# Analysis of prehistoric land use patterns in the Tongue River Valley, north of Decker, Montana 

Glenn A. Walter<br>The University of Montana

Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits you.

## Recommended Citation

Walter, Glenn A., "Analysis of prehistoric land use patterns in the Tongue River Valley, north of Decker, Montana" (1997). Graduate Student Theses, Dissertations, \& Professional Papers. 1540.
https://scholarworks.umt.edu/etd/1540

This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, \& Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact scholarworks@mso.umt.edu.


# Maureen and Mike MANSFIELD LIBRARY 

The University of MONTANA

Permission is granted by the author to reproduce this material in its entirety, provided that this material is used for scholarly purposes and is properly cited in published works and reports.
** Please check "Yes" or "No" and provide signature **

Yes, I grant permission


Author's Signature


Date


Any copying for commercial purposes or financial gain may be undertaken only with the author's explicit consent.

# AN ANALYSIS OF PREHISTORIC LAND USE PATTERNS 

 IN THE TONGUE RIVER VALLEY, NORTH OF DECKER, MONTANA
## by

## Glenn A. Walter

## B.A. The University of Montana, 1992

presented in partial fulfiliment of the requirements
for the degree of
Master of Arts
The University of Montana
1996


## UMI Number: EP36188

All rights reserved
INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

UMI EP36188
Published by ProQuest LLC (2012). Copyright in the Dissertation held by the Author.
Microform Edition (C) ProQuest LLC.
All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code


ProQuest LLC.
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

An Analysis of Prehistoric Land Use Patterns in the Tongue River Valley, North of Decker, Montana (201 pp.)

Chair: Dr. Thomas A. Foor $T^{4}$
Beginning in the early 1970's and continuing into the mid-1980's, cultural resource (CR) inventories were conducted north of Decker, MT in compliance with Section 106 of the National Historic Preservation Act. Surveys evaluated the adverse affects of coal mining in the area, and have created an extensive data base of archaeological sites. This research is a synthetic analysis of prehistoric site patterning over an $82 \mathrm{~km}^{2}$ region of southeast Montana, using a Geographic Information System (GIS) and data base compiled from the CR inventory reports. The research was accomplished in two steps involving both 'manual' and 'automated' data capture.
In step one, I compiled archaeological site and environmental data from the inventory reports, site forms, and environmental impact statements prepared for the study area. Documents were acquired from the State Historic Preservation Office, located in Helena, MT, the University of Montana's Archaeological Records Office, and Historical Research Associates of Missoula, MT. Archaeological site locations were plotted on $7.5^{\prime}$ topographic quadrangles. As each site was plotted, artifacts and features recorded at the locations were entered on a data form used to classify site types.
Step two involved 'automated' data capture and merging of site locations with environmental values using the GIS constructed for the analysis. Site locations were digitized from the base maps and associated with the values of slope, aspect, and distance to nearest water. Environmental values for each location were extracted from land surface images created using the GIS program IDRISI. Distributions of archaeological sites and site types were then analyzed with the SPSS statistical program. The analysis was designed to investigate the environmental characteristics preferred by prehistoric peoples.
Cultural resource surveys are usually conducted with preconceived ideas of where archaeological sites will be found. Using variables such as slope, aspect and distance to water, specific areas are classified as having either a high or low probability of containing archaeological sites. As a result, north of Decker, MT., the same areas had to be surveyed more than once. Examination of site distribution on a regional scale using a GIS demonstrates a mistaken faith in long standing beliefs about archaeological site patterning.

## TABLE OF CONTENTS

Page No.
Chapter One (Introduction) ..... 1
Surface Features and Drainages ..... 2
Climate ..... 3
Geology ..... 5
Vegetation ..... 8
Prehistory ..... 10
Geographic Information Systems (GIS) ..... 13
Chapter Two (Methodology) ..... 17
'Manual' Data Capture ..... 17
"Automated' Data Capture ..... 23
Chapter Three (Analysis) ..... 29
Chi-Square Test ..... 29
Vector Method/Raleigh Test ..... 35
Correlation Between Variables
(Pearson's (r) and (t) Tests ..... 37
Cross-Tabulation ..... 39
Chapter Four (Results and Conclusions) ..... 41
Results
Chi-Square Test Results ..... 41
Vector Method/Raleigh Test ..... 46
Correlation Between Variables ..... 48
Conclusions ..... 56
References Cited ..... 62

## LIST OF APPENDICES

Page No.
Appendix A Artifact and Feature Data Form ..... 66
Appendix B Landscape Variable Values ..... 96
Appendix C IDRISI Image Histories ..... 109
Appendix D Site Type Summary Statistics ..... 133
Appendix E Cross-Tabulation Data
Variable Categories ..... 188
Figure 1 List of Inventory Reports ..... 18
Figure 2 Site Type Frequency and Proportion of Sample ..... 21
Figure 3 Illustration of Value Extraction Using IDRISI Modules ..... 27
Figure 4 Slope (Degrees)
Expected / Observed Frequency ..... 31
Figure 5 Distance to Water (Meters) Expected / Observed Frequency ..... 32
Figure 6 Chi-Square Test Results ..... 42
Figure 7 Summary of Correlation Coefficients ..... 50
Figure 8 Summary of (t) Test Results ..... 51
Figure 9 Cross-Tabulation Table: Slope vs. Aspect (All Arch Sites) ..... 52
Figure 10 Cross-Tabulation Table:
Slope vs. Aspect (Chipping Stations) ..... 53
Figure 11 Cross-Tabulation Table:
Distance to Water vs. Slope (All Arch Sites) ..... 55
Figure 12 Cross-Tabulation Table:Distance to Water vs. Slope .................. 57

## ACKNOWLEDGEMENTS

I wish to thank all of the people and organizations which made this research possible. First the Montana State Historic Preservation Office in Helena, MT and Archaeological Records Office in Missoula, MT for allowing me free access to the Cultural Resource Inventory reports and site files that provided the data base I worked with. I also would like to thank the Montana Archaeological Society, for giving me the Linda Ward-Williams Scholarship, making my final semester at the University of Montana possible. My committee Dr. Thomas Foor, Dr. John Douglas, and Dr. John Donahue also deserve a great deal of credit; for tolerating my many questions and graciously offering their individual expertise. Most of all I would like to thank my wife, Jennifer; who had the hardest job of all, and never wavered in her support.

## CHAPTER ONE

## INTRODUCTION

This research will synthesize archaeological data recorded during cultural resource surveys conducted in southeastern Montana. By using a Geographic Information System (GIS) to gather and sort data compiled from nine inventory reports, this research analyzes archaeological site distributions over a large region ( $82 \mathrm{~km}^{2}$ ).

Southeastern Montana lies in the northern portion of the Great Plains physiographic region (Frison 1978). The study area, located northwest of Decker, Montana, includes large portions of Townships 8 and 9 South, Ranges 39, 40, and 41 East. Boundaries of coal mine permits define the area were the best sample of archaeological sites is recorded. Throughout the 1970's, archaeological surveys were conducted in this area to identify effects of mining the extensive coal deposits in the region.

Several archaeological survey inventory reports completed for the undertakings, include limited attempts at explaining the locations of sites (Gregg 1977a, 1977b, 1977c, 1979; Greiser 1981). However, none synthesize data from all the prehistoric archaeological sites and artifact locations recorded in the Tongue River region. The final data base created for this project, includes 460 archaeological sites and artifact locations distributed over 85 square kilometers. Slope, aspect and distance to water values were derived from U.S.G.S. Digital

Elevation Models for the survey area after site location was plotted. By analyzing the distribution of artifacts over each of the three environmental/geographic variables, I identify preferences involved in prehistoric selection of site location.

## SURFACE FEATURES AND DRAINAGES

Two major rivers, the Missouri and Yellowstone, drain this region. The Musselshell River is the only permanent tributary of the Missouri River draining southeastern Montana. Both the Redwater River and Big Dry Creek flow only during the spring and early summer months (Deaver and Deaver 1988). The Big Horn, Tongue, Powder, and Little Missouri rivers are all tributaries of the Yellowstone that flow through southeastern Montana. Because they originate in the more mountainous areas of Wyoming, Montana, and South Dakota, all these streams are permanent and larger than the Missouri River tributaries (Deaver and Deaver 1988).

The Tongue River has its headwaters in northern Wyoming, along the eastern foothills of the Big Horn Mountains. The river flows east, approximately seventy-five miles, before turning north and entering Montana. From the Montana-Wyoming border, its northern course takes the river approximately one hundred twenty-five miles to its confluence with the Yellowstone River. The entire length of the Tongue River is characterized by a sinuous meandering course. Through the study area, the river's floodplain ranges from
0.5 to 1.0 miles in width. Once in Montana, numerous perennial and intermittent streams feed the Tongue River. To the west, Squirrel Creek and Spring Creek (including the North and South Forks) drain the Wolf and Rosebud mountains. East of the river, Deer Creek and several unnamed intermittent tributaries flow out of the Badger Hills.

Study area elevations range from 1030 meters (msl) along the banks of the Tongue River, to 1260 meters ( msl ) in the ridges to the southwest. More durable sandstone bedrock strata have provided variable relief in the area (Deaver and Deaver 1988). A series of broad, relatively flat ridges, trending northwest to southeast characterize the topography west of the river. Steep, narrow drainages separate the long finger-like ridges. East of the Tongue River relief occurs as narrow ridges with only isolated, irregularly shaped buttes. Drainage patterns in this portion of the study area are more dendritic, less linear than those to the west of the Tongue River.

## CLIMATE

This region of the Great Plains is characterized by a dry continental type climate. Northern Great Plains climate results from alternating dominance of three air masses; Pacific, Arctic and Tropical Maritime (Borchert 1950).

During the Winter months the area is dominated by a dry, mild Pacific flow. Containing only limited amounts of precipitation, the Pacific air masses bring fronts and strong winds that drop their moisture in the mountains to the
west (e.g., the Rocky and the Big Horn mountains). Occasionally, Arctic air masses intrude into the area, bringing cold, dry air from the north. These cold, dry winds may last for days or even weeks. But they are soon followed by a renewed dominance of the Pacific air masses (Borchert 1950) bringing warm chinook winds from the west.

Most of the precipitation for the study area occurs as rain during the spring and early summer months. At this time, all three air masses influence the weather patterns of the region. The Pacific and Arctic fronts still produce dry winds, but now the Tropical Maritime fronts from the Gulf of Mexico and California bring in moisture laidened air. Southern fronts dominate during spring and early summer months, producing the wettest part of the year (Borchert 1950).

During late summer, the Pacific air mass dominates the region. Tropical Maritime air still intrudes from the south, however because the Pacific air is dominant, the flow is shifted to the west. As a result, the area of the Plains in North and South Dakota receives this moisture, which overall has a greater annual precipitation. In the study area, the fall months see little or no precipitation due to a weakening of the moist Tropical Maritime flow (Borchert 1950).

Although precipitation amounts throughout the Great Plains are highly variable, the entire area is considered semi-arid. Annual rainfall in the mountains west of the Tongue River average 15 to 20 inches per year (BLM

1979, 1986; Borchert 1950). Temperatures in the Tongue River valley, near Decker, Montana range from $-45^{\circ} \mathrm{F}$ to $107^{\circ} \mathrm{F}$. The growing season lasts from 100 to 130 days (Gregg 1979). Changing climatic conditions have influenced the pattern of archaeological sites in the region. First, by creating the land surface over which artifacts are distributed. And second, by establishing patterns of vegetation and wildlife habitat, that provided subsistence for local inhabitants.

## GEOLOGY

The most important geologic feature of the study area is the Fort Union formation. During the Paleocene (66-57 million years ago), the entire area of southeastern Montana was a series of low-lying basins, swamps, and river deltas, with only small amounts of dry land. A series of stratified sandstones, siltstones, shales, and coal beds laid down at this time characterize the Fort Union formation. Being resistant to erosion, the durable sandstone deposits now form ridges that cap more erosive materials. Temporary aquifers contained by more porous sandstone strata support narrow strips of pine (Deaver and Deaver 1988). Within the study area, the Fort Union formation is approximately 3400 feet thick. Known as the Tongue River Member, the upper 1600 feet of the formation contains the coal beds currently being mined (Gregg 1979).

Substantial tectonic activity began in the late Cretaceous and continued through the Cenozoic Periods (Eocene, Oligocene, and Miocene, 57-10 million
years ago). It was during this time that major uplifting took place in the region surrounding the study area. Outwash materials began to enter the area via the river ancestral to the Tongue. The ancestral river and its tributaries shifted their courses repeatedly, forming large deposits of sorted gravels, sands and silts. The Rosebud Mountains and Long Pine Hills are the result of more consolidated materials forming erosion-resistant caps over looser materials (BLM 1979,1986).

The drainage systems we see today began to develop during the Pliocene and Pleistocene. Although they changed course many times, the ancestral Missouri and Yellowstone Rivers were becoming the major drainages for the area of southeastern Montana. Gravel deposits dating to the Pleistocene epoch occur as raised terraces situated between the present river course and the upland slopes (Deaver and Deaver 1988).

Geologic activity has influenced the prehistory of the study area in two significant ways. First, tectonic uplift and substantial erosion of landforms provides the environment in which prehistoric peoples lived (Deaver and Deaver 1988). The resistant strata of the Fort Union formation and consolidated Cenozoic gravels now occur as linear ridges west of the Tongue River and as isolated, terraced buttes to the east. A majority of the archaeological sites associated with hunting, gathering, and general occupation, are found on these elevated areas (Deaver and Deaver 1988; Gregg 1979).

The second, and possibly most significant attribute of the Fort Union formation to the prehistoric peoples of the study area was the supply of workable
lithic material. The geologic strata provided several types of useful lithic raw material. Porcellanite is the most common, and widely used form of lithic material (Gregg 1976, 1979). Porcellanite is a metamorphosed siltstone formed when burning subterranean coal seams (Fredlund 1976) heated and fused the overriding strata. The flaking quality of the material depends on the amount of heat generated and the purity of the silt deposits at the time of heating (Deaver and Deaver 1988). A second source of workable material, formed by the same process, was non-volcanic natural glass. Areas being heated to extreme temperatures, for example near vents or fissures, also caused a fussing of sandstone strata (Fredlund 1976).

Although porcellanite and non-volcanic glass were the most common types of stone used in the manufacture of tools, there are various other kinds found in the Fort Union formation. These other materials occur at several sites throughout the study area, but in very low percentages (Fredlund 1977; Gregg 1976, 1979). The most interesting of these materials is known as Tongue River Silicified Sediment (TRSS) (Deaver and Deaver 1988). Generally, TRSS is grey in color and has a grainy texture, with small plant impressions. TRSS has been described in a number of ways, including: a quartzite, a Silicified sandstone, and as arenaceous or sandy chert. It was apparently not a material preferred in making fine tools like drills and projectile points. Artifacts manufactured from TRSS are all large cutting and chopping tools (Deaver and Deaver 1988). Petrified wood occurs as branches and stumps in the lower beds of the Fort

Union formation. This silicified wood is very rare and generally of poor flaking quality. Only limited amounts of tan or brown banded specimens are of good flaking quality (Fredlund 1977; Deaver and Deaver 1988).

Workable material is also found in the Middle and Late Cenozoic Gravel strata (Deaver and Deaver 1988). The mountainous regions all contain deposits of cherts, chalcedonies and quartzites washed down as cobbles and gravels. Gravels of the Wasatch formation, located in Big Horn County, contain a particularly fine grained chert, ranging in color from orange to maroon. Deposited by the ancestral Tongue River, these gravels are from the Big Horn Mountains to the west of the study area (Fredlund 1977; Deaver and Deaver 1988). Distribution and use of lithic materials is important in the region because over 90\% of the archaeological sites recorded in this area contain only stone tools, or the waste debitage left from their manufacture.

## VEGETATION

Depending on the source consulted, this area of southeastern Montana can be described as either a short grass prairie or a mixed grass prairie (USGS 1979; Deaver and Deaver 1988). This may be true of large areas of the southeast Montana, but it does not give an accurate portrait of the environmental variability in the region. Michael Beckes (1976), conducting archaeological surveys on the Ashland and Fort Howes Districts of the Custer National Forest 100 miles north, used several independent variables to devise a set of nine
separate ecological associations. Variables such as slope, exposure, aspect, altitude, soil type and dominant vegetation were used to define the associations (Beckes 1976).

For the purposes of this research, a simple classification of four vegetation zones will be used. The classification system was constructed using data gathered from final and draft environmental impact statements (EIS) (BLM 1978; USGS 1979,1986 ) prepared for the coal mine permits. The quality of vegetation data is variable in each (EIS). Depending on the method of classification used in the report, the vegetation zones are either portrayed as a complex mosaic with poor provenience (USGS 1979), or a simple pattern of generalized zones with adequate provenience (BLM 1978, 1986). It was found that by applying the generalized classification of riparian, sage brush steppe, grassland, and ponderosa pine savannah to the data, each of the vegetation zones could be plotted on $7.5^{\prime}$ topographic quadrangles. These zones represent a consolidation of the data presented in the EIS's (BLM 1978,1986; USGS 1979) and the ecosystems presented by Beckes (1976).

1) The riparian (BLM 1979,1986) or creek-side (USGS 1979) zone includes deciduous trees and an understory of dominant shrubs: snow berry, rose, skunkbush, and chokecherry. The zone occurs on generally flat, subirrigated soils of silty clay loams. This zone also supports a greater diversity of wildlife compared with the other zones (USGS 1979).
2) The grasslands (USGS 1979) or short-grass prairie (BLM 1979,1986)
zone includes several species of sage brush: big, silver, skunkbush. However, these areas are dominated by grass types: blue bunch wheatgrass-junegrass or needle and thread-western wheatgrass, depending on the soil type. The zone occurs on flat to steep slopes of stony to sandy loam, including all aspects.
3) The sage brush steppes (BLM 1979,1986) or shrub (USGS 1979) zone is dominated by shrubs such as skunkbush, silver sage, and big sage. These areas do include an understory of grass species, including; needle and thread, blue gama, threadleaf sedge, and needlegrass. These zones occur on flat to steep south facing slopes of various soil types (USGS 1979). Most of these zones are associated with the northern portion of the study area.
4) The ponderosa pine savannah (USGS 1979, BLM 1979, 1986) zone includes forested areas with various phases of understory vegetation: juniper, shrub or blue bunch wheatgrass. Dominant understory type is determined by the canopy cover (BLM 1986). Occurring on flat to steep north facing slopes, this zone includes various soil types (USGS 1979).

## PREHISTORY

The purpose of this study is not to examine temporal change in the distribution of prehistoric sites within the study area. Holding time as a constant, my thesis will examine the preference prehistoric peoples showed for specific locations (i.e., base camp sites, hunting sites, etc.) by analyzing site distribution over three environmental dimensions of the landscapes. For purposes of
discussion, a brief background in Plains prehistory will be presented in this section.

Three separate cultural chronologies have been proposed for the Northwest region of the Great Plains. The first, was the chronology presented by archaeologist William Mulloy (1958). Eleven years later, Brian Reeves (1969) attempted to refine Mulloy's classification based on information obtained from sites in Southern Alberta. Using data from archaeologic sites over a larger area than either Mulloy or Reeves, George Frison (1978) presented the final cultural chronology discussed here.

All three of these systems attempt to place formally defined categories within a temporal scale. Mulloy (1958) based his chronology on excavations of Pictograph Cave, located in south-central Montana. Reeves and Frison use sites and components from throughout the northern Plains to classify cultural attributes in an ordered time scale (Foor 1985). The two later attempts at classification follow slightly different approaches. Frison (1978) uses information from numerous stratified sites. Reeves (1969) incorporates data from surface collections or shallowly deposited sites distributed over a large area. Because they include more sites and their components, Frison and Reeves systems are much more detailed attempts at classification. Although Mulloy recognizes variations in horizon styles, his classification remains the one closest to a true temporal classification (Foor 1985).

Mulloy's (1958) classification system includes the Early, Middle and Late

Prehistoric periods. The Early Prehistoric period is characterized by a subsistence system based primarily on big game hunting and the use of large lancelot spear points. Frison (1978) refers to this time as the Paleoindian period and divides it into nine cultural complexes including; Clovis, Goshen, Folsom, Agate Basin, Hellgap, Alberta, Cody, Frederick, and the Lancelot Lateral Flaked Point complexes. Very few Paleoindian sites have been recorded in the study area. However, several Lancelot Lateral Flaked complex sites have been recorded further south, in the headwaters region of the Tongue River (Big Horn Mountains) (Frison 1978; Platt 1992).

A greater reliance on plant resources and a shift from big game to smaller game species marks the beginning of the Middle Prehistoric period (Mulloy 1958). Frison (1978) calls this the Archaic, and subdivides the period into the Early, Middle, and Late. A number of Early Archaic sites, containing "Early SideNotched" points have been recorded in the study area (Gregg 1976, 1979). In time these ambiguously named points are replaced by the McKean complex (Frison 1978). The Duncan and Hannah variation of McKean points are more prevalent in the study area (Deaver and Deaver 1983). These points are characteristically large, lancelot with bifurcate bases (Platt 1992).

The change to corner-notched variants of lancelot points marks the end of the Middle Prehistoric (Mulloy 1958). Frison (1978) however, places cornernotched points in the Late Archaic period. Included in this group are the Pelican Lake and Besant types. All of the points placed in the Middle Prehistoric Period
are associated with the atlatl. The most notable site located in the study area from this period is the Kobold site (24BH406). The earliest occupation at Kobold represents a Late Middle period campsite, which has produced a number of Yonkee points (Frison 1978).

The Late Prehistoric period is thought to demonstrate a shift from generalized subsistence, to a renewed emphasis on hunting bison, using communal drives and jumps (Frison 1978). Late Prehistoric sites are quite common in the study area (Deaver and Deaver 1988). During this period Frison (1978) has documented a continual use of the Kobold site as a bison jump. Late period sites are marked by small side-notched point variations associated with the bow and arrow technology. Point types include Avonlea, Plains SideNotched and Prairie Side-Notched (Frison 1978).

## GEOGRAPHIC INFORMATION SYSTEMS (GIS)

It is often assumed that the term geographic information system (GIS) refers to a single piece of hardware, software or system of analysis. In fact, there are over 100 different geographic information systems operating today, developed by private companies, university departments, and government agencies. Each GIS helps organize, overlay, display, and query a spatial data base. In the simplest terms, Kvamme and Kohler (1988:494), have noted that, "A working GIS consists of a software (computer program), the hardware on which that software operates, and a spatial data base (Kvamme and Kohler

1988:495)." The spatial data base contains any variable continuously distributed over a landscape (ie., elevation, vegetation, temperature, soil type, etc.). Organization of individual variables or coverages (Kvamme 1989: 149) into map layers allows rapid attribute query, and the flexibility to reorganize or combine attribute information (Eastman 1992:24). A complete GIS includes:

> a cartographic display system, to view and compose map layers; a map digitizing system, to perform automated data capture; a data base management system, for organization of data files; a geographic analysis system, which performs map algebra and various data transformations; an image processing system, allowing the importation of remote sensing data such as that from satellites; and a statistical analysis system, which allows the exploration of variable correlations (Eastman 1992:18).

Geographic data describes real-world phenomena in terms of their attributes (eg., color, weight, size) and spatial location in a coordinate system (eg., Longitude, Latitude or Universal Transverse Mercator) (Kvamme 1989:151). Facilitating the use of GIS, geographical data can be represented in graphic form as points, lines, or areas along with a label describing what it is (eg., site number, or an arbitrary identification number). Data is handled in two ways; as rasters or as vectors. Raster or cell-based GIS are organized on a grid of cells, much like a spreadsheet format of columns and rows (Eastman 1992:23). A vector or arc-node GIS (Kvamme 1989:150) organizes map layers as points, lines or polygons (Eastman 1992:22). Selection of a particular type of GIS is based primarily on whether cartographic output is an important
consideration in the research. Vector GIS are able to produce high quality penplot compositions. In contrast, raster GIS are primarily designed for analysis (Eastman 1992:23), and are not well suited for map production as output (Kvamme 1989:152-153).

This research project is designed to extract environmental/geographic values from map layers, and examine a particular landscape's role in archaeological site patterning. Therefore, a raster GIS was used to handle the data base created from archaeological site forms, inventory reports, and environmental impact statements.

The hardware chosen to support the software used in the study is an IBM compatible personal computer with a 66-MHZ CPU, 500 MB hard drive, 3.5" floppy drive, and 16 MB of RAM. The program selected to import, separate then extract attribute values is a raster GIS software designed by the Graduate School of Geography at Clark University called IDRISI. IDRISI is a raster or grid-based GIS and image processing system that includes a collection of over 100 program modules linked by a common menu system (Eastman 1992:3). Although the IDRISI system includes a digitizing module known as TOSCA, a separate program called ROOTS, developed by Harvard Graphics, was used for automated data entry. Because the program is able to export IDRISI format data files, including documentation files, ROOTS is an excellent choice for use with IDRISI. The identification number, artifact counts and site type information used as the bases for the attribute data were entered in the QUATTRO PRO for

WINDOWS spreadsheet program. As a raster GIS, IDRISI can perform a variety of statistical analysis techniques. However, because of faster response times and better quality chart printout, the SPSS for WINDOWS statistical package was used for analysis and output. The following chapters provide more detail about how the data base was created and the role of each program.

## CHAPTER TWO

## METHODOLOGY

## MANUAL DATA CAPTURE

The geologic strata of the Fort Union formation have played a role in the prehistory of southeast Montana in two important ways. First, the aboriginal population found a ready source of workable lithic material in eroded exposures and outwash gravels. Second, compliance with Section 106 of the National Historic Preservation Act has generated volumes of inventory reports and site forms, recording the archaeology of large coal mining leases.

The first step in compiling the archaeological and environmental data was to contact the State Historic Preservation Office (SHPO), in Helena, Montana. The SHPO provided a list of all inventory reports on file for Township 8 and 9 South, Ranges 38, 39, 40 East. I also obtained a list of all archaeological sites issued a Smithsonian Trinomial Number in those legal locations. A review of the inventory reports produced a list of documents (See Figure 1) that could be used in constructing a data base. One of the most important prerequisites for inclusion of an inventory report was adequate site location information. In cases were location information was not adequate in an inventory report, individual site forms were examined at the University of Montana's Archaeological Records office. Often, sites are revisited during later projects and site forms are updated.

For this research, each site and artifact location had to be directly
transferable to a 7.5' topographic base map. Each location had to have either a photocopied portion of the topographic quadrangle with the site location labeled clearly, or Universal Transverse Mercator (UTM) reference coordinates. The presence of specific artifacts and features recorded on the site forms, were transferred to a spreadsheet data form (See Appendix A). As information was entered on the data table, sites and artifacts were plotted on one of the two base maps (Pearl School and Decker, Mt). The data base includes all of the archaeological remains recorded in the survey areas. Numerical identifiers are either Smithsonian Trinomial site numbers, or an arbitrary sequential number for 'isolates' and 'minimum activity loci'.

## List of Survey Reports used in the Study:

Data Recovery in the Spring Creek Archaeological District (Taylor 1984)
CX Ranch Project (Grieser 1981)
Decker-Pearson Creek (Gregg 1979)
Spring Creek Mine (Fox 1977)
Decker: East and North Extension (L. Fredlund 1977)
Holmes-Decker (Gregg 1977)
CX Decker (Gregg 1977)
Original Decker (D. Fredlund 1972)
Shell-Pearl (Gregg 1977)
Figure 1

After completing the data form and plotting artifact locations, a simple classification of site types was constructed. The classification system was based on information compiled from several of the inventory reports (Gregg 1977a, 1977b, 1977c, 1979; Deaver and Deaver 1988). Archaeological sites and artifact locations are classified into one of six types, based on all of the artifacts (debitage, tools, etc.) and features (tipi rings, hearths, ect.) present at the location;

1) Base camps are characterized by a relatively large number and variety of tool types, sometimes large quantities of late-stage reduction debris or possibly tipi rings and hearths associated with lesser quantities of debitage. It is assumed that base camps represent an area frequented repeatedly, used for long periods (Gregg 1977a, 1977b, 1977c; Deaver and Deaver 1988). The name also implies a location from which surrounding resources could be exploited efficiently.
2) Chipping stations or lookouts (Gregg 1977a, 1977b, 1977c; Fredlund 1977; Deaver and Deaver 1988) include isolated scatters of lithic debitage, usually late-stage reduction with limited quantity (<50 flakes). These sites are generally associated with prominent locations, affording a wide view of an area (Gregg 1977a, 1977b, 1977c; Deaver and Deaver 1988).
3) Hunting sites is a type I use to incorporate numerous 'minimal activity loci' recorded, but not given a Smithsonian Trinomial Number. These sites include isolated projectile points, alone, or in association limited amounts of late-
stage reduction material (<50 flakes). These locations can also contain scraping tools (end-scraper, side-scraper, or modified flake).
4) Other activity sites is a second type I created, that allows the inclusion of the remaining 'minimal activity loci', in this analysis. These sites include isolated scraping tools, also possibly associated with limited amounts of latestage reduction debitage (<50 flakes).
5) Lithic workshop sites are characterized by scatters of primary and secondary debitage and possibly biface blanks and cores (Gregg 1977a, 1977b, 1977c; Fredlund 1977; Greiser 1981). The sites differ from quarry sites in that there is no apparent source of lithic material in the vicinity.
6) Quarry sites are areas of lithic procurement (Gregg 1977a, 1977b, 1977c; Fredlund 1977; Deaver and Deaver 1988). These sites are associated with source outcrops of lithic material, usually porcellanite, and can include dense concentrations of primary and secondary debitage. At some quarry sites, biface blanks of various stages and cores may also be present (Gregg 1977a, 1977b, 1977c; Fredlund 1977; Greiser 1981).

Site types and numbers of artifacts present at each location were entered on a data form (See Appendix A). Once the site type for each location was determined, base maps were prepared. Each base map includes the site location and numeric identifier. The data form containing the numeric identifier and site type was then ready to be combined with a digitized file of site locations (See Appendix B, columns A-E).

Archaeological sites and artifact locations were plotted as points, representing $30 \times 30$ meter areas. This grid is the standard pixel resolution used by the IDRISI program (Eastman 1992:30). A majority (80\%) of the locations are recorded on site forms as points. The remaining (20\%) of the sites, represented by polygons, were also plotted as points. The centers of the polygons were chosen to represent the site area. This process maintained consistency in the data, aiding in the extraction of a single attribute value for each location and the eventual construction of the SPSS data file. Classification of artifact location resulted in the following distribution of types;

## SITE TYPE FREQUENCY AND PROPORTION OF SAMPLE



FIGURE 2

Wildlife ranges and vegetation zone information were obtained from environmental impact statements prepared for coal mine permits (BLM 1978,

1986; USGS 1979). Deer and antelope ranges were directly transferable to the 7.5' topographic quadrangle base maps. The information plotted includes both summer and winter ranges, and also travel routes between major use areas. Vegetation zones had to be simplified because of problems plotting the areas of specific species contained in the impact statements. Plotting the information involved classifying areas into four vegetation types (See Chapter 1, Vegetation). After compiling all of this data on the base maps, the next phase of the research involved importing the data into the GIS.

Originally I intended to include archaeological survey data from both the west and east sides of Tongue River reservoir. However, after plotting all of the sites recorded on both sides of the reservoir, I decided that the intensity of survey and the percentage of area surveyed, did not give an adequate indication of the artifacts and sites present on the east side (Gregg 1977c; Fredlund 1977). Areas to the west were not only surveyed more intensively, but also had the benefit of being surveyed more than once. As a result, many sites were relocated several times and site forms updated. In addition, previously unrecorded sites and artifacts were located and recorded during each survey. The study area, represents a composite map of all the areas surveyed. Considering all of the time spent on the west side surveys, the inventories provide an excellent sample of the prehistoric cultural resources in the area.

Two topics that will not be addressed in this project are chronology, and the specific number of artifacts at each location. Dating sites or artifacts found
in the region is based on projectile point style. Descriptions of projectile points however, are highly variable between reports and often none existent. Debitage counts or estimations are the most ambiguous data in archaeological site forms. Numbers of flakes are most often recorded as rough estimates, using terms such as 'lots', 'many', 'hundreds', or 'thousands'. An attempt was made to quantify debitage data and entries were made on the data form (See Appendix B, columns B, C, and D). However, the data are extremely poor, and a presence or absence classification had to be used. I found it ironic that the best quantitative data is associated with isolated finds, or 'minimum activity loci', evidence that is generally thought to have little analytical value.

## AUTOMATED DATA CAPTURE

Surface geography for the area was obtained from the United States Geologic Survey as digital elevation models (DEMs). In the case of 7.5' topographic quadrangles at 1:24,000 scale, DEMs are image files with elevation data stored as the center of a 30-meter grid cell. Topographic maps and DEM image files are both referenced on the Universal Transverse Mercator (UTM) coordinate system. DEM files corresponding to the Pearl School and Decker, MT topographic quadrangles were copied on to a $3.5^{\prime \prime}$ floppy disk, then imported into the IDRISI GIS using a module called DEMIDRIS (Eastman 1992b: 53-54). To format the elevation data for use in IDRISI, a second module VAR2FIX (Eastman 1992b: 193) was used to create a 1024 byte, fixed length file, and the
documentation file required by IDRISI modules. A third module, CONCAT (Eastman 1992b: 30-31) created a single image by merging both the Pearl School and Decker, MT DEMs (See Appendix C).

As mentioned earlier, ROOTS was selected as the digitizing program for this project. To avoid confusion during the digitizing process, two sets of base maps were made. The first set of base maps contains all of the archaeological site and artifact locations and the survey coverage boundaries. The second set of base maps, contains both wildife ranges and vegetation zones. The information from the base maps was digitized with ROOTS as either points, lines or polygons. For example, sites were entered as points, including their numeric identifier; drainages were entered as lines; and vegetation and wildlife ranges were entered as polygons or areas. Registration was maintained by using the same UTM reference coordinates for three corners on the topographic maps. After all of the information was digitized, each file was exported from ROOTS as an IDRISI vector file. In essence, this process created separated 'map layers' for each of the geographic definition features: archaeological sites, hydrology, and vegetation zones (See Appendix C).

As vector files in IDRISI, the 'map layers' can only be displayed as an overlay on an image or printed out in crude map form. Any analysis or derivative mapping requires that each of the vector files be converted into an IDRISI image file (raster form). As with the DEMs, this process involves several steps. Depending on the form of the data (points, lines, or polygons), the base map
files were converted using one of three IDRISI modules designed for this purpose. POINTRAS (Eastman 1992b: 145-146) is a vector-to-raster conversion module that handles point vector information. Similar modules LINERAS (Eastman 1992b: 100-101) and POLYRAS (Eastman 1992b: 147-148) are conversion modules that process line and polygon information respectively. This conversion procedure was used on each of the vector feature definition files. A single image covering both topographic maps (Pearl School and Decker, MT) was then created for each of the feature definition or 'map layers' (ie., sites, hydrology, vegetation, etc.) using the module CONCAT (Eastman 1992b: 30-31) (See Appendix C).

Various IDRISI modules were then used to create derivative value maps using the definition images. For example, using the elevation image, SURFACE (Eastman 1992b: 181-182) created image representing both slope (in degrees) and aspect (azimuth) values for each of the 30-meter grid cells. The DISTANCE module (Eastman 1992b: 59) was used to create a number of images based on the various geographic feature definition files (ie., hydrology, vegetation zones, etc.). Using the hydrology image as the geographic definition variable, an image was created with the distance to nearest water (in meters) contained in each of the 30 -meter grid cells. This process was then undertaken for each of the vegetation zones and both deer and antelope ranges (See Appendix C). The next step was to extract the values contained in the images for site and artifact locations and the survey area for statistical analysis.

Extraction of values for individual environmental/geographic variables was accomplished with two IDRISI modules (See Figure 3). First, using the image representing site and artifact locations as a mask or filter, values for the individual points were entered into a file via the EXTRACT module (Eastman 1992b: 76-77). These files are in a two-column format. Where the first column contains the point identification number, and the second column contains the value of the particular variable. A second set of values files were created using the entire survey area as a mask. In this process, the QUERY module (Eastman 1992b: 157) extracts a single column of data representing the value of the environmental/geographic variable for every 30 -meter grid cell within the surveyed area. Both file formats were then exported directly into the SPSS statistical program (See Appendix C).

The file serving as the foundation for the SPSS data base was entered in the spreadsheet program Quattro Pro. The file contains the basic information for each site and artifact location; identification number, number of flakes, number of scraping tools, number of projectile points and the site type. This file was initially exported into IDRISI for the purpose of creating images of site and artifact distributions, however it was found that output was crude and difficult to interpret. Instead, the decision was made to transfer all data to the SPSS program. SPSS offers a wider range of statistical techniques and produces high quality output, much easier to interpret.

Two SPSS files were created to facilitate analysis of the archaeological

## ILLUSTRATION OF VALUE EXTRACTION USING IDRISI MODULES



FIGURE 3
data. All of the environmental/geographic variable values associated with site locations were merged into a single file. As each of the two column attribute values files were imported into SPSS format, they were merged with the base file described above. Once the numeric identifier was double-check against the first column of the base file, it was deleted. The resulting SPSS data file contains the values for the 3 environmental/geographic variables associated with 460 archaeological site and artifact locations (See Appendix B, columns F, G, and H). The second SPSS file contains all of the attribute values for every 30 -meter grid cell in the surveyed area. The column of values for each variable was merged into a single file. This file was not printed because of its enormous size (95,049 data points). In order to understand the patterns of prehistoric land used, this file will be used to compare the distribution of values for each site and artifact location against the distribution of values for the entire survey area.

## CHAPTER THREE

## ANALYSIS

Archaeologist believe that prehistoric peoples considered factors such as surface slope, distance to water and aspect before choosing a location for their activities (Deaver and Deaver 1988). In order to test this hypothesis, I first calculated a frequency distribution for each variable based on the $30 \times 30$ meter DEM grid for the study area. Next, I calculated corresponding frequency distributions using site values for each variable. If the variables influenced prehistoric people's decisions, then I would expect the site distributions to be independent of the study area-wide distributions. For example, we might find that while most sites are near water, only a small percent of the study area is judged to be near water. In this case, t would suspect that prehistoric people preferred to position their activities near water. Conversely, I could conclude that they apparently did not distribute their activities randomly across the landscape. The existence of any relationship between site location and the variables being examined (ie., slope and distance to water) can be identified with a simple chi-square test. In the case of site aspect or orientation a similar test which allows for the periodic nature of this variable is used.

## CHI-SQUARE ANALYSIS

The chi-square test of 'goodness of fit' (Spatz and Johnston 1989:236-
237), offers a conservative approach to identifying relationships between variables (Bernard 1988:383). Before testing for specific patterns or preferences in the archaeological record, I will test the basic hypothesis that archaeological sites are not randomly distributed over the environmental/ geographic landscape. The null hypothesis used here is stated as:
$H(0)=$ Archaeological sites and artifact locations are distributed randomly over any given environmental/ geographic landscape, with respect to slope, aspect, and distance to water.

Acceptance or rejection of the null hypothesis (Bernard 1988:382-383; Shennan 1988:76-77) is based on a chi-square test of goodness of fit between observed and expected frequencies of archaeological sites. Printouts of summary statistics for site types provided frequency and cumulative percent information (See Appendix D).

The variables (slope, aspect, and distance to water) were divided into interval classes. Slope values for all archaeological sites, measured in degrees, range from $0.00^{\circ}$ to $87.23^{\circ}$. Slope values were divided into eight classes, with an interval width of $2.99^{\circ}$ (See Figure 4). The first class includes flat areas. The final class includes all values over $20.99^{\circ}$. Distance to water values range from 0.00 to 767.40 meters (See Figure 5). Because of IDRISI's pixel resolution ( 30 X 30 meter), distance values were divided into eighteen classes, using an interval of $\mathbf{2 9 . 9 9}$ meters. The final class includes all areas over $\mathbf{5 1 0 . 0 0}$ meters from water. Aspect values for all archaeological sites, computed as azimuths by

## SLOPE (DEGREES) EXPECTED / OBSERVED FREQUENCIES

| SLOP_INT | \%AREA | All (EX)OB | BC (EX)OB | CS (EX)OB | O (EX)OB | $H$ (EX)OB | LW (EX)OB | Q (EX)OB |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $0.00-2.99$ | 28 | $(128.8) 98$ | $(9.24) 7$ | $(34.72) 32$ | $(42.28) 33$ | $(17.64) 14$ | $(14.84) 9$ | $(10.08) 3$ |
| $3.00-5.99$ | 33.3 | $(153.18) 132$ | $(10.99) 12$ | $(41.29) 39$ | $(50.28) 44$ | $(20.98) 16$ | $(17.65) 16$ | $(11.99) 5$ |
| $6.00-8.99$ | 19.6 | $(90.16) 128$ | $(6.47) 7$ | $(24.3) 32$ | $(29.6) 43$ | $(12.35) 17$ | $(10.39) 16$ | $(7.06) 14$ |
| $9.00-11.99$ | 9.3 | $(42.76) 61$ | $(3.07) 6$ | $(11.53) 13$ | $(14.04) 21$ | $(5.86) 8$ | $(4.93) 6$ | $(3.35) 7$ |
| $12.00-14.99$ | 4.8 | $(22.08) 24$ | $(1.58) 0$ | $(5.95) 6$ | $(7.25) 5$ | $(3.02) 5$ | $(2.54) 3$ | $(1.73) 5$ |
| $15.00-17.99$ | 2.6 | $(11.96) 9$ | $(0.86) 0$ | $(3.22) 2$ | $(3.93) 4$ | $(1.64) 0$ | $(1.38) 1$ | $(0.94) 2$ |
| $18.00-20.99$ | 1.1 | $(5.06) 0$ | $(0.36) 0$ | $(1.36) 0$ | $(1.66) 0$ | $(0.69) 0$ | $(0.58) 0$ | $(0.4) 0$ |
| OVER 21.00 | 1.3 | $(5.98) 7$ | $(0.43) 1$ | $(1.61) 0$ | $(1.96) 1$ | $(0.82) 3$ | $(0.69) 2$ | $(0.47) 0$ |

FIGURE 4

DISTANCE TO WATER EXPECTED / OBSERVERED FREQUENCIES

| DIST_INT | \% AREA | ALL(EX)OB | BC(EX)OB | CS(EX)OB | O(EX)OB | H(EX)OB | LW(EX)OB | Q(EX)OB |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.00-29.99 | 11.9 | (54.74)28 | (3.93)0 | (14.76)14 | (17.97)7 | (7.5)6 | (6.31)1 | (4.28)0 |
| 30.00-59.99 | 8.9 | (40.94)40 | (2.94)2 | (11.04)11 | (13.44)14 | (5.61) 8 | (4.72)4 | (3.2)1 |
| 60.00-89.99 | 10.5 | (48.3)61 | (3.47)5 | (13.02)15 | (15.86)19 | (6.62)8 | (5.57)7 | (3.78)7 |
| 90.00-119.99 | 8 | (36.8)38 | (2.64)4 | (9.92)10 | (12.08)12 | (5.04)6 | (4.24)3 | (2.88)3 |
| 120.00-149.99 | 9.8 | (45.08)62 | (3.23)5 | (12.15)20 | (14.8)19 | (6.17)4 | (5.19)6 | (3.53)6 |
| 150.00-179.99 | 7.1 | (32.66)31 | (2.34)1 | (8.8)10 | (10.72)8 | (4.47)5 | (3.76)5 | (2.56)2 |
| 180.00-209.99 | 6.3 | (28.98)28 | (2.08)3 | (7.81)6 | (9.51)10 | (3.97) 1 | (3.34)3 | (2.27)5 |
| 210.00-239.99 | 6.8 | (31.28)31 | (2.24) 1 | (8.43)9 | (10.27)11 | (4.28)5 | (3.6)2 | (2.45)3 |
| 240.00-269.99 | 6.1 | (28.06)31 | (2.01)2 | (7.56)5 | (9.21)12 | (3.84) 8 | (3.23)2 | (2.2)2 |
| 270.00-299.99 | 5.2 | (23.92)34 | (1.72)4 | (6.45)6 | (7.85)12 | (3.28)4 | (2.76)5 | (1.87)3 |
| 300.00-329.99 | 3.8 | (17.48)18 | (1.25)1 | (4.71)4 | (5.74) 9 | (2.39)0 | (2.01)4 | (1.37) 0 |
| 330.00-359.99 | 3.2 | (14.72) 13 | (1.06)3 | (3.97)2 | (4.83)5 | (2.02)1 | (1.7)1 | (1.15)1 |
| 360.00-389.99 | 3.3 | (15.18)12 | (1.09)0 | (4.09)3 | (4.98)3 | (2.08)3 | (1.75)2 | (1.19) 1 |
| 390.00-419.99 | 2.3 | (10.58)8 | (0.76)0 | (2.85)2 | (3.47)1 | (1.45)0 | (1.22)4 | (0.83)1 |
| 420.00-449.99 | 1.9 | (8.74)13 | (0.63)2 | (2.36)2 | (2.87) 5 | (1.2)2 | (1.01)2 | (0.68)0 |
| 450.00-479.99 | 1.3 | (5.98)5 | (0.43)0 | (1.61)2 | (1.96)2 | (0.82)0 | (0.69)0 | (0.47) 1 |
| 480.00-509.99 | 1.1 | (5.06)2 | (0.36)0 | (1.36)0 | (1.66)2 | (0.69)0 | (0.58)0 | (0.4) 0 |
| OVER510.00 | 2.5 | (11.50)5 | (0.83)0 | (3.10)3 | (3.78)0 | (1.58)2 | (1.33)0 | (0.9)0 |

FIGURE 5

IDRISI, range from -1.00 to $359.99^{\circ}$. Values of -1.00 are given to areas with a slope of $0.00^{\circ}$, and are considered to encompass all aspects. During analysis, each location's aspect value was considered a separate class (See Appendix D).

The goal was to see if differences between observed and expected frequencies were too great to be due to mere sampling vagaries. Once the class intervals were set, a series of chi-square tests were conducted for each slope and distance to water variables. Goodness of fit was evaluated for all archaeological sites and for each of the six site types (base camps, chipping stations, other activity, hunting, lithic workshops, and quarries). The chi-square formula used was:

$$
X^{2}=\sum(E-O)^{2} / E
$$

Where (E) equals the expected frequency of sites in each interval and (O) equals the observed frequency of sites in each interval (Bernard 1988: 384; Shennan 1988: 67; Spatz and Johnston 1989: 236).

The expected frequency of sites for each of the variable classes was calculated by multiplying the proportion of total area represented by each class, by the total number of sites in each type (See Figures 4 and 5). One of the advantages of GIS is the ability to analyze information over a large area. Using IDRISI, I was able to extract the value of each variable from every $30 \times 30$ meter area contained in the 85 square kilometer study area. The observed frequencies for each variable class were obtained from distribution summaries created with the SPSS program (See Appendix D). The values used in the chi-
square tests can be found in Appendix $B$, columns $F$ and $H$.
The critical value of chi-square for the analysis was set at a (0.05) level of significance, the customary level used in the social sciences (Bernard 1988:
386). This-means that in comparing the chi-square values, this study will accept as significant any relationship not likely to occur by chance more than five times in a hundred (Bernard 1988: 386; Shennan 1988: 68-69). Because this study placed more than the usual single restriction on the expected frequencies for each class, by limiting the interval width (Spatz and Johnston 1989: 248), the degrees of freedom used for each variable does not equal the usual:

$$
d f=(r-1)(c-1)
$$

Where (r) equals the number of rows, and (c) equals the number of columns (Bernard 1988: 384-385; Shennan 1988: 68-69; Spatz and Johnston 1989: 240241). This study also requires that the mean and standard deviation of expected frequencies equals the mean and standard deviation of the observed frequencies (Spatz and Johnston 1989: 248). As a result, the degrees of freedom used to obtain the critical value of chi-square was calculated as:

$$
d f=(r-3)
$$

Where (r) equals the number of rows, or in this case, the number of classes used for each variable (Spatz and Johnston 1989: 248). Critical values of chisquare were obtained from statistical tables (Bernard 1988: 481-482; Shennan 1988: 336-337; Spatz and Johnston 1989: 309).

At this point in the analysis, chi-square values only show whether the
probability of a relationship exists (ie., whether observed versus expected frequencies are noticeably different for each class) (Shennan 1988: 74). Neither the strength of the relationship nor how the variables are related is expressed in the chi-square value (Shennan 1988: 74; Spatz and Johnston 1989: 235-237). If the calculated value of chi-square is larger than the critical value for each of the cases then we can assume that the differences are to great to be related to sampling vagaries and conclude there is a relationship between site locations and the variable being studied (Spatz and Johnston 1989: 234). Examination of the expected versus observed frequencies in each interval, provides a way to interpret the preference for locations in cases were the null hypothesis is rejected.

## VECTOR METHOD/RALEIGH TEST

Because aspect is a periodic, rather than linear variable such as slope and distance to water, the standard Chi-square test is not appropriate for analyzing its significance. Both slope and distance to water have an origin (ie., 0 ). However, aspect, ranging from $0^{\circ}$ to $359^{\circ}$ has no origin which allows for the division of the circular distribution into a linear frequency curve. Even a small change of a few degrees in the choice of the origin of class intervals will cause considerable differences in the calculated mean and variance (Curray 1958: 117-118). Using a method of analysis which treats each orientation as a vector having both direction and magnitude, allows for the consideration of individual
location aspects independent of a class interval origin (Curray 1958: 118).
The north-south and east-west components of each observation vector (ie., aspect of site location) are calculated by multiplying the magnitude (number of observations) by the sine and cosine of the azimuth:

$$
\begin{aligned}
& \text { N-S component }=\sum \mathrm{n} \cos \Theta \\
& \mathrm{E}-\mathrm{W} \text { component }=\sum \mathrm{n} \sin \Theta \\
& \tan 6=\sum \mathrm{n} \cos \Theta / \sum \mathrm{n} \sin \Theta \\
& \mathrm{r}=\sqrt{ }\left[\left(\sum \mathrm{n} \cos \Theta\right)^{2}+\left(\sum \mathrm{n} \sin \Theta\right)^{2}\right] \\
& \mathrm{L}=\left(\mathrm{r} / \sum \mathrm{n}\right)(100)
\end{aligned}
$$

Where $(\Theta)=$ the azimuth of each observation $\left(0^{\circ}-359^{\circ}\right) ;(6)=$ azimuth of the resultant vector; $(n)=$ the number of observations; $(r)=$ the magnitude of the resultant vector; $(\mathrm{L})=$ magnitude of the resultant vector (in percent).

Because the components of each observation are summed in the process, the vector direction (6) can be interpreted as a measure of the central tendency of the distribution (Curray 1958: 118). In the case of this analysis, the central tendency is interpreted as the preferred orientation of locations for each site type. The vector direction (B) is comparable to the mean, however, this method of calculation is independent of the reference direction or orientation (Curray 1958: 119).

Vector magnitudes vary from 0 to 100 percent. Random orientations give a vector magnitude of 0 percent, because each of the components cancel each other during summation. A 'perfect' orientation of 100 percent means that all
observations lie in the same azimuth group. This technique is a sensitive measure of dispersion and is comparable to standard deviation or variance independent of the choice of origin (Curray 1958: 120-125).

In the late 1800's, the Raleigh test, a method of describing random phases in sound waves was developed and has been adapted for testing the significance of the vector magnitude calculations described above (Curray 1958: 125). The method of calculating significance is:

$$
p=e^{(-\operatorname{Ln})(.0001)}
$$

Where $(p)=$ the probability of a given vector magnitude being due to chance variations; $(L)=$ the vector magnitude (in percent); and $(n)=$ the number of observations. For evaluating each vector magnitude, a 0.05 level of significance is used.

## CORRELATION BETWEEN VARIABLES (PEARSON'S (r) AND (t) TEST)

After completing the chi-square analysis for each of the site types, the SPSS program was used to examine the correlation coefficients between slope, aspect, and distance to water. Correlation coefficients provide a way to express the degree of relationship between to variables (Bernard 1988: 407; Spatz and Johnston 1989: 77). However, before considering the Pearson's (r) values, scatter-plots were generated for each of the variable combinations; slope versus aspect, aspect versus distance to water, and distance to water versus slope.

Examination of the scatter-plots helps to insure that the Pearson's value is an appropriate technique for analyzing variable relationships (Bernard 1988: 408).

Because the scatter-plots do not indicate a non-linear relationship between any of the variables, Pearson's (r) and the coefficient of determination are used to illustrate any relationships between the variables. Correlation coefficients were calculated for all archaeological sites, and for each of the site types. The raw scores contained in columns F, G, and H of Appendix B were entered into the SPSS program and the Pearson's (r) value for each combination calculated using the formula:

$$
r=N(\Sigma X Y)-(\Sigma X)(\Sigma Y) / \sqrt{\left[N \Sigma X^{2}-(\Sigma X)^{2}\right]\left[N \Sigma Y^{2}-(\Sigma Y)^{2}\right]}
$$

Where $N=$ the number of pairs of $X$ and $Y$ values (Bernard 1988: 403; Shennan 1988: 128; Spatz and Johnston 1989: 78).

The coefficient of determination $\left(r^{2}\right)$ is used to quantify the amount of variance each of the variables has in common (Bernard 1988: 404; Shennan 1988: 147-150; Spatz and Johnston 1989: 83-85). Then, both these values are used to calculate a (t) test score for the three combinations, showing whether the relationship is significant. The ( t$)$ test scores were calculated as follows:

$$
(t)=(r) \sqrt{N-2 / 1-r^{2}}
$$

Where $N=$ the number of $X$ and $Y$ pairs, and $(d f)=N-2$ (Spatz and Johnston 1989: 185). Critical values of ( $t$ ) were obtained for a two-tail test, at a (.05) level
of significance (Spatz and Johnston 1989: 308). If the calculated value of $(t)$ is less than the critical value, then that relationship's Pearson's (r) would be expected to occur, by chance alone, more than 5 times in 100 (Spatz and Johnston 1989: 185).

## Cross-Tabulation

Cross-tabulation tables were constructed as a means to further examine the significant relationships between variable combinations, demonstrated by ( $\mathbf{t}$ ) test scores for various site types. The cells of each table represent the frequency of specific interval pairs generated by comparing the variables. By comparing the distribution of interval pairs in cross-tabulation form, it is possible to see how the variables are related (Bernard 1988: 422-435; Eastman 1992b: 45). The patterns of interval pair covariance can then be used to infer preferences involved in site selection.

The first step in constructing the cross-tabulation tables involved two IDRISI modules, RECLASS (Eastman 1992: 162-164) and EXTRACT (Eastman 1992b: 76-77). Values for each of the landscape variable images were reclassified to nominal values that represent the interval classes used in the chisquare tests (See Figures 4, 5 and Appendix D). For example, RECLASS was used to change all of the values in the aspect image into nominal values representing $45^{\circ}$ intervals (ie., $1=0^{\circ}-44.99^{\circ}, 2=45.00^{\circ}-89.99^{\circ}, \ldots . .9=$ $315.00^{\circ}-359.99^{\circ}$. This process was also done using the distance to water and
slope images (See Appendix C). Two column values files were created for each variable using the EXTRACT module and the archaeological sites file as a filter. the first column of each file represents the location's numeric identifier. The second column represents the nominal interval value (ie., 1, 2, 3, etc.). The IDRISI system also has a CROSSTAB module (Eastman 1992b: 45-47) that can produce cross-tabulation tables and statistics. However, because of better presentation of results, the SPSS program was used to generate the tables used in this analysis. The data used to construct the tables are summarized in appendix E .

## CHAPTER FOUR

## RESULTS AND CONCLUSIONS

To maintain continuity throughout this analysis, the results of the statistical tests are evaluated separately for each variable and variable pair. The results of chi-square and vector method tests summarized first. Expected and observed frequencies for each class are examined to illustrate the nature of the relationship. Then, correlation coefficients and coefficients of determination as well as ( $\mathbf{t}$ ) test and cross-tabulation tables are used to explore the relationships between each of the landscape variable pairs. This approach allows for consideration of any merits or deficiencies on a case by case basis within the data set.

## CHI-SQUARE TEST RESULTS

## SLOPE (DEGREES)

The null hypothesis for the slope variable is rejected in four of the seven cases considered; all archaeological sites, other activity sites, hunting sites, and quarry sites (See Figure 6).

All archaeological case sites suggest a non-significant distribution relative to slope, because the null hypothesis is rejected. Slopes for all archaeological site ranges from $0.00^{\circ}$ to $87.23^{\circ}$. Examination of the observed versus expected frequencies illustrates the nature of selective preference for certain slope

CHI SQUARE TEST RESULTS TABLE

classes. Site locations show a strong selective preference for mid-range slopes between $6.00^{\circ}$ and $14.99^{\circ}$. Slopes below $6.00^{\circ}$ are under represented, with only 230 observed versus $\mathbf{2 8 1 . 9 8}$ expected. Slopes over $15.00^{\circ}$ are similarly under represented, with 16 observed and 23.00 expected. As a whole, archaeological sites are significantly over represented for mid-range slopes, 213 observed versus $\mathbf{\$ 5 5 . 0 2}$ expected. It appears, for the distribution of all archaeological sites, there is a definite preference for slopes greater than $6.00^{\circ}$, but less than $14.99^{\circ}$ (See Figure 4).

Classification of sites by type further explains the relationship between land surface slope and specific behavioral activities (ie., site types). To examine the relationship more fully, each of the site types and their goodness of fit chisquare results must be considered. Chi-square results indicate differential preference for slopes, depending on site type.

Slopes at 'other activity' locations range from $0.00^{\circ}$ to $21.87^{\circ}$. Sample size for this type is the largest $(\mathrm{n}=151$ ) (See Figure 6 ). These sites also suggest preference for mid-range slopes between $6.00^{\circ}$ and $11.99^{\circ}$. Slopes below $6.00^{\circ}$ are under represented, with 77 observed versus 92.56 expected. Slopes above $12.00^{\circ}$ are also under represented, with 10 observed versus 14.8 expected. The narrow interval of slopes between $6.00^{\circ}$ and $11.99^{\circ}$ is significantly over represented, with 64 observed versus only 43.64 expected (See Figure 4). It appears that prehistoric peoples preferred to conduct general activities, on relatively gentle slopes less than $12.00^{\circ}$ but not completely flat.

Hunting site slopes range from $0.00^{\circ}$ to $87.23^{\circ}$. The sample size is rather small ( $n=63$ ), however, the chi-square tests indicate a mild preference for a broad range of slopes (See Figure 6). These locations are also under represented on slopes less than $6.00^{\circ}$, with 30 observed versus 38.44 . Over representation of sites on mid-range and steep slopes, 33 observed versus 24.38 expected, seems to display a more general preference of slopes. The data suggest that hunting activities were conducted on any surface over $6.00^{\circ}$ in slope. There is apparently only a slight preference for slopes between $6.00^{\circ}$ and $8.99^{\circ}$, with 17 sites observed versus 12.35 expected (See Figure 4).

The final site type that shows a significantly different distribution over slope is quarry sites (See Figure 6). Slopes for quarry sites range from $0.00^{\circ}$ to $17.68^{\circ}$. The sample size for this type is one of the smallest ( $n=36$ ), however, the chi-square test indicates a relationship. Examination of observed and expected frequencies demonstrate a preference similar to hunting sites. Slopes below $6.00^{\circ}$ are extremely under represented, with only 8 observed and 22.07 expected. While slopes over $6.00^{\circ}$ are extremely over represented, with 28 observed versus 13.95 expected. This relationship is possibly explained by the association of eroded outcrops of suitable lithic material with steeper slopes along terrace edges. One of the problems with this relationship stems from having to explain why the slopes are so low ( $\leq 18.0^{\circ}$ ). Possibly, an explanation for this derives from the fact that the outcrop exploited for raw material is not recorded as the archaeological site. Rather, the area of discarded debitage
nearby, is most often recorded.
The chi-square tests resulted in the acceptance of the null hypothesis in three cases (See Figure 6). Sample sizes for each type are highly variable; base camps ( $n=33$ ), chipping station ( $n=124$ ), and lithic workshops ( $n=53$ ). Expected versus observed frequencies indicates that the distribution of slope values for these site types do not differ greatly from a random population (See Figure 4). Because no preference is demonstrated, specific frequencies are not discussed.

## DISTANCE TO WATER (METERS)

Distance to water with in the survey area ranges from 0.00 to 767.54 meters. Chi-square test results for this variable also illustrate the importance of not relying on the aggregate sample (all archaeological sites) when attempting to describe site locations (See Figure 6). When considered as a group, there appears to be a significant difference between expected and observed frequencies. However, when considered separately, there does not appear to be a significant difference. Examination of observed versus expected frequencies for all archaeological sites helps to illustrate how sites are distributed with respect to drainage patterns.

Distance to the nearest water source for all sites range from 0.00 to 617.43 meters. Observed frequencies are under represented for most of the intervals. However, two intervals have an over representation of sites. The
60.00-149.99 meter interval is over represented with 161 observed versus 130.18 expected. The 240.00-329.99 meter interval is over-represented with 83 observed where 69:46 are expected (See Figure 5). Preference indicated for all sites is most likely weak. If archaeological survey designs considered distance to water source to be a important site location factor, a majority of sites would be recorded. While it is true that site density increases as one approaches a stream, there is no power to this prediction because such a large proportion of the area is relatively close to water. Without examining the relationship for each of the site types, the minor relationship between all site locations and distance to water might be over-emphasized.

## RESULTS OF VECTOR METHOD/RALEIGH TEST

## ASPECT

The vector analysis and Raleigh test indicate a significant relationship or preferred orientation in five of the seven cases considered; all archaeological sites, base camps, chipping stations, other activity sites and hunting sites (See Figure 6). These results indicate the drawbacks of viewing all archaeological sites as a single behavioral manifestation. By considering all sites as an aggregate, the various preferred orientations of each site type are 'masked'. Examination of each site type using the Raleigh test indicates associations which are contrary to the commonly held belief of a universal southern orientation of all archaeological sites.

As an aggregate, all archaeological sites demonstrate a preferred orientation of $125^{\circ}$ (See Figure 6). Because the Raleigh test and vector analysis use a summation of components, this azimuth represents the true overall orientation (Curray 1958: 126) of all archaeological sites. Although this vector does have a slight southern tendency, the orientation is not the definitive 'southern aspect' used to guide archaeological surveys in the area. In fact, the azimuth ( $125^{\circ}$ ) more closely approximates the overall trend of the ridges and drainages $\left(130^{\circ}\right)$ throughout the study area.

Base camps and other activity sites have azimuths of $164^{\circ}$ and $163^{\circ}$ respectively (See Figure 6). Both of these site types do indicate a preference for what could be considered a southern aspect. This relationship lends the most support to the proposition that sites will be found on south facing slopes. The model most often used in the study area holds that archaeological sites will be found on slopes which receive a greater amount of solar radiation (Deaver and Deaver 1988, Fredland 1972, 1977, Gegg 1977a, 1977c). The fact that base camps or more permanent habitation areas are located on these slopes seems quite logical. These areas tend to be drier and warmer. However, the apparent preferred location of more temporary activity sites on south facing slopes is more difficult to explain. It is likely that the location of other activity sites on south facing slopes is due to the presence of specific vegetation or other resource on these slopes.

Chipping station sites show a preference for slopes with an aspect of $89^{\circ}$,
basically east (See Figure 6). Archaeologists who have worked in the area consider these sites to be 'lookouts' were persons waited for game to pass (Deaver and Deaver 1988, Fredlund 1972, 1977, Gregg 1977a, 1977c). This fact seems to supported by the eastern orientation of these sites. East facing slopes do afford an excellent view of the drainages and ridge tops throughout the study area. However, archaeological surveys conducted in the region did not consider this fact (Deaver and Deaver 1988, Fredlund 1972, 1977, Gregg 1977a, 1977c).

Hunting sites indicate a preferred orientation of $130^{\circ}$ (See Figure 6). As in the case of all archaeological sites, this aspect approximates the orientation of the ridges and drainages of the study area. In both instances, it is likely that the relationship does not show a true preference, but rather a mimicking of the predominant aspect of the region. This relationship is not and indication of site preference.

## RESULTS OF CORRELATION BETWEEN VARIABLES

## SLOPE VS. ASPECT

Comparison of the slope and aspect values result in low Pearson's (r) scores for each site type. Scores range from ( $r=0.21$ ) for hunting sites to ( $r=0.09$ ) for quarry sites. Further examination of this combination using coefficients of determination $\left(\mathrm{r}^{2}\right)$ and $(\mathrm{t})$ tests, indicates a significant relationship between the values for all archaeological sites and chipping stations. The relationships between slope and aspect values for all of the remaining cases
(ie., base camps, other activity, hunting, lithic workshops, and quarries) are not significant (See Figures 7 and 8).

The ( t ) tests indicates a significant relationship ( $\mathrm{t}=2.15$ ) between slope and aspect for all archaeological sites ( $n=460$ ) in general. However, the coefficient of determination ( $\mathrm{r}^{2}=0.01$ ), reveals that very little variation is shared by the variables. This is a significant but weak relationship, with a very small amount of covariation (1\%). A cross-tabulation table was created to examine the relationship more closely (See Figure 9). The highest frequencies of sites occur in cells less than $12.00^{\circ}$ (91\%) and between the azimuths of $0.00^{\circ}$ and $224.99^{\circ}$ (83.1\%).

The ( t$)$ test results also indicate a significant relationship ( $\mathrm{t}=2.04$ ) in the case of chipping station sites ( $n=124$ ). The coefficient of determination is also very low in this case ( $r^{2}=0.03$ ). Slope explains only $3 \%$ of the variation in aspect. Again, this is a significant but extremely weak relationship. The cross-tabulation table shows an interesting distribution of interval pairs (See Figure 10). There are almost no sites with all aspects and no sites over $18.00^{\circ}$. Highest site frequencies are below $12.00^{\circ}$ ( $93.6 \%$ ), with aspects having an eastern component $\left(0.00^{\circ}-179.99^{\circ}\right)$.

## ASPECT VS. DISTANCE TO WATER

Pearson's ( $r$ ) values range from $(r=0.14$ ) for chipping stations, to (r=-0.04) for lithic workshops (See Figure 7). The ( $t$ ) tests for all site types

SUMMARY OF CORRELATION COEFFICIENTS

| Data <br> Set | Pearson's (r) <br> Slope <br> vs. <br> Aspect |  |  | Aspect <br> vs. <br> Dist. to Water | Dist. to Water <br> vs. <br> Slope | Slope <br> vs. <br> Aspect |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0.09 | 0.01 | 0.04 | 0.01 | Aspect <br> vs. <br> Dist. to water | Dist. to Water <br> vs. <br> Slope |
| All Arch <br> Sites | 0.10 | 0.07 | 0.10 | 0.01 | 0.01 | 0.00 |
| Base <br> Camp Sites | 0.13 | 0.07 | 0.39 | 0.02 | 0.01 | 0.01 |
| Chipping <br> Station Sites | 0.18 | 0.14 | 0.02 | 0.03 | 0.02 | 0.15 |
| Other <br> Activity Sites | 0.09 | 0.04 | 0.05 | 0.01 | 0.00 | 0.00 |
| Hunting <br> Sites | 0.21 | 0.05 | 0.16 | 0.04 | 0.00 | 0.03 |
| Lithic <br> Workshop Sites | 0.20 | -0.04 | -0.16 | 0.04 | 0.00 | 0.03 |
| Quarry <br> Sites | -0.09 | 0.13 | 0.11 | 0.01 | 0.02 | 0.01 |

FIGURE 7

SUMMARY OF ( t ) TEST RESULTS

| Data Set | Slope vs. Aspect |  |  |  | Aspect vs. Distance to Water |  |  |  | Distance to Water vs. Slope |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\left(r^{2}\right)$ | Calc. <br> (t) | Critical (t) | S/NS | ( $\mathrm{r}^{2}$ ) | Calc. <br> (t) | Critical $(t)$ | S/NS | ( $\mathrm{r}^{2}$ ) | Calc. <br> (t) | Critical (t) | S/NS |
| All Arch Sites | 0.01 | 2.15 | 1.96 | S | 0.01 | 1.51 | 1.96 | NS | 0.01 | 2.16 | 1.96 | S |
| Base <br> Camp Sites | 0.02 | 0.74 | 2.04 | NS | 0.01 | 0.39 | 2.04 | NS | 0.15 | 2.55 | 2.04 | S |
| Chipping Station Sites | 0.03 | 2.04 | 1.98 | S | 0.02 | 1.58 | 1.98 | NS | 0.00 | 0.22 | 1.98 | NS |
| Other Activity Sites | 0.01 | 1.11 | 1.98 | NS | 0.00 | 0.49 | 1.98 | NS | 0.00 | 0.61 | 1.98 | NS |
| Hunting Sites | 0.04 | 1.71 | 2.00 | NS | 0.00 | 0.39 | 2.00 | NS | 0.03 | 1.29 | 2.00 | NS |
| Lithic Workshop Sites | 0.04 | 1.49 | 1.68 | NS | 0.00 | -0.29 | 1.68 | NS | 0.03 | 1.18 | 1.68 | NS |
| Quarry Sites | 0.01 | -0.53 | 2.04 | NS | 0.02 | 0.77 | 2.04 | NS | 0.01 | 0.65 | 2.04 | NS |
| S= Significant <br> NS = Not Significant |  |  |  |  |  |  |  |  |  |  |  |  |

FIGURE 8

## CROSS TABULATION <br> ALL ARCHAEOLOGICAL SITES

Column: Slope Interval
Row: Aspect Interval

|  | $\begin{aligned} & 0.00- \\ & 2.99 \end{aligned}$ | $\begin{gathered} 3.00 \\ 5.99 \end{gathered}$ | $\begin{gathered} 6.00 \\ 8.99 \end{gathered}$ | $\begin{aligned} & 9.00- \\ & 11.99 \end{aligned}$ | $\begin{aligned} & 12.00- \\ & 14.99 \end{aligned}$ | $\begin{aligned} & 15.00- \\ & 17.99 \end{aligned}$ | $\begin{aligned} & \text { OVER } \\ & 21.00 \end{aligned}$ | Row <br> Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| All Aspects | 7 |  |  |  |  |  |  | $\begin{gathered} 7 \\ 1.5 \end{gathered}$ |
| $\begin{aligned} & 0.00- \\ & 44.99 \end{aligned}$ | 24 | 18 | 26 | 12 | 9 | 1 |  | $\begin{gathered} 90 \\ 19.6 \end{gathered}$ |
| $\begin{aligned} & 45.00- \\ & 89.99 \end{aligned}$ | 4 | 17 | 15 | 7 | 4 | 2 |  | $\begin{gathered} 49 \\ 10.7 \end{gathered}$ |
| $\begin{aligned} & 90.00- \\ & 134.99 \end{aligned}$ | 19 | 24 | 18 | 5 | 3 |  |  | $\begin{gathered} 69 \\ 15.0 \end{gathered}$ |
| $\begin{aligned} & 135.00- \\ & 179.99 \end{aligned}$ | 12 | 23 | 13 | 8 | 1 |  | 1 | $\begin{gathered} 58 \\ 12.6 \end{gathered}$ |
| $\begin{aligned} & 180.00- \\ & 224.99 \end{aligned}$ | 22 | 29 | 28 | 18 | 6 | 4 | 2 | $\begin{aligned} & 109 \\ & 23.7 \end{aligned}$ |
| $\begin{aligned} & 225.00 \\ & 269.99 \end{aligned}$ | 1 | 7 | 13 | 2 | 1 | 2 | 3 | $\begin{aligned} & 29 \\ & 6.3 \end{aligned}$ |
| $\begin{aligned} & 270.00- \\ & 314.99 \end{aligned}$ | 4 | 8 | 7 | 6 |  |  | 1 | 26 5.7 |
| $\begin{aligned} & 315.00- \\ & 359.99 \end{aligned}$ | 5 | 6 | 9 | 3 |  |  |  | 23 5.0 |
| Colurnn Total | $\begin{gathered} 98 \\ 21.3 \end{gathered}$ | $\begin{aligned} & 132 \\ & 28.7 \end{aligned}$ | $\begin{aligned} & 129 \\ & 28.0 \end{aligned}$ | $\begin{gathered} 61 \\ 13.3 \end{gathered}$ | $\begin{aligned} & 24 \\ & 5.2 \end{aligned}$ | $\begin{gathered} 9 \\ 2.0 \end{gathered}$ | 7 1.5 | $\begin{gathered} 460 \\ 100.0 \end{gathered}$ |

FIGURE 9

## CROSS TABULATION

 CHIPPING STATION SITESColumn: Slope Interval
Row: Aspect interval

|  | $\begin{aligned} & 0.00- \\ & 2.99 \end{aligned}$ | $\begin{aligned} & 3.00- \\ & 5.99 \end{aligned}$ | $\begin{aligned} & 6.00- \\ & 8.99 \end{aligned}$ | $\begin{aligned} & 9.00- \\ & 11.99 \end{aligned}$ | $\begin{aligned} & 12.00- \\ & 14.99 \end{aligned}$ | $\begin{aligned} & 15.00- \\ & 17.99 \end{aligned}$ | Row Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| All Aspect | 2 |  |  |  |  |  | $\begin{gathered} 2 \\ 1.6 \end{gathered}$ |
| $\begin{aligned} & 0.00- \\ & 44.99 \end{aligned}$ | 8 | 5 | 5 | 5 | 3 |  | $\begin{gathered} 26 \\ 21.0 \end{gathered}$ |
| $\begin{aligned} & 45.00- \\ & 89.99 \end{aligned}$ | 3 | 8 | 4 | 1 |  |  | $\begin{gathered} 16 \\ 12.9 \end{gathered}$ |
| $\begin{aligned} & 90.00 \\ & 134.99 \end{aligned}$ | 10 | 6 | 4 | 2 |  |  | $\begin{gathered} 22 \\ 17.7 \end{gathered}$ |
| $\begin{aligned} & 135.00- \\ & 179.99 \end{aligned}$ | 3 | 8 | 3 | 2 | 1 |  | $\begin{gathered} 17 \\ 13.7 \end{gathered}$ |
| $\begin{aligned} & 180.00- \\ & 224.99 \end{aligned}$ | 4 | 7 | 5 | 2 | 2 | 1 | $\begin{gathered} 21 \\ 16.9 \end{gathered}$ |
| $\begin{aligned} & 225.00- \\ & 269.99 \end{aligned}$ |  | 3 | 1 |  |  | 1 | $\begin{gathered} 5 \\ 4.0 \end{gathered}$ |
| $\begin{aligned} & 270.00- \\ & 314.99 \end{aligned}$ | 1 | 1 | 4 |  |  |  | $\begin{gathered} 6 \\ 4.8 \end{gathered}$ |
| $\begin{aligned} & 315.00- \\ & 359.99 \end{aligned}$ | 1 | 1 | 6 | 1 |  |  | $\begin{gathered} 9 \\ 7.3 \end{gathered}$ |
| Column Total | $\begin{gathered} 32 \\ 25.8 \end{gathered}$ | $\begin{gathered} 39 \\ 31.5 \end{gathered}$ | $\begin{gathered} 32 \\ 25.8 \end{gathered}$ | $\begin{gathered} 13 \\ 10.5 \end{gathered}$ | $\begin{gathered} 6 \\ 4.8 \end{gathered}$ | $\begin{gathered} 2 \\ 1.6 \end{gathered}$ | $\begin{gathered} 124 \\ 100.0 \end{gathered}$ |

FIGURE 10
indicate no significant correlation between an archaeological site location's aspect and distance to nearest water source (See Figure 8). Three cases, other activity, hunting, and lithic workshops have 0.00\% covariation. Examination of scatter-plots, also illustrates no relationship between the variables. All of the plots for aspect versus distance to water have no apparent pattern and slightly heteroscedastic distribution along the regression line.

## DISTANCE TO WATER VS. SLOPE

Comparing the distance to water and slope variables results in Pearson's ( $r$ ) values ranging from ( $r=0.39$ ) for base camp sites, to ( $r=-0.16$ ) for lithic workshops. Correlation coefficients and coefficients of determination indicate significant relationships in the case of all archaeological sites in general, and base camp sites. All other instances, chipping stations, other activity, hunting, lithic workshop, and quarry sites, show no significant relationship between their distance to nearest water and slope values (See Figures 7 and 8).

The $(t)$ test score of $(t=2.16)$ for all archaeological sites indicates that the relationship between distance to water and slope is significant. However, the coefficient of determination $\left(r^{2}=0.01\right)$ is very small. Although only $1 \%$ of the covariation is accounted for by this relationship, the cross-tabulation table of interval pairs (See Figure 11) was created from data in appendix E. Comparison of interval combinations reveals that cells with high frequencies (>10), occur on slopes less than $9.00^{\circ}$ that are within 240 meters of water. While, $91.3 \%$ of all

CROSS TABULATION
ALL ARCHAEOLOGICAL SITES
Column: Slope Interval
Row: Distance to Water Interval

|  | $\begin{aligned} & 0.00- \\ & 2.99 \end{aligned}$ | $\begin{aligned} & 3.00- \\ & 5.99 \end{aligned}$ | $\begin{gathered} 6.00- \\ 8.99 \end{gathered}$ | $\begin{aligned} & 9.00- \\ & 1199 \end{aligned}$ | $\begin{aligned} & 12.00- \\ & 14.99 \end{aligned}$ | $\begin{aligned} & 15.00- \\ & 17.99 \end{aligned}$ | $\begin{aligned} & \text { OVER } \\ & 21.00 \end{aligned}$ | Row Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & 0.00- \\ & 29.99 \end{aligned}$ | 15 | 5 | 7 | 1 |  |  |  | $\begin{aligned} & 28 \\ & 6.1 \end{aligned}$ |
| $\begin{array}{r} 30.00 \\ 59.99 \end{array}$ | 9 | 16 | 11 | 4 |  |  |  | $\begin{aligned} & 40 \\ & 8.7 \end{aligned}$ |
| $\begin{aligned} & 60.00- \\ & 89.99 \end{aligned}$ | 14 | 17 | 19 | 5 | 4 | 1 | 1 | $\begin{gathered} 61 \\ 13.3 \end{gathered}$ |
| $\begin{aligned} & 90.00 \\ & 119.99 \end{aligned}$ | 4 | 14 | 13 | 4 | 1 | 1 | 1 | $\begin{aligned} & 38 \\ & 8.3 \end{aligned}$ |
| $\begin{aligned} & 120.00- \\ & 149.99 \end{aligned}$ | 10 | 18 | 16 | 8 | 3 | 5 | 2 | $\begin{gathered} 62 \\ 13.5 \end{gathered}$ |
| $\begin{aligned} & 150.00- \\ & 179.99 \end{aligned}$ | 5 | 7 | 11 | 8 |  |  |  | $\begin{aligned} & 31 \\ & 6.7 \end{aligned}$ |
| $\begin{aligned} & 180.00- \\ & 209.99 \end{aligned}$ | 4 | 11 | 8 | 5 |  |  |  | $\begin{aligned} & 28 \\ & 6.1 \end{aligned}$ |
| $\begin{aligned} & 210.00- \\ & 239.99 \end{aligned}$ | 7 | 9 | 10 | 2 | 3 |  |  | $\begin{aligned} & 31 \\ & 6.7 \end{aligned}$ |
| $\begin{aligned} & 240.00- \\ & 269.99 \end{aligned}$ | 8 | 6 | 8 | 4 | 3 | 1 | 1 | $\begin{aligned} & 31 \\ & 6.7 \end{aligned}$ |
| $\begin{gathered} 270.00- \\ 299.99 \end{gathered}$ | 5 | 9 | 8 | 6 | 5 | 1 |  | $\begin{aligned} & 34 \\ & 7.4 \end{aligned}$ |
| $\begin{array}{r} 300.00- \\ 329.99 \end{array}$ | 3 | 4 | 6 | 2 | 3 |  |  | $\begin{aligned} & 18 \\ & 3.9 \end{aligned}$ |
| $\begin{array}{r} 330.00- \\ 359.99 \end{array}$ | 4 | 2 | 1 | 5 | 1 |  |  | $\begin{aligned} & 13 \\ & 2.8 \end{aligned}$ |
| $\begin{array}{r} 360.00- \\ 389.99 \end{array}$ | 2 | 2 | 4 | 3 |  |  | 1 | $\begin{aligned} & 12 \\ & 2.6 \end{aligned}$ |
| $\begin{gathered} 390.00- \\ 419.99 \end{gathered}$ | 1 | 3 | 3 | 1 |  |  |  | $\begin{gathered} 8 \\ 1.7 \end{gathered}$ |
| $\begin{array}{r} 420.00- \\ 449.99 \end{array}$ | 2 | 5 | 2 | 3 |  |  | 1 | $\begin{aligned} & 13 \\ & 2.8 \end{aligned}$ |
| $\begin{array}{r} 450.00 \\ 479.99 \end{array}$ | 2 | 2 |  |  | 1 |  |  | $\begin{gathered} 5 \\ 1.1 \end{gathered}$ |
| $\begin{aligned} & 480.00 \\ & 509.99 \end{aligned}$ | 1 |  | 1 |  |  |  |  | $\begin{gathered} 2 \\ 0.4 \end{gathered}$ |
| $\begin{aligned} & \text { OVER } \\ & 510.00 \end{aligned}$ | 2 | 2 | 1 |  |  |  |  | $\begin{gathered} 5 \\ 1.1 \end{gathered}$ |
| Column Total | $\begin{gathered} 98 \\ 21.3 \end{gathered}$ | $\begin{aligned} & 132 \\ & 28.7 \end{aligned}$ | $\begin{gathered} 129 \\ 28.0 \end{gathered}$ | $\begin{gathered} 61 \\ 13.3 \end{gathered}$ | $\begin{aligned} & 24 \\ & 5.2 \end{aligned}$ | $\begin{gathered} 9 \\ 2.0 \end{gathered}$ | $\begin{gathered} 7 \\ 1.5 \end{gathered}$ | $\begin{gathered} 460 \\ 100.0 \end{gathered}$ |

FIGURE 11
archaeological sites are locations with slopes less than $12.00^{\circ}$ that are within 360.00 meters of water.

Base camp sites also have a ( $t$ ) test score $(t=2.55)$ that indicates a significant relationship between distance to water and slope. The coefficient of determination ( $r^{2}=0.15$ ) means that $15 \%$ of the covariation is accounted for by the relationship (See Figures 7 and 8 ). This result is most interesting because it is the largest amount of covariation found in this study. The base camp sample sizes the smallest of all site types ( $n=33$ or $7.2 \%$ ). Interpretation of the crosstabulation tables is made difficult by the low frequency of all the interval pairs. Over 70\% of all the high frequency combinations occur at locations having slopes less than $9.00^{\circ}$ and that are within 210.00 meters of water. There are no base camp sites over 450.00 meters from water. In fact, $97 \%$ of base camp sites are found on slopes less than $12.00^{\circ}$ that are within 360.00 meters of water (See Figure 12).

## CONCLUSIONS

The results of this study show that three of the environmental variables archaeologist have perceived to be primary considerations in describing the location of prehistoric sites, are not powerful predictors for this area of southeastern Montana. By compiling the results of surveys conducted on a regional scale, it is possible to test which variables were important considerations for prehistoric peoples site selection. This study does not

## CROSS TABULATION BASE CAMP SITES

Column: Slope Interval
Row: Distance to Water Interval

|  | $\begin{aligned} & 0.00- \\ & 2.99 \end{aligned}$ | $\begin{gathered} 3.00- \\ 5.99 \end{gathered}$ | $\begin{aligned} & 6.00- \\ & 8.99 \end{aligned}$ | $\begin{aligned} & 9.00 \\ & 11.99 \end{aligned}$ | $\begin{aligned} & \text { OVER } \\ & 21.00 \end{aligned}$ | $\begin{aligned} & \text { Row } \\ & \text { Total } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} 30.00- \\ 59.99 \end{gathered}$ |  | 2 |  |  |  | $\begin{gathered} 2 \\ 6.1 \end{gathered}$ |
| $\begin{aligned} & 60.00 \\ & 89.99 \end{aligned}$ | 2 | 1 | 2 |  |  | $\begin{gathered} 5 \\ 15.2 \end{gathered}$ |
| $\begin{aligned} & 90.00- \\ & 119.99 \end{aligned}$ | 1 | 2 | 1 |  |  | $\begin{gathered} 4 \\ 12.1 \end{gathered}$ |
| $\begin{aligned} & 120.00- \\ & 149.99 \end{aligned}$ | 1 | 1 | 2 | 1 |  | $\begin{gathered} 5 \\ 15.2 \end{gathered}$ |
| $\begin{aligned} & 150.00- \\ & 179.99 \end{aligned}$ |  | 1 |  |  |  | $\begin{gathered} 1 \\ 3.0 \end{gathered}$ |
| $\begin{aligned} & 180.00 \\ & 209.99 \end{aligned}$ |  |  | 2 | 1 |  | $\begin{gathered} 3 \\ 9.1 \end{gathered}$ |
| $\begin{aligned} & 210.00 \\ & 239.99 \end{aligned}$ |  |  |  | 1 |  | $\begin{gathered} 1 \\ 3.0 \end{gathered}$ |
| $\begin{aligned} & 240.00 \\ & 269.99 \end{aligned}$ |  | 1 |  | 1 |  | $\begin{gathered} 2 \\ 6.1 \end{gathered}$ |
| $\begin{aligned} & 270.00- \\ & 299.99 \end{aligned}$ | 2 | 2 |  |  |  | $\begin{gathered} 4 \\ 12.1 \end{gathered}$ |
| $\begin{aligned} & 300.00 \\ & 329.99 \end{aligned}$ |  | 1 |  |  |  | $\begin{array}{r} 1 \\ 3.0 \end{array}$ |
| $\begin{aligned} & 330.00 \\ & 359.99 \end{aligned}$ | 1 | 1 |  | 1 |  | $\begin{gathered} 3 \\ 9.1 \end{gathered}$ |
| $\begin{aligned} & 420.00- \\ & 449.99 \end{aligned}$ |  |  |  | 1 | 1 | $\begin{gathered} 2 \\ 6.1 \end{gathered}$ |
| Column Total | $\begin{gathered} 7 \\ 21.2 \end{gathered}$ | $\begin{gathered} 12 \\ 36.4 \end{gathered}$ | $\begin{gathered} 7 \\ 21.2 \end{gathered}$ | $\begin{gathered} 6 \\ 18.2 \end{gathered}$ | $\begin{gathered} 1 \\ 3.0 \end{gathered}$ | $\begin{gathered} 33 \\ 100.0 \end{gathered}$ |

FIGURE 12
support the idea that slope, aspect and distance to nearest water are efficient predictors of where sites will or will not be found. Artifacts representing the remains of various behaviors are differentially distributed with respect to these variables.

In general, the archaeological sites considered in this study ( $n=460$ ), do show associations with all three of the variables. Both expected versus observed frequencies and cross-tabulation of variable intervals indicate preference for locations with gentle ( $<12.00^{\circ}$ ) but not flat slopes, within 360.00 meters of water. It is not likely that the relationship between slope and aspect represents preference for locations with east facing aspects. There also appears to be a relationship between aspect alone and the location of all archaeological sites in general. The preferred aspect indicated by the Raleigh test (See Figure 6), does not support the proposition that sites will be found on south facing slopes. The ridges and drainages of the region trend to the southeast, with the result that there is a large number of east and southeast facing slopes. The lack of association demonstrated by the chi-square test also suggests this is the case.

Base camps sites represent the smallest sample ( $n=33$ ) of site type, but show a definite association with aspect, and the greatest amount of covariation between slope and distance to water. These sites show a broad preference for locations with gentle $\left(9.00^{\circ}\right)$ slopes, within 360.00 meters of water. Because there is no relationship between either aspect and slope, or aspect and distance
to water, it is likely aspect is independent of both these concerns. Base camp sites appear to favor locations with south facing aspects, whether or not they meet slope and distance to water requirements.

By considering the distribution of individual site types, the association between base camps and locations with southern aspects is evident. However, the relationship is obfuscated when evaluated across all archaeological sites. The other site types which do show a relationship with aspect (ie., all archaeological sites, other activity sites, hunting sites and chipping stations) do not fit the model proposed for the area. With base camps representing only 7.2\% of archaeological sites in the region, aspect would not be a particularly good predictor of site locations in general. Considering the relatively small amount of covariation ( $r=15 \%$ ) between slope and distance to water, these variables do not appear to be strong indicators of site locations.

Chipping station sites do show an association with aspect. These sites appear to fit the pattern of location on slopes which afford a good view of a large area. However, they are contrary to the general idea that sites will be found on south facing slopes. Chipping stations demonstrate a tendency to be found on east facing slopes $\left(89^{\circ}\right)$. There is a relationship suggested between a chipping station location's aspect and slope. However, explanation is limited by the small amount of covariation (1\%). This relationship is also made less significant by the predominance of east facing locations and slopes $<12.00^{\circ}$ throughout the study area. Cross-tabulation tables suggest a selection for slopes below
$<12.00^{\circ}$, that face east. $90 \%$ of the study area has slopes $<12.00^{\circ}$, and $68 \%$ of the area faces east. The weak relationship and high proportion of sites having the most commonly occurring values in the study area, indicates how limited these variables are in predicting chipping station locations.

The distribution of other activity, hunting, lithic workshop, and quarry sites all are related to specific slope values. Distribution of other activity and hunting sites suggests a slight preference for slopes between $6.00^{\circ}$ and $12.00^{\circ}$. Quarry sites differ in that they show a preference for slopes greater than $12.00^{\circ}$. However, the predictive value of these associations are also limited by the large proportion (90\%) of the survey area less than $12.00^{\circ}$. All of the remaining site types demonstrate no relationship between any of the variable combinations. These facts suggest that there is no preference for these locations based on slope, aspect or distance to water.

Taken as a whole these results suggested that slope, aspect and distance to water are not powerful predictors of site locations, for this study area. Survey designs that over emphasize the importance of these variables will fail to explain a large portion of the region's archaeology. The surveys conducted in the early 1970's (Loendorf and Barnett 1972; Fredlund 1972) tended to do just that. As a result, the same permit area had to be surveyed again in the late-1970's (Carmichael and Eklund 1979; Gregg 1977a; 1977c; Fredlund 1977) and yet again in the early 1980's (Greiser and Newell 1981). During each of the subsequent surveys, additional sites and artifact locations were recorded.

Cultural resource surveys that used research designs based on these three variables (ie., all archaeological sites are close to water source, on flat slopes, with southern aspects) have two common characteristics, meandering survey transects, and few recorded sites (Fredlund 1977; Gregg 1977c; Loendorf and Barnett 1972). Individually, these surveys do not provide an adequate representation of the region's archaeology. Evidence of this fact is provided by comparing site density on the west and east sides of the river. The data base compiled for this research contained 460 archaeological sites recorded over an $82 \mathrm{~km}^{2}$ area, an average of 5.6 sites per $\mathrm{km}^{2}$ (See Figure 2). In contrast, surveys on the east side of the Tongue River found a total of 14 archaeological sites over a $21 \mathrm{~km}^{2}$, an average of 0.67 sites per $\mathrm{km}^{2}$ (Fredlund 1977; Gregg 1977c; Loendorf and Barnett 1972).

By analyzing archaeological remains, it is possible to determine whether prehistoric peoples had preferences for specific site locations. Using a simple Geographic Information System, environmental and physiographic values can be measured over large areas. Three variables (ie., slope, aspect and distance to water) archaeologists use to guide cultural resource surveys in southeast Montana were tested using a GIS. All three of these variables are found to be very weak indicators of site locations. Fortunately the GIS is flexible, and will allow a more indepth exploration of site distribution. I am confident that by using this approach the environmental and logistic concerns that influenced archaeological patterning will eventually be identified.

## REFERENCES CITED

Beckes, Michael R.
1976 Preliminary Archaeological Survey of Custer National Forest, Southeastern Montana. Contributions to Anthropology No.6. University of Montana.

Bernard, Russell H.
1988 Research Methods In Cultural Anthropology, Sage Publications.
Borchert, J. R.
1950 The Climate of the Central North American Grasslands. Annals of the Association of American Geographers. 40(1):1-39.

Bureau of Land Management, Miles City District
1978 Technical Examination/Environmental Assesment Record: Draft. Decker North Extention Coal Lease Application. Prepared for the Decker Coal Company by the BLM.

Bureau of Land Management, Miles City District and the Montana Department of State Lands

1986 Final Environmental Impact Statement: Consolidated Coal Company, CX Ranch Mine, Big Horn County, Montana. Prepared for the Consolidated Coal Company by BLM and Department of State Lands.

Carmichael, G. Alan, and Arlene Ekland, et. al.
19791978 Archaeological Investigations in the Spring Creek Mine Area, Big Horn County, Montana. Prepared by the Department of Anthropology, University of Montana.

Curray, Joseph R.
1958 The Analysis of Two-Dimensional Orientation Data. Journal of Geology. (64):117-131.

Deaver, Sherri and Ken Deaver
1988 Prehistoric Cultural Resource Overview of Southeast Montana. Report by Ethnoscience for Bureau of Land Management. Miles City, Montana.

Eastman, Ronald J.
1992a IDRISI Version 4.0. User's Guide. Clark University, Graduate School of Geography. Worcester, Massachusetts.

1992b IDRISI Technichal Reference. Clark University, Graduate School of Geography. Worcester, Massachusetts.

## Foor, Thomas A.

1985 Archaeological Classification in the Northwestern Plains Region. Plains Anthropologist. 30(108):123-135.

Fox, Richard Allan
1977 Archaeology of the Spring Creek Mine Area: Survey and Testing Phases. Prepared by the Department of Anthropology, University of Montana.

## Fredlund, Dale E.

19721971 Archaeological Survey, Decker Coal Company Lands, Big Horn County, Montana. prepared for Decker Coal Company by the University of Montana Statewide Archaeological Survey.

1976 Fort Union Porcellanite and Fussed Glass: Distinctive Lithic Materials of Coal Burn Origin on the Northern Plains. Plains Anthropologist. 21-73(1):207-211.

Fredlund, Lynn B.
1977 Archaeology of East Decker and North Extension. Division of Archaeology and Cultural Resources, Mineral Research Center. Butte, Montana.

Frison, George C.
1978 Prehistoric Hunters of the High Plains. Academic Press, New York.
Gregg, Michael L.
1977a Archaeological Survey at CX Decker. Division of Archaeology and Cultural Resources, Mineral Research Center. Butte, Montana.

1977b Archaeological Survey of the Pearl Area. Division of Archaeology and Cultural Resources, Mineral Research Center. Butte, Montana.

1977c 1976 Holmes-Decker Archaeological Survey. Division of Archaeology and Cultural Resources, Mineral Research Center. Butte, Montana.

1979 Inventory and Assessment of Archaeological Remains on DeckerPearson Creek. Division of Archaeology and Cultural Resources, Mineral Research Center. Butte, Montana.
Greiser, Sally T. and Alan Newell1981 CX Ranch Project. Prepared for Consolidated Coal Company byHistorical research Associates, Missoula, Montana.
Kvamme, Kenneth L.1989 Geographic Information Systems in Regional ArchaeologicalResearch and Data Management. In Archaeological Methods andTheory. edited by M.B. Schiffer. 1(4):139-203.
Kvamme, Kenneth L. and Timothy A. Kohler1988 The Theoretical Basis of Archaeological Predictive Modeling and aConsideration of Appropriate Data-Collection Methods. InQuantifying the Present and Predicting the Past: Theory, Method,and Application of Archaeological Predictive Modeling. edited byJames Judge and Lynne Sebastian, pp. 97-172, U.S. Departmentof the Interior, Bureau of Land Management.
Loendorf, Lawrence L., and Melvin V. Barnett, et. al.1972 The Decker/Birney Archaeological Survey Big Horn County,Montana. Prepared for the Dept. of Interior, Bureau of LandManagement by the Department of Anthropology, University ofNorth Dakota.
Mulloy, William T.1958 A Preliminary Historical Outline for the Northwestern Plains.University of Wyoming Publications in Science. 22(1).
Munson, Gene1990 Archaeological Investigations in the Spring Creek Mine Area.Prepared for the Spring Creek Coal Company by GCM Services,Inc.
Platt, Steve ..... 1992
Trails and Aboriginal Land Use in the Northern Bighorn Mountains. Wyoming. Unpublished Master's Thesis, on file, Department of Anthropology, University of Montana.

Reeves, Brian O. K.
1969 The Southern Alberta paleo-cultural--paleo-environmental sequence. In Post-Pleistocene man and his environment on the Northern Plains, ed by R.G. Forbis, L.B. Davis, O.A. Christiansen, and G. Fedirchuk. Proceedings of the First Annual PaleoEnvironmental Workshop,University of Calgary Anthropological Association.

Shennan, Stephen
1988 Quantifying Archaeology, University Press.
Spatz, Chris, and James O. Johnston
1989 Basic Statistics: Tales of Distributions, Brooks/Cole Publishing.
Taylor, Dee C., and Mark Timmons, et. al.
1984 Data Recovery in The Spring Creek Archaeological District: Mitigation of Sites Within the Mine Area by Data Retreival, Spring Creek Coal Company, Decker, Montana. Completed for Northern Regions Energy Co. by the Department of Anthropology, University of Montana.

United States Geological Survey and Montana Department of State Lands 1979 Final Environmental Statement: Proposed Mining and Reclemation Plan, Spring Creek Mine, Big Horn County, Montana. Prepared fot the Spring Creek Coal Company by USGS and Department of State Lands.

## APPENDIX A

SITE DATA FORM

SITE DATA FORM
SUMMARY OF ARTIFACTS AND FEATURES

| Report ID | Data <br> Base ID | Debitage |  |  |  | Scrapeing Tools | PPT's | Other Lithics |  |  | Features |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1st | 2nd | 3rd | Flks |  |  | Core | Biface | Other Tools | Lithic Source | DriveLines | Rock Cairn | Stone Rings | Picto-Petro- | Hearth |
| 24BH | 1020 |  |  |  | $x$ |  |  |  |  |  |  |  |  |  |  |  |
| 24BH | 1574 |  |  |  | $X$ | X | X |  |  |  |  |  |  |  |  |  |
| 24BH | 1573 |  |  |  | X | X |  |  |  |  |  |  |  |  |  |  |
| 24BH | 1579 |  |  |  | X |  |  | X | X |  |  |  | X |  |  |  |
| 24BH | 1578 |  |  |  | X |  |  | X |  |  |  |  |  |  |  |  |
| 24BH | 1577 |  |  |  | $x$ |  |  |  | X |  |  |  |  |  |  |  |
| 24BH | 1576 |  |  |  | $x$ |  |  |  |  |  |  |  |  |  |  |  |
| 24BH | 1582 |  |  |  | X |  |  |  | X |  |  |  |  | X |  |  |
| 24BH | 1566 |  |  |  | X |  |  |  |  |  |  |  |  |  |  |  |
| 24BH | 1575 |  |  |  | X |  | X |  | X |  |  |  |  |  |  |  |
| 24BH | 1571 |  |  |  | $x$ |  | X |  |  |  |  |  |  |  |  |  |
| 24BH | 1605 |  |  |  | X | X |  | X | X |  |  |  |  |  |  |  |
| 24BH | 1625 |  |  |  | X | X | X |  |  |  |  |  |  |  |  |  |
| 24BH | 1626 |  |  |  | X |  |  |  | X |  | X |  |  |  |  |  |
| 24BH | 1597 |  |  |  | X |  |  |  |  |  |  |  | . |  |  |  |
| 24BH | 1602 |  |  |  |  |  |  |  | $\mathbf{X}$ |  |  |  |  |  |  |  |
| 24BH | 1609 | X |  |  |  |  |  |  | $\mathbf{X}$ |  | X |  |  |  |  |  |

SITE DATA FORM
SUMMARY OF ARTIFACTS AND FEATURES

| $\begin{aligned} & \text { Report } \\ & \text { ID } \end{aligned}$ | $\begin{aligned} & \text { Data } \\ & \text { Base } \\ & \text { ID } \end{aligned}$ | Debitage |  |  |  | $\begin{gathered} \text { Scrape- } \\ \text { ing } \\ \text { Tools } \end{gathered}$ | PPT's | Other Lithics |  |  | Features |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1st | 2nd | 3rd | Flks |  |  | Core | Biface | Other Tools | Lithic Source | Drive Lines | Rock Cairn | Stone Rings | Picto-Petro- | Hearth |
| 24BH | 1610 | X |  |  |  |  |  | X | X |  | X |  |  |  |  |  |
| 24BH | 511 |  |  |  | X |  | $x$ |  | X |  |  |  |  |  |  |  |
| 24BH | 512 |  |  |  | X |  | x |  |  |  |  |  |  |  |  |  |
| 24BH | 513 |  |  |  | X |  |  | X | X |  |  |  |  |  |  |  |
| 24BH | 514 |  |  |  | X |  |  |  | X |  |  |  |  |  |  |  |
| 24BH | 515 |  |  |  | X |  |  |  |  |  |  |  |  |  |  |  |
| 24BH | 516 |  |  |  | X | X |  | X |  |  | X |  |  |  |  |  |
| 24BH | 517 |  |  |  | X |  |  |  |  |  | X |  |  |  |  |  |
| 24BH | 518 |  |  |  | X | X |  |  |  |  | X |  |  |  |  |  |
| 24BH | 519 |  |  |  | X |  |  |  |  |  |  |  |  |  |  |  |
| 24BH | 520 |  |  |  | X | X |  |  |  |  |  |  |  |  |  |  |
| 24BH | 521 |  |  |  | X |  | X |  | X |  |  |  |  |  |  |  |
| 24BH | 522 |  |  |  | X |  |  | X |  |  |  |  |  |  |  |  |
| 24BH | 523 |  |  |  | X |  |  | X |  |  |  |  |  |  |  |  |
| 24BH | 524 |  |  |  | X | x |  |  | x |  |  |  |  | X |  | X |
| 24BH | 525 |  |  |  | X | X |  |  |  |  |  |  |  |  |  |  |
| 24BH | 526 |  |  |  | X | X | X |  |  |  |  |  |  |  |  |  |

SITE DATA FORM
SUMMARY OF ARTIFACTS AND FEATURES

| Report ID | $\begin{aligned} & \text { Data } \\ & \text { Base } \\ & \text { ID } \end{aligned}$ | Debitage |  |  |  | Scrape ing Tools | PPTs | Other Lithics |  |  | Features |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1st | 2nd | 3rd | Flks |  |  | Core | Biface | Other <br> Tools | Lithic Source | DriveLines | Rock Caim | Stone Rings | Picto-Petro- | Hearth |
| 24BH | 527 |  |  | X |  |  |  |  | x |  |  |  |  |  |  |  |
| 248H | 528 |  |  | X | X |  |  |  |  |  |  |  |  |  |  |  |
| 248H | 529 |  |  |  | $x$ |  |  | $x$ |  |  |  |  |  |  |  |  |
| 24BH | 530 |  |  |  | $x$ | X |  | $x$ |  |  |  |  |  |  |  |  |
| 24BH | 531 |  |  |  | X |  |  | X | X |  |  |  |  |  |  |  |
| 24BH | 536 |  |  |  | X | X |  |  |  |  |  |  |  |  |  |  |
| 24BH | 537 |  |  |  | X |  |  |  |  |  |  |  |  |  |  |  |
| 24BH | 538 |  |  |  | x | x |  |  | X |  |  |  |  |  |  |  |
| 24BH | 539 |  |  |  | X |  |  | X |  |  |  |  |  |  |  |  |
| 24BH | 540 |  |  |  | $x$ |  | x |  |  |  |  |  |  |  |  |  |
| 24BH | 541 |  |  | x | x |  | x |  | $x$ |  |  |  |  |  |  |  |
| 24BH | 542 |  |  |  | X |  |  | X | x |  |  |  |  |  |  |  |
| 24BH | 544 |  |  |  | x |  |  |  | X |  |  |  |  |  |  |  |
| 24BH | 545 |  |  |  | x |  |  |  |  |  |  |  |  |  |  |  |
| 24BH | 533 |  |  |  | X |  |  |  |  |  |  |  |  |  |  |  |
| 24BH | 1046 |  |  |  |  | X |  |  | x |  |  |  |  |  | x |  |
| 24BH | 546 |  |  |  | X |  |  |  |  |  |  |  |  |  |  | X |

SITE DATA FORM
SUMMARY OF ARTIFACTS AND FEATURES

| Report | Data | Debitage |  |  |  | Scrape- |  | Other Lithics |  |  | Features |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | ID | 1st | 2nd | 3rd | Fiks | Tools | PPTs | Core | Blface | Other Tools | Lithic Source | Drive Lines | Rock Caim | Stone Rings | Picto-Petro- | Hearth |
| 24BH | 547 |  |  |  | X | X |  |  |  |  |  |  |  |  |  |  |
| 24BH | 548 |  |  |  | X |  |  |  | X |  |  |  |  |  |  |  |
| 24BH | 550 |  |  |  | x |  |  |  | X |  |  |  |  |  |  |  |
| 24BH | 551 |  |  | X |  |  | X | X | X |  |  |  |  |  |  |  |
| 24BH | 553 |  |  |  | X | X |  |  | X |  |  |  |  |  |  |  |
| 24BH | 554 |  |  |  | X | $\mathbf{X}$ |  |  |  |  |  |  |  |  |  |  |
| 24BH | 555 | X | X | X | X | X |  | $x$ |  |  |  |  |  |  |  |  |
| 24BH | 556 |  |  |  | X |  |  |  | $x$ |  |  |  |  |  |  |  |
| 24BH | 557 |  |  |  | X | X |  | $x$ | X |  |  |  |  |  |  |  |
| 24BH | 568 |  |  |  | X |  |  |  | X |  |  |  |  |  |  |  |
| 24BH | 559 |  |  | X |  |  |  |  | X |  |  |  |  |  |  |  |
| 24BH | 560 |  |  |  | X |  |  |  |  |  |  |  |  |  |  |  |
| 24BH | 1051 |  |  |  | X | X |  | X |  |  |  |  |  |  |  |  |
| 24BH | 1052 |  |  |  |  | $X$ | $\mathbf{X}$ |  | $\mathbf{X}$ |  |  |  |  |  |  |  |
| 24BH | 1045 |  |  |  | X | $\mathbf{X}$ | $\mathbf{X}$ |  | X |  |  |  |  |  |  |  |
| 24BH | 1041 |  |  |  | X | X | X | $x$ | $X$ |  |  |  |  |  |  |  |
| 24BH | 562 |  |  |  | X | X | X | X | X |  |  |  |  |  |  |  |

SITE DATA FORM
SUMMARY OF ARTIFACTS AND FEATURES

| Report ID | $\begin{gathered} \text { Data } \\ \text { Base } \\ \text { ID } \end{gathered}$ | Debitage |  |  |  | Scrape ing Tools | PPT's | Other Lithics |  |  | Features |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1st | 2nd | 3rd | Fiks |  |  | Core | Biface | Other Tools | Lithic Source | DriveLines | Rock Caim | Stone Rings | Picto-Petro- | Hearth |
| 24BH | 565 |  |  |  | X |  |  |  |  |  |  |  |  |  |  |  |
| 24BH | 566 |  |  |  | X | X |  | X |  |  | X |  |  |  |  |  |
| 24BH | 567 |  |  |  | X |  |  |  | X |  |  |  |  |  |  |  |
| 24BH | 569 |  |  |  | X |  |  | X |  |  |  |  |  |  |  |  |
| 24BH | 570 |  |  |  | X |  |  | X | X |  | X |  |  |  |  |  |
| 24BH | 571 |  |  |  | X |  |  | X |  |  |  |  |  |  |  |  |
| 24BH | 572 |  |  |  | X |  |  | $x$ |  |  | X |  |  |  |  |  |
| 24BH | 573 |  |  |  | X |  |  | X |  |  | X |  |  |  |  |  |
| 24BH | 574 |  |  |  | X |  |  | X | X |  |  |  |  |  |  |  |
| 24BH | 575 |  |  |  | $x$ |  |  |  |  |  |  |  |  |  |  |  |
| 24BH | 576 |  |  |  | X |  |  | X |  |  | X |  |  | X |  |  |
| 24BH | 577 |  |  |  | X | X | X |  | X |  |  |  |  |  |  |  |
| 24BH | 578 |  |  |  | X |  |  |  | X |  |  |  |  |  |  |  |
| 24BH | 579 |  |  |  | X | x |  | X | x |  |  |  |  |  |  |  |
| 24BH | 580 |  |  |  | $x$ | X | X |  | x |  |  |  |  |  |  |  |
| 24BH | 581 |  |  |  | X | X |  |  | X |  |  |  |  |  |  |  |
| 24BH | 582 |  |  |  | X | X |  | x | X |  |  |  |  |  |  |  |

SITE DATA FORM
SUMMARY OF ARTIFACTS AND FEATURES

| Report ID | $\begin{aligned} & \text { Data } \\ & \text { Base } \\ & \text { ID } \end{aligned}$ | Debitage |  |  |  | $\begin{gathered} \text { Scrapo- } \\ \text { ing } \\ \text { Tools } \end{gathered}$ | PPT's | Other Lithics |  |  | Features |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1st | 2nd | 3 rd | Fiks |  |  | Core | Biface | Other <br> Tools | Lithic Source | Drive Lines | Rock Cairn | Stone Rings | Picto-Petro- | Hearth |
| 24BH | 583 |  |  |  | X |  |  |  |  |  |  |  |  |  |  |  |
| 24BH | 584 |  |  |  | X |  |  | X | X |  |  |  |  |  |  |  |
| 24BH | 585 |  |  |  | $x$ | $x$ |  |  | x | X |  |  |  |  |  |  |
| 24BH | 586 |  |  |  | $x$ | $x$ | X | x | X |  |  |  |  |  |  |  |
| 24BH | 587 |  |  |  | X | X |  | x |  |  |  |  |  |  |  |  |
| 24BH | 590 |  |  |  | X |  | X |  |  |  |  |  |  | X |  |  |
| 248H | 592 |  |  |  | x |  |  |  | $x$ |  |  |  | X |  |  |  |
| 24BH | 589 |  |  |  | x | $x$ |  |  |  |  |  |  |  |  |  |  |
| 24BH | 591 |  |  |  | x | X | $x$ | X | X | X | X |  | X | X |  |  |
| 24BH | 1001 |  |  |  | X | $x$ | X |  |  |  |  |  |  |  |  |  |
| 24BH | 1013 | X |  |  |  | X |  | X |  |  |  |  |  |  |  |  |
| 24BH | 1014 |  |  |  | X |  |  |  |  |  |  |  |  |  |  |  |
| 24BH | 1030 |  |  |  | X | $x$ | $x$ | X | $x$ |  | X |  |  |  |  | X |
| 24BH | 1053 |  |  |  | X | X | x |  | X |  |  |  | X |  |  |  |
| 24BH | 1056 | X |  |  |  |  |  | X |  |  | x |  |  |  |  |  |
| 24BH | 1060 |  |  |  | X |  | X |  |  | X |  |  |  |  | X | X |
| 24BH | 1942 |  |  |  | X | X |  |  |  |  |  |  |  |  | X | X |

SITE DATA FORM SUMMARY OF ARTIFACTS AND FEATURES

| $\begin{aligned} & \text { Report } \\ & \text { ID } \end{aligned}$ | $\begin{aligned} & \text { Data } \\ & \text { Base } \\ & \text { ID } \end{aligned}$ | Debitage |  |  |  | Scrape ing Tools | PPT's | Other Lithics |  |  | Features |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1st | 2nd | 3rd | Fiks |  |  | Core | Biface | Other Tools | Lithic Source | DriveLines | Rock Cairn | Stone Rings | Picto-Petro- | Hearth |
| 24BH | 1943 |  |  |  | x |  | x | x |  |  | x |  |  |  |  |  |
| 248H | 1944 | x |  |  | x |  |  | X |  |  | X |  |  |  |  |  |
| 248H | 1945 | X |  |  |  | X |  |  | X |  |  |  |  |  |  |  |
| 24BH | 1946 | x |  |  |  |  |  | $x$ |  |  | x |  |  |  |  |  |
| 24BH | 1947 |  |  |  | $x$ |  |  | x | X |  |  |  |  |  |  |  |
| 24BH | 1948 |  |  |  | $x$ | $x$ |  | X |  |  |  |  |  |  |  |  |
| 248H | 1949 |  |  |  | X | x |  |  |  |  |  |  |  |  |  |  |
| 248H | 1950 |  |  |  | x | $x$ |  |  |  |  |  |  |  |  | X |  |
| 24BH | 1951 |  |  |  | X | X |  |  | x |  |  |  |  |  |  |  |
| 24BH | 1952 |  |  |  | $x$ |  |  |  | X |  |  |  |  |  |  |  |
| 24BH | 1953 |  |  |  | X | X |  |  |  |  |  |  |  |  |  |  |
| 248H | 1954 |  |  |  | x | X | X |  | X |  |  |  |  |  |  |  |
| 248H | 1955 |  |  |  | x | X |  |  |  |  |  |  |  |  |  | X |
| 24BH | 1956 |  |  |  | x |  | X |  | x |  |  |  |  |  |  |  |
| 24BH | 1957 | X | X |  | x |  |  |  | X |  |  |  |  |  |  |  |
| 248H | 1958 |  |  |  | x | X |  |  |  |  |  |  |  |  |  |  |
| 248H | 1959 |  |  |  | X | X |  |  | X |  |  |  | X | X |  |  |

SITE DATA FORM SUMMARY OF ARTIFACTS AND FEATURES

| Report ID | $\begin{aligned} & \text { Data } \\ & \text { Base } \\ & \text { ID } \end{aligned}$ | Debitage |  |  |  | Scrape ing Tools | PPT's | Other Lithics |  |  | Features |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1st | 2nd | 3rd | Fiks |  |  | Core | Biface | Other <br> Tools | Lithic Source | DriveLines | Rock Cairn | Stone Rings | Picto-Petro- | Hearth |
| 24BH | 1960 | X |  |  |  |  |  |  |  |  | X |  |  |  |  |  |
| 24BH | 1962 |  |  |  | X |  | $x$ |  | x |  |  |  |  | X |  |  |
| 24BH | 1963 |  |  |  | X |  | X |  |  |  |  |  |  |  |  | X |
| 24BH | 1964 |  |  |  | X |  |  |  |  |  |  |  |  | X |  | X |
| 24BH | 1966 |  |  |  |  | x |  |  | X |  |  |  |  |  |  |  |
| 24BH | 1967 |  |  |  | X | $x$ |  | $x$ |  |  |  |  |  |  |  |  |
| 24BH | 1968 |  |  |  | X | X |  | X | $x$ |  |  |  |  |  |  |  |
| 24BH | 1969 |  |  |  | X | X |  |  | X |  |  |  |  |  |  |  |
| 24BH | 1970 | X |  |  | X | X |  | X |  |  |  |  |  |  |  |  |
| 24BH | 1971 |  |  |  | X | X |  |  | X |  |  |  |  |  |  |  |
| 24BH | 1973 |  |  |  | x |  |  |  |  |  |  |  |  |  |  |  |
| 24BH | 1974 |  |  |  | X |  |  |  |  |  |  |  |  |  |  |  |
| 24BH | 1975 |  |  |  |  | x | X |  | X |  |  |  |  |  |  |  |
| CX | 1 |  |  |  |  | X |  |  |  |  |  |  |  |  |  |  |
| CX | 3 |  |  |  | X |  |  |  |  |  |  |  |  |  |  |  |
| cx | 4 |  |  |  |  | x |  |  |  |  |  |  |  |  |  |  |
| cx | 5 |  |  |  |  | x |  |  |  |  |  |  |  |  |  |  |

SITE DATA FORM
SUMMARY OF ARTIFACTS AND FEATURES

| Report ID | $\begin{aligned} & \text { Data } \\ & \text { Base } \\ & \text { ID } \end{aligned}$ | Debitage |  |  |  | Screpeing Tools | PPT's | Other Lithics |  |  | Features |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1st | 2nd | 3rd | Fiks |  |  | Core | Biface | Other Tools | Lithic Source | Drive Lines | Rock Cairn | Stone Rings | Picto Petro- | Hearth |
| cx | 6 |  |  |  |  | $x$ | X |  |  |  |  |  |  |  |  |  |
| cx | 7 |  |  |  |  | X |  |  |  |  |  |  |  |  |  |  |
| cx | 14 |  |  |  |  |  | X |  |  |  |  |  |  |  |  |  |
| cx | 15 |  |  |  |  | X |  |  |  |  |  |  |  |  |  |  |
| cx | 16 |  |  |  |  |  |  |  | X |  |  |  |  |  |  |  |
| cx | 17 |  |  |  |  | X |  |  |  |  |  |  |  |  |  |  |
| cx | 18 |  |  |  | X |  |  |  |  |  |  |  |  |  |  |  |
| cx | 19 |  |  |  | $x$ |  |  |  |  |  |  |  |  |  |  |  |
| cx | 20 |  |  |  | X |  |  |  |  |  |  |  |  |  |  |  |
| cx | 21 |  |  |  |  |  |  |  |  | X |  |  |  |  |  |  |
| cx | 22 |  |  |  |  |  |  | X |  |  |  |  |  |  |  |  |
| cx | 23 |  |  |  |  |  | x |  |  |  |  |  |  |  |  |  |
| CX | 24 |  |  |  | X |  |  |  |  |  |  |  |  |  |  |  |
| cx | 25 |  |  |  | X |  |  | X | X |  |  |  |  |  |  |  |
| cx | 26 |  |  |  | X |  |  |  |  |  |  |  |  |  |  |  |
| CX | 27 |  |  |  |  | X |  | X |  |  |  |  |  |  |  |  |
| cx | 28 |  |  |  |  |  |  | X |  |  |  |  |  |  |  |  |

SITE DATA FORM
SUMMARY OF ARTIFACTS AND FEATURES

| Report | $\begin{aligned} & \text { Data } \\ & \text { Base } \\ & \text { ID } \end{aligned}$ | Debitage |  |  |  | $\begin{gathered} \text { Scrape } \\ \text { ing } \\ \text { Tools } \end{gathered}$ | PPTs | Other Lithics |  |  | Features |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1st | 2nd | 3 3nd | Fiks |  |  | Core | Biface | Other Tools | Lithic Source | DriveLines | Rock Cairn | Stone Rings | Picto-Petro- | Hearth |
| cx | 30 |  |  |  | x |  |  |  |  |  |  |  |  |  |  |  |
| cx | 31 |  |  |  |  |  | x |  |  |  |  |  |  |  |  |  |
| cx | 33 |  |  |  | x |  |  |  |  |  |  |  |  |  |  |  |
| cx | 34 |  |  |  | x |  |  |  |  |  |  |  |  |  |  |  |
| cx | 35 |  |  |  |  | x |  |  |  |  |  |  |  |  |  |  |
| cx | 36 |  |  |  | x |  |  |  |  |  |  |  |  |  |  |  |
| cx | 37 |  |  |  |  | x |  |  |  |  |  |  |  |  |  |  |
| cx | 38 |  |  |  | x |  |  |  |  |  |  |  |  |  |  |  |
| cx | 39 |  |  |  | x |  |  |  |  |  |  |  |  |  |  |  |
| cx | 41 |  |  |  |  | x |  |  |  |  |  |  |  |  |  |  |
| cx | 42 |  |  |  | x |  |  |  |  |  |  |  |  |  |  |  |
| cx | 43 |  |  |  | x |  |  |  |  |  |  |  |  |  |  |  |
| cx | 45 |  |  |  | x | x |  |  |  |  |  |  |  |  |  |  |
| cx | 46 |  |  |  | x |  |  |  |  |  |  |  |  |  |  |  |
| cx | 47 |  |  |  | x |  |  |  |  |  |  |  |  |  |  |  |
| cx | 48 |  |  |  | x |  |  | x |  |  |  |  |  |  |  |  |
| cx | 49 |  |  |  |  |  |  | X |  |  |  |  |  |  |  |  |

SITE DATA FORM SUMMARY OF ARTIFACTS AND FEATURES

| Report ID | $\begin{aligned} & \text { Data } \\ & \text { Base } \\ & \text { ID } \end{aligned}$ | Debitage |  |  |  | Scrape ing Tools | PPT's | Other Lithics |  |  | Features |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1st | 2nd | 3rd | Fiks |  |  | Core | Biface | Other Tools | Lithic Source | Drive Lines | Rock Cairn | Stone Rings | Picto-Petro- | Hearth |
| cx | 50 |  |  |  |  | X | X |  |  | X |  |  |  |  |  |  |
| cx | 51 |  |  |  | X |  |  |  |  |  |  |  |  |  |  |  |
| cx | 52 |  |  |  | X |  |  | X |  |  |  |  |  |  |  |  |
| CX | 53 |  |  |  | X |  |  |  |  |  |  |  |  |  |  |  |
| CX | 54 |  |  |  | X |  |  |  |  |  |  |  |  |  |  |  |
| CX | 55 |  |  |  | X | X |  |  | X |  |  |  |  |  |  |  |
| CX | 56 |  |  |  | X |  |  |  |  |  |  |  |  |  |  |  |
| CX | 57 |  |  |  | X |  |  |  |  |  |  |  |  |  |  |  |
| CX | 58 |  |  |  | X | X |  |  |  |  |  |  |  |  |  |  |
| cx | 59 |  |  |  | X |  |  |  |  |  |  |  |  |  |  |  |
| CX | 60 |  |  |  | X |  |  |  |  |  |  |  |  |  |  |  |
| CX | 62 |  |  |  |  |  |  |  | X |  |  |  |  |  |  |  |
| CX | 63 |  |  |  | X | X |  |  |  |  |  |  |  |  |  |  |
| CX | 64 |  |  |  | X |  |  |  |  |  |  |  |  |  |  |  |
| cx | 65 |  |  |  | X | X |  |  |  |  |  |  |  |  |  |  |
| cx | 66 |  |  |  |  |  |  | X |  |  |  |  |  |  |  |  |
| CX | 68 |  |  |  | X |  |  |  |  |  |  |  |  |  |  |  |

SITE DATA FORM
SUMMARY OF ARTIFACTS AND FEATURES

| $\begin{gathered} \text { Report } \\ \text { ID } \end{gathered}$ | $\begin{aligned} & \text { Data } \\ & \text { Base } \\ & \text { ID } \end{aligned}$ | Debitage |  |  |  | $\begin{gathered} \text { Scrape } \\ \text { ing } \\ \text { Tods } \end{gathered}$ | PPT's | Other Lithics |  |  | Features |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $15 t$ | 2nd | 3 rd | Fiks |  |  | Core | Biface | Other Tools | Lithic Source | Drive Lines | Rock Cairn | Stone Rings | Picto-Petro- | Hearth |
| cx | 69 |  |  |  | x |  |  |  |  |  |  |  |  |  |  |  |
| cx | 70 |  |  |  | x |  |  |  |  |  |  |  |  |  |  |  |
| cx | 71 |  |  |  |  | x |  |  |  |  |  |  |  |  |  |  |
| cx | 72 |  |  |  | x |  |  |  |  |  |  |  |  |  |  |  |
| cx | 73 |  |  |  | x |  |  |  |  |  |  |  |  |  |  |  |
| cx | 74 |  |  |  |  | x |  |  |  |  |  |  |  |  |  |  |
| cx | 75 |  |  |  |  | x |  |  |  |  |  |  |  |  |  |  |
| cx | 76 |  |  |  | x |  |  |  | x |  |  |  |  |  |  |  |
| cx | 77 |  |  |  |  |  |  |  | x |  |  |  |  |  |  |  |
| cx | 78 |  |  |  | x |  |  |  |  |  |  |  |  |  |  |  |
| cx | 79 |  |  |  |  |  |  | x |  |  |  |  |  |  |  |  |
| cx | 80 |  |  |  | x | x |  |  |  |  |  |  |  |  |  |  |
| cx | 81 |  |  |  |  |  |  | x |  |  |  |  |  |  |  |  |
| cx | 82 |  |  |  | x |  |  |  |  |  |  |  |  |  |  |  |
| cx | 83 |  |  |  |  |  | x |  |  |  |  |  |  |  |  |  |
| cx | 84 |  |  |  | x | x |  |  | x |  |  |  |  |  |  |  |
| cx | 85 |  |  |  |  | x |  | x |  |  |  |  |  |  |  |  |


| Report ID | $\begin{aligned} & \text { Data } \\ & \text { Base } \\ & \text { ID } \end{aligned}$ | Debitage |  |  |  | $\begin{gathered} \text { Scrape- } \\ \text { ing } \\ \text { Tools } \end{gathered}$ | PPTs | Other Lithics |  |  | Features |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1st | 2nd | 3rd | Flks |  |  | Core | Biface | Other Tools | Lithic Source | DriveLines | Rock Caim | Stone Rings | Picto-Petro- | Hearth |
| CX | 86 |  |  |  | X |  |  | X |  |  |  |  |  |  |  |  |
| cx | 88 |  |  |  |  |  |  | X |  |  |  |  |  |  |  |  |
| CX | 89 |  |  |  |  | X |  |  |  |  |  |  |  |  |  |  |
| CX | 90 |  |  |  |  |  |  |  | X |  |  |  |  |  |  |  |
| CX | 91 |  |  |  | X |  |  |  |  |  |  |  |  |  |  |  |
| CX | 92 |  |  |  | X | X |  |  |  |  |  |  |  |  |  |  |
| 24BH | 1003 | X | X | X |  | X | X | X |  | X |  |  |  | X |  |  |
| 24BH | 1641 |  | X |  | X | X | X |  | X |  |  |  |  |  |  | X |
| 24BH | 2004 |  |  |  | X |  | X |  | X |  |  |  |  |  |  | X |
| 24BH | 2005 |  |  |  | X | X | X |  | X |  |  |  |  |  |  |  |
| 24BH | 2016 |  |  |  | X | X |  | X | X |  |  |  |  | X |  |  |
| 24BH | 2007 |  | X |  | X |  | X | X | X |  |  |  |  |  |  |  |
| 24BH | 2012 |  |  |  | X |  |  |  |  |  |  |  |  | X |  | X |
| 24BH | 2013 |  |  |  | X | X |  |  |  |  |  |  |  | X |  |  |
| 24BH | 2025 |  |  |  | X | X |  |  | X |  |  |  |  |  |  |  |
| 24BH | 2014 |  |  |  | X |  |  |  |  |  | X |  |  |  |  |  |
| 24BH | 2006 |  |  |  | X | X | X | x | X |  |  |  |  |  |  | x |

SITE DATA FORM SUMMARY OF ARTIFACTS AND FEATURES

| $\begin{aligned} & \text { Report } \\ & \text { ID } \end{aligned}$ | $\begin{aligned} & \text { Data } \\ & \text { Base } \\ & \text { ID } \end{aligned}$ | Debitrge |  |  |  | $\begin{gathered} \text { Scrape } \\ \text { ing } \\ \text { Tools } \end{gathered}$ | PPT's | Other Lithics |  |  | Feetures |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1st | 2nd | 3rd | Fiks |  |  | Core | Bfface | Other Tools | Lithic Source | Drive Lines | Rock Cairn | Stone Rings | Picto-Petro- | Hearth |
| 248H | 2008 |  |  |  | x |  |  |  | x |  |  | x |  |  |  |  |
| PC | 1 |  |  |  | x |  |  |  |  |  |  |  |  |  |  |  |
| PC | 2 |  |  |  |  | x |  |  |  |  |  |  |  |  |  |  |
| PC | 3 |  |  |  | x |  |  |  |  |  |  |  |  |  |  |  |
| PC | 4 |  |  |  | X |  |  |  |  |  |  |  |  |  |  |  |
| PC | 5 |  |  |  |  |  |  |  | x |  |  |  |  |  |  |  |
| PC | 7 |  |  |  | X |  |  |  |  |  |  |  |  |  |  |  |
| PC | 8 |  |  |  |  |  | x |  |  |  |  |  |  |  |  |  |
| PC | 9 |  |  |  | x |  |  |  |  |  |  |  |  |  |  |  |
| PC | 10 |  |  |  | X |  |  |  | x |  |  |  |  |  |  |  |
| PC | 11 |  |  |  |  |  | x |  |  |  |  |  |  |  |  |  |
| PC | 20 |  |  |  | x |  |  |  |  |  |  |  |  |  |  |  |
| PC | 21 |  |  |  | X |  |  |  |  |  |  |  |  |  |  |  |
| PC | 22 |  |  |  | x |  |  |  |  |  |  |  |  |  |  |  |
| PC | 23 |  |  |  | x |  |  |  | x |  |  |  |  |  |  |  |
| PC | 24 |  |  |  | x |  |  |  |  |  |  |  | x |  |  |  |
| PC | 100 |  |  |  | x |  |  |  | x |  |  |  |  |  |  |  |

SITE DATA FORM SUMMARY OF ARTIFACTS AND FEATURES

| Report | Data | Debitage |  |  |  | Screpe- |  | Other Lithics |  |  | Features |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $10$ | 1st | 2nd | 3rd | Flks | Tools | Pr | Core | Biface | Other Tools | Lithic Source | DriveLines | Rock Caim | Stone Rings | Picto-Petro- | Hearth |
| PC | 102 |  |  |  | X | X |  |  | X |  |  |  |  |  |  |  |
| PC | 103 |  |  |  | X |  |  |  |  |  |  |  |  |  |  |  |
| PC | 106 |  |  |  | X | $X$ | X |  |  |  |  |  |  |  |  |  |
| PC | 107 |  |  |  | X | X |  | X |  |  |  |  |  |  |  |  |
| PC | 108 |  |  |  |  |  |  | X |  |  |  |  |  |  |  |  |
| PC | 110 |  |  |  | X |  |  |  |  |  |  |  |  |  |  |  |
| PC | 111 |  |  |  | X |  |  |  |  |  |  |  |  |  |  |  |
| PC | 112 |  |  |  | $\mathbf{X}$ |  |  |  |  |  |  |  |  |  |  |  |
| PC | 113 |  |  |  | $\mathbf{X}$ | X |  |  |  |  |  |  |  |  |  |  |
| PC | 114 |  |  |  | X |  |  | X | $X$ |  |  |  |  |  |  |  |
| PC | 115 |  |  |  |  | X |  |  |  |  |  |  |  |  |  |  |
| PC | 116 |  |  |  | X |  |  |  |  |  |  |  |  |  |  |  |
| PC | 118 |  |  |  | $X$ |  |  |  |  |  |  |  |  |  |  |  |
| PC | 120 |  |  |  | $\mathbf{X}$ | X |  |  |  |  |  |  |  |  |  |  |
| PC | 121 |  |  |  | $\mathbf{X}$ |  |  |  |  |  |  |  |  |  |  |  |
| PC | 122 |  |  |  | $\mathbf{X}$ |  |  |  |  |  |  |  |  |  |  |  |
| PC | 123 |  |  |  | X |  |  |  |  |  |  |  |  |  |  |  |

SITE DATA FORM
SUMMARY OF ARTIFACTS AND FEATURES

| $\begin{aligned} & \text { Report } \\ & \text { ID } \end{aligned}$ | $\begin{aligned} & \text { Data } \\ & \text { Base } \\ & \text { ID } \end{aligned}$ | Debitage |  |  |  | $\begin{gathered} \text { Screpe- } \\ \text { ing } \\ \text { Tools } \end{gathered}$ | PPT's | Other Lithics |  |  | Features |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1st | 2nd | 3rd | Fiks |  |  | Core | Biface | Other Tools | Lithic Source | Drive Lines | Rock Calm | Stone Rings | Picto- Petro- | Hearth |
| PC | 201 |  |  |  | x |  |  |  |  |  |  |  |  |  |  |  |
| PC | 202 |  |  |  | x |  |  |  |  |  |  |  |  |  |  |  |
| PC | 203 |  |  |  |  |  |  |  | x |  |  |  |  |  |  |  |
| PC | 204 |  |  |  | x |  |  |  |  | x |  |  |  |  |  |  |
| PC | 209 |  |  |  | x |  |  |  |  |  |  |  |  |  |  |  |
| PC | 211 |  |  |  | x |  |  |  | x |  |  |  |  |  |  |  |
| PC | 212 |  |  |  | x |  |  |  |  |  |  |  |  |  |  |  |
| PC | 213 |  |  |  | x |  |  |  |  |  |  |  |  |  |  |  |
| PC | 216 |  |  |  | x |  |  |  |  |  |  |  |  |  |  |  |
| PC | 218 |  |  |  | x |  | x |  |  |  |  |  |  |  |  |  |
| PC | 223 |  |  |  | x |  |  |  | x |  |  |  |  |  |  |  |
| PC | 300 |  |  |  |  |  |  | x |  |  |  |  |  |  |  |  |
| PC | 301 |  |  |  | x |  |  |  |  |  |  |  |  |  |  |  |
| PC | 302 |  |  |  | x |  |  |  |  |  |  |  |  |  |  |  |
| PC | 303 |  |  |  |  | x |  |  |  |  |  |  |  |  |  |  |
| PC | 304 |  |  |  | x |  |  |  | x |  |  |  |  |  |  |  |
| PC | 305 |  |  |  | x |  |  |  |  |  |  |  |  |  |  |  |

SITE DATA FORM
SUMMARY OF ARTIFACTS AND FEATURES

| $\begin{aligned} & \text { Report } \\ & \text { ID } \end{aligned}$ | $\begin{gathered} \text { Data } \\ \text { Base } \\ \text { ID } \end{gathered}$ | Debitage |  |  |  | $\begin{gathered} \text { Scrapo- } \\ \text { ing } \\ \text { Tools } \end{gathered}$ | PPTs | Other Lithics |  |  | Features |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1st | 2nd | 3nd | Fiks |  |  | Core | Biface | Other Tools | Lithic Source | DriveLines | Rock Cairn | Stone Rings | PictoPetro | Hearth |
| PC | 307 |  |  |  | x |  | x | x |  |  |  |  |  |  |  |  |
| PC | 308 |  |  |  | x | x |  |  |  |  |  |  |  |  |  |  |
| PC | 309 |  |  |  | x |  |  |  |  |  |  |  |  |  |  |  |
| PC | 310 |  |  |  | x |  |  |  |  |  |  |  |  |  |  |  |
| PC | 311 |  |  |  | x | $x$ |  |  |  |  |  |  |  |  |  |  |
| PC | 313 |  |  |  |  | $x$ |  |  |  |  |  |  |  |  |  |  |
| PC | 314 |  |  |  | x | x | x | x | x |  |  |  |  |  |  |  |
| PC | 315 |  |  |  | x |  |  |  |  |  |  |  |  |  |  |  |
| PC | 316 |  |  |  |  | $x$ | x |  |  |  |  |  |  |  |  |  |
| PC | 317 |  |  |  | x | x |  |  |  |  |  |  |  |  |  |  |
| PC | 318 |  |  |  | x |  |  |  |  |  |  |  |  |  |  |  |
| PC | 319 |  |  |  | x |  |  |  |  |  |  |  |  |  |  |  |
| 248H | 1510 |  |  |  | x |  |  |  | x |  |  |  |  | x |  |  |
| 248H | 1511 |  |  |  | x | $x$ |  |  | x |  |  |  |  |  |  |  |
| 248H | 1512 |  |  |  | x | x |  | x | x |  |  |  |  |  |  |  |
| 248 H | 1513 |  |  |  | x |  |  |  |  |  |  |  |  |  |  |  |
| 248H | 1514 |  |  |  | x | x |  |  |  |  |  |  |  |  |  |  |

SITE DATA FORM
SUMMARY OF ARTIFACTS AND FEATURES

| Report ID | Data <br> Base <br> ID | Debitage |  |  |  | $\begin{gathered} \text { Scrape } \\ \text { ing } \\ \text { Tools } \end{gathered}$ | PPT's | Other Lithics |  |  | Features |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1st | 2nd | 3rd | Fiks |  |  | Core | Biface | Other Tools | Lithic Source | Drive Lines | Rock Cairn | Stone Rings | Picto-Petro- | Hearth |
| 24BH | 1515 | X |  |  |  | X |  |  | X |  |  |  |  |  |  |  |
| 24BH | 1516 |  |  |  |  | X |  |  |  |  |  |  |  |  |  |  |
| 24BH | 1517 |  |  |  | X | $x$ | x |  | X |  |  |  |  |  |  |  |
| 24BH | 1518 |  |  |  | X | X | x | X |  |  |  |  |  |  |  |  |
| 24BH | 1519 |  |  |  | X | X | X |  | X |  |  |  | X |  |  |  |
| 24BH | 1520 |  |  |  | $x$ |  |  |  |  |  |  |  | X |  |  |  |
| 24BH | 1521 |  |  |  | X | X |  |  |  |  |  |  |  |  |  |  |
| 248H | 1523 |  |  |  | $x$ | $x$ |  | X |  |  | $x$ |  |  |  |  |  |
| 24BH | 1017 |  |  |  | X | X |  |  |  |  | X |  |  |  |  |  |
| 248H | 1524 |  |  |  | X | X |  | X | X |  |  |  |  |  |  |  |
| 24BH | 1976 |  |  |  |  |  |  |  |  |  |  | x |  |  |  |  |
| 24BH | 1977 |  |  |  | X | x |  |  | X |  |  |  |  |  |  |  |
| 24BH | 1978 |  |  |  | X | x |  |  | X |  |  |  |  |  |  |  |
| 248H | 1980 |  |  |  | X | X |  |  |  |  |  |  |  |  |  |  |
| D | 1 |  |  |  |  |  | $x$ |  |  |  |  |  |  |  |  |  |
| D | 2 |  |  |  |  |  | x |  |  |  |  |  |  |  |  |  |
| D | 3 |  |  |  |  |  |  |  | X |  |  |  |  |  |  |  |

## SITE DATA FORM

SUMMARY OF ARTIFACTS AND FEATURES

| $\begin{aligned} & \text { Report } \\ & \text { ID } \end{aligned}$ | $\begin{aligned} & \text { Data } \\ & \text { Base } \\ & \text { ID } \end{aligned}$ | Debitage |  |  |  | $\begin{gathered} \text { Scrape } \\ \text { ing } \\ \text { Toods } \end{gathered}$ | PPT's | Other Lithics |  |  | Features |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1st | 2nd | 3 rd | Fiks |  |  | core | Bface | Other Tools | Lithic Source | DriveLines | Rock Calm | Stone Rings | Picto Petro | Hearth |
| D | 4 |  |  |  |  |  | x |  |  |  |  |  |  |  |  |  |
| D | 5 |  |  |  |  |  | x |  |  |  |  |  |  |  |  |  |
| D | 6 |  |  |  |  |  | x |  |  |  |  |  |  |  |  |  |
| D | 7 |  |  |  | x |  |  |  |  |  |  |  |  |  |  |  |
| D | 8 |  |  |  |  | x |  |  |  |  |  |  |  |  |  |  |
| D | 9 |  |  |  |  |  | x |  |  |  |  |  |  |  |  |  |
| D | 10 |  |  |  |  |  |  |  | x |  |  |  |  |  |  |  |
| D | 11 |  |  |  |  |  |  | x |  |  |  |  |  |  |  |  |
| 0 | 12 |  |  |  | x |  |  |  |  |  |  |  |  |  |  |  |
| D | 13 |  |  |  |  |  |  | x |  |  |  |  |  |  |  |  |
| D | 14 |  |  |  |  | x |  |  |  |  |  |  |  |  |  |  |
| D | 18 |  |  |  | x |  |  |  |  |  |  |  |  |  |  |  |
| D | 19 |  |  |  | x |  |  |  |  |  |  |  |  |  |  |  |
| D | 21 |  |  |  | x |  |  |  |  |  |  |  |  |  |  |  |
| D | 22 |  |  |  | x |  |  |  |  |  |  |  |  |  |  |  |
| 248H | 1068 |  |  |  | x | x | x |  | x |  |  |  |  |  |  |  |
| 248H | 1039 |  |  |  | x | x |  | x | X | x |  |  |  |  |  |  |

SITE DATA FORM
SUMMARY OF ARTIFACTS AND FEATURES

| $\begin{aligned} & \text { Report } \end{aligned}$ | $\begin{gathered} \text { Data } \\ \text { Base } \\ \text { ID } \end{gathered}$ | Debitage |  |  |  | $\begin{gathered} \text { Scrape } \\ \text { ing } \\ \text { Tools } \end{gathered}$ | PPTs | Other Lithics |  |  | Features |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1st | 2nd | 3 rd | Fiks |  |  | Core | Biface | Other Tools | Lithic Source | DriveLines | Rock Caim | Stone Rings | Picto-Petro- | Hearth |
| 248H | 1087 |  |  |  | x | x | $x$ | x | $x$ |  |  |  |  |  |  |  |
| 248H | 2530 | $x$ | x |  |  | $x$ | x |  | $x$ |  |  |  |  |  |  |  |
| 248H | 2533 | x |  |  | x | x |  |  | x |  |  |  |  |  |  |  |
| 24BH | 2531 |  |  |  | x |  |  | x | x |  |  |  |  |  |  |  |
| 248H | 2534 |  |  |  | x |  |  |  | x |  | x |  |  |  |  |  |
| 248H | 2527 |  |  |  | x |  |  | x |  |  |  |  |  |  |  |  |
| 248H | 2526 |  |  |  | x |  |  | x | x |  | x |  |  |  |  |  |
| 248H | 2525 | x |  | $x$ |  |  |  |  |  |  | x |  |  |  |  |  |
| 248H | 1619 | x | x | x |  |  | $x$ |  |  |  |  |  |  |  |  |  |
| 248H | 2523 | x | x |  |  |  | x |  | x | x |  |  |  |  |  | x |
| 248H | 2532 | x |  |  | x |  |  | x |  |  | x |  |  |  |  |  |
| 248H | 2521 |  |  |  | $x$ | x |  |  | x |  |  |  |  |  |  | x |
| 248H | 2516 | x | x |  | $x$ |  |  |  | x |  |  |  |  |  |  |  |
| 24BH | 2535 |  |  |  | $x$ |  |  | x | x | x | x |  |  |  |  |  |
| 248H | 2518 |  |  |  | $x$ |  |  |  |  |  |  |  |  |  |  |  |
| 248H | 1048 |  |  |  | $x$ |  |  |  | x |  |  |  |  |  |  |  |
| 24BH | 1049 |  |  |  | x |  |  |  |  |  |  |  |  |  |  |  |

SITE DATA FORM
SUMMARY OF ARTIFACTS AND FEATURES

| Report ID | $\begin{aligned} & \text { Data } \\ & \text { Base } \\ & \text { ID } \end{aligned}$ | Debitage |  |  |  | Scrape ing Tools | PPT's | Other Lithics |  |  | Features |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1st | 2nd | 3 Cd | Fiks |  |  | Core | Biface | Other Toots | Lithic Source | DriveLines | Rock Cairn | Stone Rings | Picto-Petro- | Hearth |
| 248H | 2517 |  |  |  | $x$ |  |  |  | X | X |  |  |  |  |  |  |
| 248H | 2519 |  |  |  | x | X |  |  | x |  |  |  |  |  |  | x |
| 24BH | 2520 |  |  |  | X |  |  |  | X |  |  |  |  |  |  |  |
| L | 1 |  |  |  | X |  |  |  |  |  |  |  |  |  |  |  |
| L | 2 |  |  |  | x |  |  |  |  |  | x |  |  |  |  |  |
| L | 3 |  |  |  | X |  |  |  |  |  | X |  |  |  |  |  |
| L | 4 |  |  |  | x |  |  |  |  |  | X |  |  |  |  |  |
| L | 5 |  |  |  | x |  |  |  |  |  |  |  |  |  |  |  |
| L | 7 |  |  |  | x |  |  |  |  |  |  |  |  |  |  |  |
| L | 8 |  |  |  | x |  |  |  |  |  |  |  |  |  |  |  |
| L | 9 |  |  |  |  |  | X |  |  |  |  |  |  |  |  |  |
| L | 10 |  |  |  |  |  |  |  | x |  |  |  |  |  |  |  |
| L | 11 |  |  |  |  |  |  |  | x |  |  |  |  |  |  |  |
| L | 12 |  |  |  |  |  | X |  |  |  |  |  |  |  |  |  |
| L | 14 |  |  |  | X |  |  |  |  |  |  |  |  |  |  |  |
| L | 15 |  |  |  | X |  |  |  |  |  |  |  |  |  |  |  |
| L | 16 |  |  |  | X |  |  |  |  |  | x |  |  |  |  |  |

SITE DATA FORM SUMMARY OF ARTIFACTS AND FEATURES

| Report ID | $\begin{aligned} & \text { Data } \\ & \text { Base } \\ & \text { ID } \end{aligned}$ | Debitage |  |  |  | $\begin{gathered} \text { Screpe- } \\ \text { ing } \\ \text { Tools } \end{gathered}$ | PPTs | Other Lithics |  |  | Features |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1st | 2nd | 3rd | Fiks |  |  | Core | Biface | Other Tools | Lithic Source | Drive Lines | Rock Calm | Stone Rings | Picto-Petro- | Hearth |
| L | 17 |  |  |  | x |  |  |  |  |  |  |  |  |  |  |  |
| $L$ | 18 |  |  |  | X |  |  |  |  |  | X |  |  |  |  |  |
| L | 19 |  |  |  | X |  |  |  |  |  |  |  |  |  |  |  |
| L | 20 |  |  |  |  |  | X |  |  |  |  |  |  |  |  |  |
| L | 21 |  |  |  | X |  |  |  |  |  | X |  |  |  |  |  |
| L. | 22 |  |  |  | X |  |  |  |  |  |  |  |  |  |  |  |
| 24BH | 2524 |  |  |  | X |  | x |  | X |  |  |  |  |  |  |  |
| 24BH | 2244 | X | X | X | X |  |  | X | X |  |  |  |  |  |  |  |
| 24BH | 2236 | X | X | X | X | X | x |  | X |  |  |  |  |  |  |  |
| 24BH | 2237 | X | X |  | X |  |  |  | x | $x$ |  |  |  |  |  |  |
| 24BH | 2238 |  | X |  | X |  |  |  | X | x |  |  |  |  |  |  |
| 24BH | 2239 | X | X |  | X | X | X |  | X |  |  |  |  |  |  |  |
| 24BH | 2240 | X | X |  | X |  |  | x |  |  |  |  |  |  |  | X |
| 24BH | 2241 | X |  |  |  |  |  | X |  | X |  |  |  |  |  |  |
| 24BH | 2242 | X |  |  |  |  |  | x |  | X |  |  |  |  |  |  |
| 248H | 2243 |  |  |  | X |  | x | X |  |  |  |  |  |  |  |  |
| 24BH | 2245 | X |  |  |  |  |  |  | X |  |  |  |  |  |  |  |

SITE DATA FORM SUMMARY OF ARTIFACTS AND FEATURES

| Report | Data | Debitage |  |  |  | Scrape- |  | Other Lithics |  |  | Features |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & \text { Base } \\ & \text { In } \end{aligned}$ | 1st | 2nd | 3rd | Flks | Tools | PPT | Core | Biface | Other Tools | Lithic Source | Drive Lines | Rock Cairn | Stone <br> Rings | Picto-Petro- | Hearth |
| 24BH | 2246 | X | X | X |  |  |  |  |  |  |  |  |  |  |  |  |
| 24BH | 2247 | X |  |  |  |  |  |  |  |  | X |  |  |  |  |  |
| 24BH | 2248 | X | X | X | X |  |  | X |  |  | X |  |  |  |  |  |
| 24BH | 2139 |  |  |  | X |  | X |  |  |  |  |  |  |  |  |  |
| 24BH | 2140 |  |  |  | X |  |  | X |  |  | X |  |  |  |  |  |
| 24BH | 2141 |  |  |  | X |  | X | X | X |  |  |  |  |  |  |  |
| 24BH | 2142 | X | X |  | $X$ |  |  |  |  |  |  |  |  |  |  |  |
| 24BH | 2143 | X | X |  | X |  |  |  |  |  | X |  |  |  |  |  |
| 24BH | 2144 | X | X |  | X |  |  |  | X |  | X |  |  |  |  |  |
| 24BH | 2145 | X | X | X | X | X |  | X |  |  |  |  |  |  |  |  |
| 24BH | 2146 | X | X |  | $X$ |  |  |  | X |  | X |  |  |  |  |  |
| 24BH | 2147 | X | X | X | X |  |  | X |  |  |  |  |  |  |  |  |
| 24BH | 2148 | X | X | X | $X$ | X |  |  |  |  |  |  |  |  |  |  |
| 24 BH | 2149 | X | $X$ |  | X |  |  |  |  |  |  |  |  |  |  |  |
| 24BH | 2150 | X | X | X | X |  |  | X | $X$ |  |  |  |  |  |  |  |
| 24BH | 2151 | X | X |  | $X$ |  |  |  | $x$ |  |  |  |  |  |  |  |
| 24 BH | 2152 |  | X | X | X | X | X |  |  | X |  |  |  |  |  |  |

SITE DATA FORM SUMMARY OF ARTIFACTS AND FEATURES

| Report | Data | Debitage |  |  |  | Scrape- |  | Other Lithics |  |  | Features |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | ID | 1st | 2nd | 3 d | Flks | Tools | PPT | Core | Biface | Other Tools | Lithic Source | DriveLines | Rock Cairn | Stone Rings | Picto-Petro- | Hearth |
| 24BH | 2153 |  | X | X | X |  |  |  |  |  |  |  |  |  |  |  |
| 24BH | 2154 | X | X |  | X | X |  |  |  |  |  |  |  |  |  |  |
| 24BH | 2085 | X | X |  | X |  |  |  | X |  |  |  |  |  |  |  |
| 24BH | 2086 | X | $X$ |  | X |  |  |  |  |  |  |  |  |  |  |  |
| 24BH | 2090 |  | $X$ |  |  |  |  | X |  |  |  |  |  |  |  |  |
| 24BH | 2091 |  | X |  |  | X |  | X |  |  |  |  | X |  |  |  |
| 24BH | 2092 |  |  |  | X | X |  |  |  |  |  |  |  |  |  |  |
| 24BH | 2093 | X | X |  | X |  |  |  |  |  |  |  |  |  |  |  |
| 24BH | 2094 | X |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 24BH | 2095 |  | X |  |  | $x$ |  |  |  |  |  |  |  |  |  |  |
| 24BH | 2096 |  |  |  | X | $\mathbf{X}$ |  |  | X |  |  |  |  |  |  |  |
| 24BH | 2097 |  |  |  | X | X | X | X | $\mathbf{X}$ |  |  |  |  |  |  |  |
| 24BH | 2098 |  |  |  | X |  |  |  | $\mathbf{X}$ |  |  |  |  | $x$ |  |  |
| 24BH | 2099 | X | X | X | X |  |  |  | $\mathbf{X}$ |  |  |  |  |  |  |  |
| 24BH | 2100 |  | X | X | X |  |  |  | X |  |  |  |  |  |  |  |
| 24BH | 2102 |  |  |  | X |  |  |  | X |  |  |  |  |  |  |  |
| 24BH | 2103 | X | X |  | X |  |  |  | X |  | X |  |  |  |  |  |

SITE DATA FORM SUMMARY OF ARTIFACTS AND FEATURES

| Report ID | Data <br> Base <br> ID | Debitage |  |  |  | Scrapeing <br> Tools | PPT's | Other Lithics |  |  | Features |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1st | 2nd | 3 rd | Fiks |  |  | Core | Biface | Other Tools | Lithic Source | Drive Lines | Rock Calm | Stone Rings | Picto-Petro- | Hearth |
| 24BH | 2104 | X |  |  |  |  |  | X | X |  |  |  |  |  |  |  |
| 24BH | 2106 |  |  |  | X | $x$ |  |  | $X$ |  |  |  |  |  |  |  |
| 24BH | 2107 |  |  |  | X | X |  |  | X |  |  |  |  |  |  |  |
| 24BH | 2108 |  | X | X | X |  |  | $X$ |  |  |  |  |  |  |  |  |
| 24BH | 2109 | $x$ |  |  |  |  |  | X |  |  | X |  |  |  |  |  |
| 24BH | 2111 |  | X |  |  |  |  | X | $x$ |  |  |  |  |  |  |  |
| 24BH | 2112 |  |  |  | X | $X$ |  | X |  |  |  |  |  |  |  |  |
| 24BH | 2113 | X | X | X | X |  | X | X | X |  |  |  |  |  |  |  |
| 24BH | 2114 | $X$ | X | X | X |  |  | X | X |  |  |  |  |  |  |  |
| 24BH | 2115 | X | X | X | X |  | X | X | X |  |  |  |  |  |  |  |
| 24BH | 2116 | X | X | X | X |  |  | X |  |  |  |  |  |  |  |  |
| 24BH | 2117 |  |  |  | X | X |  | X |  |  |  |  |  |  |  |  |
| 24BH | 2118 |  |  |  | X |  | X |  | X |  |  |  |  |  |  |  |
| 24BH | 2119 |  |  |  | X | X |  |  |  |  |  |  |  |  |  |  |
| 24BH | 2120 |  |  |  | X |  |  | X |  |  |  |  |  |  |  |  |
| 24BH | 1034 |  | X |  |  | X | X |  | X |  |  |  |  |  |  |  |
| LDL | 1 |  |  |  | X |  |  |  |  |  |  |  |  |  |  |  |

## SITE DATA FORM SUMMARY OF ARTIFACTS AND FEATURES

| Report ID | $\begin{aligned} & \text { Data } \\ & \text { Base } \\ & \text { ID } \end{aligned}$ | Debitage |  |  |  | $\begin{gathered} \text { Scrape- } \\ \text { ing } \\ \text { Toods } \end{gathered}$ | PPT's | Other Lithics |  |  | Features |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1st | 2nd | 3rd | Fiks |  |  | Core | Biface | Other <br> Tools | Lithic Source | DriveLines | Rock Caim | Stone Rings | Picto-Petro- | Hearth |
| LDL | 2 |  |  |  | X |  |  |  |  |  |  |  |  |  |  |  |
| LDL | 3 |  |  |  | X |  |  |  |  |  |  |  |  |  |  |  |
| LDL | 4 |  |  |  | X |  |  | X |  |  |  |  |  |  |  |  |
| LDL | 5 |  |  |  | X |  |  |  | x |  |  |  |  |  |  |  |
| LDL | 6 |  |  |  | X |  |  |  | X |  |  |  |  |  |  |  |
| LDL | 7 |  |  |  | x |  |  |  |  |  |  |  |  |  |  |  |
| LDL | 8 |  |  |  | x |  |  | $x$ |  |  |  |  |  |  |  |  |
| LDL | 9 |  |  |  | x |  |  | x |  |  |  |  |  |  |  |  |
| LDL | 10 |  |  |  | X |  |  |  |  |  |  |  |  |  |  |  |
| HRA | 1 |  |  |  |  |  |  |  | X |  |  |  |  |  |  |  |
| HRA | 2 |  |  |  |  |  | X |  |  |  |  |  |  |  |  |  |
| HRA | 3 |  |  |  |  |  |  |  | x |  |  |  |  |  |  |  |
| HRA | 4 |  |  |  |  |  |  |  | $x$ |  |  |  |  |  |  |  |
| HRA | 5 |  |  |  |  |  |  |  | $x$ |  |  |  |  |  |  |  |
| HRA | 6 |  |  |  |  |  |  |  | $x$ |  |  |  |  |  |  |  |
| HRA | 7 |  |  |  |  |  |  |  | x |  |  |  |  |  |  |  |
| HRA | 8 |  |  |  |  |  |  |  | x |  |  |  |  |  |  |  |

SITE DATA FORM
SUMMARY OF ARTIFACTS AND FEATURES

| Report ID | $\begin{aligned} & \text { Data } \\ & \text { Base } \\ & \text { ID } \end{aligned}$ | Debitage |  |  |  | Scrape ing Tools | PPT's | Other Lithics |  |  | Features |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1st | 2nd | 3rd | Fiks |  |  | Core | Biface | Other Tools | Lithic Source | DriveLines | Rock Cairn | Stone Rings | Picto-Petro- | Hearth |
| 24BH | 2089 |  | X |  |  | X |  |  | X |  |  |  |  |  |  |  |
| HRA | 9 |  |  |  |  |  |  |  | X |  |  |  |  |  |  |  |
| HRA | 10 |  |  |  |  |  | X |  | X |  |  |  |  |  |  |  |
| HRA | 11 |  |  |  |  |  |  |  | X |  |  |  |  |  |  |  |
| HRA | 12 |  |  |  |  |  | X |  |  |  |  |  |  |  |  |  |
| HRA | 13 |  |  |  | X |  |  |  |  |  |  |  |  |  |  |  |
| HRA | 14 |  |  |  | X |  |  |  |  |  |  |  |  |  |  |  |
| HRA | 15 |  |  |  |  |  |  |  | X |  |  |  |  |  |  |  |
| HRA | 16 |  |  |  |  | X |  |  |  |  |  |  |  |  |  |  |
| HRA | 17 |  |  |  |  |  |  |  | X |  |  |  |  |  |  |  |
| HRA | 18 |  |  |  |  |  |  | X |  |  |  |  |  |  |  |  |
| HRA | 19 |  |  |  |  |  | X |  |  |  |  |  |  |  |  |  |
| HRA | 20 |  |  |  |  | X |  |  |  |  |  |  |  |  |  |  |
| HRA | 21 |  |  |  |  |  | X |  |  |  |  |  |  |  |  |  |
| HRA | 22 |  |  |  |  |  | X |  |  |  |  |  |  |  |  |  |
| HRA | 23 |  |  |  | X |  |  |  | X |  |  |  |  |  |  |  |
| HRA | 24 |  |  |  |  |  | X |  |  |  |  |  |  |  |  |  |

## SITE DATA FORM <br> SUMMARY OF ARTIFACTS AND FEATURES

| Report | Data | Debitage |  |  |  |  |  | Other Lithics |  |  | Features |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | ID | 1st | 2nd | 3rd | Flks |  |  | Core | Biface | Other <br> Tools | Lithic Source | DriveLines | Rock Cairn | Stone <br> Rings | Picto Petro- | Hearth |
| HRA | 25 |  |  |  |  | $X$ |  |  |  |  |  |  |  |  |  |  |
| HRA | 26 |  |  |  |  |  | X |  |  |  |  |  |  |  |  |  |
| HRA | 27 |  |  |  |  | X |  |  |  |  |  |  |  |  |  |  |
| HRA | 28 |  |  |  |  |  |  |  | X |  |  |  |  |  |  |  |
| HRA | 29 |  |  |  |  |  |  |  | $x$ |  |  |  |  |  |  |  |
| HRA | 30 |  |  |  |  |  |  |  | X |  |  |  |  |  |  |  |
| HRA | 31 |  |  |  |  | X |  |  |  |  |  |  |  |  |  |  |
| HRA | 32 |  |  |  |  |  | X |  |  |  |  |  |  |  |  |  |
| HRA | 33 |  |  |  |  |  |  |  | X |  |  |  |  |  |  |  |
| HRA | 34 |  |  |  | X |  |  |  |  |  |  |  |  |  |  |  |
| HRA | 35 |  |  |  |  |  |  |  | X |  |  |  |  |  |  |  |
| HRA | 36 |  |  |  | X |  |  |  |  |  |  |  |  |  |  |  |
| HRA | 37 |  |  |  | X |  |  |  |  |  |  |  |  |  |  |  |
| HRA | 38 |  |  |  | X |  |  |  |  |  |  |  |  |  |  |  |
| HRA | 39 |  |  |  | X |  |  |  |  |  |  |  |  |  |  |  |
| 24BH | 1640 |  |  |  | X | X | X |  |  |  |  |  |  |  |  |  |
| P | 16 |  |  |  |  |  | X |  |  |  |  |  |  |  |  |  |

SITE DATA FORM
SUMMARY OF ARTIFACTS AND FEATURES

| $\begin{aligned} & \text { Report } \\ & \text { ID } \end{aligned}$ | $\begin{aligned} & \text { Data } \\ & \text { Base } \\ & \text { ID } \end{aligned}$ | Debitage |  |  |  | Scrapeing Tools | PPT's | Other Lithics |  |  | Features |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1st | 2nd | 3 rd | Fiks |  |  | Core | Biface | Other Tools | Lithic Source | Drive Lines | Rock Cairn | Stone Rings | Picto- Petro- | Hearth |
| P | 17 |  |  |  |  |  | x |  |  |  |  |  |  |  |  |  |
| P | 19 |  |  |  |  |  | x |  |  |  |  |  |  |  |  |  |
| P | 27 |  |  |  |  |  | x |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

## APPENDIX B

LANSCAPE VARIABLE VALUES

## LANDSCAPE VARIABLE VALUES

| A | B | C | D | E | F | G | H |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ID | DEB | SCR | PPT | TYPE | SLOPE | ASPECT | D TO WAT |
| 1 | 0 | 1 | 0 | 0 | . 96 | 180.00 | 120.00 |
| 3 | 1 | 0 | 0 | CS | 3.44 | 33.63 | 94.69 |
| 4 | 0 | 1 | 0 | 0 | . 96 | 180.00 | 90.00 |
| 5 | 0 | 1 | 0 | 0 | 2.14 | 206.52 | 29.94 |
| 6 | 0 | 2 | 1 | H | 14.63 | 63.39 | 217.98 |
| 7 | 0 | 1 | 0 | 0 | 11.81 | 28.56 | 294.94 |
| 13 | 1 | 0 | 0 | CS | 9.38 | 44.94 | 179.62 |
| 14 | 0 | 0 | 1 | H | 12.23 | 67.34 | 66.97 |
| 15 | 0 | 1 | 0 | 0 | 21.82 | 272.39 | 149.89 |
| 16 | 0 | 1 | 0 | 0 | 5.14 | 338.24 | 119.75 |
| 17 | 0 | 1 | 0 | 0 | 4.77 | 323.19 | 234.02 |
| 18 | 1 | 0 | 0 | CS | 6.10 | 321.40 | 276.56 |
| 19 | 1 | 0 | 0 | CS | 3.94 | 165.99 | 295.36 |
| 21 | 0 | 1 | 0 | 0 | 6.10 | 38.60 | 429.38 |
| 22 | 0 | 1 | 0 | 0 | 8.06 | 44.94 | 59.87 |
| 23 | 0 | 0 | 1 | H | 7.66 | 119.80 | 29.94 |
| 24 | 1 | 0 | 0 | CS | 10.76 | 105.29 | 84.76 |
| 25 | 2 | 1 | 0 | 0 | 11.04 | 249.98 | 271.65 |
| 26 | 1 | 0 | 0 | CS | 13.28 | 224.94 | 257.89 |
| 27 | 0 | 2 | 0 | 0 | 9.75 | 151.00 | 350.49 |
| 28 | 0 | 1 | 0 | 0 | 4.77 | 306.93 | 182.47 |
| 30 | 1 | 0 | 0 | CS | 9.53 | 354.30 | 365.94 |
| 31 | 0 | 0 | 1 | H | 1.35 | 44.94 | 216.19 |
| 33 | 1 | 0 | 0 | CS | 6.93 | 164.09 | 241.36 |
| 34 | 1 | 0 | 0 | CS | 7.67 | 352.89 | 174.66 |
| 35 | 0 | 1 | 0 | 0 | 8.12 | 20.52 | 323.02 |
| 36 | 1 | 0 | 0 | CS | 2.14 | 116.61 | 423.82 |
| 37 | 0 | 1 | 0 | 0 | 5.56 | 210.91 | 216.02 |
| 38 | 1 | 0 | 0 | CS | 2.14 | 116.61 | 179.62 |
| 39 | 1 | 0 | 0 | CS | 10.41 | . 00 | 349.31 |
| 41 | 0 | 2 | 0 | 0 | 6.10 | 231.28 | 120.00 |
| 42 | 1 | 0 | 0 | CS | 2.14 | 63.39 | 29.94 |
| 43 | 1 | 0 | 0 | CS | 6.10 | 128.72 | 67.05 |
| 45 | 1 | 2 | 0 | 0 | 6.10 | 231.28 | 211.91 |
| 46 | 1 | 0 | 0 | CS | 1.35 | 224.94 | 322.52 |
| 47 | 1 | 0 | 0 | CS | 7.61 | 180.00 | 174.66 |
| 48 | 2 | 0 | 0 | CS | 2.70 | 135.06 | 123.68 |
| 49 | 1 | 0 | 0 | CS | 2.86 | 270.00 | 617.43 |
| 50 | 0 | 1 | 2 | H | 11.36 | 221.57 | 150.00 |

LANDSCAPE VARIABLE VALUES

| A | B | C | D | E | F | G | H |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ID | DEB | SCR | PPT | TYPE | SLOPE | ASPECT | D TO WAT |
| 51 | 1 | 0 | 0 | CS | 4.77 | 233.07 | 308.72 |
| 52 | 1 | 0 | 0 | CS | 5.55 | 301.02 | 209.56 |
| 53 | 1 | 0 | 0 | CS | 8.94 | 302.06 | 59.87 |
| 54 | 2 | 0 | 0 | CS | 8.11 | 290.60 | 108.01 |
| 55 | 3 | 2 | 0 | 0 | 6.10 | 231.28 | 209.56 |
| 56 | 1 | 0 | 0 | CS | 2.14 | 63.39 | 94.69 |
| 57 | 1 | 0 | 0 | CS | 2.14 | 206.52 | 29.94 |
| 58 | 3 | 2 | 0 | 0 | 1.91 | 90.00 | 89.81 |
| 59 | 1 | 0 | 0 | CS | 2.14 | 26.52 | . 00 |
| 60 | 1 | 0 | 0 | CS | 3.44 | 146.37 | . 00 |
| 62 | 0 | 1 | 0 | 0 | 8.75 | 220.54 | 169.53 |
| 63 | 2 | 1 | 0 | 0 | 9.75 | 209.00 | 30.00 |
| 64 | 1 | 0 | 0 | CS | 7.42 | 129.87 | 66.97 |
| 65 | 2 | 1 | 0 | 0 | 7.43 | 320.25 | 201.16 |
| 66 | 2 | 0 | 0 | CS | 3.44 | 56.25 | 161.26 |
| 68 | 1 | 0 | 0 | CS | . 96 | . 00 | 211.91 |
| 69 | 1 | 0 | 0 | CS | 5.39 | 315.06 | 127.14 |
| 70 | 1 | 0 | 0 | CS | 3.93 | 75.94 | 29.94 |
| 71 | 0 | 1 | 0 | 0 | 8.11 | 110.60 | 67.05 |
| 72 | 1 | 0 | 0 | CS | 5.13 | 68.16 | 123.68 |
| 73 | 1 | 0 | 0 | CS | 11.33 | 180.00 | 322.52 |
| 74 | 0 | 1 | 0 | 0 | 13.44 | 24.73 | 318.61 |
| 75 | 0 | 1 | 0 | 0 | 6.38 | 116.61 | 84.76 |
| 76 | 1 | 1 | 0 | 0 | 9.47 | 53.07 | 123.45 |
| 77 | 0 | 1 | 0 | 0 | 6.03 | 18.40 | 324.02 |
| 78 | 3 | 0 | 0 | CS | 3.44 | 56.25 | 361.86 |
| 79 | 1 | 0 | 0 | CS | 6.02 | 71.53 | 271.09 |
| 80 | 1 | 1 | 0 | 0 | 3.94 | 14.01 | 149.68 |
| 81 | 1 | 0 | 0 | CS | 16.80 | 263.65 | 149.89 |
| 82 | 1 | 0 | 0 | CS | 9.67 | 11.29 | 59.87 |
| 83 | 0 | 0 | 1 | H | 7.66 | 119.80 | 211.91 |
| 84 | 3 | 2 | 0 | 0 | 9.67 | 191.29 | 161.26 |
| 85 | 2 | 2 | 0 | 0 | 6.02 | 71.53 | 323.02 |
| 86 | 3 | 0 | 0 | CS | 3.02 | 251.53 | 180.00 |
| 88 | 1 | 0 | 0 | CS | 6.72 | 81.85 | 108.01 |
| 89 | 0 | 1 | 0 | 0 | 6.39 | 153.48 | 149.80 |
| 90 | 0 | 1 | 0 | 0 | 4.26 | 63.39 | 84.76 |
| 91 | 2 | 0 | 0 | CS | 11.36 | 41.57 | 349.31 |
| 92 | 1 | 2 | 0 | 0 | 10.41 | 180.00 | 123.68 |
| 100 | 12 | 1 | 0 | 0 | 3.82 | 180.00 | 42.38 |

## LANDSCAPE VARIABLE VALUES

| A | B | C | D | E | F | G | H |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ID | DEB | SCR | PPT | TYPE | SLOPE | ASPECT | D TO WAT |
| 102 | 4 | 2 | 0 | O | 2.14 | 153.48 | 255.85 |
| 103 | 11 | 0 | 0 | CS | 6.74 | 188.11 | 161.26 |
| 106 | 100 | 2 | 1 | BC | 4.87 | 191.29 | 42.38 |
| 107 | 12 | 2 | 0 | O | 6.39 | 206.52 | 84.76 |
| 108 | 1 | 0 | 0 | CS | 1.91 | .00 | 474.02 |
| 110 | 1 | 0 | 0 | CS | 1.91 | 90.00 | 59.87 |
| 111 | 1 | 0 | 0 | CS | 1.91 | 90.00 | 123.45 |
| 112 | 1 | 0 | 0 | CS | 5.71 | 90.00 | 234.10 |
| 113 | 12 | 1 | 0 | O | 7.65 | 82.86 | 228.07 |
| 114 | 6 | 1 | 0 | O | .00 | -1.00 | 334.72 |
| 115 | 0 | 1 | 0 | O | 3.81 | 90.00 | 66.97 |
| 116 | 50 | 0 | 0 | LW | 3.81 | 270.00 | 123.68 |
| 118 | 10 | 0 | 0 | CS | 14.53 | 14.90 | 67.05 |
| 120 | 24 | 1 | 0 | O | 5.79 | 260.52 | 211.91 |
| 121 | 13 | 0 | 0 | CS | 4.05 | 44.94 | 239.49 |
| 122 | 30 | 0 | 0 | CS | 8.95 | 211.95 | 120.00 |
| 123 | 50 | 0 | 0 | LW | 8.49 | 206.52 | 42.38 |
| 124 | 7 | 0 | 0 | CS | 4.27 | 153.48 | 66.97 |
| 125 | 0 | 1 | 0 | O | 2.14 | 153.48 | 161.26 |
| 126 | 1 | 0 | 0 | CS | 1.91 | 90.00 | 119.75 |
| 127 | 5 | 0 | 0 | CS | .00 | -1.00 | 239.49 |
| 128 | 0 | 1 | 0 | 0 | 8.75 | 192.50 | 108.10 |
| 129 | 1 | 0 | 0 | CS | 10.45 | 1144.82 | 123.45 |
| 130 | 0 | 0 | 1 | H | 3.02 | 198.40 | 191.85 |
| 131 | 1 | 0 | 0 | CS | 3.02 | 71.53 | 59.87 |
| 132 | 3 | 1 | 0 | O | 3.82 | .00 | 59.87 |
| 133 | 0 | 0 | 1 | H | 4.77 | 323.19 | 30.00 |
| 134 | 4 | 0 | 0 | CS | 9.74 | 60.89 | 182.47 |
| 135 | 30 | 0 | 0 | CS | 12.25 | 202.58 | 89.81 |
| 136 | 2 | 0 | 0 | CS | 3.44 | 146.37 | 268.21 |
| 137 | 20 | 0 | 0 | CS | 12.80 | 162.93 | 254.29 |
| 138 | 40 | 0 | 0 | CS | 9.38 | 224.94 | 123.68 |
| 139 | 0 | 0 | 1 | H | 2.87 | .00 | 29.94 |
| 140 | 0 | 0 | 1 | H | 2.14 | 153.48 | 179.62 |
| 141 | 0 | 1 | 0 | 0 | 3.44 | 236.25 | 30.00 |
| 142 | 0 | 0 | 1 | H | .00 | -1.00 | 241.86 |
| 143 | 0 | 0 | 1 | H | 4.05 | 135.06 | 161.26 |
| 144 | 1 | 0 | 0 | CS | 4.77 | 180.00 | 299.37 |
| 145 | 0 | 1 | 0 | O | .96 | 180.00 | 246.89 |
| 1 |  |  |  |  |  |  |  |

## LANDSCAPE VARIABLE VALUES

| $\begin{aligned} & \text { A } \\ & \text { ID } \end{aligned}$ | $\begin{gathered} \mathrm{B} \\ \mathrm{DEB} \end{gathered}$ | $\begin{gathered} \mathrm{C} \\ \mathrm{SCR} \end{gathered}$ | $\begin{gathered} \text { D } \\ \text { PPT } \end{gathered}$ | $\underset{\text { TYPE }}{E}$ | $\begin{gathered} \text { F } \\ \text { SLOPE } \end{gathered}$ | $\begin{gathered} \text { G } \\ \text { ASPECT } \end{gathered}$ | $\begin{gathered} \mathrm{H} \\ \text { D TO WAT } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 146 | 0 | 1 | 0 | 0 | . 96 | 180.00 | 241.36 |
| 147 | 1 | 0 | 0 | CS | 2.14 | 333.48 | 522.88 |
| 148 | 25 | 0 | 0 | CS | 3.44 | 146.37 | 445.47 |
| 149 | 25 | 0 | 0 | CS | 3.44 | 56.25 | 234.02 |
| 150 | 100 | 0 | 0 | LW | 3.82 | 180.00 | 29.94 |
| 151 | 200 | 0 | 0 | Q | 13.93 | 132.33 | 66.97 |
| 152 | 200 | 0 | 0 | Q | 9.53 | 185.70 | 66.97 |
| 153 | 200 | 0 | 0 | Q | 7.84 | 194.01 | 84.76 |
| 154 | 50 | 0 | 0 | CS | 16.75 | 213.63 | 123.45 |
| 155 | 50 | 0 | 0 | CS | 2.14 | 63.39 | 67.05 |
| 156 | 50 | 0 | 0 | CS | 7.67 | 352.89 | 84.76 |
| 157 | 0 | 0 | 1 | H | 8.17 | 35.48 | 108.01 |
| 158 | 0 | 1 | 0 | 0 | 1.35 | 135.06 | 29.94 |
| 159 | 0 | 1 | 0 | 0 | . 00 | -1.00 | 29.94 |
| 160 | 0 | 0 | 1 | H | . 00 | -1.00 | . 00 |
| 161 | 50 | 0 | 0 | LW | 7.25 | 336.85 | 84.76 |
| 162 | 50 | 0 | 0 | LW | 10.77 | 52.07 | 84.76 |
| 163 | 100 | 0 | 0 | Q | 8.75 | 12.50 | 191.94 |
| 164 | 50 | 0 | 0 | LW | 3.44 | 33.63 | 42.38 |
| 165 | 100 | 0 | 0 | Q | 7.67 | 29.69 | 182.47 |
| 166 | 50 | 0 | 0 | LW | 6.73 | 44.94 | 240.00 |
| 167 | 0 | 0 | 1 | H | 6.39 | 26.52 | 67.05 |
| 168 | 100 | 0 | 0 | Q | 6.03 | 18.40 | 108.10 |
| 169 | 50 | 0 | 0 | LW | 10.57 | 26.52 | 276.56 |
| 201 | 1 | 0 | 0 | CS | 5.72 | 180.00 | 241.86 |
| 202 | 3 | 0 | 0 | CS | 4.77 | 143.19 | 29.94 |
| 203 | 0 | 1 | 0 | 0 | 2.86 | 90.00 | 59.87 |
| 204 | 25 | 0 | 0 | CS | 7.25 | 203.15 | 94.69 |
| 209 | 2 | 0 | 0 | CS | 6.67 | 180.00 | 66.97 |
| 211 | 5 | 1 | 0 | 0 | 5.14 | 158.24 | 67.05 |
| 212 | 5 | 0 | 0 | CS | 5.56 | 149.09 | 134.11 |
| 213 | 10 | 0 | 0 | CS | 6.03 | 161.60 | 149.80 |
| 216 | 22 | 0 | 0 | CS | 5.79 | 80.52 | 149.68 |
| 218 | 2 | 0 | 1 | H | 4.27 | 26.52 | 59.87 |
| 223 | 6 | 1 | 0 | 0 | 9.34 | 203.92 | 149.89 |
| 224 | 7 | 0 | 0 | CS | 5.55 | 238.98 | 120.00 |
| 225 | 11 | 0 | 0 | LW | . 00 | -1.00 | 276.34 |
| 226 | 11 | 0 | 0 | LW | 1.35 | 44.94 | 211.91 |
| 227 | 9 | 0 | 0 | CS | . 96 | . 00 | 30.00 |

## LANDSCAPE VARIABLE VALUES

| A | B | C | D | $E$ | F | G | H |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ID | DEB | SCR | PPT | TYPE | SLOPE | ASPECT | D TO WAT |
| 228 | 3 | 2 | 0 | 0 | 4.26 | 243.39 | 191.85 |
| 229 | 5 | 2 | 0 | 0 | 4.26 | 116.61 | 428.79 |
| 230 | 8 | 0 | 0 | CS | 13.19 | 4.08 | 276.03 |
| 231 | 10 | 0 | 0 | CS | . 00 | -1.00 | 161.51 |
| 232 | 6 | 0 | 0 | CS | 9.34 | 156.08 | 149.68 |
| 233 | 5 | 0 | 0 | CS | 6.38 | 296.61 | 228.40 |
| 234 | 0 | 1 | 0 | 0 | 3.44 | 56.25 | 216.19 |
| 235 | 0 | 0 | 1 | H | 3.02 | 161.60 | 445.88 |
| 236 | 0 | 1 | 0 | 0 | 1.35 | 135.06 | 342.00 |
| 237 | 0 | 1 | 0 | 0 | 3.94 | 345.99 | 149.80 |
| 238 | 0 | 1 | 0 | 0 | 8.75 | 220.54 | 30.00 |
| 239 | 0 | 1 | 0 | 0 | 10.19 | 201.76 | 30.00 |
| 240 | 0 | 1 | 0 | 0 | 11.91 | 108.47 | 90.00 |
| 241 | 0 | 1 | 0 | 0 | 10.69 | 224.94 | 89.81 |
| 242 | 0 | 1 | 0 | 0 | 8.60 | 186.33 | 149.80 |
| 243 | 0 | 1 | 1 | H | 8.17 | 35.48 | 90.00 |
| 244 | 0 | 1 | 0 | 0 | 7.84 | 345.99 | 169.53 |
| 245 | 0 | 0 | 1 | H | 9.87 | 253.27 | 30.00 |
| 246 | 1 | 0 | 0 | CS | 7.65 | 277.14 | 169.53 |
| 247 | 1 | 0 | 0 | CS | 6.39 | 333.48 | 191.85 |
| 248 | 0 | 1 | 0 | 0 | 1.35 | 224.94 | 29.94 |
| 249 | 0 | 1 | 0 | 0 | 4.86 | 281.33 | 90.00 |
| 250 | 0 | 1 | 0 | 0 | 6.10 | 231.28 | 210.00 |
| 251 | 1 | 0 | 0 | CS | 6.02 | 251.53 | 512.45 |
| 252 | 0 | 0 | 1 | H | 10.41 | 180.00 | 351.05 |
| 253 | 0 | 1 | 0 | 0 | 6.38 | 243.39 | 322.52 |
| 254 | 0 | 0 | 1 | H | 4.87 | 191.29 | 42.38 |
| 255 | 0 | 0 | 1 | H | 6.03 | 161.60 | 29.94 |
| 256 | 1 | 1 | 0 | 0 | 4.05 | 224.94 | 240.00 |
| 257 | 0 | 0 | 1 | H | . 96 | 180.00 | 149.68 |
| 258 | 0 | 1 | 0 | 0 | 2.70 | 315.06 | 211.91 |
| 259 | 0 | 0 | 1 | H | 2.14 | 63.39 | 42.38 |
| 260 | 0 | 1 | 0 | 0 | 4.77 | 216.81 | 255.85 |
| 261 | 0 | 1 | 0 | 0 | 17.58 | 198.40 | 276.25 |
| 262 | 0 | 1 | 0 | 0 | 8.74 | 77.45 | 59.87 |
| 263 | 0 | 1 | 0 | 0 | 3.02 | 71.53 | 313.15 |
| 264 | 0 | 1 | 0 | 0 | 5.71 | 270.00 | 474.24 |
| 265 | 0 | 0 | 1 | H | 6.38 | 116.61 | 365.94 |
| 266 | 0 | 1 | 0 | 0 | 3.02 | 108.47 | 468.03 |

## LANDSCAPE VARIABLE VALUES

| A ID | $\begin{aligned} & \mathrm{B} \\ & \mathrm{DEB} \end{aligned}$ | $\begin{aligned} & \mathrm{C} \\ & \mathrm{SCR} \end{aligned}$ | D PPT | $\begin{gathered} \text { E } \\ \text { TYPE } \end{gathered}$ | F SLOPE | $\begin{gathered} \text { G } \\ \text { ASPECT } \end{gathered}$ | $\stackrel{H}{\text { D TO WAT }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 267 | 1 | 0 | 0 | CS | 2.14 | 26.52 | 42.38 |
| 268 | 0 | 1 | 0 | 0 | 2.14 | 153.48 | 487.80 |
| 269 | 1 | 0 | 0 | CS | 2.14 | 206.52 | 30.00 |
| 270 | 1 | 0 | 0 | CS | 4.87 | 191.29 | 271.09 |
| 271 | 1 | 0 | 0 | CS | 6.86 | 56.25 | 149.80 |
| 272 | 1 | 0 | 0 | CS | 4.27 | 26.52 | 324.29 |
| 273 | 0 | 0 | 1 | H | 12.54 | 103.02 | 271.65 |
| 274 | 0 | 0 | 1 | H | 12.25 | 22.58 | 299.77 |
| 275 | 0 | 0 | 1 | H | 2.14 | 206.52 | 299.59 |
| 276 | 0 | 0 | 1 | H | 1.91 | . 00 | 241.74 |
| 300 | 1 | 0 | 0 | CS | 6.10 | 38.60 | 29.94 |
| 301 | 20 | 0 | 0 | CS | 4.76 | 90.00 | 108.01 |
| 302 | 4 | 0 | 0 | CS | 6.10 | 321.40 | 29.94 |
| 303 | 0 | 1 | 0 | 0 | 7.43 | 219.75 | 94.69 |
| 304 | 1 | 1 | 0 | 0 | 3.44 | 213.63 | 296.67 |
| 305 | 2 | 0 | 0 | CS | 8.60 | 173.67 | 119.75 |
| 307 | 10 | 0 | 1 | H | 4.77 | 180.00 | 108.01 |
| 308 | 2 | 1 | 0 | 0 | 3.94 | 165.99 | 108.01 |
| 309 | 2 | 0 | 0 | CS | 2.86 | 90.00 | . 00 |
| 310 | 3 | 0 | 0 | CS | 2.86 | 90.00 | 66.97 |
| 311 | 2 | 1 | 0 | 0 | 7.25 | 23.15 | 133.94 |
| 313 | 0 | 1 | 0 | 0 | 5.56 | 30.91 | 133.94 |
| 314 | 3 | 3 | 1 | H | 5.55 | 121.02 | 123.68 |
| 315 | 3 | 0 | 0 | CS | 3.02 | 108.47 | 42.38 |
| 316 | 0 | 1 | 1 | H | 3.44 | 146.37 | 94.69 |
| 317 | 10 | 3 | 0 | 0 | 7.25 | 23.15 | 29.94 |
| 318 | 4 | 0 | 0 | CS | 6.93 | 15.91 | 119.75 |
| 319 | 1 | 0 | 0 | CS | 6.67 | . 00 | 174.83 |
| 511 | 100 | 0 | 2 | H | 4.86 | 101.33 | 84.76 |
| 512 | 40 | 0 | 1 | H | . 95 | 90.00 | 29.94 |
| 513 | 40 | 0 | 0 | LW | 2.87 | . 00 | 149.68 |
| 514 | 7 | 0 | 0 | CS | 6.03 | 18.40 | 29.94 |
| 515 | 11 | 0 | 0 | CS | 3.02 | 71.53 | 59.87 |
| 516 | 15 | 1 | 0 | 0 | 4.87 | 11.29 | 60.00 |
| 517 | 15 | 0 | 0 | CS | 5.14 | 21.76 | 149.80 |
| 518 | 15 | 1 | 0 | 0 | 1.91 | . 00 | 60.00 |
| 519 | 25 | 0 | 0 | CS | 2.87 | 180.00 | 66.97 |
| 520 | 2 | 1 | 0 | 0 | 9.87 | 73.27 | 189.70 |






0点－0000－000000000r－0000000－00000008000000




## LANDSCAPE VARIABLE VALUES

| A | B | C | D | E | F | G | H |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ID | DEB | SCR | PPT | TYPE | SLOPE | ASPECT | D TO WAT |
| 571 | 15 | 0 | 0 | CS | 8.58 | 96.35 | 29.94 |
| 572 | 50 | 0 | 0 | Q | 10.57 | 26.52 | 191.85 |
| 573 | 100 | 0 | 0 | Q | 12.28 | 32.42 | 94.69 |
| 574 | 300 | 0 | 0 | LW | 9.33 | 65.99 | 200.91 |
| 575 | 250 | 0 | 0 | LW | 4.77 | 53.07 | 134.11 |
| 576 | 200 | 0 | 0 | Q | 7.43 | 39.75 | 84.76 |
| 577 | 1000 | 1 | 1 | BC | 2.14 | 116.61 | 89.81 |
| 578 | 25 | 0 | 0 | CS | 4.87 | 191.29 | 67.05 |
| 579 | 200 | 4 | 0 | O | 8.49 | 153.48 | 127.14 |
| 580 | 150 | 1 | 1 | BC | 7.67 | 209.69 | 120.00 |
| 581 | 400 | 1 | 0 | O | 8.74 | 130.66 | 239.49 |
| 582 | 21 | 5 | 0 | O | 2.87 | 180.00 | 89.81 |
| 583 | 70 | 0 | 0 | LW | 2.86 | 270.00 | 390.33 |
| 584 | 200 | 2 | 0 | O | 1.91 | 180.00 | 191.94 |
| 585 | 32 | 1 | 0 | O | 10.06 | 221.13 | 308.37 |
| 586 | 63 | 4 | 2 | BC | 2.70 | 44.94 | 119.75 |
| 587 | 50 | 5 | 0 | O | .95 | 90.00 | 29.94 |
| 588 | 20 | 2 | 1 | BC | 4.87 | 348.71 | 89.81 |
| 589 | 25 | 3 | 0 | O | 5.39 | 44.94 | 94.69 |
| 590 | 50 | 0 | 1 | BC | 4.26 | 116.61 | 94.85 |
| 592 | 28 | 0 | 0 | CS | 11.06 | 19.94 | 394.57 |
| 1001 | 1001 | 1 | 9 | H | 5.80 | 189.44 | 510.25 |
| 1003 | 500 | 4 | 4 | BC | 11.37 | 175.25 | 216.02 |
| 1013 | 101 | 1 | 0 | O | 2.14 | 26.52 | 241.86 |
| 1014 | 101 | 0 | 0 | LW | 4.77 | 53.07 | 401.81 |
| 1030 | 101 | 1 | 1 | BC | 4.86 | 101.33 | 339.05 |
| 1034 | 50 | 2 | 1 | H | 4.86 | 78.67 | 123.68 |
| 1039 | 500 | 10 | 0 | O | 15.40 | 194.01 | 149.80 |
| 1041 | 100 | 2 | 4 | BC | .96 | .00 | 282.59 |
| 1045 | 100 | 3 | 1 | BC | .96 | 180.00 | 127.14 |
| 1046 | 0 | 1 | 0 | O | 6.74 | 171.89 | 308.37 |
| 1048 | 50 | 4 | 0 | O | 4.87 | 11.29 | 119.75 |
| 1049 | 100 | 0 | 0 | LW | 3.02 | 198.40 | 59.87 |
| 1051 | 25 | 4 | 0 | O | 9.75 | 331.00 | 268.21 |
| 1052 | 0 | 13 | 5 | H | 7.66 | 240.20 | 84.76 |
| 1053 | 101 | 1 | 2 | BC | 6.03 | 198.40 | 189.70 |
| 1056 | 1001 | 0 | 0 | Q | 13.45 | 192.07 | 341.78 |
| 1060 | 1000 | 0 | 4 | BC | 4.86 | 281.33 | 174.83 |
| 1067 | 500 | 12 | 2 | BC | 2.87 | 180.00 | 271.09 |
|  |  |  |  |  |  |  |  |

## LANDSCAPE VARIABLE VALUES

| A | B | C | D | E | F | G | H |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ID | DEB | SCR | PPT | TYPE | SLOPE | ASPECT | D TO WAT |
| 1068 | 500 | 10 | 1 | BC | 3.02 | 198.40 | 282.59 |
| 1510 | 500 | 4 | 0 | BC | 4.87 | 168.71 | 133.94 |
| 1511 | 2 | 7 | 0 | O | 2.14 | 116.61 | 331.36 |
| 1512 | 42 | 10 | 0 | O | 6.02 | 71.53 | 341.78 |
| 1513 | 250 | 0 | 0 | LW | 3.44 | 123.75 | 432.03 |
| 1514 | 50 | 4 | 0 | O | 2.70 | 315.06 | 60.00 |
| 1515 | 50 | 5 | 0 | O | 7.25 | 156.85 | 67.05 |
| 1517 | 25 | 10 | 1 | H | 6.74 | 188.11 | 246.89 |
| 1518 | 25 | 15 | 1 | H | 1.35 | 224.94 | 89.81 |
| 1566 | 50 | 0 | 0 | LW | 5.13 | 291.84 | 161.51 |
| 1571 | 15 | 0 | 1 | H | 87.18 | 180.09 | 365.68 |
| 1573 | 50 | 2 | 0 | O | 7.67 | 172.89 | 381.43 |
| 1574 | 50 | 1 | 2 | H | 87.23 | 269.54 | 269.43 |
| 1575 | 20 | 0 | 2 | H | 87.07 | 180.29 | 108.01 |
| 1576 | 60 | 0 | 0 | LW | 6.92 | 74.02 | 94.69 |
| 1577 | 50 | 0 | 0 | LW | 1.91 | 90.00 | 174.83 |
| 1578 | 25 | 0 | 0 | LW | 2.14 | 153.48 | 364.22 |
| 1579 | 25 | 0 | 0 | LW | 5.14 | 201.76 | 200.91 |
| 1582 | 101 | 0 | 0 | BC | 6.03 | 198.40 | 189.38 |
| 1597 | 50 | 0 | 0 | LW | 7.25 | 156.85 | 150.00 |
| 1602 | 0 | 1 | 0 | O | 3.93 | 104.06 | 42.38 |
| 1609 | 1001 | 0 | 0 | Q | 4.77 | 233.07 | 60.00 |
| 1610 | 1001 | 0 | 0 | Q | 4.87 | 191.29 | 67.05 |
| 1619 | 25 | 0 | 1 | H | 10.57 | 153.48 | 240.00 |
| 1625 | 50 | 1 | 1 | H | 9.74 | 119.11 | 174.83 |
| 1626 | 101 | 0 | 0 | LW | 4.77 | 216.81 | 60.00 |
| 1640 | 300 | 1 | 3 | H | 10.41 | 180.00 | 161.51 |
| 1641 | 50 | 9 | 3 | BC | 6.92 | 105.98 | 60.00 |
| 1942 | 100 | 2 | 0 | O | 8.17 | 215.48 | 210.00 |
| 1943 | 1000 | 0 | 1 | Q | 10.39 | 270.00 | 381.43 |
| 1944 | 2000 | 0 | 0 | Q | 8.75 | 220.54 | 417.08 |
| 1945 | 250 | 2 | 1 | BC | 10.58 | 190.28 | 247.36 |
| 1946 | 1000 | 0 | 0 | Q | 6.86 | 303.75 | 240.00 |
| 1947 | 50 | 2 | 0 | O | 7.24 | 113.24 | 256.25 |
| 1948 | 50 | 1 | 0 | 0 | 3.02 | 161.60 | 108.01 |
| 1949 | 500 | 1 | 3 | BC | 3.44 | 56.25 | 284.06 |
| 1950 | 500 | 3 | 2 | BC | 5.71 | 90.00 | 241.48 |
| 1951 | 50 | 1 | 0 | O | 10.76 | 285.29 | 282.59 |
| 1952 | 6 | 0 | 0 | CS | .96 | .00 | 66.97 |
|  |  |  |  |  |  |  |  |
| 151 |  |  |  |  |  |  |  |

## LANDSCAPE VARIABLE VALUES

| A | B | C | D | E | F | G | H |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ID | DEB | SCR | PPT | TYPE | SLOPE | ASPECT | D TO WAT |
| 1953 | 50 | 3 | 0 | CS | .95 | 90.00 | 234.02 |
| 1954 | 200 | 7 | 1 | BC | 6.73 | 44.94 | 89.81 |
| 1955 | 100 | 2 | 0 | O | 8.53 | 90.00 | 267.87 |
| 1956 | 100 | 0 | 1 | H | 8.75 | 40.54 | 228.40 |
| 1957 | 75 | 0 | 0 | LW | 12.27 | 237.47 | 300.00 |
| 1958 | 50 | 3 | 0 | O | 3.02 | 108.47 | 299.77 |
| 1959 | 50 | 1 | 0 | O | 6.10 | 231.28 | 284.54 |
| 1960 | 500 | 0 | 0 | Q | 5.14 | 158.24 | 127.14 |
| 1962 | 150 | 0 | 1 | BC | 3.93 | 104.06 | 318.52 |
| 1963 | 100 | 0 | 5 | BC | 10.06 | 318.87 | 182.11 |
| 1964 | 150 | 0 | 0 | BC | 10.23 | 213.63 | 445.15 |
| 1966 | 0 | 16 | 0 | O | 4.86 | 281.33 | 407.26 |
| 1967 | 64 | 4 | 0 | 0 | 4.77 | 180.00 | 120.00 |
| 1968 | 26 | 4 | 0 | 0 | 2.14 | 116.61 | 241.36 |
| 1969 | 64 | 6 | 0 | 0 | 5.14 | 201.76 | 271.65 |
| 1970 | 75 | 7 | 0 | O | 3.81 | 90.00 | 174.83 |
| 1971 | 17 | 1 | 0 | O | 9.89 | 196.67 | 420.00 |
| 1973 | 25 | 0 | 0 | CS | 1.91 | 90.00 | 134.11 |
| 1974 | 14 | 0 | 0 | CS | 3.94 | 165.99 | 180.00 |
| 1975 | 0 | 5 | 2 | H | 3.02 | 161.60 | 29.94 |
| 1978 | 25 | 4 | 0 | O | 1.91 | 270.00 | 449.39 |
| 1980 | 10 | 2 | 0 | O | 2.87 | .00 | 209.56 |
| 2004 | 100 | 0 | 4 | H | 3.02 | 108.47 | 59.87 |
| 2005 | 175 | 5 | 2 | BC | 2.87 | .00 | 60.00 |
| 2006 | 42 | 3 | 1 | BC | 3.82 | 180.00 | 108.01 |
| 2007 | 16 | 5 | 1 | BC | 6.02 | 108.47 | 127.14 |
| 2008 | 50 | 1 | 0 | 0 | 5.80 | 170.56 | 169.53 |
| 2012 | 100 | 0 | 0 | BC | 9.67 | 191.29 | 149.80 |
| 2013 | 150 | 1 | 0 | BC | 3.94 | 194.01 | 42.38 |
| 2014 | 1001 | 0 | 0 | Q | 8.17 | 35.48 | 211.69 |
| 2016 | 75 | 4 | 0 | 0 | 3.44 | 146.37 | 200.91 |
| 2025 | 75 | 2 | 0 | 0 | 4.27 | 26.52 | 189.38 |
| 2085 | 100 | 0 | 0 | LW | 8.75 | 139.46 | 271.65 |
| 2086 | 100 | 0 | 0 | LW | 8.94 | 57.94 | 66.97 |
| 2089 | 75 | 2 | 0 | 0 | 15.86 | 40.18 | 66.97 |
| 2090 | 100 | 0 | 0 | LW | 11.46 | 99.48 | 133.94 |
| 2091 | 75 | 4 | 0 | 0 | 1.35 | 135.06 | 361.86 |
| 2092 | 175 | 2 | 0 | 0 | 11.35 | 274.77 | 257.89 |
| 2093 | 50 | 0 | 0 | LW | 4.76 | 90.00 | 123.68 |
|  |  |  |  |  |  |  |  |

## LANDSCAPE VARIABLE VALUES

| A | B | C | D | E | F | G | H |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ID | DEB | SCR | PPT | TYPE | SLOPE | ASPECT | D TO WAT |
| 2094 | 20 | 0 | 0 | LW | 24.71 | 226.41 | 123.68 |
| 2095 | 25 | 4 | 0 | O | 1.91 | 270.00 | 284.06 |
| 2096 | 40 | 4 | 0 | O | 7.67 | 187.11 | 284.06 |
| 2097 | 40 | 2 | 2 | BC | 86.89 | 179.95 | 421.07 |
| 2098 | 25 | 1 | 0 | O | 2.70 | 224.94 | 123.45 |
| 2099 | 3000 | 1 | 0 | LW | 11.91 | 288.47 | 234.02 |
| 2100 | 80 | 1 | 0 | O | 6.65 | 270.00 | 169.53 |
| 2102 | 70 | 1 | 0 | O | 2.87 | 180.00 | 133.94 |
| 2103 | 50 | 0 | 0 | Q | 3.44 | 146.37 | 149.68 |
| 2104 | 75 | 0 | 0 | LW | 6.67 | 180.00 | 84.76 |
| 2106 | 300 | 10 | 0 | O | 10.77 | 52.07 | 299.37 |
| 2107 | 30 | 3 | 0 | O | 13.45 | 192.07 | 282.85 |
| 2108 | 40 | 0 | 0 | LW | 5.80 | 189.44 | 428.79 |
| 2109 | 125 | 0 | 0 | Q | 8.75 | 192.50 | 84.76 |
| 2111 | 200 | 2 | 0 | O | 5.56 | 30.91 | 89.81 |
| 2112 | 100 | 1 | 0 | O | 14.93 | 90.00 | 329.30 |
| 2113 | 1000 | 15 | 5 | BC | 7.67 | 187.11 | 108.01 |
| 2114 | 300 | 0 | 0 | LW | 8.74 | 229.34 | 407.75 |
| 2115 | 150 | 2 | 1 | H | 10.43 | 84.79 | 375.29 |
| 2116 | 250 | 0 | 0 | LW | 12.06 | 38.60 | 123.45 |
| 2117 | 50 | 1 | 0 | O | 2.70 | 44.94 | 66.97 |
| 2118 | 150 | 2 | 1 | H | 14.79 | 198.40 | 257.71 |
| 2119 | 50 | 1 | 0 | O | 3.44 | 33.63 | 89.81 |
| 2120 | 200 | 0 | 0 | CS | 4.86 | 101.33 | 94.69 |
| 2139 | 14 | 0 | 1 | H | 6.03 | 198.40 | 425.84 |
| 2140 | 750 | 0 | 0 | Q | 12.25 | 22.58 | 456.13 |
| 2141 | 100 | 1 | 2 | H | 11.36 | 41.57 | 90.00 |
| 2142 | 20 | 0 | 0 | LW | 8.94 | 57.94 | 296.67 |
| 2143 | 75 | 0 | 0 | Q | 8.74 | 130.66 | 189.38 |
| 2144 | 30 | 0 | 0 | Q | 8.99 | 288.47 | 228.07 |
| 2145 | 100 | 2 | 0 | O | 12.26 | 85.59 | 120.00 |
| 2146 | 40 | 0 | 0 | Q | 1.35 | 44.94 | 182.11 |
| 2147 | 25 | 0 | 0 | LW | 1.35 | 44.94 | 305.32 |
| 2148 | 200 | 1 | 0 | LW | 6.86 | 33.63 | 417.08 |
| 2149 | 20 | 0 | 0 | LW | 27.05 | 231.57 | 84.76 |
| 2150 | 1000 | 1 | 0 | LW | 1.91 | 90.00 | 191.94 |
| 2151 | 300 | 1 | 0 | LW | 6.86 | 146.37 | 174.66 |
| 2152 | 250 | 3 | 2 | BC | .96 | 180.00 | 339.05 |
| 2153 | 100 | 0 | 0 | LW | 10.57 | 206.52 | 94.69 |
|  |  |  |  |  |  |  |  |
| 20 |  |  |  |  |  |  |  |

## LANDSCAPE VARIABLE VALUES

| A | B | C | D | E | F | G | H |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ID | DEB | SCR | PPT | TYPE | SLOPE | ASPECT | D TO WAT |
| 2154 | 30 | 2 | 0 | O | 6.02 | 251.53 | 174.83 |
| 2236 | 250 | 4 | 1 | H | 8.99 | 108.47 | 254.29 |
| 2237 | 75 | 0 | 0 | Q | 16.23 | 256.73 | 123.45 |
| 2238 | 1000 | 0 | 0 | Q | 3.44 | 56.25 | 284.54 |
| 2239 | 40 | 4 | 1 | H | 6.74 | 188.11 | 276.34 |
| 2240 | 500 | 0 | 0 | LW | .96 | .00 | 312.60 |
| 2241 | 200 | 0 | 0 | Q | 8.94 | 122.06 | 120.00 |
| 2242 | 100 | 0 | 0 | Q | 10.39 | 270.00 | 270.00 |
| 2243 | 200 | 0 | 2 | H | 7.65 | 97.14 | 149.80 |
| 2244 | 60 | 1 | 0 | 0 | 9.53 | 174.30 | 84.76 |
| 2245 | 11 | 0 | 0 | LW | 6.93 | 195.91 | 308.72 |
| 2246 | 75 | 0 | 0 | LW | 15.19 | 47.43 | 241.48 |
| 2247 | 75 | 0 | 0 | Q | 14.18 | 7.58 | 239.49 |
| 2248 | 75 | 0 | 0 | Q | 8.75 | 220.54 | 149.80 |
| 2516 | 250 | 0 | 0 | LW | 5.39 | 135.06 | 94.69 |
| 2517 | 3000 | 0 | 0 | LW | 3.94 | 165.99 | 334.84 |
| 2518 | 50 | 0 | 0 | CS | 2.70 | 135.06 | .00 |
| 2519 | 100 | 4 | 0 | 0 | 3.44 | 56.25 | 191.85 |
| 2520 | 42 | 1 | 0 | 0 | 16.76 | 183.1 | 7119.75 |
| 2521 | 100 | 6 | 0 | 0 | 10.78 | 164.78 | 29.94 |
| 2523 | 30 | 6 | 1 | H | 6.38 | 63.39 | 241.36 |
| 2524 | 200 | 3 | 1 | H | 2.14 | 333.48 | 67.05 |
| 2525 | 75 | 0 | 0 | Q | 17.68 | 47.06 | 120.00 |
| 2526 | 150 | 0 | 0 | Q | 11.81 | 28.56 | 119.75 |
| 2527 | 100 | 0 | 0 | LW | 12.78 | 53.91 | 299.37 |
| 2530 | 75 | 4 | 1 | H | 1.35 | 135.06 | 216.19 |
| 2531 | 400 | 4 | 0 | 0 | 5.39 | 44.94 | 371.03 |
| 2532 | 500 | 0 | 0 | Q | 11.06 | 19.94 | 161.51 |
| 2533 | 50 | 4 | 0 | 0 | 4.76 | 90.00 | 240.00 |
| 2534 | 100 | 0 | 0 | Q | 2.70 | 315.06 | 256.25 |
| 2535 | 20 | 0 | 0 | Q | 2.70 | 44.94 | 30.00 |
|  |  |  |  |  |  |  |  |

## APPENDIX C

## IDRISI IMAGE HISTORIES

## JOB HISTORY for DECKER.IMG

## STEPS:

(1) The Digital Elevation Model (DEM) was downloaded from the 9track tape sent by USGS, using the $U$ of $M$ mainframe (Lewis). The file (DECKER.DEM) was placed on a $3.5^{\prime \prime}$ diskette and copied into C:ITHESIS on my hard drive.
(2) VAR2FIX was used to create a fixed length 1024 byte format ASCII file which can be imported into IDRISI.
(DECKER.DEM---->DECKER.FIX)
(3) DEMIDRIS was then used to convert the above fixed length USGS DEM into an IDRISI format image, with the corresponding Documentation file.
(DECKER.FIX ----->DECKER.IMG)
(4) Modifications made to the $X, Y$ and $Z$ values in the documentation file (DECKER.DOC), associated with DECKER.IMG.
a) The numeric output option of HISTO was used to get the actual minimum $Z$ value of the $D E M(Z=1032)$. DOCUMENT was then used to edit the value ( 0 changed to 1030).
b) A UTM Grid template was used to find the minimum and maximum $X$ and $Y$ values from the Topo sheet. DOCUMENT was then used to change the values to correspond to the actual map boundaries.

Values from DEM file
Value from Topo sheet
Min. X: 352216.906250 ...................................... 352220.000000
Max. X: 362369.437500 ...................................... 362360.000000
Min. Y: 4984208.000000 ...................................... 4984220.000000
Max. Y: 4998344.500000 ...................................... 4998320.000000
COMMENTS:

## JOB HISTORY for PEARLSCH.IMG

## STEPS:

(1) The Digital Elevation Model (DEM) was downloaded from the 9track tape sent by USGS, using the U of M mainframe (Lewis). The file (PEARLSCH.DEM) was placed on a $3.5^{\prime \prime}$ diskette and copied into C:ITHESIS on my hard drive.
(2) VAR2FIX was used to create a fixed length 1024 byte format ASCII file which can be imported into IDRISI.
(PEARLSCH.DEM----->PEARLSCH.FIX)
(3) DEMIDRIS was then used to convert the above fixed length USGS DEM into an IDRISI format image, with the corresponding Documentation file.
(PEARLSCH.FIX - -->PEARLSCH.IMG)
(4) Modifications made to the $X, Y$ and $Z$ values in the documentation file (PEARLSCH.DOC), associated with PEARLSCH.IMG.
a) The numeric output option of HISTO was used to get the actual minimum $Z$ value of the DEM ( $Z=1055$ ). DOCUMENT was then used to edit the value ( 0 changed to 1050).
b) A UTM Grid template was used to find the minimum and maximum $X$ and $Y$ values from the Topo sheet. DOCUMENT was then used to change the values to correspond to the actual map boundaries.

Values from DEM file
Min. X: 342364.718750
Value from Topo sheet
Max. X: 352538.718750
342360.000000

Min. Y: 4984428.500000 352540.000000

Max. Y: 4998580.000000 4984440.000000 4998560.000000

COMMENTS:

## JOB HISTORY for RELIEF.IMG

Objective: Create a relief file (image), which encompasses all of the study area and archaeological sites.

## STEPS:

(1) CONCAT was used to "merge" the two image files containing geographic information (DECKER.IMG and PEARLSCH.IMG).
a) DECKER.IMG was used as the reference file.
b) PEARLSCH.IMG was used as the paste image.
c) The bottom-right corner of PEARLSCH.IMG was selected, and pasted on the point of DECKER.IMG represented by COLUMN=10, ROW=461.


COMMENTS: The column and row information was obtained from the DECKER.IMG using the cursor function as the image was displayed in COLOR A.

JOB HISTORY for DRELIEF.IMG
Objective: Create an image which represents the slopes of surfaces on the RELIEF.IMG, which can be used to examine correlations with sites.

## STEPS:

(1) SURFACE was used, with the [1] Slope option being chosen.

COMMENTS: Slope surfaces were calculated in degrees (Option 1).

## JOB HISTORY for ARELIEF.IMG

Objective: Create an image which represents the aspect of surfaces on the RELIEF.IMG, which can be used to examine correlations with sites.

## STEPS:

(1) SURFACE was used, with the [2] Aspect option being chosen.

COMMENTS: Aspects are displayed as azimuths.

## JOB HISTORY for DSITES.IMG

Objective: Create an IDRISI image file containing all archaeological sites digitized from the Decker Quadrangle.

## STEPS:

(1) INITIAL was used to create a blank image, which could be updated with the site location information from and DXSITE.VEC.
a) New image created named DSITES.IMG.
b) Image values set at (0).
c) Reference parameters were copied from DECKER.IMG (ie. number of Rows, Columns, ref. system).
(2) Once the blank image was created, POINTRAS was used to update DSITES.IMG with the point information contained in DXSITE.VEC.
a) Points in the blank image were updated using the identifier numbers assigned when they were digitized.
(3) POLYRAS was then used to update DSITES.IMG with the polygon site information contained in DPSITE.VEC.
(DSITES.IMG $-\infty$ DSITES.IMG)
blank all Decker sites
COMMENTS: This file will be used in conjunction with PSITES.IMG to create a geographic definition file, which can be combined with the artifact attribute values files. See Job History for SITES.IMG.

## JOB HISTORY for PSITES.IMG

Objective: Create an IDRISI image file containing all archaeological sites digitized from the Decker Quadrangle.

## STEPS:

(1) INITIAL was used to create a blank image, which could be updated with the site location information from and PXSITE.VEC.
a) New image created named PSITES.IMG.
b) Image values set at (0).
c) Reference parameters were copied from PEARLSCH.IMG (ie. number of Rows, Columns, ref. system).
(2) Once the blank image was created, POINTRAS was used to update PSITES.IMG with the point information contained in PXSITE.VEC.
a) Points in the blank image were updated using the identifier numbers assigned when they were digitized.
(3) POLYRAS was then used to update PSITES.IMG with the polygon site information contained in PPSITE.VEC.
(PSITES.IMG

blank $\cdots \quad$| PSITES.IMG) |
| :---: |
| all Pearl School sites |

COMMENTS: This file will be used in conjunction with DSITES.IMG to create a geographic definition file, which can be combined with the artifact attribute values files. See Job History for SITES.IMG.

## JOB HISTORY for SITES.IMG

Objective: Create a geographic definition file (image), which encompasses all of the study area and archaeological sites.

## STEPS:

(1) CONCAT was used to "merge" the two image files containing archaeological site information (DSITES.IMG and PSITES.IMG).
a) DSITES.IMG was used as the reference file.
b) PSITES.IMG was used as the paste image.
c) The bottom-right corner of PSITES.IMG was selected, and pasted on the point of DSITES.IMG represented by COLUMN=10, ROW=461.


COMMENTS: The column and row information was obtained from the DECKER.IMG using the cursor function as the image was displayed in COLOR A.

## JOB HISTORY for SITESM.IMG

Objective: Create an image which can be used as a mask for all archaeological sites when doing statistical analysis.

## STEPS:

(1) RECLASS was used to change all of the site numbers in SITES.IMG to one value (Value=1).
(2) CONVERT was used to change the data type from Integer to Byte, so the image can be used as a Boolean Mask.

## COMMENTS:

## JOB HISTORY for DSTR.IMG

Objective: Create an IDRISI image file containing all horology information digitized from the Decker Quadrangle.

## STEPS:

(1) INITIAL was used to create a blank image, which could be updated with the stream information from DSTR.VEC.
a) New image created named DSTR.IMG.
b) Image values set at (0).
c) Reference parameters were copied from DECKER.IMG (ie. number of Rows, Columns, ref. system).
(2) Once the blank image was created, LINERAS was used to update DSTR.IMG with the line information contained in DSTR.VEC.
a) Lines in the blank image were updated using the identifier numbers assigned when the streams were digitized (ID=1).
(DSTR.IMG $---\infty \quad$ DSTR.IMG)
blank all Decker streams
COMMENTS: This file will be used in conjunction with PSTR.IMG to create an image that will cover both topographic quadrangles.

## JOB HISTORY for PSTR.IMG

Objective: Create an IDRISI image file containing all horology information digitized from the Decker Quadrangle.

## STEPS:

(1) INITIAL was used to create a blank image, which could be updated with the stream information from PSTR.VEC.
a) New image created named PSTR.IMG.
b) Image values set at (0).
c) Reference parameters were copied from PEARLSCH.IMG (ie. number of Rows, Columns, ref. system).
(2) Once the blank image was created, LINERAS was used to update PSTR.IMG with the line information contained in PSTR.VEC.
a) Lines in the blank image were updated using the identifier numbers assigned when the streams were digitized (ID=1).


COMMENTS: This file will be used in conjunction with DSTR.IMG to create an image that will cover both topographic quadrangles.

## JOB HISTORY for STREAMS.IMG

Objective: Create an image file which contains all hydrology information from both quadrangles used in the study.

## STEPS:

(1) CONCAT was used to "merge" the two image files containing hydrology information (DSTR.IMG and PSTR.IMG).
a) DSTR.IMG was used as the reference file.
b) PSTR.IMG was used as the paste image.
c) The bottom-right corner of PSTR.IMG was selected, and pasted on the point of DSTR.IMG represented by COLUMN=10, ROW=461.


COMMENTS: The column and row information was obtained from the DECKER.IMG using the cursor function as the image was displayed in COLOR A.

## JOB HISTORY for DSTREAM.IMG

Objective: Create an image that represents the distance to water for any point on the RELIEF.IMG, to be used in analyzing the correlation of sites to water.

## STEPS:

(1) DISTANCE was used with STREAMS.IMG as the reference file.

STREAMS.IMG --------> DSTREAM.IMG
(2) RECLASS was used in to create an image with five distance categories.
(3) DOCUMENT was then used to create the legend.

> Category 1: 0-250 m
> Category 2: $250-500 \mathrm{~m}$
> Category 3: $500-750 \mathrm{~m}$
> Category 4: $750-1000 \mathrm{~m}$ Category 5: $1000-1250 \mathrm{~m}$
> DSTREAM.IMG --------> KSTREAM.IMG

COMMENTS: Furthest distance to water for any point on RELIEF.IMG is just over 1085 meters.

## JOB HISTORY for DSURV.IMG

Objective: Create an IDRISI image file containing all survey area information digitized from the Decker Quadrangle.

## STEPS:

(1) INITIAL was used to create a blank image, which could be updated with the survey area information from DSURV.VEC.
a) New image created named DSURV.IMG.
b) Image values set at (0).
c) Reference parameters were copied from DECKER.IMG (ie. number of Rows, Columns, ref. system).
(2) Once the blank image was created, LINERAS was used to update DSURV.IMG with the line information contained in DSURV.VEC.
a) Lines in the blank image were updated using the identifier numbers assigned when the areas were digitized (ID=1).
(DSURV.IMG ---> DSURV.IMG)
blank all Decker Survey Areas
COMMENTS: This file will be used in conjunction with PSURV.IMG to create an image that will cover both topographic quadrangles.

## JOB HISTORY for PSURV.IMG

Objective: Create an IDRISI image file containing all survey area information digitized from the Pearl School Quadrangle.

## STEPS:

(1) INITIAL was used to create a blank image, which could be updated with the survey area information from PSURV.VEC.
a) New image created named PSURV.IMG.
b) Image values set at (0).
c) Reference parameters were copied from PEARLSCH.IMG (ie. number of Rows, Columns, ref. system).
(2) Once the blank image was created, LINERAS was used to update PSURV.IMG with the line information contained in PSURV.VEC.
a) Lines in the blank image were updated using the identifier numbers assigned when the areas were digitized (ID=1).
(PSURV.IMG

blank $\quad$| PSURV.IMG) |
| :---: |
| all Pearl School Survey Areas |

COMMENTS: This file will be used in conjunction with DSURV.IMG to create an image that will cover both topographic quadrangles.

## JOB HISTORY for SURVEY.IMG

Objective: Create an image file which contains all survey area information from both quadrangles used in the study.

## STEPS:

(1) CONCAT was used to "merge" the two image files containing suvey area information (DSURV.IMG and PSURV.IMG).
a) DSURV.IMG was used as the reference file.
b) PSURV.IMG was used as the paste image.
c) The bottom-right corner of PSURV.IMG was selected, and pasted on the point of DSURV.IMG represented by COLUMN=10, ROW=461.


COMMENTS: The column and row information was obtained from the DECKER.IMG using the cursor function as the image was displayed in COLOR A.

## JOB HISTORY for DSURVM.IMG

Objective: Create an IDRISI image file which can be used as a mask, containing all survey area information digitized from the Decker Quadrangle.

## STEPS:

(1) INITIAL was used to create a blank image, which could be updated with the survey area information from DSURVP.VEC.
a) New image created named DSURVM.IMG.
b) Image values set at (0).
c) Reference parameters were copied from DECKER.IMG (ie. number of Rows, Columns, ref. system).
(2) Once the blank image was created, POLYRAS was used to update DSURVM.IMG with the polygon information contained in DSURVP.VEC.
a) The blank image was updated using the identifier numbers assigned when the areas were digitized (ID=1).
(DSURVM.IMG $\rightarrow$ DSURVP.IMG)
blank all Decker Survey Areas
COMMENTS: This file will be used in conjunction with PSURVM.IMG to create an image that will cover both topographic quadrangles.

JOB HISTORY for PSURVM.IMG
Objective: Create an IDRISI image file which can be used as a mask, containing all survey area information digitized from the Pearl School Quadrangle.

STEPS:
(1) INITIAL was used to create a blank image, which could be updated with the survey area information from PSURVP.VEC.
a) New image created named PSURVM.IMG.
b) Image values set at (0).
c) Reference parameters were copied from PEARLSCH.IMG (ie. number of Rows, Columns, ref. system).
(2) Once the blank image was created, POLYRAS was used to update PSURVM.IMG with the polygon information contained in PSURVP.VEC.
a) The blank image was updated using the identifier numbers assigned when the areas were digitized (ID=1).
$\underset{\text { blank }}{\text { (PSURVMIMG }} \rightarrow$ all Pearl School Survey Areas

COMMENTS: This file will be used in conjunction with DSURVM.IMG to create an image that will cover both topographic quadrangles.

## JOB HISTORY for SURVEYM.IMG

Objective: Create an image file to be used as a mask which contains all survey area information from both quadrangles used in the study.

## STEPS:

(1) CONCAT was used to "merge" the two image files containing suvey area information (DSURVM.IMG and PSURVM.IMG).
a) DSURVM.IMG was used as the reference file.
b) PSURVM.IMG was used as the paste image.
c) The bottom-right corner of PSURVM.IMG was selected, and pasted on the point of DSURVM.IMG represented by COLUMN=10, ROW=461.

(2) CONVERT was then used to change the data type from integer to byte, so that the image can be used as a Boolean Mask.

COMMENTS: The column and row information was obtained from the DECKER.IMG using the cursor function as the image was displayed in COLOR A.

## JOB HISTORY for ALL ATTRIBUTE VALUES FILES

Objective: Create attribute values files in IDRISI format for each of the artifact classes used in study.

## List of Attribute Values Files:

ATIFACTS.PRN ...Spreadsheet with identifiers and all artifact classes
FLAKES.VAL ........Two column file with identifiers and debitage totals
SCRAPERS.VAL ...Two column file with identifiers and scraper totals
POINTS.VAL ........Two column file with identifiers and projectile point totals

TYPE.VAL Two column file with identifiers and site type classification

## STEPS:

(1) QUATTRO PRO for WINDOWS was used to create a spreadsheet with 5 columns: 1- Identifier, 2- Flakes, 3- Scrapers, 4-Points, 5Type.
a) Totals for each of the artifact classes were entered for all of the 460 map location identifiers.
(2) Using QUATTRO PRO's PrintlFile option each of the above two column ASCII format files (.prn) were created by selecting the identifier column and the appropriate artifact class column.
(3) Each of the (.prn) files was edited using WORD PERFECT 6.0a.
a) Any extra pages created when the files were printed to files were deleted. Column headers were also deleted at this time.
b) File extensions were changed from (.prn) to the IDRISI format (.val).
(4) Documentation files (.dvl) were created for each of the values files (.val) using the IDRISI module DOCUMENT.

COMMENTS: Using ASSIGN each of the attribute values files can now be used in conjunction with SITES.IMG to create images of the artifact distributions for individual classes.

## JOB HISTORY for ALL VECTOR FILES

Objective: Digitize and create IDRISI vector files for all information compiled for the thesis study area.

List of Vector files:
DSTR.VEC ......... Decker Quadrangle Hydrology (chains)
PSTR.VEC ......... Pearl School Quadrangle Hydrology (chains)
DVEG.VEC ......... Vegetation areas from Decker Quad. (polygons)
PVEG.VEC ......... Vegetation areas from Pearl School Quad. (polygons)
DSURV.VEC ....... Survey areas from Decker Quad. (chains)
PSURV.VEC ........ Survey areas from Pearl School Quad. (chains)
PXSITE.VEC ........ Arch sites from Pearl School Quad. (points) DXSITE.VEC ....... Arch sites from Decker Quad. (points)

DANT.VEC ......... Antelope major use areas, Decker Quad. (polygons) DDEER.VEC ....... Deer major use areas, Decker Quad. (polygons)

PANT.VEC .......... Antelope major use areas, Pearl School Quad. (polygons)
PDEER.VEC ....... Deer major use areas, Pearl School Quad. (polygons)

STEPS:
(1) The files listed above were first digitized using the program ROOTS as polygons, points, or chains. The artifact locations were also assigned a numerical ID (Smithsonian sequence, or inventory report number) at this time.
(2) Using the import/export module of the digitizing program, each 'layer' was saved as a ROOTS (.rts) file, then exported in IDRISI vector format (.vec), including the documentation file (.dvc).

COMMENTS: The vector files can then be 'overlaid' on image files for display using COLOR A, or converted into image files themselves, using INITIAL, POINTRAS, LINERAS, and POLYRAS.

## GETTING DEM FILES FROM 9-TRACK TAPE ONTO THE LEWIS SYSTEM

When you submit a tape to CIS it will be given a name or number (referred to as a volume ID). In our case, the volume ID is Glen. The volume ID must be used when you mount the tape to perform any operations on it (such as writing or reading files, on or off the tape).

When you submit the tape for the first time, CIS will ask if you want the tape internally labeled. If the tape comes from another computer system, DO NOT have it labeled on the system. If you label it, the information on the tape will be destroyed.

First Log on to Lewis, then change to the Directory in which you want to download the files.

## Mounting the tape:

Use a command in the following form:
\$ mount mu mydata ris /foreign/comment="tape ID mydata"
"mount mu" indicates that you want to mount a tape on the device "mu" (which refers to a tape drive, i.e. magnetic unit).
"mydata" is the volume ID.
The phrase "rls" is referred to as a logical definition. It is an abbreviation you assign to the tape drive; it is helpful to use your initials. In our case the "rls" was vp, having been assigned by Vicki Pengelly.

The qualifier "foreign" is required because we are using what they consider to be a foreign tape.

The "/comment" qualifier sends a comment to the computer operator. The "/foreign" qualifier prevents the operator from determining the volume ID; therefore a comment is required to tell the operator which tape to mount.

Once you issue the mount command, you should see a message on the screen indicating that the request has been sent to the operator. Before proceeding, wait for another message indicating that the tape has been mounted successfully. If there are any problems you will receive an error message.

## Reading the files from a tape using the Foreign Tape Program (FTP):

 Start the FTP program with the command shown below. After you start theprogram, it will ask you for your device name (the logical definition you assigned to the tape when you mounted it).

## \$ run um\$lib:ftp

## DEVICE: rls

The FTP program will give you the "FTP>" prompt.
On the 9-Track tape, each DEM contains three files; a header, the elevation data, and a trailer. This is because the FTP program was used to write the files on the tape by USGS. If the headers and trailers are needed, they can be appended back onto the data file. For our purposes we only need the elevation data file. The way the FTP program works, the tape must be read from beginning to end, with each file being downloaded in sequence.

The command for retreiving a file is as follows:
FTP> read $/ \mathrm{rec}=1024 / \mathrm{block}=8192$ filename
The qualifier "rec=" specifies the record size. For DEM's, the proper record size is 1024 .
"block=" specifies the block size. 8192 is the maximum byte length of a DEM file.
"filename" In practice any file name recognized by the VMS system can be used. I used file names such as: one.dat, two.dat, three.dat, ect., in order to keep track of were I was in the file sequence.

A message something like "no more files processed" will appear, after the last file has been downloaded.

When you are finished downloading the files, EXIT the FTP program.
After returning to Lewis, be sure to dismount the tape before you log out. For example:

## \$ dismount ris

## APPENDIX D

## SITE TYPE SUMMARY STATISTICS

## SUMMARY STATISTICS

TYPE: Base Camp Sites

## ASPECT

| Value Label |  | Valid |  |  | Cum |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Value | Freq | q \% | \% | \% |
|  | . 00 | 2 | 6.1 | 6.1 | 6.1 |
|  | 44.94 | 2 | 6.1 | 6.1 | 12.1 |
|  | 56.25 | 1 | 3.0 | 3.0 | 15.2 |
|  | 90.00 | 1 | 3.0 | 3.0 | 18.2 |
|  | 101.33 | 1 | 3.0 | 3.0 | 21.2 |
|  | 104.06 | 1 | 3.0 | 3.0 | 24.2 |
|  | 105.98 | 1 | 3.0 | 3.0 | 27.3 |
|  | 108.47 | 1 | 3.0 | 3.0 | 30.3 |
| , | 116.61 | 2 | 6.1 | 6.1 | 36.4 |
|  | 168.71 | 1 | 3.0 | 3.0 | 39.4 |
|  | 175.25 | 1 | 3.0 | 3.0 | 42.4 |
|  | 179.95 | 1 | 3.0 | 3.0 | 45.5 |
|  | 180.00 | 4 | 12.1 | 12.1 | 57.6 |
|  | 187.11 | 1 | 3.0 | 3.0 | 60.6 |
|  | 190.28 | 1 | 3.0 | 3.0 | 63.6 |
|  | 191.29 | 2 | 6.1 | 6.1 | 69.7 |
|  | 194.01 | 1 | 3.0 | 3.0 | 72.7 |
|  | 198.40 | 3 | 9.1 | 9.1 | 81.8 |
|  | 209.69 | 1 | 3.0 | 3.0 | 84.8 |
|  | 213.63 | 1 | 3.0 | 3.0 | 87.9 |
|  | 281.33 | 1 | 3.0 | 3.0 | 90.9 |
|  | 288.47 | 1 | 3.0 | 3.0 | 93.9 |
|  | 318.87 | 1 | 3.0 | 3.0 | 97.0 |
|  | 348.71 | 1 | 3.0 | 3.0 | 100.0 |
|  | Total | $33-1$ | 100.0 | 100.0 |  |


| Mean | 161.909 | Std err | 14.370 | Median | 180.000 |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Mode | 180.000 | Std dev | 82.548 | Variance | 6814.127 |  |
| Kurtosis | .154 | S E Kurt | .798 | Skewness | .029 |  |
| S E Skew | .409 | Range | 348.713 | Minimum | .000 |  |
| Maximum | 348.713 | Sum | 5343.004 |  |  |  |
| Valid cases | 33 | Missing cases | 0 |  |  |  |
| lin |  |  |  |  |  |  |

SUMMARY STATISTICS
TYPE: Base Camp Sites
DISTWAT

| Value Label |  |  | Valid |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Value | Freq | $\%$ | $\%$ | $\%$ |  |
|  |  |  |  |  |  |
|  | 42.38 | 2 | 6.1 | 6.1 | 6.1 |
|  | 60.00 | 2 | 6.1 | 6.1 | 12.1 |
|  | 89.81 | 3 | 9.1 | 9.1 | 21.2 |
|  | 94.85 | 1 | 3.0 | 3.0 | 24.2 |
|  | 108.01 | 2 | 6.1 | 6.1 | 30.3 |
|  | 119.75 | 1 | 3.0 | 3.0 | 33.3 |
|  | 120.00 | 1 | 3.0 | 3.0 | 36.4 |
|  | 127.14 | 2 | 6.1 | 6.1 | 42.4 |
|  | 133.94 | 1 | 3.0 | 3.0 | 45.5 |
|  | 149.80 | 1 | 3.0 | 3.0 | 48.5 |
|  | 174.83 | 1 | 3.0 | 3.0 | 51.5 |
|  | 182.11 | 1 | 3.0 | 3.0 | 54.5 |
|  | 189.38 | 1 | 3.0 | 3.0 | 57.6 |
|  | 189.70 | 1 | 3.0 | 3.0 | 60.6 |
|  | 216.02 | 1 | 3.0 | 3.0 | 63.6 |
|  | 241.48 | 1 | 3.0 | 3.0 | 66.7 |
|  | 247.36 | 1 | 3.0 | 3.0 | 69.7 |
|  | 271.09 | 1 | 3.0 | 3.0 | 72.7 |
|  | 282.59 | 2 | 6.1 | 6.1 | 78.8 |
|  | 284.06 | 1 | 3.0 | 3.0 | 81.8 |
|  | 318.52 | 1 | 3.0 | 3.0 | 84.8 |
|  | 334.72 | 1 | 3.0 | 3.0 | 87.9 |
|  | 339.05 | 2 | 6.1 | 6.1 | 93.9 |
|  | 421.07 | 1 | 3.0 | 3.0 | 97.0 |
|  | 445.15 | 1 | 3.0 | 3.0 | 100.0 |
|  | -2 | -10 | -100 |  |  |

Mean 191.563 Std err 19.274 Median 174.831
Mode 89.810 Std dev 110.719 Variance 12258.708
Kurtosis -. 543 S E Kurt . 798 Skewness 611
S E Skew . 409 Range 402.765 Minimum 42.382
Maximum 445.146 Sum 6321.594
Valid cases 33 Missing cases 0

## SUMMARY STATISTICS

TYPE: Base Camp Sites
SLOPED

| Value Label | Value | Freq | \% | Valid \% | $\begin{gathered} \text { Cum } \\ \% \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | . 96 | 3 | 9.1 | 9.1 | 9.1 |
|  | 2.14 | 1 | 3.0 | 3.0 | 12.1 |
|  | 2.70 | 1 | 3.0 | 3.0 | 15.2 |
|  | 2.87 | 2 | 6.1 | 6.1 | 21.2 |
|  | 3.02 | 1 | 3.0 | 3.0 | 24.2 |
|  | 3.44 | 1 | 3.0 | 3.0 | 27.3 |
|  | 3.82 | 1 | 3.0 | 3.0 | 30.3 |
|  | 3.93 | 1 | 3.0 | 3.0 | 33.3 |
|  | 3.94 | 1 | 3.0 | 3.0 | 36.4 |
|  | 4.26 | 1 | 3.0 | 3.0 | 39.4 |
|  | 4.86 | 2 | 6.1 | 6.1 | 45.5 |
|  | 4.87 | 3 | 9.1 | 9.1 | 54.5 |
|  | 5.71 | 1 | 3.0 | 3.0 | 57.6 |
|  | 6.02 | 1 | 3.0 | 3.0 | 60.6 |
|  | 6.03 | 2 | 6.1 | 6.1 | 66.7 |
|  | 6.73 | 1 | 3.0 | 3.0 | 69.7 |
|  | 6.92 | 1 | 3.0 | 3.0 | 72.7 |
|  | 7.67 | 1 | 3.0 | 3.0 | 75.8 |
|  | 7.67 | 1 | 3.0 | 3.0 | 78.8 |
|  | 9.67 | 1 | 3.0 | 3.0 | 81.8 |
|  | 10.06 | 1 | 3.0 | 3.0 | 84.8 |
|  | 10.23 | 1 | 3.0 | 3.0 | 87.9 |
|  | 10.58 | 1 | 3.0 | 3.0 | 90.9 |
|  | 11.37 | 1 | 3.0 | 3.0 | 93.9 |
|  | 11.91 | 1 | 3.0 | 3.0 | 97.0 |
|  | 86.89 | 1 | 3.0 | 3.0 | 100.0 |
|  | Total | 331 | 100.0 | 100.0 |  |


| Mean | 7.989 | Std err | 2.521 | Median | 4.867 |
| :--- | :---: | :---: | :---: | :---: | ---: |
| Mode | .957 | Std dev | 14.482 | Variance | 209.736 |
| Kurtosis | 29.919 | S E Kurt | .798 | Skewness | 5.355 |
| S E Skew | .409 | Range | 85.930 | Minimum | .957 |
| Maximum | 86.887 | Sum | 263.652 |  |  |
| Valid cases | 33 | Missing cases | 0 |  |  |
|  |  |  |  |  |  |

## SUMMARY STATISTICS

TYPE: Chipping Station Sites
ASPECT
Value Label Value Freq $\% \quad \% \quad \%$

| -1.00 | 2 | 1.6 | 1.6 | 1.6 |
| ---: | :---: | :---: | :--- | :---: |
| .00 | 6 | 4.8 | 4.8 | 6.5 |
| 4.08 | 1 | .8 | .8 | 7.3 |
| 11.29 | 1 | .8 | .8 | 8.1 |
| 14.90 | 1 | .8 | .8 | 8.9 |
| 15.91 | 2 | 1.6 | 1.6 | 10.5 |
| 18.40 | 1 | .8 | .8 | 11.3 |
| 19.94 | 1 | .8 | .8 | 12.1 |
| 21.76 | 1 | .8 | .8 | 12.9 |
| 26.52 | 4 | 3.2 | 3.2 | 16.1 |
| 31.95 | 1 | .8 | .8 | 16.9 |
| 33.63 | 1 | .8 | .8 | 17.7 |
| 38.60 | 1 | .8 | .8 | 18.5 |
| 41.57 | 1 | .8 | .8 | 19.4 |
| 44.94 | 4 | 3.2 | 3.2 | 22.6 |
| 56.25 | 4 | 3.2 | 3.2 | 25.8 |
| 57.94 | 1 | .8 | .8 | 26.6 |
| 60.89 | 1 | .8 | .8 | 27.4 |
| 63.39 | 3 | 2.4 | 2.4 | 29.8 |
| 68.16 | 1 | .8 | .8 | 30.6 |
| 71.53 | 3 | 2.4 | 2.4 | 33.1 |
| 75.94 | 1 | .8 | .8 | 33.9 |
| 80.52 | 1 | .8 | .8 | 34.7 |
| 81.85 | 1 | .8 | .8 | 35.5 |
| 90.00 | 11 | 8.9 | 8.9 | 44.4 |
| 96.35 | 1 | .8 | .8 | 45.2 |
| 101.33 | 1 | .8 | .8 | 46.0 |
| 105.29 | 1 | .8 | .8 | 46.8 |
| 108.47 | 2 | 1.6 | 1.6 | 48.4 |
| 116.61 | 2 | 1.6 | 1.6 | 50.0 |
| 123.75 | 1 | .8 | .8 | 50.8 |
| 125.60 | 1 | .8 | .8 | 51.6 |
| 128.72 | 1 | .8 | .8 | 52.4 |
| 129.87 | 1 | .8 | .8 | 53.2 |
| 135.06 | 2 | 1.6 | 1.6 | 54.8 |
| 143.19 | 1 | .8 | .8 | 55.6 |

## SUMMARY STATISTICS

TYPE: Chipping Station Sites
ASPECT
Value Label Value Freq $\quad$ \% $\quad \% \quad \begin{array}{rlr}\text { Valid } & \text { Cum } \\ \%\end{array}$

| 146.37 | 3 | 2.4 | 2.4 | 58.1 |
| :--- | :--- | :--- | :--- | :--- |

$149.09 \quad 1 \quad .8 \quad .8 \quad 58.9$
$\begin{array}{lllll}153.48 & 2 & 1.6 & 1.6 & 60.5\end{array}$
$156.08 \quad 1 \quad .8 \quad .8 \quad 61.3$
$161.60 \quad 1 \quad .8 \quad .8 \quad 62.1$
$162.93 \quad 1 \quad .8 \quad .8 \quad 62.9$
$164.09 \quad 1 \quad .8 \quad .8 \quad 63.7$
$\begin{array}{lllll}165.99 & 2 & 1.6 & 1.6 & 65.3\end{array}$
$173.67 \quad 1 \quad .8 \quad .8 \quad 66.1$
$174.82 \quad 1 \quad .8 \quad .8 \quad 66.9$
$\begin{array}{lllll}180.00 & 7 & 5.6 & 5.6 & 72.6\end{array}$
$188.11 \quad 1 \quad .8 \quad .8 \quad 73.4$
$\begin{array}{lllll}191.29 & 2 & 1.6 & 1.6 & 75.0\end{array}$
202.58 1 . 8 . 8 75.8
$203.15 \quad 1 \quad .8 \quad .8 \quad 76.6$
$\begin{array}{lllll}206.52 & 2 & 1.6 & 1.6 & 78.2\end{array}$
$210.91 \quad 1 \quad .8 \quad .8 \quad 79.0$
$\begin{array}{lllll}211.95 & 1 & .8 & .8 & 79.8\end{array}$
$213.63 \quad 1 \quad .8 \quad .8 \quad 80.6$
$\begin{array}{lllll}224.94 & 4 & 3.2 & 3.2 & 83.9\end{array}$
$233.07 \quad 1 \quad .8 \quad .8 \quad 84.7$
$\begin{array}{lllll}238.98 & 1 & .8 & .8 & 85.5\end{array}$
$\begin{array}{lllll}251.53 & 2 & 1.6 & 1.6 & 87.1\end{array}$
$263.65 \quad 1 \quad .8 \quad .8 \quad 87.9$
$270.00 \quad 1 \quad .8 \quad .8 \quad 88.7$
$\begin{array}{lllll}277.14 & 1 & .8 & .8 & 89.5\end{array}$
$290.60 \quad 1 \quad .8 \quad .8 \quad 90.3$
$296.61 \quad 1 \quad .8 \quad .8 \quad 91.1$
$301.02 \quad 1 \quad .8 \quad .8 \quad 91.9$
$302.06 \quad 1 \quad .8 \quad .8 \quad 92.7$
$315.06 \quad 1 \quad .8 \quad .8 \quad 93.5$
$\begin{array}{lllll}321.40 & 2 & 1.6 & 1.6 & 95.2\end{array}$
$326.37 \quad 1 \quad .8 \quad .8 \quad 96.0$
$\begin{array}{lllll}333.48 & 2 & 1.6 & 1.6 & 97.6\end{array}$
$\begin{array}{lllll}352.89 & 2 & 1.6 & 1.6 & 99.2\end{array}$
$354.30 \quad 1 \quad .8 \quad .8100 .0$

## SUMMARY STATISTICS

TYPE: Chipping Station Sites

## ASPECT

$\begin{array}{llll}\text { Total } & 124 & 100.0 & 100.0\end{array}$

| Mean | 134.393 | Std err | 8.706 | Median | 120.180 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Mode | 90.000 | Std dev | 96.948 | Variance | 9398.967 |
| Kurtosis | -.583 | S E Kurt | .431 | Skewness | .541 |
| S E Skew | .217 | Range | 355.301 | Minimum | -1.000 |
| Maximum | 354.301 | Sum | 16664.705 |  |  |

Valid cases 124 Missing cases 0

## SUMMARY STATISTICS

TYPE: Chipping Station Sites DISTWAT

Value Label Value Freq $\% \quad \% \quad$| Valid | Cum |
| :--- | :--- | :--- | :--- |

| .00 | 4 | 3.2 | 3.2 | 3.2 |
| :--- | :--- | :--- | :--- | :--- |

$\begin{array}{lllll}29.94 & 10 & 8.1 & 8.1 & 11.3\end{array}$

| 30.00 | 2 | 1.6 | 1.6 | 12.9 |
| :--- | :--- | :--- | :--- | :--- |


| 42.38 | 4 | 3.2 | 3.2 | 16.1 |
| :--- | :--- | :--- | :--- | :--- |


| 59.87 | 5 | 4.0 | 4.0 | 20.2 |
| :--- | :--- | :--- | :--- | :--- |

$60.00 \quad 1 \quad .8 \quad .8 \quad 21.0$
$\begin{array}{lllll}66.97 & 7 & 5.6 & 5.6 & 26.6\end{array}$
$\begin{array}{lllll}67.05 & 4 & 3.2 & 3.2 & 29.8\end{array}$
$\begin{array}{lllll}84.76 & 2 & 1.6 & 1.6 & 31.5\end{array}$
$89.81 \quad 1 \quad .8 \quad .8 \quad 32.3$
$\begin{array}{lllll}94.69 & 4 & 3.2 & 3.2 & 35.5\end{array}$
$\begin{array}{lllll}108.01 & 3 & 2.4 & 2.4 & 37.9\end{array}$
$\begin{array}{lllll}119.75 & 3 & 2.4 & 2.4 & 40.3\end{array}$
$\begin{array}{lllll}120.00 & 3 & 2.4 & 2.4 & 42.7\end{array}$
$\begin{array}{lllll}123.45 & 3 & 2.4 & 2.4 & 45.2\end{array}$
$\begin{array}{lllll}123.68 & 3 & 2.4 & 2.4 & 47.6\end{array}$
$127.14 \quad 1 \quad .8 \quad .8 \quad 48.4$
$\begin{array}{lllll}133.94 & 1 & .8 & .8 & 49.2\end{array}$
$\begin{array}{lllll}134.11 & 3 & 2.4 & 2.4 & 51.6\end{array}$
$\begin{array}{lllll}149.68 & 2 & 1.6 & 1.6 & 53.2\end{array}$
$\begin{array}{lllll}149.80 & 3 & 2.4 & 2.4 & 55.6\end{array}$
$149.89 \quad 1 \quad .8 \quad .8 \quad 56.5$
$\begin{array}{lllll}161.26 & 2 & 1.6 & 1.6 & 58.1\end{array}$
$161.51 \quad 1 \quad .8 \quad .8 \quad 58.9$
$\begin{array}{lllll}169.53 & 2 & 1.6 & 1.6 & 60.5\end{array}$
$\begin{array}{lllll}174.66 & 2 & 1.6 & 1.6 & 62.1\end{array}$
$174.83 \quad 1 \quad .8 \quad .8 \quad 62.9$
$\begin{array}{lllll}179.62 & 2 & 1.6 & 1.6 & 64.5\end{array}$
$\begin{array}{lllll}180.00 & 2 & 1.6 & 1.6 & 66.1\end{array}$
$182.47 \quad 1 \quad .8 \quad .8 \quad 66.9$
$\begin{array}{lllll}191.85 & 1 & .8 & .8 & 67.7\end{array}$
$\begin{array}{lllll}209.56 & 2 & 1.6 & 1.6 & 69.4\end{array}$
$211.91 \quad 1 \quad .8 \quad .8 \quad 70.2$
$216.19 \quad 1 \quad .8 \quad .8 \quad 71.0$
$228.07 \quad 1 \quad .8 \quad .8 \quad 71.8$
$228.40 \quad 1 \quad .8 \quad .8 \quad 72.6$

## SUMMARY STATISTICS

TYPE: Chipping Station Sites
DISTWAT


## SUMMARY STATISTICS

TYPE: Chipping Station Sites
SLOPED
Value Label Value Freq $\quad \begin{aligned} & \text { Valid } \\ & \%\end{aligned}$

| .00 | 2 | 1.6 | 1.6 | 1.6 |
| ---: | :---: | :---: | :--- | :---: |
| .95 | 2 | 1.6 | 1.6 | 3.2 |
| .96 | 3 | 2.4 | 2.4 | 5.6 |
| 1.35 | 2 | 1.6 | 1.6 | 7.3 |
| 1.91 | 4 | 3.2 | 3.2 | 10.5 |
| 1.91 | 1 | .8 | .8 | 11.3 |
| 2.14 | 5 | 4.0 | 4.0 | 15.3 |
| 2.14 | 6 | 4.8 | 4.8 | 20.2 |
| 2.70 | 3 | 2.4 | 2.4 | 22.6 |
| 2.86 | 3 | 2.4 | 2.4 | 25.0 |
| 2.87 | 1 | .8 | .8 | 25.8 |
| 3.02 | 5 | 4.0 | 4.0 | 29.8 |
| 3.44 | 4 | 3.2 | 3.2 | 33.1 |
| 3.44 | 4 | 3.2 | 3.2 | 36.3 |
| 3.82 | 1 | .8 | .8 | 37.1 |
| 3.93 | 1 | .8 | .8 | 37.9 |
| 3.94 | 2 | 1.6 | 1.6 | 39.5 |
| 4.05 | 2 | 1.6 | 1.6 | 41.1 |
| 4.27 | 3 | 2.4 | 2.4 | 43.5 |
| 4.76 | 1 | .8 | .8 | 44.4 |
| 4.77 | 1 | .8 | .8 | 45.2 |
| 4.77 | 1 | .8 | .8 | 46.0 |
| 4.77 | 1 | .8 | .8 | 46.8 |
| 4.86 | 1 | .8 | .8 | 47.6 |
| 4.87 | 2 | 1.6 | 1.6 | 49.2 |
| 5.13 | 1 | .8 | .8 | 50.0 |
| 5.14 | 1 | .8 | .8 | 50.8 |
| 5.39 | 1 | .8 | .8 | 51.6 |
| 5.55 | 2 | 1.6 | 1.6 | 53.2 |
| 5.56 | 2 | 1.6 | 1.6 | 54.8 |
| 5.71 | 1 | .8 | .8 | 55.6 |
| 5.72 | 1 | .8 | .8 | 56.5 |
| 5.79 | 1 | .8 | .8 | 57.3 |
| 6.02 | 2 | 1.6 | 1.6 | 58.9 |
| 6.03 | 2 | 1.6 | 1.6 | 60.5 |
| 6.10 | 1 | .8 | .8 | 61.3 |

## SUMMARY STATISTICS

TYPE: Chipping Station Sites
SLOPED

| Value Label | Value |  | \% | Valid $\%$ | Cum |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 6.10 | 3 | 2.4 | 2.4 | 63.7 |
|  | 6.38 | 1 | . 8 | . 8 | 64.5 |
|  | 6.39 | 1 | . 8 | . 8 | 65.3 |
|  | 6.67 | 2 | 1.6 | 1.6 | 66.9 |
|  | 6.72 | 1 | . 8 | . 8 | 67.7 |
|  | 6.74 | 1 | . 8 | . 8 | 68.5 |
|  | 6.86 | 1 | . 8 | . 8 | 69.4 |
|  | 6.86 | 1 | . 8 | . 8 | 70.2 |
|  | 6.93 | 2 | 1.6 | 1.6 | 71.8 |
|  | 7.25 | 1 | . 8 | . 8 | 72.6 |
|  | 7.42 | 1 | . 8 | . 8 | 73.4 |
|  | 7.61 | 1 | . 8 | . 8 | 74.2 |
|  | 7.65 | 1 | . 8 | . 8 | 75.0 |
|  | 7.67 | 2 | 1.6 | 1.6 | 76.6 |
|  | 8.11 | 1 | . 8 | . 8 | 77.4 |
|  | 8.16 | 1 | . 8 | . 8 | 78.2 |
|  | 8.58 | 1 | . 8 | . 8 | 79.0 |
|  | 8.60 | 1 | . 8 | . 8 | 79.8 |
|  | 8.94 | 2 | 1.6 | 1.6 | 81.5 |
|  | 8.95 | 2 | 1.6 | 1.6 | 83.1 |
|  | 9.34 | 1 | . 8 | . 8 | 83.9 |
|  | 9.38 | 2 | 1.6 | 1.6 | 85.5 |
|  | 9.46 | 1 | . 8 | . 8 | 86.3 |
|  | 9.53 | 1 | . 8 | . 8 | 87.1 |
|  | 9.67 | 1 | . 8 | . 8 | 87.9 |
|  | 9.74 | 1 | . 8 | . 8 | 88.7 |
|  | 10.41 | 1 | . 8 | . 8 | 89.5 |
|  | 10.45 | 1 | . 8 | . 8 | 90.3 |
|  | 10.76 | 1 | . 8 | . 8 | 91.1 |
|  | 11.06 | 1 | . 8 | . 8 | 91.9 |
|  | 11.33 | 1 | . 8 | . 8 | 92.7 |
|  | 11.36 | 1 | . 8 | . 8 | 93.5 |
|  | 12.25 | 1 | . 8 | . 8 | 94.4 |
|  | 12.80 | 1 | . 8 | . 8 | 95.2 |
|  | 13.19 | 1 | . 8 | . 8 | 96.0 |
|  | 13.28 | 1 | . 8 | . 8 | 96.8 |
|  | 13.67 | 1 | . 8 | . 8 | 97.6 |

## SUMMARY STATISTICS

TYPE: Chipping Station Sites
SLOPED

Value Label Value Freq $\% \quad$| Valid | Cum |
| ---: | :--- | ---: | ---: |
| $\%$ |  |

| 14.53 | 1 | .8 | .8 | 98.4 |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 16.75 | 1 | .8 | .8 | 99.2 |  |
| 16.80 | 1 | .8 | .8 | 100.0 |  |
|  | -2 |  |  |  |  |
| Total | 124 | 100.0 |  | 100.0 |  |

Mean 5.672 Std err . 319 Median 5.134

| Mode | 2.138 Std dev 3.554 Variance 12.633 |
| :--- | :--- | :--- | :--- |

Kurtosis . 533 S E Kurt . 431 Skewness . 882
S E Skew .217 Range 16.797 Minimum . 000

Maximum 16.797 Sum 703.310
Valid cases 124 Missing cases 0

SUMMARY STATISTICS
TYPE: Hunting Sites
ASPECT

| Value Label | Value | Freq |  | Valid | $\begin{gathered} \text { Cum } \\ \% \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
|  | -1.00 | 2 | 3.2 | 3.2 | 3.2 |
|  | . 00 | 2 | 3.2 | 3.2 | 6.3 |
|  | 22.58 | 1 | 1.6 | 1.6 | 7.9 |
|  | 26.52 | 2 | 3.2 | 3.2 | 11.1 |
|  | 35.48 | 2 | 3.2 | 3.2 | 14.3 |
|  | 40.54 | 1 | 1.6 | 1.6 | 15.9 |
|  | 41.57 | 1 | 1.6 | 1.6 | 17.5 |
|  | 44.94 | 1 | 1.6 | 1.6 | 19.0 |
|  | 56.25 | 1 | 1.6 | 1.6 | 20.6 |
|  | 63.39 | 3 | 4.8 | 4.8 | 25.4 |
|  | 67.34 | 1 | 1.6 | 1.6 | 27.0 |
|  | 78.67 | 1 | 1.6 | 1.6 | 28.6 |
|  | 84.79 | 1 | 1.6 | 1.6 | 30.2 |
|  | 90.00 | 2 | 3.2 | 3.2 | 33.3 |
|  | 97.14 | 1 | 1.6 | 1.6 | 34.9 |
|  | 101.33 | 1 | 1.6 | 1.6 | 36.5 |
|  | 103.02 | 1 | 1.6 | 1.6 | 38.1 |
|  | 108.47 | 3 | 4.8 | 4.8 | 42.9 |
|  | 116.61 | 1 | 1.6 | 1.6 | 44.4 |
|  | 119.11 | 1 | 1.6 | 1.6 | 46.0 |
|  | 119.80 | 2 | 3.2 | 3.2 | 49.2 |
|  | 121.02 | 1 | 1.6 | 1.6 | 50.8 |
|  | 135.06 | 2 | 3.2 | 3.2 | 54.0 |
|  | 146.37 | 1 | 1.6 | 1.6 | 55.6 |
|  | 153.48 | 2 | 3.2 | 3.2 | 58.7 |
|  | 161.60 | 3 | 4.8 | 4.8 | 63.5 |
|  | 180.00 | 4 | 6.3 | 6.3 | 69.8 |
|  | 180.09 | 1 | 1.6 | 1.6 | 71.4 |
|  | 180.29 | 1 | 1.6 | 1.6 | 73.0 |
|  | 188.11 | 2 | 3.2 | 3.2 | 76.2 |
|  | 189.44 | 1 | 1.6 | 1.6 | 77.8 |
|  | 191.29 | 1 | 1.6 | 1.6 | 79.4 |
|  | 198.40 | 3 | 4.8 | 4.8 | 84.1 |
|  | 206.52 | 1 | 1.6 | 1.6 | 85.7 |
|  | 221.57 | 1 | 1.6 | 1.6 | 87.3 |
|  | 224.94 | 2 | 3.2 | 3.2 | 90.5 |

## SUMMARY STATISTICS

TYPE: Hunting Sites

## ASPECT

Value Label $\quad$ Value $\quad$ Freq $\quad \% \quad \% \quad$| Valid |
| :---: | Cum

| 231.28 | 1 | 1.6 | 1.6 | 92.1 |
| :---: | :---: | :---: | :---: | :---: |
| 240.20 | 1 | 1.6 | 1.6 | 93.7 |
| 253.27 | 1 | 1.6 | 1.6 | 95.2 |
| 269.54 | 1 | 1.6 | 1.6 | 96.8 |
| 323.19 | 1 | 1.6 | 1.6 | 98.4 |
| 333.48 | 1 | 1.6 | 1.6 | 100.0 |
|  | -100 | -100 | -100.0 |  |


| Mean | 132.092 | Std err | 10.024 | Median | 121.017 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Mode | 180.000 | Std dev | 79.564 | Variance | 6330.478 |
| Kurtosis | -.357 | S E Kurt | .595 | Skewness | .254 |
| S E Skew | .302 | Range | 334.483 |  | Minimum |
| Maximum | 333.483 | Sum | 8321.802 |  |  |

Valid cases 63 Missing cases 0

## SUMMARY STATISTICS

TYPE: Hunting Sites DISTWAT

Value Label Value Freq $\quad$| Valid | Cum |
| :--- | :--- | :--- | :--- |

| .00 | 1 | 1.6 | 1.6 | 1.6 |
| ---: | ---: | ---: | ---: | ---: |
| 29.94 | 5 | 7.9 | 7.9 | 9.5 |
| 30.00 | 3 | 4.8 | 4.8 | 14.3 |
| 42.38 | 2 | 3.2 | 3.2 | 17.5 |
| 59.87 | 3 | 4.8 | 4.8 | 22.2 |
| 60.00 | 2 | 3.2 | 3.2 | 25.4 |
| 66.97 | 1 | 1.6 | 1.6 | 27.0 |


| 67.05 | 2 | 3.2 | 3.2 | 30.2 |
| :--- | :--- | :--- | :--- | :--- |


| 84.76 | 2 | 3.2 | 3.2 | 33.3 |
| :--- | :--- | :--- | :--- | :--- |


| 89.81 | 1 | 1.6 | 1.6 | 34.9 |
| :--- | :--- | :--- | :--- | :--- |


| 90.00 | 2 | 3.2 | 3.2 | 38.1 |
| :--- | :--- | :--- | :--- | :--- |


| 94.69 | 1 | 1.6 | 1.6 | 39.7 |
| :--- | :--- | :--- | :--- | :--- |


| 108.01 | 3 | 4.8 | 4.8 | 44.4 |
| :--- | :--- | :--- | :--- | :--- |


| 123.68 | 2 | 3.2 | 3.2 | 47.6 |
| :--- | :--- | :--- | :--- | :--- |


| 149.68 | 1 | 1.6 | 1.6 | 49.2 |
| :--- | :--- | :--- | :--- | :--- |


| 149.80 | 1 | 1.6 | 1.6 | 50.8 |
| :--- | :--- | :--- | :--- | :--- |


| 150.00 | 1 | 1.6 | 1.6 | 52.4 |
| :--- | :--- | :--- | :--- | :--- |


| 161.26 | 1 | 1.6 | 1.6 | 54.0 |
| :--- | :--- | :--- | :--- | :--- |


| 161.51 | 1 | 1.6 | 1.6 | 55.6 |
| :--- | :--- | :--- | :--- | :--- |


| 174.83 | 1 | 1.6 | 1.6 | 57.1 |
| :--- | :--- | :--- | :--- | :--- |


| 179.62 | 1 | 1.6 | 1.6 | 58.7 |
| :--- | :--- | :--- | :--- | :--- |


| 191.85 | 1 | 1.6 | 1.6 | 60.3 |
| :--- | :--- | :--- | :--- | :--- |


| 211.91 | 1 | 1.6 | 1.6 | 61.9 |
| :--- | :--- | :--- | :--- | :--- |


| 216.19 | 2 | 3.2 | 3.2 | 65.1 |
| :--- | :--- | :--- | :--- | :--- |


| 217.98 | 1 | 1.6 | 1.6 | 66.7 |
| :--- | :--- | :--- | :--- | :--- |


| 228.40 | 1 | 1.6 | 1.6 | 68.3 |
| :--- | :--- | :--- | :--- | :--- |


| 240.00 | 1 | 1.6 | 1.6 | 69.8 |
| :--- | :--- | :--- | :--- | :--- |


| 241.36 | 1 | 1.6 | 1.6 | 71.4 |
| :--- | :--- | :--- | :--- | :--- |


| 241.74 | 1 | 1.6 | 1.6 | 73.0 |
| :--- | :--- | :--- | :--- | :--- |


| 241.86 | 1 | 1.6 | 1.6 | 74.6 |
| :--- | :--- | :--- | :--- | :--- |


| 246.89 | 1 | 1.6 | 1.6 | 76.2 |
| :--- | :--- | :--- | :--- | :--- |


| 254.29 | 1 | 1.6 | 1.6 | 77.8 |
| :--- | :--- | :--- | :--- | :--- |


| 257.71 | 1 | 1.6 | 1.6 | 79.4 |
| :--- | :--- | :--- | :--- | :--- |


| 269.43 | 1 | 1.6 | 1.6 | 81.0 |
| :--- | :--- | :--- | :--- | :--- |


| 271.65 | 1 | 1.6 | 1.6 | 82.5 |
| :--- | :--- | :--- | :--- | :--- |


| 276.34 | 1 | 1.6 | 1.6 | 84.1 |
| :--- | :--- | :--- | :--- | :--- |

## SUMMARY STATISTICS

TYPE: Hunting Sites
DISTWAT

|  |  | Valid |  |  |  |  | Cum |
| :---: | :---: | :---: | :---: | :---: | ---: | :---: | :---: |
| Value Label | Value | Freq | $\%$ | $\%$ | $\%$ |  |  |
|  |  |  |  |  |  |  |  |
|  | 299.59 | 1 | 1.6 | 1.6 | 85.7 |  |  |
|  | 299.77 | 1 | 1.6 | 1.6 | 87.3 |  |  |
|  | 351.05 | 1 | 1.6 | 1.6 | 88.9 |  |  |
|  | 365.68 | 1 | 1.6 | 1.6 | 90.5 |  |  |
|  | 365.94 | 1 | 1.6 | 1.6 | 92.1 |  |  |
|  | 375.29 | 1 | 1.6 | 1.6 | 93.7 |  |  |
|  | 425.84 | 1 | 1.6 | 1.6 | 95.2 |  |  |
|  | 445.88 | 1 | 1.6 | 1.6 | 96.8 |  |  |
|  | 510.25 | 1 | 1.6 | 1.6 | 98.4 |  |  |
|  | 569.59 | 1 | 1.6 | 1.6 | 100.0 |  |  |


| Mean | 172.856 | Std err | 16.427 | Median | 149.797 |  |
| :--- | :---: | ---: | :---: | :---: | :---: | :---: |
| Mode | 29.937 | Std dev | 130.383 | Variance | 16999.687 |  |
| Kurtosis | .554 | S E Kurt | .595 | Skewness | .960 |  |
| S E Skew | .302 | Range | 569.586 |  | Minimum | .000 |
| Maximum | 569.586 | Sum | 10889.922 |  |  |  |

Valid cases 63 Missing cases 0

## SUMMARY STATISTICS

TYPE: Hunting Sites
SLOPED
$\begin{array}{llllll} & & & \text { Valid } & \text { Cum } \\ \text { Value Label } & \text { Value } & \text { Freq } & \% & \% & \%\end{array}$

|  | 00 | 2 | 3.2 | 3.2 |
| ---: | :--- | :--- | :--- | :--- |
| .95 | 1 | 1.6 | 1.6 | 4.8 |
| .96 | 1 | 1.6 | 1.6 | 6.3 |
| 1.35 | 4 | 6.3 | 6.3 | 12.7 |
| 1.91 | 1 | 1.6 | 1.6 | 14.3 |
| 2.14 | 1 | 1.6 | 1.6 | 15.9 |
| 2.14 | 3 | 4.8 | 4.8 | 20.6 |
| 2.87 | 1 | 1.6 | 1.6 | 22.2 |
| 3.02 | 2 | 3.2 | 3.2 | 25.4 |
| 3.02 | 3 | 4.8 | 4.8 | 30.2 |
| 3.44 | 1 | 1.6 | 1.6 | 31.7 |
| 3.81 | 1 | 1.6 | 1.6 | 33.3 |
| 4.05 | 1 | 1.6 | 1.6 | 34.9 |
| 4.27 | 1 | 1.6 | 1.6 | 36.5 |
| 4.77 | 1 | 1.6 | 1.6 | 38.1 |
| 4.77 | 1 | 1.6 | 1.6 | 39.7 |
| 4.86 | 2 | 3.2 | 3.2 | 42.9 |
| 4.87 | 1 | 1.6 | 1.6 | 44.4 |
| 5.55 | 1 | 1.6 | 1.6 | 46.0 |
| 5.80 | 1 | 1.6 | 1.6 | 47.6 |
| 6.03 | 2 | 3.2 | 3.2 | 50.8 |
| 6.10 | 1 | 1.6 | 1.6 | 52.4 |
| 6.38 | 2 | 3.2 | 3.2 | 55.6 |
| 6.39 | 1 | 1.6 | 1.6 | 57.1 |
| 6.74 | 2 | 3.2 | 3.2 | 60.3 |
| 6.86 | 1 | 1.6 | 1.6 | 61.9 |
| 7.65 | 1 | 1.6 | 1.6 | 63.5 |
| 7.66 | 3 | 4.8 | 4.8 | 68.3 |
| 8.17 | 2 | 3.2 | 3.2 | 71.4 |
| 8.75 | 1 | 1.6 | 1.6 | 73.0 |
| 8.99 | 1 | 1.6 | 1.6 | 74.6 |
| 9.74 | 1 | 1.6 | 1.6 | 76.2 |
| 9.87 | 1 | 1.6 | 1.6 | 77.8 |
| 10.41 | 2 | 3.2 | 3.2 | 81.0 |
| 10.43 | 1 | 1.6 | 1.6 | 82.5 |
| 10.57 | 1 | 1.6 | 1.6 | 84.1 |

## SUMMARY STATISTICS

TYPE: Hunting Sites

## SLOPED

| Value Label |  | Valid |  |  | Cum |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Value | Fr | \% | \% | \% |
|  | 11.36 | 2 | 3.2 | 3.2 | 87.3 |
|  | 12.23 | 1 | 1.6 | 1.6 | 88.9 |
|  | 12.25 | 1 | 1.6 | 1.6 | 90.5 |
|  | 12.54 | 1 | 1.6 | 1.6 | 92.1 |
|  | 14.63 | 1 | 1.6 | 1.6 | 93.7 |
|  | 14.79 | 1 | 1.6 | 1.6 | 95.2 |
|  | 87.07 | 1 | 1.6 | 1.6 | 96.8 |
|  | 87.18 | 1 | 1.6 | 1.6 | 98.4 |
|  | 87.23 | 1 | 1.6 | 1.6 | 100.0 |
|  | Total | 63 | 100.0 | 100.0 |  |


| Mean | 9.861 | Std err | 2.244 | Median | 6.029 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Mode | 1.352 | Std dev | 17.809 | Variance | 317.159 |
| Kurtosis | 15.785 | S E Kurt | .595 | Skewness | 4.051 |
| S E Skew | .302 | Range | 87.230 | Minimum | .000 |
| Maximum | 87.230 | Sum | 621.213 |  |  |

[^0]
## SUMMARY STATISTICS

TYPE: Lithic Worhshop Sites ASPECT
Value Label $\quad$ Value Freq $\% \quad \begin{aligned} & \text { Valid }\end{aligned}$ Cum

| -1.00 | 1 | 1.9 | 1.9 | 1.9 |
| ---: | ---: | ---: | ---: | ---: |
| .00 | 2 | 3.8 | 3.8 | 5.7 |
| 9.44 | 1 | 1.9 | 1.9 | 7.5 |
| 26.52 | 1 | 1.9 | 1.9 | 9.4 |
| 33.63 | 2 | 3.8 | 3.8 | 13.2 |
| 35.48 | 1 | 1.9 | 1.9 | 15.1 |
| 38.60 | 1 | 1.9 | 1.9 | 17.0 |
| 39.75 | 1 | 1.9 | 1.9 | 18.9 |
| 44.94 | 3 | 5.7 | 5.7 | 24.5 |
| 47.43 | 1 | 1.9 | 1.9 | 26.4 |
| 52.07 | 1 | 1.9 | 1.9 | 28.3 |
| 53.07 | 2 | 3.8 | 3.8 | 32.1 |
| 53.91 | 1 | 1.9 | 1.9 | 34.0 |
| 57.94 | 2 | 3.8 | 3.8 | 37.7 |
| 65.99 | 1 | 1.9 | 1.9 | 39.6 |
| 74.02 | 1 | 1.9 | 1.9 | 41.5 |
| 90.00 | 3 | 5.7 | 5.7 | 47.2 |
| 99.48 | 1 | 1.9 | 1.9 | 49.1 |
| 123.75 | 1 | 1.9 | 1.9 | 50.9 |
| 135.06 | 1 | 1.9 | 1.9 | 52.8 |
| 139.46 | 1 | 1.9 | 1.9 | 54.7 |
| 146.37 | 1 | 1.9 | 1.9 | 56.6 |
| 153.48 | 1 | 1.9 | 1.9 | 58.5 |
| 156.85 | 1 | 1.9 | 1.9 | 60.4 |
| 161.60 | 1 | 1.9 | 1.9 | 62.3 |
| 165.99 | 1 | 1.9 | 1.9 | 64.2 |
| 180.00 | 2 | 3.8 | 3.8 | 67.9 |
| 189.44 | 1 | 1.9 | 1.9 | 69.8 |
| 195.91 | 1 | 1.9 | 1.9 | 71.7 |
| 198.40 | 1 | 1.9 | 1.9 | 73.6 |
| 201.76 | 1 | 1.9 | 1.9 | 75.5 |
| 206.52 | 2 | 3.8 | 3.8 | 79.2 |
| 216.81 | 1 | 1.9 | 1.9 | 81.1 |
| 226.41 | 1 | 1.9 | 1.9 | 83.0 |
| 229.34 | 1 | 1.9 | 1.9 | 84.9 |
| 230.13 | 1 | 1.9 | 1.9 | 86.8 |

## SUMMARY STATISTICS

TYPE: Lithic Worhshop Sites
ASPECT

Value Label $\quad$ Value $\quad$ Freq $\quad \% \quad$| Valid |
| :---: |
| $\%$ |

| 231.57 | 1 | 1.9 | 1.9 | 88.7 |
| :---: | :---: | :---: | :---: | :---: |
| 237.47 | 1 | 1.9 | 1.9 | 90.6 |
| 270.00 | 2 | 3.8 | 3.8 | 94.3 |
| 288.47 | 1 | 1.9 | 1.9 | 96.2 |
| 291.84 | 1 | 1.9 | 1.9 | 98.1 |
| 336.85 | 1 | 1.9 | 1.9 | 100.0 |
|  | --2 | -100.0 | -100.0 |  |


| Mean | 128.411 | Std err | 12.432 | Median | 123.746 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Mode | 44.939 | Std dev | 90.504 | Variance | 8191.052 |
| Kurtosis | -1.008 | S E Kurt | .644 | Skewness | .366 |
| S E Skew | .327 | Range | 337.845 | Minimum | -1.000 |
| Maximum | 336.845 | Sum | 6805.806 |  |  |

* Multiple modes exist. The smallest value is shown.

Valid cases 53 Missing cases 0

## SUMMARY STATISTICS

TYPE: Lithic Workshop Sites DISTWAT
Value Label Value Freq $\quad$ \% $\quad$ Valid $\quad$ Cum

| 29.94 | 1 | 1.9 | 1.9 | 1.9 |
| ---: | ---: | ---: | ---: | ---: |
| 42.38 | 3 | 5.7 | 5.7 | 7.5 |
| 59.87 | 1 | 1.9 | 1.9 | 9.4 |
| 60.00 | 1 | 1.9 | 1.9 | 11.3 |
| 66.97 | 2 | 3.8 | 3.8 | 15.1 |
| 84.76 | 4 | 7.5 | 7.5 | 22.6 |
| 94.69 | 3 | 5.7 | 5.7 | 28.3 |
| 120.00 | 1 | 1.9 | 1.9 | 30.2 |
| 123.45 | 1 | 1.9 | 1.9 | 32.1 |
| 123.68 | 3 | 5.7 | 5.7 | 37.7 |
| 133.94 | 1 | 1.9 | 1.9 | 39.6 |
| 134.11 | 1 | 1.9 | 1.9 | 41.5 |
| 149.68 | 1 | 1.9 | 1.9 | 43.4 |
| 150.00 | 1 | 1.9 | 1.9 | 45.3 |
| 161.26 | 1 | 1.9 | 1.9 | 47.2 |
| 161.51 | 1 | 1.9 | 1.9 | 49.1 |
| 174.66 | 1 | 1.9 | 1.9 | 50.9 |
| 174.83 | 1 | 1.9 | 1.9 | 52.8 |
| 191.94 | 1 | 1.9 | 1.9 | 54.7 |
| 200.91 | 2 | 3.8 | 3.8 | 58.5 |
| 211.91 | 1 | 1.9 | 1.9 | 60.4 |
| 234.02 | 1 | 1.9 | 1.9 | 62.3 |
| 240.00 | 1 | 1.9 | 1.9 | 64.2 |
| 241.48 | 1 | 1.9 | 1.9 | 66.0 |
| 271.65 | 1 | 1.9 | 1.9 | 67.9 |
| 276.34 | 1 | 1.9 | 1.9 | 69.8 |
| 276.56 | 1 | 1.9 | 1.9 | 71.7 |
| 296.67 | 1 | 1.9 | 1.9 | 73.6 |
| 299.37 | 1 | 1.9 | 1.9 | 75.5 |
| 300.00 | 1 | 1.9 | 1.9 | 77.4 |
| 305.32 | 1 | 1.9 | 1.9 | 79.2 |
| 308.72 | 1 | 1.9 | 1.9 | 81.1 |
| 312.60 | 1 | 1.9 | 1.9 | 83.0 |
| 334.84 | 1 | 1.9 | 1.9 | 84.9 |
| 360.49 | 1 | 1.9 | 1.9 | 86.8 |
| 364.22 | 1 | 1.9 | 1.9 | 88.7 |

## SUMMARY STATISTICS

TYPE: Lithic Workshop Sites


## SUMMARY STATISTICS

TYPE: Lithic Workshop Sites SLOPED
$\begin{array}{llllll} & & & \text { Valid } & \text { Cum } \\ \text { Value Label } & \text { Value } & \text { Freq } & \% & \% & \%\end{array}$

| .00 | 1 | 1.9 | 1.9 | 1.9 |
| ---: | ---: | ---: | ---: | :---: |
| .96 | 1 | 1.9 | 1.9 | 3.8 |
| 1.35 | 2 | 3.8 | 3.8 | 7.5 |
| 1.91 | 2 | 3.8 | 3.8 | 11.3 |
| 2.14 | 1 | 1.9 | 1.9 | 13.2 |
| 2.86 | 1 | 1.9 | 1.9 | 15.1 |
| 2.87 | 1 | 1.9 | 1.9 | 17.0 |
| 3.02 | 2 | 3.8 | 3.8 | 20.8 |
| 3.44 | 1 | 1.9 | 1.9 | 22.6 |
| 3.44 | 1 | 1.9 | 1.9 | 24.5 |
| 3.81 | 1 | 1.9 | 1.9 | 26.4 |
| 3.82 | 1 | 1.9 | 1.9 | 28.3 |
| 3.94 | 1 | 1.9 | 1.9 | 30.2 |
| 4.76 | 1 | 1.9 | 1.9 | 32.1 |
| 4.77 | 2 | 3.8 | 3.8 | 35.8 |
| 4.77 | 1 | 1.9 | 1.9 | 37.7 |
| 5.13 | 1 | 1.9 | 1.9 | 39.6 |
| 5.14 | 1 | 1.9 | 1.9 | 41.5 |
| 5.39 | 1 | 1.9 | 1.9 | 43.4 |
| 5.80 | 2 | 3.8 | 3.8 | 47.2 |
| 6.67 | 1 | 1.9 | 1.9 | 49.1 |
| 6.73 | 1 | 1.9 | 1.9 | 50.9 |
| 6.86 | 2 | 3.8 | 3.8 | 54.7 |
| 6.92 | 1 | 1.9 | 1.9 | 56.6 |
| 6.93 | 1 | 1.9 | 1.9 | 58.5 |
| 7.25 | 2 | 3.8 | 3.8 | 62.3 |
| 7.42 | 1 | 1.9 | 1.9 | 64.2 |
| 7.43 | 1 | 1.9 | 1.9 | 66.0 |
| 8.17 | 1 | 1.9 | 1.9 | 67.9 |
| 8.49 | 1 | 1.9 | 1.9 | 69.8 |
| 8.74 | 1 | 1.9 | 1.9 | 71.7 |
| 8.75 | 1 | 1.9 | 1.9 | 73.6 |
| 8.94 | 2 | 3.8 | 3.8 | 77.4 |
| 9.33 | 1 | 1.9 | 1.9 | 79.2 |
| 10.57 | 2 | 3.8 | 3.8 | 83.0 |
| 10.77 | 1 | 1.9 | 1.9 | 84.9 |

## SUMMARY STATISTICS

TYPE: Lithic Workshop Sites

## SLOPED

|  |  | Valid |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Value Label | Value | Freq | $\%$ | $\%$ | $\%$ |
|  |  |  |  |  |  |
|  | 11.46 | 1 | 1.9 | 1.9 | 86.8 |
|  | 11.91 | 1 | 1.9 | 1.9 | 88.7 |
|  | 12.06 | 1 | 1.9 | 1.9 | 90.6 |
|  | 12.27 | 1 | 1.9 | 1.9 | 92.5 |
|  | 12.78 | 1 | 1.9 | 1.9 | 94.3 |
|  | 15.19 | 1 | 1.9 | 1.9 | 96.2 |
|  | 24.71 | 1 | 1.9 | 1.9 | 98.1 |
|  | 27.05 | 1 | 1.9 | 1.9 | 100.0 |
|  |  | --2 | -10 | -100.0 |  |


| Mean | 7.117 | Std err | .701 | Median | 6.728 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Mode | 1.352 | Std dev | 5.103 | Variance | 26.037 |
| Kurtosis | 5.481 | S E Kurt | .644 | Skewness | 1.916 |
| S E Skew | .327 | Range | 27.048 | Minimum | .000 |
| Maximum | 27.048 | Sum | 377.209 |  |  |

* Multiple modes exist. The smallest value is shown.

Valid cases 53 Missing cases 0

## SUMMARY STATISTICS

TYPE: Other Activity Sites ASPECT

| Value Label | Value | Freq | \% | Valio | Cum \% |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | -1.00 | 2 | 1.3 | 1.3 | 1.3 |
|  | . 00 | 3 | 2.0 | 2.0 | 3.3 |
|  | 11.29 | 2 | 1.3 | 1.3 | 4.6 |
|  | 14.01 | 1 | . 7 | . 7 | 5.3 |
|  | 18.40 | 1 | . 7 | . 7 | 6.0 |
|  | 20.52 | 1 | . 7 | . 7 | 6.6 |
|  | 23.15 | 2 | 1.3 | 1.3 | 7.9 |
|  | 24.73 | 1 | . 7 | . 7 | 8.6 |
|  | 26.52 | 2 | 1.3 | 1.3 | 9.9 |
|  | 28.56 | 1 | . 7 | . 7 | 10.6 |
|  | 30.91 | 2 | 1.3 | 1.3 | 11.9 |
|  | 33.63 | 1 | . 7 | . 7 | 12.6 |
|  | 38.60 | 1 | . 7 | . 7 | 13.2 |
|  | 40.18 | 1 | . 7 | . 7 | 13.9 |
|  | 44.94 | 4 | 2.6 | 2.6 | 16.6 |
|  | 52.07 | 1 | . 7 | . 7 | 17.2 |
|  | 53.07 | 1 | . 7 | . 7 | 17.9 |
|  | 56.25 | 2 | 1.3 | 1.3 | 19.2 |
|  | 63.39 | 2 | 1.3 | 1.3 | 20.5 |
|  | 71.53 | 4 | 2.6 | 2.6 | 23.2 |
|  | 73.27 | 1 | . 7 | . 7 | 23.8 |
|  | 77.45 | 1 | . 7 | . 7 | 24.5 |
|  | 82.86 | 1 | . 7 | . 7 | 25.2 |
|  | 85.59 | 1 | . 7 | . 7 | 25.8 |
|  | 90.00 | 8 | 5.3 | 5.3 | 31.1 |
|  | 104.06 | 1 | . 7 | . 7 | 31.8 |
|  | 108.47 | 3 | 2.0 | 2.0 | 33.8 |
|  | 110.60 | 1 | . 7 | . 7 | 34.4 |
|  | 113.24 | 1 | . 7 | . 7 | 35.1 |
|  | 116.61 | 4 | 2.6 | 2.6 | 37.7 |
|  | 130.66 | 1 | . 7 | . 7 | 38.4 |
|  | 135.06 | 3 | 2.0 | 2.0 | 40.4 |
|  | 146.37 | 1 | . 7 | . 7 | 41.1 |
|  | 150.31 | 1 | . 7 | . 7 | 41.7 |
|  | 151.00 | 1 | . 7 | . 7 | 42.4 |
|  | 153.48 | 5 | 3.3 | 3.3 | 45.7 |

## SUMMARY STATISTICS

TYPE: Other Activity Sites ASPECT

| Value Labet | Value | Frea | \% | Valid $\%$ | $\begin{gathered} \text { Cum } \\ \% \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 156.08 | 1 | . 7 | . 7 | 46.4 |
|  | 156.85 | 1 | . 7 | . 7 | 47.0 |
|  | 158.24 | 1 | . 7 | . 7 | 47.7 |
|  | 161.60 | 1 | . 7 | . 7 | 48.3 |
|  | 164.78 | 1 | . 7 | . 7 | 49.0 |
|  | 165.99 | 1 | . 7 | . 7 | 49.7 |
|  | 170.56 | 1 | . 7 | . 7 | 50.3 |
|  | 174.89 | 1 | . 7 | . 7 | 51.0 |
|  | 172.89 | 1 | . 7 | . 7 | 51.7 |
|  | 174.30 | 1 | . 7 | . 7 | 52.3 |
|  | 180.00 | 11 | 7.3 | 7.3 | 59.6 |
|  | 183.17 | 4 | . 7 | . 7 | 60.3 |
|  | 186.33 | 2 | 1.3 | 1.3 | 61.6 |
|  | 187.11 | 1 | . 7 | . 7 | 62.3 |
|  | 191.29 | 1 | . 7 | . 7 | 62.9 |
|  | 192.07 | 1 | . 7 | . 7 | 63.6 |
|  | 192.50 | 1 | . 7 | . 7 | 64.2 |
|  | 194.01 | 1 | . 7 | . 7 | 64.9 |
|  | 196.67 | 1 | . 7 | . 7 | 65.6 |
|  | 198.40 | 1 | . 7 | . 7 | 66.2 |
|  | 201.76 | 2 | 1.3 | 1.3 | 67.5 |
|  | 203.92 | 1 | . 7 | . 7 | 68.2 |
|  | 206.52 | 2 | 1.3 | 1.3 | 69.5 |
|  | 209.00 | 1 | . 7 | . 7 | 70.2 |
|  | 210.91 | 1 | . 7 | . 7 | 70.9 |
|  | 213.63 | 1 | . 7 | . 7 | 71.5 |
|  | 214.64 | 1 | . 7 | . 7 | 72.2 |
|  | 215.48 | 1 | . 7 | . 7 | 72.8 |
|  | 216.81 | 1 | . 7 | . 7 | 73.5 |
|  | 219.75 | 1 | . 7 | . 7 | 74.2 |
|  | 220.54 | 2 | 1.3 | 1.3 | 75.5 |
|  | 221.13 | 1 | . 7 | . 7 | 76.2 |
|  | 224.94 | 5 | 3.3 | 3.3 | 79.5 |
|  | 231.28 | 6 | 4.0 | 4.0 | 83.4 |
|  | 236.25 | 1 | . 7 | . 7 | 84.1 |
|  | 243.39 | 3 | 2.0 | 2.0 | 86.1 |

## SUMMARY STATISTICS

TYPE: Other Activity Sites

## ASPECT

| Value Label |  | Valid |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Value | Freq | $\%$ | $\%$ | $\%$ |  |
|  |  |  | $\%$ |  |  |  |
|  | 249.98 | 1 | .7 | .7 | 86.8 |  |
|  | 251.53 | 1 | .7 | .7 | 87.4 |  |
|  | 260.52 | 1 | .7 | .7 | 88.1 |  |
|  | 270.00 | 4 | 2.6 | 2.6 | 90.7 |  |
|  | 272.39 | 1 | .7 | .7 | 91.4 |  |
|  | 274.77 | 1 | .7 | .7 | 92.1 |  |
|  | 281.33 | 2 | 1.3 | 1.3 | 93.4 |  |
|  | 285.29 | 1 | .7 | .7 | 94.0 |  |
|  | 306.93 | 1 | .7 | .7 | 94.7 |  |
|  | 315.06 | 2 | 1.3 | 1.3 | 96.0 |  |
|  | 320.25 | 1 | .7 | .7 | 96.7 |  |
|  | 323.19 | 1 | .7 | .7 | 97.4 |  |
|  | 331.00 | 1 | .7 | .7 | 98.0 |  |
|  | 338.24 | 1 | .7 | .7 | 98.7 |  |
|  | 345.99 | 2 | 1.3 | 1.3 | 100.0 |  |
|  |  | Total | 151 | 100.0 | 100.0 |  |


| Mean | 155.643 | Std erf | 7.247 | Median | 170.557 |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Mode | 180.000 | Std dev | 89.058 | Variance | 7931.364 |  |
| Kurtosis | -.823 | SE Kurt | .392 | Skewness | .011 |  |
| SE Skew | .197 | Range | 346.992 |  | Minimum | -1.000 |
| Maximum | 345.992 | Sum | 23502.113 |  |  |  |

Valid cases 151 Missing cases 0

## SUMMARY STATISTICS

TYPE: Other Activity Sites
DISTWAT
Value Label Value Freq $\quad$ \% $\quad \% \quad \% \quad \%$

| 29.94 | 7 | 4.6 | 4.6 | 4.6 |
| :--- | :--- | :--- | :--- | :--- |
| 30.00 | 6 | 4.0 | 4.0 | 8.6 |

$\begin{array}{lllll}42.38 & 3 & 2.0 & 2.0 & 10.6\end{array}$
$\begin{array}{lllll}59.87 & 5 & 3.3 & 3.3 & 13.9\end{array}$
$\begin{array}{lllll}60.00 & 3 & 2.0 & 2.0 & 15.9\end{array}$
$\begin{array}{lllll}66.97 & 3 & 2.0 & 2.0 & 17.9\end{array}$
$\begin{array}{lllll}67.05 & 4 & 2.6 & 2.6 & 20.5\end{array}$
$\begin{array}{lllll}84.76 & 4 & 2.6 & 2.6 & 23.2\end{array}$
$\begin{array}{lllll}89.81 & 5 & 3.3 & 3.3 & 26.5\end{array}$
$\begin{array}{lllll}90.00 & 3 & 2.0 & 2.0 & 28.5\end{array}$
$\begin{array}{lllll}94.69 & 3 & 2.0 & 2.0 & 30.5\end{array}$
$\begin{array}{lllll}108.01 & 2 & 1.3 & 1.3 & 31.8\end{array}$
$\begin{array}{lllll}108.10 & 1 & 7 & 7 & 32.5\end{array}$
$\begin{array}{lllll}119.75 & 3 & 2.0 & 2.0 & 34.4\end{array}$
$\begin{array}{lllll}120.00 & 4 & 2.6 & 2.6 & 37.1\end{array}$
$\begin{array}{lllll}123.45 & 2 & 1.3 & 1.3 & 38.4\end{array}$
$\begin{array}{lllll}123.68 & 2 & 1.3 & 1.3 & 39.7\end{array}$
$\begin{array}{lllll}127.14 & 1 & .7 & .7 & 40.4\end{array}$

| 133.94 | 3 | 2.0 | 2.0 | 42.4 |
| :--- | :--- | :--- | :--- | :--- |


| 149.68 | 1 | .7 | .7 | 43.0 |
| :--- | :--- | :--- | :--- | :--- |

$\begin{array}{lllll}149.80 & 4 & 2.6 & 2.6 & 45.7\end{array}$
$\begin{array}{lllll}149.89 & 2 & 1.3 & 1.3 & 47.0\end{array}$
$\begin{array}{lllll}161.26 & 2 & 1.3 & 1.3 & 48.3\end{array}$
$\begin{array}{lllll}169.53 & 4 & 2.6 & 2.6 & 51.0\end{array}$
$\begin{array}{lllll}174.83 & 2 & 1.3 & 1.3 & 52.3\end{array}$
$\begin{array}{lllll}182.47 & 1 & .7 & .7 & 53.0\end{array}$
$\begin{array}{lllll}189.38 & 7 & .7 & .7 & 53.6\end{array}$
$\begin{array}{lllll}189.70 & 1 & .7 & .7 & 54.3\end{array}$
$\begin{array}{lllll}191.85 & 2 & 1.3 & 1.3 & 55.6\end{array}$
$\begin{array}{lllll}191.94 & 1 & .7 & .7 & 56.3\end{array}$
$200.91 \quad 7 \quad .7 \quad .7 \quad 57.0$
$\begin{array}{lllll}201.16 & 1 & .7 & 7 & 57.6\end{array}$
$\begin{array}{lllll}209.56 & 2 & 1.3 & 1.3 & 58.9\end{array}$
$\begin{array}{lllll}210.00 & 2 & 1.3 & 1.3 & 60.3\end{array}$
$\begin{array}{lllll}211.69 & 1 & 7 & .7 & 60.9\end{array}$
$\begin{array}{lllll}211.91 & 3 & 2.0 & 2.0 & 62.9\end{array}$

## SUMMARY STATISTICS

TYPE: Other Activity Sites DISTWAT

Value Label Value Freq $\quad \% \quad$| Valid |
| :---: |
| Cum |

| 216.02 | 1 | .7 | .7 | 63.6 |
| :--- | :--- | :--- | :--- | :--- |
| 216.19 | 1 | .7 | .7 | 64.2 |
| 228.07 | 1 | .7 | .7 | 64.9 |
| 234.02 | 1 | .7 | .7 | 65.6 |
| 239.49 | 1 | .7 | .7 | 66.2 |
| 240.00 | 2 | 1.3 | 1.3 | 67.5 |
| 241.36 | 2 | 1.3 | 1.3 | 68.9 |


| 241.86 | 1 | 7 | .7 | 69.5 |
| :--- | :--- | :--- | :--- | :--- |


| 246.89 | 1 | .7 | .7 | 70.2 |
| :--- | :--- | :--- | :--- | :--- |


| 255.85 | 2 | 1.3 | 1.3 | 71.5 |
| :--- | :--- | :--- | :--- | :--- |

$\begin{array}{lllll}256.25 & 1 & .7 & .7 & 72.2\end{array}$

| 257.89 | 1 | .7 | 7 | 72.8 |
| :--- | :--- | :--- | :--- | :--- |


| 267.87 | 1 | .7 | .7 | 73.5 |
| :--- | :--- | :--- | :--- | :--- |


| 268.21 | 1 | .7 | .7 | 74.2 |
| :--- | :--- | :--- | :--- | :--- |


| 271.65 | 2 | 1.3 | 1.3 | 75.5 |
| :--- | :--- | :--- | :--- | :--- |


| 276.25 | 1 | .7 | .7 | 76.2 |
| :--- | :--- | :--- | :--- | :--- |


| 282.59 | 1 | .7 | .7 | 76.8 |
| :--- | :--- | :--- | :--- | :--- |


| 282.85 | 1 | .7 | .7 | 77.5 |
| :--- | :--- | :--- | :--- | :--- |


| 284.06 | 2 | 1.3 | 1.3 | 78.8 |
| :--- | :--- | :--- | :--- | :--- |


| 284.54 | 1 | .7 | .7 | 79.5 |
| :--- | :--- | :--- | :--- | :--- |

$294.94 \quad 1 \quad .7 \quad .7 \quad 80.1$

| 296.67 | 1 | .7 | .7 | 80.8 |
| :--- | :--- | :--- | :--- | :--- |


| 299.37 | 1 | .7 | .7 | 81.5 |
| :--- | :--- | :--- | :--- | :--- |


| 299.77 | 1 | .7 | .7 | 82.1 |
| :--- | :--- | :--- | :--- | :--- |


| 308.37 | 2 | 1.3 | 1.3 | 83.4 |
| :--- | :--- | :--- | :--- | :--- |

$\begin{array}{lllll}313.15 & 1 & .7 & .7 & 84.1\end{array}$

| 318.61 | 1 | .7 | .7 | 84.8 |
| :--- | :--- | :--- | :--- | :--- |


| 322.52 | 1 | .7 | 7 | 85.4 |
| :--- | :--- | :--- | :--- | :--- |

$\begin{array}{lllll}323.02 & 2 & 1.3 & 1.3 & 86.8\end{array}$
$\begin{array}{lllll}324.02 & 1 & .7 & 7 & 87.4\end{array}$
$\begin{array}{lllll}329.30 & 1 & .7 & .7 & 88.1\end{array}$

| 331.36 | 1 | .7 | .7 | 88.7 |
| :--- | :--- | :--- | :--- | :--- |


| 334.72 | 1 | .7 | .7 | 89.4 |
| :--- | :--- | :--- | :--- | :--- |


| 341.78 | 1 | .7 | .7 | 90.1 |
| :--- | :--- | :--- | :--- | :--- |

$\begin{array}{lllll}342.00 & 1 & .7 & .7 & 90.7\end{array}$
$\begin{array}{lllll}350.49 & 1 & .7 & .7 & 91.4\end{array}$

## SUMMARY STATISTICS

TYPE: Other Activity Sites
DISTWAT

|  |  |  | Valid Cum <br> Value Label Value |  |  |  | Freq | $\%$ | $\%$ | $\%$ |
| :---: | :---: | :---: | :---: | :---: | ---: | :---: | :---: | :---: | :---: | :---: |


| Mean | 187.959 | Std err | 9.648 | Median | 169.526 |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Mode | 29.937 | Std dev | 118.558 | Variance | 14055.936 |  |
| Kurtosis | -.367 | S E Kurt | .392 | Skewness | .609 |  |
| S E Skew | .197 | Range | 478.985 |  | Minimum | 29.937 |
| Maximum | 508.922 | Sum | 28381.754 |  |  |  |

Valid cases 151 Missing cases 0

## SUMMARY STATISTICS

TYPE: Other Activity Sites
SLOPED

| Value Label |  | Valid |  |  | $\begin{gathered} \text { Cum } \\ \% \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Value |  |  | \% |  |
|  | . 00 | 2 | 1.3 | 1.3 | 1.3 |
|  | . 95 | 1 | . 7 | . 7 | 2.0 |
|  | . 96 | 4 | 2.6 | 2.6 | 4.6 |
|  | 1.35 | 4 | 2.6 | 2.6 | 7.3 |
|  | 1.91 | 3 | 2.0 | 2.0 | 9.3 |
|  | 1.91 | 3 | 2.0 | 2.0 | 11.3 |
|  | 2.14 | 3 | 2.0 | 2.0 | 13.2 |
|  | 2.14 | 5 | 3.3 | 3.3 | 16.6 |
|  | 2.70 | 4 | 2.6 | 2.6 | 19.2 |
|  | 2.86 | 1 | . 7 | . 7 | 19.9 |
|  | 2.87 | 3 | 2.0 | 2.0 | 21.9 |
|  | 3.02 | 3 | 2.0 | 2.0 | 23.8 |
|  | 3.02 | 1 | . 7 | . 7 | 24.5 |
|  | 3.44 | 3 | 2.0 | 2.0 | 26.5 |
|  | 3.44 | 3 | 2.0 | 2.0 | 28.5 |
|  | 3.81 | 2 | 1.3 | 1.3 | 29.8 |
|  | 3.82 | 2 | 1.3 | 1.3 | 31.1 |
|  | 3.93 | 1 | . 7 | . 7 | 31.8 |
|  | 3.94 | 3 | 2.0 | 2.0 | 33.8 |
|  | 4.05 | 2 | 1.3 | 1.3 | 35.1 |
|  | 4.26 | 3 | 2.0 | 2.0 | 37.1 |
|  | 4.27 | 1 | . 7 | . 7 | 37.7 |
|  | 4.76 | 1 | . 7 | . 7 | 38.4 |
|  | 4.77 | 1 | . 7 | . 7 | 39.1 |
|  | 4.77 | 2 | 1.3 | 1.3 | 40.4 |
|  | 4.77 | 1 | . 7 | . 7 | 41.1 |
|  | 4.86 | 2 | 1.3 | 1.3 | 42.4 |
|  | 4.87 | 2 | 1.3 | 1.3 | 43.7 |
|  | 5.14 | 3 | 2.0 | 2.0 | 45.7 |
|  | 5.39 | 2 | 1.3 | 1.3 | 47.0 |
|  | 5.56 | 3 | 2.0 | 2.0 | 49.0 |
|  | 5.71 | 1 | . 7 | . 7 | 49.7 |
|  | 5.79 | 1 | . 7 | . 7 | 50.3 |
|  | 5.80 | 1 | . 7 | . 7 | 51.0 |
|  | 6.02 | 4 | 2.6 | 2.6 | 53.6 |
|  | 6.03 | 1 | . 7 | . 7 | 54.3 |

## SUMMARY STATISTICS

TYPE: Other Activity Sites SLOPED
Value Label Value Freq $\quad$ \% $\quad$ Valid $\begin{aligned} \text { Cum } \\ \%\end{aligned}$

| 6.10 | 6 | 4.0 | 4.0 | 58.3 |
| ---: | :---: | :---: | :--- | :--- |
| 6.10 | 1 | .7 | .7 | 58.9 |
| 6.38 | 2 | 1.3 | 1.3 | 60.3 |
| 6.39 | 2 | 1.3 | 1.3 | 61.6 |
| 6.65 | 1 | .7 | .7 | 62.3 |
| 6.74 | 1 | .7 | .7 | 62.9 |
| 7.24 | 1 | .7 | .7 | 63.6 |
| 7.25 | 3 | 2.0 | 2.0 | 65.6 |
| 7.43 | 2 | 1.3 | 1.3 | 66.9 |
| 7.65 | 1 | .7 | .7 | 67.5 |
| 7.67 | 1 | .7 | .7 | 68.2 |
| 7.67 | 2 | 1.3 | 1.3 | 69.5 |
| 7.84 | 1 | .7 | .7 | 70.2 |
| 8.06 | 1 | .7 | .7 | 70.9 |
| 8.11 | 1 | .7 | .7 | 71.5 |
| 8.12 | 1 | .7 | .7 | 72.2 |
| 8.17 | 1 | .7 | .7 | 72.8 |
| 8.48 | 1 | .7 | .7 | 73.5 |
| 8.49 | 1 | .7 | .7 | 74.2 |
| 8.53 | 1 | .7 | .7 | 74.8 |
| 8.60 | 2 | 1.3 | 1.3 | 76.2 |
| 8.74 | 1 | .7 | .7 | 76.8 |
| 8.74 | 1 | .7 | .7 | 77.5 |
| 8.75 | 2 | 1.3 | 1.3 | 78.8 |
| 8.75 | 1 | .7 | .7 | 79.5 |
| 9.34 | 2 | 1.3 | 1.3 | 80.8 |
| 9.47 | 1 | .7 | .7 | 81.5 |
| 9.53 | 1 | .7 | .7 | 82.1 |
| 9.67 | 1 | .7 | .7 | 82.8 |
| 9.75 | 3 | 2.0 | 2.0 | 84.8 |
| 9.87 | 1 | .7 | .7 | 85.4 |
| 9.89 | 1 | .7 | .7 | 86.1 |
| 10.06 | 1 | .7 | .7 | 86.8 |
| 10.19 | 1 | .7 | .7 | 87.4 |
| 10.41 | 1 | .7 | .7 | 88.1 |
| 10.69 | 1 | .7 | .7 | 88.7 |

## SUMMARY STATISTICS

TYPE: Other Activity Sites
SLOPED

| Value Label |  |  | Valid |  |  |  | Cum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Falue | Freq | $\%$ | $\%$ |  |  |
| $\%$ |  |  |  |  |  |  |  |
|  | 10.76 | 1 | .7 | .7 | 89.4 |  |  |
|  | 10.77 | 1 | .7 | .7 | 90.1 |  |  |
|  | 10.78 | 1 | .7 | .7 | 90.7 |  |  |
|  | 11.04 | 1 | .7 | .7 | 91.4 |  |  |
|  | 11.35 | 1 | .7 | .7 | 92.1 |  |  |
|  | 11.81 | 1 | .7 | .7 | 92.7 |  |  |
|  | 11.91 | 1 | .7 | .7 | 93.4 |  |  |
|  | 12.26 | 1 | .7 | .7 | 94.0 |  |  |
|  | 13.44 | 1 | .7 | .7 | 94.7 |  |  |
|  | 13.45 | 1 | .7 | .7 | 95.4 |  |  |
|  | 14.78 | 1 | .7 | .7 | 96.0 |  |  |
|  | 14.93 | 1 | .7 | .7 | 96.7 |  |  |
|  | 15.40 | 1 | .7 | .7 | 97.4 |  |  |
|  | 15.86 | 1 | .7 | .7 | 98.0 |  |  |
|  | 16.76 | 1 | .7 | .7 | 98.7 |  |  |
|  | 17.58 | 1 | .7 | .7 | 99.3 |  |  |
|  | 21.82 | 1 | .7 | .7 | 100.0 |  |  |
|  |  | -15 | -100.0 | 100.0 |  |  |  |


| Mean | 6.217 | Std err | .314 | Median | 5.789 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Mode | 6.096 | Std dev | 3.859 | Variance | 14.892 |
| Kurtosis | 1.480 | S E Kurt | .392 | Skewness | 1.021 |
| S E Skew | .197 | Range | 21.819 | Minimum | .000 |
| Maximum | 21.819 | Sum | 938.752 |  |  |

Valid cases 151 Missing cases 0




## SUMMARY STATISTICS

TYPE: Quarry Sites
ASPECT

| Mean | 126.799 | Std err | 16.852 | Median | 126.361 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Mode | 44.939 | Std dev | 101.114 | Variance | 10224.115 |
| Kurtosis | -1.345 | S E Kurt | .768 | Skewness | .392 |
| S E Skew | .393 | Range | 307.482 | Minimum | 7.579 |
| Maximum | 315.061 | Sum | 4564.759 |  |  |

Valid cases 36 Missing cases 0


## SUMMARY STATISTICS

## TYPE: Quarry Sites

DISTWAT

| Mean | 181.479 | Std err | 17.435 | Median | 157.233 |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Mode | 84.763 | Std dev | 104.610 | Variance | 10943.206 |  |
| Kurtosis | .439 | SE Kurt | .768 | Skewness | .938 |  |
| S E Skew | .393 | Range | 426.131 |  | Minimum | 30.000 |
| Maximum | 456.131 | Sum | 6533.234 |  |  |  |

Valid cases 36 Missing cases 0

## SUMMARY STATISTICS

TYPE: Quarry Sites

## SLOPED

Value Label Value Freq $\% \quad \% \quad \begin{gathered}\text { Valid } \\ \text { Cum }\end{gathered}$

| 1.35 | 1 | 2.8 | 2.8 | 2.8 |
| :--- | :--- | :--- | :--- | :---: |
| 2.70 | 2 | 5.6 | 5.6 | 8.3 |
| 3.44 | 1 | 2.8 | 2.8 | 11.1 |
| 3.44 | 1 | 2.8 | 2.8 | 13.9 |
| 4.77 | 1 | 2.8 | 2.8 | 16.7 |
| 4.87 | 1 | 2.8 | 2.8 | 19.4 |
| 5.14 | 1 | 2.8 | 2.8 | 22.2 |


| 6.03 | 1 | 2.8 | 2.8 | 25.0 |
| :--- | :--- | :--- | :--- | :--- |


| 6.86 | 1 | 2.8 | 2.8 | 27.8 |
| :--- | :--- | :--- | :--- | :--- |


| 6.86 | 1 | 2.8 | 2.8 | 30.6 |
| :--- | :--- | :--- | :--- | :--- |

$\begin{array}{lllll}7.43 & 1 & 2.8 & 2.8 & 33.3\end{array}$
$\begin{array}{lllll}7.67 & 1 & 2.8 & 2.8 & 36.1\end{array}$
$\begin{array}{lllll}7.84 & 1 & 2.8 & 2.8 & 38.9\end{array}$
$\begin{array}{lllll}8.17 & 1 & 2.8 & 2.8 & 41.7\end{array}$
$\begin{array}{lllll}8.74 & 1 & 2.8 & 2.8 & 44.4\end{array}$
$\begin{array}{lllll}8.75 & 2 & 5.6 & 5.6 & 50.0\end{array}$
$\begin{array}{lllll}8.75 & 2 & 5.6 & 5.6 & 55.6\end{array}$
$\begin{array}{lllll}8.94 & 1 & 2.8 & 2.8 & 58.3\end{array}$
$\begin{array}{lllll}8.99 & 1 & 2.8 & 2.8 & 61.1\end{array}$
$\begin{array}{rrrrr}9.53 & 1 & 2.8 & 2.8 & 63.9\end{array}$
$\begin{array}{lllll}10.06 & 1 & 2.8 & 2.8 & 66.7\end{array}$
$\begin{array}{lllll}10.39 & 2 & 5.6 & 5.6 & 72.2\end{array}$
$\begin{array}{lllll}10.57 & 1 & 2.8 & 2.8 & 75.0\end{array}$
$\begin{array}{lllll}11.06 & 1 & 2.8 & 2.8 & 77.8\end{array}$
$\begin{array}{lllll}11.81 & 1 & 2.8 & 2.8 & 80.6\end{array}$
$\begin{array}{lllll}12.25 & 1 & 2.8 & 2.8 & 83.3\end{array}$
$\begin{array}{lllll}12.28 & 1 & 2.8 & 2.8 & 86.1\end{array}$
$\begin{array}{lllll}13.45 & 1 & 2.8 & 2.8 & 88.9\end{array}$
$\begin{array}{lllll}13.93 & 1 & 2.8 & 2.8 & 91.7\end{array}$
$\begin{array}{lllll}14.18 & 1 & 2.8 & 2.8 & 94.4\end{array}$
$\begin{array}{lllll}16.23 & 1 & 2.8 & 2.8 & 97.2\end{array}$
$\begin{array}{llllll}17.68 & 1 & 2.8 & 2.8 & 100.0 \\ \text { Total } & 36 & 100.0 & 100.0\end{array}$

## SUMMARY STATISTICS

TYPE: Quarry Sites

## SLOPED

| Mean | 8.743 | Std err | .637 | Median | 8.750 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Mode | 2.702 | Std dev | 3.823 | Variance | 14.613 |
| Kurtosis | -.096 | S E Kurt | .768 | Skewness | .182 |
| S E Skew | .393 | Range | 16.327 | Minimum | 1.352 |
| Maximum | 17.679 | Sum | 314.738 |  |  |

Valid cases 36 Missing cases 0

|  |  | SUMMARY STATISTICS ASPECT (AZIMUTH) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| All Archaeological Sites |  |  |  |  |  |
|  |  |  |  | Valid | Cum |
| Value Label | Value | Fr | \% | \% | \% |
|  | -1.00 | 7 | 1.5 | 1.5 | 1.5 |
|  | . 00 | 15 | 3.3 | 3.3 | 4.8 |
|  | 4.08 | 1 | . 2 | . 2 | 5.0 |
|  | 7.58 | 1 | . 2 | . 2 | 5.2 |
|  | 9.44 | 1 | . 2 | . 2 | 5.4 |
|  | 11.29 | 3 | . 7 | . 7 | 6.1 |
|  | 12.50 | 1 | . 2 | . 2 | 6.3 |
|  | 14.01 | 1 | . 2 | . 2 | 6.5 |
|  | 14.90 | 1 | . 2 | . 2 | 6.7 |
|  | 15.91 | 2 | 4 | . 4 | 7.2 |
|  | 18.40 | 3 | . 7 | . 7 | 7.8 |
|  | 19.94 | 2 | . 4 | . 4 | 8.3 |
|  | 20.52 | 1 | . 2 | . 2 | 8.5 |
|  | 21.76 | 1 | . 2 | . 2 | 8.7 |
|  | 22.58 | 2 | . 4 | . 4 | 9.1 |
|  | 23.15 | 2 | . 4 | . 4 | 9.6 |
|  | 24.73 | 1 | . 2 | . 2 | 9.8 |
|  | 26.52 | 10 | 2.2 | 2.2 | 12.0 |
|  | 28.56 | 2 | . 4 | . 4 | 12.4 |
|  | 29.69 | 1 | . 2 | . 2 | 12.6 |
|  | 30.91 | 2 | . 4 | . 4 | 13.0 |
|  | 31.95 | 1 | . 2 | . 2 | 13.3 |
|  | 32.42 | 1 | . 2 | . 2 | 13.5 |
|  | 33.63 | 5 | 1.1 | 1.1 | 14.6 |
|  | 35.48 | 4 | . 9 | . 9 | 15.4 |
|  | 38.60 | 3 | . 7 | . 7 | 16.1 |
|  | 39.75 | 2 | . 4 | . 4 | 16.5 |
|  | 40.18 | 1 | . 2 | . 2 | 16.7 |
|  | 40.54 | 1 | . 2 | . 2 | 17.0 |
|  | 41.13 | 1 | . 2 | . 2 | 17.2 |
|  | 41.57 | 2 | . 4 | . 4 | 17.6 |
|  | 44.94 | 16 | 3.5 | 3.5 | 21.1 |
|  | 47.06 | 1 | . 2 | . 2 | 21.3 |
|  | 47.43 | 1 | . 2 | . 2 | 21.5 |
|  | 52.07 | 2 | . 4 | . 4 | 22.0 |
|  | 53.07 | 3 | . 7 | . 7 | 22.6 |
|  | 53.91 | 1 | . 2 | . 2 | 22.8 |


|  |  | SUMMARY STATISTICS APSECT (AZIMUTH) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | All Archaeological Sites |  |  |  |
|  |  |  |  | Valid | Cum |
| Value Label | Value | Freq | \% | \% | \% |
|  | 56.25 | 9 | 2.0 | 2.0 | 24.8 |
|  | 57.94 | 3 | . 7 | . 7 | 25.4 |
|  | 60.89 | 1 | . 2 | . 2 | 25.7 |
|  | 63.39 | 8 | 1.7 | 1.7 | 27.4 |
|  | 65.99 | 1 | . 2 | . 2 | 27.6 |
|  | 67.34 | 1 | . 2 | . 2 | 27.8 |
|  | 68.16 | 1 | . 2 | . 2 | 28.0 |
|  | 71.53 | 7 | 1.5 | 1.5 | 29.6 |
|  | 73.27 | 1 | . 2 | . 2 | 29.8 |
|  | 74.02 | 1 | . 2 | . 2 | 30.0 |
|  | 75.94 | 1 | . 2 | . 2 | 30.2 |
|  | 77.45 | 1 | . 2 | . 2 | 30.4 |
|  | 78.67 | 1 | . 2 | . 2 | 30.7 |
|  | 80.52 | 1 | . 2 | . 2 | 30.9 |
|  | 81.85 | 1 | . 2 | . 2 | 31.1 |
|  | 82.86 | 1 | . 2 | . 2 | 31.3 |
|  | 84.79 | 1 | . 2 | . 2 | 31.5 |
|  | 85.59 | 1 | . 2 | . 2 | 31.7 |
|  | 90.00 | 25 | 5.4 | 5.4 | 37.2 |
|  | 96.35 | 1 | . 2 | . 2 | 37.4 |
|  | 97.14 | 1 | . 2 | . 2 | 37.6 |
|  | 99.48 | 1 | . 2 | . 2 | 37.8 |
|  | 101.33 | 3 | . 7 | . 7 | 38.5 |
|  | 103.02 | 1 | . 2 | . 2 | 38.7 |
|  | 104.06 | 2 | . 4 | - 4 | 39.1 |
|  | 105.29 | 1 | . 2 | . 2 | 39.3 |
|  | 105.98 | 1 | . 2 | . 2 | 39.6 |
|  | 108.47 | 9 | 2.0 | 2.0 | 41.5 |
|  | 110.60 | 1 | . 2 | . 2 | 41.7 |
|  | 113.24 | 1 | . 2 | . 2 | 42.0 |
|  | 116.61 | 9 | 2.0 | 2.0 | 43.9 |
|  | 119.11 | 1 | . 2 | . 2 | 44.1 |
|  | 119.80 | 2 | . 4 | . 4 | 44.6 |
|  | 121.02 | 1 | . 2 | . 2 | 44.8 |
|  | 122.06 | 1 | . 2 | . 2 | 45.0 |
|  | 123.75 | 2 | . 4 | . 4 | 45.4 |
|  | 125.60 | 1 | . 2 | . 2 | 45.7 |
|  | 128.72 | 1 | . 2 | . 2 | 45.9 |


|  |  | SUMMARY STATISTICS <br> APECT (AZIMUTH) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| All Archaeological Sites |  |  |  |  |  |
|  |  |  |  | Valid | Cum |
| Value Label | Value | Freq | \% | \% | \% |
|  | 129.87 | 1 | . 2 | . 2 | 46.1 |
|  | 130.66 | 2 | . 4 | . 4 | 46.5 |
|  | 132.33 | 1 | . 2 | . 2 | 46.7 |
|  | 135.06 | 8 | 1.7 | 1.7 | 48.5 |
|  | 139.46 | 1 | . 2 | . 2 | 48.7 |
|  | 143.19 | 1 | . 2 | . 2 | 48.9 |
|  | 146.37 | 7 | 1.5 | 1.5 | 50.4 |
|  | 149.09 | 1 | . 2 | . 2 | 50.7 |
|  | 150.31 | 1 | . 2 | . 2 | 50.9 |
|  | 151.00 | 1 | . 2 | . 2 | 51.1 |
|  | 153.48 | 10 | 2.2 | 2.2 | 53.3 |
|  | 156.08 | 2 | 4 | . 4 | 53.7 |
|  | 156.85 | 2 | . 4 | . 4 | 54.1 |
|  | 158.24 | 2 | . 4 | . 4 | 54.6 |
|  | 161.60 | 6 | 1.3 | 1.3 | 55.9 |
|  | 162.93 | 1 | . 2 | . 2 | 56.1 |
|  | 164.09 | 1 | . 2 | . 2 | 56.3 |
|  | 164.78 | 1 | . 2 | . 2 | 56.5 |
|  | 165.99 | 4 | . 9 | . 9 | 57.4 |
|  | 168.71 | 1 | . 2 | . 2 | 57.6 |
|  | 170.56 | 1 | . 2 | . 2 | 57.8 |
|  | 171.89 | 1 | . 2 | . 2 | 58.0 |
|  | 172.89 | 1 | . 2 | . 2 | 58.3 |
|  | 173.67 | 1 | . 2 | . 2 | 58.5 |
|  | 174.30 | 1 | . 2 | . 2 | 58.7 |
|  | 174.82 | 1 | . 2 | . 2 | 58.9 |
|  | 175.25 | 1 | . 2 | . 2 | 59.1 |
|  | 179.95 | 1 | . 2 | . 2 | 59.3 |
|  | 180.00 | 28 | 6.1 | 6.1 | 65.4 |
|  | 180.09 | 1 | . 2 | . 2 | 65.7 |
|  | 180.29 | 1 | . 2 | . 2 | 65.9 |
|  | 183.17 | 1 | . 2 | . 2 | 66.1 |
|  | 185.70 | 1 | . 2 | . 2 | 66.3 |
|  | 186.33 | 2 | . 4 | . 4 | 66.7 |
|  | 187.11 | 2 | . 4 | . 4 | 67.2 |
|  | 188.11 | 3 | . 7 | . 7 | 67.8 |
|  | 189.44 | 2 | . 4 | . 4 | 68.3 |
|  | 190.28 | 1 | . 2 | . 2 | 68.5 |


| All Archaeological Sites |  | SUMMARY STATISTICS ASPECT (AZIMUTH) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Valid |  |  |  |
|  |  |  |  |  | Cum |
| Value Label | Value | Freq | \% | \% | \% |
|  | 191.29 | 7 | 1.5 | 1.5 | 70.0 |
|  | 192.07 | 2 | . 4 | . 4 | 70.4 |
|  | 192.50 | 2 | . 4 | . 4 | 70.9 |
|  | 194.01 | 3 | . 7 | . 7 | 71.5 |
|  | 195.91 | 1 | . 2 | . 2 | 71.7 |
|  | 196.67 | 1 | . 2 | . 2 | 72.0 |
|  | 198.40 | 8 | 1.7 | 1.7 | 73.7 |
|  | 201.76 | 3 | . 7 | . 7 | 74.3 |
|  | 202.58 | 1 | . 2 | . 2 | 74.6 |
|  | 203.15 | 1 | . 2 | . 2 | 74.8 |
|  | 203.92 | 1 | . 2 | . 2 | 75.0 |
|  | 206.52 | 7 | 1.5 | 1.5 | 76.5 |
|  | 209.00 | 1 | . 2 | . 2 | 76.7 |
|  | 209.69 | 1 | . 2 | . 2 | 77.0 |
|  | 210.91 | 2 | . 4 | 4 | 77.4 |
|  | 211.95 | 1 | . 2 | . 2 | 77.6 |
|  | 213.63 | 3 | . 7 | . 7 | 78.3 |
|  | 214.64 | 1 | . 2 | . 2 | 78.5 |
|  | 215.48 | 1 | . 2 | . 2 | 78.7 |
|  | 216.81 | 2 | . 4 | . 4 | 79.1 |
|  | 219.75 | 1 | . 2 | . 2 | 79.3 |
|  | 220.54 | 4 | . 9 | . 9 | 80.2 |
|  | 221.13 | 1 | . 2 | . 2 | 80.4 |
|  | 221.57 | 1 | . 2 | . 2 | 80.7 |
|  | 224.94 | 11 | 2.4 | 2.4 | 83.0 |
|  | 226.41 | 1 | . 2 | . 2 | 83.3 |
|  | 229.34 | 1 | . 2 | . 2 | 83.5 |
|  | 230.13 | 1 | . 2 | . 2 | 83.7 |
|  | 231.28 | 7 | 1.5 | 1.5 | 85.2 |
|  | 231.57 | 1 | . 2 | . 2 | 85.4 |
|  | 233.07 | 2 | . 4 | . 4 | 85.9 |
|  | 236.25 | 1 | . 2 | . 2 | 86.1 |
|  | 237.47 | 1 | . 2 | . 2 | 86.3 |
|  | 238.98 | 1 | . 2 | . 2 | 86.5 |
|  | 240.20 | 1 | . 2 | . 2 | 86.7 |
|  | 243.39 | 3 | . 7 | . 7 | 87.4 |
|  | 249.98 | 1 | . 2 | . 2 | 87.6 |
|  | 251.53 | 3 | . 7 | . 7 | 88.3 |


|  |  | SUMMARY STATISTICS ASPECT (AZIMUTH) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | All Archaeological Sites |  |  |  |
| Value Label |  |  |  | Valid | Cum |
|  | Value | Freq | \% | \% | \% |
|  | 253.27 | 1 | . 2 | . 2 | 88.5 |
|  | 256.73 | 1 | . 2 | . 2 | 88.7 |
|  | 260.52 | 1 | . 2 | . 2 | 88.9 |
|  | 263.65 | 1 | . 2 | . 2 | 89.1 |
|  | 269.54 | 1 | . 2 | . 2 | 89.3 |
|  | 270.00 | 9 | 2.0 | 2.0 | 91.3 |
|  | 272.39 | 1 | . 2 | . 2 | 91.5 |
|  | 274.77 | 1 | . 2 | . 2 | 91.7 |
|  | 277.14 | 1 | . 2 | . 2 | 92.0 |
|  | 281.33 | 3 | . 7 | . 7 | 92.6 |
|  | 285.29 | 1 | . 2 | . 2 | 92.8 |
|  | 288.47 | 3 | . 7 | . 7 | 93.5 |
|  | 290.60 | 1 | . 2 | . 2 | 93.7 |
|  | 291.84 | 1 | . 2 | . 2 | 93.9 |
|  | 296.61 | 1 | . 2 | . 2 | 94.1 |
|  | 301.02 | 1 | . 2 | . 2 | 94.3 |
|  | 302.06 | 1 | . 2 | . 2 | 94.6 |
|  | 303.75 | 1 | . 2 | . 2 | 94.8 |
|  | 306.93 | 1 | . 2 | . 2 | 95.0 |
|  | 315.06 | 4 | . 9 | . 9 | 95.9 |
|  | 318.87 | 1 | . 2 | . 2 | 96.1 |
|  | 320.25 | 1 | . 2 | . 2 | 96.3 |
|  | 321.40 | 2 | . 4 | . 4 | 96.7 |
|  | 323.19 | 2 | . 4 | 4 | 97.2 |
|  | 326.37 | 1 | . 2 | . 2 | 97.4 |
|  | 331.00 | 1 | . 2 | . 2 | 97.6 |
|  | 333.48 | 3 | . 7 | . 7 | 98.3 |
|  | 336.85 | 1 | . 2 | . 2 | 98.5 |
|  | 338.24 | 1 | . 2 | . 2 | 98.7 |
|  | 345.99 | 2 | . 4 | . 4 | 99.1 |
|  | 348.71 | 1 | . 2 | . 2 | 99.3 |
|  | 352.89 | 2 | 4 | . 4 | 99.8 |
|  | 354.30 | 1 | . 2 | . 2 | 100.0 |
|  | Total | 460 | 100.0 | 100.0 |  |

## SUMMARY STATISTICS ASPECT (AZIMUTH)

All Archaeological Sites

| Mean | 141.744 | Std err | 4.249 | Median | 146.366 |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Mode | 180.000 | Std dev | 91.140 | Variance | 8306.580 |  |
| Kurtosis | -.802 | S E Kurt | .227 | Skewness | .257 |  |
| S E Skew | .114 | Range | 355.301 |  | Minimum | -1.000 |
| Maximum | 354.301 | Sum | 65202.188 |  |  |  |

Valid cases 460 Missing cases 0

## SUMMARY STATISTICS

 DISTANCE TO WATERAll Archaeological Sites
Value Label Value Freq $\% \quad \% \quad$ Valid $\quad$ Cum

| .00 | 5 | 1.1 | 1.1 | 1.1 |
| ---: | :---: | :---: | :---: | :---: |
| 29.94 | 23 | 5.0 | 5.0 | 6.1 |
| 30.00 | 12 | 2.6 | 2.6 | 8.7 |
| 42.38 | 14 | 3.0 | 3.0 | 11.7 |
| 59.87 | 14 | 3.0 | 3.0 | 14.8 |
| 60.00 | 10 | 2.2 | 2.2 | 17.0 |
| 66.97 | 15 | 3.3 | 3.3 | 20.2 |
| 67.05 | 11 | 2.4 | 2.4 | 22.6 |
| 84.76 | 15 | 3.3 | 3.3 | 25.9 |
| 89.81 | 10 | 2.2 | 2.2 | 28.0 |
| 90.00 | 5 | 1.1 | 1.1 | 29.1 |
| 94.69 | 12 | 2.6 | 2.6 | 31.7 |
| 94.85 | 1 | .2 | .2 | 32.0 |
| 108.01 | 10 | 2.2 | 2.2 | 34.1 |
| 108.10 | 2 | .4 | .4 | 34.6 |
| 119.75 | 8 | 1.7 | 1.7 | 36.3 |
| 120.00 | 11 | 2.4 | 2.4 | 38.7 |
| 123.45 | 7 | 1.5 | 1.5 | 40.2 |
| 123.68 | 10 | 2.2 | 2.2 | 42.4 |
| 127.14 | 5 | 1.1 | 1.1 | 43.5 |
| 133.94 | 6 | 1.3 | 1.3 | 44.8 |
| 134.11 | 4 | .9 | .9 | 45.7 |
| 149.68 | 6 | 1.3 | 1.3 | 47.0 |
| 149.80 | 10 | 2.2 | 2.2 | 49.1 |
| 149.89 | 3 | .7 | .7 | 49.8 |
| 150.00 | 2 | .4 | .4 | 50.2 |
| 152.96 | 1 | .2 | .2 | 50.4 |
| 161.26 | 6 | 1.3 | 1.3 | 51.7 |
| 161.51 | 4 | .9 | .9 | 52.6 |
| 169.53 | 6 | 1.3 | 1.3 | 53.9 |
| 174.66 | 3 | .7 | .7 | 54.6 |
| 174.83 | 6 | 1.3 | 1.3 | 55.9 |
| 179.62 | 3 | .7 | .7 | 56.5 |
| 180.00 | 2 | .4 | .4 | 57.0 |
| 182.11 | 2 | .4 | .4 | 57.4 |
| 182.47 | 3 | .7 | .7 | 58.0 |
| 189.38 | 3 | .7 | .7 | 58.7 |
|  |  |  |  |  |


|  |  | SUMMARY STATISTICS |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| All Archaeological Sites | Valid |  |  |  | Cum |  |
| Value Label | Value | Freq | \% | \% | $\%$ |  |
|  | 189.70 | 2 | .4 | .4 | 59.1 |  |
|  | 191.85 | 5 | 1.1 | 1.1 | 60.2 |  |
| 191.94 | 3 | .7 | .7 | 60.9 |  |  |
| 200.91 | 3 | .7 | .7 | 61.5 |  |  |
| 201.16 | 1 | .2 | .2 | 61.7 |  |  |
| 209.56 | 4 | .9 | .9 | 62.6 |  |  |
| 210.00 | 2 | .4 | .4 | 63.0 |  |  |
| 211.69 | 2 | .4 | .4 | 63.5 |  |  |
| 211.91 | 6 | 1.3 | 1.3 | 64.8 |  |  |
| 216.02 | 2 | .4 | .4 | 65.2 |  |  |
| 216.19 | 4 | .9 | .9 | 66.1 |  |  |
| 217.98 | 1 | .2 | .2 | 66.3 |  |  |
| 228.07 | 3 | .7 | .7 | 67.0 |  |  |
| 228.40 | 2 | .4 | .4 | 67.4 |  |  |
| 234.02 | 4 | .9 | .9 | 68.3 |  |  |
| 234.10 | 1 | .2 | .2 | 68.5 |  |  |
| 239.49 | 4 | .9 | .9 | 69.3 |  |  |
| 240.00 | 5 | 1.1 | 1.1 | 70.4 |  |  |
| 241.36 | 4 | .9 | .9 | 71.3 |  |  |
| 241.48 | 2 | .4 | .4 | 71.7 |  |  |
| 241.74 | 1 | .2 | .2 | 72.0 |  |  |
| 241.86 | 3 | .7 | .7 | 72.6 |  |  |
| 246.89 | 2 | .4 | .4 | 73.0 |  |  |
| 247.36 | 1 | .2 | .2 | 73.3 |  |  |
| 254.29 | 2 | .4 | .4 | 73.7 |  |  |
| 255.85 | 2 | .4 | .4 | 74.1 |  |  |
| 256.25 | 2 | .4 | .4 | 74.6 |  |  |
| 257.71 | 1 | .2 | .2 | 74.8 |  |  |
| 257.89 | 2 | .4 | .4 | 75.2 |  |  |
| 267.87 | 1 | .2 | .2 | 75.4 |  |  |
| 268.21 | 2 | .4 | .4 | 75.9 |  |  |
| 269.43 | 1 | .2 | .2 | 76.1 |  |  |
| 270.00 | 1 | .2 | .2 | 76.3 |  |  |
| 271.09 | 3 | .7 | .7 | 77.0 |  |  |
| 271.65 | 4 | .9 | .9 | 77.8 |  |  |
| 276.03 | 1 | .2 | .2 | 78.0 |  |  |
| 276.25 | 1 | .2 | .2 | 78.3 |  |  |
| 276.34 | 2 | .4 | .4 | 78.7 |  |  |
|  |  |  |  |  |  |  |


| All Archaeological Sites |  | SUMMARY STATISTICS DISTANCE TO WATER |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
| Valid Cum |  |  |  |
| Value Label | Value |  |  |  | Freq | \% | \% | \% |
|  | 276.56 | 2 | 4 | 4 | 79.1 |
|  | 282.59 | 3 | . 7 | . 7 | 79.8 |
|  | 282.85 | 1 | . 2 | . 2 | 80.0 |
|  | 284.06 | 3 | . 7 | . 7 | 80.7 |
|  | 284.54 | 2 | . 4 | . 4 | 81.1 |
|  | 294.94 | 1 | . 2 | . 2 | 81.3 |
|  | 295.36 | 1 | . 2 | . 2 | 81.5 |
|  | 296.67 | 3 | . 7 | . 7 | 82.2 |
|  | 299.37 | 3 | . 7 | . 7 | 82.8 |
|  | 299.59 | 1 | . 2 | . 2 | 83.0 |
|  | 299.77 | 2 | . 4 | . 4 | 83.5 |
|  | 300.00 | 1 | . 2 | . 2 | 83.7 |
|  | 305.32 | 1 | . 2 | . 2 | 83.9 |
|  | 308.37 | 2 | . 4 | . 4 | 84.3 |
|  | 308.72 | 2 | . 4 | . 4 | 84.8 |
|  | 312.60 | 1 | . 2 | . 2 | 85.0 |
|  | 313.15 | 1 | . 2 | . 2 | 85.2 |
|  | 318.52 | 1 | . 2 | . 2 | 85.4 |
|  | 318.61 | 1 | . 2 | . 2 | 85.7 |
|  | 322.52 | 3 | . 7 | . 7 | 86.3 |
|  | 323.02 | 2 | . 4 | . 4 | 86.7 |
|  | 324.02 | 1 | . 2 | . 2 | 87.0 |
|  | 324.29 | 1 | . 2 | . 2 | 87.2 |
|  | 329.30 | 1 | . 2 | . 2 | 87.4 |
|  | 331.36 | 1 | . 2 | . 2 | 87.6 |
|  | 334.72 | 2 | . 4 | . 4 | 88.0 |
|  | 334.84 | 1 | . 2 | . 2 | 88.3 |
|  | 339.05 | 2 | . 4 | . 4 | 88.7 |
|  | 341.78 | 2 | . 4 | . 4 | 89.1 |
|  | 342.00 | 1 | . 2 | . 2 | 89.3 |
|  | 349.31 | 2 | . 4 | . 4 | 89.8 |
|  | 350.49 | 1 | . 2 | . 2 | 90.0 |
|  | 351.05 | 1 | . 2 | . 2 | 90.2 |
|  | 360.49 | 2 | 4 | . 4 | 90.7 |
|  | 361.86 | 2 | . 4 | . 4 | 91.1 |
|  | 364.22 | 1 | . 2 | . 2 | 91.3 |
|  | 365.68 | 1 | . 2 | . 2 | 91.5 |
|  | 365.94 | 2 | . 4 | . 4 | 92.0 |



## SUMMARY STATISTICS

## DISTANCE TO WATER

All Archaeological Sites

| Mean | 181.605 | Std err | 5.639 | Median | 150.000 |
| :--- | :---: | ---: | :---: | :---: | :---: | :---: |
| Mode | 29.937 | Std dev | 120.945 | Variance | 14627.794 |
| Kurtosis | .064 | S E Kurt | .227 | Skewness | .786 |
| S E Skew | .114 | Range | 617.430 | Minimum | .000 |
| Maximum | 617.430 | Sum | 83538.219 |  |  |

Valid cases 460 Missing cases 0

|  |  | SUMMARY STATISTICS <br> SLOPE (DEGREES) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| All Archaeological Sites |  |  |  |  |  |
|  |  |  |  | Valid | Cum |
| Value Label | Value | Frea | \% | \% | \% |
|  | . 00 | 7 | 1.5 | 1.5 | 1.5 |
|  | . 95 | 4 | . 9 | . 9 | 2.4 |
|  | . 96 | 12 | 2.6 | 2.6 | 5.0 |
|  | 1.35 | 13 | 2.8 | 2.8 | 7.8 |
|  | 1.91 | 9 | 2.0 | 2.0 | 9.8 |
|  | 1.91 | 5 | 1.1 | 1.1 | 10.9 |
|  | 2.14 | 10 | 2.2 | 2.2 | 13.0 |
|  | 2.14 | 15 | 3.3 | 3.3 | 16.3 |
|  | 2.70 | 10 | 2.2 | 2.2 | 18.5 |
|  | 2.86 | 5 | 1.1 | 1.1 | 19.6 |
|  | 2.87 | 8 | 1.7 | 1.7 | 21.3 |
|  | 3.02 | 10 | 2.2 | 2.2 | 23.5 |
|  | 3.02 | 7 | 1.5 | 1.5 | 25.0 |
|  | 3.44 | 10 | 2.2 | 2.2 | 27.2 |
|  | 3.44 | 10 | 2.2 | 2.2 | 29.3 |
|  | 3.81 | 4 | . 9 | . 9 | 30.2 |
|  | 3.82 | 5 | 1.1 | 1.1 | 31.3 |
|  | 3.93 | 3 | . 7 | . 7 | 32.0 |
|  | 3.94 | 7 | 1.5 | 1.5 | 33.5 |
|  | 4.05 | 5 | 1.1 | 1.1 | 34.6 |
|  | 4.26 | 4 | . 9 | . 9 | 35.4 |
|  | 4.27 | 5 | 1.1 | 1.1 | 36.5 |
|  | 4.76 | 3 | . 7 | . 7 | 37.2 |
|  | 4.77 | 5 | 1.1 | 1.1 | 38.3 |
|  | 4.77 | 5 | 1.1 | 1.1 | 39.3 |
|  | 4.77 | 3 | . 7 | . 7 | 40.0 |
|  | 4.86 | 7 | 1.5 | 1.5 | 41.5 |
|  | 4.87 | 9 | 2.0 | 2.0 | 43.5 |
|  | 5.13 | 2 | . 4 | . 4 | 43.9 |
|  | 5.14 | 6 | 1.3 | 1.3 | 45.2 |
|  | 5.39 | 4 | . 9 | . 9 | 46.1 |
|  | 5.55 | 3 | . 7 | . 7 | 46.7 |
|  | 5.56 | 5 | 1.1 | 1.1 | 47.8 |
|  | 5.71 | 3 | . 7 | . 7 | 48.5 |
|  | 5.72 | 1 | . 2 | . 2 | 48.7 |
|  | 5.79 | 2 | . 4 | . 4 | 49.1 |
|  | 5.80 | 4 | . 9 | . 9 | 50.0 |


|  |  | SUMMARY STATISTICS SLOPE (DEGREES) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| All Archaeological Sites |  |  |  |  |  |
|  |  |  |  | Valid | Cum |
| Value Label | Value | Freq | \% | \% | \% |
|  | 6.02 | 7 | 1.5 | 1.5 | 51.5 |
|  | 6.03 | 8 | 1.7 | 1.7 | 53.3 |
|  | 6.10 | 8 | 1.7 | 1.7 | 55.0 |
|  | 6.10 | 4 | . 9 | . 9 | 55.9 |
|  | 6.38 | 5 | 1.1 | 1.1 | 57.0 |
|  | 6.39 | 4 | . 9 | . 9 | 57.8 |
|  | 6.65 | 1 | . 2 | . 2 | 58.0 |
|  | 6.67 | 3 | . 7 | . 7 | 58.7 |
|  | 6.72 | 1 | . 2 | . 2 | 58.9 |
|  | 6.73 | 2 | . 4 | . 4 | 59.3 |
|  | 6.74 | 4 | . 9 | . 9 | 60.2 |
|  | 6.86 | 3 | . 7 | . 7 | 60.9 |
|  | 6.86 | 4 | . 9 | . 9 | 61.7 |
|  | 6.92 | 2 | . 4 | . 4 | 62.2 |
|  | 6.93 | 3 | . 7 | . 7 | 62.8 |
|  | 7.24 | 1 | . 2 | . 2 | 63.0 |
|  | 7.25 | 6 | 1.3 | 1.3 | 64.3 |
|  | 7.42 | 2 | . 4 | . 4 | 64.8 |
|  | 7.43 | 4 | . 9 | . 9 | 65.7 |
|  | 7.61 | 1 | . 2 | . 2 | 65.9 |
|  | 7.65 | 3 | . 7 | . 7 | 66.5 |
|  | 7.66 | 3 | . 7 | . 7 | 67.2 |
|  | 7.67 | 3 | . 7 | . 7 | 67.8 |
|  | 7.67 | 5 | 1.1 | 1.1 | 68.9 |
|  | 7.84 | 2 | . 4 | . 4 | 69.3 |
|  | 8.06 | 1 | . 2 | . 2 | 69.6 |
|  | 8.11 | 2 | . 4 | . 4 | 70.0 |
|  | 8.12 | 1 | . 2 | . 2 | 70.2 |
|  | 8.16 | 1 | . 2 | . 2 | 70.4 |
|  | 8.17 | 5 | 1.1 | 1.1 | 71.5 |
|  | 8.48 | 1 | . 2 | . 2 | 71.7 |
|  | 8.49 | 2 | . 4 | . 4 | 72.2 |
|  | 8.53 | 1 | . 2 | . 2 | 72.4 |
|  | 8.58 | 1 | . 2 | 2 | 72.6 |
|  | 8.60 | 3 | . 7 | . 7 | 73.3 |
|  | 8.74 | 1 | . 2 | . 2 | 73.5 |
|  | 8.74 | 3 | . 7 | . 7 | 74.1 |
|  | 8.75 | 6 | 1.3 | 1.3 | 75.4 |


|  |  | SUMMARY STATISTICS SLOPE (DEGREES) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | All Archaeological Sites |  |  |  |
|  |  |  |  | Valid | Cum |
| Value Label | Value | Freq | \% | \% | \% |
|  | 8.75 | 3 | . 7 | . 7 | 76.1 |
|  | 8.94 | 5 | 1.1 | 1.1 | 77.2 |
|  | 8.95 | 2 | . 4 | . 4 | 77.6 |
|  | 8.99 | 2 | . 4 | . 4 | 78.0 |
|  | 9.33 | 1 | . 2 | . 2 | 78.3 |
|  | 9.34 | 3 | . 7 | . 7 | 78.9 |
|  | 9.38 | 2 | . 4 | . 4 | 79.3 |
|  | 9.46 | 1 | . 2 | . 2 | 79.6 |
|  | 9.47 | 1 | . 2 | . 2 | 79.8 |
|  | 9.53 | 3 | . 7 | . 7 | 80.4 |
|  | 9.67 | 3 | . 7 | . 7 | 81.1 |
|  | 9.74 | 2 | . 4 | . 4 | 81.5 |
|  | 9.75 | 3 | . 7 | . 7 | 82.2 |
|  | 9.87 | 2 | . 4 | . 4 | 82.6 |
|  | 9.89 | 1 | . 2 | . 2 | 82.8 |
|  | 10.06 | 3 | . 7 | . 7 | 83.5 |
|  | 10.19 | 1 | . 2 | . 2 | 83.7 |
|  | 10.23 | 1 | . 2 | . 2 | 83.9 |
|  | 10.39 | 2 | 4 | . 4 | 84.3 |
|  | 10.41 | 4 | . 9 | . 9 | 85.2 |
|  | 10.43 | 1 | . 2 | . 2 | 85.4 |
|  | 10.45 | 1 | . 2 | . 2 | 85.7 |
|  | 10.57 | 4 | . 9 | . 9 | 86.5 |
|  | 10.58 | 1 | . 2 | . 2 | 86.7 |
|  | 10.69 | 1 | . 2 | . 2 | 87.0 |
|  | 10.76 | 2 | . 4 | . 4 | 87.4 |
|  | 10.77 | 2 | . 4 | . 4 | 87.8 |
|  | 10.78 | 1 | . 2 | . 2 | 88.0 |
|  | 11.04 | 1 | . 2 | . 2 | 88.3 |
|  | 11.06 | 2 | . 4 | . 4 | 88.7 |
|  | 11.33 | 1 | . 2 | . 2 | 88.9 |
|  | 11.35 | 1 | . 2 | . 2 | 89.1 |
|  | 11.36 | 3 | 7 | . 7 | 89.8 |
|  | 11.37 | 1 | . 2 | . 2 | 90.0 |
|  | 11.46 | 1 | . 2 | . 2 | 90.2 |
|  | 11.81 | 2 | . 4 | . 4 | 90.7 |
|  | 11.91 | 3 | . 7 | . 7 | 91.3 |
|  | 12.06 | 1 | . 2 | . 2 | 91.5 |


|  |  | SUMMARY STATISTICS SLOPE (DEGREES) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | All Archaeological Sites |  |  |  |
|  |  |  |  | Valid | Cum |
| Value Label | Value | Freq | \% |  | \% |
|  | 12.23 | 1 | . 2 | . 2 | 91.7 |
|  | 12.25 | 3 | . 7 | . 7 | 92.4 |
|  | 12.26 | 1 | . 2 | . 2 | 92.6 |
|  | 12.27 | 1 | . 2 | . 2 | 92.8 |
|  | 12.28 | 1 | . 2 | . 2 | 93.0 |
|  | 12.54 | 1 | . 2 | . 2 | 93.3 |
|  | 12.78 | 1 | . 2 | . 2 | 93.5 |
|  | 12.80 | 1 | . 2 | . 2 | 93.7 |
|  | 13.19 | 1 | . 2 | . 2 | 93.9 |
|  | 13.28 | 1 | . 2 | . 2 | 94.1 |
|  | 13.44 | 1 | . 2 | . 2 | 94.3 |
|  | 13.45 | 2 | . 4 | . 4 | 94.8 |
|  | 13.67 | 1 | . 2 | . 2 | 95.0 |
|  | 13.93 | 1 | . 2 | . 2 | 95.2 |
|  | 14.18 | 1 | . 2 | . 2 | 95.4 |
|  | 14.53 | 1. | . 2 | . 2 | 95.7 |
|  | 14.63 | 1 | . 2 | . 2 | 95.9 |
|  | 14.78 | 1 . | . 2 | . 2 | 96.1 |
|  | 14.79 | 1 . | . 2 | . 2 | 96.3 |
|  | 14.93 | 1 . | . 2 | . 2 | 96.5 |
|  | 15.19 | 1 . | . 2 | . 2 | 96.7 |
|  | 15.40 | 1 . | . 2 | . 2 | 97.0 |
|  | 15.86 | 1 . | . 2 | . 2 | 97.2 |
|  | 16.23 | 1 . | . 2 | . 2 | 97.4 |
|  | 16.75 | 1 . | . 2 | . 2 | 97.6 |
|  | 16.76 | 1. | . 2 | . 2 | 97.8 |
|  | 16.80 | 1 . | . 2 | . 2 | 98.0 |
|  | 17.58 | 1 . | . 2 | . 2 | 98.3 |
|  | 17.68 | 1 . | . 2 | . 2 | 98.5 |
|  | 21.82 | 1 . | . 2 | . 2 | 98.7 |
|  | 24.71 | 1 . | . 2 | . 2 | 98.9 |
|  | 27.05 | 1 . | . 2 | . 2 | 99.1 |
|  | 86.89 | 1 . | . 2 | . 2 | 99.3 |
|  | 87.07 | 1 . | . 2 | . 2 | 99.6 |
|  | 87.18 | 1 . | . 2 | . 2 | 99.8 |
|  | 87.23 | 1 . | . 2 | . 2 | 100.0 |
|  | Total | 46010 | 100.0 | 100 |  |

## SUMMARY STATISTICS SLOPE (DEGREES)

All Archaeological Sites

| Mean | 6.998 | Std err | .395 | Median | 5.910 |
| :--- | :---: | :---: | :---: | :---: | ---: |
| Mode | 2.138 | Std dev | 8.479 | Variance | 71.891 |
| Kurtosis | 67.510 | S E Kurt | .227 | Skewness | 7.435 |
| S E Skew | .114 | Range | 87.230 | Minimum | .000 |
| Maximum | 87.230 | Sum | 3218.875 |  |  |
| Valid cases | 460 |  | Missing cases | 0 |  |

## APPENDIX E

CROSS-TABULATION DATA
VARIABLE CATEGORIES

## CROSS-TABULATION DATA VARIABLE CATEGORIES

| ID | ASP | SLP | D TO WAT |
| :--- | :--- | :--- | :--- |
|  |  |  |  |
| 1 | 6.00 | 1.00 | 5.00 |
| 3 | 2.00 | 2.00 | 4.00 |
| 4 | 6.00 | 1.00 | 4.00 |
| 5 | 6.00 | 1.00 | 1.00 |
| 6 | 3.00 | 5.00 | 8.00 |
| 7 | 2.00 | 4.00 | 10.00 |
| 13 | 2.00 | 4.00 | 6.00 |
| 14 | 3.00 | 5.00 | 3.00 |
| 15 | 8.00 | 8.00 | 5.00 |
| 16 | 9.00 | 2.00 | 4.00 |
| 17 | 9.00 | 2.00 | 8.00 |
| 18 | 9.00 | 3.00 | 10.00 |
| 19 | 5.00 | 2.00 | 10.00 |
| 21 | 2.00 | 3.00 | 15.00 |
| 22 | 2.00 | 3.00 | 2.00 |
| 23 | 4.00 | 3.00 | 1.00 |
| 24 | 4.00 | 4.00 | 3.00 |
| 25 | 7.00 | 4.00 | 10.00 |
| 26 | 6.00 | 5.00 | 9.00 |
| 27 | 5.00 | 4.00 | 12.00 |
| 28 | 8.00 | 2.00 | 7.00 |
| 30 | 9.00 | 4.00 | 13.00 |
| 31 | 2.00 | 1.00 | 8.00 |
| 33 | 5.00 | 3.00 | 9.00 |
| 34 | 9.00 | 3.00 | 6.00 |
| 35 | 2.00 | 3.00 | 11.00 |
| 36 | 4.00 | 1.00 | 15.00 |
| 37 | 6.00 | 2.00 | 8.00 |
| 38 | 4.00 | 1.00 | 6.00 |
| 39 | 2.00 | 4.00 | 12.00 |
| 41 | 7.00 | 3.00 | 5.00 |
| 42 | 3.00 | 1.00 | 1.00 |
| 43 | 4.00 | 3.00 | 3.00 |
| 45 | 7.00 | 3.00 | 8.00 |
| 46 | 6.00 | 1.00 | 11.00 |
| 47 | 6.00 | 3.00 | 6.00 |
| 48 | 5.00 | 1.00 | 5.00 |
| 49 | 8.00 | 1.00 | 18.00 |
|  |  |  |  |
|  |  |  |  |

## CROSS-TABULATION DATA

 VARIABLE CATEGORIES| ID | ASP | SLP | D TO WAT |
| :--- | :--- | :--- | :--- |
|  |  |  |  |
| 50 | 6.00 | 4.00 | 6.00 |
| 51 | 7.00 | 2.00 | 11.00 |
| 52 | 8.00 | 2.00 | 7.00 |
| 53 | 8.00 | 3.00 | 2.00 |
| 54 | 8.00 | 3.00 | 4.00 |
| 55 | 7.00 | 3.00 | 7.00 |
| 56 | 3.00 | 1.00 | 4.00 |
| 57 | 6.00 | 1.00 | 1.00 |
| 58 | 4.00 | 1.00 | 3.00 |
| 59 | 2.00 | 1.00 | 1.00 |
| 60 | 5.00 | 2.00 | 1.00 |
| 62 | 6.00 | 3.00 | 6.00 |
| 63 | 6.00 | 4.00 | 2.00 |
| 64 | 4.00 | 3.00 | 3.00 |
| 65 | 9.00 | 3.00 | 7.00 |
| 66 | 3.00 | 2.00 | 6.00 |
| 68 | 2.00 | 1.00 | 8.00 |
| 69 | 9.00 | 2.00 | 5.00 |
| 70 | 3.00 | 2.00 | 1.00 |
| 71 | 4.00 | 3.00 | 3.00 |
| 72 | 3.00 | 2.00 | 5.00 |
| 73 | 6.00 | 4.00 | 11.00 |
| 74 | 2.00 | 5.00 | 11.00 |
| 75 | 4.00 | 3.00 | 3.00 |
| 76 | 3.00 | 4.00 | 5.00 |
| 77 | 2.00 | 3.00 | 11.00 |
| 78 | 3.00 | 2.00 | 13.00 |
| 79 | 3.00 | 3.00 | 10.00 |
| 80 | 2.00 | 2.00 | 5.00 |
| 81 | 7.00 | 6.00 | 5.00 |
| 82 | 2.00 | 4.00 | 2.00 |
| 83 | 4.00 | 3.00 | 8.00 |
| 84 | 6.00 | 4.00 | 6.00 |
| 85 | 3.00 | 3.00 | 11.00 |
| 86 | 7.00 | 2.00 | 7.00 |
| 88 | 3.00 | 3.00 | 4.00 |
| 89 | 5.00 | 3.00 | 5.00 |
| 90 | 3.00 | 2.00 | 3.00 |
|  |  |  |  |
|  |  |  |  |

## CROSS-TABULATION DATA

 VARIABLE CATEGORIES| ID | ASP | SLP | D TO WAT |
| :---: | :---: | :---: | :---: |
|  |  |  |  |
| 91 | 2.00 | 4.00 | 12.00 |
| 92 | 6.00 | 4.00 | 5.00 |
| 100 | 6.00 | 2.00 | 2.00 |
| 102 | 5.00 | 1.00 | 9.00 |
| 103 | 6.00 | 3.00 | 6.00 |
| 106 | 6.00 | 2.00 | 2.00 |
| 107 | 6.00 | 3.00 | 3.00 |
| 108 | 2.00 | 1.00 | 16.00 |
| 110 | 4.00 | 1.00 | 2.00 |
| 111 | 4.00 | 1.00 | 5.00 |
| 112 | 4.00 | 2.00 | 8.00 |
| 113 | 3.00 | 3.00 | 8.00 |
| 114 | 1.00 | 1.00 | 12.00 |
| 115 | 4.00 | 2.00 | 3.00 |
| 116 | 8.00 | 2.00 | 5.00 |
| 118 | 2.00 | 5.00 | 3.00 |
| 120 | 7.00 | 2.00 | 8.00 |
| 121 | 2.00 | 2.00 | 8.00 |
| 122 | 6.00 | 3.00 | 5.00 |
| 123 | 6.00 | 3.00 | 2.00 |
| 124 | 5.00 | 2.00 | 3.00 |
| 125 | 5.00 | 1.00 | 6.00 |
| 126 | 4.00 | 1.00 | 4.00 |
| 127 | 1.00 | 1.00 | 8.00 |
| 128 | 6.00 | 3.00 | 4.00 |
| 129 | 5.00 | 4.00 | 5.00 |
| 130 | 6.00 | 2.00 | 7.00 |
| 131 | 3.00 | 2.00 | 2.00 |
| 132 | 2.00 | 2.00 | 2.00 |
| 133 | 9.00 | 2.00 | 2.00 |
| 134 | 3.00 | 4.00 | 7.00 |
| 135 | 6.00 | 5.00 | 3.00 |
| 136 | 5.00 | 2.00 | 9.00 |
| 137 | 5.00 | 5.00 | 9.00 |
| 138 | 6.00 | 4.00 | 5.00 |
| 139 | 2.00 | 1.00 | 1.00 |
| 140 | 5.00 | 1.00 | 6.00 |
| 141 | 7.00 | 2.00 | 2.00 |
|  |  |  |  |
| 13 |  |  |  |
| 13 |  |  |  |

## CROSS-TABULATION DATA VARIABLE CATEGORIES

| ID | ASP | SLP | D TO WAT |
| :---: | :--- | :--- | :--- |
|  |  |  |  |
| 142 | 1.00 | 1.00 | 9.00 |
| 143 | 5.00 | 2.00 | 6.00 |
| 144 | 6.00 | 2.00 | 10.00 |
| 145 | 6.00 | 1.00 | 9.00 |
| 146 | 6.00 | 1.00 | 9.00 |
| 147 | 9.00 | 1.00 | 18.00 |
| 148 | 5.00 | 2.00 | 15.00 |
| 149 | 3.00 | 2.00 | 8.00 |
| 150 | 6.00 | 2.00 | 1.00 |
| 151 | 4.00 | 5.00 | 3.00 |
| 152 | 6.00 | 4.00 | 3.00 |
| 153 | 6.00 | 3.00 | 3.00 |
| 154 | 6.00 | 6.00 | 5.00 |
| 155 | 3.00 | 1.00 | 3.00 |
| 156 | 9.00 | 3.00 | 3.00 |
| 157 | 2.00 | 3.00 | 4.00 |
| 158 | 5.00 | 1.00 | 1.00 |
| 159 | 1.00 | 1.00 | 1.00 |
| 160 | 1.00 | 1.00 | 1.00 |
| 161 | 9.00 | 3.00 | 3.00 |
| 162 | 3.00 | 4.00 | 3.00 |
| 163 | 2.00 | 3.00 | 7.00 |
| 164 | 2.00 | 2.00 | 2.00 |
| 165 | 2.00 | 3.00 | 7.00 |
| 166 | 2.00 | 3.00 | 9.00 |
| 167 | 2.00 | 3.00 | 3.00 |
| 168 | 2.00 | 3.00 | 4.00 |
| 169 | 2.00 | 4.00 | 10.00 |
| 201 | 6.00 | 2.00 | 9.00 |
| 202 | 5.00 | 2.00 | 1.00 |
| 203 | 4.00 | 1.00 | 2.00 |
| 204 | 6.00 | 3.00 | 4.00 |
| 209 | 6.00 | 3.00 | 3.00 |
| 211 | 5.00 | 2.00 | 3.00 |
| 212 | 5.00 | 2.00 | 5.00 |
| 213 | 5.00 | 3.00 | 5.00 |
| 216 | 3.00 | 2.00 | 5.00 |
| 218 | 2.00 | 2.00 | 2.00 |
|  |  |  |  |
| 15 |  |  |  |

## CROSS-TABULATION DATA VARIABLE CATEGORIES

| ID | ASP | SLP | D TO WAT |
| :---: | :--- | :--- | :--- |
|  |  |  |  |
| 223 | 6.00 | 4.00 | 5.00 |
| 224 | 7.00 | 2.00 | 5.00 |
| 225 | 1.00 | 1.00 | 10.00 |
| 226 | 2.00 | 1.00 | 8.00 |
| 227 | 2.00 | 1.00 | 2.00 |
| 228 | 7.00 | 2.00 | 7.00 |
| 229 | 4.00 | 2.00 | 15.00 |
| 230 | 2.00 | 5.00 | 10.00 |
| 231 | 1.00 | 1.00 | 6.00 |
| 232 | 5.00 | 4.00 | 5.00 |
| 233 | 8.00 | 3.00 | 8.00 |
| 234 | 3.00 | 2.00 | 8.00 |
| 235 | 5.00 | 2.00 | 15.00 |
| 236 | 5.00 | 1.00 | 12.00 |
| 237 | 9.00 | 2.00 | 5.00 |
| 238 | 6.00 | 3.00 | 2.00 |
| 239 | 6.00 | 4.00 | 2.00 |
| 240 | 4.00 | 4.00 | 4.00 |
| 241 | 6.00 | 4.00 | 3.00 |
| 242 | 6.00 | 3.00 | 5.00 |
| 243 | 2.00 | 3.00 | 4.00 |
| 244 | 9.00 | 3.00 | 6.00 |
| 245 | 7.00 | 4.00 | 2.00 |
| 246 | 8.00 | 3.00 | 6.00 |
| 247 | 9.00 | 3.00 | 7.00 |
| 248 | 6.00 | 1.00 | 1.00 |
| 249 | 8.00 | 2.00 | 4.00 |
| 250 | 7.00 | 3.00 | 8.00 |
| 251 | 7.00 | 3.00 | 18.00 |
| 252 | 6.00 | 4.00 | 12.00 |
| 253 | 7.00 | 3.00 | 11.00 |
| 254 | 6.00 | 2.00 | 2.00 |
| 255 | 5.00 | 3.00 | 1.00 |
| 256 | 6.00 | 2.00 | 9.00 |
| 257 | 6.00 | 1.00 | 5.00 |
| 258 | 9.00 | 1.00 | 8.00 |
| 259 | 3.00 | 1.00 | 2.00 |
| 260 | 6.00 | 2.00 | 9.00 |
|  |  |  |  |
| 20 |  |  |  |

## CROSS-TABULATION DATA <br> VARIABLE CATEGORIES

| ID | ASP | SLP | D TO WAT |
| :--- | :--- | :--- | :--- |
|  |  |  |  |
| 261 | 6.00 | 6.00 | 10.00 |
| 262 | 3.00 | 3.00 | 2.00 |
| 263 | 3.00 | 2.00 | 11.00 |
| 264 | 8.00 | 2.00 | 16.00 |
| 265 | 4.00 | 3.00 | 13.00 |
| 266 | 4.00 | 2.00 | 16.00 |
| 267 | 2.00 | 1.00 | 2.00 |
| 268 | 5.00 | 1.00 | 17.00 |
| 269 | 6.00 | 1.00 | 2.00 |
| 270 | 6.00 | 2.00 | 10.00 |
| 271 | 3.00 | 3.00 | 5.00 |
| 272 | 2.00 | 2.00 | 11.00 |
| 273 | 4.00 | 5.00 | 10.00 |
| 274 | 2.00 | 5.00 | 10.00 |
| 275 | 6.00 | 1.00 | 10.00 |
| 276 | 2.00 | 1.00 | 9.00 |
| 300 | 2.00 | 3.00 | 1.00 |
| 301 | 4.00 | 2.00 | 4.00 |
| 302 | 9.00 | 3.00 | 1.00 |
| 303 | 6.00 | 3.00 | 4.00 |
| 304 | 6.00 | 2.00 | 10.00 |
| 305 | 5.00 | 3.00 | 4.00 |
| 307 | 6.00 | 2.00 | 4.00 |
| 308 | 5.00 | 2.00 | 4.00 |
| 309 | 4.00 | 1.00 | 1.00 |
| 310 | 4.00 | 1.00 | 3.00 |
| 311 | 2.00 | 3.00 | 5.00 |
| 313 | 2.00 | 2.00 | 5.00 |
| 314 | 4.00 | 2.00 | 5.00 |
| 315 | 4.00 | 2.00 | 2.00 |
| 316 | 5.00 | 2.00 | 4.00 |
| 317 | 2.00 | 3.00 | 1.00 |
| 318 | 2.00 | 3.00 | 4.00 |
| 319 | 2.00 | 3.00 | 6.00 |
| 511 | 4.00 | 2.00 | 3.00 |
| 512 | 4.00 | 1.00 | 1.00 |
| 513 | 2.00 | 1.00 | 5.00 |
| 514 | 2.00 | 3.00 | 1.00 |
|  |  |  |  |

CROSS-TABULATION DATA
VARIABLE CATEGORIES

| ID | ASP | SLP | D TO WAT |
| :---: | :---: | :---: | :---: |
|  |  |  |  |
| 515 | 3.00 | 2.00 | 2.00 |
| 516 | 2.00 | 2.00 | 3.00 |
| 517 | 2.00 | 2.00 | 5.00 |
| 518 | 2.00 | 1.00 | 3.00 |
| 519 | 6.00 | 1.00 | 3.00 |
| 520 | 3.00 | 4.00 | 7.00 |
| 521 | 6.00 | 1.00 | 3.00 |
| 522 | 4.00 | 2.00 | 8.00 |
| 523 | 4.00 | 4.00 | 6.00 |
| 524 | 7.00 | 1.00 | 2.00 |
| 525 | 5.00 | 3.00 | 17.00 |
| 526 | 4.00 | 2.00 | 18.00 |
| 527 | 4.00 | 1.00 | 16.00 |
| 528 | 4.00 | 3.00 | 13.00 |
| 529 | 6.00 | 2.00 | 14.00 |
| 530 | 5.00 | 4.00 | 15.00 |
| 531 | 7.00 | 3.00 | 13.00 |
| 536 | 6.00 | 5.00 | 8.00 |
| 537 | 6.00 | 2.00 | 8.00 |
| 538 | 7.00 | 3.00 | 2.00 |
| 539 | 5.00 | 1.00 | 5.00 |
| 540 | 7.00 | 3.00 | 3.00 |
| 541 | 3.00 | 3.00 | 2.00 |
| 542 | 5.00 | 2.00 | 3.00 |
| 544 | 2.00 | 5.00 | 5.00 |
| 545 | 2.00 | 1.00 | 1.00 |
| 546 | 2.00 | 1.00 | 1.00 |
| 547 | 3.00 | 3.00 | 5.00 |
| 548 | 9.00 | 3.00 | 2.00 |
| 550 | 2.00 | 3.00 | 5.00 |
| 551 | 4.00 | 2.00 | 2.00 |
| 553 | 3.00 | 3.00 | 4.00 |
| 554 | 6.00 | 1.00 | 2.00 |
| 555 | 6.00 | 2.00 | 3.00 |
| 556 | 2.00 | 2.00 | 6.00 |
| 557 | 6.00 | 3.00 | 2.00 |
| 559 | 4.00 | 2.00 | 3.00 |
| 560 | 2.00 | 2.00 | 7.00 |
|  |  |  |  |

## CROSS-TABULATION DATA VARIABLE CATEGORIES

| ID | ASP | SLP | D TO WAT |
| ---: | :--- | :--- | :--- |
|  |  |  |  |
| 562 | 8.00 | 4.00 | 12.00 |
| 565 | 6.00 | 2.00 | 3.00 |
| 566 | 2.00 | 3.00 | 10.00 |
| 567 | 3.00 | 3.00 | 5.00 |
| 568 | 2.00 | 3.00 | 2.00 |
| 569 | 2.00 | 3.00 | 2.00 |
| 570 | 2.00 | 4.00 | 6.00 |
| 571 | 4.00 | 3.00 | 1.00 |
| 572 | 2.00 | 4.00 | 7.00 |
| 573 | 2.00 | 5.00 | 4.00 |
| 574 | 3.00 | 4.00 | 7.00 |
| 575 | 3.00 | 2.00 | 5.00 |
| 576 | 2.00 | 3.00 | 3.00 |
| 577 | 4.00 | 1.00 | 3.00 |
| 578 | 6.00 | 2.00 | 3.00 |
| 579 | 5.00 | 3.00 | 5.00 |
| 580 | 6.00 | 3.00 | 5.00 |
| 581 | 4.00 | 3.00 | 8.00 |
| 582 | 6.00 | 1.00 | 3.00 |
| 583 | 8.00 | 1.00 | 14.00 |
| 584 | 6.00 | 1.00 | 7.00 |
| 585 | 6.00 | 4.00 | 11.00 |
| 586 | 2.00 | 1.00 | 4.00 |
| 587 | 4.00 | 1.00 | 1.00 |
| 588 | 9.00 | 2.00 | 3.00 |
| 589 | 2.00 | 2.00 | 4.00 |
| 590 | 4.00 | 2.00 | 4.00 |
| 592 | 2.00 | 4.00 | 14.00 |
| 1001 | 6.00 | 2.00 | 18.00 |
| 1003 | 5.00 | 4.00 | 8.00 |
| 1013 | 2.00 | 1.00 | 9.00 |
| 1014 | 3.00 | 2.00 | 14.00 |
| 1030 | 4.00 | 2.00 | 12.00 |
| 1034 | 3.00 | 2.00 | 5.00 |
| 1039 | 6.00 | 6.00 | 5.00 |
| 1041 | 2.00 | 1.00 | 10.00 |
| 1045 | 6.00 | 1.00 | 5.00 |
| 1046 | 5.00 | 3.00 | 11.00 |
|  |  |  |  |
| 50 |  |  |  |

## CROSS-TABULATION DATA VARIABLE CATEGORIES

| ID | ASP | SLP | D TO WAT |
| :---: | :---: | :---: | :---: |
|  |  |  |  |
| 1048 | 2.00 | 2.00 | 4.00 |
| 1049 | 6.00 | 2.00 | 2.00 |
| 1051 | 9.00 | 4.00 | 9.00 |
| 1052 | 7.00 | 3.00 | 3.00 |
| 1053 | 6.00 | 3.00 | 7.00 |
| 1056 | 6.00 | 5.00 | 12.00 |
| 1060 | 8.00 | 2.00 | 6.00 |
| 1067 | 6.00 | 1.00 | 10.00 |
| 1068 | 6.00 | 2.00 | 10.00 |
| 1510 | 5.00 | 2.00 | 5.00 |
| 1511 | 4.00 | 1.00 | 12.00 |
| 1512 | 3.00 | 3.00 | 12.00 |
| 1513 | 4.00 | 2.00 | 15.00 |
| 1514 | 9.00 | 1.00 | 3.00 |
| 1515 | 5.00 | 3.00 | 3.00 |
| 1517 | 6.00 | 3.00 | 9.00 |
| 1518 | 6.00 | 1.00 | 3.00 |
| 1566 | 8.00 | 2.00 | 6.00 |
| 1571 | 6.00 | 8.00 | 13.00 |
| 1573 | 5.00 | 3.00 | 13.00 |
| 1574 | 7.00 | 8.00 | 9.00 |
| 1575 | 6.00 | 8.00 | 4.00 |
| 1576 | 3.00 | 3.00 | 4.00 |
| 1577 | 4.00 | 1.00 | 6.00 |
| 1578 | 5.00 | 1.00 | 13.00 |
| 1579 | 6.00 | 2.00 | 7.00 |
| 1582 | 6.00 | 3.00 | 7.00 |
| 1597 | 5.00 | 3.00 | 6.00 |
| 1602 | 4.00 | 2.00 | 2.00 |
| 1609 | 7.00 | 2.00 | 3.00 |
| 1610 | 6.00 | 2.00 | 3.00 |
| 1619 | 5.00 | 4.00 | 9.00 |
| 1625 | 4.00 | 4.00 | 6.00 |
| 1626 | 6.00 | 2.00 | 3.00 |
| 1640 | 6.00 | 4.00 | 6.00 |
| 1641 | 4.00 | 3.00 | 3.00 |
| 1942 | 6.00 | 3.00 | 8.00 |
| 1943 | 8.00 | 4.00 | 13.00 |
|  |  |  |  |
| 10 |  |  |  |

## CROSS-TABULATION DATA VARIABLE CATEGORIES

| ID | ASP | SLP | D TO WAT |
| :---: | :--- | :--- | :--- |
|  |  |  |  |
| 1944 | 6.00 | 3.00 | 14.00 |
| 1945 | 6.00 | 4.00 | 9.00 |
| 1946 | 8.00 | 3.00 | 9.00 |
| 1947 | 4.00 | 3.00 | 9.00 |
| 1948 | 5.00 | 2.00 | 4.00 |
| 1949 | 3.00 | 2.00 | 10.00 |
| 1950 | 4.00 | 2.00 | 9.00 |
| 1951 | 8.00 | 4.00 | 10.00 |
| 1952 | 2.00 | 1.00 | 3.00 |
| 1953 | 4.00 | 1.00 | 8.00 |
| 1954 | 2.00 | 3.00 | 3.00 |
| 1955 | 4.00 | 3.00 | 9.00 |
| 1956 | 2.00 | 3.00 | 8.00 |
| 1957 | 7.00 | 5.00 | 11.00 |
| 1958 | 4.00 | 2.00 | 10.00 |
| 1959 | 7.00 | 3.00 | 10.00 |
| 1960 | 5.00 | 2.00 | 5.00 |
| 1962 | 4.00 | 2.00 | 11.00 |
| 1963 | 9.00 | 4.00 | 7.00 |
| 1964 | 6.00 | 4.00 | 15.00 |
| 1966 | 8.00 | 2.00 | 14.00 |
| 1967 | 6.00 | 2.00 | 5.00 |
| 1968 | 4.00 | 1.00 | 9.00 |
| 1969 | 6.00 | 2.00 | 10.00 |
| 1970 | 4.00 | 2.00 | 6.00 |
| 1971 | 6.00 | 4.00 | 15.00 |
| 1973 | 4.00 | 1.00 | 5.00 |
| 1974 | 5.00 | 2.00 | 7.00 |
| 1975 | 5.00 | 2.00 | 1.00 |
| 1978 | 8.00 | 1.00 | 15.00 |
| 1980 | 2.00 | 1.00 | 7.00 |
| 2004 | 4.00 | 2.00 | 2.00 |
| 2005 | 2.00 | 1.00 | 3.00 |
| 2006 | 6.00 | 2.00 | 4.00 |
| 2007 | 4.00 | 3.00 | 5.00 |
| 2008 | 5.00 | 2.00 | 6.00 |
| 2012 | 6.00 | 4.00 | 5.00 |
| 2013 | 6.00 | 2.00 | 2.00 |
|  |  |  |  |

CROSS-TABULATION DATA VARIABLE CATEGORIES

| ID | ASP | SLP | D TO WAT |
| :---: | :---: | :---: | :---: |
|  |  |  |  |
| 2014 | 2.00 | 3.00 | 8.00 |
| 2016 | 5.00 | 2.00 | 7.00 |
| 2025 | 2.00 | 2.00 | 7.00 |
| 2085 | 5.00 | 3.00 | 10.00 |
| 2086 | 3.00 | 3.00 | 3.00 |
| 2089 | 2.00 | 6.00 | 3.00 |
| 2090 | 4.00 | 4.00 | 5.00 |
| 2091 | 5.00 | 4.00 | 13.00 |
| 2092 | 8.00 | 4.00 | 9.00 |
| 2093 | 4.00 | 2.00 | 5.00 |
| 2094 | 7.00 | 8.00 | 5.00 |
| 2095 | 8.00 | 4.00 | 10.00 |
| 2096 | 6.00 | 3.00 | 10.00 |
| 2097 | 5.00 | 8.00 | 15.00 |
| 2098 | 6.00 | 1.00 | 5.00 |
| 2099 | 8.00 | 4.00 | 8.00 |
| 2100 | 8.00 | 3.00 | 6.00 |
| 2102 | 6.00 | 1.00 | 5.00 |
| 2103 | 5.00 | 2.00 | 5.00 |
| 2104 | 6.00 | 3.00 | 3.00 |
| 2106 | 3.00 | 4.00 | 10.00 |
| 2107 | 6.00 | 5.00 | 100.00 |
| 2108 | 6.00 | 2.00 | 15.00 |
| 2109 | 6.00 | 3.00 | 3.00 |
| 2111 | 2.00 | 2.00 | 3.00 |
| 2112 | 4.00 | 5.00 | 11.00 |
| 2113 | 6.00 | 3.00 | 4.00 |
| 2114 | 7.00 | 3.00 | 14.00 |
| 2115 | 3.00 | 4.00 | 13.00 |
| 2116 | 2.00 | 5.00 | 5.00 |
| 2117 | 2.00 | 1.00 | 3.00 |
| 2118 | 6.00 | 5.00 | 9.00 |
| 2119 | 2.00 | 2.00 | 3.00 |
| 2120 | 4.00 | 2.00 | 4.00 |
| 2139 | 6.00 | 3.00 | 15.00 |
| 2140 | 2.00 | 5.00 | 16.00 |
| 2141 | 2.00 | 4.00 | 4.00 |
| 2142 | 3.00 | 3.00 | 10.00 |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |

CROSS-TABULATION DATA
VARIABLE CATEGORIES

| ID | ASP | SLP | D TO WAT |
| :---: | :---: | :---: | :---: |
|  |  |  |  |
| 2143 | 4.00 | 3.00 | 7.00 |
| 2144 | 8.00 | 3.00 | 8.00 |
| 2145 | 3.00 | 5.00 | 5.00 |
| 2146 | 2.00 | 1.00 | 7.00 |
| 2147 | 2.00 | 1.00 | 11.00 |
| 2148 | 2.00 | 3.00 | 14.00 |
| 2149 | 7.00 | 8.00 | 3.00 |
| 2150 | 4.00 | 1.00 | 7.00 |
| 2151 | 5.00 | 3.00 | 6.00 |
| 2152 | 6.00 | 1.00 | 12.00 |
| 2153 | 6.00 | 4.00 | 4.00 |
| 2154 | 7.00 | 3.00 | 6.00 |
| 2236 | 4.00 | 3.00 | 9.00 |
| 2237 | 7.00 | 6.00 | 5.00 |
| 2238 | 3.00 | 2.00 | 10.00 |
| 2239 | 6.00 | 3.00 | 10.00 |
| 2240 | 2.00 | 1.00 | 11.00 |
| 2241 | 4.00 | 3.00 | 5.00 |
| 2242 | 8.00 | 4.00 | 10.00 |
| 2243 | 4.00 | 3.00 | 5.00 |
| 2244 | 5.00 | 4.00 | 3.00 |
| 2245 | 6.00 | 3.00 | 11.00 |
| 2246 | 3.00 | 6.00 | 9.00 |
| 2247 | 2.00 | 5.00 | 8.00 |
| 2248 | 6.00 | 3.00 | 5.00 |
| 2516 | 5.00 | 2.00 | 4.00 |
| 2517 | 5.00 | 2.00 | 12.00 |
| 2518 | 5.00 | 1.00 | 1.00 |
| 2519 | 3.00 | 2.00 | 7.00 |
| 2520 | 6.00 | 6.00 | 4.00 |
| 2521 | 5.00 | 4.00 | 1.00 |
| 2523 | 3.00 | 3.00 | 9.00 |
| 2524 | 9.00 | 1.00 | 3.00 |
| 2525 | 3.00 | 6.00 | 5.00 |
| 2526 | 2.00 | 4.00 | 4.00 |
| 2527 | 3.00 | 5.00 | 10.00 |
| 2530 | 5.00 | 1.00 | 8.00 |
| 2531 | 2.00 | 2.00 | 13.00 |
|  |  |  |  |

## CROSS-TABULATION DATA VARIABLE CATEGORIES

| ID | ASP | SLP | D TO WAT |
| :---: | :---: | :---: | :---: |
|  |  |  |  |
| 2532 | 2.00 | 4.00 | 6.00 |
| 2533 | 4.00 | 2.00 | 9.00 |
| 2534 | 9.00 | 1.00 | 9.00 |
| 2535 | 2.00 | 1.00 | 2.00 |


[^0]:    Valid cases 63 Missing cases 0

