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INTRODUCTION

A metric space which is compact, connected and locally
connected plays an important role in the field of anlysis. Such
spaces are called Peano spaces. It is the intent of this thesis
to investigate some of the more fundamental aspects of the struc-
ture of Peano spaces.

Giuseppe Peano (1858-1932) proved that a segment can be
mapped onto a square., Peano's theorem is actually a special case
of the first theorem which we shall prove. It is the famous
theorem of Hahn and Mazurkiewicz that the closed unit interval
[b,i] can be mapped continuously onto a metric space T if and only
if T is compact connected and locally connected.

Secondly, we shall introduce the concept of cut points and
show that & compact connected set of which all but at most two
points are cut points is a simple arc. With this and the aid of
the Brouwer Reduction Theorem we shall be able to give a proof due
to J. L. Kelley of the Arcwise Connectedness Theorem.

Thirdly, we shall find that Sierpinskit's property S enables
us to prove that every Peano space has a basis, each non-empty
element of which is connected; has property S; and has a Peano
space as its closure,

Finally, we will discuss cyclic element theory and leaning
heavily on the results of property S, we shall prove the cyclic
connectivity theorem which states that a Peano space T is cyclic
if and only if for every two points a and b belonging to T there

1
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is a simple closed curve in T containing a and b.

In many of our theorems and definitions, the spaces con-
cerned need not be metric spaces for the statement to hold true.
However, since our primary interest is in Peano spaces which are of
necessity metric spaces, all spaces shall be considered to be metric
unless otherwise indicated.

Furthermore, when sets are discussed without mention of
their containing space, it shall be understood that tﬁey are sub-

sets of the general metric space S.
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CHAPTER I
INTRODUCTORY TOPOLOGY

It is the purpose of this chapter to list definitions and
theorems which will be needed in later sections. Proofs will be
omitted. In general, Newman's Elements of the Topology of Plane
Sets of Points may be used as a reference and in such cases no
reference shall be given.

Throughout this paper capital letters shall denote spaces
and sets and small letters shall denote points or elements.

As a matter of notation the symbol € will mean "belongs to"
or "is a member of" and & will mean "does not belong to" or "is not
a member of." For example, if a point x belongs to the set A, we
will write x€ A and if y does not belong to A we have yﬂ‘A. The
symbol C will mean "is contained in" or "is a subset of" and qt
will mean "is not contained in" or "is not a subset of."™ That is,
if the set A is a subset of the set B we have ACB and if A is not
a subset of B we have A¢B. A set A is termed a proper subset of
B if ACB but A £ B.

l.1 A set is a collection or aggregate of objects or

elements called points. Suppose E is a subset of S, The complement

GE of E is the set of all points of S not belonging to E. It is
always true that Q(GE) = E, and if ECF then GFCGE. The empty or
null set, to be denoted by P, is defined as being that set which has

no points., A set is termed non-degenerate if it has at least two

points.
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4‘
1.2 On any set a metric may be defined by associating with
every pair of points x and y a non-negative numberlgxx,y) called the
distance between then, such that the following conditions are sat-
isfied:
(1) p(xy) = p(¥yx)
(ii) fp(x,y) = 0 if and only if x = ¥y
(1i1) ,o(x,z) s/o(x,Y) +,o(y,z) (triangle inequality)
A non-empty set on which 2 metric has been defined is called a

metric space.

1.3 Suppose ACS. The diameter d(A) of A is defined as
being the least upper bound of/o(p,é) where the least upper bound
is taken with respect to all pairs of points p and q in A. 1If
d(A) is finite, A is bounded. If A consists of a single point,
a(a) = 0.

1.4 Suppose A and B are sets. The union of A and B,
written AUB and read "A union B", is the set of all points which

belong to either A or B. The intersection of A and B, written AMB

and read "A intersection B", is the set of all points which belong
to both A and B. If the sets A and B have no points in common,
they are said to be disjoint and we write ANB = #. As a matter of
abbreviation, we shall often use AB in place of A/)B and A-B in
place of AMNEB.

Some identical relations involving {J and () are:

(1) ayu(BUC) = (AUB)UC, AN(BNC) = (ANB) \C

(2) AUB = BU4A, ANB = BNA

(3) AN(BUC) = (ANBYL (aNc)

(4) AUJ(BNC) = (AUB)N (al00)
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(5) AUA =4, ANA = A
(6) ACAUB, ANBCA
(7) 1If ACC and BCC then (AUB)CC
(8) If cCA and CCB then ¢C(aNB)
(9) 1f 4 is any collection of sets E then C(|JE) =
Eel
MN(GE) ana C(NE) = U(CE).
E€L Eel E€L

l.5 Suppose p is a point and £ is a positive number. By

an €-neighborhood (or merely neighborhood) of the point p, we mean

the set of all points whose distance from p is less than €, and we
write N(p,€). Similarly, an €-neighborhood N(E,E) of a set E denotes
the set of all points whose distance from E is less than €.

1.6 A subset A of S is said to be open if for every point
p of A there is a neighborhood of p contained in A. The following
statements hold.

(1) The empty set is open and S itself is open.

(2) Any neighborhood is an open set.

(3) Any union of open sets is open.

(4) The intersection of a finite number of open sets is
open.

1.7 A sequence xl,xz,...,xn,... or {?n} of points of a space
is determined by assigning a point X to every positive integer n.
Thus, it should be noted that a sequence is a set of points indexed
by the positive integers and is not merely any set of points. A
sequence i?n} is said to converge to a point a, and we write
x —a, if for every €30, /o(xn,a.)<€ for all but a finite number of

values of n. Equivalent symbolism for convergence is

_j‘&/o(xn,a) = 0,
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6

A sequence can converge to only one point. As a consequence of this

if X ~"a, yﬂ—ob, and X, =¥, for all n then a = b.

A sequence {A#} of sets is said to be monotone decreasing if

and only if An+1<:An for each n. The sequence {An3 is monotone

increasing if and only if A.nCA.n+1 for each n. (The analogy with

sequences of points is obvious.)

1.8 The sequence {yn} is a subsequence of {xn} if Yo = %

r
n

where rn are positive integers such that r1< r2<r5<.... If
;d—;a, then every subsequence of {?nz converges to a.

1.9 In terms of neighborhoods, a point q is a limit point

of a set B if every neighborhood of q contains an infinite number
of points of B. In fact, 1t can be shown that g is a limit point
of B if and only if every neighborhood of q contains a point p of
B diestinct from gq.

In terms of sequences, q is a limit point of B if and only

if there is a sequence {xhz of distinct points of B such that X, Q.

1.10 A set B is said to be closed if and only if its com-
plement S-B is open. The following statements hold.

(1) The empty set is closed and S itself is closed.

(2) A set is closed if it contains all of its limit points.

(3) Any intersection of closed sets is closed.

(4) The union of a finite number of closed sets is closed,

(5) Every finite set is closed.

1.11 The closure E of a set E is the smallest closed set
containing E. More explicitly,'ﬁ is the intersection of all closed
sets containing E. The following statements hold,

(1) E is closed.
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(2) E =E if and only if E is closed.

(3) Always % = E.

(4) If a single point p is considered as a set then p = p.

(5) If a point x€TE then any neighborhood of x contains a
point of E. Thus, for every o >0 there is a point y of E such
that /o(x,y)<o(.

(6) 1If E is bounded, E is bounded and d4(E) = 4(E).
and E

(7) 1If sets E are such that E,CE, then E,CE,.

1 2
(8) 1f El""’Ek is a finite collection of sets then

VEN
i=1

= L_Kj.ﬁio
i=1 oo
(9) PFor any collection of sets E yeeesE _seesy I lE CNE
1 n n=1 ® n=1 B
O - i
and U E C UE .
n=1 % n=11n
An important fact concerning metric spaces is that given any
roint p of a metric space S and any open set H of S such that p€H,
then there exists an open set G containing p and pe—GCH.
1.12 The interior i(E) of a set E is the largest open set
contained in E. More explicitly, i(E) is the union of all open
sets contained in E. It follows that if E is open then i(E) = E.

Any point belonging to i(E) is an interior point of E. The frontier

fr(E) of E is by definition E-i(E), and if E is open fr(E) = E-E.
The following statements hold.

(1) fr(@) = ¢ and fr(s) = g.

(2) Always EUfr(E) = E.

1.13 Ve also have the condition of a set A being open or
closed in relation to another set M containing A. That is, suppose
ACMCs. We say that A is open in M if and only if there is an

open set G such that A = MMNG. Similarly, A is closed in M if and
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8
only if there is a closed set F such that A = M{JF., The following
statements hold.

(1) 1If A is open (closed) then A is open (closed) in M.

(2) 1If M is open (closed) and A is open (closed) in M then
A is open (closed). -

(3) A is closed in M if A = MNA.

l.14 Given sets S and T, a rule f is called a mapping
(transformation) of S into T and we write £:S—T, if with every
point a€ S we associate a point f(a)€T. f(a) is called the image
of the point a under the mapping f. A mapping f is said fo map S
onto T if f(S) = T. In mathematics it is grammatically correct to
state that a mapping f:S—T is onto. Notice if f is an onto mapping
a point PET if and only if there is at least one point a€&€ S such
that f(a) = b. It is easily verified that every onto mapping is
itself an into mapping though the converse does not necessarily
hold.

1,15 A mapping f:S T is said to be a one-to-one mapping of

S onto T (or a one-to-one correspondence between S and T) if and
only if each point b of T is the image of precisely one point
f'l(b) of S. The point f'l(b) is called the inverse image of b.
The relation is symetrical and f'l is a one-to-one mappring of T onto
Se

l1.16 Suppose there is a mapping f:S—»T. Let F be any
collection of subsets E of S and let H be any collection of subsets
G of T. The following statements hold.

(1) £(§) = 8 ana £71(P) = 4.

(2) 1f E,CE, then f(El)Cf(Ez).
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-1 -1
(3) 1f 6,CG, then f (6,)Ct77(6,).
(4) Always Elc:f'lf(El) but E, = f'lf(El) if and only if f
is one-to-one.

(5) Always ££71(G,)C6, but ££71(6;) = G, if and only if £

1
is onto.

(6) Cf(B)C£(GE,) if £ is onto but Cf(E,) = £(CE;) if and
only if £ is onto and one-to-one.,

(7) Always £71(c6,) = &£ (c,).

(8) Always £({UE) = LJf(E) and f(r\E)C:(Wf(E)

(9) Always £ %?{JG) = L)f“l(c) and f 1((\@) = M~ 1(G)

1.17 A set Wthh is elther finlte or can be placed in a

one-to-one correspondence with the set of all positive integers is

said to be enumerable (countable). Every subset of a countable set

is countable,
1.18 Suppose & is a collection of open sets in the space S.

Mis said to form a base or basis for S if every open set contained

in S can be expressed as the union of some of the sets in the
collection .

We shall also speak of a basis at a point. Suppose p is a
point of the space S and let 0 be a collection of open sets in S
each of which contains p. We shall say that ¢ is a base at the
point p if and onrly if given any open set E of S such that p €E,
then there exists a set FECT such that FCE. It can be easily

" verified that in metric spaces every point p has a countable basis

at p.

1.19 A set A is dense in a set B if ACB and every neigh-

borhood containing a point of B also contains a point of A. If A
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10
is dense in S where S is the whole space, then A = S. A set is
separable if it has an enumerable dense subset. It can be easily
shown that a metric space is separable if and only if it has an
enumerable base,

1.20 By a covering of a subset E of 5 we mean a collection
of sets 4 contained in S such that EC%E" Thus, if & covers the
whole space S then %é£’= Se If the sets of a covering are open,
closed or finite in number, the covering is termed open, closed or
finite respectively. It is an E-covering if each of the sets of
A4 has diameter not exceeding €. If.tf is a subfamily of & and
also covers E then Af is called a subcovering of E.

1.21 A set H is compact if and only if from every open
covering of H a finite subcovering can be selected. It is easily
verified that any closed interval [a,b] is compact. Thus, in
particular the closed unit interval [O,i] is compact. The open in-
terval (0,1) is not compact, however, since no finite subcovering
can be selected from the covering 4= gf{(%wl). The following
statements hold.

(1) A set H is compact if every sequence in H has a sub-
sequenoe which converges to a point of H.

(2) If H is compact then H is closed.

(3) If H is a closed subset of a compact space S then H
is compact.

(4) All compact sets are separable, thus, in view of
paragraph 1.19 every compact set has an enumerable dense base.

(5) A decreasing sequence of non-empty compact sets has a

non-empty common part,
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11
1l.22 A subset H of S admits of a separation if there exists
sets A and B in S such that H = AUB, A # @, B £ 8, ANB = ¢,
ANB = @ and ANE = F. If this is the case, we write H = 4/B. H

is termed disconnected if it admits of a separation. Otherwise, H

is connected. For example, suppose H is the set of all non-zero
real numbers, By letting A be the set of all positive reals and B
be the set of all negative reals it is readily seen that H = A/B.
The following statements hold.

(1) If a set E consists of a single point then E is
connected.

(2) Every interval is connected and in fact the set of all
real numbers R, is connected.

1

(3) Suppose E is a connected subset of R If points a and

1°
b belong to E then [a,bv]CE,

(4) The set H is disconnected if and only if it is the
union of two non-empty disjoint sets, each of which is open in H.
In particular, S is disconnected if and only if it is the union of
two non-empty disjoint open sets (open may be replaced by closed
throughout).

(5) 1f G, and G, are non-empty disjoint open sets, then
G,UG, = Gl/GE.

(6) Suppose ECS and E = ¢/D. If E is closed, then C and
D are closed,

(7) If H = A/B and there is a connected set E contained in
H then either ECA or ECB. Suppose ¢ and H are subsets of S, G

and H are closed, GUHE is connected and G/)H contains at most two

points. Then G is connected or H is connected.
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12
(8) If A is connected and & is any collection of connected
sets such that if Bed implies AMN3B # ¢ then ALJ(%éB) is connected.
(9) If E is connected and ECHCE, then H is connected.
Thus, we see that if E is connected then E is connected.
(10) If E is a non-empty subset of a space S and x is a
point of S such that EU(x) is connected, then x €EE.
(11) If S is connected and has more than one point, then S
is non-countable,
l.23 A compact connected set with at least twb points is
called a continuum. It is clear from part (11) of 1.22 that a
continuum is non-countable.
1l.24 A set G is a component of a set E if and only if the
following conditions hold: (i) 6 # @, (i1) GCE, (iii) G is
connected, and (iv) if GCFCE and F is connected, then ¢ = F. A

set E is totally disconnected if all of its components are single

points., The following statements hold.

(1) Any set is the union of its components.

(2) If ¢ and H are components of E, then either G = H or
¢NE = g.

(3) If G is a component of E and B is any connected subset
of E then either BCG or BNG = #.

(4) If E is connected and E £ @ then there is only one
component of E, namely, E itself.

(5) 1If a set E is disconnected then there are at least two
components of E.

(6) If E is closed and A is a component of E then A is

closed.
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(7)) If p is a point of a set E then there is exactly one
component of E containing p.

1,25 A set H is said to be locally connected if and only if

components of open sets (open in H!) are open in H. The following
statements hold.

(1) 1If all neighborhoods of a set H are connected then H
is locally connected.

(2) A set H is locally connected if and only if for every
point a€H and for every positive number €, there is a positive
number & such that if a point bEN(a,8)CH then there exists a
connected set C such that a€C, b€C and CC N(a,€)CH.

(3) 1If for every point p of a set H and every positive
number € there is a positive number $ S€ and N(p,8)CH and is
connected then H is locally connected.

(4) A set H is locally connected if and only if the
existance of an open set G (open in H) contained in H and con-
taining a point p implies there is a subsget E of G such that E
is open in G, E is connected, and pE€E,

(5) Any open set is a locally connected space is itself
locally connected.

1.26 A Peano space is a compact, connected, locally

connected metric space. As an example, any closed interval [a,b]
in Rl is a Peano space. We have seen that [a,b] is both compact
and connected. Suppose G is an open set contained in [?,b] and
containing a point p. Thus, there is a & >0 such that N(i),&)CG.-
N(p,8) is open and being an interval it is connected. Certainly

pEN(p,8) hence by part (4) of 1.25, [2,b] is locally connected.
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To define a metric on [a,hﬂ we use the standard formula for distance
in Rl,,o(x,y) = Ix-yl. Therefore, (a,b] and, in particular,[b,l]
are Peano spaces,
Some other simple examples of Peano spaces are: a single
point, the boundary of a rectangle or circle, the boundary of a
rectangle or circle plus all of their interior points.

1.27 A mapping £:5—T is said to be continuous at a point

a of S if for every €>0 there is a §>0 such that if x€N(a,8) in
S then f(x)EN(f(a),€) in T, i.e., £(N(a,6))CN(£f(a),€). The

mapping f is continuoug on S if it is continuous at every point of

S. The following statements hold:

(1) A mapping f:S—T is continuous at a point p if and only
if for every open set GCT such that f(p)€ G, there is an open set
HC S such that p€H and f(H)CG,

(2) A mapping f:5—T is continuous on S if and only if for
every open set GCT, f-l(G) is an open subset of S.

(3) A mapping f:S—T is continuous on S if and only if for
every closed set HCT, f-l(H) is a closed subset of S.

(4) Suppose a mapping f:S—T is continuous at a point p€S
and there is a sequence {ihz of 5 such that x —p, then f(xn)-+f(p).

(5) Suppose there is a mapping f:5S—T and a point p€S.

If every sequence {xn? of S is such that x —p implies f(xn)—»f(p)
then f is continuous at p.

(6) sSuppose a mapping f:S—+T is continuous on S. If E is
compact subset of S then f(E) is compact.

(7) Suppose a mapping f:S—T is continuous on S and S is

compact. If E is a closed subset of S then f(E) is closed.
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(8) Suppose a mapping f:S—T is continuous on S, If E is a
connected subset of S then f(E) is connected.

(9) Suppose there is a continuous mapping f of S onto T.

If S is compact and locally connected then T is compact and locally
connected,

Thus, we see that if f is a continuous mapping of a Peano
space S onto a metric space T, then T is a Peano space.

1.28 Let f be a one-to-one mapping of S onto T. Recall
that for any point p of T there is exactly one point g of S such
that f(q) = p. Let g(p) = q. This defines a mapping g:T—?S such
that f(g(p)) = £f(a) = p. The mapping g is called the inverse
mapping of f. It is easily verified that g is one-to-one and maps
T onto S. The following statements hold:

(1) If £:3S—>7T is a one-to-one continuous mapping of S onto
T then there exists g:T—S which is a one-to-one mapping of T onto
Se

(2) If £:5-T is a one-to-one continuous mapping of S onto
T and S is compact then the inverse mapping g is continuous on T.

If £:5-7T is a one-to-one continuous mapping of S onto T
and if the inverse mapping g, in addition to being cne-to-one and

onto, is continuous on T then f is called a topological mapping

of S onto T. The reader may easily verify that if f is a topo-
logical mapping of S onto T then open sets in S correspond to
open sets in T and vice versa (open may be replaced by closed

throughout).
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CHAPTER II
THE HAHN-MAZURKIEWICZ THEOREM

We have seen in section 1.27 that if a continuous mapping f
maps a Peano space S onto a metric space T, then T is a Peano space.
Indeed, this proves the necessary part of the Hahn-Mazurkiewicz
Theorem that a space S is a Peano space if and only if the closed
unit interval EO,I] can be mapped continuously onto S. In this
chapter, we shall prove the sufficiency part of the theorem after
suitable introduction.

Definition 2.1 A chain of sets is a finite succession of
sets E),E,yeee,E  such that Eiﬂ E; 1 £ @ for L = 1,2,e0e,k-1.

Theorem 2.2 Suppose Q is a connected set and F is the

collection of sets F1&Eg:"'an which form a finite closed covering

of Q such that Q(WFi £ @ for each i. Then any two sets F. and F,
» d -

of F can be joined by a chain of sets in F.

Proof. Let Fk be an arbitrary set of the collection F.
Let Hl be the union of those sets which are Jjoined to Fk by a chain
of sets and let H2 be the union of all the rest of the sets in F.

Clearly Hlf\Hz = ¢ and since Fk;:Hi’ Hy £ #§. H, and H, are sach a

1
finite union of closed sets,hence are both closed. Now QC:HlL)HZ,
thus Q = QfW(HlL)HZ) - (Q(WHI)LJ(Qf\Hz). Since Q is connected, we

cannot have Q = Q(\H1/QIWH2, but notice:

16
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(@NE)N (RN E,)CINTE,NQNE,
CE,MN1,
= H,MH,
= d.
Similarly, (QNE)N(QANH,) = ¢ and
(eNE )N (eNE,) = NE NE,
=g
and as we have seen H,MQ # g. It follows that we must have
Hzf\Q = ¢ in order to preserve the connectedness of Q. Suppose
H2 % ¢, i.e.y there is some set Fm of F such that FmC:Hz. By
hypothesis F_MQ # #, hence H,NQ # # which is impossible. There-
fore, the assumption that H, # ¢ led to a contradiction, hence

H2 = ¢, i.e., every set Fi of F may be joined to F, by a chain of

k
sets in F. Q.E.D.

Corollary. Suppose Q is a connected set and F is the

collection of sets Fl,_]_i‘__z,...,Fn which form a finite closed covering

of Q such that QNF, £ # for each i. Given any two sets F, and F_
o ¢ 1Y

J

there is a chain of sets beginning with F, and ending with F in-

J
cluding all of the sets of F. (Repetitions are allowed.)

Proof. Let the sets of F be arranged so that
FJ = Fl’FZ""'Fn = Fko
By theorem 2.2, Fr and Fr+1 can be joined by a chain of sets for
each r. Insert these chains between each of the original con-
secutive pairs and we have the desired chain. Q.E.D.

Theorem 2.3 If S is a compact locally connected space and

€20, then there is a finite €-covering of S by compact connected

sets.,
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Proof. Consider all $€-neighborhoods of all points p of S.

Each neighborhood is an open subset of the locally connected space
S, hence their components form an open €-covering of S. Due to the
compactness of S we may select a finite number of these components

C]_,(Jz,....,ck which alsco form ae-covering of S. Their closures

y

and are closed subsets of S, hence are compact. Thus, the required

’62’“”61( are connected, have diameters less than € (see 1.11),

covering is obtained. Q.E.D.

Theorem 2.4 (Hahn-Mazurkiewicz Theorem) The closed unit

interval [0,1] can be mapped continuously onto a metric space S if

and only if S is compact, connected, and locally connected.

Proof. The necessary part follows immediately from section
1.27 and the fact that [0,1] is a Peano space.

To prove the converse suppose S is a compact, connected,
locally connected, metric space. Let a and b be any point of S.
Without loss of generality assume d(S) £ 1. We shall define a
series of integers Nm and a series of 2'm-coverings of S by chains
of connected compact sets K:; for 1 = 1,2,...,Nm. Such coverings
and chains exist by virtue of theorem 2.3 and the corollary to
theorem 2.2, Recall that since S is the whole space any covering
& of S is such that F(EJ&F = S.

For m = O we setNo=1andK<])'=S. For m = 1 we have the
4-covering by the chain Ki‘,Ki,...,Kixl. Let a€ K% and b€KI{1.

Suppose we have completed the definition up to and including m with

1 - R PP IS,
aGKm and beK}; . Choose a point a; in KmﬂKm for
i == 1’2,000,Nm'-1’

letting a = a, and b = aNm.
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There is also a finite 2'(m+1)-covering of S by connected
compact sets FI’FZ”"’Fk' Considering all i, r and m retain the
sets Frf\Ki which are non-empty. Clearly, these sets are finite in
number, closed and also cover S, hence cover K;. Therefore, for
each m the sets FrfﬁKi can be arranged (with repetitions) as a
chain of sets beginning with a set containing a5 4 and ending with
one containing aye Suppose the greatest number of sets in any chain
is n . By repeating the last set of a chain a sufficient number
of times, we may assume all chains to contain exactly R, sets. We
now have chains of sets associated with Kl,Kz,...,Kﬂm, rlaced con-
secutively in this order. The union of these chains of course
covers S, hence may be arranged to form a single chain of connected
closed sets, We will number the sets of this single chain as
K;+1 where 1 = 1,2,...,nmNm and nmNm = Nm+1' This completes our
definition of K.
If integers j and i are such that 0<J g N, and
(1) n (§-1) <isnj

then clearly KjFWK el # # and since d(X 2=(m+1) 3¢ £o110ws

+1)

that KT CN(KJ,z‘(‘“*l)) Thus, letting AL denote N(K1,27™) we

m+1
have A C:A:j whenever j and i satisfy (1).

For every number O £ § <1 there must be an integer j such

that 0<J £ N_ and

2 =1) <
(2) %%H=§<ﬁ

Let Am(g) denote the set Ag for this particular value of j. Am(l)
Ng . ~
will be A P by definition. Suppose for this same & Am+1(§) = A 19

ioéo,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



20

(3) ..(ﬂ). §§< i
N N
m+l m+l

Since Nm+1 = nmNm’ we then have

.gi_'];).g§‘<ﬁj____nm-j

I\}Tm+1 m Nm+1
and
n (3-1)  (3-1) 1
N =5 &<
m+1 m m+1

hence, i-1<n j, i.eey, i £ n j and nm(j-1)<i, i.e., nm(j-l)é i-1.
It now follows from (2) and (3) that

(4=1) s (4-1) s gt s 3,
1\Im Nm+1 I\Im+1 I\Im

410 Ve notice that both i and J satisfy

Multiplying through by Nm
the relations (1). Thus, Am+1(§)"iCAme§) if 0 £ £<1, and if§=1
we also have Am+1(1)CAm(l).

For any § consider the sets Ang‘f, m=1,2,e00e These sets

are closed, hence compact and since Am+1(§)CA\_m(§‘)‘* for all m they
all have at least one point in common. However, since d('Am(g))-avO
as m-—so0e they have exactly one point in common. We shall define
this point as f£(§), i.e., £(&§) = xfjlm' Similarly, since
a.E’AI::'1 = Am(o) and bEAgm = A‘m(l), we have f£(0) = ﬁm = a and
£(1) = ﬁélw = b regpectively. Thus, we have defined a mapping
f:[O,lj-bS. To complete the proof we will show that f maps [0,1]
continuously onto Se

For every €>0 there is an integer m such that €>§m> O.

Supposing |§'7I<% we have two cases to considers
m

(1) 1If § and 7 belong to the same set Ai, then
A () = A_(%) = AJ and £(€) and £()) both belong to (8 = 5,07
Therefore,/o(f(g),f(y)) s §m<€.
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(ii) Suppose g and X belong to consecutive sets. Without
loss of generality assume §<)Z. Therefore, f(§)€ Amigs = 'Ki and
=3+l i i+l - -3+1
£ e () = Ai+ . Since Kmﬂx:' £ 8, Ain Agl* £ #. Suppose

e TWNEI*L, Then O(£(§)sa) s 2ms pa,£() s 24, and by the tri-
angle inequality o(f(§),f(7)) % P(£(§)sa) + /o<q,f(7)>s + 3 - S<e

Thus, in either case we have/o(f(g) E())<E 1f g~ )zl<— , hence f
m

is continunous.,
Suppose a point xeAj+1. Since f(-'i )€A (-'i ) = 3+1 we
have /o(x f(-d- )) € 2 .+ That is, for any neighborhood N(x €) of x
there is an integer m such that 2 <€ and f(‘i ) €N(x,€). Thus, the
N

set of points f(% } for all m and all j = N_ is dense in S and since
m -

S is the whole space, we have ;t‘(‘1 ) = S. But ‘i C[O,l] for all j
and m, hence f(i YC£[0,1] and £( 1 )C £0,1 "It follows that
= f(a'l- YC 770, 1j S thus, f [0,1] = S. But since [0,1] is closed,

f [0 1] is closed, Finally, then we have f[O 1] = in 1 = Sy, and

f is an onto mapping. Q.E.D.
A similar discussion of the Hahn-Mazurkiewicz Theorem may be

found in Newman's Elements of the Topology of Plane Sets of Points.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER III
SIMPLE ARCS AND ARCWISE CONKECTEDNESS

Definition 3.1 A point x of a connected set E is termed a
cut point of E if E-x is disconnected. Otherwise x is called a non-

cut pointe.
Theorem 3.2 If S is connected but S-a = HIEZ then H, = HUa

and -H-z = qu 8o

Proofe S = HlLJHZL)a, le\Hzr\a = ¢ and since ﬁlf\Hz =g
we have Elc CH, = H,Ua in S. Thus, HIC'I:I':LC HlL)a and either
H =H orH =HUs.

Suppose El = H;. Now Hlf\(HZL)a) = ¢, ﬁlf\(HzL)a) = @ and
nlr\(ﬁ;tTE) = Hlf\(ﬁéLJE) = (Hlf\ﬁé)lJ(le\a) = @, and clearly
H, # § and (E,Ua) # . Therefore, 5 = Hl/HZUa. contrary to the
assumption that S is connected, hence ﬁi % Hl’ i.e.,_H-1 = HlL)a.

Similarly, B, = H,Ua. (It follows since H, = GH, and H, = ¢E

that H, and H, are open sets in S.) Q.E.D.

Definition 3.3. A space T is a simple arc if and only if

there is a topological mapping f of the closed interval {0,1)
onto Ts Thus, in view of 1.28 if T is a simple arc then open sets
of T correspond to open sets of [0,1] and vice versa (open may be
replaced by closed throughout).

If A is a simple arc with end points a and b, for convenience
we may often denote A by abd. Suppose points u and v lie on the
simple arc ab. If E is the set consisting of u, v and all points

22
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x of ab which lie between u and v then the reader can easily verify
that E(=uv) is a simple arc and that ECab. When such a situation
exists we say that E is a subarc of ab.
In view of theorem 2.4 it is clear from definition 3.3 that
a simple arc is a Peano space.

Theorem 3.4 A continuum, X, of which all but at most two

points are cut points is a simple arc.

Proof. Let X be the given continuum and A the set of all
non-cut points in X. Therefore, A has 0, 1 or 2 members and is not
identical with X (see 1.23). Let x, be a point of X not in A such

that X-x_ = P/Q.

(1) We have seen in theorem 3.2 that P = PUX , Q = quo

and P and Q are open sets,

(2) P and Q are connected. For if not let P = Hl/HZ and
let x €H,. Now X = HyUQUE,, B,UT # ¢, B, # &,
E,N(E,UT) = (B,NE)U (B,NT) = &,
E,N(8,UQ) = (E,NE)V(E,NT) - 4,

and
Thus, X = Hl/H2UE contrary to the assumption that X is connected.
Hence, P is connected and, similarly, Q is connected.

(3) If yEP and PIZQ‘I is an arbitrary partition of X-y,

either Pl or Ql but not both is contained in P. Since y&P,

QCX-y = Pl/Ql' Now ﬁ is connected, hence by paragraph 1,22,
either ECPI or 5,CQ;1. If -Q'CPl, we have Q) Ql = @ and since
xoea, x°¢ Ql' Therefore, Qlcx-xo = QUP and we must have Q,1CP.

Suppose also that P,CP. Thus, P,U Q1CP and X = P,U Q1UyCP
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which is contrary to the assumption that X-::to = P/Q, hence P1¢ P.
Similarly, the assumption that QCQ, gives P,CP and Q& P.

(4) P contains at least one non-cut point. For if not

then §(=Puxo) also contains no non-cut points. Since P is closed,
it is compact and hence contains an enumerable dense set of points
xl,xz,...,xn,...(see 1.21) each different from x,+ Therefore,
XysXppeeerX goce is an enumerable dense subset of P. Let

X-xl = Pl/Q1 and assume that P1 is the part contained in P. We
now inductively define a series of integers ., and of sets Pr such
that for all r, x-xnr = P/Q. and PrC Pr_lc...CP. Each P is a
non-empty open (see part (1) above) subset of P and, therefore,
contains a neighborhood which itself contains at least one of the
points e Let n..1 be the least integer such that xnr+1€ZPr.

Since PrC P, X is & cut point and thus X-x = Pr+1/Q‘r+1’
r+l r+l

where again Pr+1CPrC...CP. It follows that an+1€ P_ but
x ¢P and thus all of the integers n_ are distinct. This
n..1 r+l r
completes the definition.

We now have a decreasing sequence of compact sets
P’Pl’P2""’Pr"" such that Pr+1CPr for all r and the common part
of all of them, Poo , is non-empty (see 1.21)., Now

P = P Uﬁl CP

s+1 8

and P 1is also the common part of all sets Ps' Let z be a point
of Poo. Since zEP, it is a cut point. Therefore, X-z = Hl/HZ
and every P_ contains either H, or H, (see part (3) abvove). Let
H, be the part contained in P for all m. Hence, HlCPw. By
part (1) Hl is open and again contains a neighborhood which itself

contains some point X, of the set XysXpyeeesX goeve Letting n,.q
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be the first of the suffixes n2,n3,... that exceeds k we have

xk€ PS. But this implies that n is not the least integer such

s+l
that x € P_ which is contrary to our earlier definition in the

previoui+1];aragraph. Thus, the assumption that P contained no non-
cut points led to a contradiction and we have at least one non-cut
point in P, Similarly, Q contains at least one non-cut point. We
have, therefore, proved that X has exactly two non-cut points. De-

note them by a and be.

(5) Suppose X is a cut point. Then X-x has two components,

each containing one of the non-cut points. Let X-x = P/Q. We have

seen above that a and b belong to P and Q respectively. We shall
prove that P and Q are components of X-x. Clearly, P £ @, Q # 8
and P and Q are both contained in X-x. If there is a connected
set P such that PCF(CX-x then either FCQ or FCP. Suppose FCQ.
Then PCFCQ which is impossible since PMNQ = . Thus, PCP and
we have P = F, Similarly, the assumption that a connected set G
contains Q and is contained in X-x implies Q = Go We must yet show
that P and Q are connected sets. Suppose P = Hl/]EI2 and without
loss of generality let aGHl. Then a¢H2 and since bPEQ, bin.
We will show that X-x has the separation H2/(X—x)-H2. Clearly,
H, { § and (X-x)MCH, # #. Also, the reader can easily verify
that H, U[(X-x)ﬂ @HQ] = X-x and Hzn[(X-x)ﬂ @Hz] = $. TFurthermore,
E,N [(x-x)N¢Er,] = E,N[(8,U QUE,)NEE,)

= E,MN[(8;NCE,)U (QNCE,)]

- [E,N(8,Ner,)]U (F,NeNer,)

C oy [?ﬂQJ (since HZCP)

= ¢9
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and by similar reasoning H,[) [(X=x)N CHz] = @. Thus

X-x = Hy/(X-x)-H,,
but this is impossible since H2 contains neither a nor b, contrary
to part (4). Therefore, the assumption that P is disconnected is
false. Similarly, Q is connected.

Before continuing the proof of theorem 3.4, we shall set up
an order in X. A relation < will be termed a total ordering if it
holds between certain elements of a set E such that the following
conditions are satisfied,

(i) for no x is x<x3
(ii) if x # y then either x<y or y=<x;

(iii) 1if x<y and y<z then x<1z.

It is clear from (i) and (iii) that we cannot have both x—<y and
vy <X

Consider any point x of X. Define Lx to be the component
of X-x containing a if x £ a. If x = a let L = g. Define R_
similarly with b replacing a throughout. No Lx shall contain b
and no Rx contains a. Therefore, for any point x, X = LxeURx.

(6) xELJ if and only if LxCLy but L £ L . First suppose

xELy, i.eey x is in the component of X-y containing a. Since
x¢L’c we have L_ ¥# Ly but since L_ is a component of X-x also
containing a we have Lxﬂ Ly ;4 ¢. The point y cannot be a since

Ly # ¢ and L, = #. It is always true that b¢Lx and R, = d,

hence if y = » we have LxCX-b = Lb = Ly, ioe.’ LxCLy' Suppose
¥y # b. Thus, since X-x = Lx/Rx and xELy, we see by part (3) that
either LxCLy or RxCLy’ but b belongs to Rx and not to Ly’ hence

again we must have L C Ly e
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To prove the converse suppose LxCLy but Lx ;‘ Ly' Again the
point y cannot be a for if it were then Ly would be empty and since
LxC'I‘y’ we would also have Lx = ¢. Thus, Lx = Ly contrary to our
hypothesis. If x = a, 3:61,y by definition. Suppose x # a. Since
X-x = Lx/Rx’ it follows from part (1) that

L UX = ixc'iy = LUy,

i.eey L U xCLyUy. But x # y (since L # Ly), hence x?Ly.
Similarly, xeRy if and only if RICZRy but R # Ry.

For all points of X we shall define the relation x<y to
mean "xeLy." Thus, if x ;4 a, a<x and if x ;4 b, x<b and for mno
x does x=<a or b«<x, The symbol x<y may be read "x precedes y",
and we shall use such expressions as "first point", "between" and
"successor" accordingly.

(7) The relation = is a total ordering. Condition (i) is

obviously satisfied since x¢Lx by definition. To verify that con-
dition (ii) is satisfied suppose x ;4 Yo We must show that either
x<y or y<x. Suppose x{y, ieea, x¢Ly, hence
::QX-Ly = RyUy.

Since x £ y we have x€Ry and by virtue of part (6), this is equi-
valent to RxC Ry. Thus,

Lyu.v = GRyCGRx =L Ux
i.e., LyU.VCLxe, and therefore, LyCLxU Xx. But x¢Ly, hence
LyCLx. Again by part (6) this means y€L, i.e., y<x. Similarly,
the assumption that y-fx would lead us to conclude that x<y.
Verification of condition (iii) follows immediately from part (6)
since if x<y and y<z we have L C LyCLz, i.esy L CL, which
implies that x<z,
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The set [x<p] shall denote the set of all points x which
precede a fixed point p. Clearly, then [x<p] = Lp and by part (1)
[x<p)] is an open set. The set [p<x] is the set of all points x
which p precedes. [p-(x] is the complement of [x<p] in X-p, i.e.,
[p-<x] - Rp and, therefore, it is also open. Thus, the intersection
[pP<x<q] of two such sets for points p and q is an open set. We

will denote it by <p,q» .

(8) If p<g the set <p,q» is not empty. Suppose <p,q)

is empty. We will show that this assumption leads to the con-
tradiction that X has the partition LPU p/RqU ge Clearly,

X = LUPURUa, LUp # § and B Ua # §. L Up and R UQq have
no point in common since p-<{q implies p ;4 Q, p¢Rq and q¢Lp.

Thus, if the sets had a common point it would have to belong to
both Lp and Ry which contradicts condition (iii). Now [p<x] = Rp
which is open. But GRP = LPUP, hence LpUp is closed. Similarly,
[x<q] is the open set Lq and since ch = un q, we have Rqu

closed. It readily follows that

(Lpu p)ﬂ(RqU Q)

]
=N

and

(L,up)N (R UT) = 4.

We now have our partition, hence <p,q) ;4 ¢.

Since compact sets are separable (1.21) and X is compact,
there is an enumerable dense set C = (yl,yz,...) in X. We want C
to contain neither a nor b, To show this is possible, let p be an
arbitrary point of X different from both a and b, Since X is open
there is an €>0 such that N(p,€)CX. 1If N(p,€) contains neither

a nor b then since C is dense in X thei'e is a point V. of ¢, Y 74 8,
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T # b and y,.€ N(p,€). sSuppose N(p,E) contains a and not b
(if ¥(p,€) contained b and not a an entirely similar discussion
would follow). Thus, ,o(p,a) = A where A>0 and a@N(p,A) and
b¢N(p,7\). There is, therefore, a point Y5 of C such that yJEN(p,N,
yjylaandy:];lb.

Suppose N(p,E) contains both a and b, thus F(p,a) = ) and
(o(p,b) ==/u where ADO and/a.)O. Let & = '_)\ﬁ,&‘. Therefore, N(p,8)
contains a point T of C where b ;4 a and I ;! be

Suppose p = a. (A gimilar discussion would follow if p = b).
Since X is open, there is an €»0 such that N(a,€)CX. Suppose
v¢ N(a,€). N(a,E) # a since N(a,€) is open and the single point a
is closed. That is, if N(a,€) = a, N(a,€) would be both open and
closed, hence X-N(a,€) would be both open and closed. Thus, X
would be the union of two non-empty disjoint open sets N(a,€) and
X-N(a,€). Therefore, X = N(a,€)/X-N(a,€E) by 1.22 which is
impossible since X is connected. Hence, there is a point d of N(a,E)
and d # a, i.e.,/o(d,a) =  where #>0. Let Y = ﬁ(_’f'd‘ Now
N(d,Y)CrN(a,€), a¢N(d,‘() and there is a point y of C such that
yneﬂ(d,f), i.e., y,€ N(a,E) and T # a and Yy # b. If bEN(a,E€)
then N(a2,E) contains a and b but N(a,E) £ aUb, for if N(a,E) = aUbd
we would, by the same reasoning as above, again have the connected
set X = N(a,€)/X-N(a,€) which is impossible. Therefore, there is a
point ¢cEN(a,€), ¢ £ a, c # b,/o(a,c) = @ where 6>0, and/o('b,c) =8
where £>0. Let ¢ = 64,6-8,. Now N(¢,0)Cr(a,€), a¢N(c,a‘) and
b€N(c,0). Thus, there is a point y; of C such that yi€. N(c,¥),
¥y f a and ¥ 71 b. Thus, every neighborhood of an arbitrary point

p contains a point of C different from a and b, i.e., C-(alUb) is
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dense in X. But C-(aUDb) is a subset of the enumerable‘set C,
hence C-(aUb) is also enumerable (see 1.18). Let E, = c-(alUb)
and let the points of Eo be Xy9Xpsesee
If p<q, the non-empty open set —<p,q)~ contains at least
one point of Eo' thus, in particular, there is a point of Eo between
any two points of Eo itself.
Let O(l’aé’”" be any enumeration of the rational points of
the open interval (0,1). We now construct two sequences
TysTprees of points of Eo
;Gl’ﬁz”" of rational points of (0,1),
as follows. Let Yy = X9 and pl =o(1. Suppose that FysFpreees¥n_1
andlgl’ﬂZ""’ﬁn-l have been defined. If n is even let Y be the
point X, of lowest k not already in the set Yys¥pseeesdy 19 and
le‘l:lGn be the D(k of lowest k having the same relations to
pl’pz""’pn-l’ relative to <, as Tn has to T 9¥oseees¥, 1 T~
lative to =<. That is, if ¥, is such that

0 --<yg—<yn-<yh'<o )
the ﬁn is such that

"'</6g</6n<15h<""
If n is odd we reverse the roles of x's and &{'s, y's and /@'sa
'@1 will be the rational number c/k of lowest k not among the set
ﬁl,ﬂz,...,ﬁn_l, and In the point X, of lowest k with the appropriate
-relations. That is, if/@n is such that

200K fe K Pu < e -

then In is such that

.o .-<ye.<yn—<yf-<. coe
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Ve are assured of such a point In existing since ye<(yf implies
‘<ye’yﬁ>' # g

We shall now define a mapping f. It is clear that every
point x; appears once and only once as a yj and every rational
number a& once and only once as a ﬁ%. Define f(yi) to be ﬁ%.
Since E  1s an enumerable set and the rational numbers of (0,1)
are also enumerable we see that f is a one-to-one mapping of E0
onto the rationals of (0,1). In addition to this, we have so
defined In and/ﬁn so that f is an order preserving mapping, i.e.,
if y <y  then f(yr)-<f(ys).

Let us now define a subset /\ of Eo to be a section if

(Ol) /\ has no last point,

(02) and if xé&ﬁ& all predecessors of x in Eo also belong
to /\.
(Clearly, /\,may be either the empty set or the whole of Eo). The
analyogy with sections of rational numbers in (0,1) is obvious.

(9) Let /\ be a section of E and K the set of all points

of X not followed by any point of /\. Then K has a first point.

K cannot be empty since it contains b, If K = X our required

first point is a. Therefore, suppose K # X. Consider the set X-K
and let x be one of its points. If x % a there is a point y of

jﬁ following x, and <a,y> is an open set containing x and con-
tained in X-K. Thus, there is a €>0 such that N(x,&)C <a,yr CX-K,
i.e., X-K is open. Similarly, if x = a we may again use the point

y of A and we have xéiyyC:X—K. Ly is open, hence there is a

& >0 such that N(X,S)C:pyC:X-K. Thus, in either case X-K is an

open set, Suppose K has no first point. We shall show that this
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assumption leads to the contradiction that the connected set X has
the partition X/X-K. Clearly, K # §, X-K £ @ and KN (X-K) = #.
Since K has no first point, K is open for if x€K there is a point
y of K such that y—<x and y follows all points of N. Tow <ysbp
is an open set contained in K and containing x, hence there is an
€1>0 such that

N(x,GI)C-{y,bFCK.
Therefore, K is open and X is the union of two non-empty disjoint
open sets K and X-K, hence X = K/X-K (see 1.22).

We have now shown that for every section of Eo there
corresponds a unique point of X, namely the first point of K, which
we will call the point determined by the section. It follows
immediately that points determined by different sections are
different, for if xeAl but x¢/\2 then x precedes the point
determined by Al but does not precede the point determined by
Az. It is also true that every point x of X is determined by a
section and different points are determined by different sections.
To verify this let /\ ve the subset of Eo consisting of all points
of Eo which precede x. Again let K be the set of points of X not
followed by any point of .A. Clearly, x€ K but we must show that
x is the first point of K. Suppose y=<x and y€K. There is a
point 2z of E  such that z € <y,xp o i.€., y<z<x. Hence, ze/\
and y<2z which contradicts the assumption that y €KX. Thus, x is
the first point of K and is determined by A. Suppose x and y are
different points of X and are determined by sections Ax and Ay
respectively. Without loss of generality assume y<x. Again

there is a point z of E0 such that z € <y,x)~, i.e., ¥y <z <x.
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Now y<2, hence Z¢Ay but z<x implies zeAx and we have
Ax ;4 j\?. It is now clear that we have set up a one-to-one
correspondence between the sections of Eo and the points of X.

This result enables us to extend the mapping f of Eo onto
the rationals of (0,1), to be a mapping of X onto all points of
(0,1). Suppose x is any point of X and /\x is the section determining
it. Since f is order preserving it clearly maps ‘/\x onto a section
of the rationals of (0,1), Define f(x) to be the real number
determined by this section. Letting f(a) = 0 and f(b) = 1 it
follows that f is a one-to-one mapping of X onto [0,1] and if
yEEO the new definition of f(y) agrees with the old.

(10) The mapping f, so extended, is order preserving, i.e.,

if x<y then f(x)<f(y). Suppose x and y are points of X and x<y.
If both x and y belong to Eo it follows from the original definition
of £ that £f(x)< £f(y). Suppose x€E_ but y¢Eo. Since x<y, xGAy
and it is always true that y,éAy. Now f(x)€E f(Ay) and there is

a point z of E  such that z € <x,y>, i.e., x<z2<y and z€/\y,
hence f(x)<{ f(z) and f(z)€f(/g). By definition f(y) is the first
real number of (0,1) not followed by any number in f(]\_y)". Clearly
then f(y){f(x) and we must have either f(x) = £(y) or f(x)L£f(y).
If £(x) = £f(y) it follows from f(x)Ef(Ay) that f(y)€f(./\y) which
is impossible since y¢Ay. Therefore, f(x)<f(y). Suppose yGEO
but I¢Eo' Since x<y, y¢_/\_x. Let z be any point of Ax’ i.e.,
z€Eo and z<x<y, hence f(z)€i‘(/\_x) and f(z)<f(y). Thus, £f(y)
is greater than every number in f(/\.x). 1f £(y)< £(x), YEE,

implies that f(y)€f(Ax), but this is impossible since y¢/\x.
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Therefore, f(x) € f(y). There is a point w of E, such that
wE <Lx,y> , 1.,y x<w=<y. Now the only restrictions we have on y
is that y€X, x<y and y€E°. In view of the fact that w also
satisfies these restrictions, we have f(x) ¢ f(w). However,
f(w)<f(y) since both w and y belong to E . Hence f(x)Lt(y)e.
Suppose neither x nor y belongs to Eo' Again there is a point z of
Eo and x-(z{y, i.e., zEIAy but 2¢Ax. In a manner entirely
similar to the previous case we have f(x)<f(z). Also, f(y){f(z)
for if it were, f(2) would not belong to f(/\’) which contradicts
the fact that z€E_ and z€/\y. Therefore, f(z) & £(y), i.e.,
£f(x)<f(y).

(11) f is a topological mapping of X onto [0,Il. We have

seen that £ is a one-to-one mapping of X onto [O,l] « To prove f is
continuous on X we will show that if G is any open set in (0,1}
then f'l(G) is an open set in X (paragraph 1.27). Since [0,1] is
locally connected, components of G are open sets. Now G is equal
to the union of its components, hence f_l(G) is equal to the union
of the inverse images of the components of G. Thus, if the com-
ponents of C map onto open sets in X it will follow that f'l(G)
is the union of open sets hence is itself an open set (paragraph
1.6), To begin, it is clear that since components are connected
sets, the components of G must be open intervals (open in EO,I]).
The typical open intervals in [0,1] are
(Y,8), (Y,1], and [0,Y).

Let D = (¥,S). Since f is one-to-one, there are points t

and u of X such that f(4) =Y and f(u) = §. Clearly, f(t)<f(un)

and since f is order preserving t=<u. Recall that <t,u> is by
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definition the open set L MR, in X (part 7). We will show that
£ (0) = L NER,

thus proving f'l(D) is open in X. Suppose p is any point of f'l('])).
There is a point g of D such that f(p) = q. Thus
£(t) = Y<q< & = £(u),
i.e.,
£{2)<£(p) <£f(u)
which implies that t<p<u, hence peLu('\Rt. Suppose a point r
belongs to LunRt, ij.e., t=<r-<u, and hence
Y = £(t) <f(r)<f(u) = &
Letting f(r) = s we have Y¢s¢ $, i.e., s €D which implies
f-l((s)Ef-l(D). But f-l(s) = f-lf(r)"- = r, hence ref_l(D) and we
have £71(D) = L NE,.
Let E = (Y,1]. Again f£f(t) =Y where t€X. We will show
f-l(E)" equals the open set R, in X. Suppose m is any point of
f-l(E). There is a point ¢ of E such that f(m) = c. Therefore,
£(t) = Y<c = £(m),
i.e.,
£(t) < £(m)
which implies t-<m hence meRt. Let n be any point of Rt’ i.e.,
t<n. Therefore,

Y = £(t)<Lf(n)
hence f(n)EE and it follows that nef-l(E).
Letting F = [O,Y) it can be shown in a manner entirely
similar to the previous case that f-l(F) is equal to the open set
Lt in X. Thus, in very instance the inverse image of a component

of G is an open set hence G is open and f is continuous on X.
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Letting g be the mapping f-l and since X is compact, we have in g
a continuous one-to-one mapping of [b,l] onto X (paragraph 1.28).
Therefore, f is a topological mapping of X onto [p,l]. This re-
sult enables us to state that X is a simple arc (paragraph 3.3) and
the theorem is proved. Q.E.D,

Corollary. a and b are the end points.

Theorem 3.5 Every continuum has at least two points that

are non-cut points. (Proved in part 4 of 3.4)

For a similar discussion of theorems 3.2 and 3.4, the reader
may refer to Newman's Elements of the Topology of Plane Sets of
Points.

Definition 3.6 A set of points E is said to be irreducidle

with respect to a given property P provided the set E has property
P but no non~empty closed proper subset of E has property P.

Definition 3.7 A property P is said to be inducible pro-
vided that when each set of a monotone decreasing sequence Al’AZ""
of compact sets has property P then so0o also does their intersection
A = i=1Ai' As an example, the property of being non-empty is in-
ducible for the intersection of a monotone decreasing sequence of
non-empty compact sets is itself non-empty (1.21).

Theorem 3.8 (Brouwer Reduction Theorem) If property P is

inducible and K is a non-empty compact space having property P,

then there is a non-empty compact subset Q@ of K such that Q is

irreducible with respect to property P.

Proof. (We shall assume throughout that XK itself is not
irreducible with respect to property P.) Let RysBygeee be an

enumerable base for K (1.21). Let n, be the least integer such

1
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that XK contains a non-empty compact set Kl’ Kl 74 X, K1 has property
P and Klﬂ Rnl = #. To assure us that such a set exists, recall that
K is not irreducible with respect to property P. This implies there

exists a set K, such that X, # ¢, K,.CK, K, # K and K, is compact

1

and has property P. Thus, there is a point a; of K-Kl,

a1€ cxl. Since K, is closed, GKl is open. Therefore, CKl is the

1

i.e.,

union of some of the sets Rm’ m=1,2,,.., and a, belongs to at

1
least one of these, say Rs' Now al€ RSCGKl, i.ed, Klm Rs = ¢. We

therefore have at least one set of our base which is disjoint from

K, and we let n, be the least integer such that Klr\ R, = #. Let
1

n, be the least integer greater than ny such that Kl contains a

non-empty compact set K,, K, # K,» K, has property P and K2f\Rn =@
2

We assume there does exist a set K2

K2 % Kl and K2 is compact and has property P, for if not, then

such that K, £ 4, k,C Ky

Kl has property P irreducibly and the theorem is proved. In addi-
tion, there is a point a, of Kl-KZ’ i.e., 8, belongs to the open
set GKZ. And, since GK2 is the union of some of the sets Rm,

m= 1l,2,e0.4 there is at least one set Rt contained in GK2 such
that a2€ Ryy iee., &26RtC@K2 hence Kant = g. Also, t>nl.

To show this, notice that since a2€ K, and a2€Rt we have

K,NR, # . If ¢ = n this implies K,/ Rnl £ ¢ which is impossible
since Klanl = #. Thus, t f nj. Nor can t be less than n, for
recall that K, £ 9, K, is compact, K, has property P and K2F\Rt = g,
and since K,C K, we have K,CK and K, # K. That is, K, is a set
satisfying all of the appropriate properties that Kl satisfied, and
if t< n, we see that n, was not the least integer such that some

set satisfied these properties, Thus again we have a contradiction,
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hence s>n1. We, therefore, conclude that there is at least one

integer (namely t) greater than n, such that Kzn Rt = ¢. Hence

1

there is certainly a least integer n, greater than n, such that

2 1

Kann?_ = @

In general let n, be the least integer greater than n

i~-1
such that Ki-l contains a non-empty compact set Ki’ Ki % Ki-l’ Ki
has property P and Kif\Rn = ¢, And, we assume there does exist a
i
set K, such that K, # #, K.C Ky_1» Ky # K;_; and K, is compact and
has property P, for if not, then Ki-l has property P irreducibly
and the theorem is proved., Now by the same reasoning as before
there is a point ay of Ki_l-— Ki’ i.e., a; belongs to the open set
GK, which in turn is the union of some of the sets R, m =1,2,¢c.0
i m
Thus, thete is at least one set R, such that aie RuCGKi, hence
Kif\Ru = ¢. Also, u:>ni_1, for if not then there are three
possibilities to consider.

(i) Suppose u = ny where j € i-1l. Following our general
procedure Ki_lc Ky and a, € Ki-lnRu’ hence K; /MR, £ #. But with
u = n'j we have

K, NRCKNER, = KjﬂR‘hj,
i.eq, KJﬂRn # @ which is impossible since we know that Kjﬂnzn =
J J
(ii) Suppose nj—l< u(n;j where j £ i-l. Recall that K, £ @,

K, is compact, K, has property P and KiﬂRu = #. Since

i

KiCKi-ICKjCKj-l we also have KiC_K and K, £ K That is,

J-1 j-1°

Ki’ in conjunction with u satisfies all of the appropriate properties

satisfied by Kj’ in conjunction with nj, and since nj_l<u<nj we
see that n.j is not the least integer greater than nj-l such that

some set has these properties. Thus again we have a contradiction.
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(iii) Suppose u<n,;. By the same reasoning as in (ii), K,
in conjunction with u satisfies all of the appropriate properties
satisfied by Kl, in conjunction with n and since u<:nl, ny is not
the least integer such that some set satisfies these properties.
Therefore, u<tnl. .

Thus in each case we have a contradiétion, hence u}ni_1
and we conclude that there is at least one integer (namely u) greater
than n;_, such that XK,MR = @. Hence there certainly is a least
integer n; such that Kir\Rni = d.

We now have a sequence {Ki} of sets such that for all ij;

Ki ;‘ ¢, KiCKi-IC'"CK’ Ki ;é Ki-l’ Ki is compact, has prope;'ty P
and Kir\Rni = ¢. Let Q = Jf;Ki. Each Ki is compact, hence closed.
Thus Q 1s a closed subset of the compact space K, hence Q is compact.
The sequence {kig is a decreasing sequence of compact sets. There-
fore, their common part Q is non-empty (1.21). Since P is inducible
and each set Ki has property P so also does their intersection Q.
Now if Q does not contain a non-empty closed proper subset which
also has property P, then Q is irreducibie relative to property P
and hence 1is our required set. To show this is the case suppose
there is a subset S of Q such that S £ @, S £ @, S is closed and

has property P. There is a point p of Q-S, i.e., PEGS which is
open, hence is the union of some of the sets R, m= 11,2500 In
particular, there is a set Rv of the basis such that peRchs, thus
Qf\Rv # ¢ and Sf\Rv = @#. There are four possibilities for v.

(ol) If v>n, for all i then there clearly is a least in-
teger vl)>ni for all i. Thus S satisfies all of the appropriate

properties required in order to belong to the sequence {Ki} .
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Therefore, QC S and since SCQ we have S = Q which is contrary to
our assumption that S #£ Q.

(02) If v = ng

J
But QC:Kj and Kjr]Rn = @, hence Qr\Rn = . This is impossible,
J J
where j € 1i.

where j € i then S(\Rn = @ and Qr\Rn £ g
j J

hence v £ n

J
(03) Suppose nj-1<:v<:nj where j g i. Recail that S £ ¢,

S is compact, S has property P and Sf']Rv = . Since sCQ, we have

SC:Kj_l and S # Kj-l' Thus, S, in conjunction with v satisfies all

and

of the properties that Kj satisfies, in conjunction with n

j’
since nJ_1<v<nj we see that n, is not the least integer greater

J
than nj-l such that some set has these properties. This, of course,
contradicts the way 1:1'j was set up.

(04) Suppose vw(nl. By the same reasoning as in (03), S,
in conjunction with v satisfies all of the appropriate properties
satisfied by Kl’ in conjunction with n,. But vw(nl, hence ny is
not the least integer such that some set has these properties.

In each case we have arrived at a contradiction, hence no
such set S exists and Q is irreducible with respect to property P.

Therefore, Q@ is our required set. Q.E.D.

The name arcwise connecied is given to a set H provided

every two points of H can be joined by a simple arc lying entirely
in H. Leaning heavily on the Hahn-Mazurkiewicz Theorem (2.4) we
are now able to prove the Arcwise Connectedness Theorem.

Theorem 3.9 (Arcwise Connectedness) Every two points a and

b of a compact, connected, locally connected space S can be joined

in S by a simple arc,
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Proof. Let I = ‘[O,l]. In view of theorem 2,4 there is a
continuous mapping £ of I onto S such that £(0) = a and £(1) = b,
We shall say that a closed subset F of I has property P provided
aUbCf(P) and if (xy) is any maximal segment of I-F, then
f(x) = £f(y). Clearly, I has property P.

We will show that property P is inducible. Let Fl’F2"°‘
be a monotone decreasing sequence of sets in I, i.e., Fn+1CFn for
all n, such that each Fn is compact and has property P. Let
F = QFn and let (Xy) be a maximal open segment in I-F. Now

anCf(Fn) for all n, hence anCz(le(Fn)‘ But

IaY: <Fn>Cf<QFn) - £(¥),

for since a€ Qf(Fn) there is a point x of F_ such that f(xn) = a
for all n. Thus we have a sequence of points {xn} in the compact
set I. Hence there is a subseguence {xkz of {xn} such that

n

xk;—»zo where zoe I. Since {Fn} is a monotone decreasing sequence
of sets, if m € n we have kae kaC FmCFn and since xkn--—;z
zoe']'?'n (1.9). But each F, is closed, hence zoan. By letting m

o’

> -
be 2 n for each n we have z°€ Fn for all n, i.e., ZOGQFn = F.
Now since f is continuous and x, —»z_, f(xk )—?f(zo). But f("xn) = a
for all n, thus the sequence {f(xn)? converges to a. And since

is a subsequence of {x [, Jf( }J¢ is a subsequence of Jf(x )
{5t {(za}r (PO {rG )
hence f(xk )~—a (1.8). Therefore, f(zo) = a (1.7) and since z EF,

n o
f(zo)ef(fF), i.e., a€f(P)., Similarly, since ble(Fn)‘, b Ef(F)
OO
- _ _ . - = s .

and thus aUbCf(F). Now GF = CﬁFn - ILJ]_GFn, i.e.y I-F nl;jl(.r F_)

Therefore, for any point d of (xy) there is a k such that d€ I-F) .

Fk is closed, hence I-Fk is open and there is an €>0 such that
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N(’d,e)CI-Fk. Let x, be the first point of Fk going from 4 to x
and let y, be the first point of F, going from 4 to y. Thus (xkyk)
is a maximal segment of I-Fk, X, s 4-€, Vi 2 d +€ and since Fk has
property P, f(x.k) = f(yk). Similarly, if x  , and y, , are the
first points of F, , going from d to x and y respectively, (xk+lyk+l)
is a maximal segment of I-F_ ., f(xk+1) = f(yk+1) and

XS X E<Yy TV, S
Continuing this process we obtain (xk-u»jyk-o-j) as a maximal segment of
I_Fk+j, f(xk+j) - f(yk_hj)‘, and
x € xk+j € ce0 S xk<yk S eee S yk+;] L y.

Clearly, x is a lower bound for the sequence {xk+j] and y is an
upper bound for the sequence {yk+j}. We shall show that these
sequences converge to x and y respectively. Suppose not, i.e.,
suppose (xkﬂi-i converges to a point q of g >xXx. Since q € (xy),

qE€ I-F = ngl(I-Fn), thus there is an h such that q € I-F I-F

h* h
is open, hence there is a )\1>0 such that N(q,)\l)C I-F,. Let )\ be
less than the minimum of /\1 and y, -q. Thus N(q,))CI-Fh. Since
the sequence X 91X 190 CORVerges to q, there is an m such that if
s 2 m then q € xs<q + >\. Let r equal the maximum of h and m, i.e.,
r 2 hand r 2 m. Therefore, q £ x.<q + A and (xr,yr) is a maximal
segment of I-Fr. In addition %o this since r 2 h we have >\<yr-q,
thus N(q,)\)CI-Fr. Now (x_y.) is a non-empty interval, hence is a
non-empty connected set. Therefore, there is only one component of
(xryr), namely (xryr) itself (1.24). It is easily verified that
(Q'A’yr) = (Q'A’q + )\)U(xr!yr)a
and since q £ x_, this implies that (xr,yr) is a proper subset of

(Q-)\.y‘r). But recall N(q,)\)CI-Fr hence (q-)\,yr)C I-F, and since
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(q-A,yr) is an interval, it is a connected set. This is impossible,
for (xryr) is a component of I-F _ hence cannot be the proper sub-
set of a connected set of I-Fr. Thus we have a contradiction, i.e.,
{xk+3z does not converge to a point g >»x. Therefore, xk+j->x.
Similarly g and since f is continuous we have f(xk+j)—+f(x)
and f(yk+j)—+f(y). But f(xk+j) = f(yk+j) for all k + j, hence

f(x) = £(y) (1.7) and property P is inducible.

Now I is a non-empty compact set having property P, thus by
the Brouwer Reduction Theorem (3.8) there is a non-empty compact
subset A of I which is irreducible with respect to property P. Let
f(A) = T. We shall show that T is our required simple arc in S
joining a and b,

T is compact (1.27). T is also connected, for if not then

T has a separation El/EZ' Since T is closed fac:f = T and

B, = Talﬂfr = fln(EIUEz)

= (5 NEDV(FNE,)

= El’
i.e., E1 is closed. Similarly, E2 is closed and by the continuity
of f, both A(\f-l(El) and Af\f'l(Ez) are closed sets. They are
also disjoint since

e~ e)Ne () = 7 (ENE,) - 7H) - 4.
Furthermore, A = (Af\f-l(El))LJ(Af\f’l(E2)) for if ¢ is a point of
A then f(c)€T = E,UE,. Without loss of generality let f(c)GEl.
Therefore, c€f-1(E1), i.e., cé(Aﬂf-l(El))U(Aﬂf'l(Ez)), and
clearly, if d is a point of (Aﬂf'l(El))U(Aﬂf‘l(Ez)), then 4 €A,

hence we have the equality. Thus, there is a maximal segment (xy)

in I-A such that x€f '(E) and y€f '(E,). But this implies that
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f(x)EEl and f(y)€E2 which is impossible since Elﬂ E, = g but A
has property P, i.e., in particular, f(x) = £(y).

Let p€T-(alUb) and P! = Anf'l(p). P' £ ¢ since pEf(a)
implies there is a point t of A such that f(t) = p, i.e., téff-l(p),
thus teAnf‘l(p). Similarly, Aﬂf"l(a) and Aﬂf"l(b) are non-
empty sets. Let ao be the first point of [p,l] in A. If a, = 4]
then f(ao) = £f(0) = a. If a°:>0 then ’?,ao) is a maximal segment
of I-A and again f(ao) = £f(0) = a. Thus in either case f(ao) = a,
ieea, a.o€ f-l(a) hence a°€ Aﬂf-l(a). Similarly, if b  is the last
point of [0,1] in A we have £(b_ ) = b and boef"l(b) hence
bo€Aﬂf-1(b). It is readily seen that AC[ao,boj and ao¢P' and
b ¢Pr.

Let Py be the first point of P! in [?o’bo] and let Py be the
last point of P! in [éo,b;]. If py = p, then P' = p, = p,. If
pl f Py then pl<:p2. Suppose there is a point p3 of A such that
P;<P3<P,y. Let .

D = AN(La_,p,]U [y, 7).

D is a proper subset of A since p3€A but p5¢D, and
‘(aoL)bo)C:D thus (aUb)Cf(D). Let (xy) be a maximal segment of
I-D. If (xy) is [O,ao) then £(0) = a =1f(a ), i.e., £(x) = £(y).
Similarly, if (xy) is (b0,1] » £(b)) = b = £(1) and £(x) = £(y). If
(xy) is (pl,pz) then since p, and p, belong to P', p; = f-l(p) and
P, = f-l(p), i.e., f(pl) =p = f(pz) and again f(x) = f(y). Suppose
a, S x<y = P, and let w be an arbitrary point of (x,y). Then
wE€I-D and w€[ao,leU[p2,b;]. But wé€ D, hence wéA, i.e., wEI-A,
Thus (x,y)CI-A and since (xy) is a maximal segment of I-D, x and

¥y belong to D which implies that x and y belong to A. Therefore,
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(xy) is a maximal segment of I-A and f(x) = f(y). Similarly, if
P, $x<y b, f(x) = £f(y). Now in every case f(x) = f(y), hence
D has property P. This is impossible since D is a proper subset of
A and A has property P irreducibly. Thus, the assumption that there
is a point p3 of A such that pl<:p3<:p2 is false and we see that
Pt = pll_)p2 where pl may equal Py
Let A, =‘A(\[ao,p1) and 4, = A(\(pz,boj. Now
A UPY = (4N[a,,p;])U D,
and
A,UP! = (An[pz,boj)Upl.
Let T, = f£(4;) and T, = f(4,). We shall show that T-p = T,/T,
thus showing that any arbitrary point p of T-(aUb) is a cut point
of T First it is easily verified that
[(aN[a,sp; 1)U P JULAN[p,s0 1)UP,] = 4,
i.e.y A = A UAUP!. Therefore, T = £(4) = f(Al)Uf(Az)Uf(P') =
TlU T,Up. Now, p¢Tl for if it did then p€f(Al) hence there is a
point s of A, such that f(s) = p. Now p, and p, do not belong to
Al hence s ;4 Py and s 7! Py Therefore, sﬁP', ieeey
s€cp' = c(aNe~t(p)) = eaner~t(p).
Hence s €E8A. But since seAl, 8 €A and wé have a contradiction.
Thus, p¢T1. Similarly, p¢'1‘2 and since T = ‘I‘IUTQUP we have
T-p = T1L1T2-
Clearly T, # ff and T, # §. To show that T,MT, = § suppose
qulf) T,. Thus, qef(Al) and qef(Az), and there are points q;
of Al and q, of A, such that f(ql) =q = f(qz) where 9 # Py and
a9, # p, since p, ¢ A and py¢4,. Let E = AN([a ,aJU[a,,0,1).

Now the identical reasoning by which we showed that D was a proper
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subset of A and had property P, may be used to conclude that E also
is a proper subset of A and has property P. Again this is impossible,
hence the assumption that T,MT, £ @ is false, i.e., Tlf\Tz = ¢.
Clearly, A,U P' is closed, hence f(Alu P') is closed (1.27). But

f(AIUP') = f(Al)Uf(P') = T,Up,
thus TlLJp is closed. Since T1C:T1L)p we have
T,CT,UF = 1,U>,

but pé T, hence T,NT, = . Similarly, T,NT, = # and we have shown
that any point p of T-(aUDb) is a cut point of T. In summary,
aUbCT, TCS and we have just shown that T is a continuum of
which all but at most two points (namely a and b) are cut points.
Thus by theorem 3.4 T is a simple arc. Q.E.D,

A similar presentation of the Brouwer Reduction and Arcwise
Connectedness Theorems may be found in Whyburn's Analytic Topology.

Since every Peano space satisfies the hypotheses of theorem
3.9 we see that every Peano space is arcwise connected, and with
the aid of 1.22, part (6), the reader may easily verify the
following theorem.

Theorem 5.10 DEvery arcwise connected space is connected.
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CHAPTER IV

SIMPLE CLOSED CURVES AND PROPERTY S

The orientation and presentation of the definitions and
theorems of this chapter are similar to those found in Hall and
Spencerts Elementary Topology.

Definition 4.1 The unit circle is the subspace of R, con-

2

sisting of all points (x,y) that satisfy the equation x> + y2 =1,

(Throughout this chapter we shall let J denote the unit circle.)
We have seen that J is a Peano space (l.26). In addition,

it is easily verified that every point of J is a non-cut point and

if a and b are any two points of J then J-(aL)b) is not connected.

Definition 4.2 A space C is a simple closed curve if and

only if there is a topological mapping f of the unit circle J onto
Ce Thus in view of paragraph 1.28 if C is a simple closed curve
then open sets of C correspond to open sets of J and vice versa
(open may be replaced by closed throughout).

We now see that just as the simple arc 1s related to the

unit interwval [O,ﬁ] in R s0 is the simple c¢losed curve related

1!
to the unit circle in R2.

Definition 4.3 Suppose a and b are distinct points of S
and F1 and F2 are simple arcs in S, each having a and b as its end

points., Then we say that Fl and F2 are independent arcs from a to

b if and only if F;\F, = aUb.

Theorem 4.4 Suppose C is a non-degenerate space. Then C is

47
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a simple closed curve if and only if for every two distinct points

a and b of C, the space C may be expressed as the union of two in-

dependent arcs from a to b,

Proof, First suppose C is a simple closed curve and let a
and b be distinct pdints of C. There is a topological mapping f of
the unit circle J onto C. Let a' = f'l(a) and b' = f"l(b). There-
fore, a' and b' belong to J and since f is one-to-one, a' /£ b!'.
Clearly, there exists two independent arcs E1 and E2 in J joining
a! and b', i.e., J = E1UE2 and ElnE2 =a'Ub', Let f(-"Erl) = F

1
and f(EZ) = F,o Now

£(E )N £(B,) f(Elﬂ E,)
flatUb)

£lar)UL(br)

alUb,
i.e., F,MNF, = aUb and obviously F.UF, = C.

1l 2 1 2

To show the converse let a and b be distincet points of C
and suppose C is the union of two independent arcs Fl and F2 in C
joining a and b, i.e., C = F{UF, and Flf'\Fz = alUb, We must show
that C is a simple closed curve, Let I = [p,i]. Since Fl and F,
are simple arcs there exist topological mappings f1 of Fl onto I

and £, of F

> , onto I such that £,(a) =0, fz(a) = 0, fl(b) = 1 and

f2(b) = 1. Clearly, J can be expressed as the union of two in-
dependent arcs J, and J, joining the points (-1,0) and (1,0).
Therefore, there exist topological mappings 8, of I onto Jl and &5
of T onto J, such that g [(1,0)] = (1,0), &,[(1,0)] = (1,0),

g, [(0,0)] = (-1,0) and g, [(0,0)] = (-1,0). We shall now define a
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mapping f of C onto J. If x€F, let £f(x) = g [fl(x)] and if x€F,
let £(x) = g, [fz(x)J. It readily follows that f is a topological
mapping of C onto J, hence C is a simple closed curve. Q.E.D,

Corollary. A space C is a simple closed curve if C contains

two distiﬁct;points a and b and two independent arcs F from

and F

1 2

a_to b such that C = F,UF,.

Theorem 4.5 A space C is a simple closed curve if and only

if C is a compact connected space such that C-(alUb) is not connected.

Proof. Suppose C is a simple closed curve. Then there exists
a topological mapping f of the unit circle J onto C, thus £(J) = C
is compact and connected (1.27). Suppose a and b are points of C.
We must show that C-{alUb) is not connected. Since f is a topo=-
logical mapping there is a continuous, one-~to-one mapping g of C
onto J, hence there are points u and v of J such that g(a) = u and
g(b) = v. Suppose C-(alUDb) is connected. Therefore, g[@-(at)b)]

is connected, but notice

g[c-(aUb)]

glc N &(aUD)]
= g(c)Neg&lavud)
= JNGg(alUb)
= JNC(g(a)Us(v))
= JNE(uUv)
= J-(uuv),
l.e., gc-(aV b)] = J-(uUv) but J-(uUv) is not connected (4.1).
Thus, the assumption that C-(aUb) is connected is false, i.e.,
C-(aUb) is not connected.
To show the converse suppose C is a compact connected space

such that for every pair of points a and b of C the set c-(alUD) is
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disconnected, First, we shall show that every point of C is a
non-cut point of C. Suppose otherwise, i.e., suppose there is a
point 2z of C such that C-2z is disconnected. Thus C-2z has some
separation P/Q. Now P = PUz, Q = QU2 and P and Q are connected
sets (3.4). Since they are closed subsets of the compact space C,
P and 'Q' are also compact. Thus each set P and 5 has at least two
non-cut points (3.5). Therefore, there exists points e and d such
that e # 2, 4 £ 2, e€P-2, d€EG-2 and both of the sets P-e and Q-d
are connected, It follows that
Ful)Neleva)
[Fneeva)] U [ENgeva)
= {BneeNca]U [aNcency]
[FNce] U [aNed]

= (P-e)U(Q-4).

But P-e and 'Q'-d clearly have the point z in common, hence

(P-e)U (Q-d) = c-(elUa)

C-(eUd)

is a connected set which is a contradiction since C-(elUd) is dis-
connected. Thus every point of C is & non~cut point.

Recall that a and b are arbitrary points of C and that there
exists a separation C-(aUb) = A/B. By a proof similar to that of
theorem 3.4 it is easily seen that A =AUaUb and B = BUaUb.

Now A& and B are closed, A|JE = C, a connected set, and ANE = aUd
hence by paragraph 1.22 A or B is connected. Without loss of
generality let A be the connected set. We shall show that B is
also connected, for if not then there exists a separation B = Bl/Bz‘

There are two distinct cases to consider.
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First, if a€ ]E',1 and bEBl the reader can easily verify that
C has the separation (KLJBI)/BZ. But this is impossible since C is
connected. Similarly, if 3632 and 'b€‘}32 we arrive at the con-
tradiction that C is disconnected.
Therefore, suppose a€B, and bEB,. Since we have B ¢ 4,
a,b¢B, B must contain at least three points, Let B2 be the set

with at least two points (a similar discussion would follow if Bl
were the set with at least two points). It can now be easily
verified that
C-b = (I-b)UBl/B2-‘b.

This is, of course, impossible since no point of C is a cut point.
Similarly, if a€& B2 and b€ Bl we arrive at a contradiction.

Therefore, both sets A and B are connected. Furthermore,
since they are closed subsets of the compact space C, they are
compact. We shall show that each of these sets is an independent
arc from a to b, PFirst, suppose that neither set is an arc from
a to b. Since each set A and B is a continuum, they both have at
least two non-cut points (3.5). Thus, if neither a nor b, or if
just one of the points a or b is & non-cut point of A then there is
a point rei-(au b) such that A-r is connected. Now if both a and
b are non-cut points of A the non-cut point r of A-(alUDb) still
exists, For if not then by theorem 3.4 A is a simple arc, and by
the corollary to theorem 3.4, a and b are its end points which con-
tradicts our assumption that A was not an arc from a to b. Thus we
exclude this possibility and let r of E—(an) be such that A-r is
connected. Similarly, there is a point sE€B-(aUb) such that B-s

is cpnnected. Since A~-r and B-s have the common points a and b,
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(A-r)U (B-s) is & connected set. But notice
(R-r)U (B-s) = (AUBIN(CrUBIN (AUEs)N (CrU &s)
cNGrNeésnec
= C-(rUs),

i.e., C=(rUs) is connected which is impossible. Thus, one of the
sets & or B is an arc from a to b. Without loss of generality
let A be this set. Therefore, a and b are the only non-cut points
of A« Let w be any point of A-{(alUb). Now w is a cut point, hence
A-w consists of exactly two components Al and A2 containing a and
Y respectively (3.4, part (5)). Suppose B is not an arc from a to
b. Then as before, there is a point s of 'I-a-(a.Ub) such that B-s is
connected and (aUb)CB-s. Since b €A, and b € (B-8), AZU(i-s) is
the union of two connected sets which meet, thus is itself a
connected set., Also aeAl and a€[ﬂ2U(]-3'-s)J hence A4,V Azu(f-s)
igs the union of two connected sets, thus is itself connected. But
A4,UaU (B-s) = (Z-w)U(B-s) and as we have seen above
(B-w) U (B-8) = C-(wUs).

This is impossible since (A-w)l|J(B-s) is connected and C-(wUs) is
disconnected. Finally, then both A and B are arcs from a to b and
since ANE = alb, they are independent arcs. Also C = AUE and
it follows from the corollary to theorem 4.4 that C is a simple
closed cui’ve. Q.E.D.

We have seen that the closed unit interval [0,1] is a Peano
space, Consider all neighborhoods of every point in [O,l]. Since
these neighborhoods are intervals, they form a basis of connected

sets for [0,1] such that the closure of every non-empty element of

this basis is itself a Peano space. In view of the Hahn-Mazurkiewicz
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Theorem, we are inclined to believe that every Peano space has a
basis with such properties. 1Indeed every Peano space has a basis of
connected sets such that the closure of every non-empty element of
the basis is compact and connected, but the closures in such a basis
are not necessarily locally connected. However, with the aid of
Seirpinski's property S we shall prove that in every Peano space
there does exist a basis with these properties.

Definition 4.6 Suppose H is a subset of the space T. We

shall say that H has property S if and only if, for every €20, H

can be expressed as the union of a finite number of connected sets,
each having diameter less than €. C(learly, then if H has property
S, H is bounded.

Definition 4.7 Suppose H is a subset of the space T. H is

termed totally bounded if and only if, for every €>0, there exists
a set of points Xy9XpgeessX, of T which are finite in ntmbgr and

such that HCiLBJlN(xi,E).

Theorem 4.8 If a subset H of the space T has property S

then H 1s totally bounded.

Proof. Suppose HCT and H has property S. Letting €>0 we

n
have H = %:&Ci where each set Ci is connected and has diameter less

than €. Now, there is a point x, of Ci for i = 1,2,...4n and

i
n

¢,CN(x,,€) for all i. Thus, HCiglm(xi,E), i.e., H is totally

bounded. Q.E.D.

Theorem 4.9 Suppose T is a space. If A is the union of a

finite number of subsets of T each having property S then A has

property S.
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Proof. Suppose A is the union of a finite number of subsets
Ki’ i=1,2,0ee9n of T such that each Ki has property S. Thus
n
A = £§£Ki and for every €>0 and every 1, \a&Ei where for each
i and j, E;' is connected, d(E’i)<€ and U].E is finite for

i-= 1,2,000911' Therefore,

and since the union of a finite set of finite sets if finite, A has

property S. Q.E.D.

Theorem 4,10 A space T is locally connected if and only if

for every point x of T and every open set G containing x there is

an open set H containing x such that H is contained in a single

-component of G.

Proof. Suppose T is locally connected, x is any point of T
and G is an open set containing x. By virtue of paragraph 1.25
there is an open connected set H containing x and contained in G.
Now x€ G, hence x belongs to some component K of G. Therefore,
HNEK # ¢ which implies HCK (1.24). It follows since components
are either equal or disjoint that K is the only component of G which
contains H.

To show the converse let G be an open set of T and let Kn be
any component of G. If x is any point of Kn then x €T, hence by
supposition there is an open set H containing x and contained in a
single component Km of ¢. Since H is open, there is an €>0 such
that N(x,E)CH, hence

N(x,€)CHCEK .

Now xGKm and x€Kn, i.e., K and K are two components with a
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common point, hence K = K . Thus N(x,E)CKn and we see that for
any point x of Kn there is a neighborhood of x contained in Kn, i.e.,
Kn is an open set. Since Kn is an arbvitrary component of an arbi-
trary component of an arbitrary open set G we conclude that com-
ponents of open sets are open, hence T is locally connected (1.25).
Q.E.D.

Theorem 4.11 Suppose K is a subset of the space T. If X

has property S, then X is locally connected,

Proof. Let x be any point of K and €>0. To show that K is
locally connected it shall be sufficient to show there is a §>0 such
that if y€N(x,8)MNK then there exists a connected set C such that
xUyCcC and cCN(x, )N K (1.25).

K has property S, hence K = iQIGi where each Gi is connected
and has diameter less than $€. Since xE€XK, there is some set Gr of
iQ)lGi such that xEGr and, therefore, xe'ar. Let
(1) xe‘—.:'éi for 1 = 1,eeey]

(2) xﬁﬁi for 1 = j+l,..., 0.

If j = n then xe"éi for all i. Let &= 2€ and let y be a
point of N(x,8$)MN K. Thus y €K, hence y €6, for some k, and y€-§k.
But xeﬁi for all i, hence xe-ak. Now then nyCEk and G _ is
connected, hence Ek is connected. Since GkCGkaCEk we see that
Gka is connected and contains both x and y. Furthermore,

a(6 Ux) = d(’dk) = d(c, ) <%E.
To show that G UxCN(x,€)NK, let 2€G,Ux. Thus z€K and
Plz,x) S d(e Ux) <36,
i.6.y 2EN(x,%€) and we have

z EN(x,#E)NKCH(x,E)N K.
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Therefore, G, UxCN(x,€)(VK. Hence if j = n, K is locally connected.

If 3 £# n then (1) and (2) imply xﬁ@Ei for 1 = j+l,ece,n.
But each set GEi is open, hence there is a Si for i = j+l,...,n,
such that N(x,Si)C@Ei, icee, N(x,Si)ﬂEi = @, for i = j+lyees,n.

Let § = .'Sj+1"""sn, and y €N(x,8)MNX. Thus, yEGEi for

i= j+ly...9yn hence y belongs to some GS where 1 € s £ j. But xGEEi
for i = 1,...,n hence xLJy(:ES. As before, G8 is connected and
since GSCGSU xCEs, G Ux is connected. Also d(GsU x)< %€, and

if we let 2€G_Ux then z€K and /O(z,x)<%€, i.e., 2 €N(x,5€).
Hence we have z EN(x,E)MNK, i.e., G U xCN(x,E)NK and again K is
locally connected. Q.E.D.

Corollary, If a space T has property S, then T is locally

connected,

Theorem 4.12 Suppose K is a compact subset of a space T.

Then K has property S if and only if K is locally connected.

Proof. By theorem 4.11 if K has property S then K is
locally connected. Thus, suppose XK is locally connected. Let x be
a point of K and €>0., Consider %. The local connectedness of K
implies there is a § >0 such that if y € N(x, Sx)ﬂK then there
exists a connected set Cy containing x and y and CyC N(x,eg)ﬁK.

Let D_ = Ucy where L}Cy is taken with respect to all points y of
N(x,sx)nK. Now each set Cy is connected and contains the point x
hence L)C:‘lr is connected, i.e., Dx is connected. Furthermore, since
each CyCN(x,%)ﬂK, DxCN(x,%)ﬂK, thus D_CXK and clearly,

a(n,) = -§-€<€. Also yEN(x,5 )MNK implies yeucy = D . Thus we

have N(x,Sx)ﬂKCDx for any x of K. Since T is open every point x
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of K has a neighborhood N(x,Sx) contained in T. Therefore,
KCngKN(x,Sx), i.e., UN(x,Sx) for all x of K is a covering of K.
But K is compact, hence

n
KCiL--JlN(xi’ éxi) .
Now then
n
- .
n i
= igl[ﬂ(xissxi)ﬂK]

C il’a%. Dxi’

n n
i.e., KCinglei but D_CK for each x of K, hence il=)1DXiCK and we

n

have K = LJlD » Furthermore, we have seen above that each D is
i xi xi

connected and has diameter less than € hence K has property S.

Q.EID'

Corollary. If a space T is compact then T has property S

if and only if T is locally connected.

In view of this corollary, the following theorem is
immediate.

Theorem 4.13 Every Peano Space has property S.

Theorem 4.14 Suppose K is a subset of the metric space T

and there is a set H of T such that KXKCHCK. Then if K has property

S, H has property S.

n
Proof., Let €>0., Since K has property S, K = iszlGi where

each set Gi is connected and has diameter less than €. Now

K = 191“"1 = iglc'i and singe each Gi is connected each Gi is cone-
nected. Also d(-éi) = 4(6,)<€. (Thus we have proved that if K

has property S then K has property S). Since KCECK we have
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H = ENX
n —
= Hnn(iglci)
= U (ENE,).
Furthermore, Gic.éi and GiCKCH for each i hence GiCHﬂEiCEi.
Therefore, Hffai is a connected set for each i (1.22) and since
d(HﬂEi) s d(Ei)<e we see that H is the union of a finite number
of connected sets H(\Ei, i=1,.s49n, each having diameter less
than € hence H has property S. Q.E.D.
By virtue of theorems 4.12 and 4.14, and since KCKCE, the
following theorem is now immediate.

Theorem 4.15, Let K be a subset of a metric épace Te If X

has property S then K has property S. Hence if K has property S,

K is locally connected.

Recall that we are attempting to show that every Peano space
P has a basis of connected sets such that the closure of every non-
empty element of this basis is itself a Peano space. We have seen
that the difficulty is not in finding a basis of non-empty connected
sets whose closures are compact and connected, but in finding such
a basis of sets whose closures are also locally connected. In view
of theorem 4.15, we are now able to overcome this difficulty if we
can show that there is a basis of connected sets each non-empty
element of which has property S.

Definition 4.16 Suppose H and K are subsets of the metric
space T and €>0, We shall say that K is an € growth of H if and
only if the following conditions hold:

(a) If x€K then there is a connected subset A of K, such

that x€A, ANH £ @ and 4d(A)<E.
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(b) There is a £>0, such that, if B is any connected sub-

set of T satisfying d(B)<S and BMH # @, then BCK.

Theorem 4.17 Suppose H and K are subsets of a metric space

T and there is an €>0 such that K is an € growth of H. Then

(1) ECE.

(ii) If H is connected then K is connected,

(iii) K is contained in the € neighborhood of the set H

and thus d(K)L4d(H) + 2€,

(iv) If H = @ then X = {.

Proof, To prove (i) suppose HEK. Therefore, there is a
point x of H such that x¢ K. DNow the single point x is a con-
nected subset of T and d(x) = 0. Thus d(x) is less than any positive
number, in particular, d4(x)< & where & is the & of condition (b) in
4.16. Since xNH # # we should, by condition (b) of 4.16, have
xCK. But x¢K hence we have a contradiction, Thus HCK.

To prove (ii) suppose H is connected but K = E/F. Since
H is connected and HCK by (i), H must be contained in either E or
P (1.22)., Without loss of generality let HCE. Now F £ @ and
ENTF = ¢, hence there is a point y € FCX such that y¢E. Since
Y€K, by condition (a) of 4.16 above, there is a connected subset &
of K such that y€A, ANH £ @ and 4(A)<€E. But 4, being a con-
nected subset of K must be contained in either E or F (1.22). Thus,
it cannot meet both E and P at the same time, hence it cannot con-
tain y and meet H at the same time., Therefore, we have a con-
tradiction of (b) of 4.16, hence K is connected.

To prove (iii) let u and v be any points of K. By part (a)

of 4.16 there is a connected subset A of K such that uea, ANH £ ¢
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and d(A)< €. Similarly there is a connected subset B of K such
that vE€B, BNH £ ¢ and d(B)<E€. Let p and q be any points of
ANH and BN H respectively. Thus, we have /O(x,p) < da(a),

‘P(f(hY) € 4(B) and f)(p,q) € 4(H). Hence
px:y) s fn(x.p) +/0(p.f:1) + Io(q.y)

€ da(a) + a(") + 4(B)

< d(H) + 2€.
But this is true for any points x and y of K hence d(K)<ad(B) + 2€.

To prove (iv) suppose H = @ but K # #. Thus, there is a

point x of K. Then by condition (a) of 4.16 there is a connected
subset A of K such that AMH # #. But since H = #, H does not
meet any set. Thus we have our contradiction, hence K = ﬁ. Q.E.D.

Theorem 4.18 Suppose H is a subset of a metric space T.

Then given any €>0 there is a subset K of T such that X is an

€ growth of H,

Proof. If H =@ it is clear from 4,16 that K = @ is an
€ growth of H. Suppose H ;4 ¢. If a point p belongs to H let W(p)
be the union of all connected subsets C of T such that p&€C and |
d(e)<E. Let K = p%)HW(P)' Now if x €K, then x EW(p) for some
point p of H. Thus x belongs to some set C of W(p) where C is
connected, d(C)<€ and pE€C hence CNH § . Also, CCW(p)CTK hence
CCK and we see that K satisfies condition (a) of 4.16., To show
that K satisfies condition (b) let &= €. Suppose there is a con-
nected set D, DNH # @ and d(D)<E(=5). Thus there is a point
p€DNH, i.e., PED and pE€H. It follows that since d(D)<E,
DCW(p)CEK thus DCK. Since H and K satisfy both conditions (a)

and (b) of definition 4.16, K is an € growth of H. Q.E.D.
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Definition 4.19 Suppose H and K are subsets of a metric

space T and €>0. We shall say that K is an €-segquential growth of

H if and only if there exists a sequence of positive numbers gaig
and a segquence of subsets {Hi} of T such that
(a) H, is an El growth of H, H, is an €, growth of Hy

and in general H, , is an €i+l growth of H, for i = 1,2,...,

i
[ =
(p) X = iL=}1Hi.

(c) Z,€, 56 !

Theorem 4,20 Suppose H and X are subsets of a metric space

T and €>0. Then

(i) There exists and €-sequential growth of H.

(ii) If K is an E€-sequential growth of H, then

(01) HCK

—————

(02) If H is connected, then K is connected

KCN(H,€), hence d(K)<d(H) + 2€

If H = §, then K = f.

Proof, Let €i = %ies i=1,2y000e First if H = ﬂ we shall
see that K = ¢ is an €-sequential growth of H. By theorems 4.1l7
and 4.18, Hl = ¢ is clearly an 61 growth of H, H2 = @ is an 62
growth of Hl and in general Hi+l = ﬁ is an €i+1 growth of Hi'
Thus we have a sequence g%g of positive numbers and a segquence of
subsets {Hi:( of T such that (a) of definition 4.19 is satisfied.,

(-~ >0
= = = < N

Letting F = #, we have F ggaﬂi P and since éé&Ei € € we see
that F is an €-sequential growth of H thus (i) is satisfied. To
show (ii) suppose K* is an €-sequential growth of H = ﬁ. Then

there is a sequence of positive numbers {éiz and a sequence of
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subsets {ﬁ{g of T such that (a), (b) and (c) of definition 4.19 are
satisfied, If we can verify (04) first, then (01), (02), and (03)
will readily follow. Since H = ¢ we see from theorem 4.17 that

H1 = ¢. Similarly, since H1 = ¢ we have H2 = ¢. In general then

=] E"S (-1
H, = g for each 1 = 1,24..4, thus ME;, = F. But X = ilglni by

*
definition 4.16, therefore, K must be the empty set, hence (Ol),
(02), and (03) follow immediately.

Suppose H £ ¢ and recall é& = %&6 for i = 1,24.... Since

ECT, theorem 4.18 implies there is a subset H, of T such that Hi

1

is an el growth of H. Similarly, there is a subset H, of T such

2
that H2 is an 62 growth of H1 and, in general, there is a subset

H of T such that Hi+1 is an E&+1 growth of H;. Thus we have a

i+l

sequence of positive numbers ﬁ%? and a sequence of subsets {H;Z
o>

of T such that (a) of 4.19 is satisfied. Also, Za€, = 3€ + 3€ +...

an

hence Zlei £ €. Letting G = il'ngi we then see that G is an
€-sequential growth of H and we have proved (i). To show (ii)
suppose K is any €-seqﬁentia1 growth of H. Thus, there is a
sequence of positive numbers %Q;Z and a seguence of subsgets {Hi}
of T such that (a), (b) and (c¢) of 4.19 are satisfied. Suppose

B¢k, thus B¢, DA, = k. But since H, is an € growth of H,

1
theorem 4.14 implies HC:HI hence HC:;;EHi = K. Therefore, we have

a contradiction, hence HCK and (01) is verified. To verify (02)
suppose H is connected but X = E/F. Now H is contained in either

E or F, hence without loss of generality let HCE. Clearly, HlC:K
and theorem 4.17 implies Hi is connected. Therefore, Hl is contained
in either E or P but since HC:Hl, Hl must be contained in E. Con-

tinuing this process, we see that since each set H, is connected
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and HiCHi-l—l for all i we must have each set Hy contained in E.
Thus iQIHiCE hence KCE which contradicts the assumption that
K = E/F. Therefore, K is connected. Now H1CN(H,€l) and similarly
HZCN(HI,E‘Z)CN[N(H,EI),Gz] (4.17). 1In gen:ral,

E,C N(I—Ii=1,€i)c...CN(H,:ZEIGi)‘.
Since t}:is is true for all i, we have K = iQQIHiCN(H,i%Gi)CN(H,G)
since Z.€ £ €, i.e., KCN(H,€). It readily follows that
d(K)<<d(H) + 2€ and we have verified (03). Since we have shown
earlier that if H = § then K = @, the theorem is therefore proved,
Q.E.D.

Theorem 4.21 Suppose T is a metric space with property S,

HE and K are subsets of T and €>0, If K is an €-sequential growth

of H, then K has property S and is open in T,

Proof. Suppose K is a €-sequential growth of H. Then there
are segquences {e:iz and {Hi} with the properties given in definition
4.19. Let x be any point in K. Since K = iQIHi there is a set Hj
such that xeﬂj. Now T has property S, hence T is locally connected
by the corollary to theorem 4.1l1l. H;j+1 is an e,j+1 growth of Hj'
+1 is the § given in definition 4.16, and con-
sider the open neighborhood N(x,-s—g.—ﬂ)’ in T. Let V be the component

Let S:j+1>0 where Sj

of N(x,-sgj-l) containing x. Thus V is a component of an open set
which is contained in the locally connected space T, hence V is
open. Since VCN(x,ég—tl), a(vy s Z—Sg-il<§j+1. Also VﬂHj £ 0
since both sets contain the point x. Thus by definition 4.16
XQVCH._I_]_CK. But V is open, hence there is a A>0 such that

J
Nx,NCV, i.e., xEN(x,) CVCK. And we see that for any point x
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of X there is a neighborhood of x contained in K, therefore, K is
open,

We shall now show that K has property S. To do this it will
be sufficient to show that for any ﬁ>0, K can be expressed as the
union of a finite number of connected sets each having diameter
less than B. Clearly, there is an integer k such that i%::kei<-§-
and by definition 4.16 there is a 5k+l>0 such that if B is a
connected subset of T, dt(]3)‘<£k+1 and BNE, # ¢ then BCH_, -
Since T has property S, T = UGi where UGi is a finite collection
of sets such that each set Gi is connected and has diameter less
than the minimum of §- and §, ;. HCT hence let G ,Gy,+..,G, be
those sets which intersect Hk' Now each of these sets Gl""’Gn
is connected, contained in T, meets Hk and has diameter less than
8k+1 hence iQJIGiCHk-rl (4.16). But HkCT = ii-l—-jlc’i and if xGHk
then x belongs to some of the sets Gi’ namely, some of the sets

n
Gl"'f’Gn' Therefore, HkCinglGiCHk_l_l. We shall now define a set
of points Wi for each 1 = 1,25+.+9yn, in the following manner. A
point yGWJ. if and only if y€K, y€C where C is a connected sub-
set of K, d(c)(f— and Cﬂ(‘é‘_j £ f. YNow d(wj)<(6 for 1 £ jJ £ n be-

cause if z€W, then z€ X, z€D where D is a connected subset of K,

J
d(D)(f and DN G,j # @. Assuming ye:wj as above let u and v be
points of (:f’t(‘,"j and DN Gj respectively. Then /O(y,u) < d(C)<§,

F(u,v) s d(G3)<§ and p(v,z) £ d(D)<§. Therefore, applying the

triangle inequality twice we clearly have /O(y,z) = 24é<,6. Since

Yy and z are arbitrary points of WJ. we have d(Wj)<,£, for 1 £ j S n.

Also jSwj for 1 £ j S n, for if r€¢G, then r€Kk, réGJ. where Gj

J

is a connected subset of K, d(%)(-f% and G ﬂGj # @, thus by our

J
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definition of W,j’ rEW

connected for 1 £ J £ n, To show this suppose x €W

J
and C ﬂGj £ d.

y eee, G.CW,. Furthermore, each W, is
J 3T J

s thus xEZCx

where C_ is & connected subset of K, 4(C )<§

Clearly, W, Uc and since G Cw., w, = (Uc )UG . Now each set
J J xEWS

C, is conneoted aﬂd meets the connected set G Jhence (UC )UG = Wj

* J xewx
is connected (1.,22),
n
We shall see that K = é:&Wi. Since it is easily see that
n

n
iLJIWiCK, we need only show that Kciglwi' Let x be any point of

K, Thus x€H, for some i. If i Sk (where k is the same k pre-
n
viously used) then x€HiC HkCiUlGiC U Wi teen, x€iL=JlWi. Sup-

pose i >k and recall that Hi is an ei growth of H, Then by the

i-1°
definition of an € growth (4.16), x €H, implies there is a con-
nected set L, such that LiC’Hi’ x €L, L.ﬂ H # ¢ and d(’Li)<Ei.

Let xi_leLiﬂHi_l. Again Hi-l is an e -1 growth of H 5 hence

X1 1-1° L3 1CHy g
1 €Ly 40 Ly NE, , £ ¢ and a(y,_,)<E,_;. Let x, €L, NH. ..

eHi-l implies there is a connected set L

Continuing this process we have a connected set Lk+1’ L%+1CHk+l,
X 1€ D d(Lk+1)<€k+l and x, €L, ,MNE,. Let L = m%{;m. Then
L NE # ¢ implies LME # §. Now recall from elementary point
get theory that if we have two sets A

and A, such that A/ N4, # §

1 2
then d(A Ua ) s d(A ) + d(A ). Furthermore, by induction, it can
be shown that if sets Al,Az,...,A are such that A ﬂAi 1 £ @ for

i = 2,400yn+1 then d( UAi) = Zld(Ai) Applying this to our case,
we see that we have sets L, .,L, 2,...,Iii such that L ML . £

for each r, hence d(L) = d( H()Em) - ng+?.(Lm) €rsr T Exa2 T oo

+€; = a€m<4’ i.e., d(L)<-. Since x€L;, x€L. Now each L is

connected, and, in general, we have xm_lé' Lanm—l hence L = m&ﬁ&
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is connected. Also LmC:Hm for m = k+l,k4+2,...,1i, thus

i 1
Uig C UEnCEK,

m=k+1l  m=k+l
Therefore, LCK. Recall that HkC:J;&Gi and that LNE_# @, hence

there is some set Gs' where 1 £ 8 £ n, such that Lf\GS # #. 1In

summary, then x€ 1L where L is a connected subset of K, d(L)<§

n n
and Lﬂa‘s £ & for 1'S s € n, thus x€Ws and we have x eiL_lei. We
n

now see that any arbitrary point x of K is such that XE:%:&Wi'
Therefore; K = J;&Wi, i.e., K is the union of a finite number of
connected sets each having diameter less than an arbitrary positive
number B hence K has property S. Q.E.D.

Theorem 4.22 Suppose T is a metric space having property

Se Then T has a basis, every element of which is an open con-

nected set having property S.

Proof, Let V£(p), n=1,2,... be a countable basis for an
arbitrary point p of T (1.18). Since each Vh(p) is an open set
containing p there is an € >0 such that N(p,en)C:Vn(p) for
n = 1,25+ Consider the neighborhood N(P,%Gh)- Clearly,
N(p,%fh)C:N(p,éh). Let Wh(p) be the component of N(P:%€h) cone
taining the point p. Since T is locally connected (4.11) and
N(p,%éh) is open we see that Wh(p)'is an open connected set such
that

Wn(P) CN(P’%’en)CVn(P) ’
for n = 1,2,...¢ In view of theorem 4.20 there is an €-sequential
growth K (p) of W (p) for each n = 1,2,... and for €= € . Now
since T has property S and each Wﬁ(p) is connected we see by

theorem 4.21 that each K (p) is an open connected subset of T
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having property S. Also for each n = 1,2,...

w (p)CK (p)CN(W (p),2€)
by theorem 4.20, but | |

N(W,(p),3€, )CN[N(p,3€,) 26, ]CN(p,&, )TV, (p),

i.e., in particular, Kh(p)C:Vi(p) for n = 1,2,.... We readily see
that the collection of sets Kh(p), n=1,2,... is a basis at p,
for if H is any open subset of T containing p then there is a
Vj(p)C:H, but also Kj(p)C:VJ(p), i.e., there is a set Kj(p), such
that Kj(p)C:H. Since p was an arbitrary point of T, the collection
of sets Kn(p) forn =1,2,... and for all points p of T is a basis
of the space T. Hence this is a basis of open connected sets each
of which has property S and the theorem is proved. Q.E.D.

We have seen that every Peano space is a metric space having
property S. Thus the preceeding theorem implies that every Peano
space has a basis of open connected sets each of which has prop-
erty S. We shall state this in a more formal manner in theorem
4.27, dbut first we briefly examine how the ideas of property S,
local arcwise connectedness and local compactness are related.

Definition 4.23 Let T be a space. Then T is said to be

locally arcwise connected if and only if, for any point p of T and

any open set H of p in T, there exists an open set G of p in T
such that if x€G, Y€€ and x # y then there exists an arc in H
joining x and y.
With the aid of 1.25, part {(2), the reader may easily verify
that every locally arcwise connected space is locally connected.
Definition 4.24 Let T be a space. Then T is said to be

locally compact if and only if, for any point p of T and any open
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set H of p, there is an open set G of p such that ¢CH and € is
compact.

It is readily seen that the definition of compactness 1.21
implies that every compact space is locally compact. ”

Theorem 4,25 If T is a locally compact metric space having

property S then T is locally arcwise connected,

Proof. ©Suppose T is a locally compact metric space having
property S. Let p be any point of T and let A be any open set con-
taining p. Since T has property S, T is locally connected. Thus,
if W is the component of A containing p, then W is an open con-
nected set,

If we can show that W is arcwise connected we will have
proved the theorem, for W is now an open set containing p and con-
tained in A where A is any open set containing p. Furthermore,
if W is arcwise connected then any two points of W may be joined
by an arc contained in W, thus contained in A, hence by definition
4.23 T will be locally arcwise connected. We shall now show that
W is indeed arcwise connected.

Let z be any point in W. Since T is locally compact there
exists an open set H such that z€H, BCW and H is compact. Since
T is a metric space there exists an open set G such that

z€EGCGCHCW (1.11).
Thus, -(-}C.ﬁ, i.e.y T is a closed subset of the compact set H, hence
C is compact. Now T is a metric space having property S hence
theorem 4.22 implies T has a basis every element of which is an
open connected set having property S. Therefore, G is the union

of some of the elements of this basis and since z € G there is a
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set V(z) of the basis such that z€VCG. Thus, in addition to
being open, connected and having property S, the set V(2) is such
that

zEV(2)CV(z)CECW
and since V(z) is the closed subset of the compact set G, V(z)
compact. Furthermore, z was an arbitrary point of W hence the
collection of sets z\eJWV(z) is an open covering of We Let x and y
be distinct points of W. Let P be the set of points of W which
can be joined to x by a simple chain of sets in z\-é)wv(z). Since
xEP, P £ ¢. Let Q be the set of points of W which cannot be
joined to x by a simple chain of sets in zkng(z). Suppose P £ W,
therefore Q@ £ @ and clearly W = PUQ and PNQ = @. Let c be a
point of PMNQ. Thus, ¢ belongs to some set V(c) of the open
covering. Since V(c) is open, there is a neighborhood of ¢ con-
tained in V(c) and since c€P this neighborhood contains a point
d of P (1.11). Thus d€P and d €V(c). Now d can be joined to x
by a chain of sets in zLe)WV(z)’ Let V(zh),...,v(zr) be such a
chain. Let V(zi) be the first set of this chain intersecting
V(c). Therefore, V(z,),e..,V(2;),V(c) is a simple chain of sets
of Z_Lz)WV(z) joining x and ¢, Hence ¢c€P, but we also had c €Q.
This is impossible since PN\ Q ¢, and we see there is no point
¢ of PNQ, i.e., PNQ = . Suppose a€PMNQ. Thus, a€V(a) where
V(a) is some set of the covering Z‘E)Wv(z). Vv(a) is open, hence
there is a neighborhood of a contained in V(a) but a€Q hence this
neighborhood contains a point b of Q, i.e., bEQ and bEV(a).
Since a€P we let v(zk),...,v(zm) be a simple chain joining x and

a. Let V(zj) be the first set of this chain intersecting V(a).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



70

Therefore, V(zk),...,v(zj),v(a) is a simple chain of sets of
zLé’WV(z) joining x and b, Thus bEP. This is impossible since
b€Q, hence a§¢PNQ, i.e., PMNT = . Pinally then we see that
W = P/Q which is a contradiction since W is connected. There-
fore, the assumption that P # W is false, i.e., P = W and there
exists a simple chain V(zi), i = lyeeeyn joinigg x and y. Let
M= é;&v(zi).. Recall that any simple chain J:Hci is such that
Caf\ci+1 # ¢ but Cif\cj = ¢ for |i-j|>1. Thus since each set
V(zi) of the chain joining x and y is connected, M = é;&v(zi)
is connected (1.22)., Furthermore, we have seen that each V(zi)
has property S hence M = g;&v(zi) has property S (4.9). It follows
that M is connected and has property S (4.15), thus ¥ is also
locally connected (4.11). Clearly since each VTE;T is compact
é;{?TE;’ is compact. But'ﬁm=.£ZEV(zi) = J;EVTE;j, iee., M is
compact. We now see that M is a Peano space contained in W. By
theorem 3.9 there is a simple arc joining x and y in M hence in
W. But x and y were arbitrary points of W hence W is arcwise con-
nected and the theorem is proved. Q.E.D,

Definition 4.26 We shall denote a subset G of a space T
as a region in T if and only if G is both connected and open in T.

In theorem 4.25 the only requirement we made of W was that
it be an open connected set containing an arbitrary point p of T,

Thus the following corollary is immediate.

Corollary. Suppose T is a locally compact metric space

having property S. Then every region in T is arcwise connected.

Since every compact space is locally compact and every

Peano space is a compact metric space having property S, we see
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that theorem 4.25 applies to Peano spaces. We have now proved the

following theoren.,

Theorem 4.27 Suppose T is a.Peano space. Then T has a

basis each non-empty element of which is connected, has property S,

and has a Peano space as its closure, Also T is arcwise connected

(3.9), and locally arcwise connected (4.25) and every region in T

is arcwise connected.
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CHAPTER V

CYCLIC ELEMENT THEORY

In this chapter we shall study the structure of Peano spaces
with respect to their cut points. Thus, all spaces considered
shall be Peano spaces, although this need not be the case for some
of the theorems to hold.

Theorem 5.1 Suppose a, b and p are distinct points of a

Peano space T, Then, a and b lie in different components of T-p

if and only if T-p has a separation G/H such that a€ ¢ and bE€H.

Proof., Suppose T is a Peano space and a and b lie in
different components of T-p. Let G be the component of T-p con-
taining a. ©Since T is locally connected and G is a component of
the open set T-p of Ty G is open. Let H = (T-p)NEG. HNow bET-p
and since a€G, P€£€G. Therefore, P€H. We shall show that
T-p = G/E. Clearly, T=p = GUH, GNE =0 , ¢ £ ¢ and H £ #. Since
GG is closed and EC GG we have |

ENGCEENG = GGNG = §
Furthermore, GCG and GC T-p, hence GCGN(T-p)CG. But G is con-
nected hence G is connected which implies that GMN(T-p) is con-
nected (1.22), Now G is a component of T-p and GN(T-p)CT-p.
Thus since GCGN(T-p)y G = GN(T-p) (1.24). Finally then
ENG = (T-p)NEENG = GNEG = P

and T-p = G/H.

72
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To prove the converse, suppose a Peano space T is such that
T-p = C/D where points a and b of T-p belong to C and D respectively.
Let E be the component of T-p containing a and let F be the com-
ponent of T-p containing b. Clearly since E is connected and
a€ENC we must have ECC, Similarly F is connected and a €F( D
hence FCD. But CND = @# hence ENF = @, i.e., a and b belong to
different components of T-p. Q.E.D. '

Definition 5.2 ©Suppose a and b are points of a Peano space

T. We shall say that a third point p of T cuts between a, b or

separates a and b if a and b lie in different components of T-p.
Thus in view of theorem 5.1, a point p cuts between and b
if and only if T-p has a separation G/H such that a€ ¢ and bEH,
Definition 5.3 A Peano space T is termed cyclic if T has
no cut points.
Definition 5.4 We shall say that a subset E of a Peano

space T is semi-connected if and only if for every point x of T-E,

the set E is a subset of some component of T-x. As a consequence
of this definition the reader may easily verify the following
statements.,
(1) The empty set is semi-connected and T itself is semi-
connected,
(ii) 1If a set E is connected, then E is semi-connected.
(iii) If E is semi-connected and & is any collection of
semi-connected subsets of T such that if AE4 implies ENA £ §,
then the set EL)(&%%) is also semi-connected.
(iv) 1If .4 is a collection of semi-connected sets and H is

the common part of some (or all) of the sets of & then H is semi-

connected.,
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(v) If E is semi-connected and ECFCTE then P is semi-
connected. Thus we see that if E is semi-connected, then E is

semi-connected,

Theorem 5.5 Suppose p and g are distinct points of a Peano

space T and E is a semi-connected set containing p and q. If a

point x cuts between p and q, then xE€E.

Proof. Suppose x¢E. Since E is semi-connected E lies in
some component B of T-x. Thus puUqCB, i.e., p and g lie in the
same component. This is impossible since x cuts between p and q,
hence x€E. Q.E,D,

Definition 5.6 Suppose p and q are distinct points of a
Peano space T. We shall let K(p,q) be the set of all points of T
that cut between p and q. Clearly K(p,q) may be empty.

Theorem 5,7 The set pUqUK(p,q) is semi-connected.

Proof. Let x be any point such that x¢ pUqUZK(p,q). Thus
x¢3 K(p,a) hence x does not cut between p and g. It follows that p
and q are in the same component C of T-x, and in view of (ii) of
(5.4) that C is semi-connected. Thus by 5.5, pugqUK(p,q)CcC,
that is, pUqUK(p,q) is semi-connected.

Definition 5.8 Let a and b the points of a Peano space T.
We shall say that a is conjugate to b, written aOb, if and only if
no point of T cuts between a and b. Clearly every point is con-
jugate to itself and if aOb then bOa.

In view of definitions 5.6 and 5.8, the following theorem
is now immediate,

Theorem 5,9 If p and q are two points of a Peano space T
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such that pOq then pUq is a semi-connected set.

Definition 5.10 Suppose Byseeerd is a finite sequence of
distinct points of T. These points taken in the given order, will

be said to constitute a O-chain if aiC)a for i = 1,es0yn-1.

i+l
Also, if a.nO a, then we shall call the O-chain a simple closed

O-chain. Otherwise, the O-chain will be termed open.

n
Theorem 5,11 If al,.,.,an is a QO-chain, then égﬁai is

gsemi-connected.

Proof. Since a,0a,, a.lU a, is semi-connected by 5.9.
n-1 1moet e
Suppose %glai is semi-connected. Now a _1C>an, i.e.y an_lL)an is

n-
semi-connected and since (an=1Llan)f\égaai # d we see that

n
égaai is semi-connected. Q.E.D,

Theorem 5.12 Suppose 81200228 is a simple closed O-chain.

Then any two of the points al,...,a_ are conjugate,

Proof. Clearly if we consider a cyclic permutation of the
points Byrecesdy the new arrangement is again a simple closed
O-chain. As examples, 8 128,987 000 %28 5 and BisecesB s8rrecerd, 4
are each again simple closed O-chains. Thus, to prove the theorem
it is sufficient to show that alOai for any i = 24s.4yn-1 since a
similar proof would follow to show that a.jC)ai for any j and any i.

Suppose the theorem is false, that is, there exists a point
x which cuts between ay and a,. Now Bygecesdy is a O-chain and by

i
5.11, ﬁ:&ak is a semi-connected set containing al and a,, In view

i
: i
of theorem 5.5:c€kgﬁak. Similarly, Bipevesd 98y is a O-chain and
X belongs to the semi-connected set é:&ak. In summary then x be-
longs to the two sets

1o = MY eV .. Uay
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and
v
ksiak = aiL)ai+1LjoooLJanL)al.
v y ’
But notice (k'la.k)ﬂ('kl_)iak) = a,UVa;. Thus x€a,Va,, i.e., x
coincides with one of the points a, or a,. This is impossible since

we assumed that x cuts between 2y and as . Therefore, no such point

x exists and we have alo a;. Q.E.D.

Definition 5.13 Suppose a Peano space T contains a finite
number of distinct points PysesesP, and an equal number of sets
Sl""’sn such that the following conditions hold.

(i) Each of the sets Sys++es5S, 1is semi-connected.

(11) slr\ 8, = Py szn 33 = ps,...,sn_lﬂ 5, = p, and
Snr\sl = Dy
(1ii) si('\slj =@ if 1<]i-j|<n-1.
If this is the case we shall say that the points PysecssP, and the

sets Sl""’sn constitute a simple closed O-polygon. We shall call

the points PysecesP, the vertices and the sets Sl,...,Sn the sides
of the O-polygon. We shall denote the O-polygon by
(pl,...,pn;sl,...,snyc
The reader can easily verify that if the set of points
Biyesesd is a simple closed O-chain then we have the simple closed
O-polygon (al,...,an;alL)az,azL)a3,...,an_1u a8 U al).

Theorem 5.14 Any two vertices of a simple closed O-polygon

are conjugate.

Proof. Tet (pl,...,pz;Sl,...,Sn) be a simple closed
O-polygon. We see by theorem 5.12 that it shall be sufficient to

show that the vertices PysesesPrs in this order, form a simple
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closed O-chain, i.e., that piO Pi.1 for 1 = 1,e+.yn-1 and that

pnC)pl. Again we see that the situation is unaffected by a cyclic
permutation, hence we need only show that p1C)p2.

Suppose otherwise, that is, there is a point x which cuts
between Py and Py Now Si is semi-connected and plLJpzc:Sl. Thus
by theorem 5.5, x€Sl. Furthermore, Si is semi-connected for all
i, hence by repeated use of 5.4, part (iii), f;ési is semi-connected.
Also, sin:e P,€S5, and p, €S we have p,U pZC i‘:'ési and again by
5.5, X eiL-J2Si' But since (iLI:JZSi)ﬂS‘IC ('"S'ln 52)U (Slﬂ Sn) = p,U P,
we must have x identical with one of the points Py and Py This,
of course, is impossible hence our assumption that there is a point
x which cuts between Py and Py is false. Thus pIC)pz. Q.E.D,

Definition 5.15 Suppose C is a subset of a Peano space T.

We shall say that C is a proper cyclic element if and only if the

following conditions hold.
(i) C is non-degenerate.
(ii) Any two points of C are conjugate.
(iii) If a point x is conjugate to two distinct points of C

then x€C.

Theorem 5.16 If C is a proper cyclic element then C is semi-

ceonnected,

Proof. Let P, be a point of C. Then pOC)p for all points
P of C. Thus, in view of theorem 5.9 poL)p is a semi-connected
set for all points p of C. Hence LJ(pOU p) for all p of C is semi-

connected (5.4). But C = i}(poL)p) for all p of C, hence C is

semi-connected. Q.E.D.
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Theorem 5.17 Suppose Cl and 02 are proper cyclic elements.

If C ﬂc,, is non-degenerate then €., = C,..
1 2 1 2

Proof. Suppose le\ C, = aUb and let x; be any point of
Cl. Then xlo a and xlOb since aUbC 01. But anC02 also hence
1 = 02. Q.E.D.
Theorem 5.18 Suppose p and g are distinct points of a

x1€ C,. Thus, CIC_CQ. Similarly 02Ccl, i.e., C

Peano space T and pOqg. Then there is exactly one proper cyclic

element that contains both p and g.

Proof. Let F be the set consisting of all points x of T
such that xOp and xOq. We shall show that F is a proper cyclic
element containing p and q and, in fact, is the only one containing
p and q. Since pOq we have pUQqC.F. Thus, F is non-degenerate
and contains p and q. Also, any two points of F are conjugate,

for let x, and x, be any two points of F. Then, if x, = x, we

1 2
have Ox,. Similarly, if x, is identical with either p or q, or
o= *

1

if x, is identical with either p or q we again have xlo Xy Hence,
we exclude these cases and assume that PsQsX;s and x, are distinct
roints. Since % and X, belong to F we have xlo Py xlo Qy x20p
and x,0p. But the conjugacy relation is symetric (5.8), hence
we have the simple closed O-chain p OxIOquZOp. Thus, in view
of 5.12, xlO Xy i.e., any two points of F are conjugate.

Let y be any point which is conjugate to two distinct points
x and z of F. Thus
(1) pOx0y0z0q
and pOq. We shall show that pOyQgq, i.e., YEF. In view of

theorem 5.12 to show this it shall be sufficient to show that y
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belongs to a simple closed O-chain containing both p and q. Now
if y equals any one of the points p, q, X or z then clearly y€F.
Hence, we can assume that y is different from each of the points
PsQ,x and 2z, Furthermore, we know that p % q and x % z. There are
seven possibilities to consider,

(i) If x = p and z = q, then from (1) we have the simple
closed O-chain pOyOq.

(ii) If x = p and 2z # q, then z £ p since z # x and from
(1) we have the simple closed O-chain pOy Oz Oq.

(1ii) If x = q and z = p, then from (1) we have the simple
closed O-chain qOy Op.

(iv) If x = q and z £ p, then z # q since z £ x and from
(1) we have the simple closed O-chain pOqOyOa.

(v) 1If x # p,q, and 2 = p, then from (1) we have the simple
closed O-chain xOyOpQOq.

(vi) If x £ pyg @and z = q, then from (1) we have the simple
closed O-chain pOx Oy Oq.

(vii) If x # p,q and z ¢ p,q, then (1) itself is a simple
closed O-chain.,

Thus in every case, y belongs to a simple closed O-chain
containing p and q, hence pOyQOgq, i.e., yE€F. Therefore, F
satisfies all the requirements of a proper cyclic element and F
contains p and gq. Furthermore, F is the only proper cyclic element
containing p and q for by theorem 5.17 if there were another it
would be idential to FP. Q.E.D.

Theorem 5.19 Suppose X is a point of the Peano space T and

and E is the set of all points of T that are conjugate to x. Then

E is closed,
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Proof. Let y be a point of @QE. We shall show that QE is
open which implies that E is closed. Now there is a point z of T
such that z cuts between x and y. Thus, in view of 5.2, x and y
are in different components A and B of T-z. Now the single point
z is closed, hence T~z is an open subset of the locally connected
space T. It follows that since BCT-z, B is open (1.25). Clearly
if w is any point of B then z cuts between w and x, i.e., w is not
conjugate to x, hence w¢E and we have WEEE. Since for any point
w of B we found that w ECE we see that BCGE. But B is open and
Yy € B, hence there is an €>0 such that N(y,E)CBCCE. That is,
for any point y of QE there is a neighborhood of y contained in

GE, hence GE is open. Therefore, E is closed. Q.E.D.

Theorem 5,20 Suppose C is a proper cyclic element of a

Peano space T. Then C is closed,

Proof. Let Py and Py be two distinct points of C. Let E
be the set of all points x such that plo xOpz. Let E; be the set
of all points x such that plO x. Let E2 be the set of all points
x such that pZOx. In view of 5.15, C = E. But notice E = Elf'\E2
and by theorem 5.19, El and E2 are closed sets. Thus, E is closed,
i.e., C is closed. Q.E.D.

Theorem 5.21 Suppose C is a proper cyclic element of a

Peano space T. Then C is arcwise connected. Furthermore, if H is

any simple arc in T whose end points p,_and p, are in C then HC C.

Proof. T is arcwise connected (3.9). Thus, it is clear
since CCT that any two points of C can be joined by a simple arc
in T. We must, therefore, only show that such an arc lies entirely

in C in order to prove the theorem.
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Let H be a simple arc whose end points 2% and p, are in C.
Suppose H¢C. Then there exists a point x such that x€H and
x¢. C. Consider the subarc XDy of H. C is closed (5.20), hence
compact. Thus we have on Xpy & first point q; of C. Let Hl be
the subarc of H with end points x and Q- In a similar manner con-
sidering the subarc xp, of H we have on xp, a first point a5 of C.
Let I-I2 be the subarc of H with end points x and Qe We shall show
that
(1) (qlﬁxsqziHlsHZ!C)
is a simple closed O-polygon. First q;, x and g, are distinct
points for clearly ql 7! q2 and if x coincides with either q; or 9,
then x €C which would prove the theorem. Also, C is a proper

cyclic element, hence is semi-connected (5.16). Now H, and H

1 2
being arcs are connected, hence by 5.4 they are both semi-connected.
Furthermore, Hlﬂ H2 = X, Hznc = 4, and CF\H1 = 9. Therefore, by
5.13, (1) is a simple closed O-polygon and in view of 5.14, xOq
and quz. That is, x€C. This contradicts the assumption that
x¢C, hence x€C and we have every point of H contained in C, i.e.,

HCC. Q.E.D,.

Theorem 5.22 Suppose C is a proper cyclic element of a

Peano space T and D is any open connected subset of T. Then ¢MND

is connected,

Proof. Clearly if CND = @ or ¢CND is a single point, the
conclusion is proved. Therefore, suppose the set CI\D contains at

least two points. Let x, and x, be points of C/D such that

1 2
xl 7‘ 12. Since D is a region in the Peano space T, D is arcwise

connected (4.27). Now x,U szD so let H be a simple arc in D with
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end points x, and Xoe But xlU xZCC, hence theorem 5.21 implies
ECc. Thus, HCCMND, i.e., any two distinct points of CMND are
joined by a simple arc lying entirely in cMD. Therefore, CMND

is arcwise connected, hence connected (3.10). Q.E.D.

Theorem 5.23 Suppose C is a proper cyclic element of a

Peano space T and A is a component of T=C. Then A-A consists of

exactly one point and this point belongs to C and is a cut point

of T.

Proof. T-C is open (5.20). Thus, A is a component of an
open set T-C in a locally connected space T, hence A is a region
in T. This implies that A # A and we have A-A ¥ @. Furthermore,
K—ACC, for if not there is some point p of A-A such that p¢ Ce
Now then peI, pECA and pﬁc, i.e., p€T=-C. Hence p must belong
to some component Q of T-C. If Q = A, we would have p€ A which is
impossible since p ECA. Therefore, Q ;4 A. It follows that
ACAU DPCA which implies that AUpP is connected (1.22). But
AUpCT-C and since pEA we have A £ AUp. Thus, the component A
of T-C is a proper subset of a connected set AUp in T-C. BSince
this is contrary to our definition of a component (1.24), we see
that our assumption that such a point p existed is false, i.e.,
2-ACC. 1In addition to this, if A-A consists of exactly one point
x, then x is a cut point of T. To show this notice that since
x¢A we have ACT-x. A is open in T, hence A is open in T-x (1.13).
However, since A=A = x, it follows that A = AUx., Clearly then
A = (P-x)NA, i.e., A is closed in T-x (1.13). Hence @4 is open

in T-x and we see that T-x is the union of two non-empty disjoint
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sets A and @A, each of which is open in T-x. It follows from 1.22
that T-x is disconnected, i.e.y, x is a cut point of T.

We shall now show that A-A does consist of exactly one point
thus proving the theorem. Suppose there are at least two distinct
points p, and p, of A-A. Since A-ACC we have p,U pZCCﬂ(K-A).
Now py # p, hence P(pl,p2) = r where r>0. Consider the neighbor-
hoods N(pl,%r) and N(pz,%r). These neighborhoods are clearly dis-
joint. Let G, be the component of N(pl,%;r) containing p, and let
G, be the component of N(pz,%'r) containing p,. Thus p, €G,,
r,€6, and G,NG, = $. Now G, and G, are components of the open
subsets N(pl,%r) and N(pz,%r) of the locally connected space T
(1.6). Thus, G, and G, are open connected sets (1.25). Let
G = G1U AU G2. G is open since Gl’ A and G2 are open. Also, G
is connected., To show this notice that Gl, A and G2 are each
connected sets. Furthermore, since plez-A, p,€ A. Thus
ACAUPICK, T -J AUpl is connected (1.22). Since pléGl and
ple AUpl, and both sets Gl and Aupl are connected we have
G1U(AUp1) connected. But G,U (Av pl) = G,U4, i.e., GUA is
connected. Similarly, AUGZ is connected hence G]_UALJG2 = G is
connected (1.22). In summary then G is an open connected subset
of T hence theorem 5.22 implies that C/IG is connected, This,
however, is not the case for

cne = (cNGU(CNAYU(CNE,)
= (CN¢Gy )V (cNey)
since CMA = . Also CNG, and CMNG, are both non-empty sets,
and TN 6, CTCEE,CE(CNG,), t.e., (TNG)IN(CNG,) = §. Similarly,
(cNe )N (TTYE,) = ¥, and we see that CNG = CNG;/CMNG,. Thus we
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have a contradiction and our assumption that A-A contained at least
two distinct points is false. Therefore, A-A consists of exactly

one point x and as we have seen x€C and T-x is disconnected. Q.E.D.

Theorem 5.24 Supposevc is a proper cyclic element of a

Peano space T and T-=C ;4 ¢. Then T-C has at most a finite number of

components A such that d(A) is greater than or equal to an assigned

S >0.

Proof. ©Suppose the conclusion of the theorem is false.
Then there is a & >0 such that infinitely many components
Sl""’sn"" of T-C each have diaméter greater than or equal to
§. Since each component is connected and has diameter greater than
zero, it must contain a non-countable number of points (1.22).

Thus for each n there are two points P, and 9, of Sn such that

5=

[ 4

(P, >a(s,) - 1z 5-

Hence we have two sequences of points {pn? and {qn} for n = 1,2,¢4.0
Since T is compact there is a subsequence {pknz of {png such that
{pk‘g converges (1.21). Now the subsequence {qk} of {qn} may not
conﬁerge, but a subsequence {qlk? of [qkl} will converge (1.21).
Let {Plkl be a subsequence of {;krz e« Since zpkg converges,

n

{plk} converges. Let Vp = Plkn and z, = qlkn. Thus we have two

converging sequences [yz;f and {zng such that

(1) PTne2,) 8 - ﬁ- 2 5-% .

n

1
If y,—p and z —»q we see that p £ q. For suppose 26<{é - = where

€ >0. Thus for n sufficiently large /O(yn,p)<6 and P(Zn,Q)<€-
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But if p = g9 we have

PWqr2y) = /O(yn.P) +P(pyz)
/c(yn.p) +/0(q,zn)

< €+ €&,
ieeo, /O(yn,zn)<2€<£- % which is a contradiction of (1), hence
p ¥ a. Therefore, ,o(p,q) = r where r>0. Consider the neighbor-
hoods N{p,3r) and N{q,ir). Clearly they are disjoint open sets
(1.6). Let P be the component of N(p,2r) containing p and let Q
be the component of N(q,2r) containing q. FNow p€P, qE€Q and P
and Q are open connected sets since each is contained in an open
set of the locally connected space T, Furthermore, PMNQ = {.
Since P is open there is a Y>0 such that N(p,Y)CP. But Y P
thus there is an Ly such that if n)nl we will have all but a
finite number of points of the sequence {yn? contained in
N{p,Y)CP (1.7). Therefore, Snr\P # @ for n>n,. Similarly,
there is an n, such that if n>n,, S NQ # . Let n = m .
It follows that if n>n_ we have SnnP £ ¢ and s,Ne # #. Then
since P and Sn are both connected, PUSn is connected. Now Sn is
a component of T-C and SnC PUS_, hence we cannot have PU ShC T-C
unless PCS for n>n (1.24). But the sets Syse+s5 yess are
disjoint, i.e., P can be contained in Sn for only one value of n.
Therefore, PUSn¢T-—C, i.e., (PUS )NC # ¢ for nd>n . However,
S,&T-C, i.e., S5 NC = # hence we must have PNC # P. Similarly,
we have QNC £ #. Let D = PUSnUQ. Clearly, D is open and if
n>n,, PNS # @ and QNS # # hence D is connected (if n>n ).

Now theorem 5.22 implies that C[\D is connected. But

CND = (Cf'\P)U(CﬂS‘n)’U(CﬂQ) = (cNnpe)U (cNaq).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



86
where CNP £ @ and ¢CNQ # #. Furthermore,

(TAP)CTCcegCe(cNa)
hence (CHP)N(CNQ) = P Similarly, (CNP)N(TNQ) = f and we see
that CND = CNP/CNQ. Therefore, we have a contradiction, hence
our assumption that there existed a >0 such that infinitely many
components of T-C each had diameter greater than or equal to & is
false. Q.E.D,

Definition 5.25 A subset H of a space T is termed a retract
of T if and only if there exists a continuous mapping f of T onto
H such that f(x) = x for every point x€H. Such a mapping f is

called a retraction of P onto H.

Theorem 5.26 If C is a proper cyclic element of a Peano

space T, then C is a retract of 7.

Proof. If C = T then the identity mapping is clearly a re-
traction of T onto C, hence we assume T-C # . We shall define a
mapping £:T—C in the following manner. Let f(x) = x if x€¢Cc. If
yET-C, let Ay be the component of T-C containing y. By theorem
5.23, Iy'Ay is a single point z€C. Let f(y) = z. Clearly then
f(?) = Cy i.eey, f maps T onto C. To show that f is a retraction of
T onto C we must yet show that f is continuous.

Suppose f is not continuous. Since T is compact and f is
not continuous there is a sequence {xﬁz and a point x, of T such
that

(1) x —>x_ but £(x, )7y, # £(x,).

There are three cases to consider.

(i) Suppose xoem-c. Then xoeAx . Ax is contained in
o o
the open set T-C, hence Ax is open (1.25). Thus, there is an
o]
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€ >0 such that N(xo,e)CAx . Furthermore, all but a finite number

o
of the points x are contained in N(xo,G), hence in A_ . That is,
o
there exists an m such that if n>n, xne Ax « It follows that
o
A_ =A_ forn>m. Hence f(x ) =4_ -4 =4_ -4, = f(x),
x x, n x x_ X X, )

ioe" f(xn) = f(xo)o
(ii) Suppose x €C and x €C for infinitely many values of
n. Then f(xo) = x_, and f(xn) = x for the x in C. Since x E€C
for infinitely many values of n, there is a subsequence {xk'z of
n
{xn? such that each point xkne C, hence :E‘(xk ) = x, for each

m n

point x, . From (1) we see that x, =X, hence x_—»x , i.e.,
n n

o,
f(xkn)‘-bxo. But f(x ) = x, hence f(xkn)—-’f(xo). Again from (1)
we see that f(xn)-;yo and it follows that 1E'(:|r.k )-;yo. Therefore,
n
f(xo) = ¥, which contradicts (1).
(iii) Suppose x,€C and x € T-C for n greater than a certain

m. Then if n >m, f(xn) = Axn-Axn. Again f(xo) = x_ and since

from (1) f£(x,) # Y,» we have x_ £ Y,- We also know from (1) that

x —»x_ and f(xn)—;yo. Thus if n is sufficiently large
' XosJo
p(e(x,) x> BT,

XosYyoO -
This implies that d(A, )>ﬂ--—-2,——-l since x €A_CA_ and
n n n

f(xn) = Ix -AxCKx for n sufficiently large and since
n “n n
d(Ax ) = d(Ax e In view of theorem 5.24 there must be a com-
n n

ponent A of T-C which occurs an infinite number of times in the

sequence Ax ""’Ax sesse Let p = A-A. Thus xneA for infinitely
1 n

many values of n, hence f(xn) = p for infinitely many values of n.

We now have X, X f(xn)-—-;p and f(fkn)'—ayo, i.ecy y, = Po Since

xneA for infinitely many values of n there is a subsequence
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{xkx of {xnz such that x, € A for each n, But x —»x_implies that
x, —»X, i.e., xoe'& (1.9)'1:.1 But x°€(? by assumption and since
C;IIA =g, x, €CA, we have xoez-A =p. Thus x_ = Dp =y_. This is
again a contradiction since x € C implies f(xo) = x_ and (1) states
that f(xo) # Yor 1-€0y X ¢ ¥,» Therefore, in each case we found

that the assumption that there existed a point X, and a sequence

{xnz such that x —»x_ but f(xn)—,yo # f(xo) was false. Hence f is

continuous. Q.E.D,

Theorem 5.27 Suppose C is a proper cyclic element of a

Peano space T and A is a component of T-C. According to theorem

Bel23, A-A is a single point pE€C. Now let G be any connected set

of T that intersects both A and C. Then p€G.

Proof. Clearly, G = [ANGJU[(T-2)NG]. Since G intersects
both A and C, and ACT-C we have ANG £ @ and (T-A)NGCG # #. Also A
is open as we have seen in 5.23 hence T-A is closed, i.e.,
T-A = T-A and since AN(T-4) = @ we have A(N(T-4) = P. Thus
[ane)NTT-D)NGIC aneN(T-E)NE = 4,
hence also [ANG]/) [:(T-A)ﬂ c] = §. Now G is connected by hy-

pothesis, so we must have ]AHG]ﬂ[(T-AS? \G] # @ in order to pre-

serve this connectedness of G. Furthermore, we found in theorem
5.23 that A = AUp. Thus it follows that
¢ ¢ [TAe]N[(r-2)n dCEIN[(T-2)NG]
= [aup] N [(T-2)N¢]
= [an(r-a)N U pN(T-2)N¢]
= pNGa,
i.es, PNG # @ hence pEG. Q.E.D.
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For further reference, Rado's Length and Area contains a

similar discussion of sections 5.2 through 5.27.

Theorem 5.28 Suppose C is a proper cyclic element of a

Peano space T, Then

(1) If H is any connected subset of T, then HNC is

connected.

(ii) C is a cyclic Peano space.

Proof. First we notice that if either H = T or ENC = §
the statement is immediate. So we can assume that T-C # ¢ and
BENC £ . By theorem 5.26 there exists a retraction f of T onto C.
We shall use the same retraction f defined in that theorem. Since
f is continuous and H is connected, the set f(H) in C is connected
(1.27). We shall show that f(H) = H/NC, thus proving the con-
nectedness of HNC. Now HNCCC and f(x) = x for x€C. Therefore,
HNC = £(aN¢c)C £(H).
To show that £f(E)CHNC let w be any point in f(H). Thus there is
a point r of H such that f(r) = w. We now have wEL(HE)(CC., There
are two cases to consider,
(1) 1If r€C then f(r) = r, i.e.y r = w hence w€H and we
have wE€ HN C.
(2) 1f reT-C then I‘€Ar where A is the component of
T-C containing r. Recall that we defined f so that w = Ir—Ar.
Now we have HC # ¢ and since r€H and r €4 we have HMNA, £ g
Thus by theorem 5.27, w€H, i.e., wEHNC,
| Therefore, in both cases wEf(H) implies wE€HNC, i.e.,

f(EYCHNC and hence f£(H) = HNC.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



90

To prove (ii) notice that f maps T continuously onto C hence
we see that C is a Peano space. Let p be any point of C, and con-
sider the set C-p. We shall show that C-p is connected, thus in
view of 5.3, C is cyclic. Let a be a fixed point of C-p. Since T
is c¢yclic, aOx in T for all points x of C-p, hence a and x lie
in the same component E of T-p. Clearly, then p¢E and C-pCE,
and since C-p(CC it follows that C-p = ENC. But by virtue of (i)
of this theorem, EMC is connected, i.e., C-p is connected. Q.E.D.

As a conclusion to this paper we are going to prove the
cyclic connectivity theorem that any two points of a cyclic Peano
space T lie on a simple closed curve in T. We now have sufficient
background to prove some introductory theorems leading to this re=
sult.

Theorem 5.29 Suppose A and B are non-degenerate disjoint

closed subsets of a cyclic Peano space T. Then there exists two

disjoint arce P and Q@ in T, such that each one has one end point

in A and the other end point in B and no interior point in AU B,

Proof. Let us define a subset E of T to consist of the set

A and all points w of T-A such that
(1) There exists an arc F in T with one end point in A, the
other end point in B, and no interior point in AUB.

(ii) There is an arc G in T-F such that w is one end point
of G and G intersects A in exactly one point, which is its other
end point,

Clearly E £ ¢ since ACE. If we can show that E is both
open and closed in T then we must have E = T in order to preserve

the connectedness of T, For, otherwise, T will be the union of two
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non-empty, disjoint open set E and GE, hence T would be disconnected,
It follows that if E = T then BCE, thus clearly the required arcs
exist,

First E is open. For let z be any point of E and we have
two cases to consider.,
(1) sSuppose z€A. Since T is cyclic and z is a closed set,
T-z is a region in T. Thus T-z is arcwise connected (4.27).
Furthermore, since AnB* f and z€ A we have BCT-z. Let x and y
be any two points of A and B respectively such that x # z and y # z.
Then there exists an arc Fl in T-2z joining x and y. Clearly, Fl’
A and B are each compact sets such that F,/Va £ ¢ and F,MB # #.
Therefore, there are first points of A and B on Fl' Denoting these
points by p in A and q in B, we have an arc F in T-2 joining p and
q, and F satisfies (i) above. Since F is closed and FCT-z, 2z
belongs to the open set GF. Let V be the component of GF con-
taining 2. T is locally connected, hence V is a region in T (1.25).
It follows that there is an €>0 such that N(2,E)CV. If VCA then
VCE hence for any point 2z of E such that z€ A there is an €>0
such that N(z,£)CE, i.e., E is open. If V¢A then there is a
point w of V-A. Thus zUw(CYV and since V is a region in T, V is
arcwise connected. Let Gl be an arc in V joining w and z. But
A and Gl are compact, wE V-A and z €A hence there is a first point
r of A in G;. Let G be the arc wr. Thus we have ¢CVCGF, G has
one end point r in A and no other point in A and the other end
~point is w. Hence G satisfies (ii) and we have w €E. Thus if

wWEV-A then wEE and it follows that whether VCA or V¢A we have

VCE and again N(2,€)CVCE, i.e., E is open.
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(2) Suppose 2¢A, i.eyy Z€EE-A. Now by the same reasoning
as in (1) we find there are arcs F and G satisfying (i) and (ii)
respectively. Thus G = tz where G intersects A in only one point t
and 2z€EE-A, i.e., 2€ET-A., Since GCT-F, z¢FUA. Therefore,
zE€G(FUA). Now F and A are both closed sets, hence FUA is closed,
i.esy G(FUA) is open. Let M be the component of Q(FUA) con-
taining z. Thus M is an open connected set (1.25). Let w be any
point of M. Since M is a region, M is arcwise connected hence
there is an arc in M joining w and z. Now z€ G/ \wz hence GMNwz ;4 ¢.
Let & be the first point of G(=tz) on wz going in the order from w
to z. Thus we can obtain the arc tsw. Clearly tswCT-F and tsw
has w as one end point and intersects A in only one point, namely,
the other end point t. Therefore, tsw satisfies (ii), hence WEE.
But w was an arbitrary point of M thus MCE. Now 2€M and M is
open hence there is an €>0 such that N(z,£)CMCE. That is, any
arbitrary point z of E is in a neighborhood which is contained in
E. Thus E is open in either case (1) or (2).

We shall now show that E is also closed. (See Figure 1,
‘page 93)., Suppose E is not closed. Thus there exists some point
w of T-E which is a limit point of E, i.e., w€E but wgE (1.10).
Since the single point w is a closed set, and T is cyclic, we see
that T-w is a region in T, Therefore, T-w is arcwise connected.
Now A and B are non-degenerate sets by hypothesis, hence there is

some arc ]i‘1 in T-w such that P, has one end point in A and one end

1
point in B and no other points in either A or B, i.e., Fl satisfies
(i). sSince ACE and w&T-E we have w¢A. Also FICT-W hence

"¢F1, thus W¢AUF1, i.ee, wEE(AUF,). G(AUF,) is clearly an
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open set hence there is a §>0 such that N(w,é)CG(AUFl). Con-

sider the neighborhood N(w,%d). By theorem 4.27, T has a basis,
each non-empty element of which is open, connected and has a Peano
space as its closure, Now N(w,%28) is open hence can be expressed

as the union of some of the elements of such a basis. Let H be the

element of the basis in N(w,2d) such that wEH. Then

wEHCN(w,:8)CN(w,28) CN(w,8)C@E(aV Fl).

Figure 1

Furthermore, BCN{(W,%3) CG(AUFl) hence HN (AUFl) = #. Since
wE€EH and w is a limit point of E, any neighborhood of w will con-
tain points of E. Therefore, clearly HNE £ @. Let z€HME. Then
z€ E and since Tif'\(AUFl) =@, z ¢(AUF‘1), thus z€ A. It follows,
by the same reasoning as used earlier in the theorem, that since T
is arcwise connected there exists an arc G = vz satisfying (ii).,
i.esy GMNA = v, and there exists an arc F, satisfying (i). Now

2€H hence z€H thus GNH # ¥. Let y be the first point of G in H
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going in order from v to z. Now y€EH and wE€H, But E is a Peano
space hence we have an arc ywCH. Consider the arec Vywe We
readily see that vywNF, # ¢ and vywNF, # f. For if either of
these intersections were the empty set then vyw would satisfy (ii)
hence w would be a point of E., This is impossible since by
assumption wﬁ E, hence the intersections are both non-empty. On
the other hand, we know that yw/F, = § since wa-fICG(“'AUFl), 80
we must have vyMF, ¢ @. Similarly, vywNF, # ¢ implies yw/F, £ ¢
since vyCvz = GCT-Fz, i.e., vyﬂl'?2 = . Now ywCH hence the re-
lation ywNF, ¢ # implies 'ﬁﬂFz # §. Let F, = ab where a€ 4, bEB
and abM\(AUB) = aUb. Let x be the first point of F,(=abd) in H,
going in order from a to bP. Thus we have the arc ax. Since
xUwCTHE there is an arc xwCH (since H_is arcwise connected)., We
see that the arc axw is such that axwNPF, # §. For if axwNF, = §,
then axw would satisfy (ii) and we would have the contradiction
that wE€E. But since xwCH CC(AUF,) we have xwNF, = @ thus
ax(MF; # . Recall that F, satisfies (1) so if we let F) = od we
have ¢ €4, Ad€EB and cdM{AUB) = ¢Ud., Also recall that
NP, ¢ § and axNF, # f. Let q be the last point of Fy(=cd)
which lies on vyUax, going in order from ¢ to 4. Thus qE:Fl and
q €E(vyUax). But notice vyMNax = ¢ since axCabdb = F,y vwwCvz = G
and GCT-F,, i.e., GNF, = #. Thus we have two cases to consider,
either Q€ vy or else g€ ax.

(1) Suppose q €vy. Thus q¢ax., Now g £ v, for if we had
qQ = v then since vEA we would have g€ A. But we know g€cd = F,
where cdﬂA = ¢, Therefore, we would have ¢ = v = ¢. Since q is

the last point of cd which lies on vy Uax we see that
(qd=-q)N (vyUVax) = #
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hence (gqd-q)Max = . But since q = ¢ this implies (cd-d)Nax = F.

Furthermore, q¢ax hence c¢ax, i.e., axMNec = }é It follows that
cdMax = Py, 1ece, F Nax = @ which is impossible since we know that
Flﬂa.x £ #. Thus q £ v. By similar reasoning q # ¢. Let D = vquad.
Since d € (vqUqd)B we have (vquqd)NB # P. Let t be the first
point of D which lies on the compact set B and let F = vt and
G* = axwe. Clearly F is an arc joining v of A and t of B and
FN(AUB) = vUt., Thus F satisifes (i1). Furthermore, G has one
end point w in T-ECT-A and since HNA = @, we have
ENA = axwNA = (axUxw)MNa

C (abUE)NA

= (abNa)U (ENA)

= a,
icea, CNA = a. Therefore, if G'C.T-F then G satisfies (ii),
hence wE€E, in contradiction with our assumption that w¢E. We
shall show that this is the case. Since F, and G satisfy (i) and
(i1, F,NG = ¢. But vqCG and axCF,, hence vgMNax = f. Also,
since q is the last point of cd which lies in vyUax and g€ vy
we have qdNax = P, Thus (vqUgd)Nax = § and since FC(vqUqa)
we have FMax = f, FKow QEF; and -ﬁﬂ(Flu A = ¢ implies Tif\Fl = ¢.
Thus q¢-ﬁ. But q € vy where vy has only one point in -ﬁ, namely y,
hence q £ y. Therefore, vqNE = @ and since xwCH we have
vgNxw = . Also quFl, hence qdNxw = P, and we have
(vqUqd)\ xw = P. This implies that FNxw = F. Finally then we
have FN(axUzxw) = @, i.e., FOG = #, hence ¢'C 1-F.

(2) sSuppose q€ax. (In the rest of the proof since we are

assuming q €ax, we are considering a second possibility for Fl as
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indicated by the dotted line in the figure). First q # 4, for
suppose otherwise, i.e., suppose q = d. Then q€F2 and since
d€B we have q EB. Thus q€F2f"|B. But FzﬂB = b, hence ¢ = b,
This is impossible since aqCaxCab and if ¢ = b clearly
X =b=q=4d, i.e.y x = d. Then since deFl, xeFl. But we know
x€HE hence Flﬂ—H # @ which contradicts the fact that Flﬁﬁ = d.
Therefore we can assume that q ¥ d. Let F* = agd and G** = VyWe
Clearly F satisfies (i) and 6" meets A in exactly one point;
namely v. Furthermore, G** has its other end point w in T-A.
Thus, if G (CT-F, G = satisfies (ii) and again we will have wEE.
Now aqCF,, vyCG and F,NG = @, hence aqgNvy = $. Also aqCax,
q€F, x€E and Fln'ﬁ = ¢, hence q £ x. Thus, x¢ aq and we have
aqNH = . But since ywCH, it follows that aqMyw = @, thus
agNvyw = @, i.e., agNCG = P. Since we defined q to be the
last point of F; on vyUax we see that (qd-q)N(vyUax) = g.

Thus (gqd-q)N\vy = @ and since Q€ ax implies q¢vy, we have
qdNvy = . Also qd F, and yw H, hence gd yw = @, thus
qd vyw = @dMNG « = P. Finally then F MG = agdMG = = @, i.e.,
¢ C1T-F and G satisfies (ii), i.e., wEE.

Now in every case we found that wg€E. But the assumption
that E was not closed implied w €T-E, hence we have a contradiction,

i.e.y E is closed. Q.E.D.

Theorem 5.30 Suppose x is any point of a Peano space T.

Then x is a cut point of some Peano space D contained in T if and

only if x is an interior point of an arc in T.

Proof. Suppose x is a cut point of a Peano space D and

DCT. Then D-x has a separation 4/B, Let ¢ be a point of A and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



97

d be a point of B, Since D is arcwise connected and ¢ and 4 are
in D, there is an arc cd contained in D. (learly ¢ # x, d £ x and
cd is connected. If cdCD-x then either cdCA or else ¢cdC3B (1.22).
But cd¢A since d€3B and ANB = @. Similarly, cdB since c €A4.
Thus cd¢D-x. However, ¢d(CD, hence x is an interior point of the
arc ¢d and cdCDCT.

To show the converse suppose x is an interior point of an
arc ab in T, Thus x€ab, x # a and x # b. Since ab is a Peano
space (3.3) and contains only two non-cut points, namely its end
points a and b, we see that x must be a cut point of ab. There-
fore, x is a cut point of a Peano space in T. Q.E.D.

Theorem 5.31 Suppose T is a non-degenerate Peano space, p

is a non-cut point of T and H is an open set containing p. Then

there is an open set G containing p such that peGCECH and T-H

is contained in a single component of T-G.

Proof, Let H be an open set containing p. Since T is non-
degenerate there exists a point q of T such that p # q. Thus
'D(p,q) = & where £§>0., H is open, hence there is an €>0 such that
N(p,E)CH. Let A= A€,:28 where A>0. Then pEN(p,N) and N(p, N is

=12
open. Therefore

PEN(p, ) CN(p,2€)CN(p,E)CH
and clearly q¢m. Let W = N(p,?\).. Then W is open, WCH and
4 €T-¥ hence T-W # f. Since WCH we have T-HCT-W where T-W is an
open set.. Thus the components of T-W are open (1.25) and, further-
more, form an open covering of T-H. But T-H is closed, hence com-
'Pac't, and it follows from 1.21 that a finite number of these

n
components Al,Az,...,An cover T-H. Then we have T'HciglAi where
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each Ai is non-empty, open, connected and contained in T-W. Since
PEW, p¢T-W hence p ¢ T-H. This implies that p¢Ai for i = 1,...,0,
so we have AiCZT-p for i = l,.¢.yn. Now p is a non-cut point of T
and p is also a closed set hence T-p is a region in T. Therefore,
T-p is arcwise connected and there exists an arc Fj for j = 2,3,4.440n,
joining a point q, of A, with a point q‘_j of Aj’ Cleariy FjC:T-p
for j = 25e449n, and each Fj is closed. Letting F = A:éFj we Ssee
that F is closed (1.10). Also FCT-p, hence pﬁF. Since each Fj
is connected and has the common point 99 it follows from 1.22 that
F is connected. We know that pEW hence we now have pEW-F. Let
G = W-F and let E = FLJ(JZﬁAi). Clearly qieiFF\Ai for i = lye..,4n
and since P and each Ai are connected sets we see that E is con-
nected (1.22), We shall show that ECT-G. Since GCW-F implies
GCCF we have FCCG = T-G. Also A,CT-W for each i, but
T-WCT-WCT-G since GCW. Therefore, iQIAiCT'G and it follows
that ECT-G. Recall that T-H CiLleAi. Thus T-HCECT-G. Finally,
then since E is connected, no component of T-G c¢an be a proper sub-
set of E, And since components are disjoint or equal, E must
itself be a component of T-G or else must lie in one component of
T-Gs In either case T~H is contained in a single component of
T~G. Furthermore, since p€G and GCW, we have p € GCGCWCH and
since ¢ = W-F, G is open, hence the theorem is proved. Q.E.D.

Theorem 5,32 Suppose p is a point of a non-degenerate

¢yclic Peano space T and H is any open set containing p such that

H is a Peano space and p is a non-cut point of H. Then there is a

proper cyclic element of H® which contains p.

Proof, If H = T the theorem is trivially true, Thus, we
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assume H is a proper subset of T. Furthermore, p # H, for if
P = H then since p is closed, H is closed. But H is an open set
by hypothesis hence T would be the union of two non-empty dis-
jJoint open sets H and CH, i.e., T would be disconnected which is
impossible. Therefore, we have p £ H hence H-p # ¢, i.e., there is
a point q such that q ¥ p and q€ HCHE. Thus E is a non-degenerate
Peano space. Now if it can be shown that there exists a point r
of E such that r ;( p and rOp in H then by theorem 5,18 there will
exist & proper cyclic element of H containing r and p, in particular
containing p, and the theorem will be proved. We shall show that
such a point does exist.

Since T is a metric space and H is an open set contained
in T and containing p there is an open set W containing p such
that p€WCH (1.11). Thus WCHCHE and since H is open and H # T,
we have H # H, hence W £ H. Therefore, BE-W ¥ @#. Now p is a non-
cut point of the Peano space H and W is an open set containing p
and contained in ﬁ, hence by theorem 5.31 there is a set G con-
taining p such that G is open in B, GCGCW and H-W is contained
in a single component A of B-G. Since G is open in H, E-G is
closed in H., Therefore, A is closed in B (1.24). Let t be a
point in A. Clearly p ¥ ¢ since ACH-G and peG- Now both p
and t belong to H and H is arcwise connected, hence there is an
arc pt in E and ptNA £ @. Thus we may let y be the first point
of pt in A, Clearly p # y and we have an arc py such that
PYNA = y and y€H. We shall show that pOy in H. Suppose other-
wise, i.,e., there exists a point z of H such that z cuts between

P and y. Therefore p and y lie in different components of B-z.
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This implies 2 # p and 2 £ y. Also z2Epy for if not then since py
is a connected set it must lie in one component of H-z which is
impossible since p and y lie in different components of H-z. It
is clear that zNACpyNA =y, i.e.y, 2NACy. But z £ y, hence
zN\A = @, i.e., zEA., But ACH hence ACH-z. Now since A is
connected and y €A, y and A must lie in the same component of H-z.
Thus p and A lie in different components of H-z, i.e., z cuts be-
tween p and all of the points of A. Let F be any arc in H-2
Joining p to a point of A, Suppose z¢F. Then pUFUA is clearly
a connected set contained in He-z. Thus pUF UJA must be contained
in the same component of H-z. This is impossible since p and A
lie in different components of H-z. Therefore, 2z €F., Recall that
W is open, hence T-W is closed and since T is compact, T-W is
compact. We have seen that B-w ;4 ¢ hence we may let b be a point
of B-W. Clearly then HCT implies H-WCT-W and b ET-W. Further-
more, B-WC A, hence bEA which implies b # z since z¢A. Thus
b E€T-2. Now the single point z is closed and T is cyclic hence
T-z is a region in T, Therefore, T-z is arcwise connected so we
have an arc pb in T-z. Since b €T-W we have pb N (T-W) £ #. Let
q be the first point of pb in the compact set T-W. Therefore, pq
is an arc such that pgN(T-W) = q, i.e., g€EGW. It follows that
(pg-q)N(T-W) = @, i.e., (pa-q)CW. But

pa = (pa-q)CWCHCE,

thus € E hence q EB-WCA, 1.0y 9 €As Finally then we have an
arc pq joining the point p and a point q of A. And since pq(:ﬁ;z,
z¢l@; But this is a contradiction since z cuts between p and all

of the points of A. It contradicts our assumption that p was not
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conjugate to y., Hence pOy where Yy €EH and Yy ;! P. Thus by theorem

5.18 there is a proper cyclic element of H containing p and y, and

in particular containing p. Q.E.D.

Theorem 5.33 1If p is a point of a non-degenerate cyclic

Peano space T, then p is an interior point of some arc in T.

Proof. Let us assume to the contrary that no arc of T has
p as an interior point. 1In view of theorem 5.30 this assumption
is equivalent to assuming that p is a non-cut point of every non-
degenerate Peano subspace of T which contains p. We shall arrive
at our contradiction by showing that there is an arc in T having
p as an interior point.,

Since T is a non~degenerate connected set, it contains a
non-enumerable number of distinct points (1.22). We are going to
define a series of arcs and sets inductively and we begin by
lettingen ='% for n = 1,25...04 Let &, and bo be distinct points
of T~p. Consider the open neighborhood N(p,el). Clearly,
T-(aoubo) is open hence [N(p,el)]f\ [T-(aou bo)] is an open set.
Thue there is a § >0 and an open neighborhood N{p,§) such that
N(p,S)C:EN(p,Elﬂ{’\ET-(aJJ v )]s Consider the open neighborhood
N(p,%8). Now T is a Peano space, hence T has a basis every non-
empty element of which has a Peano space as its closure (4.27).
Being an open set N(p,2§) can be expressed as the union of some of
the elements of this basis. Therefore, there is a set Hl of the
basis such that

P€HICN(P’%Q)CN(P95)C[N(P!EI)]mET-(aou bo)]'
Furthermore, ﬁl is a Peano space and

pE€E, CTF,E5)CN(p, 8 C[N(p, &) MN[T-(a,U b))
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By assumption p is a non-cut point of every non-degenerate Peano
space containing it. Hence, p is a non-cut point of ﬁl' Thus
applying theorem 5.32 there is a proper cyclic element El of ﬁi
such that p €E,. Furthermore, E, is closed in -ﬁl (5.20). It
follows from (1.13) that E, is closed in T. Since

E,CH, Clr(p,e )]N[r-(a U )]

we have E,M(a Ub ) = #, where E, and a_Ub_ are both non-
degenerate closed subsets of the cyclic Peano space T. Thus by
theorem 5,29 there exists two arcs a a

ol 1
+ D b;NE = Db, and a a,Nd Db, = #, hence ay # by

and bob in T such that

aoalf\El = a,

Since E1 is a proper cyclic element of the Peano space H, we see

1
by theorem 5.28 that E1 itself is a cyclic Peano space. Recall

that pEEl. Suppose p = a,. Since E, is a Peano space there is

an arc albl in E1 and a. a, albl is clearly the union of two arcs

whose only common point is 8y hence aoalLJalb ig itself an arc.

1
Similarly aoalLJa b, UDd bo is an arc, but more than that, it is an

171 1l
arc with p(=a1) as an interior point which is impossible by
assumption. Thus p # a, and similarly, p # b,

By theorem 4.27 we see that E1 has a basis every non-empty
element of which has a Peano space as its closure. Consider the
open neighborhood N(p,€2). Clearly El-(alL)bl) is an open set in
E,, hence En(p,€2)]f\[E1-(altJbl)] is open in E;. Thus there
exists Y>0 such that

¥ (p :{)C[N(Psez)]m [El-(alu bl)]

and N(p,Y) is open in E,. Consider N(p,%Y). N(p,3Y) is open in

By

basis of El' Therefore, there ias an element Hz

hence may be expressed as the union of some of the sets in the

of this basis
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such that

p €E,CN(p,3Y)CN(p,¥)C [N(p,€,) JN[E;- (2,U b, )]
where ﬁz 1s a Peano space and

p€E, CF(EEVCN (2, v) CN(psE,)] N [E;-(a, Ub, )]

Furthermore, by assumption, p is a non-cut point of ﬁz and clearly

H2 is open in 'E1. Thus by theorem 5.32 there is a proper cyclic
element E, of 'ﬁz such that p€E, and E, is closed in TIa (5.20).

Furthermore, H2 is closed in El and E2C§2CE1’ thus E2 is closed

in E, (1.13). Recall that a U blc E, and clearly the set a,Ub;
is closed in E,. Since Ezc-ﬁzC[N(p,Ez)]ﬂ [El-(alu ‘bl)] we have

Ezﬂ (a.lU 'bl) = @, Also we have seen that E, is itself a cyclic

1
Peano space., Thus applying theorem 5.29 there exists two arcs
| a,8, and b,b, in E, such that a.la.zf']]ij2 = a,, blbzﬂ E, = b, and
a,MNb,b, = #. Since B, is a proper cyclic element of the Peano
space -H'z we see by theorem 5.28 that E2 is itself a cyclic Peano
space. Recall that p€E2. Suppose p = 85 Clearly there is an
aroc a2b2 in Ez and a1a2U a2b2 is also an are¢ since it is the
union of two arcs whose only common point is 85 Similarly,
alazu 32b2u bzbl is an arc, but more than that, it is an arc with
p(=a2) as an interior point which is impoesible by assumption,
Thus p £ a, and, similarly, p # by
Now aoalu a8, 18 the union of two arcs whose only common
point is an end point 8y hence a°a1U31a2 is an arc and we denote
it as 8.8, Similarly, we obtain an arc bobz. Recall that
aa,NE, = a; and E2CE1-(9,1U bl), hence a _a,NE, = g. Also

alazﬂE‘z = a, hence we have aa,NE, = a Similarly,

2.
= b 4
'bo'bzﬂ E..2 o an clearly a°a1Caoa2 and boblc.bobz.
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Continuing this process for n = 1,2,... we obtain a sequence
of cyclic Peano spaces {E} and arcs a a_ and b b_ such that
n on on

aoanﬂE.n = a. bo‘bnﬂm‘n = bn’ p¢a°an, p¢bobn, a anCa a

o) o n+l?
boibmc"bo‘bzul’ aoan-lU a'n--l‘@""n = E"oan and bobn-lu bn-].bn = bobn°
Let

- =]
A= nL;lan_lan = aoaIUalaz Useo
and
U
B L4 nalbn-lbn = 'bo'blU bleUnooa
A is connected since an-lan is connected for each n and
an_lanﬁ a&a .1 =8, # #. Similary, B is connected. Thus & and B

are each connected, and, furthermore, they are each compact.
Since a‘n-lancEn-lcﬁn-ICN(P’en-l) we have /o(an,p)<€_n_l = n—}i
for all n., Clearly then/o(an,p)—>0 as n—eo and since a €A for
all n we have p€A (1.9). Similarly, p€E and it follows that
AUpCA and BUPpCB. We shall show that AUp = A and BUp = B.
Let q be a point of A. Thus there is & sequence {tnz of distinct
points of A such that % —»q (1.9)s If infinitely many points of
{tn are in 8,899 then since a8y is compact there is a sub-
sequence {thr;f of {tnz which converges to some point r of a8 .
But since % —sq we have t, —q (1.8)y i.e.y @ = r, hence
q€aa,CA, i.e.y €A Tﬁus we can assume only & finite number
of points of {tng are in a a,. Let A>0 and choose an integer k
8o that -i‘( A. Now continuing this line of reasoning we can assume
only & finite number of points of {tnz are in a, .8, i.e., there
is a number n, such that if n)no then tn¢aoalu "'Ue‘k—lak’

Thus if s >k, and s-l1l 2 k,

t,€e, 18 CE _ CE CE CH(p,2)CH(p, )
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therefore tn€N(p,7\) for all n>n_. But since k can be made
arbitrarily large and there still will exist an appropriate number
n,, we see that A can be made arbitrarily small., Thus as n-—»oo we
have /o(tn,p)—’o, i.e., t —»p. However, since t —»q this implies
P = q, thus g€ AUpP. Therefore, if q is an arbitrary point of A
we have g€ AUp, i.e., AC AUpP, hence A = AUp. Similarly,

B = BUp.

Also AMNB = @, for if not then there is a point w of ANB.
Therefore, there are specific numbers m and n such that wean_la‘.n
and wEb -1Pg* If m = n then by the way we have defined our arcs
we have a__.& Nb_ .b = @. This is impossible since

w€a No _,b ,
thus m £ n. Suppose m>n. Then since LI C_E ICE and

n-1%n

an_lanﬂE = a we must have a n-1%n ﬂbm mean.

(1) If m = n+l, thena ,a MNbb .Ca . Buta gbbd .,

= #, hence e 18, Mb_ b = @, ieee,

since a a Nb b nPn+l

n+l

%n- 1anﬂ bm; lbm

n n+1

= @, and we have a contradiction.
(ii) If m>n+l, i.e.’ m-l a n+l, then
b1 PnC B C By C[N (P’€n+1)J N [En- (anU v,)]s

i.e., bm_lmeE'.n-(anu bn), hence a ¢b Thus again we have

m-l m’
the contradiction that a'n-lannbm-lbm = ¢. In a similar manner,

the reader may easily verify that the assumption that m<n leads to
a contradiction. Therefore, we conclude that no such point w exists,
hence ANB = P. Clearly then since A = AUp and B = BUp we have
iAN3B = p.

Now since A and B are both compact connected sets, if it can be

shown that each has at most two non-cut points then by theorem 3.5
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each set is a simple arc. We shall see that this is the case.,
First A-p = (AU p)-p = A and A is connected, hence p is a non-cut
point of A. Similarly, p is a non-cut point of B. Clearly I—ao

may be expressed as follows,

A-a_ = (AUpP)-a

(a 02178 )L)a1 oL a, 3u...t)p

= (aoal-ao)u a8, Ua1a3u ceeVaja U eeUP.

Now a,8, is an arc with a, and a, as its end points, hence a, is a

non-cut point of aaq. Therefore, a a;-a_ is connected. Also, it

is clear that a, UalaBU...Ualanu... is a connected set meeting

aay-a, in exactly one point; namely 8y hence

(aoal-ao) Uaja,UeeclUaga Uese

is a connected set. But

(aoal-ao)Ualazu...Ualanu... = AUp = A

and since (a_a,-a JUa,a,U...Uaja U C(aoal-ao)Ualazu cos
Uaa U...U pCAUpP we see that (aoal-ao)u alazu...Ualanu...up
is connected. Thus, I—ao is connected, i.e., a, is a non-cut point
of A. We must now show that p and a,  are the only non-cut points
of A. Let v be any point of 4 such that v # p and v # a,. There
is some i such that v€ By 485 There are two distinct cases to
consider.

(i) Suppose v is an interior point of 8 _ 184" Under this

assumption the reader may easily verify that

i.eey (AUDP)-v is not connected.
(1i) Suppose v = a;_,+ Again it is easily seen that

(Aup)-v = Jgf.‘l-lad U(ai-2a"i-1-ai)/1L<);|a'J 185 U(ai_lai-ai_l)
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hence, (AUp)~-v is disconnected.

Similarly, if v = a, we see that (AUp)-v is disconnected,
thus, in every case an arbitrary point v of A such that v # P and
v f a, is found to be a cut point of 2. Similarly, p and bo are
the only non-cut points of B. We now see that A and B are each
simple arcs with end points p and a, of A and p and bo of B.
Furthermore, A and B meet in exactly one point p which is an end
point of each set. Thus AUB is itself a simple arc with end
points a_  and b . But pEAUB, p # a, and p # b, hence p is an
interior point of an are in T. This contradicts our first
assumption, hence the theorem is proved;‘ Q.E.D.

Theorem 5.34 (Cyclic Connectivity Theorem) Suppose T is a

Peano space. Then T is cyclic if and only for every two points a

and b of T there is a simple closed curve in T containing a and b.

Proof. First suppose given any two points a and b of T
there is a simple closed curve C in T containing a and b. Let d
be any point of T different from a and b, thus a,b€T-d. There
are two cases to consider.

(i) Suppose dE€C. By theorem 4.4, C may be expressed as
two independent arcs (ab)1 and (ab),. Suppose the notation is
chosen so that d€(a.b)1, thus d € (ab),. Since (ab), is a con-
nected set it belongs to one component of T-d. But aE(a'b)2 and
bEf(abyz, hence a and b are in the same component of T-d. Since
d was arbitrary this implies no point of T cuts between a and b.
Hence aOb for any two points a and b of T. Therefore, T is

cyclic.

(11) Suppose dﬁc. Since C is a connected set it is
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contained in a single component of T-d. Thus a and b lie in a
single component of T-d, hence aOb., Again then since a and b were
arbitrary points of T we see that T is cyclic.

To prove the converse, suppose that T is a cyclic Peano
space and that a and b are any two distinct points of P. We must
show there a simple closed curve in T containing a and b. By
theorem 5.33, a is an interior point of some arc xy in T. Since T
is ¢yclic and the single point a is closed, we readily see that
P-a is a region in T. Now, T-a is arcwise connected and x,y £ a
hence there is an arc ﬁ' in T-a joining the points x and y.

Clearly a €%y, hence xy # ﬁ'. Consider the subarc ax of xy. Since
ax is closed, it is compact. Furthermor.e, x € ax and xeﬁr, hence
axNXy # #. Let u be the first point of ax on £y. Thus, u€axnfy
and we clearly have anﬂfﬁr = t where au is a subarc of ax. Also,

u ;‘ a since u¢ ﬁ‘rCT-a. By similar reasoning, the subarc ay of

Xy is compact and meets Qr hence we may let w be the first point

of ay on ﬂr. Thus, awﬂﬁr = w where a ;4 w. Now then u(:‘ﬁr,

wWEXYy and u £ w since auNnawCaxNay = a.

Pigure 2
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Consider the subarc 4w of f}. Clearly ﬁ%fﬁawc:f}f\aw = w and since
w€uw and wE€aw we have GwNaw = w, Similarly, since
awNauC£rMNau = u
and w€dw and u€au we have GwNau = u. It is also clear that
auMNaw = a., We see that au and aw are simple arcs meeting at one
point; namely a. But a is an end point of both au and aw, hence
aulaw is a simple ﬁrc with end points u and w and clearly
(aupaw)Naw = (auNaw)U (awNaw)
= uuw,

Thus (@utuaw) and Uw are independent arcs from u to w, hence
by the corollary to theorem 4.4 we see that (auvaw)Uaw is a
simple closed curve. Let Ca = (auLJaw)LJﬁ}. Now aGECa, hence a
lies on a simple closed curve in T. By similar reasoning there is
a simple closed curve Cb containing b.

It is immediate that if either aECb or €Ca then a and b
lie on the same simple closed curve and the theorem is proved.
Thus excluding this possibility there are three cases to consider.

(i) Suppose Caf\Cb = f#. Then C, and C, are non-degenerate,
disjoint, compact (hence closed), connected subsets of the cyclic
Peano space T (4.5). 1In view of theorem 5.29, there exists dis-
joint arcs pq and rs each having one end point in Ca and one end
point in C,. That is, p€ C,» 4€C, and pqﬂ(cauc.b) = pUq.

Similarly, r€C_, s€C, and rsr\(cau C,) = TUs.

Pigure %

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



110
It is easily seen that we now have arcs pr and pr such that
pruﬁ' = C'Ia and also we have arcs qs and s such that gqsUdgs = (Tb.
Suppose the notation is chosen so that a.€f>'i- and bEJGs (a similar
discussion would follow if a€ pr and PE§S or else a€ > and bEQs).
We know that pgMirs = @ and clearly pqgMN\p> = p and pgMN§s = q.
Similarly, it is readily seen that rsMNpr = r and rsN§s = s.
Furthermore, ﬁ'n@ccaﬂ Cyp = #, i.e., P*NGs = g. It follows
that PPUDpq is the union of two simple arcs which intersect in
exactly one point; namely p, which is an end point of each. Hence,
prUpq is itself a simple arc. Similarly, (frupq)U s is a simple
arc. Now then we have two independent arcs (prupquUds) and rs
from r to s, hence by the corollary to theorem 4.4,
(Prupquidurs) = &

is a simple closed curve. Furthermore, a €Ppr and be@, hence a
and b lie on A.

(i1) Suppose C;if'\cb = z, i.e., C, and C, meet in a single

POinto - q-___ﬁy_‘_)

Figure 4

Clearly z # a and z # b. Since T is cyclic and z is a closed set,
T-z is a region in T and a,b€ T-z. Thus, there is an arc ab in
T-2z joining a and b. Now C, is compact and since bE ab/NC, we
have ab(Cy # P« Therefore, there is a first point y of ¢, on ab.
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Hence, y €ab, yECb and a.:y'.’\Cb = ¥ Furthermore, y ;4 2 since
abCT-z, hence y¢Ca. By similar reasoning, there is a first point
x of Ca on the arc ay going in order from y to a, such that x €ab,

xeca, x ;4 z and x¢ C.b. Thus we have a subarc xy of ab such that

xyﬁca = x and xyf]Cb = y. Since xyCab(T-z we have xyC T-z. It
is clear (see the figure in (ii)) that we now have subarecs zx,

zx of c, and zy, £y of C,e Suppose the notation is chosen so that

a€zx and b€ 2y (a similar discussion would follow if a g zx and
b€ £y or a€ zx and b€zy). Clearly, é?:ﬂxy = x and since x is an
end point of both Zx and xy we see that ﬁl)xy is a simple arc.

Furthermore, (£2xVUxy)Nzy = zUy, i.e., the two simple arcs

(?x\)xy) and Zy meet in two points; namely, the end points of each.
Hence ﬁnyUz’? = B is a simple closed curve. But a€ Zx and

bE £y, hence a and b both lie on B.

(iii) Suppose C,MC, contains more than one point.

a — XJ—" Cy
Figure 5
Thus, there is a point w of C&(\C,‘o such that w ,14 a, w;é b and
w £ z where zecar\cb. Now then we have subarcs aw and aw of
C,+ Let z2€ &% (since a similar discussion would follow if z €aw).

Thus z¢aw since awNdw = aUuw and 2 ;4 a and 2z ;4 w. Let x be the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



112
first point of aw on Cb going in order from & to w. Thus we have
a subarc ax of aw such that x€ aw, xECb, X % a and axﬁc,o = Xe
Now also there is a subarc az of C_ such that 4zC4%. Let y be
the first point of &z belonging to Cpe Thus y £ a, yE c, and
y€C, e+ Consider the arc &y. Clearly, 4&yC42 Cdw and aﬁrﬂcb = Ye
We now have

axNayCawNdzCawnéw = aUw,

i.e., axXN&yCaUw. But wd §2, hence axn 4y = a, where the point
a is an end point for each arc ax and ay. Thus, axUay is a
simple arc joining x and y and clearly (axl)é})f\cb = XUYe.
Furthermore, there exists subarcs xy and %Xy of Cb and we choose
the notation so bexXy. Now since arcs (axudy) and Xy meets in
exactly two points, x and y, which are the end points of each arc
we see that axU ayUXy = D is a simple closed curve. But a€ax
and b€ Xy, hence a and b lie on D,

Thus, in every case, there is a simple closed curve con-
taining a and b. Q.E.D.

For a similar presentation of theorems 5.28 through 5.34,

the reader may refer to Hall and Spencer's Elementary Topologye.
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