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THE EFFECT OF INFORMATION ON A STOCHASTIC FISHERY MODEL

Survival rates and carrying capacities in a fishery may be strongly affected by 
variations in climatic factors. When the stock is under control of a single manager, 
information about the stochastic growth parameters leads to improved economic re
turn. However, when the stock is transboundary, additional information concerning 
the stochastic parameters can lead to overharvesting and in turn to lower economic 
returns.

To show this, we formulate the model as an optimal control problem in a game 
theoretic setting. We find the optimal harvest proportions using dynamic program
ming, maximizing the utility at each stage of the game. We then simulate the model 
using the derived harvest proportions. The generated data is analyzed to determine 
the effect information has on the utility function.
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Chapter 1

Introduction

In recent years there has been increasing recognition of the impact of environmental 

stochasticity on major marine fisheries worldwide. The management of a fish stock is 

complicated by the resulting uncertainties. The goal of this paper is to provide a bet

ter understanding of the impact of knowledge on these stochastic fisheries. The intent 

is to ascertain whether earlier and more accurate information regarding the stochastic 

environmental conditions might allow for better management of the resource. This is 

indeed the case when a single manager controls the resource, however we will show 

this is not necessarily the case when the stock is transboundary.

We examine a model with classical assumptions. In [3] Clark studied a discrete 

time bioeconomic model for the harvesting of a renewable animal resource. The con

trol theory problem was solved using dynamic programming under simple assumptions 

concerning growth and utilization of the stock. Later in [6 ], Levhari and Mirman in-

1
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corporated the above assumptions into a game-theoretic setting. Beverton and Holt 

[2 ] previously had noted the difficulties in using purely deterministic models. In the 

papers of Mann [7] , Jacquette [5] and Reed [11] , the growth parameters are con

sidered as random variables. In some cases the time sequence of parameters were 

considered to be Markov chains while in other cases the parameters were taken to be 

independt and identically distributed (i.i.d).

There has been considerable progress in non-cooperative game theory since the 

above papers were written. Fudenberg and Tirole [4] state we now have a deeper 

understanding of the role of information and how it impacts the outcomes of games. 

One would expect that these developments would have been applied to fishery models. 

However, McKelvey in [8] states: ‘It seems the full potential of the approach has yet 

to be achieved. In particular, the negative implications of uncertain and asymmetric 

information has not really been explored in harvesting models. ’

In this paper we propose a study of the effects of uncertainty in a stochastic model. 

We focus on the role of incomplete information and on a comparison of outcomes 

in game versions that incorporate alternative information structures. We start by 

considering the following model. Two independently operated fleets competitively 

harvest a fish stock. The harvesting occurs annually. Each fleet selectively chooses 

a harvesting policy in order to maximize their discounted long term returns. The 

choice is made in response to the expected competitors harvest policy. In the classical 

version of the game, the two fleets harvest simultaneously from a common stock. In
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our version, the fish stock migrates from one countries fishing grounds to another 

countries fishing grounds. The fish are harvested sequentially as it travels from its 

aduit feeding grounds to its spawning grounds.

We will examine several cases of the basic model starting with a sole manager of 

the stock under deterministic growth conditions. We proceed to introduce stochas- 

ticity by allowing Markov stochasticity to occur in the stock-recruitment relation, 

loosely simulating the occurrence of El Nino marine climatic events. Later we al

low multiple fleets an opportunity to harvest the stock sequentially under stochastic 

growth conditions. Here we allow the fleets to have ascertained different knowledge 

about the growth parameters. Specifically we consider three cases: a fleet will only 

know last years growth rate, this years growth rate or the fleet may know next years 

growth rate. We allow different fleets to have different knowledge in a single game.

We demonstrate that when a single manager is employed, an increase in knowledge 

leads to an increase in economic return. However, a wide variety of situations arise 

when the fishery is competitive. For example, an increase in knowledge by both 

players will increase the return for the first fleet while a decrease in return will be 

observed for the following fleet.

In the last chapter we consider the spatially separated model proposed by McK- 

elvey [9] and McKelvey and Cripe [10]. Here the stochasticity is of two kinds. The 

biological growth parameter is a Markovian random variable as in the previous chap

ters. The second way in which stochasticity appears is through a splitting of the
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stock, with a fraction, 9, available for fleet 1 and the fraction, 1 — 9. available for 

fleet 2. Here the harvesting takes place simultaneously, although in different ‘split 

streams.’ We assume theta to be i.i.d. The model formulation is based loosely on the 

Canadian-U.S. harvest competition over Canada’s Fraser river sockeye salmon stock. 

In that real-world fishery, the spawning run splits as it rounds Vancouver Island, with 

only a fraction of the fish being available for the U.S. to harvest.

This time, instead of only allowing past, previous or future knowledge concerning 

the stochastic parameters, we consider an imprecise measurement of the stochastic 

parameters. We assume a player knows the proportion of observations measured 

correctly. For example, if the measurement is correct with probability .5, the fleet 

has gained no additional knowledge, whereas if the player measures correctly with 

probability 1 , the fleet has full knowledge of the current condition.

We include below a list of notations used throughout the paper. A generic fleet is 

denoted by player u.

List of Notations

7  - discount factor 

R  - recruitment

R+- recruitment in the following year 

S  - escapement 

h - harvest proportion
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h - maximum harvest proportion
— — 
h - calculated optimal harvest proportion in interior (0  <  h < h )

r  - number of years remaining before horizon

b - growth parameter

b+ - growth parameter in the following year 

Pnm - probability of state bn moving to state 6m 

v - generic fleet 

v - v's opponent 

F  =  A S b - growth function 

Y  =  hvR„ - yield

U =  * utility function

K R )  =  A (^ (« ) )

M (R )  = R -n (R )

KS) = &U{S)

A (5) =  S X

P  =  [Pnm]

B  - diagonal m atrix with entries &i, • - • 6n 

Q — B P

9 - fraction of fish in player at's stream

9U - fraction of recruitment R  in player v's stream

9V - measurement of 9 taken by player v
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bv - measurement of b taken by player u 

=  prob(b =  bj | bu =  bi) for player v 

x ui3 = prob(b =  bj | bu =  bi) for player u 

q\j =  prob(Q = 9j \9  =  #*) for player u 

Qij =  Pt*o6(0„ =  | 0  =  #i) for player u

a - total fraction of fish harvested in split stream game 

Pi =  prob(b — bi) 

pi = prob(b = bi) 

qi = prob(9 = 9i)

%  =  prob{9„ =  Qi)
( \pll p12

-Olp. p22
b =  average of the bi 

jnm  = prob(bn D bm) 

snm — prob(9n (~19m)

DPE - dynamic programming equation 

i.i.d- independent and identically distributed
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Chapter 2

Sole M anagem ent

In this chapter we determine the optimal harvest when the stock is under the control 

of a single manager. We first examine, as a baseline case, a model with fixed growth 

parameters. Next, we will generalize the model to allow for cyclic patterns in the 

growth function. Finally we will introduce stochasticity into our model.

Deterministic Case

We start with the purely autonomous version of our deterministic model. A sole man

ager controls the harvest of a single fish stock. The life-cycle of the fish is illustrated 

in the diagram below.

R  -> S  =  (1 -  h)R F t  =  F(S).

7
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The fleet has a certain amount of fish available for harvest, called the recruitment, 

R. At the appropriate time, the fleet takes a proportion, h, of the available stock for 

harvesting. We assume for social, economic or physical reasons, the proportion of 

available stock harvested is limited, and so

Q < h < h < l .

Associated with each harvesting season is a yield, Y  =  hR. After the fleet has 

harvested a proportion of the available stock, the escapement, 5  =  (1 — h)R, is some 

fraction of the initial recruitment R. The escapement then spawns, providing the 

subsequent season’s recruitment R*. We set R+=F(S),  where the growth function F  

is typically chosen to be monotone-increasing with a fixed, unique carrying capacity 

K such that F(K )  =  K .  In this paper we use the growth function chosen by Levhari 

and Mirman. Explicitly,

RT = F(S)  =  A Sb, 

with 1 >  .4 > 0 and 0 < 6 <  1 . This results in a carrying capacity of

K  = A & .

We choose to normalize the number of fish by using K  as the unit of measurement.

In our baseline autonomous case, .4 and b are taken to be constant over time.

The fleet chooses a certain risk averse utility function U l . We choose, as Levhari 

XA risk averse utility function /, is one where the expected utility of a fifty-fifty gamble between

two alternatives has a less desirable outcome than taking the utility of the average, /(a) +  f(b) <

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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and Mirman did,

U{R) =  S ' / l n t m
t=0

where 7  is a constant discount factor, 0 < 7  <  1 and T  is the number of harvesting 

seasons considered.

We should note that usually economists wish to study profit and not utility. We 

have left out the cost of production and variable market prices from our model. This 

has been done to ensure the model is analytically tractable. In general, profit will 

not be directly related to utility. However if the number of fish being caught and sold 

does not vary much from season to season, the utility should be a resonable measure 

of profit.

The fleet then wishes to maximize its utility function by optimally choosing a 

harvest proportion for each year. Our goal is then to find, if it exists, an optimal 

harvest proportion for each year that the harvesting game is played. This can be 

done by choosing the harvest proportion hl for each t €  0 . . .  T. We then take the 

limit as T  -»• 00  to find a time-independent solution. When this happens we say 

the game has an infinite time-horizon. At each stage of a finite-horizon game let r  

represent the number of harvesting periods remaining prior to termination. As such 

the harvest policy is of the form

m u  -

At any time t, the fleet’s utility function satisfies the dynamic programming equation
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(DPE)

U{R) = max {in(M2) +  7 ^ ( ^ +)}- (2.1)
0 <h<h

with a different haxvest proportion for each cycle, possibly dependent on R. The 

utility function thus satisfies the DPE

lT {R f)  = max {ln(/ir i?T)
0< h r <h  *■ J

where

R ^  =  R T~ l

and

hr+ =  hT~l .

VVe shall use Bellman’s [1] Principle of Optimality which states: An optimal pol

icy has the property that, whatever the initial state and decision (i.e., control) are, 

the remaining decisions must constitute an optimal policy with regard to the state 

resulting from the first decision.

VVe now proceed iteratively, working backwards in time from the horizon. In the 

terminal period, when r  =  0 , the utility for the fleet is

C /°(fl°)= max (ln(/i0/2°)} =  ln(M2°). 
0<h°<h

Therefore the optimal choice for the h°, is

h° = h .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



When r  =  1 we obtain

U1(R l) = max {\n(hl R l) +  7  • U0(K>)}
Q<hl<h

=  max ( i n ^ f ? 1) + 7  • In f-4/i(l — h l)sfi6') \  
0<hi<a *■ >■ * *

Differentiating (2.2) we obtain

dU 1 1 7 6

dh> V  1 -  

if there is an interior maximum h l . Hence

1

=  0

h l =
1 +  7 6 ’ 

When r  =  2  we obtain

U2(R r)=  max {ln(h2fl2) +  7  • U l(R 1)}
0<h2<h

=  max {ln(/i2f?2) + 7 ln(/il f?1) + 7 2 ln(/i°H0)}
0 </»*<£

=  max / In(hrR2) + 7  ln(-—-—-) +  7  ln(f?1) +  7 2 ln/i -f- 7 2
o<aj<a I I + 7 0

where

=  A(1 -  h2)b(R2)b 

R? =  A(1 -  h l)b(R l)b.

Differentiating (2.3) we obtain

dU2 = 1 7 6  (7  b)2 _
dh2 h2 1 -  h2 1 -  h?
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if there is an interior maximum. Hence

1h2 =
1 +  7 6  +  (76)2  ’

Continuing in this fashion, we obtain

I — 7 6hT =
1 +  7 6  +  (7 ft)2 H 1- (~fb)T 1 — (7 6 )r+ l ’

Letting T  —> 0 0  we find the steady-state harvest proportion to be

h =  1 — 76  (2.4)

since 7 6  < 1 .

We now compute the optimal harvest proportion in a more efficient manner. De

fine

a r ( R r )  _  dtT{RT)
» { R ) ~  ~ d W ~ -

Then /j. is the marginal unit asset value. We shall also find it useful to define

M T{RT) = R T ■ iiT{RT).

Using induction, we will show that hT and M.r are independent of FT. Suppose, for 

a given r  >  1 , M T+ is independent of FT. We drop the reference to r  and explicitly 

refer to the year only when necessary. The following formulas will be used below,

I t  =  >1(1 -  h f l t ,

b-R+
1 - h '
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Differentiating the right hand side of the DPE (2.1) with respect to h yields

dU  1 _ dR+
dh h + 7 M ' dh 

1 7 - 6

h 1 — h

Let

M +. (2.5)

* - 1 (2'6) 

denote the zero of expression (2.5). By the induction hypothesis, expression (2.6) is

independent of R. The optimal harvest is then either h or is the maximum allowable

harvest h. That is

h =  min[/i, h].

Thus h(R) is a constant, independent of R. VVe now know that

dRV = b • .4(1 -  h ^R ? -1
dR

b-R+

and also note that

R  ’

dU 1 , d R +
d R ~  R *  7  dR  

_  1 7  • 6 • fi+R i'
~ R + R  '

Therefore

M {R )  =  1 +  7 - 6 - (2.7)

also is independent of R. Substituting (2.7) in (2.6) gives
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We now proceed iteratively. Ia the terminal period, when r  =  0, the optimal choice 

for the h°, is

h° =  h.

and

M ° =  R° • =  1.

Iteration of the recursion equation (2.7) gives

M l =  1 -r yb • M °  =  1 +  7&,

A42 =  1 +  76  • A4l =  1 +  7 6  +  (7 6 )2

,VT =  1 +  7 6  +  (7 6 ) 2 +  • • • +  (7 6 )r =  ■■ .
1 — 7  0

Letting r  —► oc, we find the limiting, time independent relations for the infinite- 

horizon to be

1 — 7 0

h = I - 7 6 , (2 .8 )

the same as in equation (2.4).

The steady-state recruitment, where R — R+, can then be calculated. Assuming 

that h < h we find

R  =  A[(l -  h)R]b 

=  A['fbR\b

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



To summarize, we have found the optimal harvest proportion to be h =  1 — 76  

independent of R  and of .4.

Periodic Growth

We now generalize to a periodically cyclic growth function. In this model the biolog

ical growth function will cycle through a deterministic sequence of N  distinct growth 

states, n =  0 , 1, . . . , i\f — 1 with

F ( S ,n ) = A n - S b' .

We proceed as before by first examining the finite-time horizon. At the beginning 

of period r ,  the state of the system is [RT,^]. If at a given period, r  > 0, the 

growth state is specified to be rv, then at the subsequent period, =  r  — 1 , the 

corresponding growth state is

n r =  nT+ =  nT~l tnod(iV).

Let hT{n) denote the fleet’s harvested fraction of the accessible stock RT. The 

DPE for the utility function is

IFiiRT, n)] =  max { \n(hrR T) +  7 CT+[(f2T+, n +) ] | . (2.10)
0<h<h 1 J
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As before we work backwards in time. In the terminal period, when r  =  0, the 

maximal utility is

^ [ ( R 0,*)] =  max 1n(/i°R°) =  In { I r0}
0<h°<h  ̂ J

Hence
_

k  =  k

and

M °  =  R° • n Q =  1

are both independent of the growth state n, and R°.

Suppose for a given r  >  1 that M T+ is independent of IF . Differentiating the

right hand side of the DPE (2.10) with respect to hT yields

=  J L  _  J L ±  . M r * .  ( O H )
dhT h* 1 -  hr K }

The optimal choice for hT is

hT =  min[/iT, hr],

where

hr = ------------------    12.12)
l + 7* 6 » - M T+[ ( ^ , n +)l

is a zero of expression (2.11). Therefore hT is independent of FF. We then write

hT[{RT,n)\ = hT{n).

Differentiating the DPE (2.10)with respect to IF , we find

M T[(RT, n)] =  1 +  7  • * M r+ (2.13)
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which also is independent of IV. We then write

M T{{IV,n)\ =  M T{n).

Substituting equation (2.13) into equation (2 .1 2 ) we obtain

^T(” ) =  T T T T -  v ' M r (n)

Iteration of the recursion equation (2.13)gives 

M x(n) =  1 +  7 6 ,

M 2{n) =  1 +  7 6  • M l {n+) =  1 + 7 bn + T b nbn+,

In the infinite horizon limit

M°°(n) = l+ 'yb nM O0{n+). (2.14)

Iterating expression (2.14) N  times with the subscripts taken mod N, results in

M°°(n)  =  1 + 7 6n +  7 26n6„_l H +■ 7 * M n - i  • • • 6n-.v-iA4°°(n -  AT).

However,

M °°(n -  N)  =

thus,

I +  7&n +  72&n6n-l -1------+  7 ^ - 1&n6n-l * * * 1
1 — 7 Ar[6n&n-l • ‘ * &n-Afl h(n)

We have again found the optimal harvest proportion to be independent of R  and A.
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Stochastic Cases

In the next extension of our model, we introduce stochasticity in the growth function

F[S(f)j =  A(f)S6(t).

The parameters .4(f) and 6(f) in the growth function are now random. The parameter 

6(f) is declared to be a Markovian random variable, chosen from the finite set of values 

6n for n =  1.2. . . .  iV. The sequence of random variables 6(f) form a Markov series 

with single-period transition probability distribution

pro6(6+ =  bm | 6 =  6n) =  pnm.

The growth parameter .4(f) is also random. It will be shown tha t the optimal con

trol in this model is independent of A(t). As such, we choose A(t) to be a fixed 

deterministic function of 6(f).

We shall consider several variants of the basic model, each variant differing in the 

specific information that each fleet has available when it must make its harvesting 

decision. In describing this information, we adopt the convention that a  stage of the 

dynamic process begins at the time of escapement. The following diagram illustrates 

this.

5  -► AS6 =  R  -> (1 -  h)R  = S + -+ A ~S+b* = FV -> (1 -  h.+)R+
time step

The state variable pair (S , 6) determines recruitment before harvesting is done, while 

the state variable pair (S+, 6+) determine the system after the current harvest. We 

determine the optimal harvest proportion for the following cases.
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Knowledge of b

The first case we examine is when the player knows its recruitment but does not know 

the value of next season’s recruitment. In other words, the player knows the current 

value of b and all of its previous values.

As in the deterministic version of our model, we begin with the Snite-horizon 

game. The DPE is

where E  (/(£>+)) is the expectation of /(£>+) given b.b~\b

As before we work backwards in time. In the terminal period, when r  =  0, the 

utility is

are both independent of S° and fi°.

We now prove, using induction, that hT and depend only on b(r). Assume 

that A4r h is independent of RT. The following formulas will be used below.

U[(R, 6)] =  max
0<h(b)<K

In(hR) +~f E  U+[{R+, 6+)j \ , (2.13)

max
0<h°(b)<h

Hence
<***.

h° = h

and

R + =  .4+(l -  h)b+Rl* 

dRT - R + • b+
dh l - h

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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Differentiating the utility function (2.9) with respect to h yields

—  =  -

dh h + 7 &+|6 V dh
fdU+ - R + -b + \  
V dh 1 -  h )

h 1 — /l6"r|6 

Setting expression (2.16) equal to zero we obtain

1 7  E (b +M+). (2.16)

~h  i + 7  E{b+ M + y  
6+ |6

The right hand side of equation (2.17) does not depend on R. We now know that

^  =  & - .4 ( l - / i ) fc+R^ - 1

•  r *
R

Differentiating the utility function with respect to R, we find that 

Mr [(R, b)} =  1  ( l  +  7 (6+ • R* ■ m )  )  ,

in other words

M{{R, 6)1. =  1 +  yE^b+M *}.  (2.18)

By the induction hypothesis, the right hand side of (2.18) depends only on b. We then 

write

M[{R,b)] = M {b).

Substituting equation (2.17) in equation (2.18) we obtain

1
h(b) =

M{b)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



21

Iterating (2.18) using M ° =  1 and E[b+ j 6] as the expectation of 6+ given b we obtain

M 1 = l + j  E  {b+M ° ) = 1 4- 7  E[b+ | 6],

M 2 = l +  y  E  {b+Ml{b+)) =  1 +  7 E[b+ | 6] 4- 'fE[b+b++ | b],
6+|6

M 3 =  1 4- 7E[b+ I b] 4- 7 2E[b+b++ j 6] 4- 73£[6+6++6+++ | 6],

If we expand these expressions, we obtain

AT
A/i {bn) =  1 "b 7 ^   ̂Pnmbm

m =i
iV iV ,V

A/i {bn) =  1 4" 7 Pnmbm 4* 7 Pnmbm Pmm'bm' > and SO On.
m= I m = l m' =  l

This series for A400 can be summed. Define the diagonal matrix

B =  [61, 62, • • - 6/v]

and the iV x IV matrices

P  =  [Pnm] and Q =  B P .

Also define the 1 x N  column vectors

1 6i M {bx)

1 62 M{b2 )
1  =

:
, b  =

;
, and M  =

*

1 6iv AA(by)
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Then

M °°  =  1 +  7P b  +  7 'P Q b  +  7 3P Q 2b +

=  1 +  7 P [I — 7 Q] b.

Therefore

hT{b = bi) =
1

(2.19)
( i  +  7 P [I ~  7 Q]- l b)i

We have found that the optimal harvest proportion is independent of R. To check 

the above result, we set

1 0
P  =

and bi = bo = b in (2.19). We arrive at

0 1

h =

1 + I—fb 

=  1 -  7  6,

which is the same as in the deterministic case (2.4).

We have found the optimal harvest proportion to be independent of R  and A. We 

have also shown that the deterministic case is a special case of the case when b is 

known.

In the following sections we will calculate optimal harvest fractions for other 

knowledge structures. We will then be able to compare the knowledge structures
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by using the computed control rules in realizations of the model. The results will be 

analyzed and we will explore the qualitative possibilities for the outcome of the game, 

with the focus on the game’s specific knowledge structure.

Knowledge of 6+

We now change the knowledge structure by assuming knowledge of 6+. The DPE is

U[(R, b, 6+)J =  max ( In(hR) +  7  E  U+[(R+, b+, 6++) j l .  (2.20)
0 < /» < £  I  b++\b-r J

In the terminal period, the utility is

t/°[(fl°,6+)] =  max In(h°R°) =  In { h R ° \  .
0<h°<h *

Hence
_

h = h

and

M ° =  #° • n° =  1

are both independent of R°.

For the induction, we assume that A4+ depends only on 6+'r . Differentiating the 

utility function (2 .2 0 ) with respect to h yields

£  £ £ £ .  (2 .2 1 ) 
dh h 6++|6+ I — h

Setting expression (2.21) equal to zero we obtain

1

1 +  7  E  (6+A t+) ' 
6+ + |6+
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Since the right hand side of the above equation depends only on b+, we can conclude 

that h depends only on 6+. Differentiating the utility function (2.20) with respect to 

R, we find that

M(fl, 6+)l =  i  ( l  +  y b * ^  O ! ) )  .

equivalently

6+>] = 1 + y b *  E  O ] ) .  (2.22)
6‘M“[o+

By the induction hypothesis, the right hand side of (2.22) depends only on 6T. We 

can then write

M [(R ,6+)] =  M{b+).

Substituting equation (2.21) into equation (2.22) we obtain

Iterating expression (2.22), using M °  =  1 

A4l (6+) =  1 -1- 7 6 +,

M 2 (b+) =  1 - F 7 6+  - r  726+ £ [ 6+ +  | 6+ ],

A43(6+) =  1 +  7 6 + +  7 26+£,[6++ [ 6+] +  7 36+£[6++6++^ | 6+], and so on. The 

limiting value can be expressed as

,Vt°°(6+) =  1 +  7 6+ (1 +  7 ^ [6++ | 6+] +  7 2E[b++b+ +  +  | 6+] +  • • •)

= 1 + 7b+ (1 + 7P[I -  7Q]'lk+) •
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The optimal harvest fractions are thus given by

h(6+ =  bi) =
(1 +  7b+ (1 +  7P[I -  7Ql-ir ) ) j'

Again, to check, we set

P  =
1 0  

0 1

and b\ =  bn =  6 in (2.23). The result is

h =
1 + 7 6 ( 1  +  1^ 5) 

1
1 4-  ~!bL • I-76

(2.23)

=  1 -  7 6 ,

which is the same as in the deterministic case eqrefE.Td.

We have found the optimal harvest proportion to be independent of R  and .4. We 

have also shown that the deterministic case is a special case of the case when b* is

known.

Knowledge of b

In the next version of our model, we assume only delayed knowledge of the stock 

recruitment growth parameters. To ease calculations, we now use S  as the state 

variable. The DPE is

[(£  O l  = m a x {  E  (1n(hSb) +  7 ^ [ ( S + , &)]) 1 • (2.24)
0<h<h 11>\<>~ J
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When t  =  0 it is cleax again that h° = k. Hence the m axim um  utility is

U°[(S°,b-)] = E _  (ln(hS°6)) .

We define

and

Then

A0 =  E  ^  
b\b-S°

or

A0 =  E[b | 6"].

Again we note that A0 and h° depend only on b~. For the induction proof, we assume 

that A+ depends only on b. The following formulas will prove useful.

S + = .4(1 -  h)Sb

as+ s+
dh 1 — h

Differentiating the utility function (2.24) with respect to h gives

(2.25)

d U = E
dh  6|6-  \ h  1 — h )

h 1 — hb\b-
7  E  A+. (2.26)
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Setting equation (2.26) equal to zero, we obtain

1h =
1 + 7  E  A+ ' 

616 -

independent of 5. We now know that

8 S + bS+ 
dS ~  S  *

Differentiating the DPE (2.24) with respect to S, leads to

or

A i ( S ,b - ) ] = E  (6 +• 7 &A+[(S+, 6)]) .
0)0 “

Iterating (2.29), it is evident that A is independent of 5. We obtain

Al (6~) =  E  [6(1 +  7 £[6+ | 6])] =  E[b +  7 66+ | 6~],
6)6 “

A2(6“ ) =  E[b +  7 66+ +  7 266+6++ | 6"].

In the limit as r  —> oo

A°°(6~) =  E[b +  7 66+ +  7 266+6++ -f | 6~],

likewise

A°°(6) =  E[b* +  7 6+6^  +  7 26+6++6+++ +  • • • | 6].

Therefore

£[A ~(6) | 6- [  =  E[b+ +  7 6+6++ +  • • • | 6~] =  P 2[I -  7 Q]_ lb.
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Substituting expression (2.27) in expression (2.30), we obtain

h{b = k)  =  ( l + ' / P n i - T Q I - 'b - ) /  t2'31)

As a check, we set P  =  I  and bi =  62 =  b in (2.31). The result is

h = ----------------

=  1 -  7 „6 ,

which is the same as in the deterministic case eqrefErla.

We have found the optimal harvest proportion to be independent of R  and A. We 

have also shown that the deterministic case is a special case of the case when b~ is 

known.

Numerical Simulation Results

In this section we compare the different knowledge structures using numerical simu

lations of the models. We obtain explicit quantitative results regarding the harvest 

proportions and the expected payoffs. We use the following notations for the differeut 

knowledge structures.

b - knowledge of b~

b knowledge of b

b+ knowledge of h*

In the figures we display W , the historically preferred utility function. Specifically,
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we set

W  =  exp[(l -  7 )U] (2.32)

=  exp < E  Inj i J l n  f t r - w  J

where

«t( 7) =  (1 - 7 ) 7 £-

T hat is, W ,  is a weighted geometric mean of the harvests.

The following is a realization of 10000 simulations each fifty years long. The 

average of W is given for each knowledge structure. The independent variable is 61, 

one of the two possible growth rates.

In F ig u re  2.1 we see that the economic return is higher, in the sole manger model, 

when the fleet has more knowledge concerning the stochastic parameters. We also 

see the return is lowered when the biological growth is poorer.

In F ig u re  2.2 we see the management of the stock can be more aggressive when 

the manager has additional information.
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Chapter 3

C om petitive Fishery

We now wish to examine the impact of information on the competitive fishery. Here 

the interaction between the competing fleets leads to more interesting outcomes of 

the game. As before, we first start with a deterministic model before proceeding to 

the stochastic cases.

Deterministic Case

We start with the purely autonomous version of our deterministic model. Two fishing 

fleets, the a-fleet and the /3-fleet, compete over the harvest of a single fish stock. The 

life-cycle of the fish is illustrated in the diagram below.

R  =  Ra Sa =  (1 -  =  Re -»• Sf} =  (1 -  hp)Rff =  5  -> R+ = F (5 ).

31
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At the beginning of the harvesting season, the total fish-stock biomass is available only 

to the a-fleet. The a-fleet harvests the proportion ha of this stock. The remaining 

unharvested stock, Sa becomes available for the /3-fleet to harvest. The ,5-fleet, in 

turn, takes the proportion h$ of its accessible stock Rp, leaving the local escapement

s9.

After each fleet has harvested their proportion of available stock, the total es

capement, equivalent to the /3-fleet’s local escapement, is some fraction of the initial 

recruitment R. Thus,

S  =  <tR  where a  =  (1 — ha)( 1 — h^).

The total escapement then spawns, providing the subsequent season’s recruitment 

R+. Our competitive model leads to the following DPE

T

UV[RV I h0\ = 7 * Infh,,/?,,] for u =  a  or /3.
£=0

Note that this scenario is not neutral with respect to the two fleets since the fish stock 

available for harvesting is always larger for the a  fleet.

Each fleet is assumed to have complete knowledge of the structure of the game, 

including the growth function and the initial recruitment. Both fleets know their 

competitor’s objective function as well as their own. The individual fleet then wishes 

to maximize its objective function by optimally choosing a harvest proportion for 

each year. Each fleet chooses a policy that is the optimal response by that fleet to 

the policy it expects will be chosen by its opponent.
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A Nash-equilibrium policy pair is a pair of policies, one chosen by each fleet, such 

that each is the optimal response by that fleet to the policy it expects to be chosen 

by its opponent. In other words, each fleet can not improve their yield once the other 

fleet commits to its policy. If such a pair of policies exist, the model is said to have 

a solution.

Our goal is then to find, if it exists, a Nash-equilibrium point for each year that 

the harvesting game is played. This can be done by choosing the harvest value hi 

for each t € 0 . . .  T. VVe then take the limit as T  —> oo to find a time-independent 

solution. When this happens we say the game has an infinite time-horizon.

We use standard reaction analysis to calculate the Nash-equilibrium policy pair. 

Let us denote the competitor to the i/-fleer. by p. that is P =  0  or a  when u =  a  or 

/3 respectively. At any time t, and conditional on h?, the P-fleet’s value function for 

the infinite time-horizon satisfies the dynamic programming equation

Uu[ R v \ h e\ =  max_{ln(/il/i2„) +~tvUu[R* j /# ] } .  (3.1)
0 <A„<A„

We now proceed iteratively, working backwards in time from the horizon. In the 

terminal period, when r  =  0 , the utility for the t/-fleet is

UQM \ h * \ =  max, { ln ( /iX )}  =  ^ X ) »
0</»°<A„

independent of any action taken by the competing P-fleet. Therefore the optimal 

choice for the hi, is

hi  =  K ,
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and

Note for v — a  or ,8 , hi and M l  are independent of the recruitment R l  and of the 

competitor’s policy hQ0. Using induction, we will show that hTu and M l  are indepen

dent of R l and of the competitor’s policy

Suppose, for a given r  > 1 , M rJ  is independent of R l- The following formulas 

will be used below.

f i j  =  .4(1 -  h , ) \ l  -  M X  

o n °. =  . A(i  _  haf ~ ^ X _  * ,)* /£
dha

b R Z
1 - h a

Differentiating the right hand side of the DPE (3.1) with respect to ha yields

dUa = _1_ ^  + d R t
dha h ,  ' /“W» ' dha

Let

aa — . , 7 TT~ (3-3)1 -r 7 q • 0 • M a

denote the zero of expression (3.2). By the induction hypothesis, expression (3.3) is

independent of Ra and h$. The optimal harvest is then either ha or is the maximum

allowable harvest ha. That is
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Thus ha(Ra | hg) is a constant, independent of Ra and hg. We now know that

^  =  b • A(1 -  ha)b( 1 -  hfi)bt i t l
dRa

b - R j  
R a '

and also note that

f t f /a =  1 +dR+
dR a Ra l a ' d R a

_  J _  , l a ' b '  /J-Z R-g 
Ra T i?a

Therefore

M a(Ra \hg) = l + y b - M t  (3.4)

also is independent of Ra and h£. Substituting (3.4) in (3.3) gives

' ‘° =  T T

Iteration of the recursion equation (3.4) gives 

M la =  1 +  yab • A4° =  1 +  j ab,

M \  =  1 + 7 ab- M l  =  1 +  Jab +  (jab) 2

1 _  Mr+l
M l  =  1 +  7a6 +  (Ta6 )2 +  — +  (7a6)r  =  ■.

1 -  Jab

Letting r  —► oo, we find the limiting, time independent relations for the infinite-
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horizon to be

1
=

1 - 7 *b'

ha =  1 -  7 a&. (3.5)

For the /3 fleet we obtain the following formulas

R ; = A ( , l - h s )bR i ( l - h * ) ,  

dR +
=  6 • A(1 -  hg)u{l -  ha ) ^ 8

b - R t
Ra '

Using the same induction hypothesis and differentiating the right hand side of the 

DPE (3.1) with respect to hg yields

dUa 1 , dR%
dhg hg +  ' dhg

i  l a ' b  . +
= r s - — / M ’ - '■3Sl

Let

he =  — ----- -7—77+ (3.7!1 +  Jg • 6 • M g

denote the zero of expression (3.6). By the induction hypothesis, expression (3.7) is

independent of Rg and ha. Thus hg(Rg | ha) is a constant, independent of Rg and

ha. We now know that

9R * =  6 • A(1 -  A+)(l -
dRg

b

"" Rg ’
b-R+
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and also note that

dUp _  1 +dR+
dRp Rp 1 0  ' dRp 

_  1 , 7p -b -  p^Rp
Rp Rp

Therefore

M p(Rp \ k a) = l  + 7 -b -M %  (3.8)

also is independent of Rp and ha. Substituting (3.8) in (3.7) gives

so

hp =  1 -  7 5 6 . (3.9)

The steady-state recruitment, where R  =  R+, can then be calculated. Assuming that

R  = A [ ( l - h a) { l - h p )R } b 

=  A[yalrypbR\b

or

R  =  A & ( 7 a7 p6? )rh . (3.10)

The value of a single year’s harvest, CompValu, is then

CompVala — In ^(1  — 7 Q6)A1̂  (yaypb2) ̂  ̂

CompValp =  in ^(1  — 7 ^6) (1 — 'yQb ) A ^  {yaypb2) ^ ^  .
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The total value of a single year’s harvest, CompVal, is therefore

CompVal =  In ( ( 1  -  yab)2(l -  ^ p b ) A ^ .

Summarizing our work for the deterministic model, we have found that the opti

mal steady-state harvest fraction is independent of both the recruitment R u and the 

opponents policy hp. The optimal harvest fraction was found to be

/iy -~ 1 *yi/b.

We note that this is the same expression as we found before in the sole manager 

model (2.4).

Periodic Growth

We now generalize to a periodically cyclic growth function. In this model the biolog

ical growth function will cycle through a deterministic sequence of N  distinct growth 

states, n =  0 ,1 , . . . ,  N  — 1 with

F (S ,n) = -4n • S bn.

We proceed as before by first examining the finite-time horizon. At the beginning 

of period r , the state of the system is [i£T, rv].

Let hl(n)  denote the i/-fleet’s harvested fraction of the accessible stock FCV. The 

DPE for the utility function is

UZ[{Rl, n) | h;] =  max_ { ln(h;iC ) +  7 ,C / f  [ ( * f , n +) | h f ] }  . (3.11)
Q<hr<hr 1 1
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As before we work backwards in time. In the terminal period, when r  =  0, the 

maximal utility for the i/-fleet is

! A!] =  max H W )  = In ( M g !  .
0<h°<h„ J

Hence

h l = h u

and

M l  = E?v -n l  = 1

are both independent of the growth state n, h% and i?°.

Suppose for a given r  > I that M l*  is independent of Rl. Differentiating the 

right hand side of the DPE (3.11) with respect to h i  yields

dUl 1 7a -b +
T = T Z ' m ° -  (3 -12)

The optimal choice for h i  is

h i  =  m in fe , hi],

where

i r — _______________i_______________ n  i t
“ 1 +  7a • b n M ?  [(Rl*, hl+, n+) | K \

is a zero of expression (3.12). Therefore hTa is independent of R l  and hi- We then

write

i m  =  K in ) .

Differentiating the DPE (3.11) with respect to R l,  we find

M Ta[(Kl, n) | hi] =  1 +  7  * 6n • M l*  (3.14)
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which also is independent of FCa and hT&. We then write

M l H K . n )  I Ail =  M l(n ) .  

Substituting equation (3.14) into equation (3.13) we obtain

"  A i k ) '

Iteration of the recursion equation (3.14)gives 

M la{n) =  1 +7a&,

M l  (n) =  1 +  7 ab- jVI* (n+) =  1 +  yabn +  ~i2abnbn+,

In the infinite horizon limit

A 1“ (n) =  1 + y a b n M a ( n + ) .  (3.15)

Iteration of the expression (3.15) N  times with the subscripts taken mod N, results 

in

M ^ { n )  =  1 +  7abn +  7a&n6n-i +  • • • +  7a 6n6n-i • • * b n - t f - i M ^ i n  -  N ) .  

However,

M ? { n  -  N)  =  M ? (n ) ,

thus,

W oc, _  * +  7 Q n̂ 7 q b n b n - i  -i b  7 ^ ~ l 6w5n- t  • • • 6n-iV-1 1
 ̂ “ 1 -  ^[bnbn-i  * • • &„_*■] ha(n ) '

The calculations for the 0  fleet are similar and lead to the same result. We have 

shown the optimal harvest proportion to be independent of R  and A.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



41

Stochastic Cases

In the next extension of our model, we introduce stochasticity in the growth function

F[S{t) ] =  A(t)Sbit).

We adopt the convention that a stage of the dynamic process begins at the time of 

total seasonal escapement and ends at the specification of player ft's escapement. 

Note that even though S3  =  S+, we consider S 3 to be in the season prior to the total 

escapement. The following diagram illustrates this.

S  —> A S b = Ra Sa = R 6 -> S3 =  -> A+S +b* =  R t  S J  =  R t  -» S t
P time step °  “  9 J

The state variable pair (5 ,6) determines recruitment before harvesting is done, while 

the state variable pair (S+ , 6+) determine the system after the current harvest.

Knowledge of b

The first case we examine is when both players know their recruitment but do not 

know the value of next season’s recruitment. In other words, both players know the 

current value of b and all of its previous values. In addition both players, after having 

calculated their optimal harvest fractions, will be able to deduce the value S 3 .

As in the deterministic version of our model, we begin with the finite-horizon 

game. The DPE for the a-fleet is

Ua[(Ra,b) | =  max^ ( l n ^ i ^ )  +'Ya E U £ [ ( i £ , 6+) | , (3.16)
0 < /ia < A a  I  &+|4 J
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where E  (/(o+) | 6) is the expectation of / ( 6+) given 6 .
6+|6

As before we work backwards in time. In the terminal period, when r  =  0 , the 

utility for the ^-fleet is

U°[(Rl,b) \h%\=  max ln(h°R°u) =  In {h„Rl \  .

Hence

hl = hv

and

are both independent of /i°, S° and

We now prove, using induction, that hi  and Adi depend only on 6(r). Assume 

that M *  is independent of R„. The following formulas will be useful.

R+ =  A+(l -  hfi)b+R£ =  A+(l -  hfi)b+(l -

dR+ - R j - b +  
dha 1 — ha

Differentiating the utility function (3.16) with respect to ha yields

dUa _ J . + 7  E ( dU i
ha ab+\b V 9ha 1 -  ha )dha

1 7a
ha 1 — hab+\b 

Setting expression (3.17) equal to zero we obtain

E (b +M t ) .  (3.17)

ha i + l a E ( b * M t y  (3 -18)
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The right hand side of equation (3.18) does not depend on R a or h$. We now know 

that

d R t
dRa

b+ -R
R*

Differentiating the utility function with respect to Ra, we find that

I M  =  JQ  ( 1  + 7 .  £ s (b* ■ K  ■ t i m . b * )  ! A J])) .

in other words

| h,\ =  1 + 7 .  (3.19)

By the induction hypothesis, the right hand side of (3.19) depends only on b. We then 

write

M a[(Ra,bi) | hfi] =  M a.

Substituting equation (3.18) in equation (3.19) we obtain

* ■ - £

Iterating (3.19) using M l  =  1 an<i  E[b+ | 6] as the expectation of b+ given b we 

obtain

M la =  1 +  7a E  {b+M°a) =  1 +  i aE[b+ I 6],
6+|6

M l  =  1 +  7« E  (b + M l(b +))  =  1 +  i aE[b* 1 6] +  7lE[b+b+*  | 61,
6+[6

M l  =  1 +  7*E[b+ I 6] +  ~(lE[b+b++ | 6] +  t* £ [6 +&++6+++ | 6],
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Then

A C  =  1 +  7aP b  +  TaPQb -f- 7«PQ 2b 

= l + 7 a P [ I - 7 aQ]~lb.

Therefore

44

hTa(b =  bi) = (3.20)( l+ 7 a P [I -7 a Q ]- lb ) /

For the /3-fleet, we can calculate its harvest fraction similarly. The induction proof 

that hg and M Tg depend only on b(r) is identical to the previous proof.

USHtTf.b) I /£) = max (lnfhJflS) + 1 ,  E jr3*{(Rf, 6+) | C l )  ■
0 < h l< h g  1 b+\b v  J

The following formulas apply.

B$ =  >1(1 -  k„)Rt  =  .4(1 -  /i„)(l -

3R J - t $  • b*
dfi6 1 - h *

Differentiating the utility function with respect to hg, yields

d U f
dhg - — I- ~fg Ehg 6+|6

1 IB

d U j  - / £ - 6 +
dhg I -  hg

hg 1 — hg ft+ii§ p * * v \ (3.21)

Setting expression (3.21) equal to zero we obtain

h» — (3.22)
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The right hand side of equation (3.22) does not depend on R$ or ha, therefore 

depends only on b. We now know that

dRg _ R j - b +
dRfj R$

Differentiating the utility function with respect to R$, we find that

R , , b \ h . )  =  j -  ( l + y e E ^ - R Z - r i U R ^ b * )  | h*]) \  ,

in other words

M fK R n , b) | M  =  1 +  73  £  b*) i /£ ] ) .  (3.23)
0  ̂|o

The induction hypothesis shows that the right hand side of the expression (3.23) 

depends only on b. Substituting equation (3.23) into equation (3.22), we obtain

-  * 5 0 )

The iteration process leads to the result

■M”  =  1 +  7flPfI — 7aQ]~lb.

We have found that the optimal harvest proportion is independent of Ru and of 

ho. The optimal harvest fraction is

^ l + 7 , P [ I - T , Q | - b V  (3'24)

We note that this expression is the same as in the sole manager case (2.19).
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Knowledge of 6+

We now change the knowledge structure by assuming both fleets have knowledge of 

The DPE for the a  -fleet is

Ua[(Ra,b ,b + )\h 0 }=  max: ( ln (M 2 a) + 7a E  U Z [{K ,b +^ ) \  h j jV  (3.25)
0<Ao <Aa I  6++16+ "  J

In the terminal period, the utility for the i/-fleet is

6+ ) | h°] =  max ln(A°/?°) =  In .
0<A° <Aa '

Hence

hl = hu

and

M l  = R l - v l  = I

are both independent of h% and

For the induction, we assume that M *  depends only on 6++. Differentiating the 

utility function (3.25) with respect to ha yields

dha ha a6++|6+ 1 — hQ 

Setting expression (3.26) equal to zero we obtain

Since the right hand side of the above equation depends only on b+, we can conclude 

that ha depends only on b+. Differentiating the utility function (3.25) with respect
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to R a, we find that

M W . ,  b+) I A«] =  ( l + 7 t e U n Z . b * * )  I A ?])) ,

equivalently

&-) I M  =  1 +  lab* E (M*l(R^,  6++) I A+]). (3.27)

By the induction hypothesis, the right hand side of (3.27) depends only on 6+. We 

can then write

Substituting equation (3.26) into equation (3.27) we obtain

^  =  M J F - y

Iterating expression (3.27), using = I 

^ ( & +) =  I+7a& +,

M 2a{b+) =  1 + 7 a6+ +lib+E[b++ | b+],

M%(b+) =  1 +  7 a&+ +  'yZb+E[b++ | 6+] +  7 3&+£[6++6+++ | b+J, and so on. The 

limiting value can be expressed as

M ?(b+) =  1 +  7a&+ (1  +  yaE[b++ I b+l 4- 7 lE[b++b+  +  +  | 6+] +  • • •)

=  1  +  7ab“ (1 +  7aP(I -  7aQ]-lb+) ■

The optimal harvest fraction is given by

M 6 +  =  6'') =  ( l + 7 a b + ( l + 7 a P ( I - 7 a Q l- ‘t r ) ) ;  (3'28)
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The calculations for the #-fleet lead to the same result for hTQ. We note that the 

optimal harvest proportion is independent of R  and A  and that the above expression 

(3.28) is the same as in the sole manager case (2.23).

Knowledge of b~

In the next version of our model, we assume that both fleets have only delayed 

knowledge of the stock recruitment growth parameters. To ease calculations, we now 

use S  as the state variable. The DPE for the a-fleet is

U.V.S, n  I M  =  m»x (  E  (ln(A„Ss) +  7atC [(S + , i) I fc ji))  . (3.29)
0<ha<ha L6!6- J

When r  =  0 it is clear again that h°Q =  ha. Hence the utility for the a-fleet is 

We define

a ;[ (5 ’6-) I hj] =  A u „ n s ,b - )  I M

and

A „ [(S ,r ) |M  =  5A [(S ,6-)|h9].

Then

A“ =  ajf-5°

or

A l  =  E[b | »-).
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Again we note that A° and /i° depend only on b~. For the induction proof, we assume 

that A+ depends only on b. The following formulas will prove useful.

5+ =  .4(1 -  hQ)( l  -  h0 )Sb

dS+- S + 
dha 1 -  ha

Differentiating the utility function (3.29) with respect to ha gives

dUadUg _  E  f  J_  _  i an tS + \
dhg 6|6- \ h a 1 -  ha J

=    E  A t.
ha I - h a 616-

Setting equation (3.31) equal to zero, we obtain

1

independent of S  and h$. We now know that

dS+ bS+ 
d S  ~  S  '

Differentiating the DPE (3.29) with respect to S, leads to

or

(3.30)

(3.31)

^  =  7“  FTT> (3-32)

Aa((S, b-) I h ,  1 - E ( b  + 1 „6AJ [(S+, b) I AJD ■ (3.34)b\b'“

Iterating (3.34), it is evident that Aa is independent of S . We obtain

Ai(4") =  E  [6(1 +  7»JS[6+ I 6])] =  E[b +  la bb* | &-],
6(6

A j(6- )  =  E[b +  7 o66+ +  ^bb+b** | 6"].
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In the limit as r  —>• 00

A~(6~) =  E[b +  7 a66+ +  'ylbb+b** + • • • ( 6~],

likewise

A ~ ( 6) =  £ [ 6+  +  ^ b + b ^  +  7 l b +b++b ^  +  • • • j 6].

Therefore

£[A“ (i<) I r ]  =  £ [6+ +  7 a6+6++ H I 6-] =  P 2[I -  T o Q r 'b . (3.35)

Substituting expression (3.32) in expression (3.35), we obtain

H ‘ { b  = W =  ( I  +  T s P n i - T . Q l - ' b - ) /

The DPE for the /?-fleet is

m s ,  n  i a«] =

max (  E  (In ( (1  - A 0)(l -  he )S>) + 7 „U }l(S*,b) | ( £ ] ) !  (3.36) 
Q<h0 <hg L6!6*  J

n ^When r  =  0 it is clear again that =  hp. Hence the utility for the ,5-fleet is

03[(S°,4-) I a;i = E (in(KMs*)")) ■

Then

or

\0  __ p  ^
9 »£-S°

A? =  £ ( 6  | 6 '] .
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Again we note that Ajj and depend only on b~. For the induction proof, we assume 

that Xp depends only on b. The following formulas will be used.

S + =  A(1  -  ha )( l -  hp)Sb 

dS+ s +
dhp I — h$

Differentiating the utility function (3.36) with respect to h$ gives

dUj3_ _  E  (  1 W t s+  
dh$ 6|6- I h# 1 -  hff

1 73

h$ I -  he b\b- 3 

Setting equation (3.38) equal to zero, we obtain

1

(3.37)

E  A t. (3.38)

1 + 7 .E .A J

independent of 5  and ha. We now know that

d S + bS+ 
d S  ~  S  '

Differentiating the DPE (3.36) with respect to S, leads to

( b fn0XtS+'

or

A„[(S, b-) | A J =  E  (b + 7«6AJ[(S+, b) | >£]) . (3.41)
6|6

We note that the expressions are the same for the /J-fleet as the a-fleet. We can 

conclude the expression for h$ is similar to the expression for ha. The optimal harvest
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fractions are given by

^  = b‘] = ( l  +  7 ,P 2[ I - 7 , Q ] - ‘b - ) j ' (3 '42)

We note that the optimal harvest proportion (3.42) is independent of R  and A  and 

is the same as in the sole manager case (2.31).

Asymmetric Knowledge

We now consider an asymmetric version of the model. Here, the two fleets will have 

different knowledge of the stochastic growth parameters. In our previous work, we 

have demonstrated that the ^-fleet’s harvest policy was completely independent of 

the ^-fleet's policy. All of the calculations are identical. We can conclude that the 

harvest proportions for the v-fleet in the asymmetric game is equal to the harvest 

proportion for the i/-fleet in the symmetric game.

Numerical Simulation Results

In this section we compare the different knowledge structures by running simulations. 

We use the following notations for the different knowledge structures.
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b - symmetric knowledge of b~

b symmetric knowledge of 6

b+ symmetric knowledge of 6+

b — vb asymmetric knowledge, a  knows b~,p  knows 6

b — vb+ asymmetric knowledge, a  knows b~ , 0  knows 6+

bvb— asymmetric knowledge, a  knows 6 , knows b~

bvb+ asymmetric knowledge, a  knows 6 , /3 knows 6+

b + vb— asymmetric knowledge, a  knows 6+, knows b~

b + vb asymmetric knowledge, a  knows b+,fi knows 6

The following is a realization of 10000 simulations each fifty years long. The average of 

W, the historically preferred utility function, (see (2.32)) is given for each knowledge 

structure. The independent variable is 61.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



54

F ig u re  3.1 Here we look at the symmetric knowledge cases. Player one, Pa 

receives a higher utility with additional knowledge. However, P3 performs worse with 

additional knowledge.

Ot2r 

a it  - 

a t  ■ 

a  09 - 

0.08 - 

ao7- 

aoe -

aos -

|4« ' ' I '  1 1 » 1 — ■ ■ * 1
OJ 092 09* 098 091 0 9  092 09* 099

0!

Figure 3.1: Comparison of Wa with W$

- "pi
■ - *„«»
■- "pi 

"pi
-■ "pi
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Figures 3.2, 3.3. 3.4 Here we examine asymmetric knowledge. Pa has the same 

knowledge within each figure, whereas P$ s knowledge is allowed to vary. In these 

figures, Pq performs better with additional knowledge. However, Pa's return decreases 

when P$ gains this additional knowledge.

a t2 r

a n  * "* ~ ~ 7 ^

a a*
i at*

0.07 -

aoe -

a o a a  082 a s *  o m  o.m  a *  a  *2 a . u  a s *ot

Figure 3.2: Comparison of Wa with W$ when /3-fleet knowledge is increasing

• - w.ffTvei 'MJB'lO")
- %«n
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0.00

0.0 094

Figure 3.3: Comparison of Wa with Wg when /3-fleet knowledge is increasing

01

0.07

at att91 09 094

Figure 3.4: Comparison of Wa with Wg when /3-fleet knowledge is increasing
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Figures 3.5, 3.6, 3.7 Here the situation is reversed. P$ has the same knowledge 

within each figure, whereas Pa’s knowledge is allowed to vary. In these figures, Pa 

performs better with additional knowledge. However, Pp's return decreases when Pa 

gains this additional knowledge.

a n

a t

a o s

a*

a s

Figure 3.5: Comparison of Wa with W$ when a-fleet knowledge is increasing
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0.12
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Figure 3.6: Comparison of Wa with Wg when a-fleet knowledge is increasing
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Figure 3.7: Comparison of Wa with Wg when a-fleet knowledge is increasing
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F ig u re  3.8 This figure shows the various harvest rates for the different knowledge 

structures and different values of b. When the b value is b\ (indicating poor growth) 

the harvest fractions are lower than when b is 62- However the ordering based on 

knowledge is inverted when b is changed from b\ to 62- In other words, since the 

utility function is risk-averse, with poor knowledge the players tend to be conservative. 

However, if the player has a high degree of knowledge the two harvest rates will be 

further apart than if the player possesses a lesser degree of knowledge, indicating the 

player takes a more aggressive approach to harvesting. This in turn benefits the first

player since he is in the position to harvest first.
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Figure 3.8: Comparison of harvest proportions for the two possible states of b
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Chapter 4

Fairness

Until now, the a-fleet has had an inherent advantage in the fishery. We may wonder 

if there is a way to address this issue by limiting the a-fleet’s harvest. Suppose that 

the a  fleet has only a fraction, 5, of R  available for harvesting. We show what effects 

this added variant will has on the outcome of the game and determine what value of 

5 equalizes the game.

Determ inistic Case

We start with the purely autonomous version of our deterministic model. Two fishing 

fleets, the a-fleet and the /3-fleet, compete over the harvest of a single fish stock. The

60
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life-cycle of the fish is illustrated in the diagram below.

S  —► A S b -> Ra =  8 A S b -* Sa

\  \

— y R 0  = ( I -  8 )A Sb +  Sa -> S* =  S +

The a-fleet’s utility function thus satisfies the DPE

Ua[ S \h g \=  max {ln(6 haA S b) +'yaU*[S+ \ h t]}  . (4.1)
0< h a < h a

We now proceed iteratively, working backwards in time from the horizon. In the 

terminal period, when r  =  0 , the utility for the a-fleet is

U«[S° I *Sl =  max {ln(<S/i°AS0*)} =  ln(ctoQAS°4).

Therefore the optimal choice for the , is

h°a = h a,

and

A° =  6 ,

independent of any action taken by the /3-fleet. Using induction, we will again show 

that hTa and are independent of ST and of the competitor’s policy h^.

Suppose, for a given r  >  1, A j is independent of S. The following formulas will
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Sa =

dS+
dK

1 -  ha)5AS 

1 -  S)ASb + Sa 

1 -  5ha)A Sb

1 -  5h*)( 1 -  hp)ASb =  SH 

- 6 S+
l - 5 h a)'

Differentiating the right hand side of the DPE (4.1) with respect to ha yields

dUa
dha

1 7o*A£
1 -  Shc

(4.2)

Let

ha = (4.3)
3(i + 7 « a ; )

denote the zero of expression (4.2). By the induction hypothesis, expression (4.3) is 

independent of S  and h$. We now know that

dS+ bS+ 
dS  ~  S

and also note that

Therefore

dS  S  7  S  '

K ( S \ h t ) = b(l + yaA*) (4.4)
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also is independent of S  and h$. Substituting (4.4) in (4.3) gives

ha = u

Iteration of the recursion equation (4.4) gives

\ la =  6(1 +  7 a6A°) = 6(1 +  7 a6),

Aq =  6(1 +  70&A£) =  6(1 +  7q6(1 +  7 a 6))

=  6(1 +  7a 6 +  7lb2)

Letting r  -> oo, we find the limiting, time independent relations for the infinite- 

horizon to be

A ~ =  6
a 1 7a6'

-  _  1 - 7a6
ha — . (4.5)

As a check, if 5 =  1 in the above equation then

h<x = 1 7a6,

the same result as previously obtained in the sole manager case (2.4). 

The ^-fleet’s utility function satisfies the DPE

Uff[Sr | ha] =  max {Info,AS6) + 7 ^ [ S + | /£ ]} . (4.6)

The optimal choice for the /$ , is

h°p =  hp,
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and

\ \ = b,

independent of any action taken by the a-fleet. Using induction, we will again show 

that hff and A# are independent of S  and of the competitor’s policy ha.

Suppose, for a given r  >  1 , is independent of 5 . Using

d S + —S+
dhe ~  (1 - h 0y

and differentiating the right hand side of the DPE (4.6) with respect to h3 yields

dU3  _  1 .+ d S +
dh3 h3 +  1 3  0 dh3

=  J _  _
h3 1 — h3

Let

(4.7)

h  =  ■:---------- r x  (4.8)i+7 /J 'A j

denote the zero of expression (4.7). By the induction hypothesis, expression (4.8) is 

independent of S  and ha. We now know that

dS+ bS+
dS

and also note that

Therefore

dU3  b A 
d S  S +7/J S '

A^(5 | ha) =  6(1 +  7#A£) (4.9)
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also is independent of S  and ha. Iterating the recursion equation (4.9) we find

a ~  =  - A _
3 1-7/J& ’

h$ =  1 —  7pb.

The steady-state escapement, where R  — R+, can then be calculated. Assuming

t ty  ^  t ty

R  = A [ ( l - 6 ha) ( l - h 0 )R}b.

Therefore

R  = A ^ ( l  -  d*ha) i ^ ( l  -  h (})tt  

= .4^5 (ya^ b 2) ^

The harvest levels are

Ya =  haSR 

=  ( 1 - 7 ab)R 

%  =  he{l -  5ha)R  

=  (1  -  ifib)iabR.

If we try to solve Ya =Yp  we find it impossible to equalize this game by adjusting <5. 

However if hu > hv

R  = A [ { l - 5 h a) { l - h f i ) R \b.
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Therefore

R  =  A ^ {  1 -  5ha)-&{ 1 -

=  A ^  ( 7 ^ ( 1  - ^ a ) ) ^

The harvest levels are then

fa  =  5haR  

Y? =  h&{ 1 -

=  ( l - 7 ^ ) ( l - 5 h a ) ^ .

In this case

j  1 -  7<6 
(2  -

equalizes the game.

We have shown that the optimal harvest proportion is independent of R  and .4. 

The harvest proportion is the same as calculated in the sole manager case (2.4). 

Therefore the 6  constraint can not equalize the game unless the first player’s optimal 

harvest proportion is is constrained by h.

Stochastic Cases 

Knowledge of b

The first case we examine is when both players know their recruitment but do not 

know the value of next season’s recruitment. In other words, both players know the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



67

current value of b and all of its previous values. In addition both players, after having 

calculated their optimal harvest fractions, will be able to deduce the value S3 .

As in the deterministic version of our model, we begin with the finite-horizon 

game. The DPE for the a  -fleet is

Ua[(S,b) | hg] = max^ / \n(5haA Sr‘‘) + 7 a E  ^ [ ( 5 + ,6+) | h j ] \  . (4.10)
0<ha(b)<ha I J

As before we work backwards in time. Again

hl = hu

and

A° = b

are both independent of and 5°.

We now prove, using induction, that h i and A£ depend only on b. Differentiating 

the utility function (4.10) with respect to ha yields

dU* 1 ^  r  f ^ dS+\
dha ha 6+|6

1 7a<* E ( K ) .  (4.11)ha 1 —JhQ6+|6 

Setting expression (4.11) equal to zero we obtain

h .  =  (4.12)

H1+7a4 (AJ)j
The right hand side of equation (4.12) does not depend on S  ot hg. We now know 

that

dS+ bS+ 
d s  ~  s  '
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Differentiating the utility function with respect to S, we find that

M ( S ,») I As] =  6(1 +  7-6 E  (AJl). (4.13)

By the induction hypothesis, the right hand side of (4.13) depends only on b and 6+. 

Substituting (4.13) into (4.12) we obtain

ha =
6 AZa

is a function of b only. Iterating (4.13) using A° =  6 we obtain

A1 =  6(1 +  7 a E  'A °»  =  6(1  + 7 „E[6-  I 6]),o*̂ |o

A | =  6(1 +  ; aE[b* | 6] +  -ZE[b+b*+ | 6]).

Then

Therefore

A ? = b ( l + 7 a P [ I - 7 a Q l ‘ ,b)

A“(6 -  W =  ( 6 ( l + 7 . P [ I - 7 a Q | - ^ ) , - (4'14)

Note that if 8  =  1 then (4.14) becomes

A;( 6 =  6i) =
( l+ 7 a P [I -7 a Q ]- lb)j ’ 

the same result as previously obtained without the 8  constraint in (2.19).

The DPE for the /3-fleet is

Ufi[&b) | ha] =  m ax_ ( l n ^ A S 6) +  7* £ ^ [ ( 5 + ,6+) | / £ ] )  . (4.15)
0< h g (b )< li0 I 6+16 J
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Differentiating the utility function (4.15) with respect to hg yields

d u a _  i _  _  7g E  / .+x
dhg hg 1 — hg 6+|6 ^

Setting expression (4.16) equal to zero we obtain

1
h} =

We now know that

dS+ bS+ 
dS ~  S  '

Differentiating the utility function with respect to 5, we find that

A,[(S,&) | ha\ = 6(1 + 7s4 E  [Aj]).
ô jo

Substituting (4.18) into (4.17) we obtain

6hg(b) =
A/»(6).

Iterating (4.13) using Ajj = 6  we obtain

A ? =  b ( l + 7 SP [ I - 7 SQ ]-1b ) .

Therefore

M  b = bt) =
( l  +  7 « P ( I -7 3 Q ]- 1b ) , ’ 

the same result as previously obtained without a 5 constraint in (2.19).
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Knowledge of 6-1- 

The DPE for the a-fleet is

C7a [(5,6+) | h fl] =  m a x , ( ln ( ta a.4S4) + 7a E  U£[(S*,b+,b++) | hg]) . (4 .2 0 )
0<ha [b)<ha t  b + + |b +  J

As before we work backwards in time.

hl = hv

and

A ° = 6

are both independent of /i° and 5°. Differentiating the utility function (4.20) with 

respect to ha yields

dUa 1

« )
1 7a S

= 77 + 7a Edha 6++|6+

E (  A+). (4.21)ha 1 — <J/la 6++|6+

Setting expression (4.21) equal to zero we obtain

S . =  (4.22)

The right hand side of equation (4.22) does not depend on S  or h$. We now know 

that

3 S + bS+ 
dS  ~  S  '
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Differentiating the utility function with respect to S, we find that

M (S ,f ’+) I he] =  6(1 +  7 ,6  E  [A j|). (4.23)O'" I O'1"

By the induction hypothesis, the right hand side of (4.13) depends only on b and b+. 

Substituting (4.23) into (4.22) we obtain

W 4+) =  JA„(6+).

Iterating (4.23) using A° =  b we obtain

A1 =  6(1 +  7 ,  £  (A“)) =  6(1 +  7 „6+), 

A' =  6(1 +  7a6+ +  72ab+E[b+^ | 6+]).

Then

Therefore

A ?  =  b  (1 +  7aP[I -  7 ,Q ] ' lb ) .

Note that if 5 = 1 then (4.24) becomes

M 6+ =  6,) =
( ( l  +  7 « P [ I -7 a Q ] - lt> ).’ 

the same result as previously obtained without a 5 constraint in (2.23). We have 

shown the optimal harvest proportion to be independent of R  and A.
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Knowledge of b~

The DPE for the a-fleet is

c y ( s ,  b-)  I 6„] =  max I  E  (In(fli.AS*) +  7.CC[(S+, b) | AJ)))  . (4.25)
0 <ha<ha l 6l6“ J

Differentiating the utility function (4.25) with respect to hQ yields

dha ha 6|6- \  ° dha J

-  £  -  ( « * » '  <4-26> 

Setting expression (4.26) equal to zero we obtain

A. =  (4.27)
5 ( 1 + 7 „ £ .(A i ) )

Differentiating the utility function with respect to S, we find that

A„[(S, b-)  | ht ] =  E  (6(1  +  7 . 6A+)) . (4.28)

Iterating (4.28) using =  E_(b) we obtain as before
6(6—

£[A?] =  P 2[ I - 7«Q]-1b.

Therefore

6.(6 -  =  6() =  (j (1 +  7ap 2 [ i _ 7<iQ ]-ib )).- <4-29>

Note that if S =  1 then (4.29) becomes

6.(6- = 6.) =
(i + 7.P2[I-7.Q]-,b)i’

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



73

the same result as previously obtained without a 5 constraint in (2.31).

In this chapter we have tried to neutralize the advantage of the first harvester by 

restricting the allowing that harvester access to only a fraction of the fish. We have 

shown that this player compensates by increasing its harvest proportion. Therefore 

in order to make the game fair, the 8  constraint must be small enought to ensure that 

the first harvester is constrained by h. The optimal proportion is independent of R  

and A.
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Chapter 5

Split Streams

In this chapter we consider a new model and a new type of information. The two

fleets compete over the harvest of a single stock. The life cycle is illustrated in the

diagram below.

Ra — 9aR Sa =  (1 — ha)Ra

R S~ =  Sa -+- Sg —y /?*'"
\

Rg =  9gR —ySg =  (l — hg)Rg 
At the beginning of the season, the total stock splits into two streams, with stock

Ra =  9aR  available to player a  and Rg = 9 g R  available to player 0 where 9a+9g =  1.

At the end of the season, the unharvested stocks Sa and Sg reunite to form the total

escapement S = Sa + Sg =  aR, where <7 =  1 — 9aha — 9ghg.

In the following cases we change the knowledge structure by assuming the players

obtain partial knowledge of the stochastic parameters obtained by' making imperfect

74
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observations of the parameter in question. We find the optimal harvest proportions 

under various scenarios and use numerical simulations to compare the effect of the 

imperfect observations.

Imperfect Knowledge of 6

We first consider the case where the split, 9, is imperfectly measured. We assume 

that each player knows the distributions, = prob{9 =  0j\9u =  0,}, where 9„ is the 

measurement made by player u, and qj =  prob{9 =  9j}. We also assume that each 

player knows the distribution of b, where 6 is now assumed to be iid. The t/-fleet’s 

utility function thus satisfies the DPE

££[(*, M„ ) I M = “ ax E_ U n t f u h v R )  +  -ruE E ( U ? [ ( ! V , b +,8 Z )  | /£])} .

(5.1)

We now proceed iteratively, working backwards in time from the horizon. In the 

terminal period, when r  =  0 , the utility for the t/-fleet is

— max £( In(9vh„R)

Therefore the optimal choice for the h°u, is

h l = h„,

and

M l  =  1,
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independent of any action taken by the £-fleet. Using induction, we will again show 

that h i and M l  are independent of RT and of the competitor’s policy hi-

Suppose, for a given r  > 1 ,M *  is dependent only on b+. The following formulas 

will be useful

R + =  A[aR\ 6+

d R -h
=  - b +A[aR]b+- l (9vR)dhv
_  - 9 ub+R+ 

a

Differentiating the right hand side of the DPE (5.1) with respect to hTu yields

dUu
=  E. -  7. E  ( ^ £ ( 6 +M „+) ) )  . (5.2)

dhv e„\ev \ h u o+ \ab+  ) )

Setting (5.2) equal to zero, we obtain the interior solution

1 =  E ( e- ^ - tE ( b + M „ * ) )  . (5.3)
9v\e„ V <7 6+ J

Since (5.3) holds for u =  oe or /3, by the induction hypothesis we find that hv is indeed

independent of R  and h0. We now know that

dR+ , ^ . r
dR

We also note that

=  b+A[<rR]b

dUu
dR

Therefore we can write

M „ = l + 7 „E(b+M t) (5.4)
6̂
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independent of R ,b  and h0. Substituting (5.4) in (5.3), we obtain

1 =  £  (A4„ — 1). (5.5)
9„\9V \  a J

Iterating (5.4) with M °  =  1 and £ ( 6) =  6 gives 

M l  = l + 7 vE(b+),

M l  = l  + 7 uE{b +  (1  +  7yE{b++))) =  1 + 7 ub + l ib 2,

Letting r  —>• oo, we find the limiting, time independent relations for the infinite- 

horizon:

^ ”  =  1 + r ^  <5-6)

and

1 - & ( * ¥ * )  A -  ( 5 j )

Imperfect Knowledge of b

We now consider the case where the growth parameter, b, is imperfectly measured. 

We assume th a t each player knows the distributions, =  pro6 {6  =  bj \ b„ =  6,}, 

where b„ is the measurement of 6 made by player u and also pj — prob{b =  bj}. We 

also assume tha t each player knows the distribution of 0 , where 9 is assumed to be 

iid. The DPE for the u -fleet is

Uv{{S~bvM  | hg] =  max (  £  (ln (0A ,A S 6) + 7 *E E  (u ? [(S +,b t ,9 t )  \ •
0<h„<h„ v6|6„ V &&  V J /  J

(5.8)
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In the terminal period, when r  =  0, the utility for the i/-fleet is

UQU =  max E \u{BvhuA S b)
0<h„<h,ub{bu

Therefore the optimal choice for the is

hl = K ,

and

AXbu) = E ( b \b u),

independent of any action taken by the P-fleet and of S . Using induction, we will 

again show that hTv and are independent of S T and of the competitor’s policy.

Suppose, for a given r  >  1, A+ is dependent only on b+. Differentiating the right 

hand side of the DPE (5.8) with respect to hTv yields

w  = E- ( r  _ w > ) ■ <5-9)a n v 6|6„ \ n u cr b+e? /

Setting (5.9) equal to zero, we obtain

1 =  E  . (s.10)
6j6„ \  O' 6+9+ J 

Since (5.10) holds for v  =  a  or /?, using the induction hypothesis, we find that h„ is 

independent of 5  and h£. We now know that

3S+ bS+ 
dS  ~  S

and

T K = E  1(1 + ̂ E E ( X tS * ) ) .  (5.11)
C?i> 6|6„ O btOt

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



79

Therefore we can write

.\u(b„)= E  U l + n E { A + ) )  , 
aft, \  bi J

(5.12)

independent of S and hQ. 

Let

P„ =
Pll Pl2

P21 P22

be the matrix containing the probabilities of b based on the measurement of b. 

Let J nm be the m atrix that contains the joint distributions of 6 and b,

Jnm =  pr°b(bn H bm).

It should be noted that J  can be calculated from the P  and the Pj.

Let

b„ = Eb

=  E  b ■ prob(b» =  bj)
6u =6

* j

= 5, (5.13)

and

bVi = . E  b

=  £  n>»-
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Iterating (5.9), using A° =  E(b \ bv), gives

A i ( M =  Eb{H-y„E(E[b+ \bt])),
6|6V bZ

or equivalently,

A ^  =  6i ) = 6r ( l  +  7 X )

Letting r  —► oo, we find the limiting, time independent relations for the infinite- 

horizon:

A„(&„ =  bi) =  Sr(l +  t A  +  %bl +  • • •) =  r

SO

1 -  7 A

E K ~  =  r r r -  (5' 14)6+ 1 — ft/by

Substituting (5.14) into (5.10) we obtain

_ 1

a ( l  -  7 „6„)
' " f y b y d y h y

1 =  — ------- =-7. (0 .10)

We note that h is independent of 6 .

Imperfect Knowledge of b and 6

We now consider the case where both b and 9, are imperfectly measured and lid. We

assume that each player knows the distributions, p£, and the true distributions of 

9 and b. The DPE for the u -fleet is

UU[ { S , K X )  IM =

max [ e  E  (hL{9,,huA S b) + lt,E E U ?[{S+X , 9 t )  | h + ] U . (5.16)
0<A„<A„ V J J
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In the terminal period, when r  — 0, the utility for the t'-fieet is

U„ = max E  E_ \n(9vhvA S b).
0<hu<Hub\bu9v\8u

Therefore the optimal choice for the hi, is

h l = hv,

and

a ;  =  E {i  i k \

independent of any action taken by the £/-0eet and of S. Using induction, we again 

show that h i  and AI  are independent of ST and of the competitor’s policy.

Suppose, for a given r  > 1 , A+ is dependent only on b~. Differentiating the right 

hand side of the DPE (5.16) with respect to hi yields

^  =  E  E  ( i  -  ^ £ £ ( A J ) )  . (5.17)
cm* b\bu8*\ev \r iv <r btat J

Setting (5.17) equal to zero, we obtain

1 = E  E  ( ll>6 uh~E E (A t) ]  . (5.18)
9v\8*b\bv \  a  bt§? J

Since (5.18) holds for v — a  or /?, using the induction hypothesis we find that hv is

independent of S  and hs . We now know that

dS+ bS+ 
d S  ~  S  '

and

E ^ a  +  K E M X tS * ) ) .  (5.19)
Ob 6|6„ o  b?91
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Therefore we can write

A*(6„) =  E  fb ( l  + 7 ^ ( A + ) )  , (5.20)
b\bu \  6+ /

independent of S  and h0. 

Iterating (5.20), we again obtain

bt-\b„ 1 -  7 „&

Substituting (5.21) into (5.18) we obtain

E  A+(oo) =  T  (5-21)

1— 7 =  E  & v K { h )  (5 20)
7ub 9u\eu <J

Imperfect Knowledge of 6 with b Markovian

For our last case we assume 9 is imperfectly measured, the growth parameter b has a 

known Markov distribution, and that the value of b~ is known while the value of b is 

unknown. The ^-fleet’s utility function satisfies the DPE

U l[ { S ,b -X )  I hB\ =  max. E  E  (ln(0„/i„AS6) + 7 V E  E{Cf?[{S+ ,6,0+) | A + ])l.
0<h„<h„au\evb\b- ^ b+\b§+ J

(5.23)

In the terminal period when r  =  0 we find the utility for the z/-fleet to be

U ?=  E  E  (ln(0„/i„AS6)).

Therefore the optimal choice for the hQu is
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and

M [ S , i - ( 9 ) J | / i p) s £ ( 6 | 6 - ) I

independent of any action taken by the opponent’s fleet.

Suppose for a given r  > 1 , A* is dependent only on 6+. Differentiating the right 

hand side of the DPE (5.23) with respect to h Vl we obtain

Tzr- = E  E. -r—  1 * E  E  ( —)  • (5.24)
d h v b\b-9v\ev h.v 6=1 b e t \ c r  J

Setting (5.24) equal to zero, we obtain

1 = 7 ,J ?  E  ^ A + ( 6). (5.25)
b\b~9v\a„ O

Since (5.25) holds for u — a  or 0  we find that h„ is independent of 5  and h0. We now 

know that

E  E  ( ^ ( 1 + i r E  ES+ A+)V 3S  6|6-^|9w \ 5  6+|6fl+ J

Therefore we can write

A „ ( n  =  E  6(1  +  7 , E Atm- (5-26)0\0

independent of S  and h Substituting (5.26) in (5.25) gives

1 = E  E  ^ A j .  (5.27)
b\b-9»\e* <J

Iterating (5.26) gives

£[A“ * | (6-  =  6i)J =  (P 2[I -  7 i , Q l - 1 b ) i .
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Numerical Simulation Results

In the following figures we show the average of W, the historically preferred utility 

function (see (2.32)). F igu re  5.1 In this figure player one has no knowledge of 9, 

that is, player one’s measurement is no better than tossing a coin to determine the 

value of 9. The independent variable is the knowledge of 9 by player two. A scale of 

0  to 1 is used, with 0 representing no knowledge and 1 representing full knowledge. 

The parameters were set to heavily favor player one. When player two takes more 

accurate measurements, player two’s utility is greatly increased. At the same time, 

player one’s utility decreases although not as sharply as the increase for player two.

0.042

020.1 a s a s

Figure 5.1: Comparison of W 1 with W 2
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F ig u re  5.2 In this figure player one has full knowledge of 9. The independent 

variable is the knowledge of 9 by player two. The parameters were chosen to be 

symmetric among the two players. As expected, player two’s utility increases as 

player two gains knowledge.

2.56

2.54

2.52

25

2.46

2.44

2.42
0 .1 0.2 0.3 0.7 0.8 a s

Figure 5.2: Comparison of W l  with W 2
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F ig u re  5.3 In this figure player one has some knowledge of 9. The independent 

variable is the knowledge of 9 by player two. The parameters were chosen to be 

symmetric among the two players. The two average values for the utilities are equal 

at the point where both players measure 9 with the same accuracy.

2.56

154

2.52

2.5

146

144
1 50.1 0.2 0.7 OS 0.9

Figure 5.3: Comparison of W l  with IV2
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F ig u re  5.4 In this figure the independent variable is the knowledge of 9 by player 

one and two. The parameters were chosen to be symmetric among the two players. 

When 9 is measured with better accuracy, both player’s utilities increases.
Q M T I1  •  u . 0  Q a m * »  U . 9

trwcais ad  <r*ca2v a  4 ptfwtat » 0.5 nnatis t tmaxz* t

25!

25

a i 02 06 0.7 0.9

Figure 5.4: Comparison of W 1 with W 2
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Chapter 6

Conclusion

In this paper we analyzed extensions of a classical fishery model. We derived the 

Nash equilibrium harvest strategies in closed form analytical expressions as explicit 

functions of fundamental biological and economic parameters. We also incorporated 

a wide range of possible information structures.

In all cases we found the optimal harvest proportions to be multiplicative, inde

pendent of the recruitment R. This relates to the risk averse utility function and is in 

contrast to models that are risk neutral and lead to an optimal constant escapement. 

We also found that optimal harvest proportions exhibit a certainty equivalence prop

erty with respect to the multiplicative factor A  in the growth function. This implies 

that the knowledge of A  has no significance on the outcome of the game.

Numerical explorations of the models show the amount of information does have 

an effect on the economic returns. In the sole manager game, additional knowledge
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always leads to an increase in return. However, in the competitive fishery, additional 

knowledge may lead the competitors to over-harvest, in turn lowering the returns.

The optimal harvest fractions and a summary of the numerical studies are given 

below.

Sole Harvester

For the deterministic version we found the optimal harvest rate to be

h — 1 — 7 6 .

For the stochastic version we found the optimal harvest rates to be

Kb = b>) = ( l+TPil-TQl-'bV

when b was known,

k =  bi) =  (1 +  7b+ (1 +  7P[I ~  7Q]~lb+) ) ,  ’ 

when 6+ was known, and

A(6 = 6 i > =  ( l  +  7 P 2[ I - 7 Q ]-lb - ) j ’

when b~ was known.

Numerical explorations led to the conclusion that for the single player game, 

additional knowledge always results in higher economic returns.
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Competitive Fishery

In the competitive fishery we found the optimal harvest rate for each player is the 

same as calculated in the single player game. The simulations led us to conclude 

that a symmetric increase in knowledge benefits the first harvester at the expense of 

the second harvester. If the increase in information is asymmetric, the player who 

has the additional knowledge will receive a higher return than with lesser knowledge, 

the other player will have a decrease in economic return when its opponent gains 

knowledge. Therefore there is no incentive inherent in the game for a player to share 

knowledge with its opponent.

VVe also found that we can not easily split the resource fairly by allowing a player 

access to only a fraction of the fish. The player will adjust his optimal harvest fraction 

to take the same amount as before he was constrained i f  enough fish are present. To 

ensure fairness we must be certain that the first player is constrained by his maximum 

harvest fraction. In this scenario the player will choose to take as much of the fish 

as he can but will leave enough stock for the second player to harvest his fair share 

while leaving enough stock to spawn for the next season.

Our last model incorporated a spatial instead of a temporal split and introduced 

imperfect measuring of the stochastic parameters. This allows us to vary the amount 

of knowledge by small increments instead of b,b+,b~ as in the previous work. Nu

merical simulations of this model provided a variety of possible outcomes.
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Calculation of Joint D istribution

Calculation of J

Given pt- =  prob(b =  b{) and x^ =  prob(b = bj \ b =  6t), we wish to find the

jnm  — prob(bn PI bm). Let p* = prob(bi) and p* =  prob(bi) then

n n n n

E * *  =  pi, E * »  =  Pi, E *  =  i, E ^  =  i.
fc = t i = l  i = l  i = l

We can write x ik =  and use these relations to solve for j,*. For example when 

n  =  2, we have j u  — p ixu  and J21 =  (1 — Pi)^2i- Adding these expressions we find

Pi =  j u  +  J21 =  P t(^u  — ^21) +  2T2i or pi =  ^ 1Z11 — X21

Therefore we can find the joint distribution matrix whose entries are

i l l  =  P l^ U i  J l2  =  P lP l2 ) J21 =  (1  — P l)^2 1 i J22 =  (1  — P l)^22-
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Calculation of xjk

Given pi =  prob(b =  6,) and Xij =  prob(b =  bj j 6 =  b{), we wish to find the

x jk =  prob(b = bk \b = bj). Then jij =  piXijt p} -  YiiPi^a  and

_   jkj   Pk^kj
jk - r"' -

Pi

Likewise given g* =  prob(9 =  0,) and g^ =  prob(9 = 9j \ 9 = 9*), we wish to find the

g jfc  =  pro&(0 =  9 k \ 9  =  9 j ) .  VVe find =  g ^ ,  q j  =  q ^ j  and

„ _  s*i _  W kjQjk - r*̂  -
Qj H i MU

Two Independent observations

Now consider two independent observations of b, namely bu and Define

iijk  =  prob(bu =  bj, b0 = bk \b = b j

=  pro&[6„ =  6j | 6 =  6*] • prob\bg =  6* | 6 =  6*]

jijAr =  pro6[6 =  6t, b„ — 6j, bo — 6jt]

=  Pi^ijk

=  P . ^ f *  and

xO* =  pro6[6 =  bj} b0 = bk \bu = bj}

pro&[6„ — 6 ■* 6jj bo — 6jj»J
pro&[6„ =  6j]
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where prob[bu =  6,] =  JV  J2k xujik. So

We can also consider two independent observations of 9, namely §a and Q^eta. Define

hjk  =  prob(9a = 9j t 9& = 9 k \ 9 = 9i)

= prob[9a = 9j \ 9 = 0,-j • prob[9$ = 9k \ 9 =  9i]

=

Sijk =  prob[9 = 9U 9a = 9j, h  =  #*]

=  Q iSijk

=  <Zi s^qfk and

Qijk =  pro&[0 =  9j t §p = 9 k \9a = 9j]

_  prob[9a =  9j, 9 =  9j} 9p =  gfc] 
pro6[0a =  0j]

where profi[0a =  0*] =  $*•

b Markovian

Suppose b is Markovian and b~ — bm is known but b is observed through 6 . Then in 

part A.2, replace pt- =  pro6[6 =  &,-] by pmi =  pro6[& =  6,- | b~ =  6m]. Now suppose
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prob\b | 6] is also known. We can calculate

jjk\i = prob[b =  bjt b =  bk \ b~ =  6*]

=  prob[b = bj | b~ =  6,] • prob([b =  b 

=  PijZjk

and

*i*|( =  proitf4 =  4i I 4 =  4») I 4~ =  M

i 4 = y  i 4_)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Bibliography

[1] Bellman, R., 1957, Dynamic Programming Princeton University Press, Prince

ton.

[2] Beverton, R.J.H. and S.J. Holt, 1957, On the dynamics of exploited fish popula

tions, Fish. Invest. Lond. 2,19.

[3] Clark, C.W., 1971, Economically optimal policies for the utilization of biologi

cally renewable resources, Math. Biosci., 13, 245-260.

[4] Fudenberg, D and J. Tirole, 1991, Game Theory, MIT Press, Cambridge.

[5] Jaquette, D., 1972, A discrete time population control model, Math. Biosci. 

15,231-252.

[6 ] Levhari, D. and L.J. Mirman, 1980, The great fish war: an example using a 

dynamic Coumot-Nash solution, Bell Journal of Economics 11,322-344.

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



96

[7] Mann, S., 1970, A mathematical theory for the harvest of natural animal pop

ulations when birth rates are dependent on total population size, Math. Biosci. 

7,97-110.

[8 ] McKelvey, R., 1997, Game-theoretic insights into the international management 

of fisheries, Natural Resource Modeling 10,7,129-171.

[9] McKelvey, R., 2001, The split-stream haresting game, NCAR Technical Report, 

NCAR/TN-449-rSTR, Boulder, Colorado.

[10] McKelvey, R. and Greg Cripe, 2001, The split-stream haresting game:Numerical 

and Simulation Studies, NCAR Technical Report, NCAR/TN-449+STR, Boul

der, Colorado.

[11] Reed, W .J., 1974, A stochastic model for the economic management of a renew

able animal resource, Math. Biosci. 22,313-337.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


	The effect of information on a stochastic fishery model
	Let us know how access to this document benefits you.
	Recommended Citation

	tmp.1461732696.pdf.5I3iG

