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Director; Dr. Christopher W. Servheen

ABSTRACT

Brooks River in Katmai National Park is one o f the most famous bear-viewing areas in the 
world. The close proximity of brown bears and humans at Brooks River poses a question vital to 
the management of these bears: do ongoing human activities at Brooks River induce stress in 
brown bears that rely on this fishing area for much of their nutritional intake? Fecal monitoring of 
glucocorticoids is a new and noninvasive technique for measuring stress in free-ranging animals 
and is being applied to an increasing number of species. This technique has never been performed 
on brown bears. Thus, the aim of this study was threefold; to validate the use of a 
radioimmunoassay (RIA) for quantifying glucocorticoid metabolite concentrations in feces from 
brown bears, to apply this technique to a study of impacts of human activities over a four-month 
period on physiological stress in brown bears along two rivers in Katmai National Park, AK, and 
to provide recommendations for management based on the results of stress analysis. An 
established RIA for corticosterone was tested for assay sensitivity, specificity, and sample matrix 
effects, and proved satisfactory. Fecal samples collected in the wild from brown bears of five 
month by location treatments were assayed for glucocorticoid metabolite concentrations and 
analyzed in the presence of covariates measuring current human and bear activities, as well as 
diet type of each sample. Fecal samples fi-om identified bears were also collected and analyzed 
for differences among sex-age classes. We observed a significant interaction between the effects 
of diet types and treatments on fecal glucocorticoid concentrations. There was no evidence of a 
significant effect of human activities on fecal glucocorticoid concentrations, although 
confounding in this observational study limits inferences concerning effects of visitor use on bear 
stress. Sex-age class differences in fecal glucocorticoid concentrations were not observed. This 
study demonstrates that fecal glucocorticoid concentrations may be assessed in brown bears, but 
this technique may have limited application in species with complex or seasonal dietary habits.
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I. INTRODUCTION

The brown bear (Ursus arctos horribilis) has engaged human interest for thousands of 

years. Today, people congregate from many regions of the globe in areas that are renowned for 

their bear-viewing potential. Salmon-spawning rivers are particularly attractive to tourists who 

enjoy watching bears in their natural habitat, as bears reliably gather at these rivers in high 

concentrations when salmon are present. Brooks River, in Katmai National Park and Preserve, is 

one such popular bear-viewing river, and its discovery by the tourism industry has resulted in a 

large increase in human traffic in the last several years (National Park Service, 1996).

Katmai National Park and Preserve was originally designated as a National Monument in 

1918 to protect the scientific and scenic value of the landscape created by an extremely violent 

volcanic eruption in 1912. It was subsequently enlarged and re-designated Katmai National Park 

and Preserve by the Alaska National Interest Lands Conservation Act (ANILCA) of 1980, which 

specifies that one of the salient purposes of the Park is to “protect habitats for, and populations of, 

fish and wildlife, including, but not limited to, high concentrations of brown/grizzly bears and 

their denning areas... ’’(ANILCA, 1980).

Katmai National Park and Preserve provides protected habitat for one of the largest 

surviving populations of brown bears. The stability of this population is closely tied to 

availability of salmon during the spawning season (Olson et a l, 1990). Brooks River is an 

important source of these salmon as it provides salmon for a longer duration than almost any 

other river in the park (Troyer, 1980) This river is a gathering area for bears during the salmon- 

spawning season, and is thus a popular area for bear-viewing.

The close proximity of brown bears and humans at Brooks River poses a question vital to

the health and management of these bears; do ongoing human activities at Brooks River induce

stress in the brown bears that rely on this fishing area for much of their nutritional intake? Olson

et a l (1990) documented the behavior of non-habituated bears in Katmai (i.e. bears that have not
1
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or can not become accustomed to the presence of humans). According to this study, non

habituated bears frequented river areas in inverse proportions to human numbers and exhibited a 

decrease in fishing efficiency caused in part by human disturbances. While these observations are 

suggestive of the effects of human activities on brown bear behavior, a quantitative measure of 

the degree of stress caused by human activities would provide a higher degree of objectivity and 

comparability, which is the intent of this study.

The profound physiological effects of stress are well understood. Adverse stimuli are 

known to activate the hypothalamic-pituitary-adrenocortical axis (HPA axis), resulting in the 

release of glucocorticoids from the adrenal gland, which is widely measured as an index of stress 

(Morton et al, 1995). Plasma glucocorticoid levels can have opposing consequences upon health. 

On one hand, they can provide an animal with the resources necessary to cope with a stressor 

while maintaining vital homeostasis. On the other hand, chronically high levels may result in 

reduction of support for body functions such as growth (Klasing, 1985; Spencer and McEwen,

1990), reproduction (Doerr and Pirke, 1976; Bambino et a l, 1981; Barb et a l, 1982; Welsh et al, 

1982; Olsten and Ferin, 1987; Barbarino et a l, 1989), and immunity (Monjan, 1981; Munck et 

al, 1984; Wiedenfeld et a/., 1990; Reichlin, 1993; Strauman eto/., 1993). Monitoring 

glucocorticoid levels can be a valuable tool for identifying stressors before the appearance of 

symptoms such as weight loss, infertility, or poor health.

Traditionally, glucocorticoid concentrations have been determined in blood plasma. The 

use of physiological stress measures on free-ranging animals has been limited due to the 

invasiveness and potential for bias of capturing and withdrawing blood from wild animals 

(Broom and Johnson, 1993), as this process of measuring stress is itself stressful. Moreover, 

corticosteroid secretion into blood varies diumally and has pulsatile secretory patterns (Monfort 

et al., 1993), causing sample plasma glucocorticoid concentrations to be highly variable. Fecal 

steroid measures now provide an appealing alternative to serum sampling. Samples for fecal
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3
steroid analysis are relatively easy to collect and can be gathered with minimal disturbance of 

study subjects. This approach also provides a smoothed estimate of glucocorticoid concentrations 

over a longer time period than serum sampling, due to the pooling effect of adrenocorticosteroids 

in feces. Measurements of fecal glucocorticoid metabolite levels have been performed in a 

number o f mammals (Miller e ta l, 199 T. bighorn sheep; Graham and Brown, 1996: several 

felids; Palme et al, 1996; ponies and pigs; Jurke et al, 1997: cheetahs; Palme and Mostl, 1997: 

domestic sheep; Monfort et al, 1998: African wild dogs; Sousa and Ziegler, 1998: common 

marmosets; Whitten et a l, 1998: chimpanzees; Boinski et a l, 1999: brown capuchins; Goymann 

e ta l, 1999: spotted hyenas; Strier et a/., 1999. muriquis; Wallner et rr/., 1999: barbary 

macaques). Use of fecal glucocorticoid measures in brown bears has never been published. 

Validation of such a technique for brown bears would be a valuable contribution to the new field 

of fecal glucocorticoid metabolite research. This technique could prove useful for assessing the 

stressfulness of the close proximity of humans and bears at Brooks River and may also serve for 

future comparisons with other bear populations.

Objectives

In this study, glucocorticoid metabolite concentrations were studied from two populations 

of brown bears using salmon streams in high and low visitor-use areas of Katmai National Park 

and Preserve, AK. Objectives of this study were (1) to validate the use of a radioimmunoassay for 

quantifying cortisol metabolite concentrations in the feces of brown bears, (2) to apply this 

technique to a study of impacts of human activities on physiological stress in brown bears, and 

(3) to provide recommendations for management based on the results of the analysis.
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Thesis Format

Chapter 2 is a detailed literature review of the glucocorticoid response to stress and 

identification of various factors effecting steroid excretion that have the potential to confound 

fecal glucocorticoid research. Chapter 3 details the methods and results of fecal glucocorticoid 

research performed on Alaskan brown bears and is formatted for submission to the journal of 

General and Comparative Endocrinology, save for an added description of the study area.
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IL REVIEW OF LITERATURE 

The Physiology of Stress

Definition o f  Stress

Stress, as defined by Broom and Johnson (1993), is an environmental effect on an 

individual that overburdens its control systems, thus threatening to reduce fitness. The experience 

of stress is unique in each individual, relating to its cognitive interpretation of the situation and 

ensuing emotional arousal. Physiological responses to stress enable animals to escape such 

situations (Asterita, 1985; Moberg, 1985a). When confronting a potentially stressful situation, an 

animal’s physiology is altered by initiation of the autonomic nervous system or the 

neuroendocrine system (Moberg, 1987). These systems have the capacity to alter metabolism, 

redirect blood supply to certain organs, modify digestion, and modulate numerous other 

biological systems. These physiological activities provide the animal with the resources necessary 

to cope with the stressor while maintaining vital homeostasis (Moberg, 1985a).

Physiological Response to Stress

An adverse stimulus is known to initiate a physiological cascade of responses, which 

mobilizes resources necessary to cope with the stressor (Moberg, 1985a). One such cascade that 

has been intensely investigated over the last half-century involves endocrine activation of the 

hypothalamic-pituitary-adrenal (HPA) axis (Asterita, 1985; Moberg, 1985a). When an animal 

perceives a stressor, its hypothalamus influences the anterior pituitary gland to secrete its 

respective trophic hormones, which in turn influence various target organs in the body to secrete 

their hormones (Asterita, 1985). O f particular interest, due to its utility in measurements of stress, 

is release of adrenocorticotrophic hormone (ACTH) from the anterior pituitary gland, which 

stimulates the adrenal cortex to increase synthesis and secretion of glucocorticoids, including
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8
cortisol and corticosterone. The specific glucocorticoids synthesized and the pattern of their 

release varies between species (Broom and Johnson, 1993).

Glucocorticoid Metabolism and Excretion

Glucocorticoids are transported in the blood in free form or bound to albumin or 

corticosteroid-binding globulin (CEO). Only the free and albumin-bound fractions of 

glucocorticoids are available for metabolism and conjugation (Brooks, 1979). The liver is the 

chief site for glucocorticoid metabolism due to the presence of necessary enzymes, although 

significant metabolism also occurs in the kidneys, adrenals, placenta, connective tissues, 

fibroblasts, and muscles (Lipman e ta l,  1962; Brownie, 1992). Steroid metabolism in the liver 

involves the conversion of biologically active glucocorticoids, which are those not bound to CBG 

(Brooks, 1979), to multiple metabolites. The steroids are reduced and conjugated with glucuronic 

acid, after which the inactivated hormone may either enter the blood to be excreted or reabsorbed 

by the kidney, or may be excreted in bile into the small intestine to be either excreted in feces or 

reabsorbed into the enterohepatic circulation (Taylor, 1971).

In the kidneys, reabsorption of glucocorticoids is passive, resulting in a linear increase of 

urinary free cortisol with plasma cortisol (Beisel et a l, 1964). Specifically, Scurry and Shear 

(1969) have estimated in dogs that 16-20% of the unbound cortisol that enters the kidney is 

reabsorbed. More polar metabolites are preferentially excreted in the urine in rats, rather than into 

the intestine (Marandici and Monder, 1985).

Most of the steroid metabolites that enter the small intestine via bile are deconjugated and 

some are reabsorbed (Palme et al, 1996). Those metabolites that are not reabsorbed are excreted 

in feces. The influence of intestinal microflora on fecal steroid hormone metabolism has been 

demonstrated by Eriksson and Gustafsson (1970b) in rats. The role of the intestinal microflora is 

thought to be deconjugation of steroids, which enhances reabsorption, as evinced by studies in
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9
which administration of antibiotics inhibited deconjugation of steroid conjugates, increased fecal 

steroid excretion, and decreased urinary steroid excretion (Adlercreutz et al, 1984). Thus, the 

steroid metabolites found in the bowel are products of metabolism by the animal as well as the 

action of gastrointestinal microorganisms (Han et al, 1983).

Physiological Effects o f  Glucocorticoids

Glucocorticoid hormones released during stressful events initiate numerous physiological 

reactions that enable an animal to cope with a situation. The effects of glucocorticoids are more 

widespread than other steroid hormones in terms of the number of tissues affected and the 

diversity of effects (Brooks, 1979). The primary influence of glucocorticoid activity is on 

carbohydrate, protein, and fat metabolism (Asterita, 1985; Broom and Johnson, 1993). 

Specifically, the most pronounced effects of glucocorticoids are on liver stimulation of 

gluconeogenesis, reduction of protein anabolism, increase of protein catabolism, and mobilization 

of fatty acids from adipose tissue. Apart from metabolic effects, glucocorticoids exert 

antianabolic and catabolic effects on lymphoid, bone, connective, and other tissues in the body. In 

large amounts, cortisol inhibits the inflammatory response of damaged or injured tissues by 

stabilizing lysosome breakdown, decreasing fibroblast activity, decreasing the permeability of 

capillaries, suppressing inflammatory mediators such as eicosanoids, bradykinin, seratonin, and 

histamine, and reducing lymphocyte migration by sequestering them in tissues (Cohen, 1972; 

Munck et a l, 1984). Glucocorticoids also help maintain vascular reactivity to catecholamines and 

are necessary for catecholamines to exert their full free fatty acid mobilization action (Ganong, 

1987). The overall effects of glucocorticoid activities are to mobilize energy resources from 

tissues and increase glycogen storage in the liver in order to prepare energy necessary for a 

response and to minimize unnecessary energy expenditure in times of stress (Asterita, 1985; 

Moberg, 1985a).
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General Adaptation Syndrome

Physiological effects o f glucocorticoid activity on coping success become costly when an 

animal experiences chronic stress (Moberg, 1985b). Selye (1950) advanced the general adaptation 

syndrome (GAS) theory that described the series of nervous and endocrine gland activities during 

the chronic phase of stress activity. During the first, or alarm reaction phase, a stressor triggers 

the autonomic and neuroendocrine systems as described above. The second phase, namely that of 

resistance, is characterized by the body’s attempt to maintain homeostasis in the presence of the 

stressor while maintaining high levels of glucocorticoids and intensified levels of body 

functioning. If stress continues, the individual experiences exhaustion of biological defense 

systems. Selye (1950) argued that various pathologies associated with prolonged stress develop 

during this final stage.

Pathologies Associated with Chronic Stress

Prolonged release of glucocorticoids can significantly endanger animal health. During the 

exhaustion phase of the GAS, the physiological expense of chronically elevated glucocorticoid 

levels can become evident (Asterita, 1985). The antianabolic and catabolic effects of 

glucocorticoids on several tissues in the body result in reduction of support for body functions 

such as growth, reproduction, and immunity (Moberg, 1985a).

Stress has been shown to lead to increased susceptibility to disease, and this increased 

susceptibility is due in part to alterations of immune function (Roth, 1985). Corticosteroid 

elevation is involved in the suppression of the immune system (Wiedenfeld etal., 1990; Strauman 

et al., 1993). Prolonged release of glucocorticoids has been shown to lead to increased 

susceptibility to infectious diseases due to inhibition of enzyme production, slowing of antigen 

processing, and by quantitatively reducing immune reactions and responses (Fauci, 1979;

Monjan, 1981; Kiecolt-Glaser et o/., 1984a; Kiecolt-Glaser et o/., 1984b; Golub and
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Gershwin, 1985; Kelley, 1985). Specifically, suppression of various cellular immune parameters 

in blood lymphocytes appears to be importantly mediated by stress-induced elevation of 

glucocorticoids (Lysle et a l, 1990; Reichlin, 1993; Deguchi and Akuzawa, 1998). In addition, 

studies have demonstrated that glucocorticoids induce lymphocytopenia by promoting 

lymphocyte migration into tissues (Cohen, 1972). Other pathways activated during stress 

response also mediate immune suppression, such as reduction of natural killer cell activity of 

splenic lymphocytes due to secretion o f corticotropin-releasing factor (CRF) from the 

hypothalamus (Irwin et a i, 1990) and suppression of mitogenesis in splenic lymphocytes by the 

sympathetic nervous system and peripheral catecholamines (Cunnick et a l, 1990). Finally, it has 

been suggested that glucocorticoids may also potentiate detrimental effects of neurotoxins 

(Sapolsky, 1985a).

The physiological response to stress may also have the potential to decrease reproductive 

capacity. Glucocorticoids have been shown to influence the secretion of gonadotropins and 

synthesis and secretion of gonadal steroids (Moberg, 1985b). Elevated CRF levels have been 

shown to contribute to decreased luteinizing hormone (LH) and follicle-stimulating hormone 

(FSH) secretion and the disruption of reproductive function (Olsten and Ferin, 1987; Barbarino et 

al, 1989). In addition, ACTH or cortisol has been shown to block the preovulatory release of LH 

in swine (Barb et al, 1982). Glucocorticoids can also act on the testes to decrease the 

concentrations of LH receptors and to directly suppress androgen biosynthesis (Bambino and 

Hsueh, 1981; Welsh et al, 1982). Long term effects of glucocorticoids result in the suppression 

of secretion of testosterone, resulting in lower titers of this hormone (Doerr and Pirke, 1976; 

Moberg, 1985b). Through these mechanisms, the adrenal response to stress may have the 

potential to disrupt reproduction.

The physiological response to stress can impact growth, as well. Glucocorticoid action 

has been implicated in impaired growth due to skeletal muscle and lymphoid atrophy, as well as
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depressed body weight due to both reduction of food intake and a decrease in food utilization 

efficiency (Klasing, 1985). A study of the effects of ethanol stress on rats by Spencer and 

McEwen (1990) demonstrated that in all experiments chronic ethanol stress blunted the increase 

in body weight, which is normally observed in rats of the strain and age used These and 

numerous other pathologies have been shown to be associated with chronic stress.

Glucocorticoids as Indices o f  Stress

Quantitative measures of stress are particularly relevant in studies of animal welfare in 

light of potentially negative influences of glucocorticoids on health. Traditionally, glucocorticoid 

concentrations have been determined in blood plasma. The use of physiological stress measures 

on free-ranging animals has been limited due to the invasiveness and potential for bias of 

capturing and withdrawing blood from wild animals (Broom and Johnson, 1993). Moreover, 

corticosteroid secretion into blood varies diumally and has pulsatile secretory patterns (Monfort 

et al., 1993), causing sample plasma glucocorticoid concentrations to be highly variable. Fecal 

steroid measures now provide an appealing alternative to serum sampling. Samples for fecal 

steroid analysis are relatively easy to collect and can be gathered without disturbing study 

subjects. This approach also provides a smoothed estimate of glucocorticoid concentrations over 

a longer time period than serum sampling, due to the pooling effect of adrenocorticosteroids in 

feces. Measurements of fecal glucocorticoid metabolite levels have been performed for a number 

of mammals (Miller et a l, 1991: bighorn sheep; Graham and Brown, 1996; several felids; Palme 

et ai, 1996: ponies and pigs; Jurke et al, 1997: cheetah; Pahne and Mostl, 1997: domestic sheep; 

Monfort et al, 1998: African wild dog; Sousa and Ziegler, 1998: common marmoset; Whitten et 

al, 1998: chimpanzee; Boinski et a l, 1999: brown capuchins; Goymann et a l, 1999: spotted 

hyenas; Strier et al, 1999: muriquis; Wallner et a l, 1999: barbary macaques). This new approach 

to stress analysis may prove to be extremely useful for identifying circumstances which cause
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stress before the appearance of symptoms such as weight loss, infertility, or poor health.

However, many confounding factors may confuse the results of stress analysis. Some of these 

factors will be discussed in more detail in the following sections.

Effects o f  Assay Techniques on Glucocorticoid Measures

To date there are countless methods for extracting steroid hormones from feces. This 

variability is primarily due to species-specific matrix effects of feces, requiring each researcher to 

discover the extraction technique that will extract the largest concentration o f hormone. To a 

lesser extent, extraction methods vary due to laboratory preferences. For similar reasons, the 

specific radioimmunoassay employed to assess steroid hormone concentrations varies from study 

to study. Because the extraction methods determine how much steroid is recovered and 

radioimmunoassays vary in their specificity for hormones, data from different studies on the same 

species may only be compared if the techniques employed are identical. It behooves researchers 

to delineate their procedures in great detail so that data from future studies of the same species 

may be compared.

Species Specific Glucocorticoid Differences

The spectrum of glucocorticoids secreted into the blood varies between species, and it 

follows that the metabolites excreted via feces are dependent on species, as well (Brooks, 1979; 

Pahne et a l, 1996). It has also been suggested that there are age and individual differences within 

species in glucocorticoid patterns, as well (Brownie, 1992). Potential reasons for such differences, 

as presented by Marandici and Monder (1984) include disparate liver abilities, differences of rate 

of movement from small intestine to large intestine, and variable rates of uptake for all organs, 

which may be due to receptor affinities or numbers. As differences in fecal glucocorticoid
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metabolite concentrations between species are to be expected, inferences concerning 

physiological stress cannot be made between species from fecal data.

Effects o f  Gender on Glucocorticoid Concentrations

Gender differences in the pattern of glucocorticoid synthesis and secretion have been 

shown to exist (Taylor, 1971; Brooks, 1979). The sex hormones modify responses of the HPA 

axis to stress (Ganong, 1963; Bell et a l, 1991). Estrogens have been shown to enhance CRF gene 

transcription (Vamvakopoulos and Chrousos, 1993), stimulate ACTH secretion by enhancing 

anterior pituitary responsiveness to CRF-like activity and increasing the pituitary synthesis of 

ACTH (Kitay, 1963b; Coyne and Kitay, 1969), increase serum glucocorticoid concentrations 

(Peterson 1960; Kitay eta/., 1965; Lindholm and Schultz-Moller, 1973; Garris, 1986), 

impair glucocorticoid receptor-mediated feedback (Burgess and Handa, 1992), increase the levels 

of CBG (Sandberg and Slaunwhite, 1959; Brooks, 1979; Coe et al, 1986; Rosner, 1990; Pepe 

and Albrecht, 1995) leading to a decrease in metabolic clearance rate of glucocorticoids (Peterson 

et al, 1960, Kitay, 1963a, Pepe and Albrecht, 1995), and alter hepatic and intestinal metabolism 

of glucocorticoids (Lipman e ta l,  1962; Eriksson and Gustafsson, 1970a; Colby and Kitay,

1972a; Colby and Kitay, 1972b; Brooks, 1979). Through these actions, estrogens influence 

plasma, urine, and fecal concentrations of glucocorticoids. Testosterone has been demonstrated to 

decrease pituitary ACTH secretion (Kitay, 1963b; Coyne and Kitay, 1971), increase adrenal 

responsiveness to ACTH in rats (Kitay, 1963b), increase glucocorticoid output (Colby and Kitay, 

1972b), suppress CBG activity in the rat (Gala and Westphal, 1965a), increase biological half life 

of glucocorticoids (Kitay, 1963b), and alter hepatic fimction (Yates e ta l, 1958; Kitay, 1963b). 

Progesterone impacts glucocorticoid concentrations independently o f its effects on estrogens 

(Rodier and Kitay, 1974) by decreasing ACTH release via effecting either hypothalamic or 

pituitary sites (Mathews et a l, 1970; Rodier and Kitay, 1974, Vale et a l ,  1978; Carr et al, 1981),
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reducing plasma concentrations of glucocorticoids (Rodier and Kitay, 1974; Heilman, et a l,

1976), antagonizing glucocorticoid negative feedback inhibition of rat anterior pituitary (Abou- 

Samra e ta l, 1984a), and increasing CBG binding activity (Gala and Westphal, 1965a) due to 

competitive binding with glucocorticoids (Rosenthal et a l, 1969; Brooks, 1979). LH and FSH 

have also been shown to impact glucocorticoid levels by increasing their output (Vinson et al, 

1976). It is evident that differences in glucocorticoid secretion and excretion are influenced by the 

specific sex hormones present, and this must be considered when drawing comparisons between 

animals.

Effects o f  Reproductive Events on Glucocorticoid Concentrations

The studies mentioned above have demonstrated the impact of sex hormones on 

glueocorticoid levels. Due to the vast fluctuations of sex hormones during the various 

reproduetive events, it is necessary to take such factors into account when analyzing 

glucocorticoid concentrations.

The ovarian cycle in all animals is generally regulated by the same interplay of pituitary 

and ovarian hormones. Despite some clear relationships between major sex hormones and the 

HPA axis, the interplay between these hormones and glucocorticoids during the female 

reproductive cycle is far from clear. Several studies suggest peak glucocortieoid activity in the 

late follicular and early luteal phase of the eycles, when levels of estrogens, LH, and FSH are 

high (Garris, 1986: guinea pigs; Saltzman et ah, 1998: marmosets), while others have found 

inverse results (Beck et a l , 1972: women) or no fluctuations at all (Carr et al, 1979, Liu et al, 

1987: women). However, given the potential for glucocorticoid fluctuation in the ovarian cycle, 

such cyclicity must be taken into account in hormone analysis.

Mating behavior has been shown to be associated with fluctuations in sex hormones. In 

non-primate females, sexual activity occurs near the time of estrus, when circulating levels of
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estrogens and LH are high. In males, such regular patterns do not exist. Rather, copulation has 

been correlated with increases in testosterone (Howland et a l, 1985; McDonald et a l, 1986; Borg 

et a l, 1992; Kenagy et a l, 1999; Strier et a l, 1999), as well with increases in glucocorticoid 

concentrations (Howland et a l, 1985: pygmy goats; Elias and Weil, 1989. camels; Borg et a l, 

1991: bulls and boars; Borg et a/., 1992: rams; Levis era/., 1995: boars; Strier e/a/., 1999: 

muriqui monkeys), although a few studies noted no such changes (Bercovitch and Clarke, 1995: 

rhesus macaques; Kenagy et a l, 1999: degus). In cases where glucocorticoids increase during 

mating, psychosocial factors, rather than gonadal hormones are likely responsible for the 

increase. Physical aggression and psychosocial stressors cause increases in glucocorticoids in 

several species (Smith and French, 1997, Wallner et a l, 1999), whereas testosterone is not 

associated with a clear net effect on glucocorticoid concentrations (Coyne and Kitay, 1971). 

Copulation in females does not have a clear correlation with glucocorticoid levels. Several studies 

have documented no change in glucocorticoid levels associated with mating (Garcia-Villar et al, 

1985: ewes; Elias and Weil, 1989: camels; Kenagy e ta l,  1999: degus), while others have shown 

an increase in such levels (Schiml and Rissman, 1999: musk shrews). Potential increases found 

during this period for females may be due to increases in concentrations of estrogens and LH, as 

well as any stress associated with the act.

Pregnancy is also characterized by a marked change in sex hormones, and the alterations 

in glucocorticoid concentrations approximate those expected with high concentrations of 

estrogens, more so than the effects of high progesterone. During pregnancy, CRF concentrations 

rise (Thomson and Smith, 1989; Lockwood et al, 1996), ACTH levels increase (Carr et al, 1981, 

Bell et al., 1991; Lockwood et a l, 1996) due in part to an extra-pituitary source of ACTH not 

subject to feedback control (Rees et at., 1975), total plasma glucocorticoids increase dramatically 

in humans (Cohen et al., 1958; Rosenthal et a l, 1969; Burke and Roulet, 1970; Batra and 

Grundsell, 1978; Abou-Samra eta/., 1984b; Allolio et a/., 1990; Lockwood eta/., 1996) as well
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as other species (Gala and Westphal, 1965b: rats; Rosenthal e ta l,  1969: guinea pigs; Kriesten 

and Murawski, 1988: rabbits; Elias and Weil, 1989: camels; Ziegler et o/,, 1995: cotton-top 

tamarins; Hodges, 1998: elephants), CBG binding capacity improves (Doe e ta l, 1964; Gala and 

Westphal, 1967; Rosenthal et ar/., 1969, Brooks, 1979; Abou-Samraeta/., 1984b; Selcer, et al,

1991), retention of glucocorticoids in the intravascular compartment increases (Cohen et a l, 

1958), breakdown of glucocorticoids by the liver is reduced (Martin and Mills, 1958), and 

metabolic clearance rate decreases throughout pregnancy (Brooks, 1979), with some studies 

demonstrating an increase near gestation (Sims and Krantz, 1958; Burke and Roulet, 1970;

Oakey, 1975).

Glucocorticoids have been shown in a majority of species to rise near parturition, which 

is logical in light of their role in the initiation of lactation (Wilcox et a l, 1983). High 

glucocorticoid concentrations at the time of lactation onset have been found in many species 

including rats (Gala and Westphal, 1965b, Voogt et a l, 1969), cows (Schwalm and Tucker, 1978, 

Wilcox et al, 1983), golden-mantled ground squirrels (Boswell et al., 1994), and degus (Kenagy 

et al, 1999). This increase occurs both in the total and unbound fractions o f glucocorticoids (Gala 

and Westphal, 1967).

The potential influences o f reproductive cycles and events on glucocorticoid 

concentrations can confound inferences of glucocorticoid research regarding stress. Researchers 

must take reproductive cycles into account when analyzing hormone levels and making 

comparisons between groups.

Effects o f  Dietary Intake on Glucocorticoid Concentrations

Dietary intake can impact urinary and fecal excretion of steroid hormone metabolites.

The influence of vegetarian diets on steroid hormone levels in women has been documented 

(Goldin et al., 1981; Goldin et a l, 1982). These researchers found that diet influenced the
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excretion pattern of estrogens. Specifically, a positive correlation between fecal weight and 

fecal excretion of estrogens was found, with the vegetarian diet leading to both increased fecal 

weight and a two to three fold increase in fecal excretion of these hormones. However, there is 

potential for the increase in fecal bulk to mask increases in steroid hormone excretion (Wasser et 

a l, 1993). Goldin et al. (1982) postulated that the increased steroid hormone excretion was 

caused by the shielding o f estrogens excreted in bile from deconjugation and reabsorption by the 

greater fecal bulk and nonabsorbed fiber in the intestine. Another hypothesis presented by these 

authors is that some characteristic o f the vegetarian diet may decrease the ability of intestinal 

microflora to deconjugate bilary estrogen, which is necessary for reabsorption. These theories are 

strengthened by the finding of a significant inverse relationship between levels of estrogen in 

excreted feces and plasma found in the studies by Goldin et a l  (1981) and Goldin et al. (1982) in 

subjects with a vegetarian diet. Thus, decreased intestinal reabsorption o f steroid hormones seen 

with vegetarian diets may decrease steroid concentrations found in the enterohepatic circulation 

and lower plasma levels of circulating steroids. Similar studies have found that the ratio of protein 

to carbohydrate intake influences plasma concentrations of cortisol in man, with lower cortisol 

levels found during the high carbohydrate diet than the high protein diet, and this change was 

postulated to be due to influences of dietary factors on a number of aspects of steroid hormone 

metabolism (Anderson et a l, 1987). This study also demonstrated that parallel changes occur in 

CBG concentrations during the high carbohydrate diet, which may have been reflected in 

concentrations of steroid hormones. An impact of diet on urinary excretion of steroid hormones 

has also been investigated; Remer et a l  (1998) have determined that the lactovegetarian diet 

decreases urinary cortisol metabolites. The influence of diet on excretion patterns requires 

researchers to be aware of any dietary confounding.

Fecal glucocorticoid metabolite concentrations are considered to represent a pooled 

fraction of plasma glucocorticoids, providing an estimate of adrenal status that smoothes the
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effects of diumal and pulsatory variations (Goymann et al., 1999). However, variation in 

steroid hormone metabolite levels may be increased by dietary effects on excretion rates. 

Variations in gastrointestinal transit time may impact the degree of pooling of feces in the 

intestines. Palme et al. (1996) have suggested that the passage rate of digesta from the duodenum 

to rectum play an important role in the time course of excretion of steroids. Thus, diets that 

increase passage rate, such as those high in dietary fiber (Pritchard and Robbins, 1990), may 

decrease pooling time of steroids and increase metabolite concentration variability. The amount 

of food consumed may also impact pooling time due to the accelerated gastrointestinal transit 

time with increased quantity ingested (Palme et al., 1996).

Ingested glucocorticoids from dietary sources, such as meat, may be absorbed by the 

body and impact plasma and fecal glucocorticoid metabolite concentrations. The excellent 

bioavailability of oral administration of cortisol has been well documented for rats and humans 

(Chanoine and Junien, 1984; Heazelwood et a i, 1984; Tauber et al., 1986). The pattern of 

absorption of glucocorticoids from the diet depends on quantity of food intake, with food 

ingestion causing reduced and delayed peak plasma steroid levels (Barbhaiya and Welling, 1982). 

Thus, fecal samples from carnivores or omnivores should be analyzed with this potential 

influence on glucocorticoid levels in mind.

In the past, dietary differences have been adjusted for primarily by removing water from 

the sample, which accounts for differences in water content among the diets (Wasser et a l, 1993). 

However, large dietary differences may not be adjusted for merely by lyophilizing fecal samples, 

due to the ability of dietary intake to have impacts on the degree of reabsorption of metabolites, 

time of pooling, and exogenous augmentation of glucocorticoid levels. Wasser et a l (1993) 

suggested that a cholestanone index may be useful to improve serum to fecal correlation in 

longitudinal studies. Analysis of different diets independently may also reduce confounding. It is
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necessary to know the intake of animals under investigation in order to control for potential 

dietary confounding.

Psychological Factors Influencing Glucocorticoid Concentrations

The activation of the HP A axis is contingent upon an animal’s cognitive interpretation of 

an event as a threat Psychological stimuli have been shown to be as effective as physical stimuli 

in activating the biological stress response in animals (Dantzer and Mormede, 1985). The 

pituitary-adrenal axis has been shown to be stimulated by stressors such as apprehension, 

frustration, conflict, disease states, pain, and several types of emotional conditions pertaining to 

loss of control (Dantzer and Mormede, 1985; Henry and Stephens-Larson, 1985). However, 

individual reactions to the above stressors may vary based on past experiences. Moberg (1987) 

maintains th ^  factors such as age, genetics, prior experience, sex, and physiological conditions 

mold the nature of an animal’s biological stress response. The effect of prior experience on 

reactions to stress can be demonstrated in habituated animals, which develop an internal 

representation of past events to deal with the environment. If the environment does not contain 

any new contingencies, the animal exhibits a progressive amelioration of physiological responses 

(Levine, 1985; Moberg, 1985a). In contrast, an animal exposed to stimuli that are unpredictable 

or noxious prepares for it by being constantly ready, which engenders a state of anxiety and, in 

extreme cases, may result in learned helplessness (Broom and Johnson, 1993). Clearly, the 

experience of stress is unique in each individual and relates to its cognitive interpretation of the 

situation and ensuing emotional arousal. Thus, a large degree of individual variation is to be 

expected in fecal studies of glucocorticoid metabolites.
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Adaptation/Sensitization

The delicate interplay of physiological and psychological factors in elicitation o f the 

physiologic stress response requires a closer examination of feedback mechanisms. Release of 

glucocorticoids into the bloodstream is performed through activation of the HPA axis. Down- 

regulation or negative feedback control exists at almost all levels of this system, with high 

circulating concentrations of glucocorticoids effecting ACTH and CRF synthesis and release, 

ACTH influencing CRF release, and possibly even an ultrashort loop feedback influence for CRF 

(Buckingham et al., 1992). Adaptation, which is dependent on the number of exposures to a 

chronic stressor (Odio and Brodish, 1990), is accomplished by a reduction of the CRF-induced 

ACTH secretory response (Reisine and Hoffman, 1983). For example, Spencer and McEwen 

(1990) have shown that after repeated injections of ethanol into rats for 1-3 weeks, the amount of 

glucocorticoids released decreased. Adaptation has also been demonstrated using footshock in 

rats (Odio and Brodish, 1990).

Countering adaptation to repeated consistent stressors via glucocorticoid down- 

regulation, is hyperstimulation of the stress response. Facilitation may occur due to the 

enhancement of adrenocortical sensitivity to ACTH during chronic stress and depends on the 

duration of chronic stress exposure and the types of stressors (Odio and Brodish, 1990). This 

phenomenon is influenced by decreased sensitivity of glucocorticoid feedback, which may be 

accomplished by the interaction of glucocorticoid receptors with transcription factors induced by 

CRF and vasopressin (Aguilera, 1994). In the short term, restraint and injection stressors have 

been shown to induce facilitation of subsequently stimulated ACTH secretion in rats in at least a 

12 h period, leading to a hyper-excitable pituitary-adrenal system (Dallman and Jones, 1973; 

Daniels-Severs et al, 1973; Akana et at., 1992). Another study of rats exposed to immobilization, 

light, and noise stressors demonstrated sensitization rather than adaptation over three weeks 

(Vogel and Jensh, 1988). One factor determining whether sensitization or habituation takes place
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is individual experience, which is stressor-specific (Kant et a l, 1985). In addition, subtle 

changes in the characteristics of the stressors or in their regularity can greatly reduce adaptation 

of the glucocorticoid response (Marti and Armario, 1998). Novel stimuli presented during 

adaptation to a chronic stressor may actually result in hypersensitivity and faster response onset 

of the HPA axis (Sakellaris and Vemikos-Danellis, 1975; Aguilera, 1994), which is caused by 

enhanced adrenocortical sensitivity to ACTH, as discussed above. Severe stressors may cause 

sensitization rather than habituation due to the ability of ACTH secretion to dissociate from 

glucocorticoid secretion (Marti and Armario, 1998). Yet another cause of sensitization is the 

tendency of chronic exposure of rats to stressors to effect adaptation ability, as demonstrated by 

Sapolsky et a l (1984) and Reul et a l  (1990). These researchers demonstrated that chronic 

exposure of rats to elevated levels of glucocorticoids damages the regulatory mechanism of the 

hippocampus and impairs the ability of the organism to reduce glucocorticoid levels after acute 

stress. In fact, long-term chronic stress can cause damage to the hippocampus to be long-lasting 

and possibly permanent, as was shown in a study of rats after a three-month treatment period 

(Sapolsky et a l, 1985b). Finally, the ability to adapt may be weaker in some individuals than in 

others. For example, one study showed that aged rats continued to show a significant 

corticosterone response long after young rats had developed complete tolerance to the stressor 

(Spencer and McEwen, 1997).

It is crucial, when conducting physiological stress studies, to consider the nature of the 

stressor or stressors presented. If the stressor is consistent and at regular intervals, physiological 

adaptation of the glucocorticoid response to the threat may occur, decreasing the concentrations 

of glucocorticoid metabolites found in feces. Analysis and interpretation of stress results require 

an understanding of the stressors presented to the animal.
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Conclusion

Glucocorticoid concentrations have been widely used as an index of stress, and the new 

opportunity to study physiological stress noninvasively may prove to expand the range of such 

studies. However, the use of fecal samples to study stress requires careful consideration of all 

factors influencing secretion and excretion of steroids hormones, for these factors have the 

potential to confound inferences regarding stress. More studies will need to be performed to 

elucidate the extent of the impact of such factors on fecal glucocorticoid measures, as well as to 

identify other confounding factors not yet considered.
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in. NONINVASIVE FECAL MONITORING OF GLUCOCORTICOIDS IN 

ALASKAN BROWN BEARS (Ursus arctos horribilis)

ABSTRACT

The aim of this study was to validate a radioimmunoassay (RIA) for quantifying 

glucocorticoid metabolite concentrations in the feces of Alaskan brown bears and to use this 

technique to examine the impacts of human activities on physiological stress in brown bears at 

the Katmai National Park and Preserve, AK. We tested an established corticosterone RIA for 

assay sensitivity, specificity, and sample matrix effects o f brown bear feces, and it proved 

satisfactory. We collected fecal samples from brown bears in the wild from five month by 

location treatments and assessed fecal glucocorticoid concentrations. Concentrations were 

analyzed in the presence of covariates describing current bear and human activities, as well as 

diet type of each sample We also collected fecal samples from identified bears and analyzed 

them for differences among sex-age classes. We observed a significant interaction between the 

effects of diet types and treatments on fecal glucocorticoid concentrations. We did not observe a 

significant effect of human activities on fecal glucocorticoid concentrations, although the 

presence of confounding in this observational study limits inferences regarding human-induced 

stress. We did not observe sex-age class differences in fecal glucocorticoid concentrations. This 

study demonstrates that fecal glucocorticoid concentrations may be assessed in brown bears, but 

this technique may have limited application in species with complex or seasonal dietary habits

INTRODUCTION

An adverse stimulus is known to initiate a physiological cascade of responses, which 

provides resources necessary to cope with a stressor (Moberg, 1985). One such response is the 

activation of the hypothalamic-pituitary-adrenocortical (HPA) axis, resulting in synthesis and

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



35
secretion of glucocorticoids by the adrenal cortex. Concentrations of these hormones have been 

used by many studies as a physiological index of stress in animals.

Quantitative measures of stress are particularly relevant in studies of animal welfare and 

conservation biology in light of potentially negative influences of glucocorticoids on health. 

Despite the importance of glucocorticoids for coping with stressors, chronically high levels may 

decrease fitness by disrupting normal physiological functions necessary for growth (Klasing,

1985; Spencer and McEwen, 1990), reproduction (Doerr and Pirke, 1976; Bambino et a i, 1981; 

Barb et a l, 1982; Welsh et a i, 1982; Olsten and Ferin, 1987; Barbarino et ai, 1989), and 

immunity (Monjan, 1981; Munck et a7, 1984; Wiedenfeld et a/., 1990; Reichlin, 1993; Strauman 

etal., 1993). Because of the potentially detrimental effects of chronically high glucocorticoid 

levels, researchers have placed a high priority on developing and implementing reliable measures 

of this hormone. Such techniques could identify stressors before the appearance of symptoms 

such as weight loss, infertility, or poor health.

Human disturbance is an important potential stressor to some populations of Alaskan 

brown bears (Ursus arctos horribilis) that traditionally concentrate at what have become popular 

tourist destinations. Bears that rely on salmon spawning rivers for much of their summer and fall 

nutritional intake gather at these rivers, presenting excellent opportunities for bear-viewing.

Health risks of high glucocorticoid levels, as well as other stewardship and safety considerations 

of a stressed animal population, prompted investigation into the nature of human impacts on 

physiological stress. Brooks River, at Katmai National Park and Preserve, is one bear-viewing 

area with a large increase in human traffic in the last few years (National Park Service, 1996). 

Management of these bears and their human viewers requires an understanding of whether 

ongoing human activities at Brooks River induce stress in the brown bears that rely on this fishing 

area for much of their nutritional intake. While behavioral studies performed on Brooks River 

have suggested an impact of human activities on brown bears (Olson et a i, 1990), quantitative
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indexing of stress hormone levels may provide a degree of objectivity and comparability that 

managers will be able to consider in the ongoing challenge of balancing recreational and resource 

concerns.

Traditionally, quantitative measurements of physiological stress have involved assessing 

glucocorticoid concentrations in blood plasma. The use of physiological stress measures on free- 

ranging animals has been limited due to the invasiveness and potential for bias of capturing and 

withdrawing blood from wild animals (Broom and Johnson, 1993). Moreover, corticosteroid 

secretion into blood varies diumally and has pulsatile secretory pattems (Monfort et al, 1993), 

causing sample plasma glucocorticoid concentrations to be highly variable. Fecal steroid 

measures now provide an appealing alternative to semm sampling. Samples for fecal steroid 

analysis are relatively easy to collect and can be gathered without disturbing study subjects. This 

approach also provides a smoothed estimate o f glucocorticoid concentrations over a longer time 

period than semm sampling, due to the pooling effect of adrenocorticosteroids in feces.

The application of fecal glucocorticoid metabolite assessments to studies of physiological 

stress in wildlife populations is relatively new, and as such, the technique involved has been 

described for a limited number of mammalian species (Miller et a l, 1991: bighorn sheep; Graham 

and Brown, 1996: several felids, Palme et a l, 1996: ponies and pigs; Jurke et al, 1997: cheetahs; 

Palme and Mostl, 1997: domestic sheep; Monfort etal ,  1998: African wild dogs; Sousa and 

Ziegler, 1998: common marmosets; Whitten et al,  1998: chimpanzees, Boinski et al., 1999: 

brown capuchins; Goymann et a l, 1999: spotted hyenas; Strier et al, 1999: muriquis; Wallner et 

a l, 1999: barbary macaques). Use of fecal glucocorticoid measures in brown bears has never 

been published. Its use may elucidate the influence o f human activity on physiological stress of 

brown bears at Brooks River.

In this study, glucocorticoid metabolite levels were assessed from two populations of 

brown bears using salmon streams in high and low visitor-use areas of Katmai National Park and
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Preserve, AK. Objectives of this study were (1) to validate the use of a radioimmunoassay 

(RIA) for quantifying cortisol metabolite concentrations in the feces of brown bears, (2) to apply 

this technique to a study of impacts of human activities on physiological stress in brown bears, 

and (3) to provide recommendations for management based on the results o f the analysis.

STUDY AREA

Katmai National Park and Preserve is located on the Alaska Peninsula approximately 290 

miles southwest o f Anchorage (Fig. 1). The park has been shaped by glacial and volcanic activity, 

with topography ranging from glacial plains in the southwest to the rugged Aleutian Range in the 

east. Bordering these mountains is an extensive lake and river system, of which Naknek Lake is 

the largest.

The park encompasses several ecotypes including alpine and arctic tundra, boreal forests, 

and forested coastal areas. Vegetation communities of Katmai range from treeless tundra to 

spruce (Picea spp.), birch (Betula spp.), and poplar (Populus spp.) woodland and willow (Salix 

spp.) and alder {Alnus spp.) shrubland. The fauna includes assorted small mammals as well as 

moose {Alces alces), caribou {Rangifer tarandus), wolves {Canis lupus)., and brown bears (Ursus 

arctos). Fish species include four species of Pacific anadramous salmon (Oncorhynchus spp ), 

rainbow trout (Salma gairneh), char (Salvelinus spp ), arctic grayling (Thymallus arctcus), and 

arctic lamprey (Lampetra japonica). In sampling areas, sockeye salmon (O. nerka) are more 

abundant than all other species o f salmon. The fish population provides an important source of 

nutrients to the park ecosystems.

The two rivers used in this study are a part of the Naknek drainage, which is the 

spawning ground and nursery for a significant portion of the salmon harvested in Alaska’s Bristol 

Bay. Brooks River is a 2.5 kilometer (km) long drainage from Brooks Lake into Naknek Lake and 

serves as a major migratory route and spawning stream for sockeye salmon. This river is on
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FIG. 1 Location of Brooks River and Margot Creek in the Katmai National Park and Preserve, 
Alaska.
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average 155 feet (ft) wide and flows at 2.1 feet per second (ft/sec) (LaPerriere, 1996). 

Approximately midway up the river is a 2 meter (m) high waterfall, which migrating salmon 

attempt to ascend. Brooks River provides salmon to bears for a longer period (late June through 

late October) than any other river in the system, except the Savanoski River (Troyer, 1980).

Two major runs of sockeye salmon occur in Brooks River annually. The first run arrives 

in late June and heads to tributary streams that feed into Brooks Lake. These salmon are in 

excellent condition as needed to reach their relatively distant destination. The number of sockeye 

generally decline at the end of July, causing a lull in fish activity until the beginning of 

September, when the second run of sockeye appears. These fish spawn in Brooks River As these 

fish are at the end of their journey and in the process of spawning and dying, they are generally in 

poor physical condition.

Bear activity closely parallels the rhythm of salmon activity in Brooks River. Few bears 

are seen near the river before the salmon arrive. However, when the first run of salmon appears in 

July, bears gather along the river. Many bears congregate at the Brooks River Falls, where the 

fish are vulnerable to predation as they attempt to ascend the waterfall. There are limited prime 

fishing spots, and these tend to be dominated by large adult male bears. Bears do fish along the 

entire length of the river during this time, although the healthy condition of fish compounded by 

river depth makes the capture of live fish difficult. As the first run of salmon leaves Brooks River 

and salmon become available for fishing in shallower rivers in August, bears leave the area.

Bear activity along Brooks River increases in late August, when the second run of salmon 

enters Brooks River and nearby salmon runs are depleted. Bears disperse along the length of the 

river to feed intensively on the dead and dying fish throughout September and October. Bear use 

of the river mouth is heavy during this period, as bears feed on the spawned-out salmon that drift 

downstream.
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Fishing and bear-viewing opportunities attract many visitors to Brooks River. Brooks 

Camp, located at the mouth of Brooks River and along the Naknek shoreline, provides facilities 

for these visitors, as well as for concession and National Park Service (NFS) employees. The 

camp consists of a rustic lodge that can hold up to 60 guests, a visitor center, concessions and 

park housing, and support facilities. An NFS campground is located approximately one half 

kilometer north of the camp with 21 tent plots and an elevated food/garbage cache. Visitors 

access Brooks Camp via float planes or boats. Most float planes land several hundred meters 

offshore of Brooks Camp and taxi to shore.

The mouth of Brooks River receives the majority of human traffic throughout the season. 

Asides from float planes and boats that often moor in the mouth, a floating bridge about 200 

meters upstream from the river mouth serves as a conduit of human activity: bus tours leaving for 

the Valley of Ten Thousand Smokes, the hike to the falls bear viewing platform, and the activities 

of park and lodge employees, all keep the bridge in almost constant use. Visitors also gather 

downstream of the bridge because hesitancy of fish to swim beneath the bridge creates an 

excellent fishing hole for both visitors and bears. Dead or injured fish that are floating 

downstream are also often caught ga in s t the bridge. Interactions between bears and humans 

occur here frequently throughout the season.

A short hiking trail located on the south side of Brooks River leads to Brooks River Falls. 

At the falls there is an elevated platform built for bear-viewing and photography. The trail to the 

falls platform is another area where bears and people come into close proximity, as the trail cuts 

through areas of high bear activity. Daily interactions between bears and humans along the trail 

are common, particularly in July, when bear activity is concentrated at the falls.

Below the falls and towards the mouth of Brooks River is a hairpin turn in the river that 

contains a deep hole ideal for anglers, as well as an island where bears feed on dead fish that are
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caught while floating downstream. This is an area in which frequent conflicts between anglers 

and bears have been observed during periods of heavy use (Braaten and Gilbert, 1987).

The control area, Margot Creek, is located approximately 12 km southeast of Brooks 

River. Margot Creek is on average 128 A wide and flows at 1.9 ft/sec (LaPerriere, 1996) into the 

Naknek Lake system, making it comparable in width and flow rate to Brooks River In August, 

salmon spawn on the lower reaches of this river, because a steep falls 4.5 miles above the outlet 

serves as a barrier to salmon migration. Salmon are vulnerable to predation by bears along 

Margot Creek because of numerous natural weirs and shallow areas where the river widens. 

Concentrated bear activity along the river begins a short time afler salmon enter the creek, with 

peak activity occurrir^ during August and usually dropping in early September. Despite heavy 

bear activity, this creek receives almost no use by visitors due to its inaccessibility.

METHODS

Data Collection in the Field

This study was carried out at Katmai National Park and Preserve during the 1999 salmon 

spawning season in high visitor-use (Brooks River) and low visitor-use (Margot Creek) rivers that 

were deemed comparable in flow velocity, suspended solid content, and bear activity (Troyer, 

1980; La Perriere, 1996). We randomly selected 10 50m x 15m plots along both rivers in which 

to sample bear feces. All plots along each river were visited on alternating days from June 

through September, 1999. All brown bear fecal samples were collected at each plot by mixing 

thoroughly with a gloved hand and collecting a random subsample. Factors potentially 

influencing fecal glucocorticoid metabolite levels were recorded: plot number in which the 

sample was found, date of collection, numbers of bears visible from the plot, total number of 

different bears seen each day, numbers of humans visible from the plot, total number of daily new 

visitors registered at Brooks Camp, numbers of vehicles (float planes, boats, automobiles) audible
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or visible from the plot, and daily average times for bears to catch fish (minutes/fish catch).

The dietary composition of each sample was noted during collection and grouped into “grasses,” 

“berries,” or “flesh,” when the sample visibly consisted of only one of these three components, or 

“mixed” if the sample contained a mixture of these three primary diet types. To assess sex-age 

class differences in fecal glucocorticoid metabolite concentrations, we collected samples when 

bears of known sex-age groups (adult male, adult female, subadult, yearling, cub) were observed 

defecating. All fecal samples were stored in a freezer at -20° and remained fi-ozen until analyzed. 

Dietary composition of samples were confirmed in the laboratory by observation while sifting 

feces through a wire mesh.

Fecal Steroid Extraction

Fecal samples were extracted and analyzed at the Center for Wildlife Conservation, WA. 

Fecal samples were lyophilized for 130-140 h at -20° to control for variable water contents of 

diets. Dried feces were then pulverized and a portion of the resulting powder (0.200+0.015 g) was 

weighed and extracted with 4ml 90% methanol. After vortexing for 30 min in a pulsing vortexer, 

the sample was centrifuged (2500g, 20 min, 4°) and the methanol supernatant collected and 

stored frozen (-20°) in labeled cryovials until assayed. The percent extraction efficiency of 

titrated cortisol of grizzly bear feces for this extraction method at the Center for Wildlife 

Conservation is 89.5%. The extract coefficient of variation was determined by running an assay 

in duplicate with 10 unique glucocorticoid extractions from fecal pools of each of the three 

representative diet types (grasses, berries, flesh) and subtracting the respective intra-assay 

coefficient variation.
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Fecal Radioimmunoassay

Fecal samples were analyzed for cortisol metabolites using a double-antibody RIA kit 

for corticosterone (ICN Biomedicals, Inc., Costa Mesa, CA 92626) with high affinities for grizzly 

bear fecal cortisol (Wasser et al., in prep). Samples were analyzed in duplicate. Methanol 

extracted samples were diluted 1:32 in steroid diluent (phosphosaline gelatin buffer with rabbit 

gamma globulins). 5Op! of each methanol extracted sample were pipetted into 12 x 75 mm glass 

tubes, to which lOOpl I corticosterone and lOOpl rabbit antiserum were added. After 

incubation for 2 h (22°-25°), 250pl precipitant solution (mixture of PEG and goat anti-rabbit 

gamma globulins contained in TRIS buffer) were added and the mixture vortexed. The tubes were 

centrifuged (2500g, 20 min, 4°) and decanted, and the resulting precipitate was counted for 2 min 

in a Crystal Multi-Detector Gamma System (United Technologies, Packard). Results were 

compared to standard curves and expressed in ng/g of dry fecal matter.

Radioimmunoassay Validation

An assay validation determines whether the values obtained with the radioimmunoassay 

are accurate and correct. This corticosterone assay was validated by testing assay specificity, 

sensitivity, and sample matrix effects. Specificity, whether the substance measured reacts in a 

similar manner to the analyte of interest, was assessed by testing equality of slopes for assays of 

serial dilutions (1 4-1 2048) of brown bear fecal samples from the three representative diet types 

(grasses, berries, flesh) against the standard. Sensitivity, the minimum amount of analyte which 

can accurately be distinguished, was assessed by extrapolating to dose from the lower 95% 

confidence limit of percent bound at zero dose for these same slopes. Sample matrix interferences 

with the antibody, reagents, or detection system were evaluated by assaying samples containing 

50pl of each of the six standards and 50pl of pooled fecal samples and testing homogeneity of 

regression. Intra- and inter-assay coefficients of variation were assessed by running eight
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duplicates of pools from each o f the three representative diet types in one assay and eight 

duplicates of the pools through different assays, respectively.

Statistical Analysis

Statistical analyses were conducted using Excel 97 (Microsoft, Seattle, WA) and SPSS 

10.0 (SPSS Inc., Chicago, IL). All hormone metabolite concentrations were log transformed to 

normalize the data and to decrease heterogeneity of variances. Effects on log fecal glucocorticoid 

concentrations of five month by location treatments and the covariates people visible/plot, new 

visitors/day, bears visible/plot, total different bears seen/day, vehicles audible or visible/plot, 

fishing time/day, and diet type were analyzed using a nested analysis of covariance (ANCOVA) 

with the random (plot) factor nested within the fixed (treatment) factor. Effects on log fecal 

glucocorticoid concentrations of sex-age class and the covariates new visitors/day, total different 

bears seen/day, fishing time/day, month by location, and diet type were also analyzed using 

ANCOVA. Variable selection was performed using a variety of criteria; F tests of model and 

parameter significance at a=0 .05, lowest MSE, an R‘ value higher than that with a model with 

one fewer variable but only slightly lower than one with an additional variable, highest adjusted 

R , and the lowest difference between Mallows Cp (1973) and p. The need for higher order terms 

of selected variables was determined using residual plots. Multiple comparisons between means 

were made using the Tukey-Kramer procedure (Ott, 1993).

RESULTS

Assay Validation

Serial dilutions of these pooled samples yielded antibody displacement curves parallel to 

that of the standards at a statistical threshold of 0.05, demonstrating specificity Cross-reactivity 

of the ICN-corticosterone antibody was reported by ICN Biomedicals for corticosterone (100%),

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



45
desoxycorticosterone (0.34%), testosterone (0.10%), cortisol (0,05%), aldosterone (0.03%), 

progesterone (0.02%), androstenedione (0.01%), 5a-dihydrotestosterone (0.01%), and less than 

0.01% for 12 other steroids tested. Assay sensitivity at a=0.025 was 15.27 ng/ml extract. 

Homogeneity of regression for additive effects of analyte to a given amount of each sample 

matrix revealed that sample matrix effects did not differ among the three unique diet types at 

a=0.01. The inter-assay coefficients of variation (% SD/Mean, 8 replicates in different RIA’s) for 

pooled samples from each of the three representative diet types were 8.30%; grasses, 10.63%: 

flesh, and 10.51%: berries. Estimates of intra-assay coefficients of variation (% SD/Mean, 8 

replicates from the same pools in one RIA) were 4.95%: grasses, 4.26%: flesh, and 4.86%: 

berries. The extract coefficients of variation (% SD/Mean, 10 replicates from the same pools in 

one RIA) were 0.17%: grasses, 1.95%: flesh, and 1.44%: berries.

Classification Treatments and Covahate Data

Four of the month by location treatments took place during different months along 

Brooks River (June, July, August, September), and only one treatment was observed at Margot 

Creek (August). Sample sizes during these treatments ranged from a high of 324 samples 

collected during July along Brooks River to a low of 29 samples collected during June along 

Brooks River (Table 1). The number of people seen per plot ranged from 0 to 43, while new 

visitors per day ranged from 0 to 264. Vehicular disturbance ranged from 0 to 7 vehicles visible 

or audible per plot. Bear activities varied, as well, with numbers of bears visible per plot ranging 

from 0 to 25, and total different bears seen each day ranging from 0 to 19. Fishing time varied 

between 0.33 and 45 minutes, although during certain periods, bears were never observed 

catching fish. Samples from all of the four diet types were collected, although flesh and berry 

samples were not available for collection during June along Brooks River, and samples of the 

grasses diet type were not available during September along Brooks River (Table 1).
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Treatment Effects on Fecal Glucocorticoid Concentrations

A  total o f 749 samples within plots were collected. The nested ANCOVA did not detect 

any variability among the replicated plots (F(38,694)=1.115, P =0.294). Thus, the values from the 

plots were pooled post hoc for the analysis of the effects of treatments on fecal glucocorticoid 

concentration. A 0.058 increase in from a model with only treatment and a 0.005 decrease 

from a model with treatment, diet, and new visitors/day indicated that both treatment and diet 

type explained variation in log fecal glucocorticoid concentrations and that the variable new 

visitors/day did not explain much of the variation beyond that explained by treatment and diet 

type (R^=0.076). The lowest difference between Mallows Cp (1973) and p, as well as F tests of 

model and parameter significance (a=0.05), concurred with the above variable selection. The 

covariates new visitors/day, people seen/plot, total different bears seen/day, bears seen/plot, 

vehicles audible or visible/plot, fishing time/day did not explain a significant (f>0.05) amount of 

the variation of log glucocorticoid metabolites in feces, given that diet type and treatment were in 

the model In contrast, highest values of adjusted R^and lowest MSE suggested that the variables 

treatment, diet type, bears/plot, and new visitors/day should be selected. However, given the high 

correlation between new visitors/day and treatment (r=-0.847, P<0.0005), and the small size of 

the increase in MSE (0.001) and decrease in adjusted R  ̂(0.001) from this model to the previous 

one, the former set of variables was selected. Higher R , adjusted R , lower MSE, and F tests of 

significance also indicated that the variable treatment was more effective at explaining variability 

in log fecal glucocorticoid concentrations than new visitors/day both with and without diet type in 

the model Inspection of residual plots of the selected variables treatment and diet type revealed 

that an interaction term between treatment and diet type was appropriate, and this was confirmed 

by F tests of significance of the interaction (F(9,732)=7.262, jP<0.0005). R  ̂for the final model 

including treatment, diet type, and an interaction between these two variables was 0.152.
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Significance of main effects of treatments on log fecal cortisol concentrations could not 

be assessed due to the presence of this higher order interaction (Fig. 2). However, estimates of 

mean log fecal glucocorticoid concentrations were calculated at each treatment by diet type 

combination (Table 1), as well as the 95% confidence intervals for the sizes of the differences for 

all pairwise comparisons between these values at a constant diet type or treatment (Fig. 3). Mean 

log fecal glucocorticoids from samples consisting of berries were consistently, but not 

significantly (f> 0  05) lower at each treatment sampled than any other diet, and the point estimate 

for this difference was high for the comparison of berry samples with mixed samples (0.676 log 

ng/g) and grass samples (1.021 log ng/g) during August at Brooks River, although the small 

sample sizes limited precise estimation of this difference. Mean log fecal glucocorticoid 

concentrations were slightly, but not significantly (P>0.05) higher at this diet type for Brooks 

River in September and Margot Creek in August than for Brooks River in both July and August. 

Bears that had eaten flesh had a small, but not statistically significant ( f  >0.05) increase in mean 

log fecal glucocorticoid levels over those that had eaten berries across all treatments tested. These 

levels were slightly, but statistically significantly lower in the flesh diet type for Brooks River in 

July than for both Brooks River during September ( f  <0.01, 95% Cl; 0.041, 0.655) and Margot 

Creek in August (P< 05, 95% Cl: 0.011, 0.450). Samples of the grass diet type had slightly 

higher mean fecal log cortisol concentrations than those that had eaten flesh across all treatments 

sampled and this difference was statistically significant at Brooks River in July (f< 0  01, 95% Cl: 

0.130, 0.564) and both larger and significant along Brooks River in August (f<0.01, 95% Cl:

0.140, 1.613). Mean log concentrations of fecal glucocorticoids in samples of the grass diet type 

showed a slight and not statistically significant (f> 0  05) increase firom Brooks River in June to 

Brooks River in both July and September and Margot Creek in August, and a significant and 

large increase to Brooks River in August ( f  <0.01, 95% Cl: 0.220, 1.638). Samples of mixed 

feces had slightly higher mean log fecal glucocorticoid concentrations than those with grasses for
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Brooks River in June and July and lower levels than grass samples for the remaining 

treatments. Although none of these comparisons were statistically significant (/’>0.05), the point 

estimate for the effect size of the difference was large along Brooks River during June (0.715 log 

ng/g). Log concentrations of fecal glucocorticoids were significantly higher for the mixed diet 

type than the flesh type at Brooks River in July ( f  <0 01, 95% Cl: 0.284, 0.738). Samples along 

Brooks River in September zmd Margot Creek in August of the mixed diet type had slightly lower 

mean log fecal cortisol concentrations than those in the remaining treatments, and this difference 

was statistically significant, although small in effect size, only for the difference in mean log fecal 

cortisol concentrations between Brooks River in July and Margot Creek in August (P<0.05, 95% 

Cl: 0.026, 0.431).

Brooks River in July had lower log fecal cortisol concentrations than Margot Creek in 

August for flesh, berry, and grass samples, and this difference was statistically significant, 

although small in effect size, for samples from the flesh diet type ( f  <0 05, 95% Cl: 0.011,

0.450). This trend reversed significantly for samples of the mixed diet type ( f  <0.05, 95% Cl: 

0.026, 0.431), although the point estimate for the magnitude of the effect size was small (0.228 

log ng/g). Brooks River in July also had lower log fecal glucocorticoid levels than Brooks River 

in September for samples of the flesh and berry diet types, and this effect was significant at the 

flesh diet type (/*<0,01, 95% Cl: 0.041, 0.655) Similar to the relationship between samples from 

Brooks River in July and Margot Creek in August, mean log fecal glucocorticoids during July on 

Brooks River rose slightly, but not significantly over Brooks River during September for the 

mixed diet type ( f  >0 05, 95% Cl: -0.039, 0.542). Likewise, Margot Creek in August was 

characterized by slightly, but not significantly (jP>0.05) lower log fecal glucocorticoid 

concentrations than Brooks River in September at the flesh and berry diet types, and once again 

this comparison reversed for the mixed diet type, although this trend was neither statistically 

significant nor large (f>0.05, 95% Cl: -0.418, 0.464). Fecal samples from Brooks River in June
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and August revealed that the former had lower log fecal cortisol levels than the latter for grass 

samples ( f  <0.01, 95% Cl: 0.220, 1.638), and this effect reversed slightly, but not significantly 

(P>0.05) for the mixed diet type (P>0.05, 95% Cl: -0.697, 0.959).

Sex-Age Patterns in Fecal Glucocorticoid Metabolite Levels

A total of 57 samples from bears of known sex-age class were collected. The ANCOVA 

for the effects of the fixed factor (sex-age group) on log hormone level was analyzed with the 

covariates new visitors/day, different bears seen/day, fishing time/day, month by location of 

collection, and diet type A 0.084 increase in from a model with only diet type and a 0.005 

decrease from a model with diet type, month by location, and new visitors/day indicated that both 

month by location of collection and diet type explained variation in log fecal glucocorticoid 

concentrations and that the variable new visitors/day did not explain much of this variation 

beyond that explained by month by location and diet type (R^=0.187). The lowest difference 

between Mallows Cp (1973) and p, highest adjusted R ,̂ and lowest MSE concurred with the 

above variable selection. However, F tests of parameter significance (a=0 .05) indicated that none 

of the variables tested explained a significant amount of the variation of log glucocorticoid 

metabolites in feces. Thus, model selection criteria used indicated that sex-age did not explain a 

significant amount of the variation of log fecal glucocorticoid concentrations both in a model with 

other covariates, as well as without any measured covariates (F(4,52)=0.257, f =0.904) (Fig. 4). 

Adult males (N=5) and spring cubs (N=12) had the highest mean log fecal cortisol 

concentrations, and subadults showed the lowest levels (N=l 1), although none of these 

differences were statistically significant at a=0.05, nor were the magnitudes of the differences 

large.
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TABLE 1 Mean fecal glucocorticoid concentrations log (ng/g) at each treatment by diet type 
combination ± SEM (N).

Diet Type
Flesh Mixed Berries Grasses

Brooks-June NA“ 2.20910.317 (4) NA“ 1.49410.082 (25)
Brooks-July 1.445+0.045 (64) 1.95610.048 (112) 1.26910.000(1) 1.79210.039 (147)
Brooks-August 1.54610.097(17) 2.07810.064 (13) 1.40210.048 (2) 2.42310.157 (5)
Brooks-September 1.79310.056(34) 1 70510 063 (32) 1.62110.092 (3) NA“
Margot-August 1.67610.031 (136) 1.72810.037 (94) 1.54410.039 (52) 2.03310.184 (8)

NA* - Samples at this treatment by diet type combination were not found.
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DISCUSSION

We validated the use of a RIA for quantifying glucocorticoid metabolites in brown bear 

feces by evaluating assay sensitivity, specificity, and sample matrix effects o f the three 

representative diet types Although cortisol is secreted by the brown bear adrenal gland in greater 

quantities than corticosterone (Wasser et al, in prep), immunoreactivity was detected using a 

RIA for corticosterone, suggesting that the antibody was cross reacting with other, as yet 

unidentiAed, corticoid metabolites To address physiological relevance of this technique, an 

adrenocorticotrophic hormone (ACTH) challenge for brown bears is being performed at the 

Center for Wildlife Conservation (Wasser, pers.comm.).

Human activities did not explain a significant portion of the variation in brown bear fecal 

glucocorticoid concentrations in Katmai National Park and Preserve. Although visitor use did not 

explain as much of the variation in fecal glucocorticoid concentrations as did treatments, the high 

correlation between visitor-use and treatments suggests that the treatments may have accounted 

for some of the effects of humans on these steroid levels. This confounding in our observational 

study prevented us fi"om parsing out the effects of human activities on bear stress.

We observed that the month by location treatments had an effect on brown bear fecal 

glucocorticoid concentrations that differed across the diet types. No other studies of fecal 

glucocorticoids in free-ranging mammals (Creel et a l, 1997; African wild dogs; Strier et al,

1999: muriquis; Wallner et a l, 1999; semiffee-ranging barbary macaques) have addressed such 

interaction, likely because study subjects maintained a consistent diet. However, brown bears in 

the wild rely on a wide range of food sources, from plant matter to terrestrial and marine meat, 

and selection of specific foods changes seasonally (Pritchard and Robbins, 1990; Mattson, 1991; 

Clevenger, 1992; Hilderbrand et al., in press). In addition, intake volume in brown bears has been 

shown to increase in the fall relative to the spring (Nelson et a l, 1980; Hissa, 1997; Hilderbrand 

et al, in press). Dietary variability of brown bears demands a close look at the ways in which
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diet-related patterns of fecal glucocorticoid excretion may confound inferences regarding 

physiological stress.

Dietary fiber has been shown in other studies to impact fecal excretion of steroid 

hormone metabolites. In vegetarian women, a positive correlation between fecal weight and fecal 

excretion of estrogens was found, with the vegetarian diet leading to both increased fecal weight 

and a two to three fold increase in fecal excretion of these hormones (Goldin et al., 1981; Goldin 

et al, 1982). These researchers postulated that increased steroid hormone excretion was caused 

by shielding of estrogens excreted in bile from deconjugation and reabsorption by the greater 

fecal bulk and nonabsorbed fiber in the intestine. Another hypothesis proposed by these 

researchers is that some characteristic of the vegetarian diet may decrease the ability of intestinal 

microflora to deconjugate bilary estrogen, which is necessary for reabsorption. Dietary fiber may 

have a similar influence on glucocorticoid reabsorption. Anderson et al. (1987) demonstrated that 

the ratio of protein to carbohydrate intake influences plasma concentrations of cortisol in humans, 

with lower plasma cortisol levels found during the high carbohydrate diet than the high protein 

diet. These studies suggest that high dietary fiber intake by bears, by ingestion of grasses, for 

example, may increase the concentration of glucocorticoid metabolites recovered in the feces.

This characteristic of high fiber diets may explain the large effect size of the rise in fecal 

glucocorticoid concentrations for samples of the grass diet type over those of the flesh diet type 

along Brooks River during July and August. This rise may have been present in the remaining 

treatments, as well, although the small sample sizes and missing data for some of the diet types 

prevented precise estimation of differences. Alternatively, bears eating grass may have had higher 

stress-induced circulating glucocorticoid concentrations than those eating flesh during July and 

August along Brooks River, as those bears eating grass may have been unable to catch fish, and 

may have experienced frustration as result of their inability to fish successfiilly. The result that 

the berry diet, a relatively high fiber diet (Pritchard and Robbins, 1990), consistently showed the
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lowest fecal glucocorticoid concentrations across all treatments is puzzling in light of the above 

information, and may reflect some aspect of this diet type to increase steroid reabsorption or 

reduce stress. The point estimate of the effect size of the difference between grass and berry diets 

is large, although the estimates were not precise due to small sample sizes collected at the berry 

diet type.

For bears consuming a mixture of flesh and vegetation, fecal glucocorticoid 

concentrations were significantly higher than those just eating flesh at Brooks River in July, 

although the magnitude of this effect was not large. This trend may have held across all 

treatments, other than Brooks River in September, however the effect and sample sizes were too 

small to detect this difference. This trend for flesh to have lower fecal glucocorticoid 

concentrations than that for the mixed diet type may be explained by differences in excretion 

patterns, physiological stress, or by sample matrix effects. The lack of independence of dietary 

effects for mixed diets has been studied primarily with regard to ruminant digestion (Robbins, 

1983) and such associative effects may take place in bears that consume a mixed diet. Facilitation 

of fecal steroid excretion may occur due to the higher percent dietary fiber in these mixed fecal 

samples than flesh samples for reasons described above, thus slightly increasing fecal 

glucocorticoid concentrations in samples with a mixture of flesh and vegetable matter over those 

with merely flesh. Alternatively, those bears eating a mixed diet may have had higher circulating 

concentrations of glucocorticoids than those eating flesh due to unidentified stress associated with 

having to incorporate vegetation into the flesh diet. Sample matrix effects of such mixtures may 

have also influenced the results, as such influences for the mixed diet type were unfortunately not 

assessed and compared to the other three diet types in this study.

Significantly higher fecal glucocorticoid concentrations were found in samples of the 

grass diet type along Brooks River in August over those found in Brooks River in June, and the 

magnitude of this difference was large. Glucocorticoid metabolite increases observed may have
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been due to a rise in circulating glucocorticoids caused by stress or seasonal changes, or due to 

excretory differences at these two treatments. Bears during August along Brooks River may have 

experienced greater stress during this time for reasons not described by any of the other measured 

covariates, such as inability to catch salmon during this time and changes in nutritional value of 

vegetation. However, seasonal effects on circulating glucocorticoids may also help to explain the 

results. Circulating concentrations of glucocorticoids have been shown to increase in two adult 

male black bears in the fall relative to summer (Palumbo et a l, 1980), and such increases have 

been associated with pre-hibematory fattening in true hibemators (Armitage, 1991: yellow- 

bellied marmosets; Boswell et a l, 1994: golden-mantled ground squirrels; Shivatcheva et al,

1998: European ground squirrel). Glucocorticoids enhance seasonal fattening via two modes of 

action. First, glucocorticoids stimulate lipogenic enzymes in the liver, thereby having an anabolic 

effect (Berdanier, 1989), particularly on brown adipose tissue accumulation by hibemators 

(Strack et al, 1995). Second, glucocorticoids have been shown, in rodents, to be necessary for 

hyperphagia and excessive weight gain (King, 1988; Green et a l, 1992), and are thought to 

induce food intake increases via their ability to influence central regulation of appetite (Tataranni 

et al, 1996). Thus, the increase in fecal glucocorticoid concentrations seen along Brooks River in 

August over that in June may have been due to the effects o f pre-denning preparations on 

glucocorticoid levels. The increase in food intake documented in bears prior to denning (Nelson 

et al, 1980; Hissa, 1997; Hilderbrand et a l , in press) itself has the potential to impact the 

concentration of fecal glucocorticoids that are excreted. Increasing consumption accelerates 

gastrointestinal transit time (Palme et a l ,  1996), which may influence digestion (Brody and 

Pelton, 1998) and also reabsorption of steroid hormone, although this likely increases fecal bulk, 

as well. The rise of fecal glucocorticoid levels in Brooks River in August may be partly caused by 

such increases in intake volume, contributing to the magnitude of the effect.
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In contrast to expectations based on high levels of human and bear activities along 

Brooks River in July, samples collected during September at Brooks River and August at Margot 

Creek both showed higher fecal glucocorticoid concentrations than those in Brooks River in July 

for the flesh diet type, although point estimates for these differences were not large. Possible 

reasons for these differences include increases in circulating cortisol levels due to stress-related or 

seasonal effects, or increases in fecal excretion of these steroids. Unmeasured psychological 

stressors may have been present during these treatments. Seasonal effects on circulating 

glucocorticoids may also have occurred, as collection in July occurred before the other two 

months. Such seasonal patterns may be due to the effect of increasing glucocorticoid 

concentrations on pre-denning fattening, as discussed above, or to the following dietary influence. 

Ingested glucocorticoids from dietary sources, such as meat, may influence glucocorticoid 

concentrations in bears due to potential absorption and excretion by the body. The excellent 

bioavailability of oral administration of cortisol has been well documented for rats and humans 

(Chanoine and Junien, 1984; Heazelwood eto/., 1984; Tauber eio/., 1986) and may also be true 

for bears feeding on cortisol-containing flesh. The predominant glucocorticoid in sockeye salmon 

is cortisol (Hane and Robertson, 1959) and a five-fold increase in cortisol concentrations has been 

demonstrated during their journey from the mouth of the river to their spawning grounds (Idler et 

al, 1959), potentially increasing ingested and excreted cortisol of bears feeding on them. Rising 

consumption by bears in the fall (Nelson et a i, 1980; Hissa, 1997; Hilderbrand et a l, in press), 

when salmon are spawning, may compound potential dietary glucocorticoid absorption, as 

increased intake delays and reduces peak absorption of steroids (Barbhaiya and Welling, 1982) 

and also decreases gastrointestinal transit time, as discussed above. It is likely that bears feeding 

on spawning salmon, such as those during September along Brooks River and during August on 

Margot Creek, are ingesting and absorbing higher concentrations of glucocorticoids than those
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feeding on fresh salmon, as in Brooks River in July, and that such increases are partially 

responsible for the rise in fecal glucocorticoid concentrations in these treatments.

Interestingly, this trend reverses for the mixed diet type, with higher fecal cortisol 

concentrations found along Brooks River in July than those collected along Margot Creek in 

August. Such an increase occurs despite potential seasonal effects discussed above. This result 

may be due to unmeasured stressors during this treatment that were masked by effects of the other 

diet types. One such stressor may have been the mating activities that took place early in the 

season, as mating has been associated with an increase in glucocorticoid concentrations for males 

(Howland et a l, 1985; pygmy goats; Elias and Weil, 1989: camels; Borg et a l, 1991 : bulls and 

boars; Borg et al, 1992: rams; Levis et a l, 1995: boars) and an unclear relationship for females 

(Garcia-Villar e ta l, 1985: ewes; Elias and Weil, 1989: camels; Kenagy et al, 1999: degus; 

Schiml and Rissman, 1999: musk shrew). Alternatively, it is likely that some shift in the 

composition of mixed samples over time took place that may have influenced fecal glucocorticoid 

concentrations, as we did not perform detailed analyses of the contents of each sample. For 

example, this mixture may have been composed predominantly of vegetation during June, July, 

and August along Brooks River, when salmon were either impossible or extremely difficult to 

catch. Composition may have shifted in favor of flesh during September along Brooks River and 

August along Margot Creek, when salmon were easy to catch because they were dead or dying 

due to spawning activities. Those feces comprised primarily of high fiber vegetation early in the 

season may have had higher concentrations of glucocorticoid metabolites than those with less 

dietary fiber later in the season, due to potential effects of dietary fiber on steroid excretion 

discussed above. The decreasing size of the difference between mixed and flesh mean log fecal 

glucocorticoid levels from June, July, and August along Brooks River to August along Margot 

Creek and September along Brooks River strengthens this theory.
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Sex-age confounding of these results is not likely, based on information from our 

model selection. Results from this analysis suggest that sex-age class did not explain a significant 

portion of the variation of fecal glucocorticoid concentrations. However, gender differences in 

patterns of glucocorticoid synthesis and secretion have been shown to exist in humans and rats 

(Taylor, 1971; Brooks, 1979) due to sex hormone modifications of the HP A axis (Ganong, 1963; 

Kitay, 1963b; Colby and Kitay, 1972b; Rodier and Kitay, 1974; Bell et al, 1991) and hepatic and 

intestinal metabolism of glucocorticoids (Kitay, 1963a; Eriksson and Gustafsson, 1970; Colby 

and Kitay, 1972a; Colby and Kitay, 1972b; Brooks, 1979). In addition, sex-age class differences 

may be anticipated due to potentially disparate social stressors placed on these different groups. 

Our &ilure to observe differences among these sex-age groups may be due to the small 

magnitude of these differences and our inability to measure these differences precisely due to 

sample size limitations.

We observed that the effect of month by location treatments on brown bear fecal 

glucocorticoid concentrations differed across the diet types. We have no evidence that human 

activities significantly effect bear fecal glucocorticoid levels, although the presence of 

confounding in this observational study limits inferences regarding human-induced stress. Further 

studies are required to elucidate the degree of stress imposed by human activities along Brooks 

River in order to make recommendation for management. Fecal monitoring of glucocorticoids is a 

relatively new technique and it is useful to identify potential pitfalls in this research so that valid 

inferences can be made and future research designs can employ techniques to parse out potential 

confounding factors. Numerous factors are capable of influencing fecal excretion of 

glucocorticoids, some of which are presented in this paper. Only one of these factors is stress. 

Future designs for brown bear stress research using fecal glucocorticoids as an index should take 

into consideration potential complex dietary influences resulting from their varied diet and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



61
changing intake volume. Further studies are required to assess the nature of the relationships 

between dietary intake, temporal variations, and fecal glucocorticoid excretion.
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