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Title: A Comparison of Techniques for Estimating Overstory Canopy Cover

Abstract:
Overstory canopy cover is an important ecological attribute that is becoming incorporated 

into forest planning. Current methods to measure canopy cover are problematic due to the 
necessary sampling intensity, bias o f instruments, inconsistencies between observers, and the 
desire for future projections. The Northern Idaho (NI) variant o f the Forest Vegetation 
Simulator (FVS v.6.2) is capable of predicting canopy cover and has great potential for use in 
forest management. Research was conducted to determine the degree of accuracy between 
FVS and two field instruments considered accurate in measuring canopy cover (moosehom 
and GRS densitometer) for two criterion of canopy cover (live crown and convex polygon).
Mean canopy cover estimates for 107 plots in 25 stands were compared to FVS predictions, 

both with and without accounting for crown overlap. FVS (without accounting for crown 
overlap) was found to underpredict canopy cover across a range of stand densities and 
covertypes when compared to the moosehom and GRS densitometer. For the live crown 
definition of canopy cover, at the plot level, mean estimates o f canopy cover between the 
moosehom and densitometer were not significantly different for four of the five covertypes 
examined. For the fifth covertype, significant differences were found but the mean 
difference was less than 5%. For the convex polygon definition o f canopy cover, mean 
estimates of canopy cover between the moosehom and densitometer were not significantly 
different for two o f the 5 covertypes. When significant differences were found in three o f the 
covertypes, the mean difference was less than 5%. The difference in mean estimates of 
canopy cover between the live crown and convex polygon definitions o f canopy cover was 
10%. Stand level analyses were less conclusive due largely to a small sampling size and a 
large number of contrasts. FVS underpredicted canopy cover regardless of whether or not 
adjustments for crown overlap were made.
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Chapter I.

Introduction

Justification

The paradigm of ecosystem management requires consideration of ali management 

activities within the ecological framework of a given area. Canopy cover has become 

recognized as a critical factor of that ecological framework. Overstory canopy cover 

affects understory diversity and development (Skovlin and Harris 1974; Bennett and 

others 1987; Mitchell and Baffling 1991; Nemati and Goetz 1995; Klinka and others

1996), forest regeneration (Busing 1994; McLaren and Janke 1996; Rebertus and Bums 

1997; Caccia and Ballare 1998), forest hydrology (Ingebo 1955), rates of photosynthesis 

and transpiration (Eastham and Rose 1988; Mackey and Band 1997), and stand 

thermodynamics (Reifsnyder and Lull 1965). Additionally, canopy cover has been 

recognized as a significant component of wildlife habitat (Nelson and Buech 1996; Cade

1997). Despite its recognized importance, canopy cover has only recently become 

incorporated into forest planning.

Forest planning on public lands is increasingly being done for larger spatial areas. 

Both the United States Forest Service (USFS) and the Bureau of Land Management 

(BLM) have used canopy cover in regional assessments, such as the Columbia River 

Basin Assessment (ICRBEIS 1996) and the Sierra Nevada Ecosystem Project (SNEP 

1996), and in local assessments and watershed analysis (TEA 1996). Additionally, 

canopy cover is used in habitat conservation plans (HCP) to protect native fisheries in the 

Inland West (Plum Creek 1999a). However, before canopy cover can be incorporated into 

forest planning, it must first be quantified.

1
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Canopy cover has generally been defined as the percent o f ground covered by the 

downward projection of the tree crown, with 100% being the maximum possible value 

(Gysel and Lyon 1980; Barbour and others 1987; Helms 1998) (Figure 1). If within 

crown gaps and dead biomass are excluded, then a better definition may be the percent of 

ground covered only by the living crown of a tree (Figure 2). This definition would 

include live foliage and branches, but would exclude dead material and the bole of the 

tree. Canopy cover may also be defined as the area of photosynthetically active tissue 

divided by the ground area (leaf area index) (Barbour and others 1987) (Figure 3). The 

measure of percent cover may be substantially different between these definitions 

depending on stand structure, vigor, and species composition. This discrepancy can be

problematic in states such as Oregon, Washington, Idaho, and California where canopy
/  .

cover retention along riparian areas is required by state regulations (Belt and others 

1992). Accurate means of measuring and predicting canopy need to be compared and, 

where lacking, standardized.

Figure 1. The proportion of ground covered by the downward projection of tree crown

CROWN
DIAMETER

(Modified from Avery and Burkhart 1994)



Figure 2. The proportion of ground covered by the live tree crown
3

Figure 3. Leaf Area Index (LAI)

(Taken from http://www.gardenwithinsight.com')

Quantifying canopy cover

Techniques to measure canopy cover from the ground regardless of definition are 

diverse. The moosehom (Bonner 1967), spherical densiometers (convex and concave) 

(Lemmon 1956), vertical tube (Johansson 1985), densitometer (Stumpf 1998), canopy 

camera (Johnson and Vogel 1968), light meters (Jackson and Harper 1955), ceptometers 

(Ingebo 1955), the crown gap (C) ratio (Whelan and others 1988), basal area correlation 

(Cade 1997), density scales (Belanger and Anderson 1992), gimbal sight (Walters and

http://www.gardenwithinsight.com'
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Soos 1962), vertical projection methods (Daubenmire 1959; Vales and Bunnell 1988), 

and ocular estimates (Ganey 1994), have been, and continue to be, used in the field. The 

moosehom, spherical densiometers, point estimates (vertical tube or densitometer), and 

ocular estimates are commonly utilized because they are relatively quick, and do not 

require additional manipulation once the data is acquired. However, the moosehom, and 

point estimates of canopy cover (vertical tube or densitometer) are considered to be the 

most accurate since they sample a relatively small area directly above the observer 

(Bunnell and Vales 1990).

Efforts have been made to predict canopy cover using a variety of different computer 

based models. The Forest Vegetation Simulator (FVS), also known as the Prognosis 

model for stand development, is an individual tree, distance independent growth and 

yield simulator developed by the USFS (Stage 1978). It is capable of predicting overstory 

and understory canopy development (Moeur 1985). This model is of potential benefit to 

foresters and land managers because it predicts canopy development over time, and there 

is no cost to obtain this software since it is in the public domain. Since it has such 

potential, this study was conducted to ground-truth the model and develop correction 

factors to calibrate it. Canopy cover was defined and measured as (i) the percent of 

ground covered by the downward projection of the tree crown (including within crown 

gaps and dead biomass) in the shape of a convex polygon, and (ii) as the percent of 

ground covered only by the living crown of a tree, excluding within crown gaps and dead 

biomass. The moosehom and the densitometer were used to assess the model under both 

definitions.
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Objectives

1. To compare the mean percent canopy cover measured with a moosehom and 
densitometer for each definition of canopy cover (live crown, convex polygon).

2. To compare the percent canopy cover measured by the moosehom and 
densitometer with that obtained from FVS projections for each two 
definitions of canopy cover (live crown, convex polygon).

3. To compare the mean percent canopy cover measured by the moosehom and 
densitometer with that obtained from aerial photograph interpretation.

4. To compare the mean percent canopy cover obtained from aerial photographs with 
that estimated from the FVS projections.

5. To compare the mean percent canopy cover estimated from FVS (v.6.2) which 
accounts for crown overlap with those estimated from an earlier version FVS which 
does not account for crown overlap.

6. If FVS (v.6.2) is unreliable in predicting percent canopy cover, develop a series of 
regression equations to calibrate the model (based on covertype).

The specific hypotheses used to meet these objectives are:

1. Ho: the population mean percent cover (moosehom) = the population mean
percent cover (densitometer)*

Hj: the population mean percent cover (moosehom) * the population mean 
percent cover (densitometer)*

2. Ho: the population mean percent cover (moosehom & densitometer) =
the population mean percent cover (air photo)*

Hi: the population mean percent cover (moosehom & densitometer) * 
the population mean percent cover (air photo)*

3. Ho: the population mean percent cover (moosehom & densitometer) =
FVS canopy cover predictions*

Hi: the population mean percent cover (moosehom & densitometer) * FVS 
canopy cover predictions*

* for both definitions of canopy cover
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4. Ho: the population mean percent cover (aerial photos) = FVS canopy cover 

predictions
Hi: the population mean percent cover (aerial photos) * FVS canopy cover 

predictions

Literature Review

Instruments

The moosehom was developed in Canada to aid in correlating actual cubic timber 

volume on measured plots with estimated volume from aerial photographs (Garrison 

1949; Bonner 1967). The moosehom is a handheld, optical instrument, which uses a 

mirror to vertically project the image of a dot grid onto the canopy above (operating like 

a periscope). The number of dots that fall onto the canopy out of the total possible 

number of dots (n = 25) yields the percent cover (Bonner 1967). Only the central dot is 

projected upwards (vertically), while the remaining dots are projected at angles ranging 

from 1.8 to 5.1 degrees. Bunnell and Vales (1990) concluded that altering the angle of the 

projection (through the center unbiased dot) beyond 7.2 degrees resulted in statistically 

significant bias. When used properly, the widest angle attainable by the moosehom is 5.1 

degrees, thereby making the moosehom a relatively unbiased instrument to measure 

canopy cover (Bonner 1967, Bunnell and Vales 1990).

The densitometer is a handheld, optical instrument, which uses a mirror to vertically 

project the image of a single dot onto the above canopy. A major limitation with a single 

point estimate is that a number of observations must be taken to obtain accurate estimates 

of percent cover. Johansson (1985,1996) recommends 50-200 points per 0.1 ha, while 

Laymon (1988, as cited in Ganey and Block 1994) recommend at least 20 points per
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0.1 ha. The accuracy of any instrument using a single point estimate depends on the skill 

of the observer, the overall structure of the stand, and the number of points per unit area ' 

(Johansson 1985, Bunnell and Vales 1990). Neither the moosehom nor the densitometer 

is recommended for estimating canopy cover in multistory stands due to problems 

associated with delineating canopy strata and obstructive understory vegetation (Bonner 

1967; Bunnell and Vales 1990; Coates 1995).

Aerial photographs have been valuable tools in estimating canopy cover over large areas 

ever since their inception during the 1950’s (Hanks and Thomson 1964; Moessner 1964;

Wert and Wickman 1970). However, cover estimates from aerial photos are only useful at 

the resolution at which the photos are taken, and thus, canopy gaps within individual tree 

crown may be missed (Avery and Burkhart 1994). Additionally, meteorological conditions 

and phenology may impede the acquisition of photos (Avery and Burkhart 1994). Once 

obtained, there are a number of techniques available to determine percent canopy cover for a 

given area which include developing localized density scales, dot grids, and a comparative 

technique based on the Bitterlich principle (Winterberger and Larson 1988).

Canopy cover for stands with multiple canopy layers may be difficult to determine by 

aerial estimates if only the dominant and codominant trees are visible. Early studies 

examining the correlation between ground and aerial observations by Bonner (1968) 

concluded that the degree of correspondence between the moosehom and aerial photo 

estimates of percent cover depends on the resolution of the aerial photo and the skill of the 

interpreter. Wert and Wickman (1970) concluded that there were no significant differences
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between aerial and ground estimates of canopy cover. Although aerial photographs 

typically cover more extensive land areas in less time than ground estimates, fine scale 

details are lost.

The Forest Vegetation Simulator

The Forest Vegetation Simulator (FVS) is a distance-independent, individual tree 

growth and yield model developed by the USFS (Stage 1973). The Prognosis model for 

stand development was the original model that evolved into the Forest Vegetation 

Simulator. Stage developed Prognosis for use in the Inland Empire area of Idaho and 

Montana. In the early 1980s, the National Forest Timber Management Staff selected the 

individual-tree, distance-independent model form as the nationally supported framework 

for growth and yield modeling. The Timber Staff incorporated the Prognosis modular 

structure and capabilities into the national model framework. This model framework is 

the Forest Vegetation Simulator, or FVS. The Forest Vegetation Simulator (FVS) has 

several components working together to simulate forest growth under various 

management actions. There are three main growth components of the FVS: a large tree 

model, a small-tree model, and an establishment model. FVS treats a stand as the 

population unit, using forest inventory or stand examination data to project the stand 

(http://www.fs.fed.us/finsc, April 2000). FVS is also capable of modeling a number of 

ecologically significant stand attributes, such as the effects of forest fires, percent canopy 

cover, spruce budworm damage, and the effects of dwarf mistletoe, on stand 

development. There are currently 20 geographic variants of FVS for the United States 

(Figure 4) with all of them capable of modeling overstory canopy cover. Only the NI

http://www.fs.fed.us/finsc


variant currently models understory development through the use of the COVER and 

SHRUBS extension model (Moeur 1985).

Figure 4. Geographic variants of the Forest Vegetation Simulator, 
eciu

Geographic Variants 
o f the

Forest Vegetation Simulator

(Taken from http://www.fs.fed.us/finsc/fvs_variants, April 2000)

In 1978, tree crown widths of more than 800 trees were measured at 14 sites in 

northern Idaho and northwestern Montana (Figure 5) to develop equations to predict 

crown weight and crown bulk density (Brown 1978) for the NI variant of FVS. One 

measurement taken in the field was individual tree crown width. The live crown of each 

sample tree was visually divided up into 2 or 3 separate sections depending on branch 

width. Tree crown width was taken for each section (average of two perpendicular 

measurements taken at the bottom of a crown section). In 1985, 370 trees from that data

http://www.fs.fed.us/finsc/fvs_variants


set were selected to develop logarithmic regression equations to predict crown width, to 

ultimately estimate canopy cover, for 11 conifer species of the Inland west (Table 

l)(Moeur 1981, 1985). For each sub-sampled tree, a crown width was determined by 

averaging all of the crown widths for each section. FVS defines canopy cover as the 

percent of ground covered by the downward projection of the tree crown (Moeur 1985).

Figure S. Geographic distribution of original cover measurements

B. C.

11
PR IE ST  RIVER

I
s a n d p o i n t

M O N T A  N A ' i

•  ^  I  aK A LI

IVER * l  X
#  1 2  \  THOMPSON FALLS

C O E U R D ' A I E N E ^ J ^  , p L A )N S

K A L IS P E L l
6 IG F O R K

10

ST ^ ,S* .SOPER.OR 4
. 7  ■  ALBERTON

3 2*MH80ULA
 . IdiO 4

★HEAOOUAKTERS Va-}5 6 ORUMMONO
* •PIERCE 14 LEWISTON OROFINO

'  »HAMILTON

I D A H O

•  POTLATCH 
MOSCOW 1 3

(Taken from Brown 1978)

Table 1. Species recognized in the NI variant of F VS
Common name Scientific name code

Douglas-fir Pseudotsuga menziesii DF
Engelmann Spruce Picea engelmannii ES

Grand fir Abies grandis GF
Lodgepole pine Pinus contorta LP
Ponderosa pine Pinus ponderosa PP
Subalpine fir Abies lasiocarpa AF
Western larch Larix occidentalis WL

Western hemlock Tsuga heterophylla WH
Western redcedar Thuja plicata WC

Western white pine Pinus monticola WP
Whitebark pine Pinus albicaulis BP

(Modified from Moeur 1981)
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For trees < 3.5” in diameter at breast height, tree height, crown length and stand basal 

area were used as independent variables in the regression equation (Eq. 1) for each 

species. For trees > 3.5” dbh, species, height, diameter, and crown length were used as 

independent variables in the regression equation for each species (Eq. 2) (Moeur 1985).

Eq. (1): For trees < 3.5” dbh:

(ln)crown width = b0 + biln(height) + b2ln(crown length) + b3ln(BA)

Eq. (2): For trees > 3.5” dbh:

(ln)crown width = bo + biln(diameter) + b2ln(height) + b3ln(crown length)

Individual tree crown area is computed as the area of a circle with diameter equal to 

predicted crown width (Figure 6). The regression parameters for the intercept and height 

are species specific (Moeur 1985).

Figure 6. Downward projection o f a tree crown as calculated by FVS

Area = 3.1416*r2
where r is estimated using species specific logarithmic linear regression equations
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Stand canopy closure is computed as:

Eq. (3): Canopy closure = S of tree crown areas ft2 x 100 percent
43,560 tf/acre

(Moeur 1985). It is possible to get values greater than 100% when using the above 

formula. To account for overlapping crowns, Crookston and Stage (Crookston and Stage 

1999) developed a correction factor to account for crown overlap. The correction is 

based on the theory of geometric probability for randomly located figures on a plane 

(Crookston and Stage 1999). The corrected canopy cover is calculated as:

Eq. (4): Corrected canopy cover = 100[1- exp (-.QIC’)]

Where C’ is the uncorrected canopy cover from Eq. (3). This correction is greatest at 

higher levels of canopy cover (Figure 7).

Figure 7. Relationship between FVS versions by accounting for crown overlap (dotted)

100
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Previous comparisons o f canopy cover measurements

The spherical densiometer, patterned after one proposed by Robinson 

(Lemmon 1956), is a handheld instrument that uses a  convex or concave 2.5” mirror 

to estimate canopy cover. The area that is sampled depends on the angle o f  view, the 

height to the base o f the live crown, and the height from which the angle is projected 

(Bunnell and Vales 1990) (Figure 8, Table 2).

Figure 8. Angle o f view for a spherical densiometer

■cm cc
(b )

(Taken from Bunnell and Vales 1990)
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Table 2. Diameter of sampled canopy area for different views and canopy layers

canopy diameter of area canopy diameter of area
angle height projected (ft) angle height projected (ft)

6 40 4.19 60 40 46.19
50 5.24 50 57.74
60 6.29 60 69.28
70 7.34 70 80.83
80 8.39 80 92.38
90 9.43 90 103.92
100 10.48 100 115.47
120 12.58 120 138.56
130 13.63 130 150.11

The convex densiometer has an angle of projection of approximately 60 degrees
•y

(Bunnell and Vales 1990) and uses an etched grid of twenty-four squares, each 0.25 in. , 

to estimate canopy cover (Lemmon 1956, 1957). One may calculate canopy cover one of 

three ways: i) count the number of intersecting grid comers upon which there is canopy 

coverage, divide that number by 37 (the total number of intersecting points) then multiply 

it by 100; ii) estimate the total number of squares not occupied by canopy cover, then 

look at the table of canopy cover values associated with the densiometer, or iii) the 

observer may visualize four equally spaced dots within each box, then count the number 

of dots that are covered by the canopy (each dot would represent 1.042%) (Lemmon 

1956,1957) (Figure 9). Goates (1995) observed that there were no significant 

differences between using the intersecting points or in visualizing four equally spaced 

dots.



Figure 9. Schematic and directions for using a densiometer
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(Taken from Lemmon 1957)

Typically, four measurements are taken per plot, one in each o f the cardinal directions 

from either the same point (Lemmon 1956; Coates 1995) or from a set distance from plot 

center (Strickler 1959). Strickler (1959) and Griffing (as cited in Cook and others 1995) 

recommend using a tripod to further reduce bias. The concave densiometer estimates 

canopy cover essentially the same way; however, the area sampled is substantially less 

than the convex densiometer because the angle is approximately 30 degrees, and the 

image is inverted (Cook and others 1995). Lemmon (1956,1957) reported no statistical 

significance between observers (with both types o f densiometers) and states that for 

stands with a density o f over 60%, the densiometer is accurate to +/- 5%; alpha = .01 

(Lemmon 1956,1957). In contrast, Vales and Bunnell (1988) showed significant 

differences between observers, concluding that training and experience are necessary for 

use o f the densiometer. Studies have also shown significant differences between the two 

densiometers across different stand densities (Cook and others 1995).
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Two problems are encountered when using the spherical densiometers to estimate 

canopy cover. The first problem occurs because four densiometer readings are taken per 

plot; one in each of the cardinal directions. The area of the canopy that is reflected in the 

mirror depends on the distance between the densiometer and the lower bound of the 

canopy layer (Figure 8). At low canopy heights, and keeping the location of readings 

constant, the projected areas overlap, whereby double counting of points occurs. Strickler 

(1959) proposed a modification to the densiometer to counter this problem. Using only 17 

intersecting points of the upper portion of the sphere (in a wedge-shape) eliminates this 

multiple counting of points (Figure 10) Though acknowledged in a number of studies, 

this modification has not frequently been used in field measurements (Bunnell and Vales 

1990; Coates 1995).

Figure 10. Adjustment offered by Strickler for use with the spherical densiometer
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The second problem in using densiometers that occurs is from using oblique angles 

to estimate canopy cover. Viewing the canopy as a layer, trigonometry elucidates that the 

distance through the canopy that the image is projected is greatest at the periphery of the



mirror, and least at the center. Bunnell and Vales (1990) observed that viewing angles 

less than 30 degrees resulted in relatively unbiased results. The convex and concave 

densiometers have viewing angles of 60 degrees and 30 degrees respectively. With 

Strickler’s modification, the angles increase to 80 degrees and 120 degrees, respectively 

(Cook and others 1995). Therefore, the modification proposed by Strickler still resulted in 

densiometer bias (Cook and others 1995).

Use of the convex densiometer as put forth by Lemmon and Strickler results in 

overestimation of 30-40% (Cook and others 1995). An understory comprised of high 

brush or many small trees further limits the use of the densiometer by partially or 

completely obscuring the above canopy image (Vales and Bunnell 1990; Coates 1995). 

Consensus among observers indicates that there is some bias associated with the 

densiometer. Further comparative analysis between cover estimates is difficult because 

some observers may count any foliage or branch as canopy regardless of size or vigor, 

while others may be selective with their definition of canopy (Ganey and Block 1994). 

Spherical densiometers have been shown to result in higher estimates of canopy cover 

than the moosehom (Vales and Bunnell 1990; Cook and others 1995) and vertical tube 

(Ganey and Block 1994).

Vora(1988) showed that the densiometer and ocular estimates of canopy cover did not 

differ significantly. At higher levels of canopy density, the densiometer was found to yield 

differing results than both the vertical tube and moosehom (Vales and Bunnell 1990; Coates 

1995). This may be a result of the bias inherent at the periphery of the mirror. Neither the
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moosehom nor the densiometer is recommended for estimating canopy cover in 

multistory stands (Bonner 1967; Bunnell and Vales 1990; Coates 1995).

Ocular estimates of canopy cover entail an observer looking up and estimating what 

percentage of the overstory above that point is covered by canopy. No instrumentation is 

used but training is required to obtain accurate estimates (Vales and Bunnell 1988).

A large degree of inter-observer variation has been shown to exist for the spherical 

densiometers, the moosehom (Vales and Bunnell 1988; Cook and others 1996) and the 

vertical tube (Ganey and Block 1994). Perhaps this can be attributed in some part to the 

sampling methods researchers have used in the past. In contrast, Lemmon (1956) found no 

inter-observer variation for the spherical densiometers, and Vora (1988) found no inter- 

observer variation for the densiometer and ocular estimates of canopy cover.

A comparison of research techniques follows and is summarized in table three. Lemmon 

(1956,1957) and Bonner (1967) did not publish enough information on their study areas to 

offer meaningful comparisons between their studies. Garrison (1949) sampled a 173-acre 

ponderosa pine stand with ten, 0.25-acre plots, taking fifteen moosehom readings per plot. 

Strickler (1959) used seven clusters of four plots in ponderosa pine/Douglas-fir stands taking 

one reading in each cardinal direction per plot. Johansson (1985) used eight, 0.1 ha. 

rectangular, plots representing two thinning treatments, and estimated cover with 50,100, 

and 200 points per plot. Vora (1988) established 330 (~0.05acre) plots along 33 transects 

through a ponderosa pine forest type in the Blacks Mountain Experimental forest, California. 

Ocular estimates of cover were made on each plot followed by estimates made using the 

spherical densiometer 1-year later without using Strickler’s method.
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Vales and Bunnell (1988,1990) established twenty-three, 2 x 10m plots (along 

slope contours) to encompass a range of canopy cover values. Cover measurements were
i

taken at 1-meter intervals along each edge and along a centerline (n = 23). Photographs 

using 50mm and 100mm lenses were taken at each comer and at the 3-meter and 7-meter 

mark on each side (n = 8), and hemispherical photographs were taken along the centerline of 

each plot at the 3-meter and 7-meter marks (n = 2). They too did not use the Strickler 

correction.

Ganey and Block (1994) used sixty, 0.1 ha plots in a ponderosa pine stand in Arizona. A 

plot was established, a transect run through it, and measurements were made along this 

transect at five points for the densiometer (Dealy 1960) and 36 points for the vertical tube. 

The Strickler modification was not used. Coates (1995) used 70 variable radius plots 

representing 11 stands in northeastern Washington State. Canopy estimates were made with 

the moosehom and the spherical densiometer, one reading per plot. The Strickler 

modification was hot used.

Cook and others (1996) used six, 150m x 150m treatment areas of varying canopy 

density (3 harvested and 3 unharvested) with 9 macroplots established per treatment area.

An additional three macroplots were established in a low tree density area. For each 

macroplot, one reading of the convex spherical densiometer was taken using Strickler’s 

modification. Sixteen moosehom readings were taken per plot, and four concave spherical 

densiometer readings were taken per plot using Strickler’s modification. Though Strickler’s 

modification was used, the recommended four readings per plot with a convex densiometer 

(one in each cardinal direction) were not taken. This may have possibly contributed to die
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biased estimates observed in this study. Johansson (1996) used eight, 0.1 ha plots with 

200 points/plot to test for vertical tube accuracy (Table 3).

Despite the abundance of techniques to estimate current canopy cover, predicting 

future canopy conditions is required for landscape level management. Natural resource 

managers are increasingly depending upon growth simulators and derived models to 

assist in the management of a number of stochastic ecological characteristics, including 

canopy cover (Nelson and Buech 1996; Mitchell and Popovich 1997). The dependent 

variables used in these models are typically stand attributes that show up in inventory 

data. The stand attribute that is most strongly correlated with canopy cover is basal 

area/acre (Cade 1997; Mitchell and Popovich 1997). Mitchell and Popovich (1997) 

showed a quadratic relationship between basal area and canopy cover up to a canopy 

density of 60%. The increasing demand for management over large geographic areas has 

led to the creation of a number of computer models to predict stand conditions (Biging 

and Wensel 1990; Macguire and others 1991; Teck and others 1996). Given the extreme 

degree of environmental, spatial and genetic variation inherent in the landscape, it is 

imperative that the growth predictions correspond to the conditions that currently exist.

Coates (1995) compared ground estimates of canopy cover with those predicted by 

an unknown variant of FVS. FVS predictions were significantly different from estimates 

obtained from the convex densiometer but not for the moosehom. It should be realized 

however, that the model did not account for canopy overlap. FVS has recently been 

adjusted to account for canopy overlap. Given the potential extent to which FVS can be 

used in the management of forest ecosystems, research needs to be done to ascertain the
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validity of the output and the degree of correlation among other canopy cover 

estimation techniques.

Table 3. Summary of previous canopy cover comparisons
Researcher Year Covertype Plot

size
Instrum ents # o f

obs/plot
n

(plots)
Garrison 1949 Ponderosa pine 0.25-acre moosehom 15 10
Lemmon 1956 Ponderosa pine * concave & convex 

densiometers
4 28

Lemmon 1957 * * concave & convex 
densiometers

1 *

Strickler 1959 Ponderosa pine/ 
Douglas-fir

* concave & convex 
densiometers

4 28

Dealy 1960 Mt. mahogany/ 
w. juniper

transects convex densiometer 20 8

Bonner 1967 various 0.23-acre moosehom /projected dot 80/1000 12
Bonner 1968 various * moosehom /air photos # 36

Johannson 1985 Spruce 0.1 ha vertical tube 50,100,20
0

•

Vora 1988 Ponderosa pine ~0.05-acre convex densiometer / 
ocular

1 330

Vales and 
Bunnell

1988 Hemlock/
Douglas-fir

2mxl0m moosehom /gimbel sight / 
convex densiometer 

/ocular / photos

33 each 
2/8 for 
photos

23

Bunnell and 
Vales

1990 Hemlock/
Douglas-fir

2mxl0m moosehom/ gimbel sight / 
convex densiometer / 

ocular / photos

33 each 
2/8 for 
photos

23

Ganey and 
Block

1994 Ponderosa pine .25-acre Vertical tube / 
Densiometer

36/5 60

Cook et. al. 1995 various 0.1-acre concave & convex 
densiometers/moosehom

4/1 /16 39

Coates 1995 various variable convex densiometer / 
moosehom / ceptometer/FVS

4 / 1 / 1 6 71

Johannson 1996 Birch 0.1-ha vertical tube 200 8



Chapter II.

Instruments and Methods

Field Instruments:

Moosehom

The moosehom is a handheld optical instrument that uses a 45-degree mirror to reflect 

the image of the canopy through a dot grid. The observer looks through an eyepiece and 

then counts the number of dots, out of 25, that fall onto the above canopy. The grid is 

composed of 25 equally spaced dots with lines connecting the points resulting in a 4x4 

grid, each square 0.25”. There is a small bubble level to keep the observer looking at a 

perfect 90-degree angle (Figure 11). The instrument used in this study is constructed out 

of PVC pipe and is approximately 8” in length by 2” in width.

Figure 11. Moosehom schematic
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Densitometer

The densitometer is a handheld optical instrument that uses a 45-degree mirror to reflect 

the image of the canopy through a single point. The observer looks through an eyepiece 

and then determines if the point hits the canopy. The densitometer has two internal 

bubble levels to keep the observer looking at 90-degree angles. The densitometer is 

essentially a vertical tube but with internal levels.

Methods:

Study sites:

Two study sites were chosen, one on Flathead National Forest in northwestern Montana, 

and one on Lubrecht Experimental Forest (LEF), Montana. Stands were selected on the 

Flathead National Forest due to the willingness of federal forestry personnel to establish 

plots for this research. Stands on the LEF were selected because they contained 

permanent research plots that had been recently remeasured, and represented a variety of 

covertypes and stand densities.

(1) Flathead National Forest, Montana:

The Flathead National Forest is located in northwestern Montana (Figure 12). The 

location of the study site is Township 25 North, Range 18 West, sections 24 and 25 

(Figure 13). The study site is primarily a Douglas-fir (Pseudotsuga menziesii) and 

western larch (Larix occidentalis) (DF-WL) covertype but also present are: lodgepole 

pine (Finns contorta), grand fir (Abies grandis), Engelmann spruce (Picea engelmannii),
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paper birch (Betula papyrifera), and aspen (Populus tremuloides). The understory is 

composed mostly of Rocky Mt. maple (Acer glabrum) and paper birch.

The stands are even-aged, 82 years old, are on gently rolling terrain, and all naturally 

regenerated following a stand replacement wildfire in 1918. These stands can be 

characterized as having single strata of canopy cover in the overstory and a single stratum 

of canopy cover in the understory. The three stands were all thinned to target trees per 

acre (109 or 222) in the late 1970’s. The study site totals 138-acres and surrounds 

privately owned land (Figure 13). The Bond Creek trail runs through one of the stands.

An inventory was conducted in June 1999 using 41 variable-radius plots (BAF 20). Data 

collected on each individual tree included: species, diameter at breast height (dbh), tree 

height and crown ratio (subsampled based on diameter class). Aerial photographs taken 

in 1997 (at a scale of 1:24000) were obtained and USFS personnel ocularly determined 

percent cover within 10% cover classes for each stand. Canopy cover was measured in 

mid-October 1999.

Figure 12. Flathead National Forest, MT.
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2. Lubrecht Experimental Forest, Montana

The Lubrecht Experimental Forest is a 28,000-acre research facility owned and

operated by the School of Forestry, University of Montana. It is located approximately 30
}

miles northeast of Missoula, MT (Figure 14). In the early 1980’s, several levels of 

growing stock (LGS) units were established to (i) demonstrate different thinning 

treatments and (ii) serves as a basis for studying stand response to the thinning 

treatments. Each stand (of homogenous, second growth, unmanaged timber) was 

subdivided into 4 units of equal size, each of which were thinned to a different mean trees 

per acre (TPA) target. One stand was treated as a control (no thinning), one stand was 

thinned to 435 TPA (10’xlO’ spacing), one stand was thinned to 220 TPA (14’x l4 ’ 

spacing), and one stand was thinned to 110 TPA (20’x20’ spacing). In units where a 

10’xlO’ spacing was not possible, due to poor quality of trees or a patchy stand, a 

“desired marked leave tree” treatment was used. In that instance, crop trees were selected 

to remain in the stand (Figure 15)(MFCES 1986).
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Figure 14. Approximate location of Lubrecht Experimental Forest (LEF), MT (inset).

Misi

Figure 15. Example thinning unit on LEF established in the early 1980’s.

20X20

Marked 
Leave Tree

14X14

)

(Taken from MFCES 1986)

Several demonstration units were established on LEF in various timber types 

representative of western Montana (western larch, ponderosa pine, lodgepole pine, and 

Douglas-fir/ponderosa pine). In each stand of each unit, a minimum of three 0.1-acre 

permanent plots were established and inventoried on a regular basis. The stands used in
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this research project are part of the thinning demonstration project. One stand each of 

(i) lodgepole pine (LP), (ii) western larch (WL), and (iii) ponderosa pine (PP) covertypes 

were selected, and 3 stands of a ponderosa pine/Douglas-fir (PP-DF) covertype were 

selected. This design allowed such variables as site (soils, elevation) and species 

composition to be held relatively constant while changing only stand density. All of the 

stands are second-growth timber and naturally regenerated following logging and wildfire 

in the 1930’s.

For the LEF plots (n = 66), electronic copies of 1995 inventory data were 

obtained. Data collected on each individual tree included: species, diameter at breast 

height (dbh), tree height and crown ratio (tree height and crown ratios were 

sub-sampled based on diameter class). Canopy measurements were taken from June 

through August 1999. Aerial photographs of the study sites, taken in 1996, were obtained 

and LEF personnel determined percent cover within 10% cover classes in August 1999. 

Figure 16. Approximate locations of stands on the LEF

BRECHT

l=Ponderosa pine; 2=W. Larch; 3=Ponderosa pine/Douglas-fir; 4=Lodgepole pine; 
5, 6 - Ponderosa pine/Douglas-fir
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Study Desizn:

Canopy cover was defined as (i) the percent of ground covered by the “live crown” 

(green foliage, live branches) of a tree (Figure 2) and (ii) the percent of ground covered 

by the downward projection of the tree crown. In this research, the downward projection 

of the tree crown was represented by the shape of a “convex polygon” (the connecting 

points being the outermost branch tips) not a circle (Figure 17). The rationale for this was 

that it would be easier to visualize a line connecting two points of a tree crown rather than 

the arc of a circle, and that tree crowns rarely form a perfect circle.

Canopy cover of dominant and codominant trees (> 4.6”dbh) was measured at thirty- 

six points for each plot (Figure 18), using the moosehom and densitometer for each 

definition of canopy cover. Inventory data were then processed through the NI variant of 

FVS (v. 6.2) to determine percent canopy cover (accounting for crown overlap). FVS 

projections without accounting for canopy overlap were then calculated to be included in 

this analysis.

Figure 17. Canopy cover for an individual tree visualizing a convex polygon
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Figure 18. Sampling locations per plot 
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Analysis:

There is an inherent discrepancy between the moosehom and densitometer in how 

they estimate mean percent canopy cover. For each of the 36 sample points per plot, the 

moosehom obtains a percent value. Therefore, the mean percent canopy cover per plot is 

the average of these 36 values. However, the densitometer obtains either a “hit” or a 

“miss” for each of the 36 points, and obtains one mean estimate of percent cover per plot. 

It is appropriate to used normal-based testing procedures when comparing these 

instruments if a statistical rule of thumb is applied.

For large n, and it not too near 0 or 1, the distribution of the random variable “y”

(% canopy cover) may be approximated by a normal distribution with mean (p),

equal to nn, and standard deviation (a) equal to the square root of the quantity

[nn(l-Ti)]. This approximation should only be used when n% > 5 and n(l-7t) > 5
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(Ott 1993), where n is the number of sample points per plot and n is the percent canopy

cover per plot (as a proportion). For this study, based on a sample size of.36 points, it is

appropriate to compare the mean percent canopy cover values of these instruments as

long as the percent canopy cover per plot is between 14-86%.

Analyses were performed at two spatial scales to determine if there were

statistically significant differences in mean canopy cover between all methods. At

the plot level, a series of regression equations were developed, with one method of

estimating canopy cover used as a dependent variable (y) and another method of

estimating canopy cover used as an independent variable (x). For the null hypothesis of

no difference to be rejected the intercept, po, and slope, Pi, must be significantly different

from 0 and 1, respectively. This test was performed using a simultaneous test of

significance as described in Draper and Smith (1981). Specifically, the hypothesis is:

H0: (Po, Pi) = (0,1) 
vs.

Hi: (po, Pi) * (0 ,1 )

and is tested by comparing a computed test statistic, Q, to a modified F statistic (which

this researcher designates as F’). To reject the null hypothesis, Q > F \  The test statistic

Q, is equal to: (p0 - b)’ X’X (Pi - b), where Po is the estimated intercept from the

regression, and Pi is the estimated slope from the regression. The specific matrices are:

[p o -b , p i - b ]  [n Ix  ] [p o -b , P i - b ]
[Ex Ex2 ]
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The test statistic F’ is equal to: ps F(p>v, i w h e r e :

P = hypothesized population parameter 
p = the number of regression parameters 
s = variance (MSE of regression) 
n= number of plots 
v = (n - p)
b= regression parameter
a  = significance level of test (Bojang 1983)

At the stand level, a One-way ANOVA was performed to determine if there were 

significant differences in mean canopy cover between methods for each covertype 

(Table 4). If so, Tukey’s Honestly Significantly Difference (HSD) multiple comparisons 

procedure was used to determine which methods were significantly different from each 

other. Confusion matrices were developed for agreement assessment between methods 

based on 20% cover classes.

Sums of Squares df Mean square F P
CC Method 4469.81 6 744.97 15.76 < .0005
Error 662.00 14 47.29
Total 5131.81 20

/



Chapter III.

Results

Without stratifying by covertype, FVS underpredicted canopy on all plots on both 

study sites regardless of how canopy cover was defined (Figures 19-30). Mean cover 

estimates for plots ranged from 30% (FVS v.6.2) to 67.45% (densitometer “polygon”) on 

the LEF, and from 30.1% (FVS v. 6.2) to 71.9% (densitometer “polygon”) on the Flathead 

NF (Table 5).

Figure 19. Canopy cover (live crown) for all plots on the Lubrecht Experimental Forest (n = 66)
(PP-DF, LP, PP, WL covertypes)
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Table 5. Mean percent cover by instrument and study site
Study Site Method Mean % Cover Std. error
LEF (n=66) Moosehom (live crown) 54.27 1.41

Densitometer (live crown) 56.21 1.49
Moosehom (polygon) 65.64 1.51

Densitometer (polygon) 67.45 1.60
FVS (v 6.2) 30.33 .81
FVS (v 5.0) 36.59 1.17

Flathead NF (n=41) Moosehom (live crown) 59.39 1.80
Densitometer (live crown) 62.83 1.93

Moosehom (polygon) 67.76 1.78
Densitometer (polygon) 71.93 1.87

FVS (v 6.2) 30.10 1.20
FVS (v 5.0) 36.44 1.76
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Figure 20. Canopy cover (live crown) of all plots on the Flathead National Forest (n = 41)
(DF-WL covertypes)
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Figure 21. Canopy cover (polygon) for all plots on the Lubrecht Experimental Forest ( n 66)
(PP-DF, LP, PP, WL covertypes)
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Figure 22. Canopy cover (polygon) of all plots on the Flathead National Forest (n = 41)

(DF-WL covertype)
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Figure 23. Relationship between the moosehom (live crown) and FVS (corrected) cover estimates (n=107)
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Figure 24. Relationship between the densitometer (live crown) and FVS (corrected) cover estimates
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Figure 25. Relationship between the moosehom (polygon) and FVS (corrected) cover estimates (n=107)
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Figure 26. Relationship between the densitometer (polygon) and FVS (corrected) cover estimates (n=107) 
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Figure 27. Relationship between the moosehom and densitometer (live crown) estimates (n=107)
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Figure 28. Relationship between the moosehom and densitometer (polygon) cover estimates (n=107)
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The convex polygon definition resulted in higher measures of canopy cover, relative to 

the live crown definition, on 107 and 103 plots using the moosehom and densitometer, 

respectively (Figures 29,30). The remaining 4 plots had the same values of canopy cover 

using the densitometer. The differences in mean canopy cover for the moosehom between 

definitions of canopy cover ranged from 8.36% (DF-WL covertype) to 14.58% (LP 

covertype), and from 7.83% (WL covertype) to 14.99% (LP covertype) for the 

densitometer. The differences in mean canopy cover between definitions of canopy cover 

by covertype group, regardless of instrument used, ranged from 10.58% (WL covertype) 

to 16.67% (LP covertype).
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Figure 29. Canopy cover by definition for the moosehom (n = 107)
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Figure 30. Canopy cover by definition for the densitometer (n = 107)
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Confusion matrices:

The typical approach to incorporating canopy cover into forest management is by using 

3, 4, or 5 cover classes. Confusion matrices were developed to determine the level of 

agreement between the various methods within 20% cover classes (Tables 6 -12).

Table 6. Canopy cover c assification for all plots (n = 107)
M oosehom  (crown) Densitometer (crown)

% cover 0-20 21-40 41-60 61-80 81-100 Agreement (%)
0-20

21-40 6 3 66.7
41-60 1 46 12 77.9
61-80 1 33 4 86.8
81-100 1 100

Agreement (%) 85.7 92 73.3 20 80.4%

Table 7. Canopy cover classification for all plots (n = 107)
M oosehom  (polygon) Densitometer (polygon)

% cover 0-20 21-40 41-60 61-80 81-100 Agreement
0-20

21-40 2 1 66.7
41-60 19 10 1 66.7
61-80 3 42 16 68.9

81-100 1 12 92.3
Agreement 100 82.6 73.2 41.4 70.1%

Table 8. Canopy cover classification for all plots (n -  107)
FVS (v. 6.2) FVS (v. 5.0)

% cover 0-20 21-40 41-60 61-80 81-100 Agreement
0-20 7 3 70

21-40 65 23 73.9
41-60 7 2 77.8
61-80
81-100

Agreement 100 94.2 76.7 0 73.8%



Table 9. Canopy cover classification for all plots (n = 107)
M oosehom  (live crown) FVS (v. 6.2) ---------- -------1

% cover 0-20 21-40 41-60 61-80 81-100 Agreement
0-20

21-40 2 8 80
41-60 6 49 3 5.2
61-80 2 29 5 0

81-100 1 2 0
Agreement 0 9.2 30 10.3%

Table 10. Canopy cover classification for all plots (n = 107)
Densitometer (live crown) FVS (v. 6.2)

% cover 0-20 21-40 41-60 61-80 81-100 Agreement
0-20
21-40 2 5 71.4
41-60 6 42 2 4.0
61-80 2 37 6 0

81-100 4 1 0
Agreement 0 5.7 22.2 6.5%

Table 11. Canopy cover classification for all plots (n = 107)
M oosehom (polygon) FVS v. 6.2)

% cover 0-20 21-40 41-60 61-80 81-100 Agreement
0-20

21-40 1 2 66.7
41-60 6 23 2 6.5
61-80 3 52 5 0
81-100 11 2 0

Agreement 0 2.3 22.2 3.7%

Table 12. Canopy cover classification for all plots (n = 107)
Densitometer (polygon) FVS v. 6.2)

% cover 0-20 21-40 41-60 61-80 81-100 Agreement
0-20

21-40 1 1 50
41-60 4 18 1 4.3
61-80 4 45 4 0
81-100 1 25 3 0

Agreement 0 1.1 12.5 1.9%



Plot level differences by covertype:

Douglas-fir/western larch covertype (Flathead NF): 

There were significant (a  = 0.05) differences in the accuracy of all methods in estimating 

canopy cover (Table 13, see pg. 50)(Figure 20, 22). Mean estimates of cover ranged from 

30.1% (FVS v. 6.2) to 71.9% (densitometer “polygon”) (Table 14).

Figure 31. FVS predictions with and without accounting for crown overlap (DF-WL covertype)
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Table 14. Summary statistics by method for the DF-WL covertype
Method Mean Standard error

Moosehom (live crown) 59.39 1.80
Densitometer (live crown) 62.83 1.93
Moosehom (polygon) 67.76 1.78
Densitometer (polygon) 71.93 1.87
FVS (corrected) 30.10 1.20
FVS (uncorrected) 36.44 1.76

(n=41)
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Ponderosa pine/Douglas-fir covertype:

There were no significant (a = 0.05) differences in the accuracy between the moosehom 

and densitometer for either definition of canopy cover. There were significant differences 

in the accuracy of ail methods in estimating canopy cover (Table 15, see pg. 50, Figures 

32, 33,34). Mean cover estimates ranged from 33.4% (FVS v. 6.2) to 66.3%

(densitometer “polygon)(Table 16).

Table 16. Summary statistics5?y method for PP-DF covertype (n=30)
Method Mean Standard error Standard deviation

Moosehom (live crown) 54.77 2.00 10.96
Densitometer (live crown) 56.43 2.10 11.50
Moosehom (polygon) 64.83 1.99 10.92
Densitometer (polygon) 66.27 2.13 11.67
FVS (corrected) 33.40 1.13 6.20
FVS (uncorrected) 41.10 1.68 9.21

Figure 32. Canopy cover (live crown) for the PP-DF covertype
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Figure 33. Canopy cover (polygon) For the PP-DF covertype
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Lodgepole pine covertype:

There were no significant (a = 0.05) differences in the accuracy between the moosehom 

and densitometer for the “live crown” definition of canopy cover. There were significant 

differences in the accuracy of all methods in estimating canopy cover (Table 17, see pg.

50, Figures 35,36, 37). Mean estimates ranged from 21.9% (FVS v. 6.2) to 70.2% 

(densitometer ’’convex polygon”) (Table 18).

Table 18. Summary statistics by method for LP covertype
Method Mean Standard error

Moosehom (live crown) 53.50 2.89
Densitometer (live crown) 55.08 3.53
Moosehom (polygon) 68.08 3.84
Densitometer (polygon) 70.17 4.21
FVS (corrected) 21.92 1.25
FVS (uncorrected) 24.92 1.63

100

(n=12)

Figure 35. Canopy cover (live crown) for the LP covertype
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Figure 36. Canopy cover (polygon) for the LP covertype
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Figure 37. FVS predicted canopy cover with and without correcting for crown overlap (LP covertype)
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Ponder os a pine covertype:
»

There were no significant (a -  0.05) differences in the between the moosehom and 

densitometer for the “live crown” definition of canopy cover. There were significant 

differences in the accuracy of all methods in estimating canopy cover between all other 

methods (Table 19, see pg. 50, Figure 38,39,40). Mean estimates ranged from 29.75% 

(FVS v. 6.2) to 70.08% (densitometer “polygon”) (Table 20).

Table 20. Summary statistics by method for PP covertype
Method Mean Standard error

Moosehom (live crown) 54.58 2.77
Densitometer (live crown) 56.75 2.51
Moosehom (polygon) 67.75 2.60
Densitometer (polygon) 71.08 3.16
FVS (corrected) 29.75 1.14
FVS (uncorrected) 35.42 1.66

(n=12)

Figure 38. Canopy cover (live crown) for the PP covertype
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Figure 39. Canopy cover (polygon) for the PP coveitype
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Western Larch:

There were no significant (a = 0.05) differences in between the moosehom and 

densitometer for both the “live crown” and “convex polygon” definitions of canopy cover. 

There were differences in the accuracy of all other methods in estimating canopy cover 

(Table 21, see pg. 50, Figures 41 - 43). Mean estimates ranged from 31.67% (FVS v. 6.2) 

to 64.08% (densitometer “polygon”) (Table 22).

Table 22. Summary statistics by method for WL covertype
Method Mean

’ r
Standard error

Moosehom (live crown) 53.50 4.67
Densitometer (live crown) 56.25 4.88

Moosehom (polygon) 63.08 4.97
Densitometer (polygon) 64.08 4.72

FVS (corrected) 31.67 1.16
FVS (uncorrected) 38.17 1.74

(n=12)

Figure 41. Canopy cover (live crown) for the WL covertype
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Figure 42. Canopy cover (polygon) for the WL covertype

O L 5 0

Basal area (ft /acre)

150

Moosehom ■ Densitometer ° FVS (6.2) |

Figure 43. FVS predictions with and without correcting for crown overlap (WL covertype)
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Table 13. Significance test* for the DF-WL oovertype
Method Ix) Moosehom (Ihre crown) Densitometer (live cruwn) Mooset*»m laohW ll Densitometer (polygon) FVS (corrected) FVS (uncorractad)

(y ) 8. B , F Q B . B , P Q B o Bn F Q B . B , F Q B . Bn F Q B e B n F Q
Moosehom lllvs crown! • * • • 4.7 0 .8 7 1 1 8 .9 6 6 7 ,2 - 7 . 5 0.99 4 4 . 5 7 2 7 4 2 . 3 -0.88 0.84 2 1 9 . 6 6 4 3 8 . 7 33.7 0.88 5 9 8 3 5 6 7 0 38.2 0.58 5 9 8 . 8 2 2 3 9 3

Densitometer (live crown) 4 . 7 0.8 7 1 1 8  9 5 6 7 . 2 • • • • - 5 .> 1.01 2 1 5 .1 1 3 4 3 .1 ■4.01 0.93 2 7 8 . 4 3 0 0 7 . 8 37.2 0.85 8 1 1 4 1 9 9 3 37.2 0.85 8 1 1 .4 7 2 7 3 3
Moosehom (Dotvaon) -7. 5 0.99 4 4 . 5 7 2 7 4 2 . 3 •6.7 1.01 2 1 5 .1 1 3 4 3 .1 • • • • 3.9 0.89 1 1 5 7 2 9 .1 2 43.5 0.81 6 0 8 7 6 0 0 2 47.9 0.56 6 0 9 . 8 4 1 7 2 2

Densitometer (Dolvaon) -0.88 0.84 2 1 9 . 6 6 4 3 8 . 7 -4 0.93 2 7 8 .4 3 0 0 7 . 8 3.9 0.89 1 1 5 7 2 9 .1 2 « • • * 4 9 .6 0.74 7 3 1 7 2 7 3 3 53.9 0.49 7 4 1 . 6 6 1 1 8 1
FVS (corrected) 33.7 0.88 5 9 8 . 2 3 5 6 7 0 37.2 0.85 8 1 1 .4 4 1 9 9 3 43.5 0.81 6 0 7 . 9 > 6 0 0 2 49.8 0 .7 4 7 3 1 .3 7 2 7 3 2 . 6 • • 4 • • • • •

FVSiuncorrectad) 38.2 0.58 5 9 6 . 8 2 2 3 9 3 37.2 0.85 en.4 7 2 7 3 3 47.9 0.55 6 0 8 .8 4 1 7 2 2 53.9 0 .4 9 7 4 1 .6 5 1 1 6 0 . 7 • • « • • • • •

Table 15. Significance teela for PP-DFcovertype
Method (x) I Moosehom (live crown) II Densitometer (live crown) II Moosehom (pollnon) I1 Densltomstar (polygon) 11 FV8 (conedad) 1 FVS tuncorrected) I

<y> B. B, F Q B. B, F Q B. Bn F I Q B. Bn F O B, Bn F Q Be B, F Q I
Moosehom (live crown) • • • • 6.4 0.86 156.4 140.9 -7.5 0.94 69.13 •1.8 0.85 148.> 4077.1 19.8 1.05 534 13575 251 0.72 523.5 12665 I

Densitometer (live crownl 6.4 0.86 158.4 140.9 • • « • -1.4 0.89 256.5 -0.92 0.87 208.5 2794.1 21.2 1.1 616 17222 28.7 0.72 606.5 14959 I
Moosehom (polygon) 1 Ol 0.98 69.13 3067.9 -1.4 0.89 258.5 2210.2 • • • 8.1 0.86 133.7 119.7 35.3 0.88 615 29391 40 0.8 609.7

Densitometer (polygon) -1.8 0.85 148.7 4077.1 -0.9 0.87 208.5 2794.1 8.1 0.86 133.7 I 119.7 1 « • • • 33.8 0.97 689 32233 39 0.58 661.3
FVS (corrected) 19.8 13575.2 • • • • • • •

FVtMuncorrectsd) 25. r 12665.2 • • • « • • • I * I

Method (x) Moosehom (live crownl Deniittometer (live crown) Moosehom (pohroon) Densitometer (polygon) FVS Iconactsd) FVS furiconactsd)
(y) B . B, F Q B . B n F Q B o Bn F Q B . B n F Q B , B n F Q B . B n F Q

Moosehom (live crown) • * • • 1 2 . 7 0 .7 4 1 6 4 .1 1 4 3 4 .4 0.72 7 4 .1 2 7 7 2 . 2 6 .4 2 0 .8 7 4 2 . 2 2 6 2 6 . 3 1 4 .9 1 .8 3 8 6 1 2 0 9 9 2 0 .1 1 .3 3 8 8 . 8 9 8 2 9 . 8
Densitometer (live crown) 1 2 .7 0 .7 4 1 6 4 .1 1 4 3 « • • • 1 .5 7.9 3 6 3 .7 2 0 5 1 . 2 0 .2 4 0 .7 8 1 7 9 .9 2 8 8 4 . 5 1 2 1 2 7 0 5 1 3 3 5 2 1 8 4 1.8 7 2 9 . 7 1 0 9 8 6

Moosehom (polygon) 4 .4 0 .7 2 7 4 .1 2 7 7 2 . 2 1 .5 7 .9 3 6 3 . 7 2 0 5 1 . 2 • 6 • • 6 .0 7 0.88 9 7 . 8 3 9 9 . 9 7 1 0 .5 2 .6 4 3 8 2 6 2 1 8 1 6 1 2 4 3 8 2 2 5 4 6
Densitometer (oolvgon) 8 .4 2 0 .6 7 4 2 . 2 2 6 2 6 . 3 0.24 078 1 7 9 .9 2 8 8 4 . 5 8 0 7 0.88 9 7 . 8 3 9 9 . 9 7 • • • • 13.8 2 6 7 9 6 2 8 3 6 9 2 1 . 3 2 8 1 1 . 9 2 4 8 6 2

FVS (corrected) 1 4 .9 1 .6 3 8 6 .1 1 2 0 9 8 .6 1 2 1 2 7 0 5 .1 1 3 3 5 2 1 0 .5 2 6 4 3 7 .9 2 6 2 1 8 1 2 8 2 8 7 9 6 2 8 3 8 8 . 5 • • • • « • • •
FV8(uncorracled) 20.1 1.3 3 6 6 . 8 6 6 2 9 . 8 184 1.6 7 2 9 .7 1 0 9 6 6 1 6 1 2 4 3 8 2 2 5 4 6 2 1 . 3 2 8 1 1  9 2 4 8 6 1 . 8 • • • • • • • «

Method (xl Motwehom (live crown) Deni I t i Moosehicm (pohnon) Densitometer (polygon) FVS Icorrected) FVS (uncorrecl*»)
(y) B e B , F Q B e Bn F Q B e B , F Q B e B n F Q B , B n F a B . B n F' Q

Moosehom (live crownl * « * • -2.8 1 134.2 57.24 -15 1 54.9 2024.9 4.7 0.7 296.2 3423.6 -0.6 1.9 349 7622.9 10 1.3 356.7 4442.8
Densitometer (live crown) -2.8 1 134.2 57.24 • • • • -4.3 0.9 84.7 1488.8 10 0.88 211.7 2571.8 9.9 1.6 334 8879.9 18.8 1.1 333.2 5448.3

Moosehom (oolvgon) -15 1 54.9 2024.9 -4.3 0.9 84.7 1488.8 • 6 • • 169 0.69 221.2 247.2 17.9 1.7 341 17535 27.3 1.1 345.6 12510
Densitometer (oolvoonl 4.7 0.7 296.2 3423.6 10 0.86 211.7 2571.8 16.9 0.89 221.2 247.2 • • • • 20.4 1.7 677 25065 28.7 1.2 666.4 15354

FVS (corrected) -0.59 1.9 346.8 7622.9 9.9 1.6 334.2 8679.9 17.9 1.7 341.4 17535 20.4 1.7 877.4 25065.1 • • • • • •
FVSIuncorrscted) 10 1.3 356.7 4442.8 165 1.1 333.2 5448.3 27.3 1.1 345.6 12510 267 1.2 656.4 15354.1 • • • • "X"' •

Method ix) Mot
- - - - - - - ir.. 11,,
wehom llhre crown) 11 Densitotninerillvt crown) 1 Moosehom (pohroon) I Oonsltometsr (polygon) II FVS (icorrectsdl II FVS luncorredad) I

(y) B. B, F a B, B, F a Be Bn F Q B. B, F Q B. B, F a B, Bn F Q
Moosehom (live crown) * * • • 0.93 0.94 110.5 83.5 -5.4 0.93 33.3 1172.2 -8.7 0.97 92.2 1356.7 -7.3 1.9 1824 5871.6 3.14 1.32 1791

Densitometer (live crownl 0.93 0.94 110.5 83.5 • • • • -3.2 0.94 202.5 602.2 -7.4 0.09 201.3 774.2 2.7 1.7 2161 7329.3 11.9 1.2 2135
Moosehom (polygon) -5.4 0.93 33.3 1172.2 -3.2 0.94 202.5 602.2 * • • • -3.4 1 80.4 12.7 -10 2 3 17180 287 1.6 1854r 5 I -8.7 0.97 92.2 1356.7 -7.4 0.99 201.3 774.2 -3.4 1 80.4 12.7 « • * • 1.5 2 11764 12 1.4 1799

FVS (corrected) -7.3 1.9 1824 5871.6 2.7 1.7 2161 -10 2 3 17180 1.5 2 1839 11754 • • pH • • • •
*

FVMuncowecMd) 614 1.32 1701 11.9 1.2 2135 I 3901.21 287 1.6 7339.1 12 14 1799 8021.2 • W t Z j 8 1 IMipBIH • •
* I

-num bem  In taHce M e a t s  d m f ta n o e a l  tie O lO S  I*mI 
- reject H, If Q > F'

<s.o
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Stand level:

Canopy cover at the stand level was determined by averaging individual plot means to get 

an overall stand mean and then averaging all stand means to get a mean for a given 

covertype. For the LGS units on LEF, each thinning unit was treated as a stand. A One

way ANOVA was used to determine if there were significant differences between these 

methods at the stand level.

Douzlas-fir/western larch covertype:

There were significant differences in mean estimates of percent cover between 

methods (Table 23).

Table 23. ANOVA for DF-WL covertype
Sums of Squares df Mean square F P

CC Method 4469.81 6 744.97 15.76 < .0005
Error 662.00 14 47.29
Total 5131.81 20

Mean canopy cover estimates ranged from 33.6% (FVS corrected) to 75% (photo) 

(Table 24). The primary differences found by Tukey’s HSD procedure were between 

field measurements and FVS projections (Table 25).

Table 24. Summary statistics for DF-WL covertype
Method Mean Standard error

Moosehom (live crown) 60.33 1.86
Densitometer (live crown) 62.67 2.67
Moosehom (polygon) 68.33 2.03
Densitometer (polygon) 72.33 2.40
Photo 75.00 5.00
FVS (corrected) 33.67 4.41
FVS (uncorrected) 41.33 6.74

(n=3)



Table 25. Tukey’s HSD procedure for DF-WL stands (n=3)

Mean
Difference

Std.
Error

Moosehom (live crown) Densitometer (live crown) -2.33 5.61
Moosehorn (polygon) -8.00 5.61
Densitometer (polygon) -12.00 5.61
Photo -14.67 5.61
FVS (corrected) 26.67* 5.61
FVS (uncorrected) 19.00 5.61

Densitometer (live crown) Moosehom 2.33 5.61
Moosehom (polygon) -5.67 5.61
Densitometer (polygon) -9.67 5.61
Photo -12.33 5.61
FVS (corrected) 29.00* 5.61
FVS (imcorrected) 21.33* 5.61

Moosehorn (polygon) Moosehom 8.00 5.61
Densitometer (live crown) 5.67 5.61
Densitometer (polygon) -4.00 561
Photo -6.67 5.61
FVS (corrected) 34.67* 5.61
FVS (uncorrected) 27.00* 5.61

Densitometer (polygon) Moosehorn 12.00 5.61
Densitometer (live crown) 9.67 5.61
Moosehorn (polygon) 4.00 5.61
Photo -2.67 5.61
FVS (corrected) 38.67* 5.61
FVS (uncorrected) 31.00* 5.61

Photo Moosehorn 14.67 5.61
Densitometer (live crown) 12.33 5.61
Moosehorn (polygon) 6.67 5.61
Densitometer (polygon) 2.67 5 .61
FVS (corrected) 41.33* 5.61
FVS (uncorrected) 33.67* 5.61

FVS (corrected) Moosehorn -26 67* 5.61
Densitometer (live crown) -29.00* 5.61
Moosehorn (polygon) -34.67* 5.61
Densitometer (polygon) -38.67* 5.61
Photo -41.33* 5.61
FVS (uncorrected) -7.67 5.61

FVS (uncorrected) Moosehorn -19.00 5.61
Densitometer (live crown) -21.33* 5.61
Moosehorn (polygon) -27.00* 5.61
Densitometer (polygon) -31.00* 5.61
Photo -33.67* 5.61
FVS (corrected) 7.67 5.61

*• The mean difference is significant at the .05 level.
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Ponderosa pine/Douelas-fir covertype:

A One-way ANOVA showed significant differences in mean estimates of percent cover 

between methods (Table 26).

Table 26. ANOVA for PP-DF covertype
Sums of Squares d f Mean square F P

CC Method 8395.73 5 1679.15 29.74 < .0005
Error 3049.20 54 56.47
Total 11444.93 59

Mean estimates of cover ranged from 33.7% (FVS corrected) to 66.2% (densitometer 

“polygon”) (Table 27). Aerial photo interpretation was not included in this analysis 

because a Levine’s test showed it violated the equal variance assumption for ANOVA 

(Z = 7.98; p  <.0005). The primary differences were between the ground instruments and 

FVS projections (Table 28).

Table 27. Summary statistics for PP- )F covertype
Method Mean Standard error

Moosehom (live crown) 54.70 2.73
Densitometer (live crown) 56.40 2.75
Moosehom (polygon) 64.90 2.40
Densitometer (polygon) 66.20 2.60
FVS (corrected) 33.70 1.40
FVS (uncorrected) 41.30 2.08

(n=10)



Table 28. Tukey’s HSD procedure for PP-DF stands (n=10)
54

Mean
Difference

Std.
Error

Moosehorn (live crown) Densitometer (live crown) 
Moosehom(polygon) 
Densitometer(polygon) 
FVS (corrected)
FVS (uncorrected)

-1.70
-10.20*
-11.50*
21.00*
13.40*

3.36
3.36
3.36
3.36
3.36

Densitometer (live crown) Moosehom
Moosehom(polygon) 
Densitometer(polygon) 
FVS (corrected)
FVS (uncorrected)

1.70
-8.50
-9.80
22.70*
15.10*

3.36 
3.26
3.36
3.36
3.36

Moosehorn (polygon) Moosehom
Densitometer (live crown) 
Densitometer(polygon) 
FVS (corrected)
FVS (uncorrected)

10.20*
8.50

-1.30
31.20*
23.60*

3.36
3.36
3.36
3.36
3.36

Densitometer (polygon) Moosehom
Densitometer (live crown) 
Moosehom(polygon)
FVS (corrected)
FVS (uncorrected)

11.50*
9.80
1.30

32.50*
24.90*

3.36
3.36
3.36
3.36
3.36

FVS (corrected) Moosehorn
Densitometer (live crown) 
Moosehorn(polygon) 
Densitometer(polygon) 
FVS (uncorrected)

-21.00*
-22.70*
-31.20*
-32.50*

-7.60

3.36
3.36
3.36
3.36
3.36

FVS (uncorrected) Moosehom
Densitometer (live crown) 
Moosehom(polygon) 
Densitometer(polygon) 
FVS (corrected)

-13.40*
-15.10*
-23.60*
-24.90*

7.60

3.36
3.36
3.36
3.36
3.36

*- The mean difference is significant at the .05 level.

Lodeevole pine covertype:

A One-way ANOVA showed significant differences in mean estimates of percent cover 

between methods (Table 29).

Table 29. ANOVA for LP covertype
Sums of Squares d f Mean square F P

CC Method 13118.93 6 2186.49 25.01 <.0005
Error 1835.75 21 87.42
Total 14954.68 27

Mean cover estimates ranged from 22% (FVS corrected) to 85% (photo) (Table 30).



primary differences were between ground instruments and FVS (Table 31).

Table 30. Summary statistics for LP covertype (n=4)
Method Mean Standard error Standard deviation

Moosehom (live crown) 53.50 3.62 7.23
Densitometer (live crown) 55.25 3.59 7.18
Moosehom (polygon) 68.00 6.07 12.14
Densitometer (polygon) 70.00 5.45 10.89
Photo 85.00 7.07 14.14
FVS (corrected) 22.00 2.08 4.16
FVS (unconrected) 25.00 2.48 4.97

Table 31. Tukey's procedure for LP stands (n=4)

Mean
Difference

Std.
Error

Moosehom (live crown) Densitometer (Hve crown) -1.75 6.61
Moosehom (polygon) -14.50 6.61
Densitometer (polygon) -16.50 6.61
Photo -31.50* 6.61
FVS (corseted) 31.50* 6.61
FVS (uncorrected) 28.50* 6.61

Densitometer (live crown) Moosehom 1.75 6.61
Moosehom (polygon) -12.75 6.61
Densitometer (polygon) -14.75 6.61
Photo -29.75* 6.61
FVS (corseted) 33.25* 6.61
FVS (uncorrected) 30.25* 6.61

Moosehom (polygon) Moosehom 14.50 6.61
Densitometer (live crown) 12.75 6.61
Densitometer (polygon) -2.00 6.61
Photo -17.00 6.61
FVS (corected) 46.00* 6.61
FVS (uncorrected) 43.00* 6.61

Densitometer (polygon) Moosehom 16.50 6.61
Densitometer (Hve crown) 14.75 6.61
Moosehom (polygon) 2.00 6.61
Photo -15.00 6.61
FVS (corected) 48.00* 6.61
FVS (uncorrected) 45.00* 6.61

Photo Moosehom 31.50* 6.61
Densitometer (live crown) 29.75* 6.61
Moosehom (polygon) 17.00 6.61
Densitometer (polygon) 15.00 S.61
FVS (corected) 63.00* 6.61
FVS (uncorrected) 60.00* 6.61

FVS (corrected) Moosehom -31.50* 6.61
Densitometer (live crown) -33.25* 6.61
Moosehom (polygon) •46.00* 6.61
Densitometer (polygon) -48.00* 6.61
Photo -63.00* 6.61
FVS (uncorrected) -3.00 6.61

FVS (uncorrected) Moosehom -28.50* 6.61
Densitometer (live crown) -30.25* 6.61
Moosehom (polygon) -43.00* 6.61
Densitometer (polygon) -45.00* 6.61
Photo -60.00* 6.01
FVS (corected) 3.00 6.61

The mean difference is significant a t the .05 level.
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Ponderosa pine covertype:

A One-way ANOVA showed significant differences in mean estimates of percent cover 

between methods (Table 32).

Table 32. ANOVA for PP covertype
Sums of Squares df Mean square F P

CC Method 5763.38 5 1152.68 25.61 <.0005
Error 810.25 18 45.01
Total 6573.63 23

Mean estimates of cover ranged from 29.5% (FVS corrected) to 71% (densitometer 

“polygon”) (Table 33). The primary differences were between ground instruments and 

FVS projections (Table 34). Aerial photo inteipretation was not included in this analysis 

because a Levine’s test showed it violated the homogenous variance assumption for 

ANOVA (L = 3.1; p  -  .034).

Table 33. Summary statistics for PP covertype
Method Mean Standard error

Moosehom (live crown) 54.50 4.17
Densitometer (live crown) 56.75 3.99
Moosehom (polygon) 67.75 3.97
Densitometer (polygon) 71.00 3.34
FVS (corrected) 29.50 1.50
FVS (uncorrected) 34.75 2.25

(n=4)



Table 34. Tukey’s procedure for PP covertype (n=4)
57

Mean
Difference

Std.
Error

Moosehorn (live crown) Densitometer (live crown) 
Moosehom(polygon) 
Densitometer(polygon) 
FVS (corrected)
FVS (uncorrected)

-2.25
-13.25
-16.50*
25.00*
19.75*

4.74
4.74
4.74
4.74
4.74

Densitometer (live crown) Moosehom
Moosehom(polygon) 
Densitometer(poiygon) 
FVS (corrected)
FVS (uncorrected)

2.25
-11.00
-14.25
27.25*
22.00*

4.74
4.74
4.74
4.74
4.74

Moosehom (polygon) Moosehom
Densitometer (live crown) 
Densitometer(polygon) 
FVS (corrected)
FVS (uncorrected)

13.25
11.00
-3.25
38.25*
33.00*

4.74
4.74
4.74
4.74
4.74

Densitometer (polygon) Moosehom
Densitometer (live crown) 
Moosehom(polygon)
FVS (corrected)
FVS (uncorrected)

16.50*
14.25
3.25

41.50*
36.25*

4.74
4.74
4.74
4.74
4.74

FVS (corrected) Moosehom
Densitometer (live crown) 
Moosehom(polygon) 
Densitometer(polygon) 
FVS (uncorrected)

-25.00*
-27.25*
-38.25*
-41.50*

-5.25

4.74
4.74
4.74
4.74
4.74

FVS (uncorrected) Moosehom
Densitometer (live crown) 
Moosehom(polygon) 
Densrtometer(polygon) 
FVS (corrected)

-19.75*
-22.00*
-33.00*
-36.25*

5.25

4.74
4.74
4.74
4.74
4.74

*• The mean difference is significant at the .05 level.

Western Larch:

A One-way ANOVA showed significant differences in mean estimates of percent cover 

between methods (Table 35).

Table 35. ANOVA for WL covertype
' Sums of Squares df Mean square F P

CC Method 6202.00 6 1033.67 5.22 .002
Error 4159.25 21 198.06
Total 10361.25 27

Mean cover ranged from 31.25% (FVS corrected) to 75% (photo) (Table 36).



The primary differences were between field instruments and FVS projections

(Table 37)
Table 36. Summary statistics for W1L covertype

Method Mean Standard error
Moosehom (live crown) 55.75 7.92
Densitometer (live crown) 5650 8.15
Moosehom (polygon), 66.00 8.27
Densitometer (polygon) 68.00 7.51
Photo 75.00 9.13
FVS (corrected) 31.25 1.70
FVS (uncorrected) 37.75 2.56

(n=4)

Table 37- Tukey’s procedure for WL covertype (n=4)

Mean
Difference

Std.
Error

Moosehom (live crown) Densitometer (live crown) -.75 9.95
Moosehom (polygon) -10.25 9.95
Densitometer (polygon) -12.25 9.95
Photo -19.25 9.95
FVS (corrected) 24.50 9.95
FVS (uncorrected) 18.00 9.95

Densitometer (live crown) Moosehom (Hve crown) .75 9.95
Moosehom (polygon) -9.50 9.95
Densitometer (polygon) -11.50 9.95
Photo -18.50 9.95
FVS (corrected) 25.25 9.95
FVS (uncorrected) 18.75 9.95

Moosehom (polygon) Moosehom (live crown) 10.25 9.95
Densitometer (live crown) 9.50 9.95
Densitometer (polygon) -2.00 9.95
Photo -9.00 9.95
FVS (corrected) 34.75* 9.95
FVS (uncorrected) 28.25 9.95

Densitometer (polygon) Moosehom (Ive crown) 12.25 9.95
Densitometer (Bve crown) 11.50 9.95
Moosehom (polygon) 2.00 9.95
Photo -7.00 9.95
FVS (corrected) 36.75* 9.95
FVS (uncorrected) 30.25 9.95

Photo Moosehom (Hve crown) 19.25 9.95
Densitometer (live crown) 18.50 9.95
Moosehom (polygon) 9.00 9.95
Densitometer (polygon) 7.00 9.95
FVS (corrected) 43.75* 9.95
FVS (uncorrected) 37 25* 9.95

FVS (corrected) Moosehom (live crown) -24.50 9.95
Densitometer (Hve crown) -25.25 9.95
Moosehom (polygon) -34.75* 9.95
Densitometer (polygon) -38 75* 9.95
Photo -43.75* 9.95
FVS (uncorrected) -6.50 9.95

FVS (uncorrected) Moosehom (Hve crown) -18.00 9.95
Densitometer (Hve crown) -18.75 9.95
Moosehom (polygon) -28.25 9.95
Densitometer (polygon) -30.25 9.95
Photo -37.25* 9.95
FVS (corrected) 8.50 9.95

"• The mean difference I* significant at the .05 level.



Chapter IV. 

Discussion:

Field instruments and canopy definitions (plot level)

Using the downward projection of a tree’s crown (in the shape of a convex polygon), 

instead of just the live crown portion to measure canopy cover, resulted in higher 

estimates of canopy cover on 107 and 103 plots using the moosehom and densitometer, 

respectively. The remaining 4 plots had equal values of canopy cover when using the 

densitometer. This makes intuitive sense since a greater area of ground may be covered by 

the outline of a tree’s perimeter than by the living portion of a tree’s crown (depending on 

species, age and vigor). Differences between the moosehom and densitometer ranged 

from 0 -19%, and 0 -16% for the live crown and convex polygon definitions, 

respectively. However, the mean difference for all plots between each instrument 

regardless of definition was 3%. These results indicate that if a live crown approach is 

accepted as truth, and the convex polygon approach is used to determine canopy cover, 

there is a minimum mean overestimate from ~ 8% -15%, depending on covertype and 

instrument used.

Using five equal-interval canopy classes (confusion matrices) the moosehom and

densitometer agree 80.4% when using the live crown definition of canopy cover, and

70.1% agree when a convex polygon approach is used. However, the densitometer yielded

higher estimates of canopy cover than the moosehom on 76 (71%) and 83 plots (77.6%)

for the live crown and convex polygon definitions of canopy cover, respectively. This is

unusual in that previous work with these instruments has shown that percent cover values
59
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obtained with a moosehom were consistently higher than with point estimates (Bonner 

1967, Bunnell and Vales 1990). This is largely due to the greater area sampled with a 

moosehom and the properties of a binomial distribution when using a point estimate.

Since the number of sampling points per plot that are required to attain accurate estimates 

of canopy cover with a densitometer was met (as described in the literature), it is possible 

that there were field errors in using either the moosehorn or densitometer.

The densitometer has a smaller viewing window to see the canopy than the 

moosehom. As such, it was difficult to determine if a particular sample point was within a 

convex polygon around the tree crown. It is possible that points were counted as “in” 

when they were in fact just outside of the polygon. Also, the dot grid on the moosehom is 

made up of points that are 1.0 mm in diameter, but the single dot of the densitometer is 

3.0mm in diameter. The single dot has a larger area and sometimes a sample point had a 

partial “hit”, i.e. half of the single dot hit canopy and half of the dot did not. On those 

occasions, those points were counted as “in” but in retrospect, perhaps alternate counting 

of those points as “in” may have been a more appropriate protocol. The drop in 

agreement between the moosehom and densitometer when using a convex polygon 

approach may lend evidence to support the above supposition.

The DF-WL covertype showed significant differences between the moosehom and 

densitometer for the live crown definition of canopy cover; all other covertypes showed no 

difference between them. This may be due to this covertype ‘having the largest mean 

difference in canopy cover between the moosehom and densitometer of all the covertypes



(3.4%). The PP-DF and WL covertypes showed no difference between the moosehom 

and densitometer for the convex polygon definition of canopy cover; all other covertypes 

showed a difference between them. The level of agreement between these instruments 

regardless of definition is less than 5 (Table 38).

Table 38. Mean difference in percent cover between the moosehom  and densitometer
Live crown Polygon
mean diff. mean diff.

DF-WL 3.4* 4.1*
PP-DF 1.6 1.5

LP 1.6 2.1*
PP 2.2 3.3*
WL 2.8 1

* significant at the 0.0S level 

Field instruments and canopy definitions (stand level)

Canopy cover at the stand level was determined by averaging individual plot means to 

obtain an overall stand mean and then averaging all stand means to get a covertype mean. 

Estimating canopy cover by this method reduced the variation at the plot level (for the 

moosehom) and stand level (both instruments) resulting in no significant differences. This 

was seen on stands with a DF-WL, LP and WL covertypes, and to a lesser extent on stands 

with PP-DF and PP covertypes.

FVS predictions (v. 6.2)

FVS underpredicted canopy cover on all plots with the degree of underprediction 

varying by cover definition, covertype and the density within those covertypes. Since FVS 

uses the downward projection of a tree crown to calculate canopy cover, it would make 

intuitive sense for the convex polygon approach to canopy cover to be the most similar



technique to FVS predictions. That was not observed. The greatest degree of 

underprediction occurred when using a convex polygon to define percent canopy cover. 

The underprediction compared to the moosehom ranged from 3-51%  and 9 - 60% when 

using the live crown and convex polygon definitions, respectively. The underprediction 

compared to the densitometer ranged from 2 - 58% and 13 - 64% when using the live 

crown and convex polygon definitions, respectively. The mean percent of undeiprediction 

compared to the moosehom was 26% for the live crown and 36% for the convex polygon 

definitions of canopy cover. The mean percent of underprediction compared to the 

densitometer was 29% for the live crown and 39% for the convex polygon definitions of 

canopy cover.

At the stand level, FVS predictions matched those of the moosehom and densitometer 

(live crown) only for the western larch covertype. This could in part be possibly due to the 

relatively low amount of foliage present in larch crowns. Its also possible that since some 

plots needed to be remeasured in late October, the deciduous nature of larch resulted in 

lesser amounts o f canopy cover than what would be present before leaf senescence. 

However, the tendency of FVS to underpredict canopy cover needs further review.

FVS predicts canopy cover based on crown diameters o f370 dominant and 

' codominant trees originally measured in 1978. The original field procedure reads, 

“...crowns were visually divided into two or three horizontally partitioned live

sections................boundaries between live crown sections were located where diameters

and lengths Of branches changed distinctly” with crown width measured as the average of 

two perpendicular measurements for each section (Brown 1978). Crown width for a single
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tree was the average of these measurements. Therefore it is not surprising that canopy 

cover is being underpredicted. Perhaps a better approach would have been to take the 

largest crown width for a tree.

All trees in this study were within the ranges of species and diameter for the FVS 

canopy equations. The large non-zero values of the intercepts from the regression 

equations indicate that a substantial bias is present within the mode (Table 41). This 

could be caused by basing the crown width equations which FVS uses, on a relatively 

small number of trees, across a range of unknown stand densities and site qualities, 

resulting in extrapolation across a very large area for the NI variant (Tables 39,40). Only 

one hundred-sixty of those trees were > 3.5” dbh (trees in this study needed to be > 4.6” 

dbh to be measured for canopy cover)

Table 39. Summary o f trees used to predict crown width in with FVS
species # of trees > 3 .5 ” dbh range

DF 23 0 -3 3 .9
PP 29 0 -3 4 .0
WL 9 0 -2 1 .8
LP 7 0 -1 5 .6
GF 22 0 -2 0 .4
ES 8 0 -2 3 .2

..Total 90

Table 40. Summary o f trees measured in this study
species # of trees > 4.6” dbh range BA range

DF 472 4.6-31 .4 50 - 229
PP 521 4 .6 - 18.7 74 - 229
WL 466 4.6-21 .9 41 -229
LP 336 4.6 - 16.6 40 - 220
GF 11 8.5-21.2 100-200
ES 5 13.5 - 16.3 60 - 100

Total 1811
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Correcting for Canopy Overlap

As stated previously, the latest version of FVS (v 6.2) reduces canopy cover estimates 

by adjusting for canopy overlap. Since FVS (v 6.2) underpredicted canopy cover, this 

researcher was interested in determining how the uncorrected canopy projections 

compared to the modified projections.

At the plot level, without adjusting for crown overlap, FVS still underpredicted 

canopy cover albeit to a lesser extent. However, at the stand level, there were no 

significant differences between the uncorrected FVS projections and mean estimates of 

percent cover using the moosehom (live crown) for the DF-WL covertype. There were 

also no significant differences between FVS and both the moosehom and densitometer, 

regardless of canopy cover definition for the WL covertype. This may be partly due to the 

low foliar biomass of western larch.

Despite its underprediction the latest version of FVS does seem to have an advantage 

over its former self. If estimated canopy cover by the moosehom (or densitometer) is 

accepted as truth, then the regression equations indicate that FVS tends to capture the 

observed increase in canopy cover per unit increase in basal area better by correcting for 

canopy cover (the slopes of the regression lines become closer to 1), intercepts closer to 

0, and smaller variances (MSE) when correcting for crown overlap than without. 

However, this tendency varies by covertype (Table 41).
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Covertype n Method (y) Bo
FVS,

B,
FVS,,

Bt
FVS,

B,
FVS.

MSE
FVS,

MSE
FVS„

DF-WL 41 Densitometer (live crown) 37.2 42.1 0.85 0.57 112.7 114.3
DF-WL 41 Densitometer (polygon) 49.6 53.9 0.74 0.49 113.2 114.8
DF-WL 41 Moosehom (live crown) 33.7 38.19 0.86 0.58 92.6 92.7
DF-WL 41 Moosehom (polygon) 43.5 47.9 0.81 0.55 94.1 94.4
PP-DF 30 Densitometer (live crown) 21.16 25.1 1.06 0.72 92.55 78.6
PP-DF 30 Densitometer (polygon) 33.78 40 0.97 0.6 103.38 91.54
PP-DF 30 Moosehom (live crown) 19.6 26.7 1.05 0.72 80.2 91.07
PP-DF 30 Moosehom (polygon) 35.3 38.9 0.88 0.66 92.37 102.3

LP 12 Densitometer (live crown) 12.08 18.09 1.96 2 85.99 53.42
LP 12 Densitometer (polygon) 13.57 18.4 2.58 1.47 97.32 88.99
LP 12 Moosehom (live crown) 14.94 21.3 1.76 1.96 47.08 99.01
LP 12 Moosehom (polygon) 10.53 20.1 2.63 1.34 53.4 47.42
PP 12 Densitometer (live crown) 9.86 28.7 1.58 1.2 40.76 40.6
PP 12 Densitometer (polygon) 20.36 18.47 1.71 1.08 82.61 80.1
PP 12 Moosehom (live crown) -0.59 9.98 1.86 1.26 42.53 43.5
PP 12 Moosehom (polygon) 17.91 27.32 1.68 1,14 41.63 42.14
WL 12 Densitometer (live crown) 2.72 12.03 1.69 1.36 263.58 219.37
WL 12 Densitometer (polygon) 1.46 11.9 1.98 1.16 224.22 260.4
WL 12 Moosehom (live crown) -7.3 2.87 1.92 1.58 222.45 226.1
WL 12 Moosehom (polygon) -9.99 3.14 2.31 1.32 230.93 218.4

The ability to accurately project the increase in canopy cover with increasing basal 

area may be explained by the correction factor developed by Crookston and Stage (1999). 

The mathematical correction factor has a physiological interpretation based on the Beer- 

Lambert law, a commonly used relation for calculating the absorption of light by foliage 

(Crookston and Stage 1999). The corrected model tends to deviate the most from its 

former self with increasing levels of basal area (Figures 25,28, 31,34, 37). This makes 

intuitive sense because increasing stand density increases the probability of crown 

overlap.

Aerial photographs

Aerial photographs were included in this study because they are a practical tool for 

estimating canopy cover over large areas. Although air photo analyses of all stands were



conducted, due to statistical reasons, only three of the five covertypes were studied.

Photo analysis of stands with a DF-WL covertype and WL covertype were shown not to 

be different from either the moosehom or densitometer for both definitions of canopy 

coyer. Photo analysis of stands with a LP covertype were shown not to be different from 

either the moosehom or densitometer only for the convex polygon definition of canopy 

cover. This makes intuitive sense because when one views a stand stereoscopically, 

within crown gaps are rarely visible. Therefore any air photo analysis involves assuming 

canopy cover is defined as the downward projection of a tree crown. Patton (1998) drew 

similar conclusions.

Limitations

The limitations in applying the results from this research should be articulated. Only 

estimates of overstory canopy cover (dominant and codominant trees > 4.6” dbh) were 

evaluated in this study. All stands were even-aged with one single canopy strata.

While a range of canopy cover was measured, the bulk of the measurements were between 

40% - 80% canopy cover (Figures 44 ,45). Ranges of stand densities were from 30 to 

230ft2/acre of basal area.



Figure 44. Canopy cover of plots used in this study (live crown)
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Figure 45. Canopy cover o f plots used in this study (polygon)
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The inventory procedures used on both study sites involved sub-sampling of heights 

and crown ratios for “in” trees based on diameter class. On the Flathead National Forest, 

60% of the “in” trees had actual tree heights measured and 95% had actual live crown 

ratios measured. On LEF, that ratio falls to 50% for both the actual tree heights and live 

crown measurements. While sub-sampling for heights is a common inventory procedure 

in the Inland west, it does add a degree of error in assessing the ability of FVS to predict 

overstory canopy cover. With this data missing, FVS is estimating tree height and crown 

ratio, two of the three variables needed to estimate crown width, from internal equations. 

Tree heights are estimated from diameter-height curves calibrated using the inventory 

treelist, while crown ratio is estimated jas a function of dbh, height, crown competition 

factor (CCF) and the basal area percentile rank of a tree (PCT) as determined from the 

inventory data by FVS (Wykoff and others 1982). If those estimates of tree height and 

crown ratio are underestimated or biased, so will be the crown width estimates 

(Eq. 2, pg. 11).

Perhaps the greatest limitation of this research is the sample sizes used for some 

covertypes. Three of the five covertypes (PP-WL-LP) studied had four stands in each, 

all thinned to a different mean TP A. Although there was replication of plots within every 

stand, there was no replication of stand-density combinations within a covertype. As 

such, the results from those covertypes are at best a case study, applicable only to those 

particular LSG units on LEF. The PP-DF and the DF-WL covertypes offer slightly more 

meaningful inferences. Both covertypes had relatively large sample sizes at the plot level,
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and had replication of their respective stand-density combinations. At the stand level, 

air photo interpretation was based on either three or four stands.

Flathead National Forest 

It should be noted that although 41 plots were inventoried on the Flathead National 

Forest, 46 were originally installed. Five plots were excluded from analysis due to a 

significant hardwood overstory. The understory of these stands had significant amounts of 

advanced hardwood regeneration above 10’ in height. As such, canopy measurements of 

the overstory had to be conducted in the fall following leaf senescence.

Trees in the FVS tree list were not necessarily trees for which canopy cover was 

recorded. Trees may have been within the limiting distance for variable-radius plot 

cruising, and so included in FVS, but outside the plot used to measure canopy cover and 

conversely, canopy cover at plot locations included crowns of trees not in the FVS treelist.

Lubrecht Experimental Forest 

As previously stated, stands used in this study are part of the LGS study (MFCES 1986). 

A minimum of three, 0.1 -acre permanent plots were established in each treatment of each 

stand of each unit. Canopy measurements were made on three randomly selected plots 

before attaining the 1995 inventory data from the School of Forestry, University of 

Montana personnel. Once obtained, it was discovered that only three plots were 

remeasured in each stand of each unit and did not necessarily correlate with the three 

randomly selected by this researcher. Therefore, some plots were disregarded in favor of
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plots for which inventory records did exist. Canopy measurements for those plots were 

made in late September and early October.

Conclusions

There were no significant differences between the moosehom and densitometer in 

estimating overstory canopy cover when using a live crown definition for 4 of 5 

covertypes. There were no significant differences between the moosehom and 

densitometer in measuring overstory canopy cover when using a convex polygon approach 

on two of the five covertypes. The moosehom consistently gave the most conservative 

estimate of overstory canopy cover and has a large enough viewing window to be an 

effective instrument regardless of how canopy cover was defined (live crown, convex 

polygon). Results from using the GRS Densitometer should be restricted to that 

instrument and not extrapolated to include other point estimate instruments due to the 

unique size of the viewing window and dot used to measure canopy cover. Although 

significant differences between these instruments were found in some cases, the level of 

difference may be acceptable depending on individual needs.

How canopy cover is defined is important to the measure of percent canopy cover. 

Using the downward projection of a tree’s crown in the shape of a convex polygon yielded 

higher measures of percent cover than when using just the live crown of a tree. Using a 

convex polygon resulted in between —8 —15% higher estimates of canopy cover.

The downward projection method is typically how canopy cover is defined and is used 

when viewing aerial photographs stereoscopically.



The NI variant of FVS (v 6.2) underpredicts canopy cover. The NI variant was 

developed to encompass a large geographic region of northern Idaho and western 

Montana. The range of tree crown widths that the model is based on is very small and 

does not encompass the ranges of site quality and stand density needed to accurately 

predict canopy cover for these two study areas. Localized calibration may be necessary to 

incorporate FVS projections into stand and forest management when canopy cover is a 

concern. In order to better determine the full applicability of FVS in modeling canopy 

cover, further research is needed to encompass all 11 coniferous species of the Inland 

Empire across a range of site qualities, stand densities, and size classes.

Recommendations

Of the ground instruments used in this study, the moosehom handled the most efficiently 

in the field. It has a large enough viewing window so that, regardless of how canopy 

cover is defined, it is a useful instrument. The large dot on the densitometer may have 

contributed to the higher values of mean percent cover obtained by it. The small viewing 

window was difficult to see the polygon in with open or sparse crowns.

The live crown approach is a physiologically relevant approach to defining canopy 

cover. Not all species or individuals within a species have dense crowns at all stages of 

development. A live crown approach captures the within crown canopy gaps. For shade 

tolerant species, canopy cover when using a live crown approach may be the same as 

when using a polygon approach (due to denser crowns of those species).
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Appendix A. Summary of stands selected for this research

Forest Plot
type

Covertype BA/acre
range

Habitat
type

Acres n Stand ID Location

Flathead variable DF-WL 60-200 521* 25.0 8 12605095 T25N.R18W.S 24/25

Flathead variable DF-WL 80-220 520* 47.0 11 12605093 T25N.R18W.S 24/25

Flathead variable DF-WL 40-200 520* 66.0 22 12606095 T25N.R18W.S 24/25

LEF fixed PP 113-181 291 3.4 3
Rat-tail 

Draw (control) T13N.R15W.S 16

LEF fixed PP 118-130 291 3.4 3
Rat-tail 

Draw (10’) T13N.R15W.S 16

LEF fixed PP 121-130 291 3.4 3
Rat-tail 

Draw (14’) T13N.R15W.S 16

LEF fixed PP 74-96 291 3.2 3
Rat-tail 

Draw (20’) T13N,R15W,S 16

LEF fixed WL 99-115 290 3.8 3
Coyote 

Park (control) T13N.R14W.S 19

LEF fixed WL 86-107 290 2.7 3
Coyote' 

Park (10’) T13N.R14W.S 19

LEF fixed WL 76-81 290 2.9 3
Coyote 

Park (14’) T13N.R14W.S 19

LEF fixed WL 41-62 290 3.7 3
Coyote 

Park (20’) T13N.R14W.S 19

LEF fixed LP 130-148 250 1.9 3
Jones 

Pond (control) T13N.R14W, S 12

LEF fixed LP 93-121 250 1.9 3
Jones 

Pond (10’) T13N.R14W, S 12

LEF fixed LP 91-99 250 1.9 3
Jones 

Pond (14*) T13N.R14W, S 12

LEF fixed LP 61-74 250 1.9 3
Jones 

Pond (20’) T13N.R14W, S 12

LEF fixed PP-DF 144-157 291 3.4 3
Gate of Many 

Locks (control) T14N.R15W.35

LEF fixed PP-DF 129-155 291 3.7 3
Gate o f Many 
Locks (14’) T14N.R15W.35

LEF fixed PP-DF 84-110 291 5.5 3
Gate o f Many 
Locks (20’) T14N.R15W.35

LEF fixed PP-DF 137-176 291 3.5 3
Shoestring
(control) T14N,R15W,35

LEF fixed PP-DF 138-175 291 3.9 3
Shoestring

(14’) T14N,R15W,35

LEF fixed PP-DF 70-118 291 3.0 3
Shoestring

(20’) T14N,R15W,35

LEF fixed PP-DF 50-229 291 2.5 3
Baker Road 

(control) T13NJR15W .su

LEF fixed PP-DF 115-174 291 2.5 3
Baker Road 

(10’) T13N .R 15W .su

LEF fixed PP-DF 143-168 291 2.5 3
Baker Road 

(14’) T13N.R15W, S 11

LEF fixed PP-DF 95-121 291 2.4 3
Baker Road 

(20’) T13N.R15W, S 11

* represents the dominant habitat type over the entire stand



A p p e n d ix  B . Canopy cover values for plots on the Flathead National Forest (DF-WL covertype)
Moosehom Densitometer Moosehom Densitometer FVS FVS

S tandJD Plot# B A /acre Live crown Live crown Polygon Polygon (v 6.2) (v 5.0)
5093 1 120 61 58 68 75 27 31
5093 2 180 77 83 85 94 41 53
5093 3 200 71 72 75 72 41 53
5093 4 160 62 67 67 67 38 48
5093 5 100 63 75 72 78 20 22
5093 6 140 64 72 75 83 33 40
5093 8 140 55 58 68 75 33 40
5093 9 60 48 50 56 56 18 20
5093 11 60 41 36 49 50 14 15
5093 15 60 40 42 47 50 18 20
5093 16 120 53 61 58 64 31 37
5095 1 80 51 64 62 78 24 27
5095 2 120 54 64 65 75 30 36
5095 3 140 68 72 80 89 34 42
5095 4 100 40 39 43 47 30 36
5095 5 120 59 64 64 69 31 37
5095 6 100 84 83 89 86 33 ^ 40
5095 7 220 77 75 83 86 48 65
5095 8 160 78 81 86 89 31 37
6095 1 40 57 58 64 64 16 17
6095 2 180 68 72 75 75 32 39
6095 3 100 49 44 58 58 24 27
6095 4 160 70 76 75 81 33 40
6095 5 100 55 64 66 67 23 26
6095 6 160 61 64 70 69 28 33
6095 7 120 61 67 70 81 25 29
6095 8 200 58 61 68 72 35 43
6095 9 100 46 47 56 61 36 45
6095 10 100 59 61 68 72 25 29
6095 11 200 77 72 84 83 36 45.
6095 12 100 71 69 80 86 25 29
6095 13 160 59 64 68 75 37 46
6095 14 120 44 47 52 56 29 34
6095 15 120 66 78 79 86 32 39
6095 16 200 69 69 78 75 48 65
6095 17 80 43 42 52 58 22 25
6095 18 140 43 50 51 50 29 34
6095 19 140 53 58 67 75 25 29
6095 20 140 48 53 60 72 31 37
6095 21 120 63 69 68 72 30 36
6095 22 200 69 75 77 78 38 48



Appendix C. Canopy cover values for plots on the Lubrecht Experimental Forest
Moosehom Densitometer Moosehom Densitometer FVS FVS

LGS Plot# BA/acre Live crown Live crown Polygon Polygon (v 6.2) (v 5.0)
control 1 140 66 64 86 86 28 33
control 2 148 60 69 81 81 29 34
control 3 130 60 58 84 83 25 29
(10) 1 121 54 56 66 87 25 29
(10’) 2 108 58 67 72 81 23 26
(10 ').. 3 95 57 50 70 72 21 24
(14) 1 99 53 50 66 67 21 24
(147... 2 91 48 50 60 64 20 22
(14') 3 94 51 53 66 69 21 24
(207 1 61 28 28 39 36 15 16
(207 2 61 45 44 53 53 16 17
(207... 3 74 62 72 74 63 19 21

LP covertype

Moosehom Densitometer M oosehom Densitometer FVS FVS
LGS Plot# BA/acre Live crown Live crown Polygon Polygon (v 6.2) (v 6.0)

control 1 175 75 72 83 83 37 46
control 2 181 65 72 79 86 35 43
control 3 113 55 57 70 63 27 31
(107 1 150 59 58 71 86 32 39
(107 2 122 45 50 59 56 31 37
(107 3 118 51 53 67 69 32 39
(147 1 121 55 53 68 72 27 31
(147 2 150 61 64 78 83 30 36
(147 3 133 53 58 65 69 26 30
(207 1 95 51 47 61 58 29 34
(207 2 96 45 50 58 67 28 33

..(207,... 3 74 40 47 54 61 23 26
PP covertype

Moosehom Densitometer Moosehom Densitometer FVS FVS
LGS Plot# BA/acre Live crown Live crown Polygon Polygon (v 6.2) (v 5.0)

control 1 99 69 69 80 83 38 48
control 2 115 70 69 82 78 36 45
control 3 - 111 64 67 76 75 35 43

(10') 1 107 49 53 59 58 35 43
(107 2 96 56 58 66 67 33 40
(107 3 86 79 86 88 92 28 33
(147 1 77 46 47 58 61 33 40
(147 2 81 53 64 62 64 29 34
(147 3 76 61 61 68 64 29 34
(207 1 41 27 28 33 39 24 27
(207 2 55 32 31 43 44 29 34
(207 3 62 36 42 42 44 31 37

WL covertype
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Appendix C (con’t.) __________ _________ ________________ ___

M m a m m U m m  n A n a l i M a a a l A B  a W a m m  n A n o l l A M a t i t i  C \ / C  E ! l / 61 Moosehom Densitometer Moosehom Densitometer FVS FVS
LSG Plot# BA/acre Live crown Live crown Polygon Polygon (v 6.2) (v6.0)

control 1 148 52 53 61 61 33 40
control 2 144 65 69 69 72 36 45
control 3 157 53 50 67 61 38 48
(14') 1 134 60 61 72 75 31 37
(141) 2 155 56 53 68 67 37 46
(141 3 129 53 47 68 72 34 42
(20*) 1 86 46 42 57 56 27 31
(20*) 2 84 51 50 65 56 24 27
(20’) 3 110 .54 58 66 69 29 34

control 1 164 62 81 71 83 36 45
control 2 137 51 56 58 58 36 45
control 3 176 73 75 80 83 41 53

(147 1 149 71 69 81 81 36 45
(141) 2 175 67 69 77 78 39 49
(147 3 138 56 53 63 56 33 40
(207 1 70 28 31 40 44 24 27
(207 . 2 85 33 42 45 ; 44 24 27
(207 3 118 50 53 65 61 31 37

control 1 161 50 50 56 61 42 54
control 2 229 46 53 54 58 43 56
control 3 50 51 50 60 61 17 19

(107 1 174 75 69 85 83 41 53
(107 2 115 45 47 53 61 31 37
(107 3 156 66 64 72 81 38 48
(147 1 168 63 64 72 87 41 53
(147 2 153 67 75 81 86 36 45
(147 3 143 54 56 60 64 34 42
(207 1 95 40 39 48 53 28 33
(207 2 96 56 58 73 78 30 36
(207... 3 121 49 56 58 58 32 39

PP-DF covertype



Appendix D. Mean canopy measurements for each stand (n = 25)
Habitat Moosehom Densitometer Moosehom Densitometer FVS FVS

S tandJD plots Type live crown live crown polygon polygon Photo (V 6.0) (v 5.0)
5093 12 520 58 60 65 69 70 27 31
5095 8 520 64 68 72 77 85 42 54
6095 22 520 59 60 68 71 70 32 39

BK (10’) 3 291 62 60 70 75 75 37 46
BK (14’) 3 291 61 65 71 72 75 37 46
BK (20’) 3 291 48 51 60 63 45 30 36

BK
control

3 291 ^9 50 56 59 55 37 46

GML (14) 3 291 56 54 69 71 85 34 42
GML (20') 3 291 50 50 63 60 35 27 31

GML
control

3 291 57 57 66 65 65 36 45

SS (14’) 3 291 65 64 74 72 25 35 43
SS (20‘) 3 291 37 42 50 50 . 5 0 26 30

SS
control

3 291 62 71 70 75 85 38 46

CP (10') 3 290 67 69 77 81 85 31 37
CP (14') 3 290 54 55 65 63 65 30 36
CP (20’) 3 290 34 34 43 49 55 28 33

CP
control

3 290 68 68 79 79 95 3S 45

JP(10') 3 250 56 58 69 73 95 23 26
JP  (14’) 3 250 51 51 64 67 85 21 24
JP  (20’) 3 250 45 48 55 57 65 17 19

JP
(control)

3 250 62 64 84 83 95 27 31

RD (10’) 3 291 52 54 66 70 65 31 37
RD (14') 3 291 56 58 70 75 50 27 31
RD (20’) 3 291 45 48 58 62 35 27 31

RD
(control)

3 291 65 67 77 77 85 33 40

* where GML = Gate of Many Locks (PP-DF),' SS = Shoestring (PP-DF), BK = Baker Rd. (PP-DF), 
CP = Coyote Park (WL), JM = Jones Meadow (LP), RD = Rat-tail Draw (PP)
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