
University of Montana University of Montana

ScholarWorks at University of Montana ScholarWorks at University of Montana

Graduate Student Theses, Dissertations, &
Professional Papers Graduate School

1998

Unifying heterogeneous networks with Kerberos Authentication Unifying heterogeneous networks with Kerberos Authentication

Server and multithread implementation of Kerberized FTP for Server and multithread implementation of Kerberized FTP for

Windows 95/NT Windows 95/NT

Chien Lin
The University of Montana

Follow this and additional works at: https://scholarworks.umt.edu/etd

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Lin, Chien, "Unifying heterogeneous networks with Kerberos Authentication Server and multithread
implementation of Kerberized FTP for Windows 95/NT" (1998). Graduate Student Theses, Dissertations, &
Professional Papers. 5532.
https://scholarworks.umt.edu/etd/5532

This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of
Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an
authorized administrator of ScholarWorks at University of Montana. For more information, please contact
scholarworks@mso.umt.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Montana

https://core.ac.uk/display/267571908?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.umt.edu/
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/grad
https://scholarworks.umt.edu/etd?utm_source=scholarworks.umt.edu%2Fetd%2F5532&utm_medium=PDF&utm_campaign=PDFCoverPages
https://goo.gl/forms/s2rGfXOLzz71qgsB2
https://scholarworks.umt.edu/etd/5532?utm_source=scholarworks.umt.edu%2Fetd%2F5532&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@mso.umt.edu

Maureen and Mike
MANSFIELD LIBRARY

The University o f MONTANA

Permission is granted by the author to reproduce this material in its entirety,
provided that this material is used for scholarly purposes and is properly cited in
published works and reports.

* * Please check " Yes" or "No" and provide signature * *

Yes, I grant permission)/_
No, I do not grant permission ___

Author's Signature

Date _____________________

Any copying for commercial purposes or financial gain may be undertaken only with
the author's explicit consent.

Unifying Heterogeneous Networks
with Kerberos Authentication Server
and Multithread Implementation of

Kerberized FTP for Windows 95 /N T

by

Jian Lin

B. S. N ankai Univer sity, 1995

presented in partial fulfillment o f the requirements

for the degree of

Master o f Science

The University o f Montana

May 1998

A pproved b y U T .

t i/i 11
irman

Dean, Graduate School

(o

Date

UMI Number: EP40996

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

UMI EP40996

Published by ProQuest LLC (2014). Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

Lin, Jian, M.S., May 1998 Computer Science

Unifying Heterogeneous Networks with Kerberos Authentication Server and
Multithread Implementation of Kerberized FTP for Windows 95/N T (53 pp.)

/

Commercialization of the Internet has triggered an explosion of development
aimed at maximizing on-line communication. Multi-platform client-server
installations are becoming the enterprise network norm, and market forces are
causing new resources to be driven into networks on an almost daily basis.
Competitive pressures and a growing acceptance of remote management and
telecommuting are fueling the development explosion, and the end is not yet in sight.
This has put network administrators in a challenging position: They are being asked
to provide wide-scale, open access to heterogeneous networks, but to do so without
compromising overall security. The Computer Science Department at the University
of Montana may upgrade some older RS6000 workstations (AIX4.1) with Pentium
PC workstations (Redhat LINUX). So we need a mechanism to unify the
heterogeneous networks (including AIX 4.1, Redhat LINUX, and NT4.0). At the
same time, we want to secure our heterogeneous networks as well as possible. The
Kerberos Authentication Server is a desirable solution to this situation. Kerberos
Authentication Server provides a common security implementation at a very basic
level that prevents the weaknesses of one system from compromising the strengths of
the other.

Director: Alden H. Wijight^/

Contents

1 Introduction.. 1

1.1 Problem Description...1

1.2 Proposed Solution... 3

2 Kerberos Authentication Server...5

2.1 History of Kerberos.. 5

2.2 Authentication, Integrity, Confidentiality, and Authorization............................7

2.3 How Kerberos works..8

2.3.1 Kerberos Encryption..8

2.3.2 What are the Kerberos Tickets...9

2.3.3 How Kerberos Authentication Works... 9

2.3.4 Kerberos Cross-Realm Authentication.. 15

2.4 Kerberos V4 vs. Kerberos V 5...18

2.5 Kerberos Limitations.. 21

3 Implementation of Unification...23

3.1 Possible Implementations... 23

3.1.1 The KDC servers... 23

3.1.2 The Application Servers and Clients..24

3.1.3 Some Issues about the login process..25

3.1.3.1 Local Login to Unix workstation(AIX, Redhat LINUX).....................25

3.1.3.2 Local Logon to NT Workstation/Server... 26

3.1.3.3 Over-the-network telnet from Windows 95/N T to U N IX28

3.1.4 Password Synchronization and User Account Setup....................................30

3.1.5 The Cost of Deploying Kerberos..33

3.2 Two Test Network Models.. 33

4 A Multi-threaded Implementation of Kerberized FTP for Windows 95/N T 36

4.1 Using “Kerberized” Applications..36

4.2 Introduction to GSSAPI...37

4.3 FTP Security Extension... 39

4.3.1 Introduction.. 39

4.3.2 The FTP Security Extension Standard... 40

4.4 Implementation of Kerberized FTP..41

4.4.1 Implementation of the Authentication P a rt.. 42

4.4.2 How to use the Kerberized FT P ...44

5 Conclusions... 49

iv

List of Figures

Figure 2.1. Complete Kerberos V4 Authentication Protocal (simplified).................... 12

Figure 2.2. Complete Kerberos V5 Authentication Protocal (simplified).................... 13

Figure 2.3. Kerberos V4 Inter-realm Authentication Protocol (simplified)................. 15

Figure 2.4. Kerberos V5 Inter-realm Authentication Protocol (simplified)................. 16

Figure 2.5. Kerberos V4 Realm Interconnections... 19

Figure 2.6. Kerberos V5 Hierarchy of Realms...19

Figure 3.1. Interface of ntpasswd... 32

Figure 3.2. Model O n e .. 35

Figure 3.3. Model T w o ... 35

Figure 4.1. Login Authentication State Diagram...43

Figure 4.2. Initial Kerbnet Interface... 44

Figure 4.3. After obtaining Ticket Granting Ticket.. 45

Figure 4.4. GSS_FTP Initial Interface...46

Figure 4.5. After Logon... 47

Figure 4.6. After obtaining FTP service ticket..48

Chapter 1

Introduction

1.1 Problem Description

In recent years, multi-platform distributed computing installations are becoming

more popular. With the use of the Internet becoming more and more extensive, the

networks that were previously private are now connected to the Internet. That

exposes a lot of security problems on an open network.

This has put network administrators in a challenging position: They are being

asked to provide wide-scale, open access to heterogeneous networks and to achieve

higher security. Perhaps the most difficult problem is to unify the UNIX/NT/M AC

networks. UN IX/NT/M AC administrators have the formidable task of

implementing disparate security solutions on fundamentally different operating

systems, then combining those solutions to create uniform access and management

across the entire network. The risk is that the combined solution can yield a result

that is weaker than the weakest link of any single operating system’s security alone.

The CS department of the University of Montana may replace some old AIX

workstations with LINUX workstations. So the CS department needs a mechanism

to maintain a global user account database for the heterogeneous networks (including

1

2

AIX 4.1, LINUX, NT 4.0) At the same time, the CS department wants to secure the

heterogeneous networks as well as possible. After the replacement, the CS

department will have AIX workstations, LINUX workstations, and NT workstations.

The goals are:

• A Global user account database, which means that any user must be able to login

to the same account with the same password on any workstation

• Users should be able to change their passwords from any workstation

• Any system must work with a shadow password system on both AIX and LINUX

• Users should be able to access any workstation over the Internet (for example, a

student or faculty should be able to login to a workstation using a PPP

connection to an ISP from home)

• Unencrypted passwords should not be transferred over the network

• The solution should be relatively easy for the system administrator to maintain

• All of the system administrator’s tasks and as many as possible of other tasks

should be able to be done through an encrypted session

• The solution should be easy for users to use

• The client programs like FTP and TELNET should be easy for CS students to

install on personally-owned PCs

1.2 Proposed Solution

3

The fundamental issue in implementing security for a U N IX /N T environment is

to provide a common security implementation at a very basic level that prevents the

weaknesses of one system from compromising the strengths of the other. The richer

this common implementation is, the more security can be enhanced for both systems.

The Kerberos Authentication Server, which was developed by MIT, IBM and

DEC implements a third-party authentication layer that unifies UNIX and NT user

administration, authentication, and authorization, and provides functional uniformity

for administering.

Cygnus Inc. developed a commercial version of Kerberos, KerbNet, which

contains Kerberos server and client applications for both UNIX and NT. Using a set

of technologies that create a security layer which is implemented and managed

identically on both UNIX and NT systems, KerbNet software was announced to

conform the following U N IX /N T distinctions:

Since a user-ID in N T is completely alien to U N IX and vice-versa, the most difficult

components to unify are the different user authentication models. KerbNet software surmounts this

problem by utilising a single trusted server which other systems access over the network. This trusted

server provides a central repository for usernames and passwords, as well as some access control audit

information.

KerbNet software authenticates users and application servers and provides administrators with a

unified method of managing passwords and access on allplaforms in the system. With enterprise-

4

wide authentication, administrators are assured of the identities of users and servers. With this

assurance, single sign-on can be used system-wide at both network and application levels.

From a user standpoint, the KerbNet interface provides single-login convenience and seamless

access to network resources. From an application-development standpoint, KerbNet software relieves

developers of the burden of having to provide functionality to accommodate new users or groups.

Sind for administrators, KerbNet software provides a uniform interface from which they can see

exactly who users are at any moment and add, delete, or manage identifications and authorisations

system-wide, regardless of the operating system plaform. [14]

Actually from my point of view, KerbNet doesn’t achieve all of the above. If

Kerbnet is really used to unify Unix/NT/M ac environment, there is a password

synchronization problem. Due to the conflict of the NT native authentication

protocol and the Kerberos authentication protocol, in order to achieve single sign-on,

a user’s NT domain password must be the same as the user’s Kerberos password. I

will talk about this in detail in chapter 3.

At a recent developer’s conference, Microsoft announced that NT version 5.0 will

include Kerberos authentication. This endorsement of Kerberos legitimizes the

technology as a foundation for network security. With this initiative, Microsoft will

also be making available Kerberized file and print services for current Windows 95

installations. Microsoft's direction to provide NT Kerberos services and Kerberized

applications ensures that future Windows NT and Windows 95 users will have full

access to Internet standard security services.

Chapter 2

Kerberos Authentication Server

2.1 History of Kerberos

In 1983, MIT, in cooperation with IBM and DEC, started an eight-year project

designed to integrate computers into the university’s undergraduate curriculum. This

project was called Project Athena.

At the beginning, nearly 50 traditional time-sharing minicomputers—Digital

Equipment Corporation’s VAX 11/750 systems running Berkeley 4.2 UNIX, were

used by project Athena. Each VAX had a few terminals; when a student or faculty

member wanted to use a computer, he/she sat down at one of its terminals.

Within a few years, the project received a lot of funds to update equipment.

Hundreds of networked workstations replaced the VAX 11/750s. The project's goal was

to allow any user to sit down at any computer and enjoy fu ll access to his files and to the network

[12].

After the workstations were deployed, the network was accessible from all over

the MIT campus. It was impossible to prevent students (or outside intruders) from

running network spy programs. It was also nearly impossible to prevent the students

from intercepting the root user passwords of the workstations. Even worse, many of

5

the computers on the network were IBM PC/ATs that didn’t have even the basic

operating system security. Something had to he done to protect student files in the networked

environment to the same degree that they were protected in the time-sharing environment [12].

Athena’s ultimate solution to this security problem was Kerberos. Kerberos is an

authentication system that uses DES cryptography to protect sensitive information such as passwords

on an open network. When a user logs in to a workstation running Kerberos, that user is issued a

ticket from the Kerberos Authentication Server. The user’s ticket can only be decrypted with the

user’s password; it contains information necessary to obtain additional tickets, From that point on,

whenever the user wishes to access a network service, an appropriate ticket for that service must be

presented. A s all of the information in the Kerberos tickets is encrypted before it is sent over the

network, the information is not susceptible to eavesdropping or misappropriation [12].

2.2 Authentication, Integrity, Confidentiality,
and Authorization

Neuman and Ts’o [1] give some general definitions:

• A principa l is the party whose identity is verified.

• The verifier is the party who demands assurance of the principal’s identity.

• D ata in teg rity is the assurance that the data received is the same as generated.

• A uthentica tion is the verification of the identity of a party who generated some data, and of

the integrity of the data.

7

• C onfidentia lity is the protection of information from disclosure to those not intended to receive

it.

• A uthoriza tion is the process by which one determines whether a principal is allowed to

perform an operation [1].

For example, when a user telnets to remote machine, the remote machine’s telnetd

daemon is the verifier, the user is the principal, and the user’s identity need to be

verified by the verifier — the remote telnetd daemon. Authorization is usually

performed after the principal has been authenticated. Normally, authentication and

authorization occur at the same time.

The section concentrates on authentication for real-time, interactive services that

are offered on computer networks. The term real-time is used to mean that a client

process is waiting for a response to a query or command so that it can display the

results to the user. This class of services includes remote login, file system reads and

writes, and information retrieval for applications like web browser.

2.3 H ow Kerberos works

A series of encrypted messages is used by the Kerberos Authentication System to

prove to a verifier (server) that a client is running on behalf of a real claimed user.

The remainder of this section describes the Kerberos protocol. The description is

simplified for clarity; additional fields are present in the actual protocol. Readers

8

should consult RFC 1510 [4] for a more thorough description of the Kerberos

protocol.

2.3.1 Kerberos Encryption

Kerberos is an authentication system based on the secret key cryptography. In the

Kerberos Version 4, the only encryption method supported is the data encryption

standard (DES). A property of DES is that if the encrypted data is decrypted with the

same key used to encrypt it, the original data appears. If different encryption keys are

used for encryption and decryption, or if the encrypted data is modified, the result

will be unreadable, and the checksum in the Kerberos message will not match. Due

to the U.S. regulation limiting the export of DES, in Kerberos Version 5, an

encryption algorithm identifier tag is appended on each Kerberos message, which

allows the user to configure Kerberos to use alternative encryption algorithm other

than DES. But so far, all implementations of Kerberos Version 5 use DES. A

standard for a public key version of Kerberos is under consideration.

2.3.2 What are the Kerberos Tickets

• Each service registered in Kerberos Authentication Server (KAS) needs to share a

secret key with the KAS, this secret key is called the server key. For example,

FTP, TELNET and other services need to share a server key with the KAS

respectively.

9

• A Service Granting Ticket (SGT) consists of a set of information that can be

used by the client to apply for service provided by a specific application server.

Normally, the Ticket Granting Service (TGS) issues a SGT. A separate SGT is

needed for different service. For example, a FTP ticket is needed for the FTP

service and a HOST ticket is needed for the TELNET service.

• Ticket Granting Ticket (TGT) is issued by the KAS and used to obtain

multiple SGTs from the TGS later within a limited period (normally 8 hours). The

TGT is kind of like a general ticket for Disney Land. Once a tourist obtains this

general ticket, the tourist can get the access to any service supplied by the Disney

Land within a day.

2.3.3 H ow Kerberos Authentication Works

Under Kerberos Version 5, the user first types in his/her user ID and password.

Then the client sends a message to the KAS that includes the user ID, the name of

the TGS service, the requested TGT expiration time, and a random number, all

encrypted with the user’s password (message 1 in figures 2.1 and 2.2). The client uses

this message to request a TGT for the user represented by itself. When the KAS

receives the message, it finds the claimed user’s password from its password database,

and tries to decrypt the message using the user’s password. If the decryption

succeeds, the KAS assumes that the running client really represents the claimed user.

Then the KAS generates a one-time encryption key known as the session key and a

10

TGT that contains the session key; the TGT is encrypted with the TGS server key

and the session key with other information are encrypted with the user’s password.

This prevents the TGT from being modified and guarantees that only the real user

can extract the session key. The KAS sends the encrypted TGT and session key back

to the client (message 2 in figures 2.1 and 2.2). The client decrypts the encrypted

session key using the user’s password, stores the encrypted TGT and the decrypted

session key into a temporary file, and forgets the user’s password. Next, the client will

use the TGT and session key to obtain the SGTs as needed. Through messages 1 and

2 in figures 2.1 and 2.2, the client obtains the TGT and session key without

transferring the user’s password over the network at all.

When the user wants to use any service, the user needs to obtain a SGT for that

requested service. The client sends the encrypted TGT and a request for that service

which is encrypted with the TGS session key to the TGS (message 3 in figures 2.1

and 2.2). Upon the receipt of the message 3, the TGS decrypts the encrypted TGT

with its server key, extracts the session key and tries to decrypt that request with the

session key. So the TGS knows that the client has requested a SGT for that requested

service. Then the TGS generates another session key which is shared between the

client and the requested service and encrypted with the original TGS session key, and

an SGT for that requested service which contains the session key and is encrypted

with that requested service’s server key. The TGS sends them back to the client

(message 4 in figures 2.1 and 2.2).

11

Upon the receipt of the message 4, the client decrypts the session key with the

original TGS session key, and stores the encrypted SGT and the decrypted SGT

session key into the same temporary file. Then the client sends the message 5 in

figures 2.1 and 2.2 to the requested service. Message 5 consists of two parts:

authenticator and encrypted SGT. The authenticator consists of the current time, a

checksum, and an optional encryption key, all encrypted with the SGT session key.

Upon the receipt of the message 5, the server decrypts the encrypted SGT with its

server key, extracts the SGT session key, and tries to decrypt the authenticator. If the

same key is used to encrypt and to decrypt on the same authenticator, the checksum

in the authenticator will match. So the server can be sure that the client is running to

represent the claimed user, since the client knows the session key. In some cases, the

client wants to verify the identity of the server. If mutual-authentication is required,

the message 6 in figures 2.1 and 2.2 is used.

At this point, the user has access to the service. Later, if the user wants to use

other services, the client will go through from messages 3 and 5 (message 6, if

needed) to obtain the corresponding SGT for the requested service and to get the

access. The user doesn’t need to type his/her password anymore. The single sign-on

is achieved by obtaining the TGT through messages 1 and 2 in figures 2.1 and 2.2.

For further details of the Kerberos Authentication Server, please see [1, 2, 3, 4,

15]-

12

TGS

i

ServerClient

1. Client KAS: C, Tgs, Tim eexp, N
2. KAS -> Client: {KcTgs ,Tgs, Timeexp,N, {Tc>TgJ K Xf,s}Kc
3. Client ^ TGS: {CT, ... }I<c>Tgs, {Tc>Tgs}KTgs, Tim eexp , N
4. TG S Client: {K ^ , V, Tim eexp, N, . . . }Kc,Tgs, {TC,V}KV
5. Client -» Server {CT, CK, K opt, . . . }KCV, {T ,,}K V
6. Server Client {CT,.. . }KCV (optional)
KAS: K erberos Authentication Server
TGS: Ticket Granting Service (usually exists in the same machine with KAS)
C: Client’s name
V: Verifier’s name (Server’s name)
Tgs: T G S’s name
N: A random num ber (used to m atch the authentication response

with the request)
Tim eexp: Requested expiration time for the ticket
C T: Current time
CK: Checksum
K c: U ser’s password
K^: Server key (shared between server and KAS)
K cv: Session key (Client with Server)
K cTgs: Session key (Client with TGS)
T. lg; Ticket to TGS {Kc>Tgs, C, Timecxp, ...}
T c v: Ticket to the Server {Kc v , C, Tim eexp, . ..}

Figure 2.1 C om plete Kerberos V4 A uthenticaion Protocol (sim plified)

13

Client Server

1. Client -> KAS: C , {C, Tgs, T im e ^ , N }K C
2. KAS CHent: {Kc>Tgs,Tgs, Tim eexp,N }K c , {Tc,Tgs}KTgs
3. CUent ^ TGS: {CT, . . . }Kc>Tgs, {TCiTgs}KTgs, Timeexp , N
4. T G S ^ CUent: {Kc>v , V, Tim eexp, N , ... }Kc;rgs, { T J K ,
5. CUent Server {CT, CK, K opt, ... }KC>V, { T ^ K ,
6. Server Client {CT,.. . }KCV (optional)
KAS: K eberos Authentication Server
TGS: Ticket Granting Service (usually exists in the same machine with KAS)
C: CHent5 s name
V: Verifier's name (Server's name)
Tgs: TG S's name
N: A random num ber(used to m atch the authentication response

with the request)
Tim eexp: Requested expiration time for the ticket
CT: Current time
CK: Checksum
K c: User's password
K^: Server key (shared between server and KAS)
K c v: Session key (CHent with Server)
K CjTgs: Session key (CHent with TGS)
T c,Tgs: Ticket to TGS {KcTgs, C, Timeexp, ...}
T c v: Ticket to the Verifier(Server) {Kc v , C, Tim eexp, . ..}

Figure 2.2 C om plete Kerberos Version 5 A uthenticaion Protocol (sim plified)

14

2.3.4 Kerberos Cross-Realm Authentication

A. full-service Kerberos environment consisting of a Kerberos server, a number of clients and a

number of application servers, requires the following:

• The Kerberos server must have the User ID and password of all participating users in its

database. A.H users are registered with Kerberos server.

• The Kerberos server must share a secret key with each server. A.U servers are registered with the

Kerberos server.

Such an environment is referred to as a realm [15].

It’s impractical for networks in different organizations to register in the same

realm. Instead, the networks in different organizations are in different realms.

Sometimes, a user registered in one realm needs to use the server registered in

another realm, which leads to a cross-realm authentication problem. To enable the

cross-realm authentication between two realms, a secret key needs to be generated

and shared between the two realms. In order for a user registered in the local realm to

use a server registered in a remote realm, the user must obtain a SGT for the remote

server. The client uses messages 1 and 2 in figures 2.3 and 2.4 to obtain the TGT for

the remote realm. Then the client uses the TGT for the remote realm to request a

SGT for the remote server from the remote TGS through the messages 3 and 4 from

figures 2.3 and 2.4. As soon as the remote KAS detects that the TGT was issued in a

different realm, it finds the cross-realm key, verifies the validity of the TGT, and then

generates and issues a SGT and session key to the remote client. The authentication

15

of the local client to the remote server is the same as that in the same realm. For

further details of Kerberos cross-realm authentication, please see [1, 3].

remote

Server,Clientlocal remote

1. Client TG Sloca]: {Ac}Kc>tgs, tgsiem , {Tctgs}K,gs
2. TG Sloca, Client: {K^jtgsrem,{Tc,tgsrm}Ktgsrem}K c>tgs

3. Client TG Siemote: {Ac}K Cjtgsrem, {Tc,tgsrcm}Ktgsrem, Srem

4- T G Sremote Client: { K c > w {Tc,srem}Ksrem}Kc,,gs„m
5. CUent ServetrcmoK: {Ac} K c > w {Tc,srem }K S[em
6. Serverremote -> CUent: {A J K c,Srem (optional)
A c: A uthenticator (different for different message)
TG SlocaI: Local Ticket Granting Service
T G Sremote. Remote Ticket Granting Service
tgs: T G Slocal’s name
tgsrem : TG Slemote’s name
K c>t : Session key (Client with TG Sloca])
K^gSrem: Session key(CUent with TG Sremote)
Kc,srem • Session key (Client with Remote Server)
T c,tgs: Ticket to TG Slocal
T c .tg w Ticket to TG Slemote
K ^ : TG Slocal key known only by TG Sloca]
Krgsrem: Inter-realm key shared with TG Slocal and T G Sremote
K Srem: Remote Server key shared with TG Sremote

Figure 2.3 Kerberos V4 Inter-realm A uthenticaion Protocol (simplified)

16

local remote

Server,remote

1. Client -> TG Slncal: { A JK ctgs, tgsrera , { T ^ J K ^
2. T G S]oc,| -> Client: {Kc,tgstem }Kc,tgs, {Tc,tgsrern }Ktgs,ern
3. C lie n t-^ TG Sremot(,: {AJIC;,tgs[ern, {’l'c,tgs[em} Ktgsr,.rn, Sr,.,
4. T G Stemot(, Client: {K c,s[em}Kc,tgsrera, {Tc,srera }K S[em

5. C H e n f> Servertemote:{A J Kc,srem, {Tc,stem}Kstem
6. Serverremote CHent: {A J K c,srera (optional)
A c: A uthenticator (different for different message)
TG Slocal: Local Ticket Granting Service
TG Sremote. Remote Ticket Granting Service
tgs: TG Slocal’s name
tgs rem : T GSremoK’s name
K c tgs: Session key (Client with TG Slocal)
K c,tgsrem: Session key(Client with TG Sremote)
K c,srem: Session key (Client with Remote Server)
T c,tgs: Ticket to TG Slocal
Tc,tgsfem: Ticket to T G Sremotc

T G Slocalkey known only by T G Slocal
I<Ctgsrern: Inter-realm key shared with TG Slocal and TG Sremote
Ksrem: Remote Server key shared with TG Sremote

Figure 2.4 Kerberos V5 Inter-realm A uthenticaion Protocol (sim plified)

17

2.4 Kerberos Version 4 vs. Kerberos Version 5

Initial login:

With Kerberos Version 4, after a user types his/her ID, the client sends a message

to the Kerberos Authentication Server (KAS) that includes the user’s ID, a request for a

TGT, and other information. The KAS checks its database, finds the user’s password,

sends back a credential that is encrypted with the user’s password. The client then

prompts the user to type in his/her password and finally tries to decrypt the

encrypted credential with the password that the user has typed. If the decryption is

successful, the client then forgets the user’s password, and stores the credential into a

temporary file. If the decryption fails, the client knows that the user typed the wrong

password and gives the user a chance to try again. This scenario makes Kerberos

Version 4 susceptible to offline password-guessing attacks. An attacker could simply

modify the login program, ask a KAS for a TGT for a particular user, then copy it

into a file, then try to decrypt that ticket with every word in the dictionary. For

example, an attacker might write a kerberized “kinit” for W in95/NT that obtains the

TGT, but this “kinit” simply stores the encrypted TGT into a file. Since the PC on

which the attacker is running the “kinit” is entirely under the control of the attacker,

the attacker can apply a password-guessing process at his/her leisure.

With Kerberos Version 5, the client doesn’t contact the KAS until the user has

typed his/her password. Then the client sends a message to the KAS that consists of

the user’s ID, a request for a TGT, a random number and etc., all encrypted with the

18

user’s password. The KAS looks up the user’s ID, finds his/her password, and tries

to decrypt the message. If the decryption succeeds, the KAS then creates a credential

that is encrypted with the user’s password, and sends it back to the user. The KAS

can be set up to allow a fixed number of login attempts. This will effectively prevent

a password-guessing process.

Inter-realm Authentication:

With Kereros Version 4, in order to connect n realms completely, 1) key

exchanges are required (see figure 2.5). Even with only a few cooperating realms, the

assignment and management of the inter-realm keys is an expensive task.

With Version 5, a hierarchy based on the name of the realm is supported (see

figure 2.6). A source realm can communicate directly with a destination realm if it

shares an inter-realm key direcdy with the destination realm. Or if it shares a key with

an intermediate realm that shares an inter-realm key with the destination realm, the

source realm can communicate with the destination realm through the intermediate

realm too. Each realm needs to share a unique inter-realm key with its parent node

and each of its child nodes. This arrangement reduces the number of key exchanges

to 0(log(n)).

For further details, please see [1, 3].

CS.UMT.EDU

MIT.EDUUMT.EDU

BERKELEY.EDUEDU

Figure 2.5: Kerberos Y4 realm interconnections

Shortcut Link

BERICELEY.EDU

CS.UMT.EDU

UMT.EDU

EDU

MIT.EDU

Figure 2.6: Kerberos V5 hierarchy o f realms

2.5 Kerberos Limitations

20

Kerberos is a good solution to solve the security problems on an open network,

but it still has several shortcomings:

• E very n etw ork service m u st be individually m o d ified fo r use w ith Kerberos

[12]. Due to the design of the Kerberos, each application must be modified to

use Kerberos for authentication. The process of modifying an application is called

Kerberizing the application. To Kerberize an application, the application’s source

code is required.

• Kerberos doesn ft w ork w ell in a tim e-sharing environm ent Kerberos is designed

for an environment in which there is one user per workstation. Because of the difficulty of sharing

data between different processes running on the same U N IX computer, Kerberos keeps tickets in

the “/ tmp ” director)). I f a user is sharing the computer with several other people, it is possible

that the user's tickets can be stolen, that is, copied by an attacker, stolen tickets can then be used

to obtain fraudulent service [12]. This problem is much worse for a shared PC or Mac

running an insecure operating system like Windows 95/98 or MacOS. If an

attacker has stolen other user’s tickets and the attacker is familiar with Kerberos

API or GSSAPI and the Kerberizing process, the attacker can write a program to

use that user’s stolen ticket to impersonate that user.

• Kerberos requires a secure Kerberos server. By design, Kerberos requires that there

be a secure central server that maintains the master password database. To ensure security, the

Kerberos server should be run on a secure dedicated machine [12]. Any unnecessary services

21

(such as POP, FTP and R-commands daemons) should be shut down. The

Kerberos server must be kept in a physically secure place.

• Kerberos requires a continuously available Kerberos server [12]. If the

Kerberos Authentication Server goes down, the whole Kerberos network can not

be used. So normally, a backup Kerberos Authentication Server called slave KDC

is needed.

• K erberos stores all passw ords encrypted w ith a single k e y [12]. All passwords

stored in the Kerberos server are encrypted with the server’s master key, which

resides on the same hard disk as the encrypted passwords. This means that, in

case the Kerberos server is compromised, all user passwords are compromised.

• Kerberos does n o t p ro tec t against m odifications to system softw are (Trojan

horses). Kerberos does not have the computer authenticate itself to the user; so there is no way

for a user sitting at a computer to determine whether the computer has been compromised [12]. A

knowledgeable attacker can easily exploit this weakness. For example, an attacker

could simply modify a workstation’s system login program which copies every

username/password combination typed into a file. Later, the attacker can

impersonate these users using their passwords.

• Kerberos m a y resu lt in a cascading loss o f trust. A.notherproblem with Kerberos is

that i f a server password or a user password is broken or otherwise disclosed, it is possible for an

eavesdropper to use that password to decrypt other tickets and use this information to spoof

servers and users [12].

Kerberos is a workable system based on the secret key cryptography for network

security, and it is widely used. A system based on public key cryptography would

probably be simpler and perhaps more secure. A more secure authentication system

would combine:

1. Something that a user knows (e.g. password).

2. Something that a user has (e.g. a smart card or a token).

3. Something that a user is (e.g. fingerprint, face recognition, etc.).

Chapter 3

Implementation of Unification

3.1 Possible Implementations

3.1.1 The KDC servers

To unify the heterogeneous networks (AIX4.1, Redhat LINUX, and NT 4.0)

using a Kerberos Authentication server, a master KDC and a slave KDC are needed.

Because the more other services that are run on the KDCs, the greater the possibility

is that the KDCs could be compromised, the KDCs should be dedicated servers

which are only used for authentication. The CS department at the University of

Montana doesn’t want to spend a lot of money on these servers, since the CS

department is not very big and the authentication workload is not very heavy. So a

solution might be to use two Intel486 LINUX machines as KDCs. That should be

enough for the CS department. The KDCs must be located in a physically secure

place. If the KDCs are compromised, the whole network will be compromised.

When a user changes his/her Kerberos password, only the master KDC’s password

database has been updated. Any changes of password only occur on master KDC. In

23

order to let the slave KDC know about password changes, a cron job needs to be set

up to make the master KDC to periodically propagate the password database to the

slave KDC. Another cron job also needs to be set up, which periodically propagates

the current time from the KDC to other machines. If the time difference (clockskew)

between clients and KDC is larger than 5 minutes, authentication will fail, even with

the correct password.

3.1.2 The Application Servers and Clients

All AIX/LINUX machines except for the KDCs can be both application servers

and clients. To use Kerberos authentication server, the Kerberized daemons and

clients must replace the existing daemons and clients. The Kerberized daemons

include telnetd, ftpd, klogind, kshd..., the Kerberized clients include telnet, ftp,

klogin, ksh, kinit, kdestroy, kpasswd... A configuration file “krb5.conf” also needs to

be copied into “/e tc” subdirectory. Actually, the same copy of “krb5.conf’ is shared

among all the machines. To obtain a Ticket Granting Ticket (TGT) implicitly when a

user logs in, the regular login must be replaced with the Kerberized login — “klogin”.

So when a user logs in, the user has obtained a TGT implicitly, the user doesn’t need

to use “kinit” to get it explicitly. When the user logs out, all his/her tickets need to be

deleted using “kdestroy”. In case that the user forgets to do this, “kdestroy” should

25

be added to his/her “.logout” file. The user should lock the screen, if he/she leaves

his/her workstation without logging out.

3.1.3 Some Issues about the login process

3.1.3.1 Local Login to U nix workstation(AIX, Redhat L IN U X)

After the Kerberos has been deployed on the CS department’s LAN, the regular

login has been replaced with the Kerberized login— “klogin”. When a user sits in

front of any UNIX (AIX, Redhat LINUX) workstation and wants to login, the user

types in his/her login ID and Kerberos password. The Kerberized login — “klogin” —

then encrypts an authenticator using his/her Kerberos password and transfers the

authenticator (including the service name TGS —Ticket Granting Service, and a time

stamp) and his/her login ID to the KDC. The KDC knows the user’s Kerberos

password, so the KDC tries to decrypt the authenticator. If the KDC succeeds, the

KDC sends back a TGT and “klogin” lets the user login. (A more detailed

description of the process of obtaining TGT is in chapter 2) If the login does not

succeed, “klogin” will do the same thing as the regular login program namely

compare the password the user typed with his/her local password stored in

“/etc/passw d” (or “/etc/shadow”, if a shadow-password mechanism is used). If the

password matches, “klogin” lets the user login without obtaining the TGT. If the user

still wants to obtain the TGT, the user has to use “kinit” and types in the correct

26

Kerberos password to get it. After the user has the TGT, the user can use any

Kerberized service of the heterogeneous network without typing a password. It’s very

convenient and secure.

3.1.3.2 Local L ogon to N T W orkstation/Server

Cygnus Solutions Inc. provides a freeware Kerberos package for NT, which

includes the KDC service, the Kadmin service, and the Kerberized client softwares

such as kinit, kpasswd, kerbnet, ktelnet and gina. The KDC service and Kadmin

service can only run on NT server/workstation, the Kerberized client software can

run on Windows 95 or Windows NT server/workstation. So an NT machine can be

configured to be a KDC.

The “gina” package is login software that can replace the regular NT login

software. There are two installation options for “gina”: Kerberos authentication

required, and Kerberos authentication not required.

• Kerberos authentication not required

If this option is chosen, When a user logs on, first, “gina” will check the password

the user typed in with the Windows NT PDC (Primary Domain Controller) to see if

it matches the password stored in the PDC’s password database. If it does not match,

“gina” gives the user a message box that says something like “password wrong, retry”

27

and won’t let the user logon. If the password matches, “gina” will try to obtain a

TGT from the KDC using the password the user typed in. If the password the user

typed in is the same as his/her Kerberos password, “gina” will obtain a TGT

implicidy for the user and let the user logon. If the password the user typed is not the

same as his/her Kerberos password, but is same as his/her NT domain password,

“gina” will give the user a message box that says something like “Kerberos password

wrong and can not obtain TGT” and let the user logon without obtaining the TGT.

• Kerberos authentication required

If this option is chosen, the process is almost the same as the above scenario,

except that when the user’s password matches the PDC’s stored password but

doesn’t match his/her Kerberos password, “gina” still gives the user a message box

that says something like “Kerberos password wrong, retry” and won’t let the user

logon. Thus, in this case, the user’s password in the Windows NT PDC must match

the Kerberos password to be able to login NT workstation or server.

3.1.3.3 Over-the-network telnet from W indows 9 5 /N T to U N IX

(AIX, Redhat LIN U X)

• Using non-Kerberized telnet

If the application servers have been configured so that they can accept non-

Kerberized clients, then a user can use non-Kerberized client software such as regular

TELNET, FTP, and etc. Due to the large existing base of non-Kerberized

applications, normally, the application servers need to be configured to accept non-

28

Kerberized client applications. Suppose a user uses a non-Kerberized application,

such as regular telnet, to telnet to the remote Kerberos-enhanced AIX or LINUX

workstation. When the user types in his/her login ID and password, the user’s

password will be transferred to the remote machine in clear text. So if someone is

eavesdropping on the Internet or CS department Ethernet, he/she can catch the

user’s password and impersonate the user later. When the user’s login ID and

password have been transferred to the remote machine’s Kerberized login software,

the process of obtaining the TGT is same as local login. If the user wants to use other

services in the Kerberos realm from the CS department workstation, the user doesn’t

need to type his/her password anymore, since the user has a TGT for the whole

Kerberos realm. That means if the user uses a regular telnet client to access a

Kerberos-enhanced network, then it’s safer than to use a regular telnet to access a

non-Kerberos-enhanced network. For example, assume that Kerberos has been

deployed on the CS department’s LAN. When a user uses a regular telnet client to

telnet to “garnet”, the user’s password will be transferred over the Internet in clear

text once. Then the user has a TGT that resides on “garnet”. Then if the user wants

to telnet to other machines from “garnet”, say, “ninepipe”, the user doesn’t need to

type his/her password again. The user only needs to type “telnet ninepipe”, the user

will be logged in without supplying a password, since the user is using the Kerberized

telnet client that resides in “garnet”. If the CS department’s LAN is not Kerberos-

enhanced, then when the user telnets to “garnet”, the user’s password will be

transferred over the Internet once. When the user wants to telnet to “ninepipe”, the

29

user has to type his/her password again, so the user’s password will be transferred

over the Internet another time. Although it’s better, transferring the password in clear

text one time is enough for eavesdropper to catch it. So I encourage people to use

Kerberized client applications. Cygnus solution Inc. has a free package — Kerbnet

that includes kpasswd, kinit, ktelnet for Windows 95/NT. I wrote a GUI Kerberized

FTP for Windows 95/NT.

• Using Kerberized telnet

To use Kerberized telnet on Windows 95/NT, “kinit” or “kerbnet” (GUI

software which combines “kinit” and “kpasswd” together) is needed to obtain the

TGT. Next, the Kerberized telnet can be launched which will automatically log the

user in.

3.1.4 Password Synchronization and User Account Setup

The scenarios for logon to NT domain and for login to UNIX (AIX, LINUX)

locally are quite different.

When a user logs in to UNIX, “klogin” will first try to match the password the

user typed in with his/her Kerberos password, if the match succeeds, “klogin” will let

the user login. If it does not succeed, “klogin” works like regular login that checks the

password the user typed in with his/her local password. If it matches, “klogin” lets

the user login, if not, the user has to retry.

30

When the user logs on to an NT domain, “gina” will first try to match the

password the user typed in with his/her NT domain password. If the password does

not match, “gina” let the user retry. If the password does match, “gina” will try to

obtain the TGT using the password the user typed in. If succeed, the user will logon

and get the TGT. If not, depending on which installation option of “gina” is chosen,

either the user can logon without obtaining the TGT or the user cannot logon with a

chance to try again.

This leads to an important issue on setting up user accounts and password

synchronization. Under the UNIX login scenario, the user only needs to know the

Kerberos password, the local password can be generated randomly and the user

doesn’t need to know it. When users change their passwords, they only need to

change the Kerberos password; the local passwords will never be changed. But on

NT, due to the “gina” logon scenario, if the user wants to achieve single logon, the

user’s NT domain password and Kerberos password must be kept the same.

For example, if I’m the system administrator, I need to open a user account for a

user, Joe. I can setup an user account “joe” on a workstation and generate a random

password for “joe” and propagate this local account to every UNIX workstation.

Then I need to setup a Kerberos user account “joe” for him and generate a Kerberos

password for “joe”, and Joe needs to know this Kerberos password. Then I setup an

NT domain user account “joe” for Joe, where the NT domain password is the same

as his Kerberos password. I also need to guarantee that the login ID is same for the

N T domain and Kerberos.

31

When Joe wants to change his password, if he changes his password on UNIX, he

only needs to change his Kerberos password. After he is done, he might go to an NT

machine and want to logon, he can either logon without obtaining the TGT or simply

can’t logon depending on the “gina” installation option. So a mechanism is needed to

synchronize NT domain password changes and Kerberos password changes. I wrote

a Win32 GUI program “ntpasswd” which first changes the NT domain password and

then makes a system call to call “kpasswd” to change the Kerberos password.

“ntpasswd” first prompts the user to input his/her old password and new

password and confirmed new password, then calls the NetUserChangePasswordQ

API function to change the NT domain password. It then detects the environment

variables fHOMEDRIVE, $HOMEDIR, $ICPASSWD_PATH, and creates a

temporary file in the user’s home directory. It outputs the user’s old password and

new password and confirmed new password to this file, then through

$>I<PASSWD_PATH finds “kpasswd.exe”, and makes a system call like “kpasswd <

tmpfilename”, and then deletes the temporary file. Normally, in an NT environment,

each regular user may not have write permission on any directory except his/her own

home directory, that’s why I detect $HOMEDRIVE and $>HOMEDIR. This

guarantees that the creation of the temporary file will be successful. Normally, only

the user has full control on his/her home directory; other users, even the

administrator, don’t have read rights on the user’s home directory. Because the

temporary file contains the user’s password in clear text, if the system is setup with

home directories owned by users, putting this temporary file into the user’s home

32

directory is safe. This means that after Kerberos has been deployed, if a user wants to

change his/her password, and doesn’t want to change it twice (once for Kerberos,

once for NT domain), the user needs to go to an NT workstation and uses

“ntpasswd” to change his/her password. See figure 3.1 for the interface of

“ntpasswd”.

P 3 B [5 ! I ?

User Name: |Uin

r * ‘ ■ w “ f '
... ■ 1 , .><

Old Password:
' '

T ' .

I x x x x x x x x x

New Password; j x x x x x x x

• ■ : . j . -

Confirm New Password: j

’
■ • - - ,s' . . . : > g f® ' ; ■

OK J Cancel | About j j

//■ \ , y " , „ /"< / /J 'l// j

Figure 3.1 Interface of ntpasswd

33

3.1.5 The Cost of Deploying Kerberos

The source code and executable of Kerberos on UNIX is freely available from

MIT. Cygnus Solution Inc. has an implementation of Kerberos on NT called

KerbNet that is also freely downloadable. KerbNet contains a Kerberized telnet

client for Windows 95/NT. I wrote a Kerberized FTP client for Windows 95/NT.

I’m going to make it a freeware. After the Kerberos has been deployed, it should be

fairly easy for users to use. It’s also fairly easy for the CS students to download, install

and use the Kerberized client software (such as Kerberized TELNET and FTP) on

their personally owned PCs. Thus, all of the software is free.

3.2 Two Test Network Models

I have setup two test network models.

• Model one

I used a Pentium Pro 200 machine (“dillon”) running Redhat LINUX 2.0 as a

master KDC, a Pentium 120 machine (“glasgow”) running Redhat LINUX 2.0 as an

application server and client (see figure 3.2).

I installed MIT Kerberos Version 5 on “dillon”. I downloaded the source code of

MIT Kerberos Version 5 and compiled it to get the executable, since MIT only

provides the source code for Kerberos Version 5. I installed Kerbnet Kerberos from

34

Cygnus solutions Inc. on “glasgow”. I installed MIT Kerberos Version 5 on

“glendive”.

• Model two

I used a IBM PowerStation 220 machine — “gaesl” — running AIX4.1 as master

KDC, a Pentium 200 machine — “dillon” — which is installed Redhat LINUX 2.0 as

slave KDC and application server, a Pentium 120 machine — “glasgow” — which is

installed Windows NT server 4.0 as client (see figure 3.3).

I installed Kerbnet Kerberos for AIX on “gaesl” . I installed MIT Kerberos

Version 5 into “dillon”. I installed Kerbnet Kerberos for NT into “glasgow”.

Both test network models met the goals I mentioned in Chapter 1, except for goal

#2 — “Users should be able to change their password from any workstation”. The

MIT Kerberos and Cygnus Kerberos work perfectly together. Actually, Cygnus just

uses the MIT Kerberos source code and modifies it to be easy-to-install and more

user-friendly. Cygnus also developed an NT Kerberos version. Both networks can

accept both non-Kerberized clients and Kerberized clients. This will guarantee that a

lot of non-Kerberized clients, especially in a Windows or Mac environment will still

work. I tested ntpasswd on “glasgow”, it works perfectly. It guarantees the

synchronization of NT domain password change and Kerberos password change.

35

Hub

Glendive
Application

server

Dillon
Master KDC

Glasgow
Slave KDC

Figure 3.2 Model One

Hub

Dillon
Slave KDC

Glagsow
Client

Gaesl
Master KDC

Figure 3.3 Model Two

Chapter 4

A Multi-threaded Implementation of
Kerberized FTP for Windows 95 /N T

4.1 Using “Kerberized” Applications

Client/server applications must be modified to use Kerberos for authentication.

The process of modifying the applications to make it Kerberos-aware is called

Kerberizing. Kerberizing an application is the most difficult part of installing

Kerberos. Fortunately, the MIT Kerberos implementation includes most of the

popular applications for Unix (the Berkeley R-commands, telnet, and POP) that have

been Kerberized. Other applications have been Kerberized by vendors and are

included in their supported products, such as Cygnus Solutions Inc.’s KerbNet

System. The availability of Kerberized applications will improve with time.

It is generally necessary to modify the client/server protocol when Kerberizing an

application, unless the protocol designer has already made provisions for an

authentication exchange.

36

37

More recent implementations of Kerberos provide a Generic Security Services

Application Programmer Interface (GSSAPI). The GSSAPI provides a standard

programming interface that is authentication mechanism independent. Using GSSAPI allows the

application programmer to design an application and application protocol which can use alternative

different authentication technologies, including Kerberos [6]. The use of the GSSAPI in

application programs is recommended wherever possible.

Because it is a generic authentication interface, the GSSAPI does not support all

o f the functionality provided by Kerberos. For example, Kerberos’s notion of user-

to-user authentication is not currently supported. Hence, an application programmer

will not always be able to use the GSSAPI in all cases, and may have to use the

Kerberos API in order to use some features.

4.2 Introduction to GSSAPI

The GSSAPI provides generic security services to its callers, and is intended for

implementation on top of alternative underlying authentication protocols. Typically,

GSSAPI callers will be application protocols into which security enhancements are

integrated through invocation of services provided by the GSSAPI. The GSSAPI

allows a caller application to authenticate a principal identity associated with a peer

application, to delegate rights to a peer, and to apply security services such as

confidentiality and integrity on a per-message basis.

38

There are four stages to using the GSSAPI:

• The application acquires a set of credentials with which it may prove its identity to other

processes. The application's credentials vouch for its global identity, which may or may not be

related to the local username under which it is running

• A pair of communicating applications establish a joint security context using their credentials.

The security context is a pair of GSSAPI data structures that contain shared state information,

which is required in order that per-message security services may be provided. A s part of the

establishment of a security context, the context initiator is authenticated to the responder, and

may require that the responder is authenticated in turn. The initiator may optionally give the

responder the right to initiate further security contexts. This transfer of rights is termed

delegation, and is achieved by creating a set of credentials, similar to those used by the originating

application, but which may be used by the responder. To establish and maintain the shared

information that makes up the security context, certain GSSAPI calls will return a token data

structure, which is a cryptographically protected opaque data type. The caller of such a GSSAPI

routine is responsible for transferring the token to the peer application, which should then pass it

to a corresponding GSSAPI routine which will decode it and extract the information.

• Per-message services are invoked to apply either:

(a), integrity and data origin authentication, or

(b). confidentiality, integrity and data origin authentication to application data, which are treated

by GSSAPI as arbitrary octet-strings. The application transmitting a message that it wishes to

protect will call the appropriate GSSAPI routine (sign or seal) to apply protection, specifying the

appropriate security context, and send the result to the receiving application. The receiver will

39

pass the received data to the corresponding decoding routine (verify or unseal) to remove the

protection and validate the data.

• A t the completion of a communications session (which may extend across several connections), the

peer applications call GSSAPI routines to delete the security context. Multiple contexts may

also he used (either successively or simultaneously) within a single communications association

[6].

4.3 FTP Security Extension

4.3.1 Introduction

The File Transfer Protocol (FTP) currently defined in STD 9, RFC 959[7] uses

usernames and passwords passed in clear text to authenticate clients to servers (via

the USER and PASS commands), except for services such as “anonymous” FTP

archives. This leads to a security risk that passwords can be stolen through

monitoring of local and wide-area networks.

Except for the problem of authenticating users in a secure manner, there is also

the problem of authenticating servers, protecting sensitive data and/or verifying its

integrity. An attacker may be able to access valuable or sensitive data simply by

monitoring a network. An active attacker may also initiate spurious file transfers to

and from a site of the attacker’s choice, and may invoke other commands on the

40

server. FTP does not currendy have any provision for the encryption or verification

of the authenticity of commands, replies, or transferred data.

4.3.2 The FTP Security Extension Standard

FTP Security Extension Standard addresses (adapted from [8], RFC 2228):

1. How to authenticate users to servers in a secure manner.

2. How to protect command channel.

Command MIC is used to protect the integrity of the command channel (Other

people can not modify the command channel); Command ENC is used to

protect the privacy of the command channel (Other people can not see the

contents o f the command channel).

3. How to protect data channel.

Command PROT and PBSZ are used to protect the data channel.

The following commands are optional, but dependent on each other. They are

extensions to the FTP Access Control Commands.

AUTH (Authentication/Security Mechanism)
AD AT (Authentication/Security Data)
PROT (Data Channel Protection Level)
PBSZ (Protection Buffer Size)
CCC (Clear Command Channel)
MIC (Integrity Protected Command)
CONF (Confidentiality Protected Command)
ENC (Privacy Protected Command)
-— from [8]

41

In my Kerberized FTP, I implemented AUTH, AD AT (for authentication), MIC

and ENC (for protection of control channel).

4.4 Implementation of Kerberized FTP

The Kerberized FTP client is a GUI, multithreaded application for Windows 95

and Windows NT). This FTP client implements four new FTP extension commands

(AUTH, ADAT, MIC, ENC) and all the basic regular FTP commands (such as

SEND, RECV, USER, LIST, etc.).

Some features:

• Can connect to Kerberized FTP servers and regular FTP servers: Due to the

large base of existing regular FTP server, the Kerberized FTP client can connect

to both Kerberized FTP servers and regular FTP servers.

• Multithreaded: When sending, receiving, and listing files, a new thread will be

launched to guarantee that the transfer of large amount of data won’t block the

GUI interface. So you can browse the local file system, see online help and

“about” information while transferring a big file or a large directory.

• Uses the Registry to maintain most recently connected hosts: This uses the

system registry database to store the most recently connected host names. So next

time, when you want to connect to the host which has been connected before,

you can just choose its name from the “host” droplist.

42

• Display local and remote file system visually: This uses two listview windows

to display local and remote file system visually. You can browse local and remote

file systems just like “WS-FTP”.

• Indicate the progress of file transfer: This uses a progress bar to indicate the

progress of file transfer visually and how much data has been transferred.

• Beep to indicate file transfer finished: After a file transfer is done, a beep will

remind you that file transfer is done.

4.4.1 Im plem entation o f the Authentication Part

To Kerberize an application, the most important part is the authentication part.

The authentication part must be rewritten to support whatever authentication

mechanism you want to support. Using GSSAPI will make this job a little easier but

cannot achieve all the functionality provided by the underlying authentication

protocol. But in general, GSSAPI will be sufficient for most situations. I used

GSSAPI to write my Kerberized FTP client.

The following is the state transition diagram for the authentication part:

Two common paths:

• For non-Kerberized FTP server (fo llow ---------------► path).

• For Kerberized FTP server (fo llo w ----------------> path).

USER

AUTH

V I 234

334

ADAT

4yz, 5yz 335

235

USER

2yz

PASS

Authenticated

Need Password

Authorized Login

Need Security Data

U nauthenticate d
(new connection)

Figure 4.1: Login Authentication State Diagram

44

4.4.2 H ow to use the Kerberized FTP

This GUI Kerberized FTP client supports both Kerberized FTP server and

regular FTP server. To use the F IT to open a connection to remote Kerberized FTP

server, you have to obtain a Ticket Granting Ticket first using Kerbnet System

explicitly, or if your operating system is Windows NT, you can obtain a Ticket

Granting Ticket through the program “gina” which replaces the regular logon and

obtains the ticket for you implicitly.

Here is how to use Kerbnet System to obtain Ticket Granting 'Ticket.

• After double clicking Kerbnet icon you g e t:

KerhNet

End Time Ticket

No Tickets

C h a n g e P a s s w o rd

Figure 4.2. Initial Kerbnet Interface

45

• After typing UserlD, password, realm (only needed the very first time you use

Kerbnet) and then click login button, you get:

■x

File H e lp

Start Time End Time Ticket

Mar 10 09:13 Mar 10 19:13 krbtgt/CS.UMT.EDU@CS.UMT.EDU (FPI) B

UMT.EDU
■sss rasBraesnlB

trange Password...
 .

. . : ; ; J

Figure 4.3. After obtaining Ticket Granting Ticket

mailto:CS.UMT.EDU@CS.UMT.EDU

• After you have obtained the Ticket Granting Ticket, you can launch Kerberized

FTP by double clicking on its icon. 'There are two options in the login window,

privacy and integrity. The integrity option is the default option, which guarantees

the integrity of the command channel. With this option, intruders can not modify

any FTP command. The privacy option encrypts the command channel, which

guarantees both the integrity and the privacy. With this option, intruders can not

see and modify any FTP command.

Remote System

“iie nameFile name ghangeDirChangeOir

. MakeDir
KFTP.HLP

MFC42D.DLL

MFCN42D.DLL

MSVCRTD.DLL

gssapi.dll
KFTP.GID

kftaexe

Rename

R em ove

R e fe sh

I iiiiiiii i ii ii
■ : ' .. :: srwsw* ssn » « |

Option I

...................

& Login

I' "
H ost Name ; | d illn n .cs.u m t.ed u

£ UserlD; |iian|

C Privacy (* Integrity

Cancel j

Rle tise

Figure 4.4. GSS_FTP initial Interface

ftp://FTP.HLP
ftp://FTP.GID

47

• Type or choose a host name and type your user name and click “OK” button.

220
200
1 0 322

x e jsio>

[BINARY.mode data connection for
complete.

GSS FTP Connected to : dillon.cs.umt.edu

C:\Kftp

; ; , . . .

File name File te e

1 0 1 7 7KFTP.HLP

MFC42D.DLL

MFCN42D.DLL

MSVCRTD.DLL

gssapi.dll

KFTP.GID

kftp.exe

1393152
4 1 9E

3 7 3 2 4 8

FriMJ Refe, h
T u e k—

3347C3

TueR Diflnfo
 - .56321

/h o m e/ nan

hieFile name

name

0 .. 1024

iS .x f m 1024

& mail 1024

* FVWM95-2-er... 1664 B .Xauthority 0

.Xdefaults 3 7 8 5

.bash_history

.b a sh jo g o u t

,bash_profile

1 $ hashrc

.'V .pinerc

Remove

E e fe *

mUssml l l i S I l !

■n r ' ...

«• Binary

MH9HB«W: .
* S :■ * I .. 3 1.1 *»-.•»» .•,*«!-. . . 'I

■ r7 I i I o I. r ■ . ! Close 1. Log j Help
.............

-a- j

..
■ tV & K t-1- 'VHkLMVe 8SSN •‘“X 'dJHZ-' T *:* . i - • Option v I

Figure 4.5. After Logon

ftp://FTP.HLP
ftp://FTP.GID
ftp://ftp.exe

48

• After you logon, you can recheck the Kerbnet window and see that the Ticket for

the FTP server has been obtained.

• Then, you can browse the local and remote file systems through the two listview

windows and choose what to transfer.

To know7 more about how to use this FTP client, please see the online help system

of the Kerberized FTP.

mmam^ ■
File Help

• : "■
,

Start T im e
........... — L —

E nd T im e T icket

M ar10 10:56 Mar 10 20:56 krbtgt/CS UMT EDU@CS.UMT.EDU (FPI)
:

M ar10 10:57 Mar 10 20:56 ftp/dillon.cs.umt.edu@CS.UMT.EDU (FP)

P a ccw n rr i B o a trdoSvVOiu n.edl

CS UMT.EDU
“ ;.... . „ . . _ x _ I
h a n g e P assw ord .. .

\
 ,

Figure 4.6. After obtaining FTP service ticket

mailto:EDU@CS.UMT.EDU
mailto:dillon.cs.umt.edu@CS.UMT.EDU

Chapter 5

Conclusions

This project consists of two parts. The first part is to find a feasible solution to

unify the authentication for the heterogeneous networks of the CS department at the

University of Montana. The goals include:

• A global user account database, which means that any user must be able to login

to the same account with the same password on any workstation

• Users should be able to change their password from any workstation

• Any system must work with a shadow password system on both AIX and LINUX

• Users should be able to access any workstation over the Internet (for example, a

student or faculty should be able to login to a workstation using a PPP

connection to an ISP from home)

• Unencrypted passwords should not be transferred over the network (including the

LAN of CS department and the Internet)

• The solution should be relatively easy to use, maintain, and administrate

49

50

investigated and studied a lot about how Kerberos works, how to administrate

Kerberos, how to make the use of Kerberos as transparent as possible. Chapter 2

covers most of these topics. I’ve set up two small test networks to test if Kerberos

can really satisfy the CS department’s requirements. Chapter 3 covers this. I also

wrote a program “ntpasswd” which synchronizes an NT domain password and a

Kerberos password. Note that the goal #2 — “Users should be able to change their

passwords from any workstation” was not met.

There are Kerberos implementations both on UNIX and on NT which means

that a UNIX or a NT machine can be used as the KDC. Due to the small size of the

CS department at the University of Montana, the CS department won’t want to spend

a lot of money on the KDCs. Two Intel 486 machines should be enough for the

KDCs. Because NT is not as stable as UNIX and N T’s system overhead is bigger

than UNIX, the performance of a Intel 486 machine running NT server 4.0 is much

poorer than that of a Intel 486 machine running LINUX. So I recommend using two

Intel 486 machine running LINUX as the KDCs.

Client/server applications must be modified to use Kerberos for authentication;

such Kerberos-aware applications are said to be Kerberized. Kerberizing an

application is the most difficult part of installing Kerberos. Fortunately, the MIT

reference implementation includes the popular applications (the Berkeley R-

commands, telnet, and POP) for a variety of UNIX platforms with support for

51

Kerberos already added. Cygnus Inc. also provides a free software package Kerbnet

for W in95/NT that includes a program used for obtaining a Ticket Granting Ticket,

a Kerberized telnet, and more. But they didn’t provide a Kerberized FTP for

W in95/NT. This leads to the second part of this project, developing a Kerberized

FTP for W in95/NT. I investigated the FTP protocol, the FTP security extension

protocol, GSSAPI and more. I used Visual C++ 5.0 and the Cygnus GSSAPI library

to develop this GUI Kerberized FTP for Win95/NT. Chapter 4 covers this software.

Bibliography

[1] B. Clifford Neuman and Theodore Ts'o, “Kerberos: An Authentication Service
for Computer Networks”, IE E E Communications Magazine, Volume 32, Number 9,
pages 33-38, September 1994.

[2] Jennifer G. Steiner, Clifford Neuman and Jeffrey I. Schiller, “Kerberos: An
Authentication Service for Open Network Systems”, In Proceedings of the Winter
1988 Usenix Conference, pages 191-201, February 1988.

[3] John T. Kohl, B. Clifford Neuman and Theodore Y. Ts'o, “The Evolution of the
Kerberos Authentication Service”, In Distributed Open Systems, pages 78-94. IE E E
Computer Society Press, 1994.

[4] J. T. Kohl and B. C. Neuman. “The Kerberos network authentication service”.
Internet RFC 1510, September 1993.

[5] J. Linn, “Generic Security Service Application Program Interface, Version 2”,
Internet RFC 2078, January 1997.

[6] J. Wray, “Generic Security Service API : C-bindings”, Internet RFC 1509, September
1993.

[7] J. Postel and J. Reynolds, “FILE TRANSFER PROTOCOL (FTP)”, Internet RFC
959, October 1985.

[8] M. Horowitz, “FTP Security Extensions”, Internet RFC 2228, October 1997.

[9] “Kerberos V5 Installation Guide”, shipped with Kerberos package.

[10] ‘ ‘Kerberos V5 System Administrator's Guide”, shipped with Kerberos package.

p i] “Kerberos V5 UNIX User's Guide”, shipped with Kerberos package.

[12] Simson Garfinkel , Gene Spafford, “Practical Unix & Internet security” ,

O’Reilly & Associates, Inc. ISBN 1-56592-148-8, 1996.

52

53

[13] Bob Quinn, Dave Shute, “Windows Sockets Network Programming”,

Nddison-Wesley Publishing Company, ISBN 0-201-63372-8, 1995.

[14] “Unifying UNIX and NT Security”, http:// www.cymus.com!product!unifying-

security.html (Now, this page is not available any more).

[15] Frederic J. Cooper, Chris Goggans, John K. Halvey, Larry Hughes, Lisa

Morgan, Karanjit Siyan, William Stallings, Peter Stephenson, “Implementing

Internet Security”, New Riders Publishing, ISBN 1-56205-471-6, 1995.

http://www.cymus.com!product!unifying-

	Unifying heterogeneous networks with Kerberos Authentication Server and multithread implementation of Kerberized FTP for Windows 95/NT
	Let us know how access to this document benefits you.
	Recommended Citation

	tmp.1459808976.pdf.noLNP

