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ABSTRACT

Carstensen, Andrew B . , M.S.,  Spring, 1983 Geology

Geology and Ore Genesis of the S late  Creek Area, Custer County, 
Idaho

D irector;  Ian M. Lange

The S la te  Creek area is located on the north flank of the White 
Cloud Range approximately 45 kilometers southwest of C h a l l is ,
Idaho. Sil iceous and carbonaceous a r g i l l i t e s  of the Devonian 
M il l ige n  Formation exposed in the area were deposited within a 
stable shale basin. Early-Mississippian Antler  tectonism disrupted  
the basin and resulted in f ine-grained sandstone and s i l ts to n e  of 
the Copper Basin Group being deposited over the shale sequence.
The stra ta  are affected by Mesozoic (?) regional metamorphism 
(greenschist fac ies)  and late-Cretaceous to e a r ly -T e r t ia ry  thermal 
metamorphism (hornblende hornfels fac ies)  re lated to intrusion of 
the Idaho Batholith  and White Cloud Stock. East-west-trending  
isoclina l  to open folds in the sedimentary rocks developed during 
metamorphism(?) and subsequent intrusion.

Previous workers have concluded m inera l iza t ion  in the area is 
late-Cretaceous to e a r ly -T e r t ia ry  hydrothermal replacement of 
s t ru c tu ra l ly  prepared rocks along thrust fa u l ts .  The present study 
concludes that late-Devonian syngenetic, sedimentary exhalat ive  
a c t iv i t y  resulted in s t ra t i fo rm  le a d -z in c -s i lv e r  su lf ide  and b a r i te  
deposits hosted by carbonaceous and c h e r t - r ic h  s t ra ta .  Remobiliza­
tion of a portion of the s tra t i fo rm  m inera l iza t ion  into epigenetic  
veins occurred during metamorphism. Intrusion of a T e r t ia ry  rhyo- 
l i t e  dike into the ore-bearing strata  at the Livingston Mine 
remobilized and incorporated metals from the Devonian orebody.
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CHAPTER I 

INTRODUCTION

Numerous le a d -z in c -s i lv e r  mines and prospects are located in middle- 

Paleozoic carbonaceous shales in central Idaho. The Slate Creek area has 

many of these base and precious metal occurrences and was selected for  

geologic research based on adequate outcrop over l im ited  areal extent  

(approximately 50 km^) and abundant accessible underground exposure.

The purpose of th is  work was to study the strat igraphy and orebodies in 

order to develop a genetic model of m in era l iza t io n .

Location and Access

The S late  Creek area l ie s  on the north f lank of the White Cloud 

Mountains in central Idaho (Figure 1 ) .  Access to the area is via Idaho 

State Highway 75 which p a ra l le ls  the Salmon River south and west of 

C h a l l is .  A U.S. Forest Service maintained d i r t  road follows Slate Creek 

up to the Hoodoo Mine. Four-wheel drive roads allow access to much of 

the study area; the rest is accessible only on foot .

Previous Work

Among the studies of Paleozoic rocks in central Idaho, those dealing  

s p e c i f ic a l ly  with rocks in the S late  Creek area Include: Ross (1937),

Ki i lsgaard (1949),  Thomasson (1959),  Kern (1972, 1974), Hobbs, (1973),  

Tschanz and others (1974),  Hobbs and others (1975),  Gruber (1975),  

Thompson (1977),  and Skipp and others (1979).
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Figure I Location Map of the Slate Creek area, Custer County, Idaho
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Ross (1937) o r ig in a l ly  mapped the region and proposed a 

s tra t ig rap h ie  succession fo r  Paleozoic rocks exposed in central Idaho. 

Later workers concentrated on re f in ing  the s tra t ig rap h ie  column and 

in terpre ting  depositional and tectonic environments. Most recent authors 

agree sedimentary rocks exposed in the Slate  Creek area belong to the 

Mississippian Copper Basin Formation of Ross (1962) and to the  

Pennsylvanian Wood River Formation of Umpleby and others (1930).

However, Gruber (1975) suggests some Devonian M i l l ig e n  Formation rocks 

may be present in the S late  Creek area. Ross (1937),  K ii lsgaard (1949),  

Kern (1972, 1974), and Tschanz and others (1974) review the  

m inera l iza t ion  in the S la te  Creek area. All conclude the deposits are 

epigenetic hydrothermal replacement along thrust fau lts  and are re lated  

to Cretaceous- to e a r ly -T e r t ia ry -a g e  plutonism.

Present Work

During the summer of 1982, I mapped, at a scale of 1:12,000 (P la te  

1 ) ,  and examined a l l  mines and prospects in the study area. In the f a l l  

of 1982 I analyzed 72 standard and polished thin sections.



CHAPTER I I

GEOLOGIC HISTORY AND REGIONAL GEOLOGY

Lower- to middle-Paleozoic sedimentary rocks exposed in east-centra l  

Idaho represent carbonate sh e l f ,  slope, and basinal sedimentation along 

the edge of the northwest-trending craton platform (Skipp and others,  

1979). These rocks were deposited under r e la t iv e ly  stable conditions 

from early-Cambrian to upper-Devonian time (Stewart and Suczek, 1978 and 

Poole and others,  1978). In late-Devonian to early -Mississippian t ime,  

the margin was disrupted by the Antler  orogeny which resulted in u p l i f t ,  

fa u l t in g ,  and associated flysch sedimentation (Poole, 1974; Skip and 

others, 1979; Nil sen, 1978; and o thers) ,  Pennsylvanian and Permian 

sedimentary rocks were la te r  deposited in the area. Sediments of these 

rocks were eroded from Mississippian (Skipp and H a l l ,  1975) or 

pre-Miss iss ippian (Shefchik,  1977) rocks u p l i f te d  during the la te s t  

stages of the Antler  orogeny.

Eastward and northeastward thrusting of the Paleozoic rocks in 

east-centra l  Idaho occurred during m ult ip le  events from late-Permlan to 

late-Cretaceous time (Dover, 1980). These sedimentary rocks were 

metamorphosed and deformed pr io r  to and coincident with intrusion of 

late-Cretaceous to e a r ly -T e r t ia ry  igneous rocks of the Idaho Batholith  

and re lated s a t e l l i t e  intrusions (Ross, 1937 and Tschanz and others,  

1974).

U p l i f t  and erosion of central Idaho during e a r ly -T e r t ia ry  time 

produced an area of high r e l i e f  which was subsequently buried by lava.
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p yroc last ic ,  and sedimentary rocks of the Eocene Chall is  Volcanics (Ross, 

1961; 1962). Post-Chall is  normal fau l t in g  created Basin-and-Range s ty le  

topography throughout east-centra l  Idaho (Baldwin, 1951). F luvia l  and 

glacia l  erosion has lo c a l ly  removed the volcanic cover to expose the  

Paleozoic sedimentary and Cretaceous igneous rocks.

The S la te  Creek area l ie s  in an exposure of middle-Paleozoic  

basinal-shale  rocks. Idaho Batholith  and re lated rocks surround the area 

on the north and south. A thrust sheet o f  Pennsylvanian rocks borders 

the area on the west and C h a l l is  volcanics bury the middle-Paleozoic  

rocks to the east.  The regional geology of the study area is presented 

on Figure 2.
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CHAPTER I I I

GEOLOGY OF THE SLATE CREEK AREA

Stratigraphy and Correlat ion

The S la te  Creek area contains thick sequences of carbonaceous, 

f in e -c la s t ic  debris and thinner in tervals  of carbonate and coarser-  

c la s t ic  sediments. The strat igraphy is dominated by s i l ts to n e  and shale 

with minor limestone, chert ,  and q u a r tz i te .  Coarser-grained sedimentary 

rocks are mostly confined to the upper portion of the exposed section.  

Since the section contains only subtle v a r ia t io n ,  l i th o lo g ie s  present in 

minor quant i t ies  were emphasized in del ineating mappable units and in 

determining s tra t ig rap h ie  re la t ion sh ips .  S tra t ig raph ie  columns for the 

area are presented with a bedrock geology map on P late  1. A fence 

diagram is shown on Plate  2.

The bulk of the strat igraphy consists of f in e - c la s t ic  and 

carbonaceous rocks which, based on l i th o lo g ie  s im i la r i t y  to other 

described exposures in east-centra l  Idaho, is thought to belong to the 

Devonian M il l igen  Formation (Sandburg and others,  1975; Gruber, 1975; 

Ross, 1937; Umpleby and others, 1930; and o thers ) .  Overlying coarser-  

grained rocks are believed to be part of the Miss iss ippian Copper Basin 

Group exposed in east-centra l  Idaho. Pauli and Gruber (1977) and Pauli 

and others (1972) describe the Copper Basin Group 1 ithologies south of  

the study area in the Pioneer Mountains.

Following a b r ie f  summary of the major l i th o lo g ie  components of the  

Devonian section, d is t in c t i v e  c h a rac te r is t ic s  of the map units w i l l  be

8
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presented. Describing the dominate l i th o lo g ie s  of the Devonian 

strat igraphy here w i l l  avoid repe t i t ion  and allow for concentration on 

features unique to each u n i t .  Additional hand-sample and th in-sect ion 

charac ter is t ics  of the various l i th o lo g ie s  collected from each unit are 

tabulated In the Appendix.

S i l i c i c  s i l ts to n e  and shale, now Indurated to a r g i l l i t e ,  dominates 

most Devonian u n i ts .  The s i l i c i c  a r g i l l i t e  Is gray and consists of  

th in ly - lam inated  to massive beds. This rock type Is characterized In the 

f ie ld  by Its s i lv e r  sheen on weathered surfaces and Its platy cleavage. 

Carbon Is t y p ic a l ly  present In minor amounts. Where the abundance of 

carbon is greater than a few percent, and the beds are large enough, the 

rock has been mapped as a separate unit  (Dca).  Carbon-rich a r g i l l i t e  

commonly forms d is t in c t  le n t ic u la r  beds up to a few meters thick and 

hosts most su l f ide  occurrences. Unique situat ions In which the 

carbonaceous a r g i l l i t e  unit  Is present In greater than the usual 

abundances Is discussed under "Carbonaceous A r g i l l i t e  (Dca)".

The s tra t ig raph ie  column Is divided Into lower, middle, and upper 

fac ies .  The term facies is u t i l i z e d  to define intertonguing rock masses 

of d i f fe r in g  l i th o lo g ie  components which occur within a s tra t ig ra p h ie  

section. In te rva ls  with d is t in c t  l i th o lo g ie  charac ter is t ics  are 

subdivided into u n i ts .  Lower and middle facies rocks are assigned to the 

Devonian M il l igen  Formation and upper facies rocks represent the basal 

section of the Mississippian Copper Basin Group.
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Lower Facies A (D l fa )

A q u a r t z i t e - ,  l imestone-,  and chert-bearing a r g i l l i t e  re s tr ic te d  to 

the northwest and southern portions of the map area comprises the lower 

facies A u n i t .  This unit  consists of interbedded si l iceous and 

carbonaceous a r g i l l i t e  with interbeds and lenses of the other rock types.  

The q u a r tz i te  and limestone are d is t in c t iv e  of th is  unit as the two 

l i th o lo g ie s  are not present together in any other u n i t .

Massive q u a r tz i te  occurs lo c a l ly  in the section as lenses up to f iv e  

meters th ic k .  Graphite in the q u a r tz i te  imparts a gray color .  This 

1 ithology weathers dark gray and has d is t in c t iv e  blocky jo in t in g .  

Limestone forms le n t ic u la r  beds up to seven meters thick that are 

in te rn a l ly  massive, gray, lo c a l ly  dolomitic ,  and weather to brownish-gray 

masses with rounded surfaces. Chert-r ich  a r g i l l i t e  is the least abundant 

rock type in the u n i t .  L ig h t -  to dark-gray color and m i l l im e te r -  to 

centimeter-scale laminations are typ ica l  of th is  1ithology. Chert-r ich  

a r g i l l i t e  occurs as lo c a l ized ,  le n t ic u la r  beds which commonly display  

intense, chaotic,  soft-sediment fo lds .

Lower Facies B (D l fb )

A r g i l l i t e  and limestone beds of the lower facies B unit are in fa u l t  

contact with underlying lower facies A rocks. Siliceous a r g i l l i t e  

comprises most of the section, and carbonaceous a r g i l l i t e  and limestone 

form lenses. In add it io n ,  slump(?) breccia deposits form a minor portion  

of the section. The presence of limestone without q u a r tz i te  is 

d is t in c t iv e  of th is  u n i t .
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Limestone in th is  section is l ig h t  gray, massive, and forms beds up 

to a few meters th ic k .  Mul t i - 1  itholog ic breccias with sub-rounded to  

rounded clasts occur lo c a l ly .  These breccia deposits are conformable to 

the enclosing stra ta  and contain fragments of the s i l ts to n e  and shale set 

in a shaly, s i l i c i c  matrix.

Middle Facies A (Dmfa)

Gradationally  overlying lower facies B are si l iceous and 

carbonaceous a r g i l l i t e s  and bedded cherts of middle facies A. Limestone 

forms a very minor portion of the section and crops out only in the  

southern part of the map area. Abundance of bedded chert commonly 

associated with carbonaceous a r g i l l i t e  is c h a ra c te r is t ic  of th is  u n i t .

Chert forms beds up to four centimeters th ick and varies from buff  

to black. Bedded c h e r t - r ic h  stra ta  can be traced along s t r ik e  up to 250 

meters and are up to 10 meters th ic k .  These le n t ic u la r  pods commonly 

display soft-sediment fo ld in g .  Limestone in the unit is l ig h t  gray, 

massively bedded, and forms le n t ic u la r  beds up to 10 meters th ic k .

Middle Facies B (Dmfb)

Pronounced increase in carbon and s i l i c a  content marks a la te ra l  

facies t ra n s i t io n  from middle facies A rocks to middle facies B in the 

southwestern portion of the study area. The middle facies B unit is 

composed of s i l iceous and carbonaceous a r g i l l i t e s  in subequal amounts 

with lesser bedded chert and limestone.

A r g i l l i t e  in th is  section contains a higher proportion of carbon and 

microcrystal 1 ine quartz disseminated throughout the rock than other
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middle facies un its .  The higher proportion of carbon in the rocks would 

allow for  t h e i r  being included in the carbonaceous unit  (Dca), however, 

the presence of microcrystal 1 ine-quartz cement y ie lds  a res is tan t  rock 

outcrop d is t in c t iv e  of the middle facies B u n i t .  These a r g i l l i t e  beds 

contain up to one percent euhedral p yr i te  grains which upon weathering 

impart a c h a ra c te r is t ic  rusty appearance to the rock. This 1 ithology is 

massively bedded and blocky jo in te d .

Dark-gray to black bedded chert with laminae up to three centimeters 

thick form le n t ic u la r  pods up to one meter thick and less than 20 meters 

long. Bedded chert forms a very minor proportion of the u n i t .  Limestone 

in the section is massive and forms discontinuous beds up to f iv e  meters 

th ic k .  The limestone is dark gray due to the presence of graphite ,  and 

i t  lo c a l ly  contains up to one percent disseminated p yr i te  cubes.

A massive b a r i te  bed is exposed in the Hoodoo Mine workings. Sulfur  

isotopes from the b a r i te  suggest a seawater source and thus a syngenetic 

orig in  of the b a r i te  (W. H a l l ,  pers. comm., 1982).  The b a r i te  has a 

sugary texture and is commonly massively bedded. However, lo c a l ly  

m il l im e te r -  to cent imeter-scal e bedding is in part defined by very 

f ine-grained p yr i te  and s p h a le r i te .  Soft-sediment folding is also common 

within the b ar i te  bed (Figure 3 ) .

Middle Facies C (Dmfc)

Siliceous and carbonaceous a r g i l l i t e ,  chert ,  and q u a r tz i te  beds 

south of the Hoodoo Mine comprise the middle facies C u n i t .  These rocks 

grade l a t e r a l l y  into the middle facies B. This facies t ra n s i t io n  is 

marked north to south by a loss of limestone, appearance of q u a r tz i te .
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Figure 3: Soft-sediment fo lding of laminated b a r i te  ore. Hoodoo Mine
Laminations in part defined by f ine-gra ined  p yr i te  and 
s p h a le r i te .
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and a gradual reduction in carbon content. The presence of q u a r tz i te  

without limestone in the section characterizes the middle facies C.

Quartz i te  in th is  unit  is dark gray due to the presence of graphite .  

The rock is massive and blocky jo in ted  and forms beds up to two meters 

thick-. Dark-gray to black bedded chert forms le n t ic u la r  beds up to one 

meter thick with individual laminae up to three centimeters th ic k .

Carbonaceous A r g i l l i t e  (Pea)

Carbonaceous a r g i l l i t e  occurs throughout the lower and middle facies  

sections as d is t in c t  lenses mostly up to a few meters th ick and a few 

hundred meters long. However, near the s tra t ig rap h ie  top of the middle 

facies section, large accumulations of carbonaceous a r g i l l i t e  host most 

of the mines and prospects in the study area.

Carbonaceous a r g i l l i t e  near the top of the middle facies section  

forms large le n t ic u la r  beds up to  800(?) meters thick which are traceable  

for  up to 4,000 meters along s t r ik e .  Individual beds are very th in  (< 1 

centimeter) to massive (>1 meter) .  In the southern part of the map area,  

near the Livingston and L i t t l e  Livingston Mines, l i g h t -  to dark-gray,  

carbonaceous, massive limestone forms beds up to 10 meters th ic k .

Middle to Upper Facies Transit ion ( s t ip l in g )

In the east and central portions of the map area the f in e - c l a s t ic  

rocks grade upward to interbedded f in e -  and s l ig h t ly  co arse r -c la s t ic  

rocks. These t ra n s i t io n  s tra ta  are characterized by coarser grain s ize ,  

minor graphite ,  local carbonate, and a d is t in c t iv e  platey to f i s s i l e  

part ing.



15

East of S i lv e r  Rule Creek the t ra n s i t io n  zone is characterized by 

sil iceous a r g i l l i t e  and f ine-gra ined sandstone interbeds up to 10 

centimeters th ic k .  These sandstone beds are buff and lo c a l ly  graded.

West and south of S i lv e r  Rule Creek, in p a r t ic u la r  above the Tango Mine, 

the interval is marked by s i l iceous a r g i l l i t e  interbedded with f i v e -  

centimeter-thick beds of l ig h t  gray to b u f f ,  carbon-free s i l t s to n e .

Upper Facies (Mufl ,  Muf2, Muf3)

Upper facies rocks are part of the Mississippian Copper Basin Group 

and crop out in the eastern and central portions of the map area.  

Lithologies include interbedded s i l t s to n e ,  calcareous s i l t s to n e ,  and 

f ine-grained sandstone (M uf l ) ;  f i n e -  to  medium-grained sandstone (Muf2);  

and intercalated s i l ts to n e  and shale (Muf3). Exposure of Mufl is 

res tr ic ted  to east and north of S i lv e r  Rule Creek; Muf2 crops out in the 

extreme northeast; and Muf3 is exposed in the central portion of the 

study area. All upper facies units are characterized by th e i r  tan to 

buff co lor ,  f i s s i l e  to platy part ing,  and m i l l im e te r -  to centim eter-scale  

bedding. D e t r i ta l  tourmaline grains occur in the majority  of upper 

facies rocks examined.

Wood River Formation (Pwr)

A thrust sheet of Pennsylvanian- to Permian-age Wood River Formation 

rocks overl ies the Devonian and Mississippian section and forms the 

western boundary.of the study area. The Wood River Formation is 

composed of voluminous tan q u a r tz i te  beds and gray limestone with minor 

dark-gray a r g i l l i t e .  Conglomerate and tectonic breccia lo c a l ly  form the
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sole of the thrust sheet. Since these rocks are not within the scope of 

th is  study, the reader is referred to Bostwick (1955) and Thomasson 

(1959) fo r  fu r ther  l i th o lo g ie  descript ion.

Idaho Batholith  and Related Rocks (T k i)

In t ru s iv e  rocks of the late-Cretaceous to e a r ly -T e r t ia ry  Idaho 

Batholith  and White Cloud Stock border the study area on the north and 

south. Compositions of the main in trus ive bodies range from quartz  

monzonite to quartz d io r i t e .  Both intrusions are medium-grained and 

equigranular.  T e r t ia ry -a g e ,  porphyr it ic  rhyol i te  dikes cut the region 

(Tschanz and others, 1974), and one is exposed in the Livingston Mine. 

Additional information on the igneous history of the area can be gathered 

from Tschanz and others (1974).

C h a l l is  Volcanics (Tc)

In terca la ted  lavas, ash-flow t u f f ,  a i r f a l l  t u f f ,  and e p ic la s t ic  

rocks of the Eocene Chall is  Volcanics border the study area on the east.  

The volcanic strat igraphy l ie s  unconformably on a surface of medium 

r e l i e f  of at least a few hundred meters developed on the Devonian- to  

Mississippian-age s t r a ta .  More information on C hal l is  strat igraphy and 

petrology/petrography can be obtained from Ross (1961, 1962) and L e a v i t t  

(1980).

Metamorph ism

Rocks in the study area have undergone at least two periods of 

metamorphism. The f i r s t  period consists of Mesozoic ( ? ) -age regional



17

metamorphism to the greenschist fac ies .  The second is a superimposed 

thermal metamorphism induced by intrusion of the Idaho Batholith  and 

White Cloud Stock. Effects of the f i r s t  event are documented in middle-  

Paleozoic p e l i t i c  rocks and consist of the development of s la tey cleavage 

para l le l  to bedding and, the formation of a greenschist mineral 

assemblage. The presence of muscovite, c h lo r i t e ,  a c t i n o l i t e ,  a l b i t e ,  

c a lc i t e ,  epidote, and lo c a l ly  b lo t i t e  suggests conditions of the c h lo r i te  

and b io t i t e  zones of the greenschist facies were atta ined during th is  

metamorphic period (Hyndman, 1972).

Thermal metamorphism re lated to intrusions in the S la te  Creek area 

produced d i f fe r e n t  mineral assemblages and hornfe ls ic  textures which are 

superimposed on sch is tos ity  developed during the previous regional event. 

Effects of the thermal metamorphism are present in a l l  rocks exposed in 

the area, and are best developed adjacent to the intrusions. Local 

skarns are present adjacent to the White Cloud Stock. The skarns are 

characterized by coarse grain s ize (up to 5 m i l l im e te r s ) ,  random mineral 

o r ien ta t io n ,  and an interlocking habit of mineral consti tuents .

Metamorphic grade in the skarns is the hornblende hornfels facies based 

on the presence of c a l c i t e ,  diopside-hedenburgite, orthoclase, and 

muscovite (Hyndman, 1972).  Other rocks in the middle-Pal eozoic section 

exposed in the area display a hornfe ls ic  te x tu re .  The texture  is defined 

by randomly-oriented grains of scap o l i te ,  andalus ite ,  t re m o l i te -  

a c t i n o l i t e ,  d iopside, muscovite, and b i o t i t e .  These minerals,  

superimposed on textures developed during regional metamorphism, are 

ty p ic a l ly  coarser-grained than the regional assemblage. These minerals
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indicate  the rocks belong to both the a lb i te -e p id o te  hornfels and 

hornblende hornfels facies (Hyndman, 1972).

Structure

Soft-sediment fo ld s ,  developed during deposition and diagenesis, is 

common in ch ert -  and b a r i te - r ic h  s tra ta  in the area. This folding  

displays no consistent o r ien ta t ion  and is very l im ited  in extent.

Commonly th is  deformation s ty le  can be traced along s t r ik e  or up section 

for less than a few meters. Figure 3 shows soft-sediment fo lding in 

b a r i te  from the Hoodoo Mine. Folds in bedded chert in the hanging wall 

of the Livingston Mine are well displayed in the 2,000 level p o r ta l .

Major structural  deformation of middle-Paleozoic rocks in the area 

formed by metamorphism and compressional stress re lated to the l a t e -  

Cretaceous to e a r ly -T e r t ia r y  age emplacement of the Idaho Batholith  to 

the north and the White Cloud Stock to the south. Intrusion of the two 

magmas apparently created a prominent east-west fold system. Folds in 

the north and south portions of the area are isoclina l  and lo c a l ly  

overturned to almost recumbent in nature. These folds are best developed 

in lower facies A rocks adjacent to the White Cloud Stock (Figure 4 ) ,

Fold wave lengths t y p ic a l l y  range up to a few tens of meters. However, 

in the central portion of the area near the Tango Mine, larger open folds  

with wave lengths up to 650 meters are present.  Here, t ra n s i t io n  and 

upper facies rocks are preserved in a synclinal trough.

The east-west fold system has been warped in the v ic in i t y  of the 

White Cloud Stock. Original fold axes in upper S late  Creek trend  

northeast,  those between upper S la te  Creek and Crater Lake trend
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Figure 4: Isocl ina l  folds in D1 fa adjacent to White Cloud Stock.
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east-west,  and those from Crater Lake to the Livingston Mine trend 

northwest. A few kilometers north of the White Cloud Stock fold axes do 

not display any second generation warping and a l l  trend approximately 

east-west.

Emplacement of the White Cloud Stock created a concentric ,  

high-angle normal fa u l t  which juxtaposes lower facies A rocks with rocks 

high in the middle fac ies .  Normal fa u l t in g  and u p l i f t  of lower facies A 

rocks are also evident adjacent to the northern in trus ive body. These 

u p l i f t  events resulted in the development of an intervening graben within  

which the remainder of the middle-Paleozoic section is preserved (see 

Fence Diagram, P la te  2 ) .

Bedding plane slippage, breccias, and small-scale thrusts are common 

throughout the section and make thickness estimates d i f f i c u l t  (F igure 5 ) .  

However, based on s tructura l  in te rp re ta t ion  and topographic r e l i e f ,  a 

minimum of 1,600 to 2,300 meters (5,000 to  7,000 fe e t )  of Devonian and 

Mississippian strat igraphy is exposed in the S late  Creek area.

Most workers who have studied the middle-Pal eozoic section in the  

area have suggested very complex s tructura l  h istory (Ross, 1937; 

K ii lsgaard ,  1949; Kern, 1972; Tschanz and others,  1974; and Thompson, 

1977). Structure does appear complex when viewed at outcrop scale due to 

the combination of east-west fo ld ing  and chaotic soft-sediment  

deformation. However, reg iona l ly  the middle-Paleozoic stra ta  north of 

the White Cloud Stock dips gently north.
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Figure 5: Bedding-plane deformation and thrusting in Dmfa. Hammer
handle is approximately 90 centimeters long.
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M in e ra l iza t  ion

All s ig n i f ic a n t  le a d -z in c -s i lv e r  s u l f id e  m inera l iza t ion  occurs in 

the carbonaceous a r g i l l i t e  unit  (Dca) at the top of the middle facies  

section or in carbonaceous members near the s tra t ig rap h ie  top(?) of Dmfb. 

Minor base- and precious-metal deposits are located lower in the Devonian 

section and most of these are also hosted by carbonaceous a r g i l l i t e .

Seven textura l  types of m inera l iza t ion  are recognized in the S la te  

Creek area (Table 1 ) .  Following are descriptions of the tex tura l  types

based on f i e l d  re lat ionships and hand-sample and microscopic analysis .

Textural Type I

Textural type I consists of laminated iron, z inc, and lead sulf ides  

hosted by carbonaceous a r g i l l i t e .  P y r i te  and spha ler i te  best display the 

bedded nature of the su lf ides  (Figures 6, 7, and 8 ) .  Galena and 

jamesonite lo c a l ly  are bedded, but ty p ic a l ly  the minerals have a streaky 

appearance (Figure 9 ) .  Individual s u l f id e  laminae in type I ores range 

from m i l l im e te r -  (Figure 6) to centimeter-scale (Figure 9 ) .

Chert is interbedded with base-metal sulf ides in th is  textura l  type,  

but only lo c a l ly  present with the p y r i t e - r ic h  s tra t ig raphy .  Average 

su lf ide  grain size fo r  p y r i te  is 0 .5  m i l l im e te r .  Galena and/or

jamesonite are present as grains (0 .75 mm) and as larger annealed masses

(average 2.5  mm). Accessory su l f id e  minerals in th is  textura l  type  

include cha lcopyr ite ,  c o v e l l i t e ,  t e t r a h e d r i t e ,  and p y r rh o t i te .  

Chalcopyrite occurs as individual grains and as exsolution lamallae in 

sp h a le r i te  (Figure 10).  C o v e l l i te  of probable secondary or ig in  has only 

been seen in hand sample where i t  forms a blue tarnish on



TABLE 1: ORE TEXTURAL TYPES

Ore 
Textural 
- Type Texture Host Rocks

Dominant Accessory
Stratigraphie Sulfide/Sulfate Sulfide
Relationships_______Species Species

Grain Size 
Dominant 

Gangue Sulfide
Mineralogy Species

Mines
Present

II

Stratiform Carbonaceous Conformable 
Arg1111 te

Breccia Carbonaceous Conformable 
Arg11 l i fe

Pyrite Chalcopyrite Chert
Sphalerite Covellite
Galena TetrahedrI te
Jameson I te  PyrrhotI te

Pyrite Chalcopyrite Chert
Sphalerite Covellite
Jameson I te  Tetrahedrlte
Galena Arsenopyrlte
Pyrrhotite Native S IIv e r(î)

•5 to .75 mm Carbonate 
Hermit 
Tango 
Livingston

.025 mm. Carbonate

.5 mm P yrite  Livingston 
Porphyro- L it t le
blasts Livingston

la Breccia Carbonaceous Conformable Sphalerite Galena Chert Sphalerite In Hoodoo
A rg ill ite  Pyrite Chalcopyrite Coarse-

Grained 
Aggregates- 
5 mm; P yrite - 
.5  mm

i l l Breccia Carbonaceous 
Argi11ite

Cross-Cutting Pyrite
Sphalerite
Galena
Pyrrhotite

Chal copyri te  
Cove11Ite 
Tetrahedrlte  
Arsenopyrlte 
Native S Ilver(?)

Chert .025 mm,
•5 mm Pyrite
Porphyro-
blasts

Carbonate

I l ia Breccia Carbonaceous 
Arg1111 te

Cross-Cutting Splaherite Galena Chert Splalerlte  In Hoodoo
Pyrite Chalcopyrite Coarse-

GraIned 
Aggregates- 
5 mm; P yrlte - 
.5 mm

«

K)
W



TABLE 1: ORE TEXTURAL TYPES (C on tinued )

Ore
Textural

Type Texture Host Rocks

Dorn I nant Accessory
Stratigraphie S u ifIde/Sulfate Sulfide
Relationships_______Species Species

Grain Size 
Dominant 

Gangue Sulfide
Mineralogy Species

Mines
Present

IV Laminated 
to Massive 
Soft Sedi­
ment Folds

Carbonaceous 
A rg IIII te

Conformable Barite  
Pyrite  
Sphalerite 
Jameson I te

Smithson I te as
Oxidation
Product

C alcite B arite -.75  mm Hoodoo 
Su I f  Ides-*5 mm

Massive Carbonaceous 
Sulfides in Argi11Ite 
Aggregates

Conformable Barite  
Pyrite  
Sphalerite 
Jameson I te

Smithson I te as
Oxidation
Product

Calcite Bari te -*  7 5 mm Hoodoo
Sulfide Ag- 
gregates-5 mm

Massive Carbonaceous Cross-Cutting Pyrite
and Siliceous Sphalerite
A rg ill ite  Galena

Quartz 2.5 mm 
Siderite

Al

VI Di ssem- 
inated and 
Fracture- 
CoatIng

Rhyo11 te Conformable and Pyrite  
CrosS-Cuttlng Sphalerite 

Jamesonite

I mm Livingston

N
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Figure 6: Textural Type I . Laminated p y r i te  and carbonaceous a r g i l l i t e
Livingston Mine. Note randomly-oriented amphibole grains.
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. -fk :- V  r  '

Figure 7: Textural Type I .  Photomicrograph of bedded p yr i te  and
carbonaceous a r g i l l i t e .  Livingston Mine. Transmitted l ig h t  
with crossed nicols at top, re f lec ted  l ig h t  at bottom. 
Horizontal f i e l d  of view approximately 1 cm.



27

Figure 8: Textural Type I .  Photomicrograph of bedded p y r i te  ( p y ) ,
spha ler i te  (sp ) ,  and carbonaceous a r g i l l i t e .  Livingston  
Mine. Reflected l i g h t .  Horizontal f i e ld  of view approxi 
mately 0.65 cm.
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Figure 9: Textural Type I .  Spha ler i te  (dark bands) displays bedded
nature. Galena ( l ig h t -g ra y  zone) displays wispy and semi- 
brecciated tex tu re .  Breccia clasts are chert .  Carbonate 
Mine.
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Figure 10: Photomicrograph of chalcopyrite  (cp) exsolution lamallae in 
sp haler i te  (sp ) .  L i t t l e  Livingston Mine. Reflected l i g h t .  
Horizontal f i e ld  of view approximately 3.5 mm.
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c h a lc o p y r i te - r ic h  s p h a le r i t e ,  T e t ra h e d r i te  occurs as small blebs along 

the common boundaries of s p h a le r i te  and galena (Figures 11 and 12).  

P y rrh o t i te  has only been recognized with p y r i te  in i ro n -r ic h  ores such as 

shown in Figure 6 ,  Textural type I ore is exposed in the Carbonate,  

Hermit, Tango, and L iv ingston Mines.

Textural  Type I I

Textural  type I I  ores are breccias of predominately lead su lf ides  

and c h e rt .  These breccias are character ized  by 30 percent well rounded 

chert and subangular to rounded carbonaceous w al l - rock  fragments set in a 

chaotic matrix  of su l f id es  and gangue quartz (F igure  13 ) .  Type I I  ores 

are conformable to the enclosing host rocks. This tex tu re  is typ ica l  of 

most le a d -r ic h  zones of the orebodies in the S la te  Creek area. Fragments 

of chert and carbonaceous a r g i l l i t e  wall rock in the breccias vary from 

less than one centimeter up to three centimeters in diameter. Base-metal 

sulf ides in type I I  ores a l l  average 0 .025 m i l l im e te r  in diameter.

P y r i te  is coarser and averages 0 .5  m i l l i m e t e r .  S u l f id e  minerals in th is  

tex tura l  type include p y r i t e ,  s p h a le r i t e ,  jamesonite ,  galena, and 

p y r r h o t i te .  C ha lcopyr ite ,  c o v e l l i t e ,  t e t r a h e d r i t e ,  arsenopyr ite ,  and 

native s i l v e r ( ? )  are accessory m inera ls .  These accessory minerals form 

d is t in c t  random grains or are present with the dominant s u l f id e  species 

as exsolution lam al lae ,  enclosed gra ins ,  or along grain boundaries. 

Textural type I I  ores are exposed in the Carbonate, L iv ingston, and 

L i t t l e  Livingston Mines.

Textural  type I la is s im i la r  in character to type I I  ores, however, 

s p h a le r i te  is the dominant s u l f id e  species. Chert is less abundant in
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Figure 11: Photomicrograph of galena (g a ) ,  sph a ler i te  (sp) ,  chalcopyrite  
(cp ) ,  and te t r a h e d r i te  ( t d ) .  Note te t ra h e d r i te  only occurs 
along common grain boundaries of galena and s p h a le r i te .
L i t t l e  Livingston Mine. Reflected l ig h t .  Horizontal f i e l d  
of view approximately 2 mm.

Figure 12: Close-up of Figure 11 above. Reflected l i g h t ,  
f i e l d  of view approximately 0 .8  mm.

Horizontal
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Figure 13: Textura l Type I I .  Massive lea d -r ic h  breccia from Livingston
Mine.
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type l i a  ores. Sphaler i te  forms crystal aggregates up to f iv e  

m il l im eters  in diameter. Type I l a  ore is present only at the Hoodoo 

Mine.

Textural Type I I I

Type I I I  ores are s im i la r  in internal structure  to type I I ,  however, 

they occur in cross-cutt ing vein structures (Figure 14).  Grain size of 

the matrix and c la s ts ,  su l f id es ,  accessory su l f id es ,  and the gangue 

minerals are the same as in type I I  ores. Type I I I  ore was only noted in 

the Carbonate Mine. A s p h a le r i te - r ic h  v a r ie ty  (type I l i a )  was observed 

in the Hoodoo Mine (Figure 15) ,  and is s im ila r  to type I la ores.

Textural Type IV

Textural type IV ores consist of both massive b a r i te  and c a lc i t e  

(F igure 16 ) ,  and laminated b a r i te ,  c a l c i t e ,  p y r i te ,  s p h a le r i te ,  and 

ra re ly  jamesonite (Figure 17) .  Massive ore of th is  tex tura l  type has a 

sugary tex ture  produced by grains which average 0.75 m i l l im e te r  in size  

(F igure 18).  The massive form is the most common of type IV ores.  

Laminated v a r ie t ie s  have m i l l im e te r -  to centimeter-scale banding defined 

by s u l f id e  minerals (F igure 17).  Su lf ide  grains average 0 .5  m i l l im e te r  

in diameter. Textural type IV ores are present only at the Hoodoo Mine.

Very loca l ized  soft-sediment folds occur in th is  ore type 

(F igure 3 ) .  Spha ler i te  is commonly a l te red  to smithsonite. The 

smithsonite occurs as f in e ,  pale yellow crystals  which surround 

s p h a le r i te  in oxidized portions of the ore. The yellowish color is
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Figure 14: Textural Type I I I  
Carbonate Mine.

Cross-cutting massive su l f id e  vein.

F ig u re  15: Textural Type I l i a .  Massive sp h a ler i te  with minor carbona­
ceous w al l -rock  fragments. From cross-cutt ing vein s truc­
tu re .  Hoodoo Mine.
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Figure 16: Textural Type IV. Massive c a l c i t e - b a r i t e .  Hoodoo Mine
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Figure 17: Textural Type IV. Laminated c a lc i t e ,  b a r i te ,  and su lf ides  
Sulfides include p y r i te ,  sp h a le r i te ,  and jamesonite.
Hoodoo Mine.
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Figure 18: Textural Type IV. Photomicrograph of b a r i te  (ba) and c a lc i t e  
(c a ) .  Hoodoo Mine. Crossed n ico ls .  Horizontal f i e ld  of 
view approximately 1 cm.
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imparted by cadmium (Pr inz  and o thers ,  1977) which has been detected at 

the Hoodoo Mine by Tschanz and others (1974) .

Textural  Type V

Type V ores consist of b a r i t e ,  c a l c i t e ,  and s u l f id e  minerals s im i la r  

to type IV ,  however, the su l f id es  are concentrated in pods set in massive 

su l fa te  and carbonate rock (F igure  19) .  These pods range up to eight  

centimeters in d iameter.  Su lf ides  include s p h a le r i te ,  jamesonite, and 

p y r i t e .  Grain s ize  in the host b a r i te  and carbonate rock averages 0.75  

m il l im e te r  and s u l f id e  aggregates average f i v e  m i l l im e te rs .  As in type 

IV ores, smithsonite  is the common secondary mineral (F igure 19).  Type V 

is only exposed at the Hoodoo Mine.

Textural Type VI

S u l f id e -  and carbonate-bearing b u l l -q u a r tz  veins which cross-cut  

s t ra ta  comprise te x tu ra l  type V I .  These veins occur throughout the 

Devonian rocks and some extend through the Mississippian rocks. These 

veins at least  in part o r ig in a te  in carbonaceous a r g i l l i t e  units as at 

the Carbonate (F igure  20 ) ,  Tango, and Livingston Mines. As a general 

ru le ,  s u l f id e  grain s ize  in the veins is much coarser than in textural  

types I through IV .  Su lf ides average 2 .5  m i l l im e te rs  (Figure 21) and 

occur as c lusters  and disseminated grains in the veins. Minerals  

observed include p y r i t e ,  s p h a le r i t e ,  and galena. S id e r i te  is also a 

common const i tuent  of the veins (F igure  2 0 ) .

These veins were mined fo r  base and precious metals by ear ly  

prospectors.  Upon fo l lowing the veins down d ip ,  many of these early-day
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Figure 19:

F ig u re  20:

Textural Type V, Su lf ide  pod In cal c i t e  and b a r i te .  
Sulfides include sp ha ler i te  and jamesonfte. Note yellow  
smithsonlte In upper-right corner. Hoodoo Mine.

Textural Type V I .  Quartz vein In carbonaceous a r g i l l i t e .  
Contains s i d e r l t e ,  p y r i te ,  and sp h a le r i te .  Carbonate Mine 
Vein Is approximately 20 cm th ic k .
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Figure 21: Textural TfP^^VI^^^Massive^su^fi Tango Mine
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miners intercepted ore of tex tura l  types I through I I I  at  depth. Lodes 

of the S i lv e r  Rule, Carbonate, Tango, and Hermit Mines were found in th is  

manner (F. F isher,  pers. comm., 1982). The Copper prospect is an example 

of a tex tura l  type VI vein which cuts Mississippian rocks. This vein 

system is cu rren t ly  being explored for a potential "bonanza" type lode.

Textural Type V I I

A rh y o l i te  dike with disseminated and fracture -coat ing  su l f id e  

minerals is exposed in the Livingston Mine and is the only example of 

tex tura l  type V I I  ore in the S late  Creek area. The rhyol i te  p a ra l le ls  

tex tu ra l  type I I  ore in the mine and contains p y r i te ,  s p h a le r i te ,  and 

jamesonite. In general,  p y r i te  and sphaler i te  are disseminated in the 

dike rock while jamesonite is concentrated along fractures (Figures 22 

and 23) .  Predominate type V I I  ore belongs to the l a t t e r .  Grain size of 

the su lf ides  in the rh y o l i te  is much coarser than in the adjacent 

tex tura l  type I I .  Average s u l f id e  grain size is one m i l l im eter  in the 

dike rock and 0.025 m i l l im e te r  in the type I I  o re .

The bulk of the highest-grade ore at the Livingston Mine was found 

by miners who explored the rhyol i t e  dike and found textural  types I and 

I I  at depth. Locally the rh y o l i te  contained enough m inera l iza t ion  to 

warrant mining and consequently a large tonnage of th is  ore type has been 

m illed  (E. Swanson, pers. comm., 1982).

Carbonaceous rocks of Dca and Omfb host textura l  types I through V 

exclusive ly  and commonly contain portions of type V I .  Host rocks 

d i r e c t ly  adjacent to conformable m inera l iza t ion  display d is t in c t iv e  

sequences. Barren carbonaceous a r g i l l i t e  has a sharp upper contact with
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Figure 22; Textural Type V I I .  Disseminated p yr i te  and sphaler ite  in 
r h y o l i t e .  Livingston Mine.

Figure 23: Textural Type V I I .  Jamesonite on frac tu re  in rh y o l i te .
Livingston Mine.
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s i l ic e o u s ,  carbonaceous, and s u l f id e - r ic h  rocks. The mineralized  

and c h e r t - r ic h  s t ra ta  have a gradational upper contact with barren,  

p y r i t i c  carbonaceous a r g i l l i t e .  The p y r i t ic  s tra ta  in turn grades upward 

to carbonaceous a r g i l l i t e  s im i la r  to that located beneath the mineralized  

sequence. Figure 24 shows th is  s t ra t ig rap h ie  interval exposed in Fox 

Gulch.

A zonation model of l e a d -z in c -s i lv e r  m inera l iza t ion  of textural  

types I and I I  exposed in the S late  Creek area was developed by deta i led  

examination of mineralogy and grade data from the Livingston and 

Carbonate Mines. A lea d - i ro n -c o p p er -s i lv e r  core is flanked by lead-  

z in c - i r o n ,  which is in turn surrounded by a z inc - iron  zone. An idealized  

cross-section of the Livingston orebody showing metal d is t r ib u t io n  and 

mine geology is presented on Figure 25. A s im i la r  zonation sequence was 

b r i e f l y  mentioned by Ross (1937).  Ross recognized that the highest-grade  

ore is re s t r ic te d  to the lead-r ich  core and that ". . . there is a 

tendency for  the sp ha ler i te  to be r e la t i v e ly  abundant on the borders of  

the orebody."

Lead-, i ro n - ,  copper-, and s i lve r -b ea r in g  su l f id e  minerals of 

tex tura l  type I I  form the core of the Livingston orebody. Only a minor 

amount of chert is present within the core zone (Figure 13).  Type I I  

ores consisting of lead, z inc ,  and iron sulf ides and up to 85 percent 

chert gangue surround the core zone. Minor carbonaceous a r g i l l i t e  is 

present in th is  outer zone. Disseminated grains of sphaler ite  and p y r i te  

in carbonaceous a r g i l l i t e  and minor chert form a d is t in c t  halo around the 

inner two zones. Banded p y r i te  of type I in carbonaceous a r g i l l i t e  

(F igure 6) forms a d is t in c t  s t ra t ig rap h ie  interval surrounding the
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orebody. Disseminated p y r i te  and lo c a l ly  p yrrho t i te  form a halo around 

the ore-bearing s tra t igraphy and percentages of the sulf ides diminish  

l a t e r a l l y  and upsection. Chert becomes less abundant d is t a l l y  as w e l l .  

Figure 26 shows the bedded chert from the Livingston Mine hanging wall 

s t r a ta .

Special textures in the ore strat igraphy are p a r t ic u la r ly  well 

developed adjacent to tex tura l  types I and I I .  Carbonaceous a r g i l l i t e  

d i r e c t ly  below s u l f id e  zones is t y p ic a l ly  well laminated and displays 

minor deformation. Rocks immediately overlying the ore zones are 

commonly intensely deformed. Finely laminated rocks o v e r l ie  s u l f id e  

zones with in  a few meters.
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Figure 26: Bedded chert with minor micaceous and carbonaceous debris  
Hanging wall Livingston Mine. Transmitted l ig h t  at top,  
crossed nicols at bottom. Horizontal f i e ld  of view 
approximately 1 cm.



CHAPTER IV

DISCUSSION

Sedimentation and Tectonic History

Stable depositional environments existed from at least middle- 

Ordovician through Devonian time in the region, and consisted of the 

development of an extensive carbonate platform and an adjacent shale 

basin (Churkin, 1962; Figures 27 and 28).  Tectonism associated with the  

e a r ly -  Mississippian Antler  orogeny disrupted the stable conditions of 

sedimentation and resulted in an in f lux  of coarse-c las t ic  sediments into 

the shale basin. Predominant sediment input was from west to east from 

the A n t le r  Highland (Skipp and others,  1979) (F igure 29).  However, some 

tec ton ic  a c t i v i t y  to the east,  perhaps a f fe c t ing  the shale basin or the 

carbonate shelf  and shale basin margin, resulted in coarser e la s t ic s  

being shed westward as w e l l .  The westward transport d irec t ion  is defined 

in the S la te  Creek area by the westward f in ing  of t ra ns i t io n  zone and 

upper facies rocks. The facies t ra n s i t io n  of medium- to f ine-grained  

sandstones to s i l ts tones  and shales seen in th is  s tra t ig raph ie  interval  

re f le c ts  d is ta l  sedimentation. This sedimentation may be record 

deposition of a submarine fan developed adjacent to a fa u l t  block created 

during A n t le r  tectonic events, or may re f le c t  a greater distance of 

westward transport of e la s t ic s  from the shelf  margin to the east.

This increased transport  distance may have been caused by change in basin 

morphology by Antler  tectonism.

48
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Plate 3 displays a s t ra t ig rap h ie  cross-section across the basin and 

she lf  for middl e-Ordovician to M iss iss ippian rocks exposed in central  

Idaho. The s t ra t ig rap h ie  interval which crops out at Slate Creek 

includes a portion of the Devonian M i l l ig e n  Formation and a minor section 

from the overlying Mississippian Copper Basin Group deposited near the 

top of the basinal assemblage o f  P late 3.

No volcanic component of the rocks exposed in the Slate Creek area 

was documented by the current study. Perhaps the presence of chert in 

the strat igraphy suggests exhalat ive a c t iv i t y  (Russell and others, 1981).  

The minor carbon content found in lower and middle facies rocks is 

probably d e t r i t a l  and rained down as pelagic sediment. During Devonian 

to Miss iss ippian time the western coast of North America was subjected to 

equatorial  climates (D ie tz  and Holden, 1970) which are known to produce 

high organic carbon deposition ( L i s i t z i n ,  1972). The carbon would be 

preserved in oxygen-deficient or completely anoxic environments ( Ibach,  

1982).

Ore Strat igraphy

Early authors who dealt  with the le a d -z in c -s i lv e r  m inera l iza t ion  in 

the S la te  Creek area concluded the deposits were hydrothermal replacement 

of s t r u c tu r a l ly  prepared rocks along thrust fau l ts  (Ross, 1937 and 

K ii lsgaard ,  1949). Later workers (Kern, 1972; 1974 and Tschanz and 

others, 1974) agreed with th is  hypothesis. All came to this conclusion 

based on the abundant fa u l t in g  in the area and the deposits' r e la t i v e  

proximity to intrusions.
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Ross (1937) describes the deposits in the area as having formed by 

replacement along shear planes which have an approximate or p a ra l le l  

s t r ik e  to the bedding. He states that the mineral iz ing solutions were 

" . . .  so tenuous that they did not require profound shearing or large  

openings for t h e i r  passage." He also observed that much of the ore is 

disseminated in the country rock without evidence of any 

p re-m inera l iza t ion  shearing.

K i i lsgaard  (1949) also suggests the ore deposits formed by 

replacement of shear zones. He ca l ls  on solutions permeating along shear 

planes to produce laminated ore in which thin layers of ore minerals are 

interbedded with the host a r g i l l i t e .  Although he offers no evidence, 

Kii lsgaard  concludes the deposits formed under " . . .  mesothermal or 

moderately deep-seated condit ions."

Kern (1972) again proposed hydrothermal replacement and pointed out 

that the M i l l ig e n  Formation hosts most ore deposits in the area because 

i t  was the f i r s t  unit  encountered by ascending mineral iz ing solutions.  

Kern p lotted rat ios of the most abundant ore minerals from the mines in 

the area and found a zoning pattern .  He re lates th is  zoning to a buried 

Plutonic source located in the central part of the area. Kern admits 

many problems are inherent to his study including lack of data points and 

probable sampling b ias .  He recognized that there is no supportive  

evidence for  a buried pluton in the area. Kern suggested the intrusion  

must be so deep that i t  did not a f fe c t  the presently exposed rocks. Kern 

c i te s  Lindgren (1933) and others in s ta t ing  the ore deposits are 

mesothermal.
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Tschanz and others (1974) c a l l  on geophysical evidence to dispell  

the hypothesis of a burled Intrusion ex is t ing  under the central portion  

of the S la te  Creek area. He does not agree with Kern's zonation model 

and states that the zoning present may be re lated to a regional v e r t ic a l  

zonation or to overlapping zoning patterns from d i f fe re n t  sources.

Tschanz and others (1974) b r i e f l y  mention structural  control of the 

orebodles. The study also suggests a replacement or ig in  of the 

m in e ra l iza t io n ,  but concentrated on ore mineral and geochemical zoning. 

Their zoning studies follow that  of Ovchinnikov and Grigoryan (1971).  

L ea d-s i lve r ,  lead -z inc ,  z inc ,  and z inc - iron  zones were a l l  documented at 

the Livingston Mine. Tschanz states that the order of zonation Is from 

l e a d -s i lv e r  to z in c - i ro n  indicating increasing temperature and/or 

proximity to source at the z inc - Iron  end. This pattern contradicts that  

noted during the present study and does not account for the symmetry or 

character of minéralogie zones. He also notes a zoning of the Hoodoo 

Mine with sph a ler i te  grading to s p h a le r I te -p y r I te  with an Increase In 

temperature, depth, or closeness to source. Again th is  proposed pattern  

seems to ignore the geologic re lat ionships of the geometry of the 

orebody. The main Hoodoo orebody has a central z in c -r ic h  core surrounded 

by disseminated sp h a le r i te  and p y r i te .  The dissemination of the 

peripheral m inera l iza t ion  would seem to imply distance and not proximity 

to a f lu id  source.

Although hydrothermal replacement cannot be t o t a l l y  refuted by the 

current study. Its applicat ion  here is re jec te d .  I t  is true that  

abundant fa u l t in g  and shearing are present in the rocks and that the ore 

deposits l i e  with in  a few kilometers of In trus ions.  However, other
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c h a ra c te r is t ic s  common to hydrothermal replacement by hot magmatic or 

meteoric waters are not present or recognized in the study area.  

A lte ra t io n  haloes t y p ic a l l y  envelope hydrothermal veins (Rose and Burt,  

1979 and o th e rs ) .  No a l te ra t io n  is found in the Slate Creek rocks in the 

v i c i n i t y  of the ore deposits. Kern (1972) suggests c a lc i te  has a ltered  

to tremol i te  and some s i l i c i f i c a t i o n  is present. However, both of these 

processes may be re lated  to metamorphism and not to a mineral iz ing event. 

No s i l i c i f i c a t i o n  of country rocks was noted during th is  study. Zoning 

in hydrothermal "vein-type" deposits commonly displays mineral 

d is t r ib u t io n  associated with individual metal and solution chemistries.  

The chemistries t y p ic a l l y  d ic ta te  a paragenetic sequence of 

p re c ip i ta t io n ,  and, thus, zoning away from a source (Barnes, 1975). 

Mineral deposits in the S la te  Creek area do not show a "one-d irectional"  

zonation, but rather a crude symmetry of mineral d is t r ib u t io n .  In 

ad d it io n ,  zoning sequences seen in the study area do not fo llow those 

proposed by Barnes (1975) fo r  hydrothermal vein systems.

Geologic, minéralogie,  and isotopic data (H a l l ,  pers. comm., 1982) 

from the study area a l l  support a syngenetic sedimentary-exhalative model 

rather than hydrothermal replacement for  the genesis of the 

m in e ra l iza t io n .  Early attempts to describe the genesis of the ore 

deposits in the area were hampered by a lack of understanding of the 

development of syngenetic, 1 ead-z inc-s i l  ver-bar  ium deposits in c la s t ic  

sedimentary rocks. The recent advancement of understanding and 

recognition of these deposits suggests a possible r e - in te rp ré tâ t  Ion of 

the genesis of the orebodies in the S la te  Creek area is warranted.
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Sedimentary exhalat ive  deposits have many d i f fe r in g  features such as 

age, geologic environment, r e la t i v e  amounts of contained metals, or the  

presence or absence of associated s t ra t i fo rm  b a r i te .  However, a l l  

deposits formed w ith in  the basinal shale environment have some s im ila r  

ch a ra c te r is t ic s  such as conformity to enclosing s t r a ta ,  typical  

le n t ic u la r  shape, usual absence of associated volcanic or plutonic rocks, 

and common association with carbonaceous rocks (Morganti ,  1979). In 

add it ion ,  ores found in metamorphic te r ra in s  display textures ind ica t ive  

of metamorphism (Morganti ,  1979). Examples of s im ila r  recognized 

orebodies which have a l l  or some of the ch a rac te r is t ic s  mentioned above 

include: Howards Pass and S u l l iv a n ,  Canada; McArthur River and Mt. Isa,

A u s tra l ia ;  and Meggen, Germany. Discussion of these occurrences or 

sedimentary-exhalative deposits in general is not within the scope of 

th is  paper. For fu r ther  documentation the reader is referred to summary 

papers by Morganti (1981) and Russell and others (1981).

Many of the orebodies exposed in the S late  Creek area contain the 

fo llowing ch a rac te r is t ic s  ind ica t ive  of syngenetic, sedimentary- 

exhalat ive  mode of formation:

-  Orebodies occur in carbonaceous rocks deposited 
within a long- l ived  shale basin.

-  A ll  major mines and prospects are located at one 
s tra t ig rap h ie  in te rv a l .

-  Textural types I and I I  are conformable to 
enclosing s t ra ta .

-  Host s tra t igraphy is barren in the footwal1, has 
a sharp lower contact with c h e r t - r ic h  and 
mineralized rocks, and has a gradational upper con­
tac t  with barren hanging wall rocks (F igure 24).
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-  S t ra t i fo rm  b a r i te  with su l f id e  laminations y ie lds  
S Isotope ra t ios  suggestive of a seawater source 
(H a l l ,  pers. comm., 1982).

-  Growth of l a t e ,  randomly-oriented amphibole grains 
superimposed on laminated sulf ides (Figure 6)
Implies the sulf ides must have pre-dated metamor­
phism. Other evidence such as coarsening of grain 
size In the area by metamorphism also suggests 
m in era l iza t io n  must have occurred pr ior  to thermal 
e v e n t (s ) .

-  Textural type I and I I  ores display sedimentary 
textures Interpreted to be de-watering s truc­
tures (Figure 30 ) .

-  Symmetry of metal zonation not supportive of a 
replacement vein o r ig in .  Zoning pattern is s im i la r  
to  that  reported In other sedimentary-exhalative  
deposits (Gustafson and W il l iam s, 1981; Large, 1981).

-  Probable sedimentary or ig in  of laminated and 
and disseminated su l f ides  (Lange and others,
1981) (Figure 6 ) .

This evidence supports arguments for a syngenetic, sedimentary- 

exhalat ive or ig in  of the ore deposits In the S late  Creek area.  

Replacement deposits ty p ic a l l y  do not have laminated su l f id e  beds, nor 

are syngenetic sedimentary textures such as soft-sedlment folds or water 

escape structures found In replacement ores.

All mineralized s t ra ta  of tex tura l  types I through V Is thought to 

be very proximal to I ts  source vent due to the presence of copper and 

precious metals or b a r i t e .  These c r i t e r i a  suggest moderately high 

temperature and/or proximity to the vent (Morgenti ,  1981 and Game, 

1979). Unfortunate ly ,  no accessible underground workings penetrate the 

footwal1 s t r a ta .  No feeder structures were recognized in the area.  

However, d is t r ib u t io n  of mines and prospects, and carbonaceous a r g i l l i t e  

In the S la te  Creek area suggest two, and possibly th ree ,  roughly
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Figure 30: Dewatering fea tures .  Carbonate Mine. Note water-escape 
structures at the top of the su l f id e  zone.
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north-south l in e a r  zones which may represent possible locations of feeder 

structures (Figure 31).  This north-south trend roughly p ara l le ls  the 

known she lf  margin to the east.  Kern (1972) also recognized th is  l inear  

pattern to the mines and prospects. He envisioned replacement along 

north-south-trending Laramide normal and reverse fa u l ts  defined by 

shearing and brecciat ion to account for  th is  trend. Shearing and 

brecciat ion of the s tra t igraphy is common throughout the middle-Paleozoic  

section in the S late  Creek area (Figure 5) and does not appear to be 

re s t r ic te d  to continuous l in e a r  zones which could be interpreted as 

high-angle s tructures .  In add it ion ,  no apparent o f fs e t  of units can be 

documented along the structures proposed by Kern.

Textural c la s s i f ic a t io n  of ore type fu r th e r  refines and aids in 

in te rp re t in g  the genetic model. Textural type I consists of laminated 

iron, z inc ,  and ra re ly  lead sulf ides and is thought to display primary 

depositional c h a rac te r is t ic s  (Figures 6, 7, and 8 ) .  Textural type I I  is 

most common and usually is c h a ra c te r is t ic  of lead-r ich  zones. This type 

is thoroughly brecciated, but concordant to the enclosing stratigraphy  

(F igure 13).  I t  most l i k e l y  formed during diagenesis or by slumping and 

mass transport of an inherently unstable lead su l f id e  and s i l i c a  gel on 

the sea f l o o r .  The mass transport could have been caused by deposition  

on a slope or by local topographic change re lated to d i f f e r e n t ia l  loading 

of underlying water-saturated sediments. Craig and Vaughn (1981) 

in te rp re t  th is  tex ture  as possibly being metamorphic. Textural type I I I  

is s im ila r  in appearance to type I I ;  however, i t  occurs in cross-cutt ing  

veins (Figure 14).  These veins probably formed during diagenesis due to 

d i f f e r e n t i a l  loading, de-watering (Figure 30),  or during metamorphism.
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Textural type IV includes massive c a lc l te  and b a r i te  in addition to zinc 

and lead sulf ides hosted by calc i te  and b a r i te  (Figures 16 and 17). Type 

IV, which occurs in a s t r u c tu r a l ly  complex area at the Hoodoo Mine, 

appears to represent a b a r i te  cap over underlying su l f ide  zones of  

tex tura l  types I la and I l i a .  S imilar  b a r i te  zones occur at some major 

sedimentary-exhalative deposits (Lange and others, 1981; Came, 1979; 

Morgenti,  1979; and Winn and others,  1981). Textural type IV contains 

local soft-sediment deformation (Figure 3 ) .  The presence of su l fa te  and 

s u l f id e  species in th is  ore type suggests: 1) chemical conditions were

close to a reducing and oxidizing phase boundary at the time of 

formation; 2) incomplete f lu id  mixing; or 3) changing chemical conditions 

through time (Lange, pers. comm., 1982).

Textural types V and VI may resu lt  from metamorphism. Type V 

represents remobil izat ion and r e c r y s ta l l i z a t io n  of type IV ores.

Textural type VI is epigenetic q uartz /ca rb onate /su l f ide  veins which 

contain base and precious metals, possibly remobilized from s tra t i fo rm  

m inera l iza t ion  at depth or derived from th e i r  host s tra t ig raphy .  Figure 

20 shows one of the veins at the Carbonate Mine which contains sulf ides  

apparently remobilized from the adjacent s t ra t i fo rm  m in e ra l iza t io n .

T e r t ia ry  intrusion of fe l  sic dikes in the v i c in i t y  of the White 

Cloud Stock created tex tura l  type V I I .  Post-m ineral iza t ion  fa u l t in g (? )  

adjacent to the Livingston orebody provided the structura l  avenue for the 

ascending rh y o l i te  magma. This fa u l t in g  is thought to have occurred at 

the margin of the Livingston orebody due to d if ferences in déformâtional 

mechanics of the s u l f id e  mass and the enclosing carbonaceous 

stra t ig rap h y .  Intrusion of the magma and associated thermal and
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hydrothermal f lu id  a c t i v i t y  remobilized metals from the Livingston  

orebody and incorporated some of them in the r h y o l i t i c  magma. This 

explanation is supported by tex tura l  evidence of type V I I  ores. While 

some s u l f id e  minerals are disseminated in the rhyol i t e ,  most coat 

f ra c tu re s .  This suggests the bulk of su lf ides were transported a f te r  

c r y s t a l l i z a t io n  of the magma and probably by hydrothermal f lu ids  re lated  

to the cooling of the rhyol i t e .  Although the presence of the rhyol i t e  at 

the Livingston Mine could suggest a genetic re la t io n sh ip ,  the lack of 

igneous or volcanic rocks at any other orebody or prospect in the area 

would imply the rhyol i te  at the Livingston is co inc identa l .

In addit ion to producing tex tura l  types V and V I ,  metamorphism has 

affected a l l  ores present in the area. Effects include coarsening of  

grain s ize  and p a r t ia l  destruction of primary depositional features.  

Microscopic analysis of ores shows annealing (Figure 32) and the 

development of 120® t r i p l e  junctions at grain boundaries (Figure 33) 

which also imply metamorphism (Craig and Vaughn, 1981). Exsolution of 

chalcopyrite  lamallae from s p h a le r i te  growth boundaries is also present 

(Figure 10).  Craig and Vaughn (1981) state  that th is  exsolution could 

not occur at low temperatures. However, temperatures involved with 

greenschist metamorphism (approximately 500® C, Hyndman, 1972) could 

allow enough copper to be adsorbed into the sp h a ler i te  crystal l a t t i c e  

(Craig and Vaughn, 1981). This copper would subsequently be exsolved as 

chalcopyr ite  upon cooling. The growth of p y r i te  porphyroblasts 

(Figure 34) is also an annealing tex ture  suggestive of metamorphism and 

slow cooling (Craig and Vaughn, 1981).
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F ig u re  32: Photomicrograph of annealed sp h a ler i te  (sp) surrounding 
galena (ga) .  Quartz (qa) gangue. Hoodoo Mine. Trans­
mitted l ig h t  at top, re f lec ted  l ig h t  at bottom. Hor i ­
zontal f i e l d  of view approximately 6 .5  mm.
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Figure 33: Photomicrograph o f  120° grain boundaries within p y r i te
laminae. Livingston Mine. Reflected l ig h t .  Horizontal  
f i e l d  of view approximately 6 .5  mm.
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Figure 34: Photomicrograph of p yr i te  porphyrob!ast surrounding ir regu lar  
blebs of galena (g a ) ,  sp h a ler i te  (sp),  and quartz (q z ) .  
Livingston Mine* Reflected 1 ight* Horizontal f i e ld  of view 
approximately 3.5 mm.
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Genetic Model

Late In the h is tory  of the Tower-Paleozoic basin early-Mississippian  

Antle r  tectonism created new or re-opened pre-exis t ing  high-angle fa u l ts .  

Tectonic disruption of the basin allowed for  migration of large volumes 

of hot, m e ta l - r ic h  diagenetic brines to these structures.  The fau lts  

guided the f lu id s  to s ites  of venting and su l f id e  and su l fa te  

prec ip i ta ted  on the sea f lo o r  (Figure 35) .  These events were probably 

geological ly  rapid as documented by the general lack of c la s t ic  d i lu t io n  

with in  ore zones. Non-ore-producing thermal springs probably continued 

for some time as evidenced by the gradual reduction in iron sulf ides  

upsect ion.

In addit ion to the generation of sulf ides and su l fa te s ,  these brines 

were probably s i l ic a -s a tu ra te d  which during pressure release venting 

prec ip i ta ted  as chert (Ochler and Logan, 1977). These venting hot f lu id s  

would also provide nutr ients  which created conditions favorable to 

abundant organic growth. This organic environment was s im ilar  to those 

noted along submarine r i f t  zones (Fyfe and Lonsdale, 1981) and created a 

s tra t ig ra p h ie  package rich in carbonaceous m a te r ia l .  In the geologic 

record these areas are preserved as le n t ic u la r  beds of carbonaceous and 

chert-bearing s tra t ig raph y .  Beds of th is  character host a l l  major 

su lf id e  occurrences in the Slate  Creek area.

Minor lenses of highly carbonaceous, s i l iceo u s ,  and sulf ide-bearing  

a r g i l l i t e  lower in the s t ra t ig rap h ie  section l i k e ly  formed in a s im ila r  

manner. However, these zones were created during low volume, r e l a t i v e ly  

rapid exhalations of m eta l - r ich  brines. These periodic f lu id  discharges 

may be re lated to leakage along recurrent ly  activated syn-sedimentary
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growth fa u l ts .  Not u n t i l  early -M ississ ipp ian  time and the advent of 

Antler  tectonism were major, deep-seated structures opened which allowed 

for  the large volumes of diagenetic brines to be vented to the sea f lo o r .  

This tectonism and exhalat ive  a c t i v i t y  resulted in the large accumulation 

of carbonaceous, s i l ic e o u s ,  and s u l f id e - r ic h  s tra ta  at the top of the 

Devonian section.  The tectonism also influenced coarser-grained  

sedimentation which d i r e c t ly  overl ies  th is  mineralized s tra t ig raph ie  

in te r v a l .

Mesozoic regional metamorphism and thermal metamorphism associated 

with 1 ate-Cretaceous to e a r ly -T e r t ia ry  igneous a c t iv i t y  a l te red  the 

orig in a l  ch a ra c te r is t ic s  of the syngenetic sedimentary-exhalative ores 

and produced many of the textures and types of ore present today.



CHAPTER V 

SUMMARY

Devonian-age sedimentary rocks exposed in the S late  Creek area of 

central Idaho were deposited w ith in  a stable shale basin along the 

western margin of North America. Early-Mississippian Antler  tectonism 

disrupted the stable  conditions and resulted in f lysch being deposited 

over the shale sequence.

M ine ra l iza t io n  in the area occurred during three separate and 

d is t in c t  time periods. The f i r s t  is the most important and includes 

deposition of le a d -z in c -s i lv e r  sulf ides and b a r i te  during sedimentary- 

exhalat ive events during upper-Devonian time. Mesozoic regional 

metamorphism and thermal metamorphism associated with the late-Cretaceous  

or e a r ly -T e r t  iary emplacement of the Idaho Bathol ith and re lated  

s a t e l l i t e  intrusions a l te red  or ig ina l  textures and red is tr ibuted  a 

portion of the pre -ex is t ing  m inera l iza t ion  in epigenetic veins. The 

th i r d  and least important m inera l iz ing  event occurred during the T e r t ia ry  

when rhyol i te  magmas intruded the Paleozoic section in the v ic in i t y  of 

the White Cloud Stock. One of these rh y o l i te  bodies intruded the 

ore-bearing strata  at the Livingston Mine and remobilized and 

incorporated metals from the orebody.

70
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1. Lower Facies A Q uartz i te

Mineralogy and tex ture :  98% rounded to sub-rounded quartz grains

(0 .25  mm); occasional larger  quartz grain (1 .5  mm); quartz cement; 

few in ter locking  grain boundaries, minor carbon, muscovite, and Fe 

oxide.

Color: dark gray to brownish.

Comments: This rock type distinguishes the lower facies A u n i t .

2. Lower Facies A Carbonate

Mineralogy and tex ture :  subequal c a lc i t e  and quartz; minor carbon,

p y r i te ,  Fe oxide, muscovite; quartz grains (0 .05  mm), angular to 

sub-rounded and t y p ic a l l y  in ter locking; c a lc i t e  occurs as amorphous 

cement and coarser-grained v e in le ts ;  quartz grain concentration  

defines weak bedding.

Color: l ig h t  to dark gray.

Comments: This rock type forms only a minor portion of the u n i t .

3. Lower Facies A Siliceous A r g i l l i t e

Mineralogy and tex ture :  predominantly 0 .05 mm grains of rounded,

annealed quartz; minor muscovite, _+ a l b i t e ,  p y r i te ,  t re m o l i te ,  

carbon, and a p a t i te ;  microfractures o f fse t  beds on mm-scale; 

epidote(?) and c h lo r i te  a l te ra t io n  products of t re m o li te ;  bedding 

displayed by carbon concentrations.

Color: gray to s i lv e ry  gray.

Comments: Predominant rock type in lower facies A u n i t .
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4. Lower Facies A C a lc -S l l ic a te  Adjacent to White Cloud Stock 

Mineralogy and tex ture :  roughly subequal c a lc i te  as large anhedral 

grains (1 mm) and an a l te r a t io n  of diopside/hedenbergite and large  

3mm rad ia t ing  aggregates of f ibrous diopside/hedenbergite; minor 

muscovite, orthoclase,  quartz ,  sphene, and a p a t i te ;  minor c a lc i t e  

vein ing.

Color: buff  to white.

Comments: Probable hornblende hornfels facies metamorphism.

Highest grade specimen found in study area. Probably re f le c ts  "wet" 

Intrus ion.

5. Lower Facies A Layered C a lc -S i l i c a te  near White Cloud Stock

Mineralogy and te x tu re :  t re m o l i te  in 1 mm radiat ing aggregates

defines layer ing;  abundant b io t i t e  and c a lc i t e  in subequal amounts; 

minor quartz,  a p a t i t e ,  muscovite, _+ alb i t e ;  carbonate is in part an 

a l te r a t io n  product of t re m o l i te .

Color: buff and l ig h t  tan bands.

Comments: Very common rock type in the v ic in i t y  of the stock.

6. Lower Facies A Calcareous Quartz i te  near the White Cloud Stock

Mineralogy and tex ture :  subequal c a lc i te  (0 .6  mm) and quartz (0.025

iïiïi); minor carbon and t re m o l i te ;  c a lc i t e  forms star-shaped splotches 

which give the rock a spotted -horn fe ls -1 ike  appearance.

Color: gray.

Comments: This rock type forms only a very minor portion of the

un i t .
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7. Lower Facies A S i l i c i c  A r g i l l i t e  Adjacent to White Could Stock 

Mineralogy and tex ture :  predominantly 0,1 mm anhedral interlocking  

quartz grains; minor c a l c i t e ,  carbon, t re m o l i te /a c t in o l  i t e ,  epidote,  

and a p a t i te ;  carbon concentrations define bedding; minor quartz  

veining.

Color: l ig h t  gray with dark gray bands.

Comments: S im ilar  to  #3 but s l ig h t ly  coarser-grained due to

proximity to intrus ion (? ) .

8. Lower Facies A C a lc -S i l i c a te  Adjacent to Idaho Batholith  

Mineralogy and tex ture :  c a lc i t e  pseudomorphs a f te r  amphiboles (?) or 

pyroxenes(?) in f in e  rad ia t ing  aggregates (0 .5  mm); minor quartz and 

scapo li te .

Color: l ig h t  gray.

Comments: Looks l i k e  #4 but is f ine r -g ra ined  and a l te ra t io n  and

replacement of ferromagnesian minerals is complete; f in e r  grain size  

may be re lated to dryer in trus ion .

9. Lower Facies A A r g i l l i t e  Adjacent to  Idaho Batholith  

Mineralogy and tex ture :  0.1 mm annealed quartz grains with minor 

c a lc i t e ,  t r e m o l i te ,  muscovite, carbon, and p y r i te ;  very fa in t  

banding defined by carbon.

Color: gray with dark carbon-rich streaks.

Comments: S im ilar  to a r g i l l i t e  sample from near the White Cloud

Stock (#7 ) .
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10. Lower Facies B Carbonaceous A r g i l l i t e

Mineralogy and tex ture :  subequal quartz (0 .025 mm) and very f ine

carbon; carbon and quartz layers display d e f in i t e  kink banding and

shearing; numerous very f in e  quartz v e in le ts .

Color: black.

Comments: This rock is typ ica l  of carbon-rich lenses located

throughout the Devonian s t r a ta .

11. Lower Facies B Siliceous A r g i l l i t e

Mineralogy and tex tu re :  predominantly 0.025 mm interlocking quartz

grains; minor carbon, b i o t i t e ,  and a p a t i te ;  kinky and wavy bedding; 

abundant quartz veining (0 .1  mm in veins);

Color: l ig h t  gray with dark carbon-rich bands.

Comments: Unique growth banding defined by mica(?) or f in e

carbonate(?) of a quartz grain in a vein.

12. Lower Facies B Dolomite

Mineralogy and tex ture :  f in e  rounded grains (<0.01 mm) of dolomite;

0 .5  mm grains of muscovite which display à crude alignment; small 

(0 .05 mm) grains of quartz along microfractures.

Color: dark gray.

Comments: Dolomite is found lo c a l ly  w ith in  the lower facies 8

un i t .
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13. Lower Facies B Carbonate Hornfels

Mineralogy and tex tu re :  predominantly f in e - c a lc i t e  grains (<0.01

mm); c a lc i t e  is a b i t  coarser in veins (0 .2  mm); 0.025 mm quartz 

grains in veins; random scapol i te  grains (0 .4  mm) define hornfels ic  

te x tu re ;  minor muscovite, p y r i te ,  and carbon.

Color: medium to dark gray.

Comments: Hornfels ic  textures occur lo c a l ly  and commonly in

carbonate rocks.

14. Lower Facies B Laminated Calcareous A r g i l l i t e

Mineralogy and te x tu re :  major ity  of rock is re c ry s ta l l iz e d  and

annealed quartz grains (0 .05  mm); c a l c i t e  forms 0.1 mm aggregates; 

q u a r tz -c a lc i te  ve ining; layer ing defined by grain size and carbon; 

minor p y r i te ,  muscovite, a p a t i te ,  and carbon; Fe oxides form part ia l  

a l te ra t io n  product of p y r i te .

Color: laminated l ig h t  gray and dark gray.

Comments: S imilar  to s i l i c i c  a r g i l l i t e s  but contains 30% c a lc i t e .

15. Middle Facies A S i l i c i c  A r g i l l i t e

Mineralogy and tex ture :  mainly 0 .03 mm quartz grains; c a lc i t e  form

0.05 to 0.1 mn aggregates ; quartz veining; layering defined by 

carbon abundance v a r ia t io n ;  minor carbon, muscovite, Fe oxides, 

b io t i t e ,  and a p a t i te .

Color: laminated l ig h t  gray and dark gray.

Comments: Predominant rock type in S late  Creek area.
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16. Middle Facies A Carbonate

Mineralogy and tex ture :  predominantly <0.01 mm c a lc i te  grains with

minor carbon, Fe oxides, and muscovite; c a lc i te  veins.

Color: medium gray.

Comments: Found only in the southern portion of the area.

17. Middle Facies A Carbonaceous A r g i l l i t e

Mineralogy and tex ture :  mostly <0.03 mm grains of quartz but up to

0.1  mm in veins; abundant carbon, minor epidote, muscovite, 

m icroc l ine ,  and Fe oxides; epidote occurs in quartz veins as 

aggregates up to 1 mm.

Color: very dark gray or black.

Comments: Minor s u l f id e  occurrences are located in lenses of th is

l i th o lo g y .

18. Middle Facies A Skarn

Mineralogy and tex ture:  abundant t re m o l i te  aggregates in radiating

masses up to 3 .5  mm; also abundant 0.15 mm muscovite; remainder of 

the rock is quartz ,  carbon, and c a l c i t e .

Color: medium gray.

Comments: R e la t iv e ly  rare rock type in th is  u n i t .

19. Middle Facies A Bedded A r g i l l i t e  and Chert

Mineralogy and tex ture :  mostly very f ine -gra ined quartz (<0.01 mm);

some quartz grains up to  0 .05 mm and 0 .5  mm in veins; also very f ine  

muscovite (<0.01 mm); alignment of optical axes in both quartz and
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muscovite; banding defined by coarser and f in e r  quartz grains;  

quartz vein display k inking; micro-dewatering features.

Color: brownish to medium gray.

Comments: This l i th o lo g y  Is d is t in c t iv e  of the middle facies A

u n i t .

20. Middle Facies C Quartz I te

Mineralogy and tex ture :  assorted grains of annealed quartz up to

0.75 mm; minor c a lc i t e  as random grains 0.1 mm and as f ine  

aggregates; t r e m o l I t e / a c t I n o l I t e  as 0.75 mm aggregates; minor 

carbon, epidote, Fe oxides, and a p a t i te ;  epidote as f ine  dusty 

aggregates; some c a lc i t e  and epidote associated with t re m o l i te /  

a c t I n o l i t e .

Color: dark gray.

Comments: Dist inguishing rock type of the middle facies C u n i t .

21. Middle Facies C C a lc -S i l  Icate

Mineralogy and tex ture :  m ajor i ty  of the rock Is 0.025 mm quartz

grains; quartz veins with 0 .1  mm grains; abundant d iopsIte  (1 mm); 

c a lc i t e  as d is t in c t  grains (<0.02 mm) and a l te ra t io n  aggregates 

associated with d iopsIde, minor sphene and Fe oxide.

Color: l ig h t  gray.

Comments: This rock type occurs only In the extreme southwestern

portion of the area along S late  Creek. In trus ive  rocks crop out 

lo c a l ly  a b i t  fu r th e r  south.
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22. Middle Facies C S i l i c i c  A r g i l l i t e

Mineralogy and tex ture :  mainly 0.07 mm grains of quartz and 0.15 mm

in coarser layers; 0 .5  mm quartz grains in veins; oriented quartz 

grains; t re m o l i te  in veins (1 mm) and as random grains (0 .1  to 0 .5  

mm); minor subequal carbon and muscovite; also p yr i te  and c a lc i te  in 

t ra ce  amounts.

Color: dark gray.

Comments: Most common rock type in middle facies C section.

23. Middle Facies C Carbonaceous A r g i l l i t e

Mineralogy and tex ture :  mainly quartz (0 .03  mm) as grains and

abundant veins with up to 1 mm veins; abundant carbon; muscovite and 

b i o t i t e  occur as random grains and in veins; minor c a lc i t e ,  

tremol i t e ,  and scapol i t e ;  intense deformation.

Color: black with white veins.

Comments: Some sulf ides associated.

24. Middle Facies B S i l i c i c  A r g i l l i t e  and Chert

Mineralogy and te x tu re :  predominantly 0.01 mm or f in e r  quartz; in

veins, quartz is up to 0.25 mm; muscovite concentrations define  

layer ing;  minor carbon and a p a t i te .

Color: l ig h t  gray and splotchy darker portions.

Comments: Chert forms a minor portion of the u n i t .

25. Middle Facies B Carbonaceous A r g i l l i t e

Mineralogy and tex tu re :  mainly quartz and carbon; minor amounts of
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epidote as fuzzy masses; also minor muscovite, a p a t i te ,  diopside,  

and t re m o l i te ;  less deformation than typical  of other carbonaceous 

rocks.

Color: black.

Comments: Locally up to a few percent p y r i te .

26. Middle Facies B C a lc -S i l i c a te

Mineralogy and tex ture :  mostly coarse-grained c a lc i te  (0 .5 mm);

tre m o l i te  as large masses (0 .6  mm) in radiat ing aggregates; 

scapol i t e  (0 .75  mm average); also minor muscovite (0.15 mm), quartz 

(0 .15  mm), and andalusite  (0 .2  mm average).

Color: medium gray to black.

Comments: R e la t iv e ly  rare l i th o lo gy  usually found in limestone

beds.

27. Middle Facies B "Reaction Skarn"

Mineralogy and tex ture :  mainly large t re m o li te  grains (1 .5  to 2

mm); also c a lc i t e  in large in tergra in  masses up to 6 mm across; 

individual c a lc i t e  grains average 1.5 mm; minor carbon and coarse 

muscovite (0 .5  mm).

Color: dark gray to black.

Comments: Occurs lo c a l ly  along contacts of limestone and

carbonaceous a r g i l l i t e  beds. Forms th ird  l i tho logy  from 

constituents of the two. Found as discontinuous lenses.
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28. Middle Facies B P y r i t ic  Limestone

Mineralogy and te x tu re :  mostly 0.15 mm c a lc i te  grains; also

abundant quartz and carbon; minor muscovite, a p a t i te ,  scapo li te ,  and 

t r e m o l i t e (? ) .

Color: dark gray.

Comments: Section cut did not intercept any p yr i te  which forms one

percent random euhedral cubes (0 .5  mm).

29. Carbonaceous A r g i l l i t e  Unit  Banded Carbonaceous A r g i l l i t e  

Mineralogy and te x tu re :  subequal quartz (0 .05  mm) and c a lc i te  (0.05

mm); carbon present helps define layering; minor pyr i te  and 

muscovite; quartz and c a lc i t e  veining.

Color: dark gray.

Comments: R e la t iv e ly  carbon-def ic ient  rock located within very

carbonaceous s tra t ig rap h y .

30. Carbonaceous A r g i l l i t e  Unit Graphit ic  Carbonaceous A r g i l l i t e  

Mineralogy and te x tu re :  mostly quartz (0 .03  mm) and carbon In a

massive tex ture ;  minor c a l c i t e ,  muscovite, sphene, and apat i te ;  

quartz and c a lc i t e  vein ing.

Color: black.

Comments: Ore s tra t igraphy  from Carbonate Mine.

31. Carbonaceous A r g i l l i t e  Unit Carbonaceous A r g i l l i t e  with Quartz Veins 

and P yr i te

Mineralogy and tex ture:  predominantly quartz (0.01 mm) and carbon;
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quartz in veins is up to 0 .2  mm; aligned quartz In rock not apparent 

in veins; minor c a l c i t e ,  muscovite, p y r i te ,  and ap a t i te ;  c a lc i te  

also present in veins.

Color: black with white veins.

32. Middle to Upper Facies Transit ion  (Eastern Portion) Laminated 

A r g i l l i t e  and Fine Sandstone

Mineralogy and tex ture :  two d is t in c t  grain size populations are

present and they display the laminated nature of the rock; coarse 

layers include quartz (0 .1  mm), c a lc i t e  (up to 0 .5  mm), plagioclase  

(0 .1  mm), and t re m o l i te  (0 .5  mm). Fine layers consist of the same 

mineralogy, however, grain s ize averages <0.01 mm; minor a p a t i te ,  

sphene, and carbon; carbon is concentrated in the f ine layers.

Color: medium gray with tan laminae.

Comments: F i r s t  appearance of carbon d e f ic ie n t  sediment.

33. Middle to Upper Facies Transit ion (Central Portion) Laminated 

S i l ts to n e  and Shale

Mineralogy and tex ture :  very f ine -gra ined  quartz (<0.01 mm) and

minor muscovite, carbon, a p a t i te ,  and p y r i te ;  very subtle grains 

s ize  var ia t ions def ine laminations; quartz v e in le ts .

Color: l ig h t  gray and medium gray in layers .

Comments: Possibly more d is ta l  to a sediment source than #32. This

rock also has carbon, d e f ic ie n t  layers .
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34. Upper Facies 1 Laminated Dolomitic S i l ts ton e

Mineralogy and tex tu re :  mainly quartz (0 .05  mm) and dolomite (0 .03

mm); minor a p a t i t e ,  carbon, p y r i te ,  muscovite, Fe oxides, and 

plagioclase;  dolomite tends to form aggregates; carbon is present 

but in very minor q u a n t i t ie s ;  very weak bedding defined by the 

carbon and Fe oxides.

Color: tan to brownish-gray laminae.

Comments: Carbon very minor component. A b i t  coarser rock.

35. Upper Facies 2 Sandstone

Mineralogy and tex ture :  mainly 0.1 mm grains of quartz; Fe oxides

from splotches disseminated through the rock; minor muscovite, 

a p a t i te ,  and tourmaline.

Color: reddish brown.

Comments: F i r s t  appearance of d e t r i t a l  tourmaline.

36. Upper Facies 1 Laminated S i l ts to n e  and Sandstone 

Mineralogy and tex ture :  mostly 0.15 mm quartz grains; minor

muscovite, tourmaline, a p a t i t e ,  and Fe oxides; layering displayed by 

accumulation of f in e r -g ra in e d  quartz and muscovite; minor quartz 

vein ing of much less frequency than seen in rocks lower in the 

s tra t ig rap h y .

Color: l ig h t  gray and brown laminae.

Comments: Most common l i th o lo g y  in upper facies rocks east of

S i lv e r  Rule Creek.
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37. Upper Facies 1 Sandy Carbonate

Mineralogy and tex ture :  mainly c a lc i te  (0.1 mm) and quartz (0 .1

mm); minor m ic ro c l in e ,  muscovite, p y r i te ,  Fe oxides, and tourmaline;  

tourmaline forms good rounded d e t r i t a l  grains.

Color: buff  to dark tan .

Comments: Common as th icker  beds within #36 east of S i lver  Rule

Creek. All grains look d e t r i t a l .  L i t t l e  evidence of metamorphism.

38. Upper Facies 1 Massive S i l ts to n e

Mineralogy and tex ture :  predominantly quartz grains which range in

size from <0.01 to  0.075 mm; minor muscovite, Fe oxides, and 

a p a t i t e ;  massive.

Color: tan.

Comments: F a i r ly  common l i th o lo g y  east of S i lv e r  Rule Creek.

39. Upper Facies 1 Laminated Sandy Calcareous S i l ts ton e  

Mineralogy and tex ture :  mostly c a lc i te  as 0.02 mm grains; c a lc i t e

also present in veins (0 .3  mm); quartz 0.02 to 0.05 mm grains and 

0.5 mm in veins; minor b i o t i t e  (0 .25  mm) in a vein; accessory p yr i te  

and muscovite.

Color: l ig h t  gray.

Comments: R e la t iv e ly  rare l i th o lo g y  in upper facies 1 rocks.

40. Upper Facies 3 Laminated S i l ts to n e  and Shale

Mineralogy and tex ture :  quartz 0.05 mm in coarse layers and 0.02 mm

or less in f ine  layers;  abundant muscovite (0 .02  to  0.05 rmi in coarse
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Color: laminated l ig h t  gray and tan.

Comments: Typical l i th o lo g y  in upper facies 3 rocks.

41. Upper Facies 3 Thin Bedded Carbonaceous S i l ts tone  and Shale 

Mineralogy and tex ture :  predominantly quartz (0 .05 mm and sm aller ) ;

muscovite (0 .025 mm) in coarser-grained layers; c h lo r i te  (0 .025 mm) 

in f in e r -g ra in ed  layers;  minor carbon, epidote, a p a t i te ,  and Fe 

oxides; mil 1 imeter-scale o f fs e t  of beds.

Color: l ig h t  to dark gray.

Comments: Approximately as common as #40.

42. Upper Facies 3 Massive S i l ts to n e

Mineralogy and te x tu re :  mainly quartz (<0.01 mm); some quartz

grains up to 0.1 mm; most muscovite is <0.01 mm but some up to 0 .03  

mm; v a r ia t io n  of muscovite size defines fa in t  layer ing;  minor 

epidote and a p a t i te .

Color: medium gray.

Comments: Forms th ic ke r  lenses (up to 0.25 m) in central portion of

the area.

43. Upper Facies 3 Thin Bedded S i l ts to n e  and Shale

Mineralogy and te x tu re :  va r ia b le  quartz grain size from 0.02 to 0.1

mm; th is  va r ia t ion  defines bedding; minor epidote, Fe oxides,  

muscovite, a p a t i te ,  and s p in e l (? ) .

Color: dark gray.
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Comments: Common l i th o lo g y  in upper facies 3 u n i t .

44. Banded B ar i te  and Limestone

Mineralogy and tex ture :  mainly c a lc i t e  and b a r i te  which both

average 0 .5  mm and display annealed tex tures;  minor quartz and 

p y r i t e .

Color: white with very l ig h t  gray bands.

Comments: In hand sample, p yr i te  and spha ler i te  define banding but

no concentrations of su lf ides  were intersected by the th in -se c t  ion 

cut.

45. B a r i te  Ore

Mineralogy and tex ture :  predominantly b a r i te  (1 mm) set in a

c a lc i t e  matrix (0 .6  mm); minor p y r i te  and quartz .

Color: l ig h t  gray.

Comments: Sugary, granular tex tu re .
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