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ABSTRACT

Johnson, Milo J , , M.S., Summer, 1981 Geology
Tectonic Transport of the Newport Allochthon, Northeastern 
Washington and Northern Idaho
Director; Donald W. Hyndman

The spoon-shaped Newport fault in northeastern Washington 
and northern Idaho separates relatively unmetamorphosed Beltian 
rocks from higher-grade schists and quartzites. Mineral linea- 
tions and slickensides measured near the fault suggest that 
transport along the low-angle Newport fault was to the northeast. 
Quartz fabrics of rocks adjacent to the fault zone are at least 
monoclinic and nearly orthorhombic with elongate maxima lying at 
low angles to the foliation and normal to the extension direc­
tion. Based on correlation of rocks and structures above and 
below the fault, it appears that the Newport allochthon origi­
nated in the Chewelah area, approximately 30 km southwest of the 
study area. It appears that the allochthon was transported grav- 
itationally downslope along a zone near the top of two plutons in 
the area. Textures within one of these plutons suggest that it 
was semiconsolidated which apparently reduced the regional shear 
strength of the rocks. Removal of the overlying rocks evidently 
was accompanied by volcanism and pressure-release crystallization 
of the underlying magma. Rocks below the Newport fault zone are 
most intensely sheared in the Power Lake area because the great­
est thickness of the allochthon moved across that area. Field 
relations suggest that transport of the Newport allochthon oc­
curred during the Eocene.

The relationship between the Newport fault and other low- 
angle faults in northeastern Washington is unclear. Low-angle 
detachment faulting apparently occurred late in the Cretaceous as 
well as in the Eocene and played an important part in the tec­
tonic development of the area. High-grade regional metamorphism 
culminated in the Cretaceous Period along with gravitational de­
tachment of suprastructure from infrastructure. It is uncertain 
whether the Jumpoff Joe fault represents the leading edge of 
rocks which moved eastward off the top of the Kettle dome area 
during this episode of detachment. The west-dipping Newman Lake 
shear zone appears to flatten to the east where east-verging 
folds and lineations are suggestive of transport of supracrustal 
rocks to the east. Low-angle faults within the Purcell trench 
may represent the east-dipping analog to this surface along which 
supracrustal rocks east of the trench moved off the Kaniksu- 
Spokane dome.
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CHAPTER I 

INTRODUCTION

Little is known about the inter-relationships of low-angle faults 

in northeastern Washington. Recent mapping has revealed low-angle 

faulting at the margin of the Kettle dome and Republic graben (Cheney, 

1980; Rhodes, 1980) along with thrust faults in the Chewelah area which 

juxtapose originally widely separated rocks (Miller and Clark, 1975) .

In the study area a low-angle detachment fault, the Newport fault, 

separates relatively unmetamorphosed Beltian rocks from higher-grade 

schists and quartzites (Miller, 1974b-d). Zones of cataclasis and 

shearing associated with an abrupt change in metamorphic grade across 

these zones, south and east of the study area may represent other low- 

angle faults (Figure 1).

Crucial to a better understanding of the relationships between 

these low-angle faults includes the determination of:

1) relative age of formation of these surfaces

2) direction of tectonic transport

3) amount of tectonic transport

The purpose of this study is to examine one of these low-angle faults, 

the Newport fault, and try to answer the three questions posed above. 

This study suggests that the Newport allochthon originated in the 

Chewelah area and was transported along the Newport fault approximately 

30 km to the northeast early in the Tertiary period. Movement probably 

occurred by gravity sliding initiated along a surface near the top of
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Figure 1. Generalized map of northeastern Washington and northern Idaho showing 
location of major structural features (modified after Cheney, 1980). to



semi-consolidated plutons. These conclusions provide a basis for form­

ulation of several models which explain the Newport fault's relation­

ship to low-angle faults elsewhere in northeastern Washington.

Location of the Study Area

The study area lies on the western and southern margins of the 

Pend Oreille River valley in northeastern Washington (Figure 2). Here 

the Newport fault roughly parallels the course of the Pend Oreille 

River which changes its course from generally east-west to north-south. 

Outcrop is generally good just south of the east-west trace of the 

Newport fault near the town of Newport. Granitic rocks crop out on 

hills only moderately covered by low vegetation. Bedrock exposure west 

of the north-south trace of the fault is generally poor due to thick 

forest cover. Access to this area is fairly good along numerous log­

ging roads. Fresh outcrops are generally confined to places along the 

roads whereas outcrops away from the roads are generally weathered and 

covered by lichens and moss. The Newport fault zone is well-exposed in 

only a few locations within the study area (Figure 9). Relief in the

area ranges from 325 meters in the eastern part of the study area to

about 1000 meters in the western portion.

Previous Work

Early geologic mapping in the area was concentrated largely in the 

Metaline area north of the study area by Park and Cannon (1943) and 

later followed by Dings and Whitebread (1963). Belt rocks in the re­

port area were first mapped and described by Schroeder (1952) in the
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Bead Lake area, roughly equivalent to Miller's Newport no. 1 quad­

rangle. More recently, Weissenborn and Weis (1976) mapped the Mount 

Spokane quadrangle (Figure 2) south of the study area which contains 

high-grade rocks and intrusions of the Spokane dome (Cheney, 1980).

The most recent work includes mapping of two 15-minute quadrangles in 

the Chewelah-Loon Lake area by Miller and Clark (1975) who first des­

cribed the Jump-off Joe thrust fault. Miller (1974 a-d) mapped the 

Newport 30-minute quadrangle which contains the study area and a por­

tion of the Newport fault. Potassium-argon age determinations for 

numerous plutons in the area are reported by Engels (1975) and Miller 

and Engels (1975). Barry Gager of the University of Washington is 

presently working on the Tiger formation within the Pend Oreille River 

valley.

This Study

Low-angle faulting elsewhere in northeastern Washington may be 

related to transport along the Newport fault. Therefore, an understand­

ing of these faults in their regional context would aid in reconstruct­

ing the timing and movements which led to transport along the Newport 

fault. Therefore, this report begins with a brief review of the re­

gional geology discussing the development of structures in northeastern 

Washington which lays the groundwork for inferences concerning trans­

port along the Newport fault. A more detailed review of the regional 

geology is contained in the appendix to provide the reader with a 

greater understanding of the regional geology which led me to the con­

clusions contained in this report.



Results of detailed study along the Newport fault are presented in 

Chapter III, This is followed by conclusions concerning transport 

along the Newport fault and a discussion of possible relationships be­

tween low-angle faults in northeastern Washington and northern Idaho.

Rocks immediately below the sole of the Newport fault were exam­

ined for structures suggestive of transport direction along the fault. 

Slickensides and mineral lineations found near Power Lake were measured 

and recorded in the field. Hand samples were collected from near the 

fault for later thin-section examination. Oriented samples were also 

collected from several critical locations for petrofabric analysis. 

Orientations of quartz c-axes were then plotted on an equal-area net 

and contoured to facilitate petrofabric analysis and kinematic inter­

pretation.



CHAPTER II 

REGIONAL GEOLOGY

Gneiss Domes

North-central Washington is characterized by two gneiss domes sep­

arated by a structural depression, the Republic graben (Figure 1). The 

Kettle and Okanogan domes contain rocks and structures similar to other 

complexes described farther north (Reesor, 1965, 1970; Reesor and 

Moore, 1971; Hyndman, 1968; McMillan, 1970) and south (Hyndman, 1980; 

Davis and Coney, 1979). They are characterized by a high-grade infra­

structure separated tectonically from a lower-grade suprastructure.

This region lies at least 60 km west of the study area yet an under­

standing of the structural fabric of these terranes is important in 

order to determine the tectonic history of their formation and their 

possible relation to structures farther east.

The Kettle dome consists of silliraanite-grade rocks of the Tenas 

Mary Creek sequence (TMC) which includes metasediments, pegmatites and 

orthogneisses. Several workers have correlated TMC rocks with rocks of 

the Shuswap terrana of southern British Columbia (Parker and Calkins, 

1964; Pearson, 1967; Preto, 1970; Donnelly, 1978). A wide variety of 

ages have been reported for rocks of the Shuswap terrane. Cheney 

(1980) favors a Precambrian age for the TMC rocks of the Kettle dome 

and suggests they may possibly be pre-Beltian. The metasedimentary 

rocks of the Kettle dome are intruded by numerous Mesozoic and Tertiary 

granitic plutons of varying compositions and textures (Cheney, 1980).
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The foliation and bedding of rocks in the Kettle range define a 

dome > 65 km long north-south and 27 km wide with dips generally < 25* 

within the dome itself (Cheney, 1980) . The contact between the high- 

grade TMC rocks of the infrastructure and the overlying low-grade su- 

prastructural rocks east of the dome is a zone of intense shearing and 

cataclasis which appears to extend all along the domes's eastern margin 

and dies out as it wraps around its southern end. Cataclasis appears 

most intense at the eastern edge of the dome as does development of a 

penetrative mineral lineation and streaking lying within the cataclas- 

tic foliation. Slickensides lying on shear surfaces parallel to the 

foliation maintain a consistent orientation parallel to the trend of 

the mineral lineations yet both gradually die out westward across the 

dome.

Folds are developed at all scales within the dome although the 

smaller type predominates, Rhodes (1980) shows that the earliest iso­

clinal folds trend east-west and are cut by the cataclastic foliation. 

Donnelly (1978) has identified four phases of folding and has shotfn 

their similarity to phases identified in domes farther north. Large 

steep faults that cut rocks of the dome are probably pre-Tertiary 

(Cheney, 1980).

The Okanogan gneiss dome (Fox and Rinehart, 1971; Fox and others, 

1976) lies west of the Kettle dome between the Republic graben and the 

Okanogan River. The plutonic and high-grade rocks of the infrastruc­

ture were originally assigned to the Colville batholith (Pardee, 1918) 

by several workers (Waters and Krauskopf, 1941; Yates and others,

1966). Waters and Krauskopf concluded that the high-grade cataclastic
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gneisses were the protoclastic border zone of a large batholith. These 

highly crushed and sheared rocks at the western margin of the dome 

gradually disappear eastward as they wrap around the northern and 

southern reaches of the dome. Snook (1965) later renamed these rocks 

the Tonasket Gneiss. Rocks included in the Tonasket Gneiss are of 

metasedimentary and metavolcanic parentage (Snook, 1965; Waters and 

Krauskopf, 1941; Fox and others, 1976), A discontinuous envelope of 

granitoid gneiss, probably of igneous parentage, surrounds the Tonasket 

Gneiss.

Penetrative mineral streaks and lineations lie within the cata­

clastic foliation describing the dome and maintain consistent orienta­

tion west-northwest. Fold axes in the gneisses are parallel to the 

trend and plunge of the lineation and both are roughly contemporaneous 

with crystallization (Snook, 1965) . The zone of shearing at the west­

ern margin of the dome consists of thinly layered mylonite to very 

fine-grained cataclastic gneiss. Cataclasis, foliation and lineation 

become poorly developed eastward over the dome. Fractures trending 

north to northeast are commonly filled with epidote and obliquely trun­

cate the mylonitic foliation. This fracture pattern is most intense 

in the western part of the dome and dies out completely on the eastern 

flank (Snook, 1965).

Re public Graben

The Republic graben is a structural depression lying between the 

Kettle and Okanogan domes. Rocks within the graben range in age from 

late Paleozoic to Recent although Eocene sedimentary and volcanic rocks 

generally dominate the rock types. The nature of this structure is in
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debate as it appears that the graben is bounded on the west side by 

east-dipping low-angle faults (Cheney, 1980). Cheney suggests that 

the Eocene rocks within the graben may comprise a synclinal allochthon 

and represent a regional volcanic and tectonic event not confined to 

the graben, High-angle faults bound the graben on the east while those 

within the graben generally parallel its trend.

Kootenay Arc

The crescent-shaped Kootenay arc lies immediately to the east of 

the Kettle dome (Figure 1) and the Shuswap metamorphic complex farther 

north in British Columbia. It consists of folded and faulted rocks 

ranging in age from Proterozoic to middle Jurassic. In British Colum­

bia, Ross (1970) postulates that eastward-verging allochthonous rocks 

of the western Kootenay arc are separated by a major sole thrust from 

westward-verging parautochthonous rocks in the eastern Kootenay arc.

In northeastern Washington the west-dipping Jumpoff Joe thrust separ­

ates eastward-verging structures on the west from westward-verging 

folds structurally below (i.e. east of) the fault. Ross concludes that 

the earliest structures of the Kootenay arc formed by easterly movement 

of nappes with the latest deformation resulting in the backfolding of 

these nappes (westward verging folds) off the rising Purcell basement. 

An east-west-trending thrust belt trends obliquely across the trend of 

the earlier formed folds of the Kootenay arc (see Figure 3) (Yates, 

1964, 1971). In any case, dominant movement apparently was from west 

to east. The zone of cataclasis and shearing located at the eastern 

edge of the Shuswap metamorphic complex may represent a gently-dipping
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detachment surface along which rocks of the Kootenay arc moved off the 

eastern part of complex during dome formation (Read, 1977). This move­

ment probably occurred late in the development of the Kootenay arc.

Discussion

It is critical to determine the relative ages of the detachment 

surface and rise of the gneiss dome in order to more fully understand 

the movements that produced the structures within and around the dome. 

Identification of the nature and extent of the unloaded supracrustal 

rocks would certainly aid in reconstructing those events which precede 

and coincide with formation of the dome but often these rocks have been 

severely deformed thus obscurring their relationship with rocks of the 

infrastructure.

Mineral lineations and slickensides maintain consistent east-west 

trend regardless of the trend of the foliation which suggests they 

formed prior to deformation of the foliation. Therefore, it appears 

that the detachment surfaces in both the Kettle and Okanogan domes 

formed before rise of the dome.

The consistent trend of mineral lineations and slickensides within 

each dome also suggests a unidirectional removal of supracrustal rocks 

off the domes. This probably occurred along a flat detachment surface 

rather than gravitational sliding off the present dome. If the dome 

predated the detachment surface, then the dome should exhibit a radial 

movement of the rocks off the dome.

Snook (1965) attributed the mylonites in the Okanogan dome to a 

distributed flat thrust which was later folded. Cheney (1980) believes
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that upper TMC rocks of the Kettle dome were subjected to shearing 

along a decollement surface and later deformed during a period of 

large-scale Tertiary folding. Snook (1965) considers small-scale folds 

within the Okanogan dome as products of an earlier period of deforma­

tion directed at 90* to those forces which produced the lineation 

within the mylonites. The foliation outlining these folds precedes 

development of cataclasis in the Tonasket Gneiss. The orientation of 

these fold axes, however, may have been produced through the same move­

ments which produced the cataclasis and mylonites. Fold axes oriented 

at high angles to planes of shear may be rotated into the plane of 

shearing aligned in the transport direction (Hobbs and others, 1976, 

p. 286-287; Hyndman and others, 1975), Botli the lineation and align­

ment of the fold axes within both domes may have originated by shearing 

along a flat zone parallel to the foliation.

Lateral asymmetry of cataclasis and lineation in both domes indi­

cates differential shearing intensities along the detachment surface.

If the variation in intensity were a result of erosion after folding of 

the surface then a concentric pattern of intensities should be pre­

served with the greatest intensities located at the margins of the 

dome. In both the Kettle and Okanogan domes the cataclasis and myloni- 

tization are best developed along only half of the circumference of the 

dome. A similar pattern found in the Bitterroot dome in western 

Montana is explained by the passage of a thicker portion of supra­

crustal rocks across one flank of the dome (Hyndman, 1980). This 

evaluation for the Kettle dome may be somewhat tenuous because the 

western portion of the dome is truncated by the Sherman Creek fault.
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Based on these relations, I favor a movement scenario in which 

supracrustal rocks moved off the Okanogan dome area along a gravita- 

tionally controlled flat detachment zone to the west-northwest whereas 

lineations within the Kettle dome suggest that those rocks moved east­

ward off the area of the dome before final rise of the dome (see Figure

4).

There is evidence in both domes for late stage, brittle-style de­

formation within the cataclastic rocks again most intensely developed 

within the mylonite zones of each dome. In the Okanogan dome direc­

tionless microbrecciation associated with low-teraperature secondary 

minerals in the mylonites suggest that deformation took place at shal­

lower depths than the movements that formed the folding and earlier 

lineations (Snook, 1965). In the Kettle dome, penetrative development 

of slickensides at outcrop scale which parallel the trend of mineral 

streaking and lineation suggest they formed under more brittle condi­

tions than those that typify the earlier lineations. Some late-stage 

movement may have been post-Eocene as the Kettle River fault cuts syn­

clinal Eocene-age rocks (Rhodes, 1980). In the Bitterroot dome,

Hyndman considers progressive unloading of the supracrustal Sapphire 

tectonic block responsible for a change in deformational style, from 

deep-seated plastic flow to shallow, brittle shearing.

The Swimptkin Creek pluton of granitic composition cuts the 

Okanogan dome and yields concordant biotite and hornblende K-Ar dates 

of 48.0 and 48,2 m.y. (Eocene) respectively. The Okanogan dome cuts 

rocks which include the Anarchist Group and the Kobau Formation of 

Permian and Triassic age (Rinehart and Fox, 1972; Waters and Krauskopf,
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1941). Therefore, metamorphism in the dome took place between late 

Triassic and Eocene time. Based on radiometric age dating of rocks in 

the dome. Fox and others (1976) suggest that high-grade metamorphism 

culminated in the Cretaceous and rocks of the dome cooled slowly 

through successive temperature thresholds of various minerals yielding 

discordant ages on a number of samples.

Based on correlations with rocks of the Okanogan and Shuswap 

domes, Rhodes (1980) assigns a Cretaceous age to the high-grade meta­

morphism in the Kettle dome. Since the shearing deformation which 

produced the lineation and mylonitization occurred partly coeval with 

the high-grade metamorphism (Snook, 1965; Fox and others, 1976; Rhodes, 

1980), tectonic unroofing of both the Kettle and Okanogan domes prob­

ably took place late in the Cretaceous.

Development of the gneiss-dome terrane in north-central Washington 

most likely began with igneous activity in the form of rising magmas 

resulting from the development of a Benioff zone to the west (Price, 

1980), This thermal activity was accompanied by regional metamorphism 

and partial melting of crustal rocks. Thermal expansion led to region­

al uplift of the rocks producing a regional slope with sufficient grav­

itational potential to initiate movement of supracrustal rocks down­

slope, Gravitational gliding was probably facilitated by plastic 

flowage in the rocks at considerable depth. Structures found within 

the two domes suggest that supracrustal rocks moved westward off the 

Okanogan dome and eastward off the Kettle dome. As a consequence, I 

infer that the topographic high at the time of detachment lay somewhere 

between the two domes approximately in the present-day location of the
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Republic graben (assuming that the domes themselves have not been 

thrusted). This region upslope from the detaching rocks presumably be­

came extended in a fashion similar to rocks located at the head of a 

large landslide. It is conceivable that such a zone of extension 

played an important role in the development of a "structurally weak 

zone and area of subsequent rifting" (Staatz, 1964, p. F58) which ulti­

mately resulted in development of the Republic graben.

As supracrustal rocks moved off the domes along a plastic-like 

zone of shearing, rocks of the infrastructure became lineated and dev­

eloped a cataclastic foliation. Pre-existing folds were rotated into 

the plane of shear and trend parallel to that of the mineral lineations 

and slickensides. Effects of shearing and cataclasis became most pro­

nounced on the flank in the direction of tectonic transport where the 

thickest portion of overlying rocks would have passed. Late-stage 

brittle-style deformation structures, such as microbrecciation and 

slickensides formed within the detachment zone as those rocks became 

shallow with removal of the overlying cover rocks. Low-angle faults at 

the eastern margin of the Kettle dome (Kettle River fault) and on the 

west side of the Republic graben may denote an Eocene or later period 

of gravitational movement off the domes. The general aspects of this 

model are the same as those proposed for formation of the Bitterroot 

dome (Hyndman and others, 1975; Hyndman, 1980).

As demonstrated above, cataclasis and shearing preceded rise of 

the dome. Four large-scale open folds parallel to smaller and earlier 

folds and lineations within the Okanogan dome mapped by Snook (1965), 

are outlined by the cataclastic foliation and, therefore, probably
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formed along with rise of the dome. Several east-west— trending, large- 

scale open folds have been mapped in the Grand Forks area by Preto.

Such folds are characteristic of gneiss domes in the Shuswap and since 

they postdate the cataclastic foliation, they may be related to rise of 

the dome,

In the Bitterroot dome, Hyndman directly addresses the problem of 

the origin of those forces which ultimately folded the gneisses into 

their present doraal shape. He proposes a model of isostatic rise of 

the infrastructure in response to tectonic denudation of the dome. Im­

plicit in this model is isostatic compensation within a relatively hot, 

mobile crust or upper mantle (Hyndman, oral communication, 1980),

Structures found in rocks of the Kootenay arc may represent defor­

mation arising from their tectonic accretion onto the continental 

margin (Price, 1980) and subsequent tectonic unroofing of the raetamor- 

phic-core complexes. Latest deformation reflecting denudation of the 

domes would have occurred shortly after metamorphism and rise of those 

terranes in Cretaceous time. Identification of the nature and extent 

of the cover rocks is speculative but it is interesting to note that 

the width of the Kettle dome west of Kettle Falls roughly coincides 

with the distance from the shear zone near the Columbia River eastward 

to the Jurapoff Joe thrust (see Figure 1). It is uncertain whether the 

Jumpoff Joe thrust represents the leading edge of the detached cover 

rocks. Thrust faults in the Korthport and Deep Creek areas formed late 

in the development of the Kootenay arc and may be related to unroofing 

of the domes.
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In this model, as the suprastructure moved to the east, folds in 

the Chewelah area were tightened, raised and flopped back westward on 

themselves. I attribute this apparent reversal of transport direction 

to a buttress effect from the east. Geophysical evidence from farther 

north may suggest that the approximate location of the continental mar­

gin lies underneath the Kootenay arc (Price, 1980). An abrupt increase 

in thickness of the continental craton forming a step in this area 

could account for this buttress. Alternatively, the buttress effect 

may be due to eastward crowding of these rocks against the rising or 

existing Kaniksu dome.

Study Area

Schroeder (1952) originally named rocks of the Newport allochthon 

as the Newport Group but Miller (1974a) later correlated these units 

with those of the Belt Supergroup in the Coeur D'Alene district and 

around Pend Oreille Lake. The allochthon contains a complete section 

of Belt rocks from the Prichard Formation up through the Striped Peak 

Formation. It forms a steeply west-dipping homoclinal section striking 

north-south (Figure 5). Barnes (cited in Millet and Clark, 1975) map­

ped east-dipping beds in the Idaho portion of the allochthon and named 

this fold the Snow Valley anticline. Dips generally range from 50 to 

75 degrees with some beds locally overturned. The Addy Quartzite un- 

conforinably overlies the Striped Peak Formation and in turn is overlain 

by rocks of Paleozoic age. This sequence is cut on the west and east 

by the synformal Newport fault (see Figure 5). Numerous normal-slip 

faults, generally trending northerly, cut these rocks and apparently
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all formed during the same period of faulting (Miller, 1974a). Fault­

ing in the area pre—dated extrusion of the Eocene Pend Oreille 

Andésite.

Tuff and tuffaceous shale beds of the O'Brien Creek Formation dip 

gently west in the vicinity of Skookum Creek and are overlain by flows 

of the Eocene Sanpoil Volcanics or alternatively by Eocene conglomer­

ates of the Tiger Formation (Pearson and Obradovich, 1977). Light and 

dark-gray porphyritic lava flows lie along the east side of the Pend 

Oreille River valley (Figure 6) in the vicinity of Skookum Peak. Orig­

inally named the Pend Oreille Andésite by Schroeder (1952), these rhyo- 

dacite flows were later correlated with the Sanpoil Volcanics by 

Pearson and Obradovich (1977) who obtained K-Ar dates of 51.0 m.y. on 

hornblende and 50.4 m.y. on biotite.

Poorly sorted and poorly bedded conglomeratic bods in the Pend 

Oreille River valley within the Metaline quadrangle were named the 

Tiger Formation by Park and Cannon (1943). They infer (p. 23) that 

elastics of the formation were primarily locally derived and probably 

deposited in streams and lakes occupying a "valley similar to that ex­

isting today," Schroeder and Miller assigned conglomeratic beds within 

the Newport map area to the Tiger Formation. Beds of the Tiger Form­

ation overlie the O'Brien Creek Formation, Sanpoil Volcanics and sev­

eral Precambrian and Cambrian formations. The Tiger generally lies to 

the east of the Newport fault below the 1100-meter elevation although 

Miller (1974b) indicates that it may partially overlap the trace of the 

fault. Park and Cannon considered the Tiger to be Tertiary which was 

later refined to Eocene by Pearson and Obradovich (1977) based on the
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formation's conformable relationship to the underlying Sanpoil Vol­

canics .

Rocks beneath the sole of the Newport fault and bounded on the 

west by the eastward-verging Jumpoff Joe thrust consist of a complete 

section of Belt rocks, Paleozoics and numerous intrusions ranging in 

age from Jurassic to Tertiary (Miller, 1974b-c; Miller and Clark,

1975). The sedimentary rocks generally trend northerly and either dip 

steeply to the west or are overturned to the east. Miller and Clark 

report two large-scale folds within this area which they name the 

Chewelah syncline and the Nelson Peak anticline. These two folds and 

their location relative to folds farther east are shown in Figure 5. 

Near the southern border of the area, the beds strike northwest and 

farther north swing around to the northeast where the folds become pro­

gressively more overturned to the west.

Lowermost Belt rocks belonging to the Prichard Formation crop out 

in the eastern portion of the Chewelah-Loon Lake map area and appear to 

grade eastward into higher-grade metamorphic rocks in the Newport quad­

rangle, These metamorphic rocks consist of muscovite-biotite schist 

and micaceous quartzite and presumably represent high-grade rocks de­

rived from the Prichard based on structural continuity, similar lith- 

ology, rusty weathering and mafic rock layers which may represent 

metamorphosed diorite sills of the Prichard (Miller, 1974b-c).

The Phillips Lake Granodiorite underlies much of the area just to 

the west and northwest of the Newport fault in the study area (Figure 

6). Miller and Clark (1975) first mapped and described this unit while 

mapping in the Chewelah-Loon Lake area. It consists primarily of
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biotite—muscovite granodiorite of varying compositions. Numerous dikes 

cut the granodiorite and consist largely of medium to fine-grained 

granite with subordinate amounts of aplite and pegmatite (l.U.G.S clas­

sification used in this report, Streckeisen, 1976). The dikes become 

progressively more numerous eastward from Jumpoff Joe thrust accom­

panied by a decrease in the potassium-feldspar content in the grano- 

diorite. An increase in the same direction of a slight foliation in 

the granodiorite led Miller and Clark (1975, p. 41) to postulate that:

**. . , during the later stages of crystallization, when 
the composition of the remaining melt was similar to that 
of the dikes, the alkali- and volatile-rich melt was re­
moved from the interstices of the already crystallized 
material, perhaps by filter pressing. The mobilized melt 
formed the dikes; thus, the granodiorite is most deficient 
in potassium feldspar where the dikes are most numerous.
The foliate texture results from the collapse accompanying 
removal of the melt, which forced the micas and remaining 
melt into interstices between the larger quartz and plag- 
ioclase crystals,"

The contact of the granodiorite with the country rock has very 

gentle dips. Numerous roof remnants within the granodiorite crop out 

just to the west of the trace of the Newport fault. Contact metamor­

phic effects in the surrounding rock existing far from the surface 

contact with the pluton combine with the above to suggest that the 

Phillips Lake Granodiorite underlies much of the region at shallow 

depth. The Newport fault surface appears to lie at or near the top of 

this intrusion which I infer to be highly significant in the develop­

ment of the fault zone and transport of the Newport allochthon. This 

concept is discussed more fully below along with models of tectonic 

development of northeastern Washington.
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The Silver Point Quartz Monzonite was originally named by Miller 

(1969) followed by detailed pétrographie and petrologic descriptions 

published later by Miller and Clark (1975). This unit underlies a 

total of about 380 square kilometers within Newport quadrangles 3 and 

4 and the Chewelah-Loon Lake map area (see Figure 6). It essentially 

is a porphyritic hornblende-biotite quartz monzonite. Miller and Clark 

describe a distinctive texture of the rock which contains a tri—modal 

grain size. The potassium-feldspar phenocrysts occur up to 4 cm long 

surrounded by large crystals of hornblende, biotite, plagioclase and 

potassium-feldspar averaging 4 mm in size. The groundmass has the same 

mineralogy with crystal size averaging about 1 ram.

Miller and Clark consider the larger crystals to be earlier cry­

stallization products and postulate that, "Some event, such as rapid 

loss of heat or volatiles, caused approximately the last 60 percent of 

the magma to crystallize so rapidly that it could not react with al­

ready crystallized minerals." (Miller and Clark, 1975, p. 48). Al­

though several different processes could account for this rapid loss of 

heat or volatiles, I suggest that shallowing of these plutonic rocks 

occurred through tectonic unroofing of the batholith by the Newport 

allochthon, A drop in lithostatic pressure would permit, the volatiles 

within the magma to escape thus promoting nucléation in the remaining 

melt resulting in smaller crystal size. Drop in pressure on a water- 

saturated melt might cause the magma to cross the solidus as shown in 

Figure 7.

Hornblende crystals are aligned sub-parallel with the Newport 

fault in places where the Silver Point Quartz Monzonite crops out
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near the fault trace. The proximity of these lineations to the Newport 

fault zone may suggest that their east-west alignment resulted from 

movement along the fault but relationships found in good outcrops along 

Davis Lake suggest differently. Here a complete pluton-border sequence 

is well exposed in a series of outcrops that show massive plutonic rock 

(Silver Point) grading into more mafic and foliated rocks of the plu­

ton* s margin. The contact of the pluton with the country rocks is 

somewhat gradational over 40 meters with tongues of plutonic rock and 

pegmatite extending short distances into the wall rock. Inclusions 

near the margin of the pluton stretch and align themselves parallel 

with the intrusive contact as do the long axes of the larger horn­

blende crystals. The contact of the pluton swings from northeasterly 

near Davis Lake to nearly east-west before it is cut by the Newport 

fault (Figure 6). Alignment of hornblende crystals resulted from flow 

movements in the magma near the plutonic margin and their alignment 

near the Newport fault is a consequence of the margin trending parallel 

with the fault in that area.

Potassium-argon dates on hornblende and biotite were determined 

for three samples of the Silver Point Quartz Monzonite (Engels, 1975; 

Miller and Engels, 1975). They are:

SAMPLE
1 2 3

Hornblende 51,0 + 5 46,8 + 1,7 60 + 2

Biotite 48,1 + 1 46,7 + 1,3 5 0 + 1
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Kaniksu-Spokane Dome

The Hauser Lake Gneiss and Newman Lake Gneiss (Figure 8) crop out 

in the southern portion of the Newport no, 4 quadrangle (Miller, 1974), 

Mount Spokane quadrangle (Weissenborn and Weis, 1976), and the Green­

acres quadrangle (Figure 2) where they were first described (Weis, 

1968). Foliation within the Hauser Lake Gneiss generally trends north- 

south and a strong consistent lineation, defined by a streaking of mica 

and sillimanite within the foliation, plunges 20-40 degrees to the 

southwest. The Hauser Lake Gneiss may have been derived from the 

Prichard or Burke Formation of the lower Belt Supergroup (Miller,

1974d; Weissenborn and Weis, 1976),

The Newman Lake Gneiss shows signs of cataclasis and has a pene­

trative lineation consisting of "streaked out clots of biotite"

(Miller, 1974d, p. 3) which plunge variably at low angles to the south­

west and lie within a north-south foliation. Miller and Weissenborn 

and Weis believe that the Newman Lake Gneiss is an orthogneiss.

Cross-cutting relationships within the Newport no, 4 quadrangle 

place some time constraints on the formation of cataclasis and major 

faulting in the area. The effects of cataclasis found in the Netfman 

Lake Gneiss arc also found within adjacent Cretaceous(?) or Tertiary(?) 

plutons (TKt and TKl of Miller, 1974d) and presumably represent the 

same deformation event. The Silver Point Quartz Monzonite cuts 

Miller's TKl unit and hence is younger. Effects of cataclasis are not 

found within the Silver Point where the regionally consistent cataclas­

tic foliation is projected along strike northward several kilometers.



NEW PO RT

29

KM

Ts S IL V E R  P O IN T  Q U A R T Z  M O N Z O N IT E
T K t , TKg . T K l  : T E R T IA R Y  OR C R E TA C E O U S  G R A N IT IC  IN T R U S IO N S
K f
pCn
pCh
m

F A N  L A K E  G R A N O D IO R IT E  
N E W M A N  LA K E  G N EIS S  
H A U S E R  L A K E  G N E ISS
M E T A M O R P H IC  RO CKS (P R O B A B L Y  M E T A -P R IC H A R D )

Figure 8. Geology of the Newport Number 4 Quadrangle
(from Miller, 1974d).



30

Since the Newport fault is younger than the Silver Point, the following 

age relationships are apparent (oldest listed first):

1) intrusion of TKl and TKt

2) metamorphism/cataclasis

3) intrusion of Silver Point Quartz Monzonite

4) transport along Newport fault

Between the town of Priest River and Sandpoint a section of in­

tensely deformed rocks is spectacularly exposed along U.S. Highway 2. 

These schists and gneisses were mapped by Clark (1964, 1968) as pre— 

Belt, yet they appear similar to rocks believed to be Prichard else­

where in the region (Miller, 1974b-d). Folds along this stretch 

consistently show a transport direction of upper rocks eastward over 

lower rocks. These folds belong to Clark's first phase of folding and 

apparently maintain this orientation throughout her study area. She 

interprets this deformation in terras of a large recumbent fold which 

she infers on the basis of small-scale structures. Regardless of the 

existence of such a large fold, these structures may have formed by 

eastward shearing parallel to the foliation. A second phase of defor­

mation is identified by Clark as consisting of north-south-directed 

upright, open asymmetric folds.

The Purcell Trench extends from south of Coeur D'Alene Lake north­

ward into British Columbia (Figure 1). The trench has long been be­

lieved to be fault controlled (Daly, 1912; Kirkham and Ellis, 1926; 

Anderson, 1930; Nevin, 1966; Griggs, 1964; Harrison and others, 1972; 

Miller and Engels, 1975). Miller and Engels (p. 524) present a compel­

ling argument for the location of a major fault or system of faults
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within the trench in northern Idaho, In support of their argument they 

point out :

1) the plutonic rock types on each side of the trench are 
fundamentally different

2) the [regional] metamorphic grade changes markedly across 
the trench

3) the edge of the zone of discordance coincides with the 
trench

4) styles of the [radiometric] age contours are different on
each side of the trench

5) raylonite and cataclasite are extensively developed within
and along the west side of the trench

6) landforras indicate that the west side of the trench may
be a fault scarp

The character of the trench appears to change, however, near 

Kootenay Lake in British Columbia as structures appear continuous 

across the trench north of this point (Rice, 1941; Fyles 1964, 1967), 

Relationships between the suprastructure on the east side of the 

Purcell Trench and the infrastructure on the west side bear resemblance 

to relationships found on the eastern margin of the Kettle dome and 

domes elsewhere in the Cordillera. The details of deformation within 

the fault zone, however, are unknown because rocks within the trench 

are poorly exposed. Supracrustal rocks east of the trench may have 

moved eastward off rocks west of the trench yet this hypothesis is un­

tested and based on somewhat tenuous regional considerations which are 

explored further below.
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CHAPTER III 

NEWPORT FAULT

The Newport fault was first mapped and described by Fred Miller 

while mapping the Newport 30-minute quadrangle for the United States 

Geologic Survey (Miller, 1971; 1974). Further mapping within the 

Sandpoint 2* sheet revealed that the U-shaped fault trace extended from 

near the small village of Tiger on the west to north of Priest Lake on 

the east. The mapped trace of the fault begins a few kilometers west 

of Tiger and runs southward along the west side of the Pend Oreille 

River valley at about the 800 meter elevation. The sinuosity of the 

fault trace indicates that the fault dips at a low-angle eastward with­

in this part of the valley. Several field measurements of a slight 

foliation (presumed to parallel the fault surface) within the fault 

zone confirm the gently-dipping character of the fault. The trace 

turns easterly near Calispell Lake and runs just north of the town of 

Newport. It bends northward just north of the town of Priest River and 

continues up the Priest River valley, along the east side of Priest 

Lake northward to Continental Mountain near the International Boundary, 

The fault appears to dip gently westward in the Priest Lake area.

The outcrop pattern of the Newport fault (Miller and Engels, 1975) 

suggests that rocks of the Newport allochthon belong to a large tec­

tonic plate (i.e. klippe) that moved along the Newport fault. Conse­

quently, the two heretofore unattached ends of the Newport fault trace 

probably connect and possible locations of the "missing" Newport fault 

segment are discussed below.
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The Newport fault zone consists of cataclastic rock and mylonite. 

Miller (1974) reports that the zone ranges in width from 125—320 meters 

and averages about 220 meters. These rocks generally appear greenish- 

gray in outcrop and upon closer inspection characteristically have no 

fabric except in those places where a slight and inconsistent foliation 

is developed. Fractures within the zone appear randomly oriented and 

are commonly filled with chlorite. The contact of these rocks with 

those structurally above the fault appears sharp (Miller, 1971) whereas 

cataclasis decreases gradationally over short distances (about 30 

meters) into relatively undeformed rocks lying beneath the sole of the 

fault. Miller suggests that the granulated material within the fault 

zone was derived from those rocks beneath the fault. Miller (1971, p. 

D77-D78) identifies three basic subdivisions within the zone consisting 

of (moving progressively structurally higher into the zone);

"1. Plutonic or coarsely crystalline metamorphic rock which con­
tains numerous closely spaced cross-cutting chlorite-filled 
fractures. Most mafic minerals are altered to chlorite and 
opaque minerals. Plagioclase composition is similar to that 
in the unfractured rock, but crystals are broken and twin 
lamellae are bent. Quartz crystals are broken and strained, 
and some contain sutured boundaries. This rock grades west­
ward into relatively unfractured plutonic and highly re­
crystallized metamorphic rock, and eastward into the second 
subdivision.

2. Intensely shattered rock showing almost no trace of the ori­
ginal texture. No mafic minerals or forms of mafic minerals 
remain. Many original plagioclase crystals remain, but are 
broken and rounded. Most are sericitized, and the composi­
tion is more sodic than in the unbroken rock. Quartz is 
highly broken; most is flattened and contains sutured bound­
aries. The rock contains thin seams and pods of fine-grained 
quartz and chlorite.

3. Mylonite. Dark-green aphanitic rock with scattered fine­
grained, internally broken crystals of calcite and plagio­
clase. Thin sections show a very fine grained mixture of
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quartz, albite, chlorite, calcite and iron oxides. This 
assemblage appears to have formed from rocks which range in 
composition from muscovite-biotite quartz monzonite to horn- 
blende-biotite granodiorite. The mylonite and the rock of 
subdivision 2, above, are generally randomly mixed in the 
central and upper parts of the fault zone, although the 
mylonitic rock is more abundant in the upper part

The purpose of this study was to determine the tectonic transport 

direction of the Newport allochthon along the Newport fault. The ap­

proach I used included the examination of mesoscopic and microscopic 

fabrics of rocks deformed by movement along the fault. Three areas, 

all within the Newport 30-minute quadrangle, were chosen for investiga­

tion and are shown in Figure 9. Rocks lying well into cataclastic 

zones typically do not exhibit strong preferred orientations due to 

mechanical distortions of the grains (White, 1976; Spry, 1969). Most 

samples were collected from within Miller's first zone or just struc­

turally below it where minerals deformed or growing under conditions of 

stress would presumably remain unaffected by mechanical disorientation 

thus preserving any preferred orientations of quartz that might have 

developed.

Measurements of rock fabric elements such as foliation and linea­

tion were recorded in the field and oriented samples collected for later 

universal-stage analysis. The orientation of the optic axes (i.e. c- 

axes) of quartz grains were measured on a Zeiss 4-axis universal stage. 

Their orientations relative to arbitrary co-ordinates (plane of thin 

section) were plotted using the lower hemisphere of a Schmidt equal- 

area net. For diagrams showing statistical anisotropism within the
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same area, the data was rotated to its original orientation as col­

lected in the field using geographic north-south-east-west as the co­

ordinates of the projection. The data was then contoured per 1% area 

using the Schmidt or grid method as described by Turner and Weis (p. 

61-62, 1963). The symmetry of the quartz fabric and rock fabric were 

determined and compared as it is of primary significance in kinematic 

analysis (Paterson and Weiss, 1961). Only those diagrams demonstrat­

ing strong preferred orientation were used in the kinematic analysis as 

it is only in these diagrams where decisions concerning symmetry may be 

made (Turner and Weis, 1963, p. 64).

Sportsman Pond

Sample SP-2 was collected from along the road northwest of Sports­

man Pond within 250 meters of the Newport fault zone (Figure 9). This 

rock (as well as SP-3) was mapped as Phillips Lake Granodiorite and as­

sociated rocks by Miller (1974b). In hand sample, the mica imparts a 

slight foliation to this rock. It consists of plagioclase, potassium 

feldspar, quartz, biotite and small amounts of muscovite. Apatite and 

zircon exist as accessory minerals. Feldspars are generally altered to 

sericite whereas biotite is almost entirely altered to chlorite. Some 

of the twin lamellae found in plagioclase are curved and bent. Quartz 

generally has strongly undulose extinction and well-developed deforma­

tion bands. Some quartz grains have Boehm lamellae. Smaller quartz 

grains apparently are recrystallization products with some grains in­

cluded within feldspar.

Sample SP-3 was collected about 100 meters from the fault zone 

contact (Figure 9) and appears massive in hand sample. Plagioclase
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(^^34-36^ is the most abundant mineral in the rock which also contains 

potassium feldspar, quartz, biotite, small amounts of muscovite and 

accessory apatite and zircon. Biotite is extensively altered to chlor­

ite and feldspars alter to sericite. Twinning in plagioclase appears 

slightly bent and in some cases small fractures offset the twins.

Quartz has strong undulose extinction and deformation bands.

The orientations of quartz c-axes in these rocks are random (Fig­

ure 10). In this area, undeformed rocks below the Newport fault are in 

sharp contact with thoroughly crushed rocks of the fault zone. Tlie 

presence of Boehm lamellae in quartz may suggest that some intracry­

stalline slip may have occurred in sample SP-2 but not enough to pro­

duce a preferred orientation of the quartz. It apears that shear 

movement in the area was confined entirely to the fault zone itself.

Conger Lake

Sample CL-2 was collected from along the northwest side of Conger 

Lake (Figure 9), Miller (1974b) assigned these rocks to the Phillips 

Lake Granodiorite and associated rocks. Plagioclase comprises about 

45% of the rock with anorthite contents ranging from to An2g. Twin

lamellae are slightly bent in many of the grains. All feldspars are 

generally sericitized and show weakly undulose extinction. Potassium 

feldspar in the rock is predominantly microcline and makes up about 10% 

of the rock. Quartz comprises about 30% of the rock and characteris­

tically occurs in large aggregates containing sutured grain boundaries. 

It is generally clear and shows strong undulose extinction with deform­

ation bands well-developed. Boehm lamellae are poorly developed in a
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few grains. Chlorite shows the anomalous "Berlin” blue color and oc­

curs as an alteration product from biotite, Epidote occurs in small 

amounts with accessory apatite and zircon.

Sample CL-4 was collected from along the ridge northwest of Conger 

Lake at about the 1000-meter elevation. The rock is a granodiorite as­

signed to the Phillips Lake Granodiorite by Miller (1974b). In hand 

sample, the rock is fine-grained and appears weakly foliated. Plagio­

clase ^^1^25-32^ is the dominant mineral constituent and occurs with 

potassium feldspar, quartz, biotite and accessory epidote, apatite and 

zircon. Feldspars generally show some alteration to sericite and ex­

hibit mild undulose extinction. Some plagioclase grains have bent twin 

lamellae and a few are offset along small fractures in the grains. 

Quartz occurs as individual clear grains and generally has strong un­

dulose extinction with well-developed deformation bands. Biotite char­

acteristically alters to chlorite and generally is oriented sub­

parallel imparting a slight foliation to the rock. Small fractures 

filled with chlorite extend outward from the mica parallel to this 

trend and cross grain boundaries.

The quartz c-axes orientation for these two specimens are random 

as shown in Figure 11. Textures within the two rocks suggest that they 

have been slightly deformed and the presence of a few Boehm lamellae 

within CL-2 suggest some intracrystalline gliding may have occurred but 

not in sufficient amounts to develop a preferred orientation. Several 

slickenside and mineral lineation measurements taken in the area show 

that plunges are less than 30'’ trending N55E - N65E. These rocks,
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Figure 11. Point diagrams of samples CL-2 and CL-4 
showing random orientation of quartz 
c-axes (larger dot denotes double point)
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however, are not deformed severely enough to make any kinematic infer­

ences about transport along the Newport fault.

Power Lake

Sample PL-1 was collected from near the top of the ridge northeast 

of Power Lake. It is a cataclasite comprised of deformed fine-grained 

granodiorite containing oligoclase, quartz, potassium feldspar, bio­

tite, muscovite, epidote and accessory apatite and zircon. In hand 

sample, the rock contains a sub-parallel, closely-spaced and undulatory 

shear foliation. Undeformed muscovite flakes are clearly seen lying 

flat on foliation surfaces along with a well-developed mineral linea­

tion (Figure 12). Slickensides lie in the foliation and maintain con­

sistent orientation to the northeast. This consistent orientation is 

maintained all along Power Lake ridge and in the area northwest of Power 

Lake (Figure 13). The shear foliation is penetrative at thin section 

and hand sample scale and is penetrative within a zone at least 40 

meters thick on Power Lake ridge. The combination of foliation and 

lineation defines an orthorhombic fabric symmetry. I infer that the 

overall fabric was imprinted on these rocks by movement along the 

Newport fault. The original rock was an unfoliated granodiorite as 

nearby outcrops of this pluton attest.

Thin-section observation shows large porphyroclasts of feldspar 

surrounded by a matrix of quartz, feldspar and mica which swirl and 

\vrrap around the larger porphyroclasts (Figure 14) . Feldspar is gener­

ally sericitized, exhibits mild undulose extinction, contains fractures 

and has bent twin lamellae. Micas lie within the closely-spaced, near­

ly parallel but intersecting foliation surfaces. Chlorite and sericite
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Figure 12. Hand-sample photograph of sheared granodiorite
from Power Lake ridge showing mineral lineations 
and slickensides.

Figure 13. Hand-sample photograph of sheared granite collected 
northwest of Power Lake showing mineral lineations 
and slickensides. Note undeformed muscovite flakes 
lying in the shear foliation.
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Figure 14. a) Thin-section photograph of sheared granodiorite
cut normal to the foliation and lineation.

b) Thin-section photograph of sheared granodiorite 
cut normal to the foliation and parallel to the 
lineation.
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trail out from larger deformed mica grains along planes of the folia­

tion. Quartz occurs in seams and pods stretched parallel with the fol­

iation. Grains are larger towards the middle of the pods with smaller 

recrystallized grains more common near the margins. The grains are 

generally clear, have sutured grain boundaries and generally do not 

have Boehm lamellae. Deformation bands are present in some grains with 

most grains exhibiting varying degrees of undulose extinction.

Muscovite generally is undeformed except in some cases where the 

cleavage traces are mildly bent. Biotite grains normally are smeared- 

out along foliation planes but a few grains remain relatively unde­

formed and presumably grew near the end of the shearing event. Small, 

round, and clear grains of quartz lie at the margins of larger and pre­

sumably original quartz grains suggesting that these grains are recry­

stallization products. This assemblage of minerals suggests that this 

rock was subjected to at least biotite zone of greenschist facies meta­

morphism (llyndraan, 1972) during the last stages of shearing.

The quartz sub-fabric diagram is shown in Figure 15, The quartz 

c-axes form an elongate maximum which may be fit with a girdle normal 

to the lineation. The c-axis maximum lies at low angle to the folia­

tion and at right angles to the lineation. The quartz fabric symmetry 

is at least monoclinic and nearly orthorhorabic. One of the planes of 

symmetry nearly coincides with the foliation and two of the planes con­

tain the lineation. Turner and Weiss (1963, p. 253-254) describe this 

fabric as heterotactic when the foliation does not coincide with a 

plane of symmetry but since they nearly coincide it may be considered 

nearly homotactic.



a)
N 45

b)
rV) _FOUAT.ON^^__^L̂INEATION

Figure 15, a) Point diagram of sample PL-1 showing quartz c-axes 
(300 points) .

b) Contour diagram of sample PL-1 showing quartz c-axes 
(300 points). Contours, 1%, 2%, 4%, 6% per 1% area, 
ra = plane of symmetry (larger dot denotes double point, 
larger dot with + denotes triple point).
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An understanding of the mineral lineation and foliation is impor­

tant in order to make any kinematic interpretation. The mineral lin­

eation consists of elongate feldspar fragments and smeared—out quartz 

grains. The lineation is parallel to slickensiding on the foliation 

surfaces; therefore, the lineation is interpreted as plastically 

stretched grains suggesting extension parallel to the slickensides.

The slickensides probably represent latest movement along the foliation 

under more brittle conditions than those that formed the mineral line- 

ations. Therefore, the foliation is correlated with AB of the strain 

ellipsoid with the lineation direction inferred to be the A direction.

The overall fabric of the rock directly reflects the movements 

that produced the structures. The movement picture deduced from the 

Power Lake samples would be same for a > 40-meter-thick zone of shear­

ing found adjacent to the Newport fault on Power Lake ridge. The 

movement picture within this zone is correlated with the dominant move­

ment along the Newport fault. This correlation is made because:

1) The intensity of shearing increases near the trace of 
the fault.

2) Penetrative shear structures of this type are found only 
near the fault,

3) Shear foliation trends roughly parallel to the trace of 
the fault,

4) Transport direction parallel to the lineation is in 
agreement with transport inferred from regional geolog­
ical considerations.

Deformation of the rocks on Power Lake ridge may be interpreted in 

terms of simple shear. Deformation is penetrative at all scales on the 

ridge and persistent lineations suggest a consistent sense of shear. A



47

model of simple shear is consistent with the rock fabric on the grounds 

of symmetry. Simple shear is monoclinic and the overall fabric of the 

rocks is at least monoclinic and nearly orthorhombic,

Orthorhombic patterns of quartz optic axes are generally inter­

preted as flattening deformation normal to the foliation. The develop­

ment of an orthorhombic pattern, however, does not necessarily demand 

this interpretation (Eisbacher, 1970; Reikels and Baker, 1977). Turner 

and Weiss (1963, p. 468) state that "Lineations (â  lineations of some 

writers) lying in the symmetry plane of a monoclinic fabric could on 

symmetry grounds be identified with directions of greatest differential 

displacement in the corresponding movement picture." Therefore, based 

on the above considerations, I suggest that the lineation corresponds 

to the ^  kinematic axis and that tectonic transport along the Newport 

fault was directed northeast-southwest.

Much has been written about quartz deformation and related fabric 

patterns in the last twenty years, especially in light of numerous ex­

periments on quartz deformation, the resulting preferred orientations 

and active slip systems. At this time, a number of factors affecting 

the orientation of quartz have been identified but extrapolation of 

these results to naturally deformed rocks is still somewhat uncertain 

(Tullis and others, 1973; Wilson, 1975; Eisbacher, 1970). The prefer­

red orientation of quartz in the Power Lake specimens is discussed in 

light of inferred movement directions, experimental work and similar 

quartz patterns reported elsewhere.

A number of glide systems in quartz have been documented within 

the last 20 years (for example see: Moirison-Sraith and others, 1976;
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Ave Lallement and Carter, 1971; Christie and others, 1964; Christie 

and Green, 1964; Carter and others, 1964; Hobbs, 1968; Heard and 

Carter, 1968). Factors governing development of a particular system 

of slip planes include temperature, pressure, strain rate, water, 

quartz content, and stress directions (for example: Ave Lallement and

others, 1971; Blacic, 1975; Tullis and others, 1973; Starkey and 

Cutforth, 1978),

The absence of Boehm lamellae suggest that basal slip is probably 

unimportant (at least in the latter stages of the quartz deformation) 

and slip more likely was in a zone containing _c since the c-axes form 

a maximum nearly parallel with the foliation. It would appear that 

slip would be directed at 90*to c_ within this zone based on inferred 

slip directions in the rock but slip may have been accommodated by a 

combination of movements in variably oriented planes. Therefore, slip 

was probably prismatic although rhombohedral slip may have been impor­

tant also (Shelley, 1971; Hobbs, 1968; Wilson, 1975).

The quartz in the Power Lake specimen occurs in pods containing 

larger original grains and smaller recrystallized grains. Distinction 

between these grain types was not made when measuring the c-axes yet 

the strong incomplete girdle maximum suggests that both grain types 

have similar preferred orientations. To be sure, slip mechanisms, re­

crystallization and recovery processes all contributed to final orien­

tation of the quartz. Little is knovm about development of preferred 

orientations through recrystallization. Lister and Price (1978) report 

similar quartz fabrics (their Figure 1 3 , o 4 a n d ^  grains). Interest­

ingly enough, orientation of original and recrystallized grains does
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not differ significantly suggesting that dislocation glide dominates 

the orientation process as Lister and Price suggest.

Quartz girdles forming perpendicular to the lineation and inferred 

transport direction have been described from numerous locations around 

the world (see Eisbacher, 1970). A similar pattern to the Power Lake 

specimen was obtained from the Risfjallet raylonite (Wilson, 1975). 

Wilson (p. 973) states that ” . . . strong maximum close to the folia­

tion are characteristic of upper greenschist or higher grade rocks.”

He suggests that differences in some c-axis patterns may reflect "dif­

ferences in the dislocation glide behavior of quartz under different 

metamorphic conditions.” The pattern in the Risfjallet mylonite was 

obtained from unrecrystallized quartz and hence similarity to the Power 

Lake specimen supports the hypothesis that dislocation glide is the 

most important orienting mechanism in quartz-bearing rocks.

Rhodes (1980) describes strong quartz c-axis maxima lying in the 

foliation normal to the lineation from quartzites lying on the east 

flank of the Kettle dome. He infers that movement was parallel to the

lineation in the rocks and suggests that this type of fabric forms dur­

ing extreme deformation. Similar quartz orientations reported else­

where in the Shuswap metamorphic complex (Reesor, 1965) suggest that

movements at the margins of these gneiss domes are similar.

Quartz orientation patterns that Eisbacher (1970) reports for ray- 

lonitic rocks found along the Cobequid fault zone in Mova Scotia are 

strikingly similar to the results obtained in this study. He inter­

prets the mineral lineation as flow lines and hence tectonic transport
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was in the same direction. He reports quartz c-axis girdles lying nor­

mal to the lineation and subsequently proposes a movement picture 

similar to that proposed in this study.
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CHAPTER IV 

DISCUSSION

Newport Fault

Small-scale structures near Power Lake suggest the Newport alloch- 

thon moved to the northeast or to the southwest. Based on several 

lines of evidence from the regional geology, I infer that tectonic 

transport along the Newport fault was to the northeast. They are:

1) A similar sequence of rocks lies to the southwest,

2) Dominant movement in the region is from west to east.

3) Window of infrastructure southwest of plate coincides with the 

southwestern shape of the plate.

The thick package of Belt rocks found in the Chewelah area (see 

Figure 4) is repeated in the upper plate of the Newport allochthon.

Both packages of rocks contain a sequence of Prichard Formation through 

Paleozoic age rocks. The regional trend is the same in both areas and 

both dip steeply to the west. Folding, even on a large scale, cannot 

account for this repeated section and hence juxtaposition probably 

occurred along the Newport fault. Therefore, it appears that rocks of 

the Newport allochthon can be matched with rocks they became detached 

from in the Chewelah area.

An alternative to this model consists of transport of the Newport 

allochthon eastward from somewhere west of Chewelah. A major problem, 

however, with this model is one of space. If Belt rocks were to be 

placed west of Chewelah, Deer Trail rocks would have to be placed back 

at least that far plus an additional distance to account for net
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shortening in these rocks. This restoration would place these rocks an 

unreasonable distance away from any inferred continental margin at the 

time of deposition. I therefore prefer the simpler model involving 

much less tectonic transport.

The thickness of the Newport allochthon is not known but some 

rough estimates may be made from the structural attitude of the fault 

at the surface. Assuming the Newport fault dips consistently to the 

east at 30* (which is unlikely) it would presumably lie about 11 km 

below the center of the allochthon. It is more likely that the fault 

flattens at depth since it crops out at the eastern end of the alloch­

thon. Therefore a rough estimate of the maximum thickness of the 

allochthon may be around 6 km. The correlation of rocks and structures 

above and below the Newport fault is made for the trailing margin of 

the allochthon which probably was considerably thinner than this maxi­

mum estimate. Therefore, this correlation is made assuming that the 

plate is thin enough in this area such that structures at the surface 

in the allochthon probably do not vary considerably when they intersect 

the fault at depth.

Mineral lineations, slickensides and shear foliation are most in­

tensely developed near Power Lake. In other places around the Newport 

fault, the contact is rather sharp between undeformed rocks structur­

ally below the sole of the fault and thoroughly crushed and broken 

rocks of the fault zone. The Newport fault surface is probably spoon­

shaped as suggested by the gently-plunging synclinal outcrop of the 

fault trace. According to my model the thickest portion of the Newport 

allochthon approximately coincides with the center of the plate.
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Therefore, as the allochthon moved to the northeast the thickest por­

tion of the plate would have moved across rocks in the Power Lake area. 

These rocks were deep enough and plastic enough to deform easily where­

as thinner portions of the plate would have moved across areas north 

and east of Power Lake resulting in more shallow-, brittle-style defor­

mation largely confined to the fault zone itself.

If the Newport allochthon is a large klippe, as I believe it is, 

then the heretofore unattached northern ends of the fault trace should 

connect. I propose two alternatives concerning the "missing" segment 

of the Newport fault. First, the trace of the Newport fault may be 

unrecognized as of yet. The area between the two unattached ends has 

been mapped in part (Park and Cannon, 1943; Dings and Whitebread,

1965). The Kootenay arc trends northeasterly in this area so movement 

along the Newport fault to the northeast would presumably result in 

strike-slip movement along a fault parallel to the trends of the arc. 

Such a fault would be difficult to locate in this area since offset of 

major structures and bedding contacts would probably be small or 

absent. Extensive forest cover and glacial deposits in this area com­

plicate field observation.

A second alternative would be that the remaining section has been 

truncated by a northeast-trending normal fault and removed by erosion. 

High-angle faults in the area, however, are downthrown on the northwest 

(see Park and Cannon, 1943) which presumably is the reverse of that 

which would be expected if the above were true. These two alternatives 

are speculative, of course, but further study in the area is needed to 

test them.
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Interpretations concerning direction and amount of transport along 

the Newport fault lead to speculation about the mechanism of transport. 

There are essentially two schools of thought about transport mechanisms 

in the Cordillera: push from the west and gravitational sliding. Push

from the west may be broken down into sub-categories based on the ori­

gin of the eastward compression but only the general concept will be 

considered and discussed here.

Northeasterly transport of the Newport allochthon represents 

anomalous movement in northeastern Washington where most movement ap­

parently was to the east or southeast. Structures in the Kootenay arc 

in this area trend northeasterly and suggest transport to the south­

east. Therefore, the forces that produced movement within the Kootenay 

arc would not have directly produced northeastward transport of the 

Newport allochthon. Lineations within the Kettle dome suggest that 

large movements were to the east, Cataclastic lineation within the 

Newman Lake gneiss and surrounding rocks suggests that transport was 

directed northeast-southwest. It has been shown above, however, that 

this deformation preceded transport along the Newport fault, hence 

those forces are probably unrelated to transport along the Newport 

fault. The above considerations are certainly not conclusive yet are 

suggestive that eastward compression probably did not directly produce 

transport along the Newport fault.

I propose that transport along the Newport fault was predominantly 

controlled by gravitational sliding downslope from the Chewelah area.

A model of gravity glide accounts for the locally northeastward
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transport direction of the Newport allochthon and for textures in the 

Silver Point Quartz Monzonite.

Several mechanisms of gravitational sliding have been proposed but 

the mechanism proposed by Kehle (1970) is probably most applicable 

here, Kehle (p. 1642) states that "...deformation occurs in a manner 

best described as viscous deformation and that almost all such deforma­

tion concentrates in the lowest viscosity strata." The Newport fault 

cuts steeply dipping Belt rocks at a high angle and hence is not a bed­

ding fault which often forms during thrusting in the Cordillera. In 

the absence of low-viscosity lithologie layers, I believe that the 

location of the Newport fault is controlled by a structural zone with 

lower shear strength. It appears in this case that the Newport alloch­

thon became decoupled from lower rocks near the intrusive contact of 

plutons. Two plutons, the Phillips Lake Granodiorite and the Silver 

Point Quartz Monzonite, were instrumental in the development of the 

Newport fault.

As noted above, the Newport fault apparently lies near the top of 

the Phillips Lake Granodiorite, The intrusive contact is sub-parallel 

to the fault in the southern reaches of the pluton and approximately 

coincides with the position of the fault. The locally planar fabric of 

the pluton near its margin as well as the subhorizontal attitude of the 

intrusive contact presumably produced a zone of reduced shear strength 

parallel to tlic regional stress and hence deformation preferentially 

concentrated here as Kehle’s principle dictates. Even if the rock was 

already crystallized, this zone had conditions favorable for sliding. 

Evidence for plastic-style shearing and at least upper greenschist
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facies metamorphism around Power Lake suggests a deep environment which 

favors development of a zone of shear (Kehle, 1970). Metamorphic reac­

tions producing water may have aided shearing along this zone.

The Newport fault surface also appears to coincide closely with 

the intrusive contact of the Silver Point Quartz Monzonite west of the 

town of Newport. Brittle-style deformation near the fault zone within 

the Silver Point pluton suggests the rock was completely solidified 

when the last stages of movement occurred, Tri-modal grain size within 

the pluton may suggest that the rock was only partially crystallized 

when sliding was initiated. Intrusion of the Silver Point magma would 

have greatly reduced regional shear strength and in turn resulted in 

gravitational transport downslope of the overlying rocks. The magma 

would crystallize progressively as sliding progressed due to a drop in 

pressure. Movement would continue along this zone of shear because it 

was weak but the Silver Point probably was solid for the latter part of 

the time that sliding occurred.

The model proposed here resembles a model proposed by Gastil 

(1979) where decoupling takes place between supracrustal rocks and 

diapiric plutons of the infrastructure. The cover rocks slide away as 

the area above the plutons rise isostatically. Similar mechanisms 

which reduce regional detachment shear strength have been proposed by 

Hyndman (1980) and Scholten (1973).

Transport along the Newport fault most likely occurred during 

Eocene time. Age dates on the Silver Point Quartz Monzonite are 

Eocene. The Newport fault cuts the Silver Point pluton and therefore 

is younger. These dates probably represent emplacement because the
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Silver Point was not affected by the presumably Late Cretaceous defor- 

mational event which affected the Newman Lake gneiss and surrounding 

rocks. The relationships within the Newport no. 4 quadrangle which are 

discussed above, indicate that intrusion of the Silver Point was 

post-Cretaceous.

The Pend Oreille Andésite is found only in the southwestern por­

tion of the Newport allochthon. Flows of this unit contain phenocrysts 

of hornblende and biotite which have K-Ar age dates of 31.0 m.y. and 

50.4 m.y. respectively (Pearson and Obradovich, 1977). I believe these 

volcanics were derived from the Silver Point Quartz Monzonite based on 

three considerations. First, its present location on the trailing mar­

gin of the Newport allochthon is that which would be expected if any 

volatile-rich magma was vented as a result of initial unloading of the 

Newport allochthon off the top of the Silver Point pluton.

Secondly, mineralogy of the Pend Oreille Andésite is similar to 

that of the Silver Point. Biotite and hornblende phenocrysts in the 

Pend Oreille Andésite probably represent minerals which crystallized 

early in the magma chamber before extrusion. The Silver Point pluton 

also contains large hornblende and biotite crystals which apparently 

crystallized early. Thirdly, K-Ar age date determinations of horn­

blende and biotite from the Silver Point are roughly equivalent to 

those of the Fend Oreille Andésite,

The Newport fault may cut conglomerates of the Tiger Formation 

since they are confined exclusively to the upper plate of the Newport 

allochthon but field relations do not provide any conclusive proof that 

this is the case. The Tiger Formation lies conformably on the Pend
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Oreille Andésite and therefore probably was syntectonic to transport 

along the Newport fault. Syntectonic conglomerates are common through­

out the Cordilleran thrust belt.

Relationships between Low-Angle Faults

Little is known concerning transport along low-angle faults in 

northeastern Washington and any relationship between them at depth can 

only be inferred. In the following discussion, possible relationships 

between these faults are considered in light of the regional geology 

discussed in Chapter IX, Construction of generalized cross-sections 

across northeastern Washington aid in the formulation of several gen­

eral models explaining the development of these low-angle faults. Some 

aspects of the cross-sections remain the same from model to model which 

reflect my personal bias, I should stress that these models are some­

what speculative and do not represent all possible models but may pro­

vide a starting point from which to build.

It is argued above that mylonitic and cataclastic rocks of 

the Kettle dome and Okanogan dome represent gravity-induced detach­

ment zones probably of Cretaceous age. Perhaps a thrust surface of 

regional extent lies below these domes in similar fashion to the 

southern Appalachians. Here high-grade and crystalline Precambrian 

and Paleozoic rocks have been thrust at least 260 km westward over 

flat—lying, autochthonous, lower Paleozoic sedimentary rocks (Cook and 

others, 1979), No direct evidence is available for such a surface in 

northeastern Washington but such a possibility should not be ignored.
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When the Newport allochthon is placed back in its original loca­

tion in the Chewelah area, the western edge of the upper plate coin­

cides with the Jumpoff Joe fault. This leads to speculation whether 

the Newport fault is an extension of the Jumpoff Joe fault or whether 

this relationship is fortuitous. An alternative explanation would be 

that movement along the Jumpoff Joe fault gave the impetus that initi­

ated gravitational sliding out ahead of the eastward-moving, detached 

suprastructure. If this is true then the Jumpoff Joe fault may have 

been reactivated in Tertiary time as a result of further movement off 

the Kettle dome along the Kettle River fault.

Tlie shear zone in the Newman Lake gneiss and surrounding rocks may 

represent the same regional detachment surface found at the margin of 

the Kettle dome (Figure 16). Alternatively it may be a deeper detach­

ment surface which possibly underlies the Kettle and Okanogan domes 

(Figure 17). The Newman Lake shear zone most likely is the west-dip­

ping extension of the fault found in the Purcell Trench. Transport 

directions in the Kettle dome shear zone and within the Newman Lake 

shear zone are different; thus movements along the faults most likely 

occurred independently of the other. White (1978) proposes that gravi— 

tationally-controlled movement best explains differences in transport 

directions along thrust faults in northwestern Montana. Therefore, 

gravity probably controlled movement along these surfaces leading to 

removal of supracrustal rocks off the Kaniksu-Spokane dome.



WASH I IDAHO

REPUBLIC
GRABEN KANIKSU

DOME
KETTLE
DOME COLUMBIA  

I R IVER

NEWPORT
A LLOCHTHONO KANOGAN

DOME
JUMPOFF JOE 

THRUST
EASTWEST

j
KM

Figure 16. Cross-section model showing low-angle faulting without regional 
detachment at depth beneath Kettle and Okanogan domes.

WASH I IDAHO

REPUBLIC
COLUMBIA

RIVER
GRABEN NEWPORT I 

ALLOCHTHON |
KANIKSU

DOME
EASTJUMPOFFJOE  

THRUST
KETTLE
DOME

OKANOGAN
DOMEWEST

I
KM

Figure 17. Generalized cross-section northeastern Washington and northern Idaho 
modeling relationships of low-angle faults including the presence of 

i a hypothetical regional detachment at depth. O'o



61

CHAPTER V 

SUMMARY AND CONCLUSIONS

Mineral lineations and slickensides in the Power Lake area (see 

Figure 9) demonstrate that transport along the low-angle Newport fault 

was to the northeast. Transport took place in the Tertiary Period 

(Eocene?) under at least greenschist facies metamorphism. Quartz 

fabrics of rocks obtained near the fault are at least monoclinic and 

nearly orthorhombic with elongate maxima lying at low angles to the 

foliation and normal to the extension direction.

It appears that the Newport allochthon originated in the Chewelah 

area southwest of the study area based on correlation of rocks and 

structures above and below the fault. The Newport fault's position 

near the top of two plutons in the area suggests a cruse/effect rela­

tionship where at least one of these plutons was semi-consolidated 

thereby reducing regional shear strength and promoting gravitational 

transport to the northeast. Shearing associated with transport along 

the Newport fault appears most intense in the Power Lake area because 

the greatest thickness of the allochthon moved across that area. 

Transport of the Newport allochthon most likely occurred in Eocene time 

because (1) the fault may cut an Eocene conglomerate (2) the fault cuts 

a pluton on which Eocene K-Ar age dates have been obtained (3) Eocene 

volc-iiics are confined to tîîe upper plate (4) transport along the 

Newport fault postdates a presumably Cretaceous deformational and in­

trusive event.
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Low-angle detachment faulting in northeastern Washington had a 

profound effect on the tectonic development of the area. High-grade 

regional metamorphism culminated in the Cretaceous Period along with 

gravitational detachment of the suprastructure from the infrastructure. 

The leading edge of rocks which moved eastward off the top of the 

Kettle dome area may be delineated by the Jumpoff Joe thrust near 

Chewelah. Transport along the Newport fault was to the northeast and 

presumably later than this episode of detachment although renewed move­

ment along the Kettle River fault and the Jumpoff Joe thrust in the 

Eocene may have initiated detachment of the Newport allochthon in the 

Chewelah area.

It can only be speculated at this time whether the Nevmian Lake 

shear zone is related to detachment in the Kettle dome area or repre­

sents a deeper thrust surface lying beneath the Kettle and Okanogan 

domes. This west-dipping shear zone appears to flatten between the 

town of Priest River and Sandpoint where rocks contain structures sug­

gestive of eastward shearing parallel to the foliation. The Purcell 

Trench may represent the east-dipping analog to this surface along 

which rocks east of the trench moved off the top of the Kaniksu-Spokane 

dome. Of course, these regional relationships between the low-angle 

faults are speculative and hopefully further work in the region will 

clarify them.
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APPENDIX
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Proposed Genetic Models for the Kettle and Okanogan Domes

Donnelly (1978) recognizes the structural and petrologic similar­

ity of the Kettle dome to domes of the Shuswap terrane. Based on those 

similarities he considers the Kettle dome to have formed in the same 

manner as that proposed for the Shuswap domes which are discussed below 

(see Reesor, 1970).

Preto (1970) working in the Grand Forks map-area just across the 

International Boundary suggests a mechanism or sequence of deformation 

similar to that suggested by Reesor, Metamorphic foliation and em­

placement of granitic rocks developed during a period when regional 

stresses caused movement parallel to the stratification in the rocks. 

Deformation proceeded with development of north-verging, east-west- 

trending folds followed by upward movement of the migmatitic core 

creating the northward trend of doming in the rocks. Subsequent activ­

ity included retrograde metamorphism and potash metamorphism followed 

later by intrusion of granitic rocks on which Eocene and Oligocene 

radiometric dates have been obtained.

Rhodes (1980, p. 88) suggests the following sequence of tectonic 

events which formed the Kettle dome:

(1) Middle to Late Mesozoic(?) amphibolite facies 
metamorphism coincident with distributed thrusting 
which in the latter stages involved mylonitization 
at shallow structural levels.

(2) Middle Tertiary(?) regional doming.

(3) Middle Tertiary(?) low-angle faulting along the 
margin of the dome coeval with local brecciation 
and retrograde metamorphism.

(4) Post-Eocene eastward gravity sliding and associated 
high-angle faulting of the cover rocks.
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Cheney (1980, p. 464) proposes that the Kettle dome is not a 

gneiss dome but rather "the gently upwarped basement of PrecambrianC?) 

metamorphic rocks". The term gneiss dome may be applied to these rocks 

as long as it carries no genetic significance other than defining the 

structural attitude of the gneisses.

Cheney considers that northeastern Washington is dominated by 

large-scale, north-northeasterly-trending Tertiary folds and that the 

Kettle dome is one of the anticlines comprising this terrane. Accord­

ing to his model, doming occurred during a period of post-Eocene fold­

ing. Widespread cataclasis and thrusting was largely synchronous with 

this episode of deformation. He suggests that the cataclastic zones 

may represent zones of decoupling between batholithic and metamorphic 

terranes, and the overlying sedimentary pile and considers the possi­

bility that the low-angle faults and cataclastic zones are part of a 

regional folded Tertiary thrust.

Waters and Krauskopf (1941) attributed the origin of the mylonites 

and gneisses of the dome to the rise of a partially crystallized magma. 

The regionally metamorphosed wall rocks became crushed and broken 

whereas the border zone became raylonitized as the magma continued to 

rise. They postulate that the wall rocks show no effects of contact 

metamorphism one to the insulating properties of the more rigid border 

zone of the batholith. Therefore they suggest that the mylonites and 

gneisses are proLoclastic and did not form during regional metamor- 

ph ism.

Snook (1905) later, however, contended that, the gneisses were, in 

fact, formed during regional metamorphism oi a sedimentary and volcanic
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terrane. The upper levels of the gneiss were later sheared and myloni- 

tized along subhorizontal planes under low temperatures and in a dry 

environment. He concludes that the mylonite zone now exposed at the 

western edge of the dome resulted from a distributed flat thrust near 

the top of the gneiss body. The entire mass was later folded and 

arched with subsequent high-angle faulting along the western and south­

ern borders cf the area.

Another model of formation of the Okanogan dome has been presented 

recently by Fox and others (1976). They agree with both Snook (1965) 

and Waters and Krauskopf (1941) that the Tonasket Gneiss fringing the 

dome at the western margin is of metasedimentary and metavolcanic par­

entage. As Waters and Krauskopf suggested, they believe that the gran­

itoid gneiss which comprises a large part of the dome is probably of

igneous origin and that the internal penetrative deformation developed

with emplacement of the mass. They therefore conclude that the gneiss

dome formed by regional metamorphism of a sedimentary and volcanic ter­

rane at great depth which "culminated in the mobilization and diapiric 

emplacement of the dome" (Fox and others, 1976, p. 1220). They also 

suggest that the gradual transition from granitoid gneiss eastward into 

almost structureless granodiorite and associated satellitic dikes indi­

cates that this part of the dome was molten.

Proposed Genetic Models for other Cordilleran Gneiss Domes

Other gneiss domes within the Cordilleran region include those 

lying within the Shuswap metamorphic complex in British Columbia 

(Reesor, 1965, 1970; Hyndman, 1968; McMillan, 1970; Reesor and Moore,
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1971). Structures within these domes are similar to those in the 

Kettle and Okanogan domes. Rocks within the domes characteristically 

consist of a core-zone of migmatitic and granitoid rocks. Supracrustal 

rocks comprised of low-grade metasediments are separated from the rocks 

of the domal infrastructure by a zone of shearing and cataclasis on the 

east yet the contact is gradational on the western margins of the dome. 

This asymmetry is also marked by the eastward increase in the intensity 

of streaking lineation and also in the amount of flattening and elonga­

tion of quartz and feldspar aggregates.

Reesor (1970) conceives dome formation in the Shuswap beginning 

with a north-northwesterly trending zone of high heat rise leading to 

migmatization and high-grade metamorphism accompanied by large-scale 

folding. These northward-verging, east-west folds permitted rise of 

migmatite and granite gneiss beneath the folds resulting in localized 

diapiric emplacement within the folded mantling rocks. This rise was 

synchronous with formation of a northwest-trending arch along the east­

ern portion of the complex. In general, then, the association of a 

migmatitic and gneissic core zone within a contrasting mantling zone 

consisting of metasedimentary gneisses resulted from contrasting rock 

sequences reacting differently to metamorphism and deformation. Re­

cently, some consider rocks of the core zone to be part of a remobil­

ized Precambrian basement (Wanless and Reesor, 1975; Duncan, 1978).

The Rincon Mountains in Arizona comprise another gneiss-dome com­

plex lying within the Cordillera (Davis, 1975). Granitic gneiss and 

granite of Precambrian age form the core of the dome. At the top of 

these rocks lies the Catalina fault which parallels the attitude of the
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foliation in the gneiss. Structural analysis of fold arrays around 

the complex produce slip-line directions radially centered on the 

Rincon Mountains. Davis concludes that diapiric rise of the gneiss and 

granite domed the cover rocks and initiated gravitationally controlled 

sliding of the Paleozoic and Mesozoic age rocks of the suprastructure 

along the surface of the Catalina fault,

Davis and Coney (1979) propose that metamorphic core complexes in 

the Cordillera formed during a time of regional extension and thermal 

activity. Their model is compared to that of formation of megaboudin- 

age where crystalline infrastructure neck, arch and fault developing 

zones of penetrative foliation, lineation and also, in places, mylon- 

ite. The movement of the basement rocks is not translated across the 

unconformity into the supracrustal rocks but rather the cover rocks 

become detached and gravitationally move down dip along the decolleioent 

zone resulting in a deformational style of folding of the sediments 

independent from that in the infrastructure. This results in tectonic 

denudation of the dome and a cessation of metamorphic activity within 

the complex.

The Bitterroot dome in western Montana is a well-developed example 

of a plutonic“Core gneiss—dome complex (Hyndman and others, 1975; 

llyndman, 1980). Rocks of the infrastructure include granites of the 

Bitterroot lobe of the Idaho batholith and associated regionally meta­

morphosed paragneisses, The transition from these rocks into low-grade 

rocks of the suprastructure is gradational on the northern edge of the 

dome whereas they are separated on the east by a 100 km long zone of 

cataclasis and mylonite. To the east of this zone lies the Sapphire
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tectonic block 100 km long and 70 km wide, which coincides with the 

dimensions of the dome. It consists largely of low-grade Belt metased­

iments and includes Paleozoic and Mesozoic age rocks near its eastern 

margin. Rocks of the infrastructure have a penetrative cataclastic 

foliation containing a penetrative, unidirectional mineral streaking 

and slickenside lineation which is most strongly developed on the east­

ern margin of the dome and gradually dies out westward across the dome. 

The dome formed in isostatic response to gravitational detachment of 

the Sapphire tectonic block 75 or 80 million years ago. The consist­

ent trend of lineations indicates denudation of the dome in a unidirec­

tional and not radial manner. Hyndman suggests that the asymmetry in 

the intensity of lineation and foliation development formed because the 

greatest thickness of the block passed only over the eastern portion of 

the present-day dome. This model is in contrast to che megaboudinage 

theory in that denudation precedes and causes rise of the dome.

Republic Craben

The Republic graben is the dominant structural feature lying 

between the Kettle and Okanogan domes. The term graben is used here 

although the nature of this structural depression is in debate (Cheney, 

1980) .

Several workers have mapped and described the graben in some 

detail (Parker and Calkins, 1964; Muessig, 1967; Staatz, 1964). The 

graben extends from the International Boundary southward to the 

Columbia River where it disappears under the Columbia Plateau basalts. 

It is bounded on the southeast by the Sherman fault which trends N12E
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and extends across the border into Canada. Two faults define the west­

ern border of the graben: the Bacon Creek fault on the north and the

Scatter Creek fault zone to the south. The graben ranges from 11 to 

17 km in width. The amount of displacement on the Sherman fault has 

been estimated to be on the order of thousands of meters of dip-slip 

movement (Muessig, 1967), Muessig estimates at least 6 km of normal 

movement along the Bacon Creek fault. He considers offset across the 

Scatter Creek fault zone farther south to be of the same order.

Rocks within the Republic graben range in age from probable late 

Paleozoic to Recent, Schists, phyllites and marbles, probably of 

Permian age, comprise the oldest exposed rocks. Greenstone underlies 

these metamorphosed sedimentary rocks in the northern part of the 

graben. The O'Brien Creek Formation (53 m.y, - Pearson and Obradovich, 

1977) forms the basal Tertiary unit lying with angular unconformity on 

older rocks and consists of mainly volcaniclastic units. The Sanpoil 

volcanics overlie the O'Brien Creek Formation and consist of rhyodaci- 

tic lavas and breccias. These rocks and their correlatives throughout 

northeastern Washington have K-Ar dates of approximately 41 million 

years (Pearson and Obradovich, 1977), The Klondike Mountain Formation 

unconfornjably overlies the Sanpoil and consists of a basal tuffaceous 

deposit overlain by flows, breccias and domes of intermediate composi­

tion, Pearson and Obradovich infer the basal Klondike to be about 46 

million years old.

The graben contains numerous faults which tend to be straight and 

dip steeply (Parker and Calkins, 1964; Staatz, 1964; Muessig, 1967). 

They trend roughly parallel to faults comprising the border of the
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graben although there are some faults which trend normal to the trend 

of the graben, A thrust fault of large displacement, the Lambert Creek 

thrust, is located in the northeastern part of the graben. Thrusting 

occurred before latest movement on the graben faults and hence before 

deposition of the middle member of the Klondike Mountain Formation 

(Muessig, 1967) .

The outcrop patterns of the formations in the southern half of the 

graben delineates a large-scale fold named the Sanpoil syncline by 

Muessig. The fold extends from just north of Republic southward 

through the Bald Knob quadrangle mapped by Staatz (1964). The west 

limb of the fold generally dips gently east whereas the east limb tends 

to dip more steeply and in some places is overturned to the west.

Rocks belonging to the middle member of the Klondike appear to have 

been folded with formation of the syncline.

Subsidence of the Republic graben occurred over a considerable 

period of time during early and middle Tertiary time. Staatz (1964) 

suggests that graben formation began when small rifts formed in a 

structurally weak zone. Rocks of the O'Brien Creek Formation were 

deposited as an irregular blanket across the region shortly thereafter. 

Muessig (]967) suggests that Tertiary deposits were laid down in local 

basins and valleys. It appca-s that the rocks were progressively 

deformed while the graben subsided as suggested by several angular un­

conformities within the graben. Muessig believes that subsidence and 

deposition were interrupted periodically by compression not confined to 

the graben and thus considers that folds such as the Sanpoil syncline 

were not generated by graben subsidence. Staatz suggests that sinking
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of the graben commenced soon after extrusion of the Sanpoil volcanics 

and continued as the volcanics were deposited. The faults bounding the 

graben may have acted as conduits for the ascending magma. The sinking 

of the block may have been aided by the weight of the extruding volcan­

ics and the block possibly sank into the void left by the escaping 

magma. Latest movement along faults bounding the Republic graben 

appears to have taken place during or shortly after deposition of the 

Klondike Mountain Formation in Miocene time (Parker and Calkins, 1964; 

Muessig, 1967; Staatz, 1964).

Cheney (1980) proposes a model quite contrary to those suggested 

above. He points out that the Tertiary formations in the Republic 

graben are also found across northeastern Washington displaying the 

same unconforroable relationships and hence were part of a regional 

event and not deposited in local basins. He also suggests that the 

Sanpoil syncline may be bounded on at least the west side by low-angle 

faults and that these Eocene rocks may be a synclinal allochthon rather 

than a graben.

Kootenay Arc

The Kootenay arc is a crescent-shaped structural belt consisting 

of folded and faulted rocks ranging in age from Proterozoic to middle 

Jurassic. It extends from north of Revelstoke in southeastern British 

Columbia southward along Kootenay Lake and across the International 

Boundary into northeastern Washington. The structural trend swings to 

the southwest as the Kootenay arc crosses into the United States, here 

it begins to spread out before it apparently disappears beneath the
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bas&lt flows of tli6 Colutnbi.3. plat63u (Figure 1) • It is bounded on tbe 

west by high-grade metamorphic rocks of the Shuswap complex in Canada 

and their southern equivalents in Washington State. The Belt-Purcell 

anticlinorium lies to the east of this belt consisting of older, more 

openly-folded and faulted rocks.

A zone of cataclasis and shearing separates Shuswap equivalent 

rocks from those belonging to the Kootenay arc. Metamorphic grade 

changes abruptly across this zone, accompanied by a change in struc­

tural trend. Metamorphic isograds are truncated at this zone suggest­

ing that this feature formed relatively late in the structural develop­

ment of this area. Ross (1970) suggests that the Kootenay arc becomes 

an integral part of the Shuswap complex near Revelstoke, B.C. The 

lowest allochthonous nappe in this area is cored by granite gneiss 

which he proposes may be correlative to units farther west in the 

Thor-Odin and Valhalla gneiss domes.

The oldest rocks lying within the Kootenay arc region in north­

eastern Washington belong to the Precambrian Deer Trail Group and the 

Belt Supergroup. Precambrian rocks in and around the Metaline mining 

district were called the Priest River Group by Park and Cannon (1943) 

and appear to be correlative with the Deer Trail Group (Becraft and 

Weis, 1963; Yates, 1970; Miller and Clark, 1975). Miller and Clark 

tentatively correlate the Deer Trail Group with the upper part of the 

Belt Supergroup for those rocks found in the Chewelah area. The ab­

sence of Windermere units lying above those of the Belt distinguish the 

latter from rocks belonging to the Deer Trail Group. Beltian and Deer
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Trail rocks and their equivalents characteristically consist of fine­

grained quartzites, siltites, and argillites with subordinate amounts 

of limestone.

Latest Precambrian rocks belong to the Windermere Group and un- 

conforraably overlie rocks of the Deer Trail Group. The Huckleberry 

Formation comprises the lower portion of the Windermere consisting of 

a basal conglomerate and an overlying greenstone, named the Shedroof 

Conglomerate and Leola Volcanics, respectively, by Park and Cannon 

(1943) in the Metaline area. The overlying Monk Formation also con­

tains a basal conglomerate and generally consists of slate and argil­

lite with interbedded units of dolomite, conglomerate, and quartzite.

Precambrian sedimentary rocks in northeastern Washington most 

likely originated when a portion of the North American Continent began 

to rift away late in the Precambrian, forming an elongate basin which 

began to receive sediments from surrounding highlands (Stewart, 1972); 

Sears and Price, 1978). Precambrian Deer Trail rocks lying just west 

of 118* west longitude (Huntting and others, 1961) apparently mark the 

minimum western extent of the North American craton at the time of 

rifting. Continued rifting produced a stable, Atlantic-type contin­

ental margin which apparently remained as such up until the Mesozoic. 

Sediments were deposited on attenuated continental or oceanic crust and 

continued to accumulate here throughout Late Precambrian and Paleozoic 

time with only occasional periods of non-deposition recorded in the 

sedimentary pile.

Cambrian rocks found in the Kootenay arc generally consist of 

quartzites and phyllites with lesser amounts of limestone and dolomite.
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Rocks of Ordovician, Silurian and Devonian age consist primarily of 

black slate with scattered occurrences of conglomerate and limestone. 

Stratigraphy of the upper Paleozoic is poorly known in this region but 

Mississippian age rocks are dominantly carbonate with minor amounts of 

argillite (Miller and Clark, 1975) .

Several workers in the Canadian portion of the Kootenay arc iden­

tify at least two (Fyles, 1964, 1967) and in some cases three phases of 

deformation (Ross, 1968; Ross and Kellerhals, 1968; Crosby, 1968),

Phase 1 structures comprise the dominant style throughout this fold 

belt. These folds are overturned, strongly asymmetrical isoclinal 

folds which developed an axial-plane cleavage. The axes of these folds 

lie parallel to the trend of the arc axis and plunge gently (<20*) 

north or south. These folds are developed at all scales, Crosby 

(1968) and other workers report that Slocan Group rocks of Triassic age 

are affected by phase 1 folding. Ross (1970) suggests that these folds 

may be modified phase 3 folds and that in fact phase 1 deformation did 

not affect Slocan age rocks.

Phase 2 folds are more open asymmetric structures with planar 

limbs and rounded hinges (Ross, 1970), They are similar in style, have 

variable amplitudes, and show an axial plane cleavage. Ross (1970, p. 

55) describes phase 3 folds as more open asymmetric shear and/or

flattened flexural slip structures. Their limbs are frequently planar 

and may have angular or sub-rounded hinges". They generally have an 

axial-plane cleavage that dips steeply to the east or northeast.

Several authors suggest that these structures formed through one 

c o n t i n u o u s  period of deformation (Crosby, 1968; Fyles, 1964; Ross,
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1970). Crosby proposes that rise and lateral spreading of the infra­

structure under the suprastructure crowded the rocks eastward against 

the Purcell anticlinorium, Ross concludes that phase 1 structures

formed through easterly movement of nappes with phase 3 structures re­

sulting from backfolding of these nappes off the rising Purcell base­

ment, Phase 2 structures formed as a reaction between the easterly 

motion and the more rigid Purcell basement. Although these two workers 

roughly agree on the forces and movements involved, they differ signi­

ficantly on the timing of these events, Crosby and most other workers 

assign a post-Slocan time period of deformation forming the structures

in the Kootenay arc. Ross suggests that phases 1 and 2 developed

before deposition of Slocan Group rocks with only phase 3 affecting 

them. Problems exist, however, with Ross' timing sequence as it neces­

sitates the inclusion of a high-grade metamorphic event at the same 

time as deposition of those metamorphosed sediments. Metamorphism ap­

parently reached its highest grade late in phase 1 or early phase 2 

deformation. Ross further points out that structural trends differ 

east-west across a major sole thrust which separates easterly verging 

allocthonous cover from westerly verging structures in parautochthonous 

rocks,

Detailed, regional structural analysis has not been published for 

the portion of the Kootenay arc south of the International Boundary in 

northeastern Washington, Styles of folding here appear similar to 

those farther north but it is not known whether they fit into the same 

deformational scenario, Yates (1970) divides this part of the Kootenay 

arc into four tectonic units, from east to west: 1) homoclinal belt.
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2^ fold belt, 3) thrust belt, and 4) a Jurassic volcanic province. 

Precambrian and Cambrian rocks of the homoclinal belt generally strike 

northeast and dip to the northwest. This belt is bounded on the north 

by the Slate Creek fault and on the west by the Jurapoff Joe fault (Fig­

ure 3), Large isoclinal and recumbent folds have been mapped in the 

Chewelah area (Figure 4) along with more open structures (Miller and 

Clark, 1975). These folds are westward verging where they lie struc­

turally below the major Jumpoff Joe thrust located to the west. Axes 

of folds lying within the fold belt trend northeasterly and generally 

consist of lower and middle Paleozoic rocks. Several folds mapped in 

the Metaline area appear as southern extensions of the Sheep Creek 

anticline and related folds located farther north in British Columbia, 

Some of these folds are also westward verging yet there does not appear 

to be any regional consistency in vergence. Later high-angle faulting 

divided the fold belt into separate structural blocks around the 

Metaline area.

The thrust belt trends obliquely across the trend of the earlier- 

formed folds of the fold belt. These faults generally trend east-west 

and for the most part dip varying amounts to the south. This episode 

of thrusting post-dates the formation of the northeasterly trends of 

the fold belt and related earlier thrust faults. These later thrusts 

appear to be part of a single system which separates two blocks north 

and south of the faults. Many of these thrusts found in the Northport 

(Yates, 1971) and Deep Creek (Yates, 1964) areas have been cut and off­

set by a period of high-angle faulting (tear faults of Yates, 1970, p. 

34).
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Several models have been proposed to explain the origin of the 

Kootenay arc. Crosby (1968) proposes that the arc's shape formed late 

when rise of the gneiss domes further crowded rocks in the middle-arc 

region eastward. Ross suggests that the arcuate form of the belt arose 

from the easterly crowding and northerly spreading of allochthonous 

nappes above a sole thrust against the more rigid northwesterly plung­

ing mass of parautochthonous cover and Purcell basement. The zone of 

cataclasis and shearing located at the eastern edge of the Shuswap 

metamorphic complex may represent a gently-dipping detachment surface 

along which rocks of the Kootenay arc moved off the eastern part of the 

complex during dome formation (Read, 1977). This movement probably 

occurred late in the development of the Kootenay arc.

Price (1980) suggests that sediments of the Kootenay arc were 

deposited outboard of the boundary between the Paleozoic shale and car­

bonate facies, which were part of a thick sedimentary prism accumulat­

ing at the margin of the North American craton. Subsequent development 

of a Benioff zone during Jurassic time resulted in eastward tectonic 

transport and accretion of these sediments onto the edge of the conti­

nental craton. Tliis resulted in the development inland of a zone of 

convergence where folding and thrusting occurred eastward in response 

to this compression from the west. Tectonic slides around metamorphic 

culminations such as the Shuswap are common but probably cannot account 

for ovetall convergence across the belt.
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