University of Montana

ScholarWorks at University of Montana

Graduate Student Theses, Dissertations, & Professional Papers

Graduate School

2004

Seismic and gravity investigation of sediment depth bedrock topography and faulting in the Tertiary Flint Creek basin western Montana

Jeremy C. Stalker The University of Montana

Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits you.

Recommended Citation

Stalker, Jeremy C., "Seismic and gravity investigation of sediment depth bedrock topography and faulting in the Tertiary Flint Creek basin western Montana" (2004). *Graduate Student Theses, Dissertations, & Professional Papers.* 7110. https://scholarworks.umt.edu/etd/7110

This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact scholarworks@mso.umt.edu.

Maureen and Mike MANSFIELD LIBRARY

The University of **Montana**

Permission is granted by the author to reproduce this material in its entirety, provided that this material is used for scholarly purposes and is properly cited in published works and reports.

Please check "Yes" or "No" and provide signature

Yes, I grant permission

Λ

No, I do not grant permission

Author's Signature:	Terening Stall
Date: 5-21-0	4

Any copying for commercial purposes or financial gain may be undertaken only with the author's explicit consent.

SEISMIC AND GRAVITY INVESTIGATION OF SEDIMENT DEPTH, BEDROCK TOPOGRAPHY, AND FAULTING IN THE TERTIARY FLINT CREEK BASIN, WESTERN MONTANA

By

Jeremy C. Stalker

B.S. in Geology from Michigan State University

A Thesis submitted in partial fulfillment

of the requirements for the degree

MASTER OF SCIENCE

In

Geology

The University of Montana

Chairperson

Dean of Graduate Studies

5-24-04

Date

UMI Number: EP37911

All rights reserved

INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

UMI EP37911

Published by ProQuest LLC (2013). Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code

ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106 - 1346 Stalker, Jeremy C. M.S. May 2004

Geological Sciences

Seismic and Gravity investigation of the Bedrock, Sediment depth and Faulting in the Flint Creek Basin, Drummond, MT.

Director: Dr. Steven Sheriff

The Flint Creek basin is a NE-SW trending intermontane basin within Montana's fold and thrust belt. It is located in the extensional system between the Bitterroot and Deer Lodge Valleys, both north-south trending Tertiary half-grabens. The bedrock in the Flint Creek basin consists of Cretaceous aged sedimentary rocks in the eastern portion with Precambrian Belt Supergroup thrust over Paleozoic rocks in the western side. I have been complementing geologic mapping of the area with a mix of seismic and gravity observations to better determine the geometry of the Tertiary faulting and sedimentation during the basin's growth. The complete Bouguer gravity data includes 598 existing stations and 50 new observations spaced roughly 300 meters apart. The wide spacing maximizes coverage of the whole basin while sacrificing resolution of smaller fluctuations in bedrock depth. The resultant gravity model is consistent with the classic extensional structural style in the flanking Deer Lodge and Bitterroot valleys. Seismic data include 6 refraction lines in three separate areas for about 1 km of new reversed seismic refraction data. These data as well as bedrock well analysis reinforce the gravity model of depth to bedrock. Gravity cross sections show sediment depths from 10-1000m and normal faults with initial displacement estimations of up to 600m. The refraction data shows bedrock depth from 10-100 meters and normal faults with displacements of up to 60 meters. In the Coberly-Gulch section, the seismic identification of a normal fault provides a new explanation for observed changes in surficial geology. Those data also constrain the age of the end of basin-bounding faulting to the middle Miocene

Acknowledgements

I would like to thank my Advisor Dr. Steve Sheriff for his guidance, teaching and overall, his patience, Dr. Marc Hendrix for the idea to work in the Flint Creek Basin and basin analysis skills, and Dr. Donald Potts for his help as a reviewing committee member. In addition I need to thank my field volunteers, Nate Harrison, Amy Bondurant, Sheetal Petal, Eric Katvala, Christina Mosolf, Kate Glaccum, and Moby for all their help, I could not have done this without them. I also need to thank the USGS Educational Cooperative mapping program and the McDonough Scholarship donors for financial support, and finally my mother Jackie, and my Father James for support and helping me believe I could continue to do what I love.

Table of Contents

Abstract	ii
Acknowledgements	
List of Figures	V
List of Tables	vi
Introduction	1
Geologic Setting	
Methods	6
Seismic Refraction	6
Seismic Data Analysis and Results	9
Gravity and GPS.	
Models	
Density	
2D	40
3D	43
Discussion	
Faulting	
Sediment Depth	
Conclusions	
Future Studies	
References	

Appendix I: Seismic line data

Appendix II: GPS

Appendix III: Gravity

List of Figures

Figure 1: Base map	2
Figure 2: Geologic Map of the Flint Creek Area	5
Figure 3: Geometrics Seismograph	7
Figure 4: Bison I Elastic Wave Generator	8
Figure 5: Typical Seismogram	10
Figure 6: Douglas Creek Seismic Profile	13
Figure 7: Dunkleberg Seismic Profiles	15
Figure 8: Coberly Gulch Seismic Profiles	17
Figure 9: GPS XRS PRO System	21
Figure 10: Scintrex CG-3 Gravimeter	23
Figure 11: Theoretical Gravity	25
Figure 12: Terrain correction vs. Elevation	27
Figure 13: Complete Bouguer Anomaly	28
Figure 14: Regional Gravity	
Figure 15: Residual Gravity	31
Figure 16: Flint Creek Basin Residual Gravity	32
Figure 17: Gradient Analysis	34
Figure 18: Density Analysis	38
Figure 19: 2D Cross Section A-A'	41
Figure 20: 2D Cross Section B-B'	42
Figure 21: 2D Cross Section C-C'	43
Figure 22: 3D Sediment Depth Model	44
Figure 23: Proposed Faults	47

List of Tables

Table 1: Seismic Summary and Analysis	.18
Table 2: GPS Elevation Accuracy	.21
Table 3: 2D Density Determination	37
Table 4: 3D Density Comparison	.45

Introduction

The Flint Creek basin is a small intermontane basin approximately 5km wide and 10km long (Fig 1). It is bounded on the western and southern edges by the John Long Mountains, on the eastern edge by the Flint Creek Mountains, and on the northern boundary by the Garnet Mountains and the Lewis and Clark Fault system. The basin strikes NE-SW, is widest in the north, and tapers to the south. Tertiary basin fill is the primary aquifer in the valley but high water-producing lenses are thin and discontinuous. With the population in the western Montana intermontane basins growing at a rapid rate better understanding of the basin's geometry and its sedimentary fill is needed to meet the demands of water use and regulation.

This purpose of this study is to use a geophysical approach to determine the bedrock geometry of the Flint creek basin. Similar studies have been conducted in the flanking Bitterroot, Missoula and Deerlodge basins (McLeod, 1987, Evans, 1997, Wells, 1984). Typically, a modestly spaced gravity survey yields an excellent first guess at the shape of bedrock and basin fill in such valleys (Wells, 1984, Hall et al., 1962, Wolfe et al., 1996, Ibrahim, 1972, Healy et al., 1964, Evans, 1997, Nyquest, 2001). 598 gravity observations for the area are available from the National Geophysical Data Center. I added 50 new gravity observations to the existing data to help estimate the Flint Creek Basin's sediment depth and geometry. Points of known bedrock depth in the basin would increase the accuracy of any depth model. Since there were few reliable

sources of bedrock data, I conducted six seismic refraction surveys to locate depth to bedrock and help constrain the gravity model.

Geologic Setting and Previous Work

The Flint Creek Basin shares a similar geographic appearance and geologic history with other larger basins in Western Montana. The Bitterroot, Jefferson, Grasshopper, and Deerlodge valleys all strike north to south, contain Tertiary basin fill, are bounded by normal faults, and are modeled as grabens or half grabens (Fields et al., 1985, Rasmussen, 1969, Rasmussen, 1973, Axelrod, 1984, Axlerod, 1987, Matoush, 2002, Wells, 1984). Following widespread crustal shortening from the Late Jurassic to Cretaceous, the thickened crust began extending through the Tertiary as part of the Basin and Range province (Fields et al., 1985, Janecke, 1994). A series of extensional basins, filled with Tertiary conglomerates, sands, silts, and volcanic ash, developed between mountain ranges.

Major normal fault movement in the Deerlodge, Grasshopper, and Missoula basins occurred in the Eocene with smaller movements in the mid-Miocene (Fields et al., 1985, McLeod 1987, Matoush, 2002, Janecke, 1994). The Renova Formation (Oligocene) or its age equivalent, as well as the Sixmile Creek Formation (Late Miocene-Early Pliocene), fills most of these basins with volcanic input from large volcanic eruptions originating from the Cascade range and Yellowstone, and smaller inputs from local volcanic sources. An angular unconformity between the Renova and Sixmile Creek formations crops out in the Flint Creek and Missoula basins and can be seen in boreholes in the Deerlodge

Valley (Rasmussen, 1973, Portner, 2004, McLeod, 1987) suggesting active faulting, or severe erosion between the Renova and the deposition of the Sixmile Creek.

The John Long Mountains of the western boundary and the bedrock of the southern boundary are composed of Precambrian Belt Supergroup, as well as scattered Mesozoic rocks (Fig. 2). Cretaceous rocks of the Kootenai formation and the Colorado group make up the bulk of the bedrock on the eastern margin of the basin with smaller outcrops of the Permian Phosphoria, and Jurassic Swift, Reirdon, and Sawtooth formations (Bhatt, 1967, Fields et al., 1985, Portner, 2004, Lewis, 1998) further south. These rocks also include mafic Tertiary intrusions (Kunz, 2003), which are important for my density considerations. The Lewis and Clark fault zone is the northern structural boundary of the basin (Sears et al., 2000). The distribution and characteristics of rocks at the surface are fairly well known. The surface geology provides constraints on models of the subsurface and density estimates.

Methods

Seismic Refraction

Accurate bedrock depth measurements, such as wells, are scarce and poorly distributed in my study area, thus I conducted six seismic refraction surveys to establish some initial estimates of bedrock depth, which I then used to constrain subsequent gravity models augmenting observed geologic structural and stratigraphic observations. The location of the refraction lines (Fig 2) was based on geologic interest, access, and detection limits of the seismic system. I chose two areas of relatively well known subsurface stratigraphy to determine seismic velocity, which could later be applied in areas where we are less sure of the subsurface stratigraphy. The first area is 1.5 km up Douglas Creek road. The Douglas Creek line samples an area where Tertiary is deposited uncomformably over tightly folded and faulted Cretaceous bedrock, which in turn lies unconformably over Precambrian rocks. The second area was on the flank and on the crest of Dunkelberg ridge, which is mapped as Tertiary over Cretaceous on the flank, and Cretaceous on the crest of the ridge. The final line was taken on unknown stratigraphy in the Coberly Gulch area.

In total, I collected about one kilometer of reversed seismic refraction data using a Geometric 24-channel Smartseis seismograph (Fig 3). For each seismic experiment, twenty-four 14Hz geophones were spaced 5m apart. The

geophones were buried in 6-12 cm of soil to maximize contact and minimize noise. The seismic source, a Bison-1 elastic wave generator (Fig 4), was placed at 10m, 20m, 40m or 60m from the end of the survey lines for all experiments. Typically, in the field, I could resolve clear first breaks from geophones up to 180 meters from the source.

Figure 3. Author operating the Geometric Smartseis 24 channel seismograph. Geophones (orange) and wave generator are in the background.

the seismograph is attached to the strike plate

Seismic Analysis and Results

I analyzed the seismic data using SIPWIN (Rimrock Geophysics, 1999), a commercial program that inverts results from refraction experiments for subsurface depth and velocity sections. I analyzed the wave traces resulting from a survey to pick the first arrival of the refracted waves to each geophone (Fig 5). This process can be somewhat subjective, especially if the returns are noisy. The program does allow the user to turn off noisy phones and calculate velocities using only the clear phones. The program then calculates velocities using an iterative ray path tracing technique and forward modeling of layer thickness. Depth and velocity error can result from the choice of layer assignments, but reasonable interpretation of wave traces from user to user should result in very similar velocity cross-sections.

I evaluated the stratigraphy in each of the cross sections SipWin produced by comparing published velocities of similar lithologies and using mapped surface geology and structural relationships. I will first discuss each survey then compare my observed velocities to those published for the mapped rock types in literature (Burger, 1992, Ryenolds, 2001).

Note that the Sixmile and Renova formation sediments in most cases have indistinguishable velocities due to very similar lithological densities. For my seismic interpretations, differentiation between the two Tertiary formations is speculative, and in the remainder of this document, 1 refer to these layers as Tertiary unless other stratigraphic information is available. (Appendix 1 has complete seismic refraction information.)

Seismic lines 9-21-1 and 9-21-2 (Fig 6 a/b) are both located 1.5 km south east on Douglas Creek road on Cominco Mining Corp. property (Fig 2). The geology in this area was previously mapped (Lewis, 1998, Portner, 2004, Gwinn, 1960) providing me with good control on the stratigraphy.

The geology below line 9-21-2 (Fig 6b) is better understood, and velocities from this line are used as velocity controls for similar lithologies in other areas. This survey was also located directly on rocks mapped as Tertiary Sixmile Formation and yields a 500 m/s velocity estimate. The next deeper velocity layer is the more competent, (1100m/s) and probably representative of the Tertiary Renova formation. The Tertiary in this section is 60m thick with a small undulation possible caused by faulting in the bedrock under geophones 3, 4 and

5 (Fig. 6b). The 3500 m/s layer represents Precambrian bedrock, or Triassic Quadrant formation.

Line 9-21-1(Fig 6a) is closer to the mouth of Douglas Creek about half a kilometer northwest of line 9-21-2. The layer nearest to the surface has a velocity of 510 m/s, which reflects the unconsolidated Tertiary of probable Sixmile composition. The next 1800 m/s velocity layer is consistent with published values for shale, and probably represents shale from Cretaceous sediments. The last detectable velocity of 3043 m/s could be limestone of the Cretaceous Kootenai or Colorado group, Precambrian belt quartzite and argillite, or the Quartzite of the Triassic Quadrant formation. Due to complex faulting and similar lithologies, differentiation between the Cretaceous, Triassic, and Precambrian formations was not possible. The Tertiary section on this line either way is 50m thick with the bedrock surface appearing fairly uniform for the length of the survey.

Lines 10-11-1 and 10-11-2 (Fig. 7, a/b) are located on the eastern flank, and crest of Dunkelberg ridge. The bedrock is mapped as tightly folded and faulted Cretaceous Colorado group with varying amounts of Tertiary cover. I used the velocities detected in these lines as controls for velocities in Cretaceous bedrock for the Coberly gulch (9-28-1,2) seismic survey.

Line 10-11-1(Fig. 7a) has a top layer consisting of clay and mud of Tertiary age with a velocity of 700 m/s. The next layer has a 1400 m/s falling in the range for competent Sixmile or Renova formation. The Cretaceous bedrock lays 30-40m below the surface with a velocity of 2400m/s.

Line 10-11-2 (Fig. 7b) was located on an area mapped as Cretaceous bedrock (Portner, 2004, Lewis 1998, Gwinn, 1960). The first layer velocity was 1300 m/s, slow enough to be a Tertiary formation or a weathered zone above the bedrock. The surface expression was fine soils with scattered cobbles of varying composition visually similar with the two Tertiary formations. This layer is about 10 m thick and rests on bedrock with a velocity 3000 m/s. The bedrock velocity is high but falls into acceptable ranges for limestone or porcelanite and may represent the Dunkelberg member of Colorado group (Gwinn, 1960).

Lines 9-28-1 and 9-28-2 (Fig. 8 a/b) are located up Barnes Creek road just west of Coberly gulch on Dingwall Inc. ranch property. These surveys detected a large displacement in the subsurface visible in Fig 8a. Due to the western dip and drop of the head wall to the west, I believe this is a normal fault with about 60 m of displacement that appears to affect both Colorado group and Renova sediments within this survey line. This fault would help explain why the Tertiary section exposed east of Coberly Gulch seems thin compared with equivalent beds exposed further west. Additionally a similar fault with similar displacement is exposed half a kilometer to the west in Barnes Creek (Portner, 2004)

Line 9-28-1(Fig. 8a) was collected on Tertiary sediments I assumed to be of Sixmile Creek age due to size and composition of the large cobbles present on the surface. The upper layer velocity of 500 m/s is consistent with the previous seismic observations of Sixmile formation. The next layer of 800 m/s, I also interpreted as Tertiary. The Tertiary sediments in this line total 30-60 m in thickness. The Cretaceous bedrock layer is 30-60m below the surface with a velocity of 2200 m/s. This velocity is high compared to the competent Tertiary velocities observed in other seismic lines, and is most likely sandstone or shale of the Cretaceous formations.

Line 9-28-2 (Fig 8b) was directly in line with 9-28-1; thus, the two constitute a continuous seismic profile. Line 9-28-2 displays a similar velocity cross-section to that of Figure 8a, but a deeper bedrock depth of 30-70m. This line contains the large offset seen under geophones 13-22. I interpret this feature is a normal fault, with a displacement of at least 40m, dipping west at an

80° angle. The fault displaces both Cretaceous and early Tertiary aged rocks and drops the bedrock depth from 30m on the footwall to 70m on the headwall. I cannot determine if it displaces the Sixmile formation, it does however appear the Sixmile formation sediments are thinner on top of the footwall of the fault. This fact would help constrain the earliest movement of the fault during the Early Eocene emplacement of the Sixmile Creek formation.

A summary of the layer velocities and their comparisons to published values is presented on Table 1. The highest amount of variance occurred in the Cretaceous, this is probably due to the heterogeneity, and extreme folding and faulting in the section. I only encountered one Precambrian velocity, thus I could not compare it with other observed velocities, instead I compared it to published values for Precambrian quartzite in Montana (Burger, 1994)

Line #	Velocity (m/s)	Thickness (m)	Interpreted	Formation and rock	Theoretical	
			Lithology (Age)	<u>type</u>	Velocity Range (m/s)	
9-21-1	510	19	Tertiary	Sixmile	400-2300	
Layer 1			· · · · · · · · · · · · · · · · · · ·	Conglomerate		
9-21-1	1800	31	Cretaceous	Colorado Grp	1400-4500	
Layer 2				Sh/Ss		
<u>9-21-1</u>	3000	60+	Cretaceous	Kootenai?	2700-3600	
Layer 3	1000			Lms		
<u>9-21-2</u>	1200	20	Tertiary	Renova?	300-1800	
		<u> </u>	Crotono	Mudstone	1400 4000	
l aver 2	2200	45	Cretaceous	Ss/I ms	1400-4200	
9-21-2	3500	45+	Precambrian	Belt	3300-5000	
Layer 3				Qrtzite?		
<u>9-28-1</u>	480	10-20	Tertiary	Sixmile	400-2300	
Layer 1				Conglomerate		
<u>9-28-1</u>	770	10-20	Tertiary	Sixmile/Renova?	300-1800	
Layer 2				Mud/Sand		
<u>9-28-1</u>	1800	70+	Cretaceous	Colorado Grp.	1400-4500	
Layer 3	500	4 10	Tertion	Ss/Sn Siumile	400.0200	
<u>9-20-2</u>	500	4-10	renary	Condomerate	400-2300	
9-28-2	980	20-55	Tertiary	Sixmile/Renova?	300-1800	
Layer 2				Mudstone		
9-28-2	1800	50-80+	Cretaceous	Colorado Grp.	1400-4500	
Layer 3				Ss/Sh		
<u>10-11-1</u>	700	10	Tertiary	Sixmile	400-2300	
Layer 1				<u>Conglomerate</u>		
<u>10-11-1</u>	1500	20-30	Cretaceous	Ss/Sh	1400-4500	
	2400	70-80+	Cretaceous	Colorado Grp	2700-3600	
Layer 3	2400	, 0-00.		Lms	2700-0000	
10-11-2	1400	10	Cretaceous	Colorado Grp.	1400-4500	
Layer 1				Ss/Sh		
<u>10-11-2</u>	2900	100+	Cretaceous	Colorado Grp.	2700-3600	
Layer 2				Lms		
ť	Age	Mean velocity		Standard deviation		
le	ertiary		605		<u> </u>	
Cret	Cretaceous		2000		570	
Prec	ambrian		3500	0	*	

Table 1. Velocity comparisons for seismic lines average velocity for each age sedimentand standard deviation. *Only one Precambrian observation was available. Thisvalue was compared with values published in literature (Burger, 1994)

The seismic lines provide me with control points of well constrained depth to bedrock in the eastern portions of my basin, which will directly help me constrain my 2D and 3D sediment depth models. The orientation and location of a normal fault, and layer thickness provide data on statigraphic relationships, Tertiary depth and composition, fault location, and bedrock topography, all help with the collaborative mapping efforts of Portner (2004) and future studies on basin evolution and fault timing.

Gravity and GPS

I conducted a gravity survey of the basin to determine the shape of the bedrock beneath the basin as well as to help constrain models of the distribution of sediment depth within the basin. Obviously the distribution and orientation of rocks at the surface provide constraints for the final solutions as do two existing wells which bottom in bedrock, and the seismic data presented above. To augment 598 existing data points from the National Defense mapping Program, I collected 50 new gravity measurements with accompanying GPS coordinates and elevation. (Appendix 2 has GPS station information; Appendix 3 has gravity stations and corrections)

Accurate elevation control is critical to accurate gravity measurements. Therefore, I measured latitude, longitude, and elevations using a Trimble XRS PRO GPS system (Fig 9). I acquired the location data in carrier phase mode, gathering 6-10 minutes of signal at each station. These data were later postprocessed using differential corrections from a stationary GPS unit and a real time correction broadcast from the Flathead Lake Coast Guard station in Polson, MT. Previous work in the area using similar procedures with this equipment yielded elevations with standard deviations of about 0.3 m (Evans, 1997, Nyquest, 2001). I made multiple measurements at my GPS base station just over the Route 1, Clark Fork bridge near Drummond, MT (Fig 1). I reoccupied the GPS base station at the beginning and end of each field day, which yielded twelve repeat measurements over a 5-month period (Table 2).

Date	Measurement Name	Easting (m)	Northing (m)	Elevation (m)
2/22/2004	1C	320300.98	274319.67	1215.83
2/22/2004	10C	320300.98	274319.67	1215.83
11/15/2003	1A	320299.75	274318.43	1215.54
11/15/2003	9A	320299.56	274318.88	1215.43
11/22/2003	1B	320299.38	274318.39	1215.31
11/22/2003	9B	320299.07	274318.14	1215.54
3/1/2004	1D	320299.07	274318.14	1215.54
3/1/2004	7D	320301.08	274319.32	1216.08
3/8/2004	1E	320301.01	274319.64	1215.42
3/8/2004	10E	320301.01	274319.64	1216.02
3/12/2004	1F	320301.01	274319.64	1216.05
3/12/2004	5F	320301.01	274319.64	1215.97
			Average	Stand Dev
		Elevation	1215.7	0.37
		Northing	274319.10	0.63
		Easting	320300.33	0.83

Table 2. GPS base station elevation error. Northing andEasting (meters) are in Montana State Plane 83.Base station is located just over the Clark Forkbridge southwest of the city of Drummond (Fig 1).

GPS measurements have error resulting from ionosphere refraction and systematic error programmed in satellite broadcasts by the Department of Defense. To correct for these errors sources I differentially corrected my field observations using a real time correction broadcast from the United States Coast Guard station in Polson, MT as well as differential correction from a stationary 12-channel Community Base Station GPS recorder at the Missoula County office in Missoula, MT. All of my measurements had real time and differential correction.

Standard deviation for northing, easting, and elevation were 0.63 m, 0.83m, and 0.37 m, respectively after the real time and differential corrections. A +/- 0.37 m change in elevation would change the combined elevation corrections of my measurements by approximately +/- 0.10 mgals. For a mean density contrast of 800 kg/m³ between bedrock and basin fill, this translates to +/- 5 meters of basin depth.

My gravity measurements were made using a Scintrex CG-3 gravity meter (Fig 10). My goal was to combine the NDMP data with my own observations to construct a uniform grid of gravity observations throughout the basin. Ideal is a tough target; my station spacing varied from 50m-500m depending on private land access and road access. Some areas have sparse station spacing, most notably in the central west and southeast of the study area.

I used the CG3's internal solar and lunar tidal routine to correct gravity measurements for those tidal effects. In addition, I constructed standard drift curves to correct for mechanical linear drift of the instrument. The magnitude of

the drift corrections were calculated by reoccupying the base station described

above every 3-4 hours. The average instrumental drift was 0.01 mgal/hour.

My next step was to apply standard corrections to the gravity data using the equation (Lowrie 1997):

$$CBA = G_{obs} - G_{the} + FAC - SBC + TC$$

Where:

CBA= complete Bouguer anomaly G _{obs} = observed gravity G_{the} = theoretical gravity (980,362.158 mgals) FAC = Free air correction (0.3086 mgal/m) SBC = Bouguer correction. (-0.11195 mgals/m) TC = Terrain correction In order to represent the gravity in the area correctly I needed to establish a point of known gravity at my base station in the Flint Creek Basin (980,362.18 mgals) relative to a point of measured gravity in the region. This analysis provides me with a base line value for G_{obs} to deviate from for each observation. Much like my elevation analysis, I compared 12 measurements at my field base station to 12 measurements made at a point of known gravity located on a concrete bench in the basement of the Science Complex at the University of Montana in Missoula. This point is a Mopo International Gravity Standardization Net 1971 (IGSN71) site (980,432.21 mgals). My field base station gravity value is 980,362.18 mgals calculated from comparison with the Missoula base station.

 G_{the} is the theoretical value of gravity considering only for the latitude of the station on the ellipsoidal earth. I calculated it using the following equation (Figure 11., Sheriff, 2004):

The free air correction (FAC) accounts for the decreasing gravitational attraction with increasing distance from the center of the earth and is commonly approximated as 0.3086 mgals/m. The simple Bouguer correction was made assuming the distance from the station elevation to the geoid elevation was filled with an infinite slab with a density of 2,670 kg/m³ yielding a change in gravity of 0.11195 mgals/m. Correction observations by applying G_{the}, FAC, and SBC yields a map of simple Bouguer anomalies.

Transforming simple Bouguer anomalies to complete Bouguer anomalies requires the addition of a terrain correction. My terrain corrections account for the presence of excess mass (mountains) and missing masses (valleys) adjacent to the gravity stations with respect to the infinite slab approximation of the simple Bouguer correction. I used a USGS 30m DEM to produce a composite DEM area of 484 square kilometers with the base station as the center. I divided this composite area into three levels of sample resolution: 30m for the first 5 km X 5 km area, 100m for the next 12 km X 12 km ring, and 250m for the remainder of the area. A terrain correction for each station was calculated using HAMXYZ2 (Gradient Geophysics, 1997). My average terrain correction was 0.59 mgals with a maximum value of 1.12 mgals (Fig 12) near the southeastern portion of my area. The selection of correction area of 22 square kilometers area for the extent of the terrain correction is sufficient for my study as 95% of my stations had a correction of less than one milligal.

To produce the final map of complete Bouguer anomalies (Fig 13), I

combined my new observations with the existing NGDC data. The final

distribution of NGDC and my gravity observations (Figs 1, 2) still has some areas

of sparse coverage in the southeast of the basin due to access issues.

The complete Bouguer map (Fig 13) shows anomalies caused by both

shallow and deep crustal features, as well as the crust/mantle interface. A very

important step in any gravity investigation is to isolate the fraction of the total

anomaly that is relevant to the problem being investigated. In this case that is the anomaly produced by the shallow features of the Flint Creek Basin.

The map of complete Bouguer anomalies (Fig 13) has an obvious NE-SW gradient that is of much longer wavelength than the area of interest. This long wavelength feature is related to the deeper crust/mantle relationships and the relatively deep structure of the Lewis and Clark fault zone (Sears, 2000). This signature needs to be subtracted from the complete Bouguer map to allow me to isolate the deep, long wavelength anomalies from the shallow basin. Thus, I compared several different approaches to mathematically resolve the regional gravity signature: a simple digitized plane, 1st and 2nd order derivatives, a simple low pass Gaussian equation, and a power series solution. I evaluated the methods by comparing their residual zero gravity contours against mapped basin fill/bedrock contacts. The gravity signature of the basin should be zero near to the bedrock contact since no mass deficiency or excess exists near the point of change from the basin fill to bedrock. Due to largely inaccessible terrain, I relied heavily on the northeastern and western boundaries for accurate regional determination.

The best solution (Fig 14) was a digitized surface dipping SW across the area of Figure 12 with a slope of -0.61 mgals/km. I subtracted this surface from Figure 12 to produce the residual Bouguer map (Fig 15). Figure 16 presents a close-up of the residual Bouguer anomaly for the area directly related to the Flint Creek basin.

as sedimentary basins and shallow intrusive volcanic features. Vertical margin is northing in meters. Horizontal margin is easting in meters. Scale bar is in milligals.

The Flint Creek basin is the low gravity anomaly in the center of Figure 16. The maximum absolute value of the residual anomaly is -20 mgals in the northern section approximately 1km south of the Clark Fork River, and -16 mgals in the southern section, 9 km south of the Clark Fork River. Figure 17 presents an analysis of the derivative maxima in horizontal direction from the method of Blakely and Simpson (1986). Gradient maxima analysis is a excellent first order method of locating faults (Reynolds, 1997). The steepest gradient of approximately -7.4 mgals/km is on the northern edge of the basin. The eastern and western sides of the basin have a gradient of approximately -5.5 mgals/km and -3.0 mgals/km, respectively. The southern gradient is approximately -3.3 mgals/km. The edges of the anomaly on the east and west are approximately 10 km in length. The northern and southern boundaries are approximately 6 km in length. The gradients are a good first estimate of the boundaries of the deep basin bounding structure, in this case large normal faults on the south, east and west, and the Lewis and Clark fault system on the north.

2D and 3D depth models

Density

The main purpose of my research is to estimate depth to bedrock beyond the areas where seismic or well data is available. To do this, I used 2D gravity modeling to first estimate density contrasts within the basin, then to identify a family of reasonable models, and finally to learn the general characteristics of the basin shape. I then used the results of the 2D analysis to produce a 3D model of basin shape.

I chose a value of 2800 kg/m³ for both the eastern and western bedrock density. The bedrock under the western half of the basin consists primarily of Precambrian quartzite and argillite. The density of Precambrian Belt rock ranges used in similar studies range from 2600-2900 kg/m³ (Constenius, 1987, Evans, 1997, Nyquest, 2001), which is similar to the standard densities for quartzite and argillites elsewhere, which range from 2700 - 3000 kg/m³ (Burger, 1992). Limestone, shale, sandstone of the Colorado group, sandstones of the Jurassic Swift, Reirdon, and Sawtooth formations, as well as the limestone of the Permian Phosphoria and Madison formations underlie the eastern portion of the basin. Tertiary aged mafic dykes intrude the rocks of the eastern bedrock (Bhatt, 1964, Rasmussen, 1968, Lewis, 1998, Portner, 2004, Kunz, 2003, Fields et al., 1985) and raise the average density of these rocks.

Burger (1992) and Reynolds (1997) report that limestone densities range from 2500-2800 kg/m³, shale ranges from 2000-2700 kg/m³, sandstone ranges from 2000-2600 kg/m³, and basaltic rocks range from 2700-3100 kg/m³. The predominance of limestone in the eastern bedrock stratigraphy as well as intrusions of mafic rocks lead me to use the higher values on the ranges for the eastern bedrock making them equivalent to density values for the Precambrian quartzite. Thus, there will not be a gravity anomaly from juxtapositions of these rocks beneath the basin fill. My assumption of a homogenous bedrock density value for both the Precambrian Belt bedrock, and Cretaceous limestone bedrock,

makes for somewhat easier gravity modeling but should be remembered when considering accuracy versus precision of the models as should the ranges of densities, thus the final density contrasts.

The Tertiary basin fill consists of unconsolidated to consolidated silts, sand, and isolated conglomerates with layers of volcanic ash. Density for similar sediments ranged from 800-2500 kg/m³ (Constenius, 1989, Wells 1984, Evans 1997) and may vary with depth due to composition, diagenesis, compaction and saturation. I chose to model the basin fill as one uniform density average, averaging loose unconsolidated sediments at the top (500-800 kg/m³) and more compact layers at depth (2000-2500 kg/m³).

I chose the final density value of 1900 kg/m³ for the basin fill by a forward modeling best-fit solution (Fig 18). I compared the mean difference between the observed bedrock depths provided by wells and my seismic lines, and depth values calculated by 2D (Table 2). I made iterative changes in bedrock/basin fill density contrasts to find the closest fit with observed bedrock depths. The final density estimation of 1900 kg/m³ is low compared to the Bitterroot valley sediments (2000-2300 kg/m³), and the Deerlodge sediments (2400-2700 kg/m³) (Wells, 1986, Constenius, 1987). I believe the abundance of conglomerate in the Tertiary of the Bitterroot valleys and the abundance of carbonate clasts in the Deerlodge basin compared to the silt and mud abundant in the Tertiary of the Flint Creek basin could account for the density difference.

36

									•						
Station Informati	on			Depth contra	calculat sts in ko	ions fo 1/m ³	r given	densit	У						
point #	Тур е	Gbs	Obs z	150	obs- Ocalc	1000	obs- calc	900	obs- calc	800	obs-calc	650	obs- calc	500	obs-calc
9-28-1 a	Seis	-1.0	24.6	16.	2 8.4	26.8	2.2	26.8	2.2	30.2	5.6	31.9	7.3	49. 8	25.2
9-28-1 c	Seis	-1.2	30.6	21.	5 9.1	37.0	6.5	32.9	2.4	44.3	13.8	55.2	24.7	52. 3	21.8
9-28-1 b	Seis	-2.0	45.6	16.	1 29.5	50.6	5.0	<u>56.0</u>	<u>10.4</u>	63.2	17.6	<u>78</u> .2	32.6	103 .5	57.9
9- <u>28-2 a</u>	Seis	-2.0	65.6	16.	1 49.5	50.6	15.0	<u>56.0</u>	<u>9.6</u>	63.2	2.4	98.2	32.6	130 .3	64.7
9-28-2 b	Seis	-2.0	67.0	16.	1 50.9	50.6	16.4	<u>56.0</u>	11.0	63.2	3.8	78.2	11.2	103 .5	36.5
9-28-2 c	Seis	-1.5	32.3	23.	3 9.0	38.2	5.9	35.4	3.1	46.7	14.4	58.5	26.2	76. 6	44.3
9-21-1 a	Seis	-1.0	44.8	3 16.	2 28.6	26.8	18.0	<u>26.8</u>	18.0	30.2	14.6	31.9	12.9	49. 8	5.0
9-21-1 b	Seis	-1.5	5 49.9	23.	3 26.6	38.3	11.6	<u>35.4</u>	<u>14.5</u>	46.7	3.2	58.5	8.6	76. 6	26.7
9- <u>21-1 c</u>	Seis	-2.0	49.0	32.	2 16.8	50.6	1.6	<u>56.0</u>	<u>7.0</u>	63.2	14.2	<u>78.2</u>	29.2	103 .5	54.5
9-21-2 a	Seis	-2.0	43.7	7 32.	2 11.5	50.6	6.9	<u>56.0</u>	<u>12.3</u>	63.2	19.5	78.2	34.5	103 .5	59.8
9-21-2 b	Seis	-2.5	5 77.6	4 1.	4 36.2	62.1	15.5	<u>69.6</u>	<u>8.0</u>	77.3	0.3	98.2	20.6	130 .3	52.7
<u>9-21-2 c</u>	Seis	-2.0	52.6	<u> </u>	2 20.4	50. 6	2.0	<u>56.0</u>	<u>3.4</u>	63.2	10.6	78.2	2 25.6	46. 0	6.6
Wilson 1	Wel	I -15.0	502.0	273.	6 _228	432.2	69.8	487.0	<u>15.0</u>	561.6	59.6	719.4	217.4	987 4	485.4
Wilson 2	Wel	-10.0	0 298.2	2 176.	2 122	245.2	253.0	309.7	11.5	353.6	55.4	445.5	5 147.3	604 .5	306.3
	Den	sity in	ka/m³		1500		1000		900		800		650		500
	Mea z (m	an diff ()bs z - (alc	46.20		16.39		<u>9.17</u>		16.79		45.05	Ż	89.10

Table 3. Observed vs. calculated depths from 2D modeling at various
density contrasts between bedrock (2800kg/m³) and basin fill
(1300-2300 kg/m³).

Inverting gravity data for depth estimates benefits greatly from having

some constraints such as known bedrock depths. In this study I was fortunate

enough to have two wells drilled to bedrock (Fig 2), my six seismic surveys, and the mapped bedrock contacts. I used the wells, seismic lines, and bedrock to constrain my 2D models (Table 2). Using the seismic data for constraints in the 2D models did not compromise the basic assumption that values of gravity at any point on the cross section are equal with any point perpendicular to the cross sections, because they are acute observations of relatively thin Tertiary sequences and should not be affected substantially by lateral changes in gravity. In contrast I relied heavily on the well data and bedrock contacts to test my 3D model accuracy. My 3D model is calculated using gravity changes in all directions from a point, so lateral fluctuations in gravity can cause calculated depths to have an erroneously high error when compared with the seismic observations. In the 3D model the depth of the wells let me model the whole package of Tertiary sediments and quantify the entire basin fill as one unit.

The wells used were Trans Texas Oil Company's Wilson 2 (well id 25039210090000) and Wilson 1 (well id 25039210080000) (Appendix 4, Fig 2). Wilson 2 is drilled 298 m through lacustrine beds into coarse quartzite gravel with a grain composition similar to Precambrian quartzite found in the area. I am assuming this gravel represents the first pulse of high-energy sediment activity following normal faulting in the basin and thus is close to the base of the Tertiary sediments and close to the bedrock surface. Wilson 1 is drilled to a depth of 990m through 502m of siltstone, mudstone and limestone until reaching clean hard sandstones. I am assuming the upper 500m, which resembles descriptions of the Renova outcrop sediments, represent the Tertiary sequence and the clean

hard sandstones are the Precambrian bedrock. This depth is subject to interpretation, but I am assuming the change from sub-lacustrine/marine sediments to clean mature sandstones represents the fill/bedrock interface. I am using the fact that no Cretaceous rocks outcrop at the surface of the western side of the basin to rule out any subsurface Cretaceous layers in this well. The two wells provided control points of 298m and 502 m respectively for both the 2D, and 3D models. The Seismic lines described earlier provide depth to bedrock on the eastern portion of the basin, and the bedrock contact provided edges for all models. Because I know the gravity and depth at these wells, contacts, and seismic lines, I can use them and the density estimates along with all the remaining gravity observations to calculate basin depth where they are currently unknown.

<u>2D</u>

I used GRAVCADW (Sheriff, 1997) a 2D forward modeling program based on the Talwani (1959) algorithm to make my 2D gravity models. I then used my calculated best fit density contrast to construct three 2D cross sections (Fig 2) two perpendicular, and one parallel to the basins strike (Figs, 19-21).

Cross-section A - A' (Fig 19) crosses 5km west to east over the northern gravity depression. The gravity profile drops dramatically down from the bedrock gravity contact (0 mgals) on the eastern side reaches the maximum low (-21 mgals), then slopes upward to the western terminus. The dip then changes to a shallow 20° dip west reaching the maximum depth of 730m, 8 km from the

eastern bedrock exposure. This cross section seems to show a steep normal

fault on the eastern boundary.

Cross-section B-B' (Fig 20) is located across the southern gravity low. The gravity signature is symmetric from east to west, and reaches a maximum gravity low almost in the center of the cross section. The bedrock topography is similarly symmetric with shallow 20°- 30° dips on the distal ends suddenly dropping off a scarp 450 m at symmetric 40° dip angles in the center of the basin. This cross section has a lack of gravity stations on the eastern flank; consequently the shape of the eastern fault is subdued and dissimilar to the northern cross section. I believe with better gravity data in this area would revel a similar fault as the line A-A'.

Cross-section C-C' (Fig 21) is 15 km north to south crossing the southern and northern gravity anomaly parallel to the strike of the basin. The bedrock appears to gently dip south at 20° -30° to a maximum depth of 900 m, 2.5 km from the northern boundary. The southern portion dips north at 30° to the maximum depth point. There is also a low amplitude bedrock high in the center of this cross section, which is probably related to the downthrow on the northern and southern faults or smaller antithetic faults perpendicular to the strike of the basin.

3D Model

My 3D depth models were created using GI3, an iterative gravity inversion method developed by Cordell and Henderson (1968). The input to the program is the residual anomaly gridded at an interval of 50 X 50 data points. This program also requires all values to be negative. I re-gridded the residual map (Fig 10) and used density contrasts of -900 kg/m³ and -700 kg/m³ to model sediment depth with gravity signature. I contoured the basin depth results using SURFER (Fig 22) and compared the depths calculated by GI3 to the known points of depth from the bedrock wells.

My 3D model results are similar to my 2D results. I used the 2D density contrast analysis to constrain the modeled density in the 3D models and compared density contrasts of –700, and -900kg/m³ (Table 4)(Fig 22). The -900 kg/m³ model has a better fit to the observed data and is presented as my final

estimation of distribution of sediment depth in the Flint Creek basin. The maximum sediment depth indicated in Figure 23 is 900 m and occurs in the northeastern corner of the basin. Interestingly the basin as a whole seems to be fairly shallow, increasing gradually until depth drops off abruptly after the major faults are crossed. This change is consistent to the change of slope in the bedrock and basin depth seen in the 2D cross sections.

Bedrock well	obs grav	Obs z	-700 kg/m^3	obs- calc	SQRTobs- calc^2	-900 kg/m^3	obs-calc	SQRTobs-calc^2
							0	0
Wilson 1	-18.5	502	2 448	3 54	54	498	: 4	4
wilson 2	-15.0) 298.17	301.55	5 -3.38	3.38	3 320	-21.83	21.83
		Mean diff (m)			28.69	9		12.92
Table 4.	Compariso from the 3 kg/m ³ yiel	n of obse D gravity ds a more	rved bedro model. Th accurate	ock dej ne mea depth	oth from wel n difference estimation c	ls and cal of using a ompared	culated b a density (to observ	edrock depth contrast of 900 ed depths.

The total error from the gravity accounts for +/-5m of the discrepancy. The other +/- 5m are errors related to drill log inaccuracy and interpretation. I also sacrificed some accuracy in both density, and sediment depth determination by attempting to model the entire basin as one polygon with a uniform density. Assumptions related to homogeneity of the bedrock and basin fill could be refined or changed to heterogeneous models with smaller focused studies on particular areas. Constenius (1989) and Wells (1984) had the benefit of several drill cores. Sediment description and stratigraphic analysis of deep cores in the center of the Flint Creek basin would have allowed me to model a multiple layer model accurately. I did not feel there was any reliable way to support a multiple layer model without more constraining information on deep basin stratigraphy. It should also be noted that Quaternary fluvial gravels, and glacial deposits were not differentiated from the Tertiary in my models. I chose not to differentiate the Quaternary and Tertiary sediments because the density of the conglomeratic fluvial deposits and glacial alluvial deposits are identical to unconsolidated Tertiary sediments and thus indiscernible with the geophysical methods presented.

Discussion

This study successfully refines the present understanding of the depth and distribution of sediment depth as well as the location of basin bounding faults in the Flint Creek basin. My study additionally provides valuable data for the congruent mapping project as well as basin evolution theories and models of the northern Rocky extensional region.

Faulting

The Lewis and Clark fault system truncates the Flint Creek Basin on the North, and a large mapped normal fault bounds it in the south. Both of these features are visible as steep gradients on the residual map (Fig 16) A large unmapped normal fault bounding the east of the basin is shown by gradient analysis of the residual anomaly (Fig 17). This unmapped fault is alluded to in Rasmussen's sedimentary analysis of the Flint Creek area as a probable source of subsidence for the deposition of the Renova Cabbage Patch formation. I drew probable locations of all faults on the residual map using the gradient analysis, my 2D models and mapped surface geology (Fig 23). Mapped normal faults in the Cretaceous bedrock can be extrapolated into the Tertiary connecting with my probable faults. My drawn faults are not visible in the surface geology in the Tertiary, suggesting that the fault may have been eroded, and covered by Mid -Miocene and later Tertiary gravels.

The fault on the east is somewhat discontinuous; this may be due to the normal fault being broken into different splays, being imbricate or discontinuous in nature. I interpret the lesser gradient on the western portion of the basin as a minor sympathetic normal fault or simply a bedrock fill contrast associated with down-throw on the eastern fault. The exact location of the fault splay on the southeastern margin is difficult to draw due to sparse data points and thus poor gravity gradient control on the southeastern edge of the basin. Exact mapping locations of these faults in my study should be viewed as a first estimation of the

gradient analysis and an excellent starting point for more focused surveys in the faulting area. I am however confident in the placement of the faults on my figures and in the ongoing geologic mapping of the area.

Sediment depth

My 2D and 3D models provide sediment depth of the basin within a confidence of +/- 10m. There are some assumptions, discussed above, that are tied up in my analysis that can be used to qualify my findings. I am modeling the entire basin Tertiary/Quaternary sequence as one unit which can lead to error. I was fortunate to have two bedrock wells as well as my seismic lines for depth constraint, but more points of bedrock control would increase the accuracy of my models and allow me to use multiple layer models.

The basin seems to have a classic half-graben bedrock surface. Erosion of the original fault shoulders may have caused the change in dip seen in the 2D cross sections. The sediments seem to follow this model as well. The western portion displays relatively shallow depths that drop off dramatically at the inferred fault location into the deeper part of the basin. The eastern 3.5 km seem to gradually thin from the deep portion to the bedrock of the eastern basin margin. The fault contact, thus basin shape and depth, is not continuous from north to south and is reflected in the basin's overall residual signature (Fig 16).

<u>Conclusions</u>

I believe the large eastern fault, and as a consequence the Flint Creek basin, was formed by regional extension creating a graben structure that is reflected by the large box-like gravity low seen in the residual gravity signature (Fig 16). Furthermore I believe the increase in depth to the north of the basin seen in both the 2D and 3D models is due to transform movement on the Lewis and Clark fault system simultaneous with normal movement on the eastern normal fault creating a trapdoor basin. The transform movement increases the magnitude, and perhaps rate, of the normal fault movement.

Other examples of a pull apart or trapdoor basin are described in the Sierra Nevada ranges of California (Healy, 1964) and more generally in reference literature (Allen et al., 1990, Evans 1997). Evans (1997) described an analogous local example in the north east of the Missoula valley. The northeastern portion of the Missoula valley is interpreted as a trapdoor basin with a lateral component of movement provided by the Ninemile fault, and vertical movement on the Mt. Sentinel fault (Evans, 1997). This creates an abnormally deep area where the two faults meet. The left lateral movement on the Lewis and Clark line would "pull" the normal fault down faster on the northern edge of the eastern fault increasing the accommodation space and sediment depth to the north of the basin.

The flanking Deerlodge basin provides further evidence for extensional basin formation in the Flint Creek basin. The Deerlodge basin is interpreted by McLeod (1987) as a detachment structure with a large normal fault bounding its

western edge, and a smaller antithetic fault bounding its eastern edge. I believe this is similar to the arrangement, but opposite in orientation, in the Flint Creek basin. The large basin bounding fault is in the east and a minor antithetic fault is in the west. Rasmussen (1979) described genetic similarities in the Late Eocene Cabbage patch formation (upper Renova) that crops out in the Upper Deerlodge Valley, and the Flint Creek basin suggesting the two shared a depositional low. I believe the proximity of the two basins geographically, their similar shape, stratigraphic similarities, and similar physical truncation by the Lewis and Clark system support a similar creation and evolution between the Flint Creek and Deerlodge basins. This allows me to use structural and stratigraphic relationships described in the Deerlodge basin as a direct comparison to those in the Flint Creek basin.

Future Studies

This study provides a better understanding of the general basin fill distribution in the Flint Creek basin where sediments are deepest and indicates the presence of a series of large normal faults located on the eastern edge of the fault that correlate to faults in the Cretaceous bedrock to the south.

Helpful topics for future studies would be seismic reflection or refraction studies in the deep portions of the basin to help constrain the edges of the faults and refine estimates of depth to bedrock. Drill core recovery and core analysis of the deeper Tertiary sediments in the basin would help constrain density contrasts

by qualifying and quantifying the stratigraphic relationships and distribution. This data would be helpful to further refine a gravity model and produce a multilayer Tertiary density model. Additional mapping of the surface Tertiary units would help decipher the structure and timing involved in the normal faulting, as well as the relationship with depositional environments. Groundwater studies such as an isotopic tracer experiment as well as geochemical residence time studies would give insight into regional groundwater flow and the source of recharge to the groundwater in the Flint Creek basin.

References

Axelrod, Russel B. (1982) <u>Tertiary Sedimentary Facies, Depositional</u> <u>Environments, and Structure, Jefferson Basin, Southwest</u> <u>Montana</u>. *M.S. thesis, University of Montana, Missoula*, MT

Bhatt, B.K. (1967). <u>Petrology and Stratigraphy of the Swift and Morrison</u> <u>Formations near Drummond Montana, USA</u>. *M.S. Thesis. University of Montana*, Missoula, MT.

Burger, Robert, H. (1994) <u>Exploration Geophysics of the Shallow Subsurface</u>. *Prentice Hall*, Englewood Cliffs, NJ.

Constenius, Kurt. (1987) <u>Structural Configuration of the Kishenehn Basin</u> Deliniated by Geophysical Methods, Northwestern Montana and Southeastern British Columbia. *The Mountain Geologist*. Vol 25, No 1, p 13-28.

Evans, Catherine (1997) <u>A Constrained Gravity Model of the Central Missoula</u> <u>Valley and Shape of the Ninemile Fault</u>. M.S. Thesis, University of Montana, Missoula MT.

Robert W. Fields, Donald L. Rasmussen, Alan R. Tabrum, Ralph Nichols. (1985) <u>Cenozoic rocks or the Intermontane Basins of Western Montana</u> <u>and Eastern Idaho: A Summary</u>. Rocky Mountain Section S.E.P.M. Cenozoic Paleogeography of the West Central United States. R.M. Flores and S.S. Kaplan, Editors. Denver Colorado.

Gwinn, V. E. (1960) <u>Cretaceous and Tertiary Stratigraphy and Structural geology</u> of the Drummond area, Western Montana. Unpublished Ph.D. Thesis, Princeton University (1961) <u>Geology of the Drummond area, Central Western Montana</u>. Mont. Bur. Of Mines and Geology. Specl. Pub. No. 21, Geol map No. 4

Hall, D.H., Hajnal, Z. (1962). <u>The Gravimeter in Studies of Buried Valleys</u>. *Geophysics*, Vol XXVII, No 6, part II, pp 939-951

Hanneman, D.L., Wideman, C.J. (1991) <u>Sequence Stratigrapy of Cenozoic</u> <u>Continental rocks, Southwestern Montana</u>. *Geological Society of America Bulletin*. Vol. 103, p 1335-1345.

Healy, J.H., Press, Frank. (1964). <u>Geophysical studies of Basin Structures Along</u> <u>the Eastern Front of the Sierra Nevada, California</u>. *Geophysics*. Vol. XXIX, p 337-359

Ibrahim, Abdelwahid, Hinze, William J. (1972) <u>Mapping Buried Bedrock</u> <u>Topography with Gravity</u>. *Groundwater,* Vol. 10, No. 3, pp18-23

Janecke, S.U. (1994) <u>Sedimentation and paleogeography of the Eocene to</u> <u>Oligocene rift zone, Idaho and Montana</u>. *Geological Society of America Bulletin*, Vol. 106, p. 221-228

Janecke, S.U. (1995) Eccene to Oligocene Half grabens of East Central Idaho. Northwest Geology, Vol. 24 p. 159-199

Rebecca Kunz, (2003), <u>The Alkalic Intrusions of Garrison, Montana: A Possible</u> <u>Extension of the Central Montana Alkalic Province</u>. *M.S. Thesis, University of Montana*, Missoula, MT.

Last, B.J. and Kubik K. (1983). <u>Compact Gravity Inversion</u>. *Geophysics*, Vol. 48, No. 6, pp 713-721

Lowrie, William. (1997). <u>Fundamentals of Geophysics</u>. *Cambridge University Press*. Cambridge. U.K.

Matoush, Joseph, P. (2002). <u>The Stratigraphic, Sedimentologic, and</u> <u>Paleogeographic Evolution of the Eocene-Oligocene Grasshopper</u> <u>Extensional Basin, Southwest Montana</u>. *M.S. Thesis University of Montana*, Missoula, MT.

McLeod, P. (1987) <u>Depositional Evolution of the Deerlodge Valley, Western</u> <u>Montana</u>. *M.S. Thesis University of Montana*, Missoula, MT.

Nyquest, David (2001) <u>A Bedrock Model Of The Hellgate Canyon And</u> <u>Bandmann Flats Area, Montana Through Constrained Inversion Of</u> <u>Gravity Data.</u> *M.S Thesis University of Montana*, Missoula, MT

Oldenburg, Douglas W. (1974) <u>The Inversion and Interpretation of Gravity</u> <u>Anomalies</u>. *Geophysics*, Vol. 39, No. 4, p. 526-536.

Pardee, J.T. (1950) <u>Late Cenozoic Block Faulting in Western Montana</u>: Geological Society of America Bulletin, Vol. 61, p. 359-406

Portner, Ryan (2004) <u>Tertiary Sedimentation and Structure of the Flint Creek</u> <u>Basin</u>. Unpublished M.S. Thesis, University of Montana.(In Progress)

Rasmussen, Donald, L. (1977) <u>Geology and Mammalian Paleontology of the</u> <u>Oligocene-Miocene Cabbage patch Formation, Central-Western</u> <u>Montana</u>. *Ph.D. University of Kansas*

> (1969) <u>Late Cenozoic Geology of the Cabbage Patch area,</u> <u>Granite and Powell Counties, Montana</u>. *M.S. University of Montana*, Missoula Montana.

Renyolds, John, M. (1997). <u>An Introduction to Applied and Environmental</u> <u>Geophysics</u>. John Wiley & Sons, New York.

Rimrock Geophysics (1993). <u>SIPWIN Seismic Refraction Analysis Software</u>. *Rimrock Geophysics*, Lakewood, CO.

Ruppel, E.T. (1993). <u>Cenozoic Tectonic Evolution of Southwest Montana and</u> <u>East-Central Idaho:</u> Montana Bureau of Mines and Geology, Memoir, 65, 62 pgs

Sears, James W. (1995) <u>Middle Miocene Rift system in S.W. Montana:</u> <u>Implications for Initial Outbreak of the Yellowstone Hotspot</u>. *Northwest Geology*, Vol 25.

- Sheriff, Steven (1997). <u>GRAVCADW 2D Gravity Inversion Modeling Software</u>. University of Montana, Missoula, MT
- Talwani, M.J., Worzel, L., and Landisman, M. (1959) <u>Rapid gravity computations</u> for two dimensional bodies with Applications to the Mendocino <u>Submarine Fracture Zone.</u> *Jour. Geophysical Research*, Vol. 64, p. 49-59
- Wells, Ken, (1989) <u>Digital Filtering and Modeling of the Gravity Field of the</u> <u>Bitterroot Valley, western Montana</u>. *M.S. Thesis University of Montana*, Missoula, MT
- Westaway I.J. (1989) <u>Northeast Basin and Range Province Active Tectonics</u>. *Geology*, Vol. 17, p. 779-783

Appendix I: Seismic lines

Source: Bison I Elastic wave Generator Spacing: 5m between phones 8-12 stacks per line. 24 geophones per line

Geophone	distance	t	ime (ms)	Geophone	distance	time (ms)
	1	100	5	1	10	0 60.0 ms
	2	105	16.5	2	10	5 64
	3	110	26	3	5 11(0 6 0
	4	115	34.5	4	11	5 60
	5	120	54.5	5	120	0 59.5
	6	125	64.5	6	12	5 58
	7	130	77.5	7	130	0 56.5
	8	135	91	8	13	5 54.5
	9	140	98.5	9	14(0 54
	10	145	107	10	14	5 49
	11	150	104	11	150	0 50.5
	12	155	111	12	15	5 48
	13	160	114.5	13	160	0 44.5
	14	165	115.5	14	16	5 41.5
	15	170	113	15	i 17(0 39.5
	16	175	117.5	16	i 17:	5 37.5
	17	180	126.5	17	180	0 34.5
	18	185	127.5	18	18	5 32
	19	190	130	19) 19	0 21.5
	20	19 5	135.5	20) 19:	5 18
	21	200	0	21	20	0 14
	22	205	0	22	20	5 10
	23	210	136	23	3 21	0 6
	24	215	141	24	21:	5 2.5
Line	921-01			Line	921-1 reversed	
SP	80m			SP	235.00 m	1

Geophone	distance	ť	ime (ms)	Geophone	distance	time (ms)
	1	100	49	1	l 102	190
	2	105	59	2	2 107	184
	3	110	68.5	3	3 112	179
	4	115	76	4	1 17	178
	5	120	85	5	5 122	17 4
	6	125	96.5	e	5 127	174.5
	7	130	106	7	7 132	170
	8	135	112.5	8	3 137	169.5
	9	140	122.5	ç	9 142	165.5
	10	145	132	10) 147	160
	11	150	139.5	11	l 152	153.5
	12	155	142	12	2 157	147
	13	160	147.5	13	3 162	139
	14	165	154	14	1 167	129.5
	15	170	157	15	5 172	121
	16	175	158.5	16	6 177	113
	17	180	162	17	7 182	105
	18	185	164.5	18	3 187	95.5
	19	190	166.5	19	9 192	87
	20	195	171.5	20) 197	80.5
	21	200	173.5	21	1 202	71
	22	205	175	22	2 207	57.5
	23	210	180	23	3 212	46.5
	24	215	181.5	24	4 217	38
Line	928-01			Line	928-01 Reversed	
SP	80m			SP	234m	

Geophone	distance	tir	me (ms)	Geophone	distance	time (ms)
:	1	100	182	1	1 1	00 47
	2	105	179	2	2 1	05 59
	3	110	174.5	3	3 1	10 67.5
	4	115	170.5	4	4 1	15 77.5
	5	120	167	Ę	5 1.	20 86
	6	125	166.5	e	6 1.	25 92.5
	7	130	163	7	7 1:	30 100.5
	8	135	160	8	B 1:	35 108.5
	9	140	159	9	9 1.	40 120.5
	10	1 45	153	10	D 14	45 125
	11	1 50	150.5	11	I 1:	50 138
	12	155	143.5	12	2 1	55 147
	13	160	134.5	13	3 10	50 151
	14	165	129.5	14	1 10	65 158
	15	170	122.5	15	5 1'	70 162.5
	16	175	112.5	16	5 1 [°]	75 166.5
	17	180	102.5	17	7 1	30 168
	18	185	95	18	3 14	85 171.5
	19	190	83.5	19	ə 1:	90 176.5
	20	195	74	20	D 1	95 177
ł	21	200	66	21	1 20	00 178.5
ĺ	22	205	58	22	2 2	05 181.5
	23	210	51	23	3 2	10 0
	24	215	42.5	24	4 2	15 183.5
Line	928-02			Line	928-02 Reversed	I
SP	235m			SP	80m	

Geophone	distance	tin	ne (ms)	Geophone	distance	time (ms)
	1	100	121		1 1	00 35
	2	1 05	117	2	2 1	05 40
	3	110	114.5	3	3 1	10 43
	4	1 15	111	4	4 1	15 47.5
	5	120	110.5	ŧ	5 1:	20 52.5
	6	125	107	6	6 1:	25 57
	7	130	101.5	7	7 1:	30 60
	8	135	98.5	8	B 1:	35 63.5
	9	140	95	ç	€ 1,	40 68
	10	145	91.5	10	D 14	45 71
	1 1	150	88.5	11	1 1:	50 74
	12	155	86.5	12	2 1:	55 79.5
	13	160	83.5	13	3 10	60 84.5
	14	165	80	14	4 10	65 88.5
	15	170	75	15	5 1 [°]	70 90.5
	16	175	72	16	6 1 [°]	75 97
	17	180	69	17	7 18	30 100
	18	185	66.5	18	3 14	85 104
	19	190	64	19) 19	90 106
	20	195	61	20	D 11	95 108
	21	200	58	21	1 20	00 109
	22	205	55.5	22	2 2	05 113.5
	23	210	53	23	3 2	10 119.5
	24	215	50	24	4 2	15 121.5
Line	1011-01			Line	1011-01 Reverse	d
SP	245m			SP	70m	

Geophone	distance	tin	ne (ms)	Geophone	distance	time (ms)
	1	100	60	1	100) 23.5
	2	105	57.5	2	2 10:	5 27.5
	3	110	54.5	3	3 11() 29
	4	115	53.5	4	L 11:	5 31
	5	120	52	5	5 120) 34
	6	125	49	6	5 125	5 35.5
	7	130	48	7	7 130) 37.5
	8	135	0	8	3 135	5 39.5
	9	140	45	9	9 140) 40
	10	145	43	10) 145	5 44
	11	150	39.5	11	150) 43.5
	12	155	39	12	2 155	5 45
	13	160	39	13	3 160) 48
	14	165	37	14	l 165	5 50
	15	170	36.5	15	5 170	52
	16	175	34	16	5 175	5 53
	17	180	33	17	7 180	55.5
	18	185	30.5	18	3 185	5 56
	1 9	190	27	19	9 190	56.5
	20	195	25.5	20) 19	5 60
	21	200	24.5	21	200	0 61.5
	22	205	24	22	2 20	5 64.5
	23	210	23	23	3 210	66.5
	24	215	20.5	24	215	5 70
Line	1011-02			Line	1011-02 Reversed	1
SP	245m			SP	70m	

Appendix II: GPS Station Data

Long	lat	Easting	Northing	MSL stat	tion Dat	afile
-113.15	8 46.65986	320301	274319.67	1215.82851C	r022	2023a BS
-113.24	6 46.66323	313609.9	275010.64	1402.44595C	r022	2021a
-113.23	3 46.66059	314218.5	274688.19	1411.43826C	r022	20216
-113.210	6 46.65085	315825.7	273529.16	1294.47224C	r022	2021c
-113.18	3 46.63925	3184 8 4.6	272112.9	1267.75053C	r022	2021d
-113.17	1 46.63502	319175.8	271609.87	1243.93512C	r022	2022a
-113.168	46.6337	319379.6	271452.94	1233.00177C	r022	2022b
-113.164	46.63203	319695.3	271253.35	1232.15338C	r022	2022c
-113.149	46.6282	320810.6	270774.7	1228.56939C	r022	2022d
-113.158	3 46.65986	320301	274319.67	1215.8285100	; r022	2023a BS
-113.158	3 46.65985	320298.8	274318.43	1215.54181A	r111	1513a BS
-113.18	46.58556	318196.5	266154.98	1272.01752A	r111	1514a
-113.17	46.5856	319014.2	266120.97	1271.09913A	r111	1514b
-113.157	46.58854	319029.4	266446.97	1274.1818 4 A	r11 1	1514c
-113.141	46.58563	3211 8 5.1	266023.33	1307.39885A	r111	151 5a
-113.124	46.58572	322537.5	265970.17	1351.17836A	r111	1515b
-113.112	2 46.56444	323314.2	263567.68	1409.55747A	r111	151 5c
-113.158	3 46.65 9 85	320298.4	274318.9	1215.75158A	r111	1516b
-113.158	3 46.65985	320298.6	274318.88	1215.42999A	r111	1516a BS
-113.158	46.65985	320298.4	274318.39	1215.30611B	r112	2212a BS
-113.151	46.60315	320525.1	268001.67	1262.58742B	r112	2213 a
-113.157	46.5963	320030.7	267263.06	1261.63523B	r112	22136
-113.136	6 46.62573	321763	270455.65	1246.70034B	r112	2213c
-113.13	3 46.62675	322249.2	270546.4	1281.8435B	r112	214a
-113.134	46.62252	321913.5	270092.2	1270.546B	r112	22146
-113.123	3 46.62449	322814.8	270269.53	1246.66967B	r112	2214c
-113.112	46.62584	323660.5	270380.12	1222.9938B	r112	2158
-113.158	3 46.65984	320298.1	274318.14	1215.53949B	r112 -000	2150 BS
-113.150	40.00984	320298.1	2/4318.14	1215.539410	r022 -022	(819a BS
-113.190	40.0000	310002.4	200001.70	1005.20103D	-022	20200
-113.13	1 40.40020 A 51072	319934.3	254917.55	1425 25250	1022	20200
-113.100	5 40.51973 5 46 59544	317502.0	200070.12	1425.35350	r022	021a 0221k
-113.210	AC 66096	320301.1	200200.03	1216 675270	r022	10210 19220 BS
-113.150	3 40.00900 8 46.65086	320301.1	274319.52	1215 022615	r022	3179 BS
-113.130	0 40.00900 0 46 58538	315768 7	266249 36	1209 667425	r031	3176 B3
113 230	A6 58547	313739 4	266355.67	1326 22163E	r031	3189
-113 244	46.58545	313291 7	266375 13	1331 53924E	r031	318h
-113 249	46 57806	312891.1	265572.35	1340 72975E	r031	318c
-113 269	46.57106	311326.5	264869.01	1365.53996F	r031	319a
-113,284	46.57106	310161.6	264925.21	1382.52687E	r031	319b
-113 27	46,58091	311283.3	265966.23	1359,20678E	r031	319c
-113.249	46.57096	312854.3	264784.48	1348.26939E	031	319d
-113.158	46.65986	320301	274319.64	1216.021310E	031	320a BS
-113 158	46.65866	320301.01	274319.64	1216.051F	r031	418a BS
-113.158	46.65876	320301.01	274319.64	1215.975F	r03 1	420a BS

*all locations are in UTM lat/long NADS 83/ Montana State Plane BS denotes base station measurement.

Appendix III : Gravity Data

	Easting N	lorthingMSL	drift-corrected	grav-diff obs-gravi	theo-grav FAC	FAA	BC	SBA
1C	3203012	74319.71215.829	905358.685	0980362.2	980770.1375.2047	-32.70787	145.2915	-177.999
5C	313609.92	75010.61402.446	5 5319.064	-35.52594 980326.7	980770.4432.7948	-10.94802	167.5923	-178.540
6C	314218.52	74688.21411.438	5317.129	-37.46053980324.7	980770.2435.5698	-9.869205	168.6669	-178.536
4C	315825.72	73529.21294.472	5337.184	-17.40573980344.8	980769.3399.4741	-25.03043	154.6894	-179.720
3C	318484.62	72112.91267.75	5332.92	-21.67041 980340.5	980768.2391.2278	-36.49265	151.4962	-187.989
2C	319175.82	71609.91243.93	5 5337.454	-17.1356 980345	980767.8383.8784	-38.9248	148.6502	-187.575
7C	319379.62	71452.91233.002	5339.504	-15.08555980347.1	980767.7380.5043	-40.12904	147.3437	-187.473
8C	319695.32	71253.31232.15	5335.665	-18.92532980343.3	980767.6380.2425	-44.08045	147.2423	-191.323
9C	320810.62	70774.71228.569	9 5335.449	-19.1406 980343	980767.2379.1365	-45.05508	146.814	-191.869
100	3203012	74319.71215.82	9 5354.595	0.004679980362.2	980770.1375.2047	-32.70319	145.2915	-177.995
1A	320298.82	74318.41215.542	2 5358.6850	0980362.2	980770.1375.0817	-32.83015	145.2439	-178.032
2A	318196.5	2661551272.01	7 5299.065	-35.85469980326.3	980763.4392.5446	-44.50704	152.0061	-196.513
3 A	319014.2	2661211271.09	9 5301.858	2.788098980329.1	980763.4392.2612	-42.00589	151.8963	-193.898
4A	319029.4	2664471274.18	2 5306.654	4.789202980333.9	980763.6393.2125	-36.53091	152.2647	-188.784
5A	321185.12	66023.31307.39	9 5306.206	-0.454141980333.4	980763.4403.4633	-26.47182	156.2342	-182.689
6A	322537.52	65970.21351.17	5296.653	-9.556902 980323.9	980763.4416.9736	-22.52616	161.4658	-183.970
7 A	323314.22	63567.71409.55	7 5289.524	-7.136074980316.8	980761.5434.9894	-9.72288	168.4421	-178.137
8A	320298.42	274318.91215.75	1 5334.952	45.42227 980362.2	980770.1375.1809	-32.73317	145.2823	-177.981
9A	320298.62	74318.9 1215.4	3 <u>5334.962</u>	0.002239 980362.2	980770.1375.0817	-32.83015	145.2439	-178.032
1B	320298.42	274318.41215.30	5358.6850	0980362.2	980770.1375.1154	-32.88872	145.257	-178.084
2B	320525.12	268001.71262.58	7 5309.722	-26.56773980335.6	980765389.6345	-39.7197	150.8792	-190.587
3B	320030.72	67263.11261.63	5 5310.493	0.762546980336.4	980764.3389.3406	-38.63196	150.7654	-189.378
4B	3217632	70455.6 1246.	7 5314.139	3.638926 980340	980767384.7317	-42.26225	148.9807	-191.218
5B	322249.22	270546.4 1281.84	3 5307.857	-6.288074 980333.7	980767.1395.5767	-37.79738	153.1802	-190.947
6B	321913.52	270092.2 1270.5	4 5309.154	1.291202 980335	980766.7392.0886	-39.6125	151.8295	-191.405
7B	322814.82	270269.5 1246.6	7 5318.814	9.654479980344.7	980766.9384.7222	-37.50249	148.977	-186.438
8B	323660.52	270380.11222.99	3 5327.046	8.226196980352.9	980767377.4156	-36.70454	146.1477	-182.791
9B	320298.12	274318.11215.53	9 5336.249	9.189479980362.1	980770.1375.1154	-32.88872	145.257	-178.084
1D	320298.12	274318.11215.53	9 5358.6850	0 980291.6	980770.1375.2012	-103.3367	145.2901	-178.002
3D	316552.42	260651.81368.25	2 5310.005	-46.13980245.4	980758.8422.2425	-91.17419	163.5061	-184.044
4D	319934.52	254917.61605.51	4 5252.591	-57.41914 980188	980754.3495.4615	-70.84232	191.8589	-192.061
5D	317302.82	258875.11425.35	3 5292.273	39.6781 980227.7	980757.4439.8639	-89.87857	170.3297	-189.560
6D	315556.62	266266.71301.85	3 5320.171	27.89086 980255.6	980763.4401.7518	-106.0405	155.5714	-190.960
7D	320301.12	274319.31216.67	5 5356.127	35.95224 980291.5	980770.1 375.466	-103.1	145.3927	-177.839
1E	3203012	274319.61215.02	3 5358.685	0 980291.6	980770.1375.0794	-103.4527	145.243	-178.0757
2E	315768.72	266249.41299.66	7 5322.514	-36.17107 980255.4	980763.4401.0773	-106.894	155.3103	-191.5771
3E	313739.42	266355.71326.22	2 5318.359	-4.160736 980251.2	980763.4 409.272	-102.8679	158.4835	-190.7069
4E	313291.72	266375.11331.53	9 5315.137	-3.237693 980248	980763.4 410.913	-104.4631	159.1189	-192.9347
5E	312891.12	265572.4 1340.7	3 5313.141	-2.001417 980246	980762.7413.7492	-102.9602	2160.2172	-192.5257
6E	311326.5	264869 1365.5	4 5311.198	-1.947454 980244	978032.7421.4056	2632.769	163.182	-192.8573
7E	310161.62	264925.21382.52	7 5311.46	0.255031 980244.3	978032.7426.6478	2638.266	6 165.212	-189.2884
8E	311283.32	265966.21359.20	7 5318.25	6.785031 980251.1	978032.7419.4512	2637.855	5162.4252	-186.8376
9E	312854.32	264784.51348.26	9 5315.533	-2.721933980248.4	978032.7416.0759	2631.758	3161.1182	-192.1046
10E	E 3203012	274319.61216.02	1 5358.657	43.12199980291.5	978032.7375.2626	5 2634.066	6145.3139	-177.9623
	TC CBA							
------------	---------------------------							
1C	0.714266-177.2851							
5C	0.217099-178.3232							
6C	0.256253-178.2798							
4C	0.304116-179.4157							
3C	0.297251-187.6916							
2C	0.254616-187.3204							
7C	0.27553-187.1972							
8C	0.33934-190.9834							
9C	0.388013-191.4811							
10C	0.70265 -177.292							
1A	0.704489-177.3273							
2A	0.155962-196.3572							
3A	0.171756-193.7258							
4A	0.19299-188.5911							
5A	0.155285-182.5333							
6A	0.162577-183.8079							
7A	0.190231-177.9463							
8A	0.703002 -177.278							
9A	0.704489-177.3273							
1 B	0.703961-177.3804							
2B	0.202332-190.3842							
3B	0.221074-189.1566							
4B	0.367493-190.8505							
5B	0.2724 -190.6742							
6B	0.297515-191.1079							
7B	0.336159-186.1014							
8B	0.514753-182.2767							
9B	0.703961-177.3804							
1 D	0.716594-178.0018							
3D	0.102331-183.9413							
4D	0.112499-191.9481							
5D	0.03153 -189.5287							
6D	0.088506-190.8717							
7D	0.698722-177.1398							
1E	0.704505-177.3712							
2E	0.094306-191.4828							
3E	0.075073-190.6318							
4E	0.059886-192.8748							
5E	0.052459-192.4733							
6E	0.026536-192.8308							
7E	0.031759 -189.2567							
8E	0.040008-186.7976							
9E	0.045326-192.0592							
10E	0.716594-177.9623							