of w onto an open set of the z-plane.

LEMMA 3-2--If v, and v, are subharmonic, then v = max (vl, v2) is

also subharmonic.

PROOF--(A1) 1If vl(z);? 1lim vl(z') and v2(z).2 lim v.(z'), then
-7'/——_9-2 2>z 2

v(z) =2 vl(z) and v(z) > vz(z) implies 1im v(z!')
2=z

= max(1lim vl(z'), Tim vz(z“)) = v(z).

(A2) Let u be harmonic in W'; the region of definition of both

ﬁ.and Vo and assume further v-u has a maximum in W', say at Z e

Suppose, for example, that v = vy at z = Z e Then for all z £ W',

vl(z) - u(z) £ v(z) = u(z) £ v(zo) - u(zo)

v (2 ) - a(z ),
so that v, -u has a maximum in W', and thus is a constant ¢, so

that we have also
c = v(z) = u(z) =« o,
or

v(z) - u(z) = c.

We can extend this result to any finite number of subharmonic
functions, but if we attempt to extend it to an infinite family of
DO v
subharmonic functions, we fail; we cannot show v = maX E?ngh is
=

Qs 8e Co

We can learn more about subharmonic functions by the use of the
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Poisson integral. If v is subharmonic and continuous on the cir-

cumference of a disk A with center Z and radius p; we know the

Poisson integral of v with respect to 4 is

772 |2-2 |
Py LA
P _(z) = I I - 12 v(z?)de,
2z
where z' = Z +JPeleo We also remember Pv(z) is harmonic inside

Aa.nd

lim P (z) = v(z?).
=27

If v is u. 8Ss Coy Pv(z) can be interpreted as a Lesbesgue integral.

However, we can also use the fact that v is the limit of a non-increas-

ing sequence of continuous functions. Then we set

24~ 2~ 2
1 F [ZE?’O ‘

P(z)=1nf1=()_1nf27}

w(z')de,
b \z”=z|

where W ranges over all continuous functions such that W(z) > v(z)
for all z for which v is defined. If v is u. s. ., instead of

lim P (z) = v(z'),
2>/

we have

Tim P (z) <v(z").

Z2-—>32
Then v°', defined as v' = v on |z=zol = Py and v' = Pv inlzazol<f99
is u. s. c. for |z920‘<_J90 By applying Harnack's Principle, we

see that P is either harmonic or identically -e in [z=z | < P.

To show the elementary character of the Poisson integral, we

show
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without use of the Lebesgue integral.

If vy and v, are continuous, the relation is obvious. If

vy and/or V5, @re Uo So Coy let Wy and Wy be continuous majorants of

vl and v2. Then

P + v <PW+W=P +Po
V1 o~ W 2 w

We have we Z Vs i=1, 2, and for z & {z, ]z=-z0,<y39

S 2

m,Z°Zo’

[Pwi - Pvi](z) = EJ-';;O ’feien(zmzo)'z {[Wimvi]( eie+z0;}deo

However, we can find for our LA continuous function such that

wi(z) Z vi(z) for all z £ {z I lzuzoi zP]g and such that for an
arbitrary 5709wi(z) - vi(z) < €, except on a subset of measure O,

so that for this wis,

P P ](Z) < e &JO - ,z«-zol2 & do = ¢
T vy 27 - e
{Wi vj_ ) J‘Peleﬁ(Zf—*Zo)I2

or ]E’W = Pv.’ for all z £ {z“z«-zol<fjo Then we have
i i

P <P +P =P +P_ ,o0rkP 2P +P_ o

N T Wy W 1 ¥ 172 Y1 Vo

To prove the inequality in the other direction, let w be a continuous
function such that

WZV + ¥.o

Then
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i uresny - []
zli-n;/ (Pvl * PVg)(Z)gl(z ) + v,(27)

w(z!) = lim P (2z)
PRNSPYA

Then by use of the maximum-minimum principle we see that for ‘zmzo\< P

P - (P +Pv2)_zog

because P - (P. + P_ ), as harmonic function takes its minimum
w vy v,

on the boundary, {zl k=z0| 3,93, or

P ZP_ +P_,
W v

1 Vo
and thus
Pv +P <P o ®
1 AP Vit
Therefore
Pv +o_ Pv + Pv °
1 2 1 2

Obviously, if v £ 0, P £ 0, and if also v£ O on |z-z.| =2,
Pv < 0 in Iz-zo¥<‘p9 by use of the maximum principle.

THEOREM 3-6--An u. S. c¢. function v is subharmonic in a plane region
W if and only if
<
v(z) < Pv(z)
in all disks A with A < W,
PROOF--Suppose v is subharmonic. Let w be a continuous majorant

of v on the boundary of A . Because v is u. s. C.y we have
1i Zv(z?) £ w(z?') = 1im P (z).
T _y(2) €v(at) £ w(z') = 1in B, (2)

If V-Pw Z ¢, a constant, v»Pw does rot have a maximum in A,
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and therefore

in ﬂ s and thus

v <P,
v

because as was shown previously, if v is u. s. c., there can be
found a continuocus majorant of v, namely w, such that

Pw(z) = Pv(z), for all z in W. To show the proof in the opposite

direction, assume
v(z) £ P_(2)

in all disk A with & C W. Then let u be harmonic in W'C W,

and assume v-u has a maximum at z_ & W'. Since v(z) = Pv(z),,

we have

veu £ P_
V=l

so we can let u be identically equal to zero, to simplify

calculations. Further, since
w(z) - u(z) = v(z) = 0 £ v(z;) - u(z) = v(z,),
if v(z)# 0, for all z, we can let

vi{z) = v(z) - v(zo) <0,

so that, without loss of generality, we can specify v(z)< O,

and v(zo) = 0. Then, for P sufficiently small, we consider the
disk Z‘zl 'z-zol<f} » and we have, for |z"=-zo| = Ps

v(z') £ 0,
and

0 = v(zo) < Pv(zo) < 0.
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But Pv(zo) = O implies that v(z') ¥ O on the boundary of A .
Then v = 0 in a neighborhood of Zs by use of the maximum prin-

ciple, and because W' is connected, we can again construct a
disk D' with another point zé belonging to the boundary of
as centery, and show in A' v = 0. Then if v-u has a maximum

in W, at z = z_, v-u is constant and equal to v(zo) =u(zo) on

an open subset of W, for we can show that any point at which
v-u is equal to O is the center of an open disk in which v-u

is identically equal to O, However, it can be shown that the
set in which v-u is a maximum is closed. We know u is continu-
ous and v is u. S. Coy SO V-u 18 u. 8, ¢o Let z' be a limit

point of the set on which v-u is a maximum. We know
v(z!') - u(z') =1im [v(z) - u(z)].
2=z
Then every neighborhood of z' has a point z, such that v-u

is at a maximum at I since 2z' is a limit point of such a

set, Then
v(z') - u(z?) =2 v(zo) - u(zo)jz v(z) - u(z)

for z €W. Then z! 5,{?’v(z) - u(z) = max (v-u) in Wzo Thus
the set in W in which v-u is equal to the maximum is both open
and closed, and thus is either W or g Then v is subharmonic,
since it has already been stated v is u. s. c.
If v is continuous; Theorem 3-6 leads to the mean-value
property, for we have
v(z) £ B (2),

80 that
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= - 27
1 e 25 zol ie 1 ie
£ = ——— } .
V(Zo) —_ PV(ZO) = 2”[7 is 2 V(Zo"'.,pe )de = 2?0 V(Zo'bpe )deo

Z+6==ZI
0] o

f v is only u. s. c¢. and not continuous, we can replace the
Riemann integral by the Lebesgue integral and this inequality

holds for any subharmonic ve.

THEOREM 3-7--If v is both subharmonic and superharmonic, then v is
harmonic.
PROOF--If v is subharmonic, then in any disk D ={z Hz=zo ‘4;?}9

>

1 ie
g =
v(zo) < 27 v(zo +Pe ") de

If v is superharmonic, -v is subharmonic, so that

I
1 ~ ie
mv(zo) < ﬁo [—‘v(zo + Pe )]des

1 [27Z ie
or v(zo) Z % ov(zo +p e )de, so that we have

>
1 ie
v(zo)_{ 2z_[jv(zo + pe " )de fv(zo)g

or
1 fz? i
ie
v(zo) =55 v(zo +_pe " )de,
and since, for P sufficiently smally, any z in W may be the

center of such a disk D, 2, is arbitrary, so we know from

Theorem 3-3 that v is harmonic in its region of definition.

If v, and v, and sub harmonic functions, then vl(z)_{ P, (z) and
IS 1

V.+¥ v

V"Z(Z) £p, (z) and P =P, +P_, so that we have
2 1 '2 1 2
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(z)3

+

vi(z) + vz(z).é Pvl(z) + PVZ(Z) = Pvl ,

thus (v1 + vz) is subharmonic if vy and v, are subharmonic,.

‘Since we are interested in harmonic functions defined not

only in a region of the EBEuclidean plane, but in harmonic functions

defined on arbitrary Riemann surfaces; we make the following defini-

tion:

DEFINITION 3-4--Let v be subharmonic on a Riemann surface W, and
let A be a parametric disk in W, Then P_ is the Poisson inte-
gral of v in Avwhich is formed by means of a specific conformal
mapping of A onto a circular disk.

THEOREM 3%-8-~The function v, which is equal to P, in A and equal
to v on W-A is subharmonic on W,

PROOF-~0On W=A , v, =V is u. 8., G, Since
lim P (z) L v(z’
T, P (a) <¥(2"),
where z' belongs to the boundary of A, vy is also u. s. ¢o in

Z. To prove (A2), let u be harmonic in W' C W. Suppose

v_-u has a maximum at z € w, If z, & A, then we see v =
is constant in a component of wel) A, for in 4, v, is harmonic
and thus v, is harmonicy, and does not have a maximum on any

open set, unless it is a constant. If W' = W'ﬂAg we are
through, for since W' is connected, w'/1A\ is connected and
hence there is only one component of W' in A. If W' £ W'NA,

then A has a boundary point in W', and since V-t is we So Cop
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the maximmm is attained on the boundary. Thus, unless v, ~u is a

constant, it cannot have a maximum in A. If z € Wty (W=-R),

then by the same reasoning, we have v,-u constant in a component
of W' M (W-A).

If W' = W'/} (W-A), we are through, but if W' £ W'/} (w- X&),
we know that, because W' is connected, W' has a point in common
with A, and hence with the boundary of 4, and that the maximum
of vb—u is taken at that boundary point. Thus we have shown we
need only consider the case where the maximum of v,mu is taken on
the boundary of A . There we have

v(z) - u(z) < vb(z) - u(z) <
vo(%)) - u(zo):§ v(zo) - u(zc).
Because v(z) - u(z) then has a maximum, at z, in Wi/l W, it is
constant there, so that as a result of the double inequality,

vb(z) - u(z) is also a constant, and we have proved condition (A2).

THE SOLUTION OF THE DIRICHLET PROBLEM
DIRICHLET'S PROBLEM=-~Given a continuous real-valued function f on fﬂ,
the boundary of a subregion G of a Riemann surface W, we are
required to construct a continuous function u onG=06UT"
withu ? £ on [ﬁ and u harmonic in G,
1 and u, are two such functions, Uy = u

was shown as a result of Theorem 3-1.

Obviously, if u y as

The following solution of Dirichlet's problem is by use of

Perron's method. Perron's method was published in a paper,
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"Uber die Behandlung der ersten Randveraufgabe fur 132u = O,"
published in MATHEMATISCHE ZEITUNG, 18, pages 42-54, in 19230[é]
We find, in attempting to solve Dirichlet's problem by this
method that; whether or not there exists a solution to this prob-
lem, there is associated with every function f, defined on the
boundarxry rﬂ, and whether continuous or not, a function u which is
either harmonic or completely degenerate (u= % =9,

To find a candidate for the desired function u, let U(f)

be the class of all subharmonic functions v in G such that
1im v(z) f(z')
7z 2

for all z' & | '« The function f is real-valued, but otherwise
may take on any desired values; even + oo 0r =ow

THEOREM 3-9-~The function u, defined by

u(z) = sup v(z),
ve Uz

is either harmonic, identically + <—<or identically -<<in G.
PROOF--Because the function which is identically o< is in ¥(f),
V(£) £ g If this function is the only element of 2/(f),

then we can see u Z =<2, also,

If V{(f) has other members besides the function v= = ==
mentioned above, we proceed as follows. Let A be a parametric
disk such that A C G, If v& VY (f), we can form the associated
function v_, with v_ = P_ in A, and v_ = v on G -~ /. Then from
Theorem 3-7, we know v, is subharmonic in G and thus voéi Q/Kf)g

and from Theorem 3-6, v S-voo Then

[2] see Ref. (6).
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u(z) = sup vo(z)
vo=Pv9Y£®(f)

in A °
All the vo are subharmonic in G, and hence in /\. Then we

have two possible cases, v, I -=<for all v, in A, and hence

ul ~-=9 or there exists at least one 7 that is finite in A,
Then we know by its construction v is harmonic in A. Then
let us consider the c¢lass of all A/ finite and hence harmonic
in A. These satisfy Theorem 3-5 and thus

u = sup v
v_=P_Svel(f)
0 v

is either harmonic or identically equal to +=2in A.
Then u is harmonic or identically equal tc = efor +e<2in
each parametric disk. Because G is connected; only one of

these conditions can occur, so that the theorem is proved.

In order to determine the conditions under which a solution
to Dirichlet's problem exists, we shall study the boundary behavior
of the function uw. In this study, we shall be interested only in
the case when f is bounded, so that If\ < My, for some M.

DEFINITION 3-5--A function S in G is called a barrier at z! & I,

the boundary of G, if it satisfies:
(B1) JF is subharmonic in G,

(B2) 1im 8(z) = O,

(B3) TIim B(z) < 0 for all z' # 2!, z'E .
2320 o
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A boundary point z(‘) is called regular if and only if there is a
barrier at zé. Let V be a neighborhood of ch> and A a barrier function
as described. Then because V is open, B is strictly less than O every-

where in V, and outside V, there is a -m, m > O, such that

B(z') £ -m for all z ‘e '0G=v). Let ﬂv be the function such that
|}
5v(z') = max (-é%—l, -1). Then 5v(z') <0 for all z' € /  and

B v(z') =z =1 for z? f, Ve ﬂv is called a normalized barrier with
respect to V. If G' is a region such that G' MV = G ﬂv,@’v can
be used as a barrier for G', if we define A, Z -1 in G' -(G' N V).
Thus the existence of a bgrrier at a point zg is a local property,
and depends only upon the geometric properties of G in a sufficiently
small neighborhood of Zéo
THEOREM 3-10--At a regular point zé the function u, introduced
in Theorem 3-8, satisfies
lim f(z ) £ lim u(z) 271im u(z) £ 1lim f(z‘)
Z—>2% 2z — 2. 2 =25 27> 2]

provided that f is bounded.

PROOF--Let A = lsz fgz') and let V be a closed neighborhood of z’
7 ""on

such that £(z') < A + €, for a given €>0. If v & V(f),
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the function @@, with
Q= v-A + (M-aA)ﬁv
is subharmonic and

lim @ (2) < £ ,
Z =2

for all z'€E r‘, whether inside or outside of Vo If z £V, we

have lim v(z) < & + £ < M, because lim v(z) £ £(z') and
z->27 227

£(z') £ M for 2'¢ [, and =12 5 (2) <O for z £ G, Then if

z &V,
P(z) A+ E-A=¢,

because (M-A)ﬁvfoo If2€G<V, 2°€]'=(]NV) and

lim v(z) < M, while fy = -1. Then
/
2~

@P(z)< M=A = (M- A) =0,
Then (P(z)<E in G, and because v is arbitrary, it is true for

all v €,U(f)o Since

u(z)

sup v(z),
vEUL)

we have

u(z) A+(M=A),5v,<. &
or

u(z) < A - (MmA)ﬁv-»-E.
As z tends to z(‘)9 we have

1im u(z) < A +E.
g > 2]

Then

lim uﬁz) < 1im £{(2').
2> 27 2’ 2
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Now to show

lim £(z') < lim u(z),

let 2=2 z—=>2Z
we e

:Q/=(B+M)BV+B=£9

where B = lim f(z°) and f(2') > B - £ in V, a closed neighbor-
2> 7S

hood of zgo Again 'f[f is subharmonic becausegv is subharmonic

and we have

T ¥(z) <3-€ < (),

for z' £ V, since f(z') < M and thus
M £B<MorM+B =20,

while (M + B)S, < 0. If 2'€ I ("N V), By = -1, so that

1im ¥ (2) = =M « B+ B =€ = =M =& < £{z'),
z2 237

Then since ¥ is subharmonic¢ in G, and

Tim W(z) £ £(z'), z'e [,

2—>2

we know

u(z) 2 ¥ (=),
Therefore when z tends to zgg we have
1im u(z) > B - &,

2 —2s
and thus

1im £(z*) ¢ 1lim u(z),
2/— 25 Z2—>2L

so that since

lim u(z) <€ lim ugz)g
= 2] 2 =25

the theorem is proved..
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COROLLARY--If f is continuous and G is a region with only regular
points, then the Dirichlet problem has a soclution. Conversely,
if the Dirichlet problem has a solution for arbitrary continuous
f, then every boundary point is regular.

We cannot state here necessary and sufficient conditions for
regularity of a boundary point. While they are known, they cannot
be given in a useful form. However, we can give the following theo-
rem which is general enough for many cases.

THEOREM 3-11--~The point 2, is a regular boundary point of G when-
ever the component of the boundary [1which contains Z, does not
reduce to a point.

PROOF--Because regularity is a local property, we can consider the
case of a subset G of the Riemann sphere. From the assumptions
stated in the theorem, the component on the boundary [j containing

Zo contains another point z1 % zou We can select a simply con-
nected subset E of the complement of G containing both Z and a

suitable zl. By making an auxiliary linear transformation, we

can choose z, =<, and 2, = 0. Because E is simply connected,

we know the complement of E is also simply connected. Therefore
we can define a single-valued branch of the function

8 = g+ iT = lcg 2
in G. We know 2n# < T 22(n+l)? ., For the sake of simplicity,
let n = 0. Then this function maps G onto G', with 0 £ T<L 277,
Then the intersection of G', with any line T =T, is a union of

segments of total length equal to or less than 2 Z. To see that
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the number of such segments in any one line ¢ = <, is at most

countable; we note there are at most finitely many segments of

length _Z-l- for each positive integer n. Letti be fixed
o g . etting o’o e fixed,

we know

0’0 n ¢ = i= 7 319
where Si is a segment of Ty 1 G, Let s:?L and sg be the endpoints
of the line segment Sig with

Im s! < Im s",
i i

Then if 4> s let us define

8! = 8
- L - ' - -
iT arg LT arg (Si s) - arg (s:'i 8),
i

Of/{iéﬁ‘o

Then we define the function

o 135
(s) = e }-;éui(s)“

n ><?

This function is harmonic because the sequence {Zui(s)3 of
7=1 =7/

sums is non-decreasing, and yet bounded, so that the limit is

harmonic by Harnack's principle. The function /qi(s) is harmonic

because it is the imaginary part of the analytic function

@ = log i Bl log ot - il
= PO n_ =
Si s U—«O+JTO o=1iT

a—o+i€5gulog z

IOg ", °
. o+i‘Coulog v

It 18 easy to see (consult the following illustratiorn) that
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- %_ arcta.ncr Z: = os) £ 0.

I1ll. 3-3
If o= aor Ve have
g! =« s a—'a-l-‘fE% -=f=-iac
i
.(s) = arg = arg = ——-
/b(l( S;:'=' 0“0+11 o i
il: ~T) 7! =T
= arg . j = arg w _o& °
1 ?: T i
Ti T ~
Then because 33%%—16- is a real number; its argument is a
i -
T =T
= ; ient of two
maltiple of 7. If’T:Jﬂr'gg TV T is the gquotient o
T =T
545 If T< T i
negative numbers, and hence positive. i° T ; N

is the quotient of two non-negative numters and hence 1S non-

negative, In these two cases;
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Ti=T
ar 1 =Oo
& T3 -T
i ' ol -
IfL:;-A & -<(;ul9
HT e T s
‘E;: =G an a.rgg%:-’g—:%'-= 9
so that
> .
1 o Y 4 =
- . =] o = =l
> 2H; () »LZ=10+7}+”§”0] 1

If =g andT =T orT ¥, M. (s) is defined to be O. Then if
we define &£ as identically equal to -1 for o< af;}g =< is subhar-
monic in G.
However, we cannot yet say
(s) ==(log 2)

is a barrier at Z o for, even though it is subharmonic, nega-

tive in the interior of G, and has the limit 0, as z ==, for

. 2 ?
lim S arctan ———— = 0,
- =y

it may be that o goes to O at a finite boundary point. To
construct a function not equal to zero at any finite boundary
point, we let ifnjn:ap be a sequence of real numbers tending to
+°2, Let 7 be replaces by T, in the definition of =X and let this

new function be defined as O'Cno Then let B be the function defined

as

[an" 4 > o, <
B(2) = ng-oZmnocn(log 2) = h? Zhl"u(“%gﬂi(s))

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



==~lZZ 2" arg where s = o_+1iT
P pzoi=s sgn s? in n “ in°
Then
L
22_ =¥l > <&
- = 2 arctan = z}Z O
or

(=N
-=-2-2mn fﬁ(Z)f 00
n-o
Then _5(z) converges uniformiy in G', and for z in the neigh-

borhood of a finite boundary point, we have, for some N,

A - n Z N,

so that d’n(z) = =1 for n Z N, Then 1im.5(z) < 0, for z,
2 —>2,

a finite boundary point, and/Sis a barrier.

In conclusion, in the first secztion, we have shown the construiz-
tion of Riemann surfaces for certain given functions., In the sesond
section, manifolds were defined, and an abstract Riemann surface was
defined in terms of these manifolds. In addition, we showed that the
Riemann surfaces we constructed were just such abstract Riemann
surfaces, In the third section, we studied the Poisson Integral,
Harnack's Principle, and subbarmonic functions, in order to determine
the solution of Dirichlet's Problem, and gave a sufficient condition

for the existence of a solution of this problem.
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