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ABSTRACT

S to f fe l ,  Keith L . ,  M .S., Spring, 1980 Geology

Glacial Geology of the Southern Flathead^Valley, Montana
i<r » )

Director: Robert R. Curry ^
ÏThe Flathead lobe of the Cordllleran Ice sheet deposited g lac ia l  

d r i f t  In the southern Flathead Valley of Montana. Previous workers 
used geomorphic evidence to Id e n tify  three Pleistocene g lac ia l d r i f t  
units In the va lley : Mission t i l l ,  St. Ignatius t i l l ,  and Jocko 
diamlctons. The goal of th is  study was to use sedimentary petrologic  
studies and f ie ld  mapping to define the stratigraphy of the g la c ia l . 
d r i f t  units and to corre la te  the s tra tig raph ie  units with established  
g la c ia l chronologies.

T h irty -n ine  samples of southern Flathead Valley g la c ia l sediments 
were analyzed fo r th e ir  grain size properties by means of hydrometer 
and sieve analyses. Clay mineralogy of the d r i f t  units was determined 
by x-ray d if f ra c t io n  methods. Representative samples of each s t r a t i 
graphie un it were examined to define the l i th o lo g ie  composition of 
th e ir  sand frac tion s . Results show that grain size properties , clay 
minéralogie composition, and sand fraction  llth o lo g le s  are a l l  
s im ila r  fo r each s tra tig raph ie  un it studied.

F ie ld  evidence, radiocarbon dating, and re la t iv e  age dating In 
d icate th at Mission t i l l  Is the youngest of the three s tra tig rap h ie  
units studied. A > 2 0 ,3 8 0  year B.P. radiocarbon date from the fron t  
of the Mission moraine suggests th at " la te"  Mission t i l l  Is middle 
to la te  Wisconslnan (ea rly  Pinedale) in age. "Earlie r"  Mission t i l l  
was apparently deposited by more extensive ice of the same g la c ia t io n .

Soil development and surface geomorphology Ind icate that St.
Ignatius t i l l  Is s ig n if ic a n t ly  older than Mission t i l l .  Complex 
f i e ld  re lationships complicate the age estimation of the St. Ignatius  
t i l l ,  but evidence fo r  deposition during early  Wisconslnan time Is 
given.

F ie ld  and laboratory data produced Indicate th at the Jocko 
diamlctons are g la c ia l t i l l s ,  which represent the oldest (pre-  
Wlsconslnan) g lac ia tion  In the region. Age, extent, and source 
area of the Ice depositing the Jocko diamlctons have not been de
termined, therefore corre la tion  with other g la c ia l chronologies 
remains speculative.
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CHAPTER I 

BACKGROUND AND OBJECTIVES

Introduction

Numerous times during the Pleistocene epoch, the growth of 

g laciers in two d is t in c t  accumulation areas in B r it is h  Columbia led 

to the development of the Cordilleran ice sheet. Ice accumulating 

in the Coast Range of western B r it ish  Columbia, and g laciers growing 

in the Canadian Rockies along the A lb e rt-B r it is h  Columbia border 

coalesced in the lower mountainous region between these two massive 

mountain ranges (Figure 1 ). This coalescence of piedmont g laciers  

produced an enormous ice mass, the Cordilleran ice sheet, which advanced 

southward through southern B r it ish  Columbia and terminated in the 

northwestern United States (Figure 2 ) .  Along the Canadian Pacific  

coast, the g laciers flowed downslope from th e ir  western Coast Range 

accumulation centers and flowed d ire c t ly  into the sea to form extensive 

f lo a tin g  ice shelves. Cordilleran ice flowing eastward from the 

Canadian Rocky Mountain accumulation basins reached the plains of 

A lberta , where i t  encountered the Laurentide ice sheet, moving slowly 

southwestward (Figure 2 ) .  Along i ts  southern margin, the thinning  

Cordilleran ice sheet diverged into numerous lobes, each of which 

occupied a major mountain va lley  in northern Washington, Idaho, or 

Montana (Figure 3 ) .  The westernmost and most extensive of these lobes 

was the Puget lobe of western Washington (Easterbrook, 1976). Other

1
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FIGURE 1. Diagrammatic sections showing development 
o f the Cordilleran ice sheet.
(a f te r  F l in t ,  1971)

A. Development o f glaciers in mountain 
valleys

B. Coalescence of va lley  glaciers to 
form trunk glaciers in intermontane 
areas

C. Development o f mountain ice sheet
D. Maximum ice sheet phase
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FIGURE 2. Sketch map of the Cordilleran Ice sheet, 
(a f te r  F l in t ,  1971)
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lobes east of the Cascade Range in Washington flowed out o f th e ir  

confined mountainous valleys and spread out onto the Columbia Plateau 

(Richmond and others, 1965). S t i l l  others in Idaho and Montana 

terminated w ith in  th e ir  valleys (Weis, 1965). The easternmost lobe 

o f the Cordilleran ice sheet, the Flathead lobe in northwestern 

Montana, was of the la s t  type, grinding to a h a lt  w ith in  the Rocky 

Mountain Trench.

This thesis examines the geologic record of g lac ia l d r i f t  de

posited in the southern Flathead Valley of Montana, and correlates i t  

with the C ord ille ran , Rocky Mountain and mid-continent g lac ia l  

chronologies. The objective of th is  study was th ree -fo ld : to in 

vestigate the g la c ia l deposits in d e ta i l ,  to define the stratigraphy  

of the d r i f t  u n its , and to establish an absolute chronology and local 

nomenclature fo r the d r i f t  un its .

General Geographic and Geologic Setting

Physiography. The southern Flathead Valley l ie s  in the northern 

Rocky Mountain physiographic province. Northwest-trending mountain 

ranges and intermontane valleys dominate th is  u p l i f te d ,  maturely 

dissected, and heavily g laciated region (Figure 4 ) .  The largest of 

these intermontane va lle ys , the Rocky Mountain Trench, extends fo r  

tens of miles through southern B r it is h  Columbia and northwestern 

Montana. Near i t s  southern l im i t ,  the Rocky Mountain Trench is 

divided into  two segments by the Mission Mountain Range (Figure 4 ) .  

The Swan River Valley occupies the eastern branch, while the southern 

Flathead Valley occupies the western segment.
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South of Flathead Lake, the southern Flathead Valley is surrounded 

by mountains and varies from twelve to twenty miles in width (Figures 

4 and 5 ) .  On the east, the va lley  is bounded by the precipitous  

fron t of the Mission Range. On the south, low bedrock h i l l s  separate 

the southern Flathead Valley from the Jocky V a lley , which is bounded 

along i ts  southern edge by the Jocko (or Rattlesnake) Range. The 

Salish Range rises gradually out of the western portion of the Flathead 

Valley .

Most of the southern Flathead Valley l ie s  near 3,000 fe e t  in 

elevation . However, scattered bedrock knobs reach a lt itu d es  as high 

as 4,000 fe e t  and the elevation of the Flathead River in the south

western portion o f the va lley  is as low as 2,500 fe e t ,  giving the 

va lley  a considerable amount of r e l i e f .

Geology. Precambrian Belt Series metasediments comprise nearly  

a l l  of the exposed bedrock in northwestern Montana. These Belt  

metasediments are predominantly a r g i l l i t e s ,  q u a rtz ite s , and impure 

limestones, deposited in a broad, shallow basin during the Precambrian 

(Harrison and others, 1974). Discontinuous igneous in trus ive  bodies 

as much as 1,000 fe e t  th ick intrude the sediments. These Precambrian 

in trus ive  s i l l s ,  d ikes, and stocks are predominantly metadiorite  

in composition (Johns, 1970). Both the Precambrian sediments and in -  

trusives were metamorphosed and deformed during the la te  Mesozoic 

Laramide orogeny. Igneous bodies o f la te  Mesozoic age also intrude  

the Belt rocks. These stocks and s i l l s  are d istinguishable from the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



8

f-

1 - ,

r H E 4 0  I . ,  "T^-

LAK£

4 8 * 0 0 "

4 7 * 4 5 ’

m
-ajfi

f advance limit } *
/ o f  “ earlier” / ^
I IMission ice* , . *L

^   ̂ Avance Mmiroff
* »  J “ iate” Mission iceX

C M

I  4 7 *  50*

• St. Ignatius tilL .4>*N .
" a4F.xk0#^ ij. \

I  4 7 * 1 5 ’

* 3 0  HuW  to» tM A  C. j i É 9 m ^ ,  I I 4 0  1^'

jnits in the 
', Montana

114* 30* NmW to» tMA C 14* 15"

^ . I ■ < southern Flathead V

%  3
i T ^  #  Sections described in Appendix Ai Measured sections not included 

in ApperxJix A

114» 00' II3“ 45'

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Precambrian in tru s Ives by th e ir  g ra n it ic ,  quartz d io r i t i c ,  or 

quartz monzonitic composition (Johns, 1970). Normal fa u lts  of 

T e rt ia ry  and Quaternary age commonly o ffs e t the Belt rocks and 

Mesozoic in trus ives .

Numerous times during the Pleistocene epoch, an enormous ice 

mass, the Cordilleran ice sheet, flowed southward out of B r it ish  

Columbia into  the United States. Along i ts  southern margin, the 

thinning ice mass diverged into numerous d is t in c t  lobes (Richmond 

and others, 1965). One such lobe, the Flathead lobe, pushed south

eastward down the Rocky Mountain Trench. Approximately f i f t y  miles 

south o f the Canadian border, i t  flowed into  the northern Flathead 

V a lley , where i t  was joined by ice flowing out of the Galton, White- 

f is h ,  and Swan Ranges (Witkind, 1978) (Figures 3 and 4 ) .  Maximum 

ice thickness along the in ternational border reached 5,000 fe e t ,  but 

rapid thinning of the ice to the south reduced the maximum thickness 

to only 2,500 fee t near K a lis p e ll ,  Montana (Alden, 1953).

Contemporaneous with the advance of the Flathead lobe, the Purcell 

lobe of the Cordilleran ice sheet flowed through the Purcell Trench in 

northern Idaho, to the v ic in i ty  of Sandpoint, Idaho (Richmond and 

others, 1965). There, i t  blocked the drainage of the Clark Fork River, 

impending an enormous lake. G lacial Lake Missoula, upstream from the 

ice dam. At i ts  highest stand (4,150 f e e t ) .  G lacial Lake Missoula 

covered an area o f 3,000 square miles and reached a maximum depth of 

2,000 fe e t (Alden, 1953). Formation of th is  lake during each g la c ia l
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maximum is suspected, but lack of absolute dating control o f the 

lacustrine  sediments has led to great debate about the Lake Missoula 

chronology.

Previous Work

Numerous studies o f the g lac ia l geology of the Flathead lobe of  

the Cordilleran ice sheet in western Montana have been undertaken.

The principal workers have been Elrod (1903), Nobles (1952), Alden 

(1953), Richmond (1965), and Richmond and others (1965). Work has 

consisted p rim arily  o f descriptions of the morphology of the g lac ia l  

features.

Elrod id e n t if ie d  and named the Mission moraine. Nobles mapped the 

en tire  Flathead Valley and named the St. Ignatius moraine, and Alden 

b r ie f ly  examined a l l  major exposures of g la c ia l deposits in the va lley  

in his reconnaissance study of the g lac ia l geology of western Montana. 

Richmond examined the g lac ia l d r i f t  deposited by local alpine g laciers  

in western Montana and correlated i t  with the chronology of other 

Rocky Mountain alp ine g la c ia l deposits. Richmond and others (1965) 

described the major g la c ia l features la id  down by the western Montana 

Flathead lobe of the Cordilleran ice sheet and discussed them in l ig h t  

of the chronology of Cord illeran  g lac ia l events. Most of these workers 

assigned Pleistocene age names (Bull Lake, Pinedale, I l l in o is a n ,  

Wisconsinan, etc) to the g la c ia l d r i f t  un its , however, since no deta iled  

stra tig rap h ie  studies were made, considerable doubt remained about the 

correct relationships and ages of the deposits.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



n

Most of the studies dealt with the g lac ia l d r i f t  in the Flathead 

Valley almost purely from a morphological standpoint. There had been 

no attempt made to c a re fu lly  define the stratigraphy o f the t i l l  and 

associated g lac ia l un its . In add ition , there was no dating upon which 

to establish an absolute chronology fo r  the g lac ia l sediments. Thus, 

much speculation existed concerning the age of the g lac ia l deposits 

in the va lle y .

Methods of Investigation

Field  mapping and sedimentary petrologic studies were employed in 

th is  investig ation , to define the stratigraphy of Pleistocene g lac ia l  

units in the southern Flathead Valley . I t  was antic ipated that once 

the stratigraphy of the g la c ia l deposits was established and a g lac ia l  

chronology was outlined , corre la tion  of the Flathead Valley sediments 

with other known g lac ia l chronologies could be made.

Field work included systematic sampling and mapping of pertinent  

outcrops of g lac ia l d r i f t  in the southern Flathead Valley (Figure 5 ).  

Exposures were described in d e ta il  and samples were taken fo r laboratory  

analyses. Descriptions of the degree of so il development on various 

d r i f t  units were made, in order to estimate the re la t iv e  ages of the 

deposits. Where seemingly s u f f ic ie n t  organic material was found, i t  

was collected fo r  radiocarbon dating.

Textural analyses were performed to obtain the grain sizes of the 

constituent c la s t ic  p a r t ic le s .  The sieving method was used to determine 

the re la t iv e  propertions of c la s t ic  p a rt ic le s  coarser than 40 (.0625 mm)
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in diameter, and the hydrometer method was employed to analyze the 

grain sizes of p artic le s  f in e r  than 4 0. Grain size d is tr ib u tio n  

curves were then drawn to calcu late  the values of mean grain s ize ,  

so rtin g , skewness, and texture of the sediments. The mineralogy of 

the g la c ia l d r i f t  units was defined by x-ray d if f ra c t io n  of clay  

minerals and microscopic examination of sand-size p art ic le s .
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CHAPTER I I  

GLACIAL CHRONOLOGIES

Glacial Chronology of the Cordilleran Ice Sheet

General d iscussion. Numerous times in the past, the growth of 

g laciers  in the mountains of B r it is h  Columbia has resulted in  the 

formation of the Cordilleran ice sheet. The g lac ia l record of southern 

B rit ish  Columbia and the northwestern United States v e r if ie s  the 

subsequent advance of the ice into  these regions. Along i ts  southern 

margin, the Cordilleran ice mass diverged in to  numerous d is t in c t  

lobes (Figure 3). Study of the g la c ia l d r i f t  la id  down has been 

used to establish a fo u r-p a rt g lac ia l chronology. At present, i t  

appears as though the chronology of g la c ia l events of the Cordilleran  

ice sheet is closely c o rre la tiv e  with the mid-continent g lac ia l  

chronology, resu lting  from the advances of ice masses generated within  

the Keewatin and Labradoran ice centers in the in te r io r  of Canada 

(W illiam , 1970).

Despite the extremely large s u r f ic ia l  area covered by the Cordilleran  

ice sheet, re la t iv e ly  few studies of the g la c ia l d r i f t  have been under

taken in the United States. The most studied of the Cordilleran  

g la c ia l deposits are located in the Puget Lowland o f western Washington, 

the Okanagan Valley of north-central Washington, and the Purcell 

Trench of southern B r it is h  Columbia and northern Idaho. This chapter

13
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concentrates on the chronology of the Puget Sound region, because 

i t  apparently contains the most complete record o f Cordilleran ice 

advances and is presently the best understood. Based upon previous 

work and th e ir  own observations, Crandell and others (1958) established  

a sequence o f four g laciations separated by nonglacial in te rva ls  in 

western Washington. Subsequent work by numerous people has led to 

constant revision of th is  chronology. Even today, controversy continues. 

The te n ta t iv e ly  accepted g la c ia l chronology of the Cord illeran  ice 

sheet is outlined in Figure 6. In th is  chapter, some of the evidence 

which has led to the establishment o f th is  Cordilleran chronology 

is  presented and corre la tion  with the g la c ia l chronology of the mid

continent is made (Figure 6 ) .

Orting g lac ia t ion. Glacial d r i f t  o f  the f i r s t  apparent Cordilleran  

ice advance is found only in the southeastern portion o f the Puget 

Lowland, where r iv e r  b lu ffs  expose nearly 200 fe e t o f in t e r s t r a t i 

f ie d  proglacial outwash and g la c ia l t i l l  (Crandell and others, 1958).

The e n t ire  un it  is oxidized to a l ig h t  yellowish-brown, and individual 

stones w ith in  the t i l l  have brown iron oxide coatings and are often  

extremely f r ia b le .  More than 15 percent o f the rock types found in 

the Orting g lac ia l t i l l  are from northern provenances, ind icating a 

northern source area fo r  the ice inundating the Puget Lowland 

(Crandell and others, 1958). Orting g la c ia l d r i f t  has been found as 

fa r  south as Sumner, Washington, located along the Cascade Mountain 

f ro n t ,  bordering the Puget Lowland to the east. The age or Orting
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g lac ia tio n  is  uncertain, but the strongly developed so il and decom

position of stones suggest an early  Pleistocene age. No firm  corre

la t io n  with other g lac ia l chronologies can be drawn.

Alderton in te rg la c ia t io n . C limatic change brought an end to the 

i n i t i a l  Cordilleran ice advance, and the ice retreated northward 

toward the B r it ish  Columbia accumulation areas. During th is  in te r 

g la c ia l period, streams and r iv e rs ,  draining mainly to the north in  

the Puget Lowland, deposited interbedded sand, s i l t ,  and clay on 

extensive floodplains o f aggrading streams. No record of th is event 

has been found in any other lo c a l i ty  occupied by Cordilleran ice .

Pollen analyses of peat beds w ith in  the Alderton sediments record a 

c lim atic  warming trend from early  post-g lac ia l time (Crandell and 

others, 1958). The lower portions of these peat horizons are dominated 

by Engelmann spruce and f i r ,  suggestive o f a cool, moist climate. The 

upper parts of the peat are dominated by Douglas f i r  and a ld er ,  

ind ica tive  of c lim atic  conditions comparable to those present today 

in  the southern Puget Lowland. Age of the Alderton in te rg la c ia tio n  

is also uncertain, but i t  must represent an old Pleistocene event.

Stuck g la c ia t ion. Stuck d r i f t  represents the second apparent 

major g lac ia tion  of the Puget Lowland. G lacial t i l l  and outwash of 

Stuck d r i f t  are found immediately overlying the in te rg la c ia l  sediments 

of the Alderton Formation (Crandell and others, 1958). As in the 

g la c ia l t i l l  of the older Orting g la c ia t io n , more than 15 percent of 

the pebbles in the Stuck d r i f t  are of northern d eriva tion , in d ic a tiv e
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of a Cordilleran source fo r the ice in the lowland. When not buried 

by younger sediments, the g la c ia l d r i f t  of the Stuck g lac iation  

displays a well developed s o i l .  However, since sediments o f the 

Puyallup in te rg la c ia t io n  were immediately deposited upon most Stuck 

d r i f t ,  the absence of a deep weathering p ro f i le  is usually ch arac ter is tic .  

No intervening weathering or erosion occurred p r io r  to the deposition 

of the in te rg la c ia l sediments. Based upon i ts  degree of weathering 

and stra tig raph ie  pos ition , the Stuck t i l l  is  believed to be time- 

equivalent to deposits of the I l l in o is a n  g lac ia tion  of the mid

continent.

At present, Stuck(?) d r i f t  has been recognized in only two other 

lo c a l i t ie s  occupied by Cord illeran  ice . On the southern end of Whidbey 

Island in Puget Sound, ju s t  northwest o f S e a tt le ,  up to 60 fe e t  of 

outwash sand and gravel underlie 40 fe e t o f gray compact g la c ia l t i l l .  

This u n i t ,  the Double B lu ff  d r i f t ,  contains pebble l ith o lo g ies  which 

suggest a B rit ish  Columbia provenance (Easterbrook and others, 1967).

Based upon i ts  s tra tig rap h ie  position beneath a major nonglacial 

sedimentary u n it ,  Easterbrook has suggested that the Double B lu ff  

d r i f t  is c o rre la tiv e  with the Stuck d r i f t  in the southeastern Puget 

Lowland. The p o s s ib i l i ty  also ex ists  th at i t  is  younger in age, and 

may be c o rre la tiv e  with the middle Pleistocene Salmon Springs g la c ia 

t io n . Also, in the Purcell Trench of southern B r it is h  Columbia, a 

strongly developed so il on g la c ia l t i l l  has been observed (Fulton , 1968).
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Since the age of th is  deposit is beyond the l im i t  of radiocarbon 

dating , s tra tig raph ie  assignment of th is  u n it  cannot be made with  

c e rta in ty .  I t  may represent d r i f t  o f the Stuck g lac ia tion  or of 

the younger Salmon Springs g la c ia t io n .

Puyal 1 up in te rg la c ia t io n . Strong soil development on Stuck 

d r i f t  took place during the Puyallup in te rg la c ia t io n ,  while southern 

B rit ish  Columbia and the northwestern United States were free of ice  

(Fulton, 1968). The Cord illeran  ice sheet had once again melted 

and retreated back to i ts  accumulation centers in the mountains of 

B rit ish  Columbia. As previously mentioned, in portions of the Puget 

Lowland, f lu v ia l  and lacustrine sediments were deposited on top of  

the Stuck d r i f t  soon a f te r  re tre a t  o f the ice . These sediments o f  

the Puyallup in te rg la c ia t io n  very closely resemble those of the older 

Alderton In te rg la c ia t io n  previously discussed.

Pollen assemblages obtained from peat beds w ith in  the Puyallup 

sediments record a clim atic warming from the base of the u n it  toward 

the top (Crandell and others, 1958). Peat immediately above Stuck 

t i l l  is dominated by p ine, w ith minor amounts o f Engelmann spruce, 

suggestive o f forests o f the Hudsonian vegetation zone. This repre

sents the cool and moist c lim atic  conditions prevailing  immediately 

a f te r  re tre a t  o f the C ord illeran  ic e ,  during early  Puyallup in te r 

g la c ia l time. Douglas f i r ,  hemlock, and a lder dominate the peat 

from the middle of the Puyallup sediments, representing a warm, dry
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climate s im ila r  to that in the Puget Lowland today. The pollen record 

of the uppermost Puyallup sediments once again is rich  in Engelmann 

spruce and pine, suggesting a return to a cool and moist clim ate.

This return to cooler and more moist conditions was probably 

synchronous with the buildup of Cord illeran  ice p r io r  to the Salmon 

Springs g lac ia tio n .

On Whidbey Island in Puget Sound, 200 fe e t of interbedded peat- 

bearing sand, s i l t ,  and clay are exposed. Easterbrook and others 

(1967) suggest that the sediments represent floodplain deposition by 

aggrading streams. This in te rg la c ia l  u n i t ,  the Whidbey Formation, 

also contains a pollen record which indicates an early  in te rg la c ia l  

cool c lim ate , which ameliorated to a maximum s im ila r  to the present 

day climate in the Puget Lowland. Stratigraphie  position and pollen  

records suggest co rre la tion  between the Whidbey Formation and the 

Puyallup Formation of the southeastern part of the lowland 

(Easterbrook, 1969).

The Puyallup in te rg la c ia t io n  may be the time-equivalent o f the 

mid-continent Sangamon in te rg la c ia t io n . I t  is  estimated to have 

ended somewhere in the v ic in i ty  o f 100,000 (?) years B .P ., when ice 

of the Salmon Springs g lac ia tio n  advanced into the region. Other 

areas o f Cordilleran ice occupancy also record the Puyallup in te r -  

g la c ia l event. In the Okanagan Valley of southern B rit ish  Columbia, 

in te rg la c ia l  sediments underlie d r i f t  of the Salmon Springs g lac ia tion  

(MacAulay, 1972). In th is lo c a l i ty ,  the sediments have been assigned
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to the "Okanagan in te rg la c ia t io n " , which is most l ik e ly  c o rre la tiv e  

with the Puyallup in te rg la c ia t io n  o f the Puget Lowland.

Salmon Springs g la c ia t io n . With deteriorating  c lim atic  conditions, 

rebuild ing o f the Cordilleran ice sheet and subsequent readvance 

occurred. This Cordilleran advance is known as the Salmon Springs 

g la c ia t io n . Salmon Springs d r i f t  is normally a compact, unoxidized 

to s l ig h t ly  oxidized t i l l ,  and in most exposures only a single g lac ia l  

t i l l  un it  is id e n t i f ia b le .  However, in the southern Puget Lowland, 

up to four fee t o f peat and volcanic ash separate the Salmon Springs 

d r i f t  in to  two d is t in c t  t i l l  units (Crandell and others, 1958).

Four radiocarbon dates from th is  peat horizon yielded ages beyond the 

l im i t  o f radiocarbon dating (Easterbrook, 1969). Pollen analysis of 

th is organic horizon has id e n t if ie d  a pollen assemblage dominated by 

pine and f i r .  This assemblage represents a cool, moist climate 

(Crandell and others, 1958). This c lim atic  in te rp re ta t io n , coupled 

with the lack of so il development between the two t i l l  u n its , suggests 

at least two minor g la c ia l advances of the Salmon Springs g la c ia t io n .

On Whidbey Is land, Possession d r i f t  consists of as much as 80 

fe e t  of gray compact g la c ia l t i l l  overlying the Whidbey Formation.

This d r i f t  u n it  is extremely discontinuous and patchy throughout 

the Puget Sound area. I t  consists o f only one t i l l  u n it ,  with no 

in te rg la c ia l  sediments present. A radiocarbon date from the Possession 

d r i f t  unit indicates an age of more than 40,000 years B.P. (Easterbrook 

and others, 1967). The s tra tig rap h ie  position above the Whidbey 

Formation suggests a Salmon Springs equivalent, i f  the Whidbey Forma

tion is indeed the Puyallup equivalent.
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Numerous radiocarbon age dates from most of the major Cordilleran  

ice lobes suggest that Salmon Springs ice had retreated from the 

region by approximately 35,000 years B.P. I f  so, then Salmon Springs 

d r i f t  must be co rre la tiv e  with the Altonian substage o f Wisconsinan 

g lac ia tio n  in the mid-continental United States (Frye and others,

1968). Unfortunately, th is 35,000 year B.P. date is  extremely close 

to the l im i t  of radiocarbon dating (37,000 years by conventional 

methods). Recently most o f these dates have become suspect. A more 

deta iled  discussion of th is  problem follows th is  summary of Cordilleran  

chronology.

Olympia in te rg la c ia t io n . With moderating c lim atic  conditions, 

the Cordilleran ice sheet once again withdrew from the region. This 

event marks the Olympia in te rg la c ia t io n ,  which is co rre la tiv e  with the 

Farmdalian in te rg la c ia t io n  of the mid-continent. As previously 

mentioned, the in te rp re ta t io n  of radiocarbon dates obtained from 

Olympia sediments as led to confusion concerning the age of the be

ginning of th is  in te rg la c ia l  period. Although the age of return to 

in te rg la c ia l  conditions is unknown, i t  is  certa in  that i t  terminated 

in the northern regions approximately 24,000 years B.P. (Armstrong 

and others, 1965). N a tu ra lly ,  the period o f ic e -fre e  conditions was 

much longer along the southern margin o f the C ord illeran  ice sheet 

than fu rth e r  to the north, where Salmon Springs ice persisted longer 

and Fraser g lac ia tio n  ice returned sooner. Along the southern margins, 

ic e - fre e  conditions lasted a t  least as long as 20,000 years (35,000 years 

B.P. to 15,000 years B .P .) (Armstrong and others, 1965).
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The Olympia in te rg la c ia t io n  is  represented in the geologic 

record by moderately deep so il development on Salmon Springs d r i f t  

(Fulton, 1968), and by abundant f lu v ia l  deposits la id  down in 

aggrading stream environments (Armstrong and others, 1965). Pollen 

analyses from associated peat units in the Puget Lowland suggest that  

the climate was cool and moist throughout the in te rg la c ia l  period 

(Easterbrook, 1969). Apparently, c lim atic  conditions comparable to 

today did not e x is t  during Olympia time. Other s im ila r  in terpre ta tions

have been made in southern B r it ish  Columbia (Armstrong, 1965).

Fraser g la c ia t ion. The Fraser g la c ia t io n , which records the la s t  

major buildup and advance of the Cordilleran ice sheet, is co rre la tiv e  

with the "classical"  Wisconsin recognized in many other glaciated  

regions of the world (Frye and others, 1968). While ice persisted  

in  the Cordilleran accumulation centers throughout Fraser time, the 

numerous lobes along the southern extent of the ice sheet recorded 

two g la c ia l advances separated by a minor ice re tre a t  (Easterbrook,

1969). Numerous re l ia b le  radiocarbon age dates have been used to 

establish the chronology of Fraser g lac ia tio n  events.

Evidence of buildup and advance of the Cord illeran  Ice Sheet is  

found in the Puget Lowland g la c ia l record, where a proglacial outwash

sand, the Esperance Sand, rests on Olympia In te rg la c ia l  sediments.

This diachronous, l i th o s tra t ig ra p h ic  u n it  invaded the northern reaches 

of the region f i r s t  slowly encroaching to the south. The e a r l ie s t  known 

occupany in the north is s l ig h t ly  more than 20,000 years B.P.
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(Clague, 1977). Accompanying the southward march of the Esperance 

Sand was the Cordilleran Ice Sheet, entering the Fraser Lowland of 

B rit is h  Columbia nearly 19,000 years B.P. (Fulton, 1971). Once the 

ice had flowed southward fa r  enough to block the drainage o f the 

predominantly northward-flowing streams (south o f the S t r a i t  of 

Juan de Fuca), a huge proglacial lake formed. Thus, in the southern 

stretches o f the Puget Lowland, lacustrine sediments are found 

sandwiched between Olympia in te rg la c ia l  and Esperance Sand (outwash) 

deposits (Mullineaux, 1965). Eventually, Cordilleran ice overrode 

the e n t ire  sequence, depositing Vashon t i l l  throughout the lowland.

Vashon g lac ia l ice persisted in the region u n ti l  13,000 years B.P. 

(Esterbrook, 1966). At th is tim e, a re la t iv e ly  minor re tre a t  of the 

ice occurred, known as the Everson In ters tade. Upon re tre a t of the 

ice to the north, the g la c ia l ly  depressed land was inundated by the 

sea, and glaciomarine d r i f t  was deposited in the Puget Lowland. As 

previously mentioned, the northern portions of the region remained 

buried by Cordilleran ic e , in d ica tiv e  o f a re tre a t  of lim ited  extent. 

Final readvance o f the C ord ille ran  ic e ,  termed the Sumas Stade, took 

place approximately 11,000 years B.P. and persisted u n ti l  about

10,000 years B.P, (Fulton, 1971). Ice of the Sumas Stade maximum did 

not advance nearly as fa r  south as during the Vashon Stade maximum, 

only advancing to ju s t  south of the U.S.-Canadian border. Thus, 

the age of the la s t  occupancy o f the C ord illeran  ice in the region is 

s ig n if ic a n t ly  older in the southern portions o f the region than in  the
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northern reaches {13,000 years B.P. near S eattle  compared to 10,000 

years B.P. in the Fraser Lowland of southern B r it ish  Columbia).

Discussion of Cord illeran  chronology problems. Some recent 

studies have given r ise  to controversy concerning the previously  

outlined chronology of the C ord illeran  ice sheet. Of immediate concern 

is the timing of mid-Wisconsinan g lac ia l events. As the principal 

c r i t i c s ,  Fulton (1971), Clague (1978), and A llen  (1979), have questioned 

the age of the Salmon Springs g la c ia t io n . Fulton (1971, 1968) has 

shown that lowland areas in B r it is h  Columbia, which must have been 

inundated by any major Cord illeran  ice mass, were continuously ice -  

free  from a t least 60,000 years B.P. u n t i l  the onset of Fraser 

g lac ia tion  around 24,000 years B.P. Clague (1978) produced paleo- 

c lim atic  data from deep sea cores and te r r e s t r ia l  b io s tra t i  graphic 

and l ith o s tra t ig ra p h ic  evidence to support the claim fo r th is  lengthy 

nonglacial in terval in southern B rit ish  Columbia and northern Washington, 

A lley  (1979) produced additional evidence from southern Vancouver 

Island fo r  ic e -fre e  conditions from greater than 51,000 to approxi

mately 21,000 years B.P. Thus, these authors maintain that the Salmon 

Springs g lac iation  ended not la te r  than 60,000 years B .P ., and is of 

early  Wisconsinan age. They suggest that nonglacial conditions per

sisted throughout mid-Wisconsinan time.

Although th is proposed chronology is in d ire c t c o n f l ic t  with the 

established mid-continent g la c ia l chronology, i t  is  recognized that  

growth o f the Pleistocene g la c ie r  complex was controlled by c lim atic
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factors vastly  d if fe re n t  from those of the Laurentide ice sheet of 

the central in te r io r  of Canada. Just as at the present time.

Pleistocene temperature and p rec ip ita tio n  regimes of the C ord ille ra  

were strongly influenced by P ac ific  oceanic conditions. Reduced a i r  

temperatures and warm surface waters in the northeastern Pacific  

were probable requirements fo r  the growth of g laciers in B rit ish  

Columbia (Clague, 1978). I t  is possible th at these conditions were 

not met during mid-Wisconsinan time, while the Laurentide ice sheet 

in the Canadian in te r io r  grew and advanced fa r  south into the United 

States.

With the aid of numerous radiocarbon age dates, the la te  Wisconsinan 

g lac ia l h istory o f the C ord illeran  ice sheet is c le a r .  The general 

corre la tion  with mid-continental g lac ia l events cannot be questioned. 

However, upon reaching the l im i t  o f conventional radiocarbon age 

dating (37,000 years B .P .) ,  the r e l i a b i l i t y  of presently accepted 

s tra tig rap h ie  relationships deteriorates rap id ly . Much of the early  

to middle Pleistocene chronology of the Cordilleran ice sheet is 

based upon extremely lim ited  exposures, in some cases merely a single  

outcrop. S tra tig raph ie  re lationships a re , a t very best, unclear. 

Correlation with other established g lac ia l chronologies is therefore  

questionable. When considering pre-Olympia events in the Cordilleran  

chronology, i t  should be kept in mind th at the climates of other 

sectors o f g laciated  North America are controlled by d if fe re n t  ocean 

bodies and a i r  c irc u la t io n  patterns. "Detailed synchroneity o f  g la c ia l  

events on a continental scale are therefore un like ly"  (Clague, 1978).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



26

Rocky Mountain Glac ia l Chronology

Introduction. The following Rocky Mountain g la c ia l chronology 

is given, since ice derived from local a lpine g laciations is  known 

to have merged with the Flathead lobe of the Cordilleran ice sheet 

(Witkind, 1978). Pleistocene ice accumulation in mountain ranges 

surrounding the Flathead Valley did re s u lt  in the growth of extensive 

va lley  g laciers (Alden, 1953), but evidence fo r th e ir  coalescence 

in to  a piedmont lobe in the southern Flathead Valley has not been found. 

Correlation o f the Rocky Mountain chronology with the Cordilleran  

chronology cannot be made with c e r ta in ty ,  since the Cordilleran and 

Rocky Mountain ice complexes may have been temporally out o f phase.

This section is a b r ie f  summary of the Rocky Mountain g lac ia l chronology, 

General discussion. At leas t f iv e  major Pleistocene g laciations  

have been recognized in the Rocky Mountains. G lacial conditions were 

separated by nonglacial episodes of varying durations. In both the 

la s t  (Pinedale) and penultimate (Bull Lake) g lac ia tio n s , m ultip le  

g la c ia l advances were separated by in te rs ta d ia l re tre a ts . G laciation  

in the southern and central Rockies was re s tr ic ted  to individual  

va lley  g la c ie r  systems, while in the northern Rockies g laciation  was 

so heavy that local ice caps formed in some ranges. The inception of  

a warm and dry period, known as the A ltitherm al in te rv a l ,  brought an 

end to the la te s t  Pinedale g la c ia t io n . The Rocky Mountains were ice-  

free  during the A ltitherm al maximum. Following the Altithermal 

period, c lim atic  d e ter io ra tio n  resulted in renewed local cirque
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g la c ia t io n . Three episodes of post-A ltitherm al cirque g lac ia tion  

are recognized in the Rocky Mountains, which are c o l le c t iv e ly  known 

as the Neoglaciation (Benedict, 1973).

Pre-Bull Lake g lac ia tions . Very strong weathered g la c ia l d r i f t ,  

void of morainal topography and located on high interstream d iv ides,  

was f i r s t  described in the Wind River Mountains o f western Wyoming. 

Sim ilar deposits subsequently found throughout the Rocky Mountains 

have been assigned to pre-Bull Lake g laciations (Richmond, 1965).

F la t  to very gently ro l l in g  topography is ch arac ter is tic  o f pre- 

Bull Lake g lac ia l deposits. Smeared on high interstream d iv id e s , these 

deposits are commonly found above the l im its  o f younger g laciations .  

Pre-Bull Lake d r i f t  is characterized by intensely weathered cobbles 

and boulders. C rys ta llin e  and volcanic rocks are very highly de

composed and f r ia b le .  Highly soluble rocks, such as carbonates, are 

not found in the weathered d r i f t ,  even when they are abundant in the 

parent m ateria l. This intense weathering of soluble rock types has 

resulted in the concentration o f highly res is tan t rocks a t  the surface 

of weathered pre-Bull Lake d r i f t  (Richmond, 1965).

Since pre-Bull Lake g laciers were the f i r s t  to scour the thick  

so ils  o f the p re -g lac ia l bedrock surface, even fresh pre-Bull Lake 

d r i f t  contains a much greater amount o f weathered bedrock than do the 

younger g la c ia l deposits. Incorporation o f the th ick soil in to  the ice  

has also resulted in a greater proportion of s i l t  and clay in pre- 

Bull Lake t i l l s ,  giving them an overall f iner-g ra ined  character 

(Richmond, 1965).
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Geologists recognize three pre-Bull Lake g laciations in the Rocky 

Mountains (Richmond, 1970). They are, from oldest to youngest, the 

Washakie Point g la c ia t io n , the Cedar Ridge g la c ia t io n , and the 

Sacagawea Ridge g la c ia t io n . At th e ir  type lo c a l i ty  in the Wind River 

Mountains, three l i th o lo g ic a l ly  d is t in c t  t i l l s  representing these 

glaciations are separated by strongly developed so il horizons. At 

other lo c a l i t ie s  w ith in  the Rockies, id e n t if ic a t io n  o f pre-Bull Lake 

deposits is complicated by l i th o lo g ie  monotony and the absence of one 

or more of the paleosols.

The strongly developed paleosols between pre-Bull Lake t i l l s  

suggest major nonglacial periods between g lac ia tions . The duration of  

ic e -fre e  conditions during the pre-Bull Lake in te rg lac ia tions  can be 

estimated by the thickness of the pre-Bull Lake soil horizons, which 

are three to four times th icker than post-g lac ia l soils forming in the 

Rockies today. Thick pre-Bull Lake paleosols found high in  the Rockies 

are ind ica tive  of complete deglaciation of the mountains during pre- 

Bull Lake in te rg lac ia tions  (Richmond, 1965).

Recent work in Yellowstone National Park (Richmond, 1976) has 

provided some absolute age dates fo r  pre-Bull Lake g laciations  

(Figure 7 ) . Richmond suggests corre la tion  o f approximately 1 .6 -

2 .0  m il l io n  year old g la c ia l t i l l s  (interbedded with radiom etrica lly  

dated tu ffs  and flows) with deposits o f the Washakie Point g lac ia tio n  

in  the Wind River Mountains. Approximately 1.2 m il l io n  year B.P. 

P earle tte -1 ike  volcanic ash beds in in te rg la c ia l  alluvium overlying
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older g lac ia l gravels date the end of the Washakie Point g lac ia tion  

p r io r  to that time (Richmond, 1970).

An approximately 1.0 m il l io n  year B.P. loess (believed to repre

sent g la c ia l conditions) beneath a P earle tte  t u f f  records a stade 

of the Cedar Ridge g lac ia tion  (Richmond, 1976). A 700,000 year old 

volcanic ash bed (re la ted  to the Bishop Tuff in C a lifo rn ia )  on Cedar 

Ridge g la c ia l deposits record the conclusion o f th at g lac ia tion  p rio r  

to 700,000 years B.P. (Richmond, 1970).

A 150,000-170,000 year old g la c ia l t i l l  and an approximately

266.000 year old t i l l  are believed to be the re su lt  o f  two d is t in c t  

advances of the Sacagawea Ridge g lac ia tion  (Richmond, 1976). Further 

evidence fo r  these two advances are found in Yellowstone Park, where

180.000 and 290,000 year old g lac io lacustrine  sediments have been 

described (Richmond, 1970).

These three Rocky Mountain glaciations are presumed c o rre la tiv e  

with the Nebraskan, Kansan, and I l l in o is a n  g laciations of the mid

continent (Richmond, 1970) (Figure 7 ). Since the radiom etrica lly  

dated g la c ia l stratigraphy in Yellowstone Park cannot presently be 

f irm ly  correlated with the type sections o f the pre-Bull Lake g la c ia 

tions in  the Wind River Range of Wyoming, these corre lations are 

te n ta t iv e .

Pre-Bull Lake/Bull Lake in t e r g la c ia t ion. A major in te rg la c ia t io n  

characterized by deep, intensive weathering and thick soil formation 

followed the la s t  pre-Bull Lake (Sacagawea Ridge) g la c ia t io n . The
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date of the end of the Sacagawea Ridge g lac ia tion  is uncertain, but 

potassium-argon dates from in te rg la c ia l  sediments suggest that the 

pre-Bull Lake/Bull Lake in te rg la c ia l  began at least 180,000 years B.P.

I t  lasted u n ti l  sometime in the v ic in i ty  of 120,000-130,000 years B .P .,  

when ice of the early  stade of the Bull Lake g lac ia tion  advanced 

(Richmond, 1970). Richmond correlates the Rocky Mountain Sacagawea 

Ridge/Bull Lake in te rg la c ia t io n  with the Sangamon in te rg la c ia t io n  of 

the mid-continent.

Bull Lake gla c ia t ions. At the type lo c a l i ty  in the Wind River 

Mountains of Wyoming, Bull Lake g lac ia tio n  deposits are characterized  

by broad, smooth, and gently sloping moraines (Richmond, 1965). Two 

or three sets of Bull Lake moraines are commonly found in the Rockies, 

suggesting a t  least two, and probably three Bull Lake g lac ia l advances. 

Further support fo r  three Bull Lake g laciations is given by three  

sets of outwash-veneered terraces a t three d is t in c t  elevations in the 

Rocky Mountains (Richmond, 1965).

Broad, gently sloping, and widely breached moraines are characteris 

t ic  of Bull Lake age d r i f t .  Few end moraines re ta in  lakes and la te ra l  

moraines are generally highly dissected by streams. Kettles are 

commonly f i l l e d  with sediment and no longer contain water, while those 

that do are usually swampy. Cobbles and boulders a t the surface of  

Bull Lake d r i f t  are nearly always iron-stained and commonly ex h ib it  

weathering rinds. Highly decomposed and f r ia b le  cobbles l ik e  those
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of pre-Bull Lake deposits are ra re . During the pre-Bull Lake 

g la c ia t io n s , the p re -g lac ia l bedrock surface was scoured clean, leaving 

only remnants of deeply weathered bedrock to be incorporated by Bull 

Lake ice . Thus, Bull Lake t i l l  contains a much smaller percentage 

of s i l t  and clay than pre-Bull Lake d r i f t  and is noticeably coarser- 

grained (Richmond, 1965).

Obsidian-hydration and potassium-argon dating of Pleistocene 

sediments in Yellowstone Park have been used to establish a chronology 

of Bull Lake g lac ia tion  events. Obsidian-hydration techniques were 

used to date the age of percussion fractures in obsidian pebbles 

lodged in a t i l l ,  presumably of early  Bull Lake age. The average age 

of abrasion was calculated to be approximately 140,000 years B .P .,  

with dates ranging from 130,000 to 155,000 years B.P. (Richmond, 1976). 

Evidence fo r  a g lac ia tio n  of s im ila r  age came from Richmond (1976), 

when he described a 150,000 year old g lac ia l t i l l  sandwiched between 

dated rh y o lite  flows and pumice beds in Yellowstone Park. He con

siders the t i l l  to have been deposited by ice of the early  stade of 

the Bull Lake g lac ia tion  (Figure 7 ) .  Since these reported dates from 

the early  stade of the Bull Lake g lac ia tion  are in c o n f l ic t  with  

those from the conclusion of the Sacagawea Ridge/Bull Lake in te r 

g la c ia t io n , more work needs to be done to re fin e  the timing of 

Pleistocene events between 120,000 and 150,000 years B.P.

Glacial t i l l s  dated a t approximately 115,000-125,000 years B.P. 

(Richmond, 1976) and 120,000 years B.P. (Richmond, 1972) record an
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additional ea rly  stade Bull Lake ice advance in the Yellowstone Park 

region. Since th is  approximately 115,000-125,000 year B.P. ice  

advance is elsewhere indistinguishable from the 140,000-150,000 

year B.P. advance, and since no evidence fo r nonglacial conditions 

separating the two advances has been found, the 115,000-125,000 year 

B.P. advance is assigned to the early  stade of the Bull Lake g lac ia tion  

along with the older advance.

Radiometric age dates from flows and tu ffs  interbedded with g lac ia l  

sediments bracket the age of the la te  stade of the Bull Lake g la c ia 

tion between approximately 60,000 and 90,000 years B.P. (Richmond, 1976, 

1972). T i l l s  from two d is t in c t  ice advances, one around 70,000 years 

B.P. and the other around 90,000 years B .P ., are separated by non

g lac ia l sediments approximately 80,000 years old (Richmond, 1972).

Since th is  nonglacial episode was apparently o f short duration (about

10.000 ye ars ), i t  is considered to represent an in te rs ta d ia l event 

separating two ice advances of the la te  stade of the Bull Lake g lac ia -  

t i  on.

Richmond believes that the la te  and early  stades of the Bull Lake 

glac ia tion  in the Rocky Mountains represent d is t in c t  g lac ia l advances 

separated by a nonglacial in te rv a l of s u f f ic ie n t  duration (20,000 to

30.000 years) to produce a mature zonal s o i l .  He correlates the Bull 

Lake g laciations with the older t i l l s  of the Altonian Substage of the 

Wisconsinan g lac ia tio n  in the mid-continent (Richmond, 1970). Since 

evidence fo r  g lac ia tions between 30,000 and 60,000 years B.P. has
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not been found in the Rocky Mountains, there are apparently no Rocky 

Mountain g laciations c o rre la tiv e  with the mid-continent g laciations  

occurring in the la s t  h a lf  of the Altonian Substage of the Wisconsinan 

(Richmond, 1970) (Figure 7 ).

Bull Lake nong lac ia l in te rv a ls .  The an tiqu ity  of Bull Lake g lacia l  

d r i f t  is evident from the mature zonal soil developed on the surface 

of Bull Lake sediments. A s im ila r  strongly developed paleosol is  

commonly found between the d r i f t  units of the early  and la te  stades 

of the Bull Lake g la c ia t io n . The soil formed during the approximately

80,000 year B.P. in te rs ta d ia l is found only in scattered lo c a l i t ie s  

in the Rocky Mountains (Richmond, 1972). However, three Bull Lake 

age paleosols of equal development have been found in tercalated  with  

a l lu v ia l  sediments in the San Juan Mountains of Colorado, and with  

loess deposits on the Columbia Plateau of Washington (Richmond, 1965).

Bull Lake paleosols are more strongly developed than Pinedale s o i ls ,  

but less well developed than pre-Bull Lake s o ils .  This suggests that  

nonglacial conditions separating Bull Lake glaciations were of longer 

duration than Pinedale g lac ia tio n  in te rs ta d ia ls , but of shorter duration  

than pre-Bull Lake in te rg la c ia t io n s . Since Bull Lake soils have been 

observed in high a l t i tu d e  cirques and summit areas as fa r  north as 

G lacier National Park in Montana, i t  is believed that the Rockies were 

completely ic e -fre e  during a t  least one Bull Lake nonglacial in terval  

(Richmond, 1965).
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Pinedale g la c ia t io ns. Renewed c lim atic  deterioration  resulted  

in the buildup and advance of g laciers in the Rocky Mountains. De

posits of th is  la s t  major g lac ia l episode were f i r s t  recognized in 

the Wind River Range of Wyoming (Blackwelder, 1915). Subsequent work 

throughout the Rockies has produced evidence fo r m ultip le  g lac ia l  

stades interrupted by interstades of short durations. Pinedale moraines 

are most often found up-valley from older Bull Lake moraines, but in 

scattered lo c a l i t ie s  Pinedale ice breached Bull Lake moraines 

(Richmond, 1965). Sets o f moraines representative o f the two oldest 

Pinedale advances are most often found in close proximity of each other, 

while the youngest Pinedale moraine often occupies a position much 

fu rthe r up-valley.

Fresh constructional morphology of rough, hummocky moraines 

characterizes Pinedale g lac ia tion  deposits. End moraines of the la te  

Pinedale stades commonly re ta in  g lac ia l lakes, while moraines of the 

older Pinedale advances are often narrowly breached by erosion and 

seldom dam lakes. Pinedale g lac ia tion  la te ra l  moraines are normally 

only s l ig h t ly  modified by erosion. Most Pinedale g lac ia l ke tt les  are 

well preserved and s t i l l  contain water. Pinedale sediments are 

characterized by abundant fresh boulders, and fresh t i l l  is generally  

less compact and more coarse grained than the older g lac ia l deposits. 

Highly decomposed rock fragments are rare (Richmond, 1965).

Since few absolute age dates have been obtained from Pinedale d r i f t  

in the Rocky Mountains, the chronology of Pinedale g laciation  events

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



36

is  poorly defined. Nevertheless, s tra tig rap h ie  re la tionsh ips ,  

paleosols, re la t iv e  age dating, and a few absolute age dates have 

been used to subdivide the Pinedale g lac ia tion  into three stades: 

the e a r ly ,  middle, and la te  stades.

Two ice advances have been recognized in the early  stade of the 

Pinedale g la c ia t io n . Obsidian-hydration dating techniques were used 

to date the age of g la c ia l abrasion of obsidian pebbles in the oldest 

Pinedale moraine in Yellowstone National Park. The average age of 

g lac ia l abrasion was calculated to be approximately 30,000 years B .P .,  

with dates ranging from 20,000 to 35,000 years B.P. (Pierce and others, 

1976). This date records the f i r s t  ice advance of the early  stade.

A 23,150 1,000 year B.P. radiocarbon date from shoreline sediments

of a high stand of g la c ia l Lake Bonneville in Utah, records the 

maximum of a second ice advance during the early  stade (Richmond, 1965). 

Richmond believes that the early  stade terminated around 21,000 years 

B .P ., when a s lig h t c lim atic  amelioration resulted in a minor ice re

t re a t  (Richmond, 1970).

Dates from the middle stade of the Pinedale g lac iation  are scarce. 

The middle stade apparently began around 20,000 years B .P ., when the 

glaciers readvanced (Richmond, 1970). L i t t l e  is known about the 

chronology of events between 20,000 and 13,000 years B.P. I t  is known 

that the g laciers  of the middle stade began receding no la te r  than

13,000 years B.P. (Madole, 1976), and had reached th e ir  maximum position  

of re tre a t  p r io r  to 12,000 years B.P. (Richmond, 1970). This 12,000
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year B.P. date is derived from G lacier Peak ash (from western 

Washington), which is commonly found between d r i f t  units of the middle 

and la te  stades of the Pinedale g lac iation  (Richmond, 1965).

The la te  stade of the Pinedale g lac ia tio n  is represented by two 

or three minor ice readvances between about 9,000 and 11,000 years 

B.P. (Richmond, 1970). Supporting evidence comes from the Colorado 

Rockies, where Benedict (1973) dated a la te  stade advance between

9,000 and 10,000 years old. Currey (1974) also provided evidence fo r  

th is la te  Pinedale advance in the Wind River Mountains o f Wyoming, when 

he established the pre-Neoglacial age of the Temple Lake moraine.

Weak azonal so ils  separate g lac ia l d r i f t  units of the Pinedale 

g la c ia tio n . Richmond (1965) suggests that the dark gray iron-stained  

nature of these in te rs ta d ia l  so ils  is ind ica tive  of a cool and wet 

environment. Maximum ice re tre a t  between the early  and middle stades 

was only a few kilom eters, representing only a s l ig h t  amelioration  

of the clim ate. Retreat of as much as 25 kilometers (15 miles) 

occurred during the m idd le /la te  in ters tade, re f le c t in g  a s l ig h t ly  warmer 

and d r ie r  climate (Richmond, 1965).

A ltitherm al in te rv a l .  Following f in a l  re tre a t  o f the Pinedale ice 

around 9,000 years B .P .,  the climate once again ameliorated. This 

period is known as the A ltitherm al in te rv a l ,  a nonglacial period 

during which time the glaciers of the Rocky Mountains in the United States 

melted completely and disappeared (Richmond, 1965). This in terva l is 

represented in the geologic record by a weakly developed zonal so il on
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Pinedale g lac ia tio n  deposits (Mahaney and Fahey, 1976). The true 

degree of development of th is soil can only be observed in areas 

glaciated during the Neoglacial period, where the immature zonal so il 

is found between PVnedale and Neoglacial deposits. Other areas exh ib it  

s l ig h t ly  stronger so il development, re f le c t in g  ic e -fre e  conditions 

since the re tre a t  of the la te  Pinedale ice . The Altitherm al in terva l  

spanned the period between approximately 5,000 and 9,000 years B .P .,  

reaching i ts  maximum sometime between 6,000 and 7,500 years B.P. 

(Benedict, 1973).

Neogla c ia t io n . A group of moraines found in many Rocky Mountain 

cirque basins, represent three minor g lac ia l advances which have taken 

place in post-A ltitherm al time. These advances, spanning the la s t  f iv e  

thousand years, are c o l le c t iv e ly  known as the " l i t t l e  ice age" (Matthes, 

1939). Neoglacial moraines are high and rough, and support l i t t l e  to 

no vegetation. The t i l l  is very fresh , quite sandy, and very boulderly 

(M i l le r  and Birkeland, 1974). Recent workers, using re la t iv e  age dating 

techniques, have outlined the following Neoglacial h istory.

Early  Neoqlacial stage (Temple Lake?). This advance, formerly named 

the Temple Lake stade of Neoglaciation, was o r ig in a l ly  defined from 

the Temple Lake moraine in the Wind River Mountains of Wyoming (Richmond, 

1965), but recent workers have produced evidence fo r the ore-Neoglacial 

age of that moraine (Currey, 1974; M i l le r  and Birkeland, 1974). Never

theless, these same workers have described a set of moraines immediately 

up-valley from the Temple Lake moraine, which they have assigned to the
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e a r l ie s t  Neoglacial ice advance. These findings have complicated usage 

of the Temple Lake nomenclature, which now requires revis ion. Future 

stra tig rap h ie  usage of the name Temple Lake could be e ith e r  1) the 

name used to designate a la te  pre-Neoglacial ice advance represented 

by the Temple Lake moraine ( la te  stade of the Pinedale), or 2) the 

name used to designate the e a r l ie s t  Neoglacial ice advance in the 

Rocky Mountains. Since th is issue is presently unresolved, th is  

e a r l ie s t  Neoglacial ice advance w il l  simply be referred to as the Early 

Neoglacial stade. Deposits from th is  advance are widespread throughout 

the Rocky Mountains. In the Rocky Mountains of Colorado, th is  ice 

advance is known as the T r ip le  Lakes advance. There, radiocarbon age 

dates bracket the Early Neoglacial stade between 3,000 and 5,000 years 

B.P. (Benedict, 1973).

Audubon stade. Moraines of th is intermediate-age Neoglacial 

advance are found in many cirque basins of the Colorado Rockies. S im ilar  

deposits have recently been described in the Wind River Mountains of 

Wyoming (M i l le r  and Birkeland, 1974). Named by Mahaney (1972), the 

Audubon stade replaced the Arikaree terminology of previous usage.

Using radiocarbon co n tro l,  1ichenometry, and boulder weathering studies, 

Benedict (1973) determined the age of the Audubon stade to range from 

approximately 1,000 to 2,000 years B.P.

Gannett Peak_sta^. The youngest Neoglacial advance is named for  

moraines a t  the foot o f Gannett G lacier in the Wind River Mountains of 

Wyoming (Richmond, 1965). Moraines of th is  advance are widespread
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throughout the Rocky Mountains. Numerous workers (Benedict, 1973; 

Richmond, 1965) have determined that the Gannett Peak ice advance 

occurred betwen 100 and 300 years B.P.

Correlation of the Rocky Mountain g lac ia l chronology 

with the mid-continent g lac ia l chronology is given in Figure 7. Numerous 

absolute age dates from the two regions suggest a rough synchroneity 

of g lac ia l advances. Pleistocene events greater than 37,000 years B.P. 

(the l im i t  of conventional radiocarbon dating) can only be crudely 

corre la ted , since absolute age dates are availab le  only from the Rocky 

Mountain region. Correlation o f the older sediments is based upon 

r e la t iv e  age dating methods. One exception to th is ru le  is the 

occurrence of the P earle tte  Ash in both the Rocky Mountain Cedar Ridge 

and the mid-continental Kansan g la c ia l d r i f t s ,  permitting d ire c t temporal 

co rre la tio n .

As a general ru le ,  many of the alpine g lac ia l advances appear to 

have s l ig h t ly  preceded the "continental" ice advances, since the alpine  

g lac ia l systems were more dynamic and reacted more quickly to c lim atic  

change. This out-of-phase re la tionsh ip  of alp ine and continental ice 

masses is well documented in the Cascade Range and surrounding lowlands 

in Oregon and Washington (Easterbrook, 1969). However, th is temporal 

re lationsh ip  of alp ine and "continental" ice sheet advances has ye t to 

be proven in the Rocky Mountain region. A ll th a t can be said at present 

is that d ire c t  co rre la tio n  of the Rocky Mountain and Cordilleran  

g lac ia l deposits is questionable, and cannot be made with ce rta in ty .
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CHAPTER I I I  

FIELD OBSERVATIONS

U t i l iz in g  the mapping o f previous workers, a f ie ld  reconnaissance 

of Mission t i l l ,  St. Ignatius t i l l ,  and Jocko diamictons was completed, 

Representative exposures of each s tra tig raph ie  unit were described and 

system atically sampled (Figure 5 and Appendix A). Descriptions of the 

s u r f ic ia l  landforms and degree of so il development were made fo r each 

u n it ,  in order to estimate the re la t iv e  ages of the deposits. Where 

s u ff ic ie n t  organic material was found, i t  was collected fo r radio

carbon dating. The following is  a summary of f ie ld  observations fo r  

each s tra tig rap h ie  u n it .

Mission T i l l

Mission t i l l  is well exposed in numerous places along the Mission 

moraine. The moraine, located ju s t  north of Post Creek, extends from 

the big bend of the Flathead River on the west side of the v a l le y ,  to 

the Mission Mountains on the east side of the va lley  (Figure 5 ) .  The 

m ajority o f the surface o f the Mission moraine is dominated by a fresh , 

constructional topography (characterized by g la c ia l kettles  f i l l e d  

with w ater), moderate so il development, and the lack of an integrated  

drainage pattern .

Evidence fo r  the deposition of " la te"  Mission t i l l  by a th in  ice 

sheet is  found near Round Butte, where two broad, subdued moraines of

41
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Mission t i l l  Ind icate that Round Butte (400 fee t high) divided the 

" la te"  Mission ice sheet into two small lobes.

A portion of the Mission moraine along the Flathead River b lu f fs ,  

l ie s  beyond the advance l im i t  of the " la te"  Mission ice (Figure 5 ).

These thick (a t  leas t 120 fe e t )  sections of Mission t i l l ,  which could 

not have been deposited by ice as thin as the " la te"  Mission ic e , record 

e ith e r  1) deposition by ice of an e a r l ie r  g la c ia t io n , or 2) deposition  

by ice of an e a r l ie r  stand of the same g laciation  depositing "la te"  

Mission t i l l .  Thick (up to 75 fe e t )  lacustrine deposits cover the 

"e a r l ie r"  Mission t i l l  surface, and proh ib it any age estimation based 

upon soil development or s u r f ic ia l  integration pattern. "E arlie r"  

Mission t i l l  apparently composes the m ajority  of the thickness of the 

Mission moraine, even in the areas covered by "la te" Mission t i l l .

"Late" Mission t i l l  is  probably ju s t  a thin veneer spread upon the 

surface of "e a r l ie r"  Mission t i l l .

Nowhere in the southern Flathead Valley has a soil or erosional 

horizon been found between " la te"  and "e a r l ie r"  Mission t i l l s .  This 

suggests that both t i l l s  were deposited by ice of the same g la c ia t io n .  

The " la te"  Mission t i l l  probably records deposition during recession 

of the "e a r l ie r"  Mission ic e .  Evidence fo r a composite age of the 

Mission moraine (Curry and others, 1977) has not been found.

A ll unweathered Mission t i l l  exposed is massive, yellowish-brown 

(10 YR 5 /4 ) to brown (10 YR 5 /3 ) ,  strongly calcareous, and a s i l t y  

clay loam. "Late" and " e a r l ie r"  Mission t i l l s  do not d i f f e r  in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



43

appearance. In places, espec ia lly  along the Flathead River b lu f fs ,  

th in  (less than two fee t th ick ) lenses of poorly sorted cobbly gravel 

give the Mission t i l l  a d is t in c t  layering. These horizontal gravel 

lenses are often la te r a l ly  continuous fo r as much as one mile. They 

probably represent periods of increased m elting, and perhaps even 

episodes of minor ice re tre a t .  Above and below the gravel lenses, 

t i l l s  are id e n tic a l .  No paleosols or erosional horizons are found 

anywhere in the Mission t i l l  sequence.

G lacio lacustrine and g la c io f lu v ia l  sediments are commonly in te r 

bedded with Mission t i l l .  The texture of the lacustrine beds varies  

from s i l t y  clay to f in e  sandy s i l t .  Most lacustrine sediments contain 

scattered dropstones. G lac io flu v ia l beds are not common in exposures 

low in the Mission moraine, but become f a i r l y  abundant near the top.

The f lu v ia l  sediments are c h a ra c te r is t ic a l ly  moderately sorted, medium 

to coarse-grained sands and poorly sorted sandy gravels.

A mature zonal so il is developed on the surface of the "la te"

Mission t i l l  (Figure 8 ) .  The depth of so il development averages around 

four fe e t ,  with the so il thinning toward the mountains on the east.

The A-j horizon ranges from about 10 inches th ick near the Flathead 

River, to about 20 inches thick adjacent to the Mission Mountains. Depth 

of carbonate leaching ranges from 15 to 30 inches, with a va lley  center 

average of about 20 inches (Nobles, 1953). This increase in soil 

thickness re f le c ts  the increase in r a in fa l l  toward the mountains, due 

to the orographic influence of the Mission Range.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CD
■ D

O
Q.
C

g
Q.

■ D
CD

FIGURE 8. Soil p rofile  on Mission T i l l .

C/)
C/)

8
3
(O '

Location: 3/4 mile north of Ninepipe Power Station 
Vegetation: grassland
Landscape: hummocky morainal topography of the Mission moraine
Slope: on crest of small hummock
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A. 0-12" lOYR 3/2 very dark gravelly weak, f ine , 7.0 f ine , irregular, low non
gray ish-brown loam crumb abundant transitional calc,

B. 12-35" lOYR 5/4 yellowish
ea brown

gravelly moderate, 
clay loam fine ,

ang. blocky

7.5 f ine , smooth, moderate mod, 
few transitional calc.
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B. 36-48" lOYR 5/4 yellowish- gravelly
brown s i l t  loam

strong, 
coarse, 

ang, blocky

7.5 none wavy, high strongly 
transitional calc.

C, 48"+ lOYR 5/4 yellowish- gravelly massive 7.5 none
brown s i l t  loam

high strongly 
calc.
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Moderate soil  development, u n f i l le d  g lacia l  k e t t le s ,  and the 

lack of an integrated drainage pattern ,  a l l  suggest that  a t  least the 

surface of the Mission moraine is not of great an t iqu ity .  An absolute 

age date from the Mission moraine was obtained by radiocarbon dating 

organic material dispersed throughout Mission g la c io f lu v ia l  sediments. 

These f lu v ia l  sands, sandwiched between t i l l s  near the top of the 

Mission moraine a t  Dublin Gulch (Appendix A),  record the maximum 

stand of " late" Mission ice (Figure 9 ) .  The organics were dated a t  

greater than 20,380 years B.P. The i n f i n i t e  date was the resu lt  of 

in s u f f ic ie n t  organic material and the s i l t y  nature of the organics 

collected.

Descriptions of seven pertinent sections of Mission t i l l  (Figure 5) 

are presented in Appendix A. Laboratory data from these seven Mission 

t i l l  sample lo c a l i t ie s  are also presented in the other appendices.

S t . Ignatius T i l l

Exposures of St.  Ignatius t i l l  are l imited to shallow road cuts 

along Ravall i  H i l l .  The t i l l  extends easterly from the crest of Ravall i  

H i l l  to the H i l ls  southeast of the town of St. Ignatius (Figure 5 ) .  I t  

occurs as a th in veneer covering Precambrian Belt bedrock. In places, 

bedrock is exposed at  the surface. The surface has a well integrated  

drainage pattern,  which could be affected by the shallowness of the 

bedrock.

Nowhere in the southern Flathead Valley is more than f iv e  fe e t  of  

St. Ignatius t i l l  exposed. The t i l l  is s l ig h t ly  calcareous and
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Sample # UH-77-1 

20,330 years B.P.

Lacus tr ine
S he lf

SW SW SW Section 20, Twp 19N Rqe 20W 
Charlo, Montana 7.5 n in  Quad 

{ou tcrop  loca ted  a t in te r s e c t io n  o f  highway and ra i l r o a d  t ra cks )

M .O  m b u f f  sandy s i l t  t i l l ;  calcareous

30-50 cm massive l i g h t  b u f f  la c u s t r in e  s i l t  w i th  drop
stones; conta ins th in  lenses o f  fes toon- type  
cross-bedded sands; A continuous cross-bedded 
sand la y e r  occurs j u s t  above the contac t w ith  
the gravel u n i t  below; cross-beds g en e ra l ly  
d ip  south.

20 cm brown w e l l - s o r te d ,  medium to  coarse grained 
sand; some g ra v e l ;  clean and openwork.

m M

Sample

40 cm Brown coarse sand and g ra v e l , rounded to  
subrounded; conta ins  rounded c la y  b a l l s ;  
clean and openwork; organics common.

In middle o f  th is  u n i t  occurs a 5 cm th ic k  brown f in e -  
medium gra ined sand w ith  trace  g ra v e l;  
cross-beds d ip  south; organics common.

O o

50 cm Brown coarse sand and g ra v e l;  w i th  abundant 
la rge  cobb les, e s p e c ia l ly  near base. Rounded 
to  subrounded; rounded c la y  b a l l s ;  c lean open
work; no bedding e v iden t.  Grades eastward 
in to  a d i r t y  m a tr ix  supported cobbly g ra ve l.

B u f f  sandy s i l t  t i l l ;  ca lcareous. Thickness 
unknown.

AJ
A l l  o f  the o rgan ic  m a te r ia l  was c o l le c te d  from the outwash-type sand & 
gravel u n i t  in te rp re te d  to  be a Kane te r ra c e  dep o s it .

FIGURE 9. Description o f  the radiocarbon-dated Dublin 
Gulch Highway section
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yellowish-brown (10 YR 5 /4 ) .  Exposed St.  Ignatius t i l l  is a s i l t y  

clay loam, however the original texture of the parent material is 

unknown, since fresh, unaltered St.  Ignatius t i l l  was not found. No 

glaciolacustr ine or g la c io f lu v ia l  sediments were found associated 

with the St. Ignatius t i l l .

Depth of soil  development on the St. Ignatius t i l l  is poorly 

defined, since fresh, unaltered t i l l  was not observed. Thickness 

of the A-j soil  horizon ranges from 12 to 20 inches along Ravall i  H i l l ,  

s im ilar  to the A-j horizon thickness on the " late" Mission t i l l .  How

ever, the textural  B horizon (zone of é luv ia t ion)  extends to a t  least  

60 inches in depth, and could be s ig n i f ic a n t ly  deeper (Figure 10).

Depth of leaching of carbonate on the St.  Ignatius t i l l  ranges from 

30 inches on Ravall i  H i l l  to more than 40 inches adjacent to the 

Mission Range, with an average of 34 inches (Nobles, 1953). Thus, 

soil  development on the St. Ignatius t i l l  is s ig n i f ic a n t ly  greater than 

on the " la te"  Mission t i l l .  The deeper soil  development and more 

developed drainage pattern on the St.  Ignatius t i l l  suggest that the 

t i l l  is s ig n i f ic a n t ly  older than the " la te"  Mission t i l l .

Jocko Diamictons

The Jocko diamictons are best exposed in a small b lu f f  a t  the 

junction of the Jocko River and Valley Creek (Figure 5 ) .  They are also 

found a t  scattered lo c a l i t ie s  throughout the northern Jocko Valley ,  

where outcrops are thin and of l im ited  la te ra l  extent. The diamictons
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FIGURE 10. Soil p ro f i le  on St. Ignatius T i l l .

Location: Ravalli H i l l  summit 
Vegetation: grassland
Landscape: hummocky morainal topography of St. Ignatius t i l l
Slope: on crest of small hummock
Aspect: south-facing
Parent material: St. Ignatius t i l l
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A, 0-6" lOYR 3/2 very dark s i l ty  clay weak, f in e , 7.0 f in e , wavy, low non
gray ish-brown loam crumb few transitional calc.

B. 6-48" lOYR 5/4 yellowish- gravelly moderate, 7,5 f in e , smooth, moderate non
brown s i l ty  clay f in e , v. few transitional calc.

subang. blocky
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48-60"+ lOYR 5/4 yellowish-
brown

covered
below
60"

gravelly moderate, 7.5 none 
s i l ty  clay medium,

subang. blocky

high weakly 
calc.
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are massive, noncalcareous, brown (10 YR 5/3)  to yellowish-brown 

(10 YR 5 /4 )  and strongly oxidized throughout. Pebbles and cobbles are 

more abundant than in e i th e r  the Mission or St. Ignatius t i l l s .

At the Valley Creek section, two t i l  1-1 ike units are interbedded 

with lacustrine (?) s i l t  beds and f lu v ia l  (?) gravels. Glacial Lake 

Missoula sediments rest unconformably upon the uppermost Jocko s i l t  

u n i t .  Olive-green T e r t ia ry  (?) sands and s i l t y  clays are exposed 

a t  the base of the section. This section is cut by normal fa u l ts ,  

with offsets  up to one foot.  The fau lts  cannot be traced upward 

beyond the base of the uppermost t i l l - l i k e  un it .  L ig n i t ic  wood 

fragments are common in the T er t ia ry  (?) sediments a t  the base of the 

section and are scattered throughout the diamictons above. The 

l i g n i t i c  wood also occurs as a th in (5 cm thick) horizon within a s i l t  

bed between Jocko diamictons.

Glacial Lake Missoula sediments mantle much of the northern Jocko 

Valley , prohibit ing any age estimation of the Jocko diamictons by the 

degree of development of drainage integration patterns. The strong 

oxidation and carbonate leaching of the bulk of the Valley Creek section 

is ind icative  of a substantia l ly  greater age for  the Jocko diamictons 

than for e i th e r  the Mission or St. Ignatius t i l l s .  This is also 

suggested by an absolute age date from a l i g n i t i c  wood fragment found 

within the upper diamicton (Figure 11). I t  was radiocarbon dated at  

greater than 37,000 years B .P . ,  the l im i t  of conventional radiocarbon 

dating. A detai led description of the Jocko diamictons at the Valley  

Creek section is included in Appendix A.
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X?J JL®y_P re^k^ on

Sample # UM-77-2 

>37,000  years B.P.

SW NE SW Section 8 , T17N R20W 
A r le e ,  Montana 15 min Quad 

(a t  ju n c t io n  o f  V a l ley  Creek and Jocko R iver)

Lake 
Missoula 

1 ake 
s i l t s

t i l l ?  
uni t

A nA / ' '

Thickness Unknown

Sample

7-10 m

Tan, varved la c u s t r in e  s i l t  w ith  drop
stones; unox id ized ; ca lcareous; a few 
la rge  chunks o f  wood occur sca tte red  
through t h i s  u n i t ,  which were not used 
in  d a t in g .

Brown c layey s i l t  w i th  abundant angular 
to  rounded g ra v e l ;  ox id ized  to  a b r ig h t  
orange-brown c o lo r ;  u n i t  could be t i l l ;  
Abundant wood fragments occur sca tte red  
randomly throughout t h i s  u n i t ;  t h is  wood 
is  found as t in y  b i t s  sca tte red  through 
the m a tr ix  as we ll as la rg e r  squa red -o ff  
chunks; wood f o r  da t ing  was taken from 
near the top o f  t h i s  u n i t .

'Arn'-'V/J

FIGURE 11. Description of  the radiocarbon-dated 
Valley Creek section
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CHAPTER IV 

LABORATORY OBSERVATIONS

Lab Methods

Sedimentary petrologic analyses were employed in this study, in 

an attempt to " f ingerprin t"  Pleistocene stra t igraphie  units in the 

southern Flathead Valley .  The lab techniques used are outlined here., 

data is presented, and a discussion of results is offered. Lab tests  

performed include grain size analyses (both sieve and hydrometer 

methods), clay mineralogy by x-ray d if fractometry ,  and microscopic 

examination of sand size p ar t ic les .

Grain size analyses. Grain size analyses were performed using 

sieving and hydrometer methods. The sieving procedure employed is a 

modification of those outlined by Bowles (1970) and Folk (1968).

I t  is an accurate, eas i ly  reproducible, and re l ia b le  method. The 

procedure followed fo r  hydrometer analyses is given by Bowles (1970).  

One representative hydrometer analysis data sheet (Figure 12) and one 

representative sieve analysis data sheet (Figure 13) are presented, 

to i l l u s t r a t e  how the grain size data were obtained.

Grain si ze dis t r ib u t io n  curves. Sieve and hydrometer data were 

used to produce a grain size d is t r ib u t ion  curve for each sample. In 

order to f a c i l i t a t e  the reading of s t a t is t i c a l  parameters, the data 

were plotted as a cumulative curve. Grain diameters were plotted on

51
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GRAIN SIZE ANALYSIS - HYDROMETER METHOD Data Sheet

Sample No.  DGH " 7

Location Ĉuhl/ri Gulch Se.cf>o/i

Date o f  testing 3-10-79

Hydrometer no. ISZH Ĝ  o f  solids

Dispersing agent Colson Amount tZS' m{
a= LOO

Zero correction omis ai f -% Meniscus correction  ̂uni-f-
Weight o f  s o i l , W 4 8 .7 9  3

Dot«

Tim # El#ps#tf
tim e ,
m ift

Tem p.,

•c

A c tu a l
Hyd.

re a d in g
Ro

C orr.
Hyd.

reod/Ag
Rc

%
F ifte r

M y* 
C o rr. 

»n ly  fo r 
m eniscus, 

R

L L
t K D"""’ 0,0

4 - /“7f 4 / 7 smrft 4 /8 1 20 39.5 33.S69.7 40.59 6 5 965 .0)37 .0426 4.55
/I 4  ̂/<? 2 20 37.5 3! 5 646 33.5I0.0 5 0 0 .0 /37 .Û306 5.03
li 4 -2 / 4 20 30 50 6 / 5 37 lO.Z 2 55 .0 /37 .02 /9 5.5 /
If 4-25 8 20 3S 29 59.5 36 /0.4 1.30.0 /37 .0 /56 6.00
il 4  32 /5 20 33.5 27.5 56.4 3 4 5 /o 6 0.707.0/37 .OHS6 4 4
II 4-47 JO 20 31 25 5 /3 3Z //./ 0.370.0/37 .006336.9/
II 5 / 7 éo iq.5 27.5 2/.3 45.6 20.5 U.(a am.01375.00604 7 37
il 6 •77 IZO 19 ZS /0 .7 58.3 26 12.00./ÛO.0 /39 .00936 7.54
I I 9 / 7 240 IQ.S22 /5.6 32.0 23 iZ.5 .052/ .0/39 .003/7 0 .3 0/2I7 4go IÔ /? /2 .5 2 5 6 20 13.0 .027/ .0 /43 .00230 8.76

4-2-79 4 / 7 /440 17.5 /5 8 .4 /7 .2 !L> !3.7.00431.0 /4 / .00/38 9.5b
4-3-79 4 - / 7 209o 17. S /4 7 4 /5 .2 IS /3.g.00479 .014-1.0009% /O.OO

Rt = Racxjal — i«ro correcXsn + C j  %  finer = Rc (o)/W» O = K \ / * - / |

FIGURE 12. Representative hydrometer analysis data sheet.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



53

GRAIN SIZE ANALYSIS - MECHANICAL

Sample No. DGH ~ 7~ __________

Location DuUih Gulch GecHoti
Date o f  testing 4 - 3 - 7 9

Data Sheet

Weight of dry sample 2f2.5ô
Weight o f  sample a f te r  wet sieving SS.̂Zĉ 
Weight loss from wet sieving fS6.6Q ô

Sieve no. Diom.. 0 Wl. retained %fe*oined %possing

lo -f.Q Z5.Q7 12 J7 91Q3
/8 0.0 6.73 3.17 94  66
35 LO S.̂Z 2.55 02. 11
60 2.0 5.05 2.32> 7 9 .7 3

IZO 3.0 5.3<S> 2.53 77. 20
Zoo 3.15 s.n 2..50 75.00
'fan — /. SZ ----- ---- '

55. 30 q

Iciss ^

= 0.19% ev',
%  passing = 1 0 0  -  2^  %  re ta in e d

FIGURE 13. Representative sieve analysis data sheet.
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the abscissa (ar ithmetic scale) in 0 units.  Cumulative percent f r e 

quency was plotted on the ordinate (p ro bab i l i ty  scale).

Percentages of gravel ,  sand, s i l t ,  and clay were calculated from 

each curve, and recorded as t^xj^ure. The gravel percentage given is 

the percent of the e n t i re  sample. Sand, s i l t ,  and clay percentages 

given are exclusive of the gravel-s ize  material present; they tota l  

100 percent when added together.

S ta t is t ic a l  parameters have been calculated for  each grain size  

d is tr ib u t io n  curve. Following is a short discussion of each paramater 

used, including graphic mean (M^), graphic standard deviation (Oq or

and graphic skewness (S% or S% ) .  Equations and tables are from
G I

Folk (1968).

Graphic Mean (M^)- The graphic mean is the best graphic measure 

of the average grain size of a sediment sample. I t  is superior to the 

median ( 05o)» because i t  is calculated from three points on the grain 

size curve, rather than ju s t  one. Thus, calculations of mean size 

by measuring the median are not very sat is factory  in strongly skewed 

curves. The graphic mean is a standard measure of grain size used in 

sedimentary petrologic studies.

 ̂ ^^16 050 + 084)/3

Graphic Standard Deviation (Oq ) or Inclusive Graphic Standard 
Devialrtoyr~(^  standard deviation is a measure of the uniformity

or sorting of a sediment. The inclusive graphic standard deviation

(0^) is the best measure o f  sort ing,  because i t  embraces 90 percent
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of the d is tr ibu t ion  curve.

Oj = (084 -  016)/4  + (095 -  05) / 6.6  

I t  was calculated whenever possible. However, most of the samples 

studied in this project contained so much clay and/or gravel,  that the 

values of gg and/or were not obtained. Therefore, i t  was necessary 

to use the graphic standard deviation ( O q ) ,  which covers only 6 8  per

cent of the curve.

Oq ~ (084" 016)/2

I t  is s t i l l  a good measure of sort ing, which is commonly used in

sedimentological analyses. A c la ss if ica t io n  of sediment sorting

devised by Folk (1968), is given below: i t  was employed in th is  study.

(X (or Or) under 0.350, very well sorted 
0.35 -  0.500, well sorted 
0.5 -  0.710, moderately well sorted 
0.71 -  1.000, moderately sorted
1.00 -  2.000, poorly sorted
2.00 -  4.000, very poorly sorted 

over 4.000, extremely poorly sorted

Graphic Skewness (5% ) or Inclusive Graphic Skewness (Su ).

The graphic skewness is an indicator of the amount of asymetry of the 

d is tr ibu t ion  curve. In essence, i t  is a measure of the amount of d is 

placement of the median ( 05q) from the graphic mean (M^). Thus, 

graphic skewness is a measure of the amount of excess f ine  material  

(pos it ive  skewness) or excess coarse material (negative skewness) 

present in the sediment. Since most skewness occurs in the t a i l s  of

the d is tr ibu t ion  curves, use of the inclusive graphic skewness (Su ) is
"l

preferable.
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^  ( # 1 6  ^ 8 4  ~  2 0 s Q ) / 2 ( 0 g 4  -  0 ^ g )  +  ( 0 g  +  0 g g  -  2 0 s o ) / 2 ( 0 g g -  0 g )

However, as previously mentioned, values of 0g and/or 0gg were generally  

not obtained in this study, so that the graphic skewness (S^ ) was used 

fo r  most samples.

\  '  (*’16 + 084 - «̂5 0 (084 - 016)
Although not as encompassing as the inclusive graphic skewness, the

graphic skewness is s t i l l  a useful parameter, which is commonly used.

in sedimentary petrologic studies. Folk's c la s s i f ic a t io n  of skewness,

based upon values of S. (or Si, ) was used in this thesis to assignKj Kq
skewness descriptions to the sediments. Folk's c la ss if ica t io n  is  

given below.

(S. ) from +1.00 to +0.30, strongly fine-skewed
I 6 +0.30 to +0.10, fine-skewed

+0.10 to -  0 .10,  near symmetrical
-0 .10  to -0 .3 0 ,  coarse-skewed
-0 .30  to -1 .0 0 ,  strongly coarse-skewed.

Discussion of grain size d is tr ibu t ion  curves. Thir ty -n ine samples

of g lac ia l  d r i f t  from the southern Flathead Valley were analyzed for

th e i r  grain size properties. Twenty samples were g lac ia l  t i l l ,  eleven

were g lac io lacustr ine,  four were g la c io f lu v ia l ,  and four were diamictons.

A l l  grain size d is t r ib u t io n  curves are presented in Appendix B.

Figure 14 is a te rn ia ry  diagram of the grain size properties of the

glacia l  units studied.

Mission t i l l . Seventeen samples of Mission t i l l  were analyzed.

The average texture of representative samples of the s i l t y  clay loam
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Mission t i l l  is 13 percent gravel/18 percent sand - 46 percent s i l t  - 

36 percent clay,  with the average mean grain size of 5.47 0 (medium- 

grained s i l t ) .  Sorting (0^) of a l l  Mission t i l l s  analyzed ranges 

from 3.30 0 to 5.650, ind ica t ive  of very poor to extremely poor 

sorting. Textures d i f f e r  l i t t l e  from sample to sample (Figure 14) 

and " la te"  and "e a r l ie r"  Mission t i l l s  could not be d i f fe re n t ia te d  by 

grain size analyses.

The texture of the Mission t i l l  results from the overriding of 

both proglacial outwash and lacustrine sediments by Mission ice .  

Negative skewness values fo r  a l l  Mission t i l l s  analyzed are ind icative  

of the excess coarse material present, presumably derived from the 

overriding of proglacial outwash by the Mission ice .  Three samples 

of Mission t i l l  (FRF-17, CCC-2, and MCC-3) are s l ig h t ly  coarser than 

the other samples, containing more s i l t  and less clay (12/17-53-30).  

A ll  three s i l t i e r  t i l l s  rest d i re c t ly  upon lacustrine s i l t  beds, 

suggesting that th e i r  s i l t i e r  textures resu lt  from local incorporation  

of lake s i l t s  into the t i l l s .

St. Ignatius t i l l . Three samples representative of St.  Ignatius  

t i l l  were analyzed. This clay loam t i l l  averages 15 percent gravel/

12 persent sand -  36 percent s i l t  - 52 percent c lay ,  with an average 

mean grain size of 6.45 0 ( f ine-grained s i l t ) .  0^ values between 

5.850 and 6.130 are ind icative  of extremely poor sorting. As in the 

Mission t i l l ,  negative skewness values are ind icative  of excess 

coarse material present.
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The higher clay content of the St. Ignatius t i l l  (Figure 14) 

could r e f le c t  f iner-gra ined parent m ater ia l ,  but since a l l  samples 

of the t i l l  are from the textural  B soil  horizon, the greater clay  

content probably re l fe c ts  clay i l lu v ia t io n  from the surface. No 

completely unweathered St. Ignatius t i l l  is exposed in the southern 

Flathead Valley ,  preventing the analysis of fresh, unaltered t i l l .

Jocko diamictons. The Jocko diamictons analyzed are te x tu ra l ly  

s im ila r  to the Mission t i l l  (Figure 14).  The s i l t y  clay loam Jocko 

diamictons average 15 percent gravel/16 percent sand -  43 precent 

s i l t  -  41 percent c lay ,  with an average mean grain size of 5.420 

(medium-grained s i l t ) .  As in the Mission and St. Ignatius t i l l s ,  0  ̂

values between 3.380 and 6.500 are ind icative  of very poor to extremely 

poor sort ing,  and negative skewness values r e f le c t  the incorporation  

of g la c io f lu v ia l  sediments into the t i l l .  One sample of Jocko 

diamicton (VC-9) is s ig n i f ic a n t ly  coarser-grained than the other Jocko 

diamictons analyzed (27 /23 -44-29) .  Since the sample was taken from 

very strongly oxidized diamicton near the top of the uppermost t i l l 

l ik e  u n i t ,  i ts  coarser texture may be the re su l t  of i l lu v ia t io n  of 

clay from the matrix.

Glaciolacus tr ine  and g la c io f lu v ial sediments. Grain size analyses 

were performed on lacustrine sediments interbedded with Mission t i l l  

and Jocko diamictons. No s im ila r  sediments were found associated 

with the St.  Ignatius t i l l .  Mean grain s ize ,  tex ture ,  and sorting  

of the lake sediments vary considerably (Figure 14).  Textures range
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from nearly pure clay (0 /2 -3 -95 ;  sample FRF-12) to sandy s i l t  with 

v i r t u a l l y  no clay (0 /25-67-8;  sample DGH-2). Mean grain size ranges 

from 3.800 (coarse s i l t ;  sample MCC-2) to 8.820 clay; sample CCC-4).

A l l  of the lake sediments are poorly to very poorly sorted, with 0^ 

values from 1.150 to 3.550. Most are fine-skewed.

Grain size analyses were also performed on g la c io f lv ia l  sediments 

interbedded with Mission t i l l .  No s im ilar  f lu v ia l  sediments were 

found with in  the St. Ignatius t i l l ,  and f lu v ia l  sediments in the Jocko 

diamictons were too a ltered to make an accurate grain size analysis.

All  Mission g la c io f lu v ia l  sediments are predominantly gravel,  with a 

matrix of variable grain s ize .  Gravel composed 45 to 78 percent of 

the samples. Sand composition ranges from 36 to 90 percent of the 

matrix,  while s i l t  and clay composes from 10 to 64 percent of the matrix. 

The mean grain size of the f lu v ia l  sediments is approximately -1.440  

(g ran u le -s ize ) . Sorting of the sediments range from poor (0^ = 1.770) 

to very poor (3 .230 ) ,  while posit ive skewness values re f le c t  excess 

f ine  material present.

Conclusions. Mission t i l l ,  St.  Ignatius t i l l ,  and Jocko diamictons 

cannot be d i f fe re n t ia te d  by grain size analyses. The texture and mean 

grain size of Mission t i l l  and Jocko diamictons are extremely s im ilar  

and not d is t in c t iv e .  St.  Ignatius t i l l  analyzed is f iner-gra ined ,  

but samples are from the textural  B soil  horizon, which probably do 

not f u l l y  r e f le c t  the texture of the parent m ater ia l .  Lacustrine 

sediments interbedded with Mission t i l l  and Jocko diamicton are too
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variable  to be diagnostic, and g la c io f lu v ia l  sediments are only 

avai lab le  from the Mission t i l l ,  prohibit ing comparison with s im ilar  

sediments in the St.  Ignatius t i l l  and Jocko diamictons.

Clay mineralogy. X-ray d i f f ra c t io n  of clay minerals was used 

in an attempt to " f ingerprin t"  the g lacia l  units in the southern 

Flathead Valley.  I t  was antic ipated that d r i f t  units of d i f fe re n t  

g lac ia l  advances might contain d is t in c t iv e  mineralogies, result ing  

from the incorporation of unique sediments or bedrock types.

Clay minerals present in the g lacia l  deposits of the southern 

Flathead Valley include i l l i t e ,  smectite, c h lo r i te ,  mixed-layer clay,  

and possibly k a o l in i te .  Quartz and c a lc i te  peaks are also present in 

the d i f f ra c t io n  patterns of the less than 2 micron clay f rac t ion .

Clay minerals were id e n t i f ie d  using the c r i t e r i a  outlined by Carroll  

(1970). Since ka o l in i te  peaks were not d i f fe re n t ia te d  from c h lo r i te  

peaks, th e i r  presence is designated c h lo r i te -k a o l in i te {? )  in the 

discussion.

Following is a discussion of the clay minéralogie composition of 

each strat igraphie  un it  studied. D i f f ra c t io n  patterns of samples 

representative of each un it  are presented in Appendix C.

Mission t i l l .  X-ray d i f f r a c t io n  patterns were obtained from 

twenty-one samples of Mission t i l l  and associated lacustrine sediments. 

L i t t l e  var ia t ion  occurs in the clay minéralogie composition of the 

Mission t i l l s .  Nineteen of the twenty one samples analyzed are nearly  

id e n t ica l .  They contain approximately equal proportions of i l l i t e
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and c h lo r i t e -k a o l in i te (? ) ,  with a lesser amount of smectite. Most 

samples also contain minor amounts of quartz and c a lc i te .  Some con

ta in  very small amounts of mixed-layer clay.

The two samples which do show minor compositional variation are 

samples DGL-5 (from the top of the Mission moraine along Dublin Gulch) 

and FRF-17 (from the base of the b lu ffs  along the Flathead River).

Both are g lac ia l  t i l l s .  These samples also have approximately equal 

proportions of i l l i t e  and c h lo r i te -k a o l in i te  (? ) ,  but do not contain 

smectite. A possible explanation for  the lack of smectite in these 

samples may be that both t i l l s  are s l ig h t ly  coarser-grained than the 

majority o f  Mission t i l l s .  Since smectite is a very f ine-grained  

mineral,  and since the clay f ract ion  in these samples is coarser, 

smectite does not appear in the d i f f r a c t io n  patterns.

The clay minéralogie composition of Mission t i l l  re f lec ts  the 

source material overridden by Mission ice.  I l l i t e  and c h lo r i te -  

k a o l in i te (? )  are major components of the Precambrian Belt  metasediments 

(Maxwell, 1964). Quartz and c a lc i te  are also derived from the quart-  

z ites  and limestones of the Belt rocks. The smectite present in most 

samples of Mission t i l l  was apparently derived by incorporation of 

Tert ia ry  sediments into Mission ice .  A sample of T e r t ia ry (? )  sediments 

(FRF-9) exposed along the Flathead River was analyzed to determine 

i t s  minéralogie composition. As suspected, the matrix of this talus  

breccia is dominantly smectite.
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The uniformity of a l l  samples analyzed, from scattered lo c a l i t ie s  

and varying depths within the Mission moraine, prohibits d i f fe re n 

t ia t io n  of " late" and "ea r l ie r"  Mission t i l l s  by clay mineralogy. 

D if f ra c t ion  patterns of representative Mission t i l l s  are presented 

in Appendix C.

St. Ignatius t i l l . As previously mentioned, the St.  Ignatius t i l l  

is poorly exposed along the h i l l s  south and southwest of the town of 

St. Ignatius. I t  occurs as a thin veneer of t i l l  on top of Precambrian 

Belt  bedrock. For this reason, samples of fresh, unaltered St.  Ignatius

t i l l  were not available fo r  analysis. The samples analyzed fo r  clay

minéralogie composition were of the least weathered St. Ignatius 

t i l l  exposed. X-ray d i f f ra c t io n  patterns of four samples of St. Ignatius 

t i l l  were obtained. Two patterns are presented in Appendix C.

All  samples of St. Ignatius t i l l  contain approximately equal

proportions of i l l i t e  and c h lo r i t e -k a o l in i t e (? ) ,  as in the Mission t i l l .  

Shallow, highly weathered samples of St. Ignatius t i l l  (SIT-3 and 

SIT-4) (Appendix C) contain a comparable amount of smectite to that  

found in weathered Mission t i l l  (D6H-3). S l igh t ly  oxidized samples 

of St.  Ignatius t i l l  (SIT-1 and SIT-2) (Appendix C) contain smectite 

in amounts comparable to that in unweathered Mission t i l l .  The 

s l ig h t ly  higher amount of smectite, and the lack of ca lc i te  in some 

St. Ignatius t i l l  samples may resu lt  from s l ig h t ly  greater weathering.

Source material incorporated into the ice of the St.  Ignatius 

advance must have been the same as that of the Mission advance. I l l i t e ,  

c h lo r i t e -k a o l in i t e (? ) ,  quartz,  and c a lc i te  were derived from Precambrian 

Belt metasediments. T e r t ia ry  sediments supplied smectite.
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D i f fe re n t ia t io n  of the Mission and St.  Ignatius t i l l s  cannot 

be made using clay minéralogie studies. Incorporation of s im ila r  

materials by both Mission and St.  Ignatius ice ,  has given them s im ilar  

clay minéralogie compositions.

Jocko diamictons. Four samples of Jocko diamictons and one sample 

of associated lacustr ine(?) s i l t  were analyzed fo r  th e i r  clay mineral 

composition. A l l  samples o f  diamicton are strongly oxidized, while 

the lake(?) s i l t  (sample VC-7 , from between diamictons) at  the Valley  

Creek section is oxidized only along jo in ts .  The bulk of th is  lake(?)  

s i l t  is unweathered.

As in Mission and St. Ignatius t i l l s ,  sample VC-7 contains 

approximately equal proportions of i l l i t e  and c h lo r i te -k a o l in i te (? )  

(Appendix C). Smectite occurs in an amount comparable to that of  

fresh Mission t i l l .  Quartz is a minor component; c a lc i te  is absent.

Patterns of the strongly oxidized diamictons a l l  confirm the 

presence of i l l i t e  and c h l o r i t e - k a o l in i t e ( ? ) , a lb e i t  in small amounts. 

The dominant clay mineral in the oxidized diamictons is smectite.

The i l l i t e  and c h lo r i te -k a o l in i te (? )  present in the diamictons 

and lake(?) s i l t  were probably derived from Precambrian Belt  rocks.

Some of the smectite in the Jocko diamicton was presumably derived 

from Tert ia ry  sediments, while some is the product of weathering. The 

s im i la r i ty  of clay mineral composition o f  the unweathered Jocko lake(?)  

s i l t  and Mission t i l l  is s t r ik in g .  This suggests that the orig inal  

clay mineral composition of the Jocko diamictons, before weathering.
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was s im ilar  to the Mission t i l l .  The increased smectite in the Jocko 

diamictons could be due to weathering. I t  is also possible that  

fresh» unoxidized Jocko diamictons could contain a greater re la t iv e  

amount of smectite than the Flathead Valley t i l l s ,  which would be 

ind icat ive  of the incorporation of more Tert ia ry  sediments into the 

Jocko diamictons than in e i th er  the Mission or St. Ignatius t i l l s .

The clay minéralogie suite of the Jocko diamictons does indicate  

that they were deposited by a transporting medium capable of incor

porating both Precambrian Belt  rocks and T ert ia ry  sediments. The 

clay mineral suite cannot be used to reconstruct the source area of 

the diamictons, since Belt  rocks and T er t ia ry  sediments are found in 

every d irect ion  from the outcrops of Jocko diamictons in the northern 

Jocko Valley.

Microscopic Examination of Sand Fraction

At the outset of the study, i t  was hoped that heavy mineral analyses 

might also be an aid in " f ingerprint ing" Pleistocene strat igraphie  units.  

Upon completion of sieving, examination of the sand fract ion  revealed 

only a minor amount of heavy minerals present, an amount in s u f f ic ie n t  fo r  

heavy mineral analysis. Thus, a microscopic examination of sand l i t h -  

ologies was substituted fo r  heavy mineral analysis. Since the f ine  sand 

f ract ion contained only rock fragments and quartz,  a coarse sand size  

f ract ion was chosen fo r  examination. The larger grain size also made 

l i th o lo g ie  ide n t i f ic a t io n s  simpler. Grain l i th o lo g ie  counts were 

made, using the p ar t ic le s  remaining on the #18 mesh screen (U.S.
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Standard Sieve s iz e ) .  Counts were made on eleven representative  

samples; seven from Mission t i l l ,  two from St. Ignatius t i l l ,  and 

two from Jocko diamictons. Approximately 300 grains were counted 

fo r  each sample.

The rock types recognized in the deposits of the southern 

Flathead Valley are grouped into seven categories: 1) gray-brown

argillaceous limestone; 2) tan sandstone; 3) yellowish-white quart-  

z i te  and a r g i l l i t e ;  4) green quartz i te  and a r g i l l i t e ;  5) gray quart-  

z i te  and a r g i l l i t e ;  6) purple and purplish-red quartz i te ;  and 

7) purple and purplish-red a r g i l l i t e .  All  l i tho log ies  are from the 

Precambrian Belt  Series metasediments, with the possible exception of  

the tan f r ia b le  sandstone. I t  may have been derived from T er t ia ry  

sediments underlying g lac ia l  sediments on the f lo o r  of the southern 

Flathead Valley .

The following is a summary of the l i tho log ies  present in the sand 

f ract ion  of Mission t i l l ,  St.  Ignatius t i l l ,  and Jocko diamictions.  

Individual sample data is given in Appendix D.

Mission t i l l . A l l  of the grains examined in Mission t i l l  are 

fresh and unoxidized. Many limestone grains have an etched appearance, 

but etched limestone occurs in fresh Mission t i l l  as w e l l ,  indicating  

that a t  least some etching is p re -g la c ia l .  Two of the t i l l  samples 

examined were from " la te"  Mission t i l l ,  and f iv e  were from "ear l ie r"  

Mission t i l l .  The two Mission units could not be d i f fe ren t ia te d  by 

l i th o lo g ie  composition of sand grains.
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The predominant l i th o lo g ie  group present in most samples of 

Mission t i l l  is the dark gray quartz i te  and a r g i l l i t e .  Most of the 

grains in this group are highly calcareous a r g i l l i t e ,  with quartz i te  

only composing about 10 percent of the gray l i th o lo g ie  group. Gray 

q ua rtz i te  and a r g i l l i t e  grains range from 20 percent -  31 percent in 

abundance.

Nearly as abundant as the gray quartzites and a r g i l l i t e s  are 

grains of the tan f r ia b le  sandstone. I t  is eas i ly  recognized by i ts  

rounded shape, non-calcareous nature, and micaceous g l i t t e r .  I t  ranges 

from 16 percent -  25 percent in abundance in the Mission t i l l .

Another l i th o lo g ie  group quiet abundant in Mission t i l l  is the 

yellowish-white quartz i te  and a r g i l l i t e .  Approximately 80 percent of 

the grains in th is  group are q u a rtz i te .  Color ranges from clear  to 

white to yel low, a l l  grains are non-calcareous. Abundance ranges 

from 9 percent to 21 percent.

Purple and purplish-red quartz i tes ,  and purple and purplish-  

red a r g i l l i t e s  occur in approximately equal amount in the Mission t i l l .  

While the quartz ites are non-calcareous, the a r g i l l i t e s  are s l ig h t ly  

to moderately calcareous. Quartzites range from 3 percent to 14 per

cent in abundance in the to ta l  sample, while a r g i l l i t e s  compose from 

5 percent -  13 percent o f  the Mission t i l l .

Gray brown argil laceous limestone grains compose about 10 percent 

of the grains in Mission t i l l .  The patchy d is tr ibu t ion  of argil laceous  

material within the limestone gives the carbonate an etched appearance.
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due to increased weatheripg along the highly calcareous sections of  

the grains. Much of the a r g i l l i t e  in the gray a r g i l l i t e  and quartz i te  

group may have o r ig in a l ly  been within argil laceous limestone fragments, 

thus derived from limestone l i th o lo g ie s .  Limestone grains range from 

7 percent -  15 percent in abundance in the Mission t i l l .

Green quartz i te  and a r g i l l i t e  ranges from 6 percent - 12 per

cent in abundance. Non-calcareous quartz i te  makes up only about 

25 percent of the green l i th o lo g ie s ,  with the s l ig h t ly  calcareous 

a r g i l l i t e  being fa r  more abundant.

St. Ignatius t i l l . Grain counts from St. Ignatius t i l l  are quite  

sim ilar  to those from Mission t i l l .  A l l  of the l i thologies previously 

described from the Mission t i l l  occur in the St.  Ignatius t i l l .  Grain 

counts of a l l  seven l i th o lo g ie  types, from samples of St. Ignatius 

t i l l ,  f a l l  within the range present in the Mission t i l l s .  Therefore 

the two strat igraphie  units are indistinguishable based solely upon 

l i th o lo g ie  grain counts. S l ight oxidation of limestone, sandstone, 

and some a r g i l l i t e  grains occurs in the St,  Igantius t i l l ,  but the 

quartzites are v i r t u a l l y  fresh and unoxidized.

The gray quartz i te  and a r g i l l i t e  group is the most abundant (25%) 

in the St. Ignatius t i l l ,  as i t  was in the Mission t i l l .  Tan sand

stone is again the next most abundant l i tho logy (18%). Purple and 

purplish-red a r g i l l i t e  is s l ig h t ly  more abundant in St. Ignatius t i l l  

than in Mission t i l l .  A l l  other l i tho log ies  are s im ilar  in abundance 

to the Mission t i l l .
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Jocko diamic t ons. Although the re la t iv e  percentages of the seven 

l i th o lo g ie  groups present in the Jocko diamictons are d i f fe re n t  from 

the Mission and St. Ignatius t i l l s ,  grains of at least six of the 

seven groups are present. Limestone grains s im i la r  to those in the 

Mission and St. Ignatius t i l l s  do not occur (discussed below). Strong 

oxidation of a r g i l l i t e  and sandstone grains is indicative of a pro

longed period of weathering. Even the matrix of many quartz i te  grains 

is s l ig h t ly  oxidized, giving the grains a p it ted appearance.

Gray quartz i te  and a r g i l l i t e  grains compose ju s t  over 50 percent 

of the grains counted in the Jocko diamictons. The etched appearance 

of many of the gray a r g i l l i t e  fragments id e n t i f ie d  in the Jocko 

diamictons suggest that  they are remnants of the weathering and d is 

solution of the calcareous portions of the gray-brown argillaceous  

limestone. The presence of numerous etched cobbles and boulders in 

the Jocko diamictons supports th is in te rpre ta t ion .  Thus, the sand 

f rac t ion  of unweathered Jocko diamicton presumably contained a l l  seven 

of the l i th o lo g ie  types found in the other southern Flathead Valley  

t i l l s .

Green quartz ites and a r g i l l i t e s  are less abundant in the Jocko 

diamictons than in the Mission and St. Ignatius t i l l s ,  as are purple 

and purplish-red quartz i tes  and a r g i l l i t e s .  Yellowish-white quartz ites  

and a r g i l l i t e s  are ju s t  s l ig h t ly  less abundant in the Jocko diamictons, 

while tan f r ia b le  sandstone fragments are as abundant as in the other  

Flathead Valley t i l l s .
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Conclusions. The sand fractions o f  Mission t i l l ,  St. Ignatius  

t i l l ,  and Jocko diamictons contain grains of seven l i th o lo g ie  groups, 

d e t r i t a l  components derived from Precambrian Belt  rocks and Tert ia ry  

sediments. Similar sand fract ion  l i th o lo g ie  compositions prohibit  

the d i f fe re n t ia t io n  of " la te"  and "e a r l ie r"  Mission t i l l s .  Nor can 

St. Ignatius t i l l  be distinguished from Mission t i l l .  Variations in 

the re la t iv e  percentages of the l i tho log ies  present in the Jocko 

diamictons make i t  distinguishable from Mission and St.  Ignatius t i l l s  

However, the re lat ionship is complicated by the comparison of highly 

weathered Jocko diamictons to only s l ig h t ly  weathered Mission and 

St. Ignatius t i l l s .  Original unaltered Jocko diamictons presumably 

had sand fract ion  l i th o lo g ie  compositions comparable to those of the 

Mission and St. Ignatius t i l l s .
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CHAPTER V

CONCLUSIONS AND CORRELATION WITH ESTABLISHED CHRONOLOGIES 

Conclusions

Sedimentary petrologic laboratory studies were used to " f inger

pr in t"  Pleistocene s tra t igraphie  units in the southern Flathead Valley.  

Mission t i l l ,  St. Ignatius t i l l ,  and Jocko diamictons could not be 

d if fe ren t ia te d  by grain size analyses, clay mineralogy, or microscooic 

examination of sand grain l i th o lo g ie s .

Field evidence and re la t iv e  age dating techniques show that  

Mission t i l l  is the youngest of the three s tra t igraphie  units studied 

in the southern Falthead Valley. St. Ignatius t i l l  is older and 

Jocko diamictons are oldest.  Field observations indicate that Mission 

t i l l  was deposited by two d is t in c t  stands of ice (Figure 5) .  Moderate 

soil development, a fresh g lacia l  k e t t le  topography, and a non

intergrated drainage pattern a l l  indicate that  " late" Mission t i l l  is 

young. Stratigraphie relationships suggest that " late" Mission t i l l  

was deposited by ice of a recessional phase of the ice which deposited 

"ear l ie r"  Mission t i l l .  Deeper soil  development and a better  de

veloped surface drainage pattern on St. Ignatius t i l l ,  show that  i t  

is s ig n i f ic a n t ly  older than Mission t i l l .  Strong oxidation and 

deep weathering of a th ick section o f  Jocko diamictons indicate that  

the diamictons are substant ia l ly  older than e i th e r  Mission or 

St. Ignatius t i l l s .
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The association of s tr ia ted  pebbles, s i l t  and gravel beds 

within the Jocko diamictons, the clay minéralogie composition, and 

the great var ia t ion  of sand and gravel l i th o lo g ie s ,  a l l  suggest that  

the Jocko diamictons are g lac ia l  t i l l s .  They record an old ice 

advance from an undefined source area. Jocko diamictons could have 

been deposited by ice of the Flathead lobe of the Cordilleran ice 

sheet, by ice from alpine glaciers in the Mission or Jocko Ranges, or 

by ice from a g lac ier  orig inating on Squaw Peak to the southwest 

(Figures 4 and 5) .

Coj%Glatij)n JdijUi^^sjb^l i_she^

Radiocarbon dates obtained in th is study have fa i le d  to delineate  

the absolute ages of the three s tra t igraphie  units studied. Therefore,  

correlation with other established g lac ia l  chronologies remains ten

ta t iv e .

The age of " late" Mission t i l l  in the southern Flathead Valley  

is f a i r l y  well defined by geomorphic c r i t e r i a  and an open-ended 

radiocarbon date. The youthful constructional topography on the surface 

of the Mission moraine, combined with a %>20,380 year B.P. date from 

near the top of the moraine, suggest deposition of " late" Mission t i l l  

during the la s t  major g la c ia t io n .  Correlation with Easterbrook's 

(1969) Vashon stade of the Fraser g lac iat ion in western Washington 

seems l ik e ly .  Correlation with Richmond's (1965) 23,150 +_ 1 ,000 B.P. 

Rocky Mountain ice advance of the early  stade of the Pinedale g laciat ion
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is also suggested, but corre lation with Pierce's (1976) 30,000 year B.P. 

early  Pinedale advance cannot be ruled out. Synchroneity with early  

Woodfordian (Wil l iam, 1970) mid-continental g laciat ion is suspected.

The absence of paleosols and unconformities in the Mission t i l l  

sequence suggest that "ea r l ie r"  Mission t i l l  was deposited by ice of 

the same Cordilleran ice advance which deposited " late" Mission t i l l .  

However, lack of absolute age dates and s u r f ic ia l  geomorphic c r i t e r i a  

prohibit  v e r i f ic a t io n .  I t  remains possible that the Mission moraine 

is a composite moraine composed of t i l l s  deposited during more than one 

g la c ia t io n ,  as suggested by Curry (1977),  although no evidence was 

found to support th is theory.

A more mature land surface and stronger soil  development both 

suggest that St. Ignatius t i l l  is s ig n i f ic a n t ly  older than Mission t i l l .  

I t  is d i f f i c u l t  to estimate the re la t iv e  age of the St.  Ignatius t i l l ,  

since much of the surface in the area covered by St. Ignatius t i l l  was 

apparently reworked by Glacial Lake Missoula floodwaters. While the 

f l a t  to gently ro l l in g  topography charac ter is t ic  o f  the St.  Ignatius 

t i l l  suggests corre la t ion  with pre-Bull Lake g lac iat ions,  the lack of  

a deep soil p ro f i le  and intense weathering of cobbles and boulders, 

plus the presence of carbonate cobbles imply a younger age. For these 

reasons, the age of the St. Ignatius t i l l  is believed to correspond 

with Richmond's (1976) early  stade of the Bull Lake g lac iat ion  (Figure 7) 

and/or to Easterbrook's (1969) Salmon Springs g la c ia t io n ,  as revised 

by Fulton (1971), Clague (1978),  and Alley (1979) (Figure 6 ) .  These
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glaciat ions correspond to early  Wisconsinan (Altonian) g laciations on 

the mid-continent (Willman, 1970).

Strong oxidation and moderate weathering of clasts in the Jocko 

diamictons are ind icative  of th e i r  an t iqu i ty .  I t  is apparent that the 

Jocko diamictons are substantia l ly  older than the i n f i n i t e  radiocarbon 

date of >^37,000 years B.P. obtained from a l i g n i t i c  wood fragment 

from the base of the uppermost Jocko diamicton. However, no evidence 

is avai lab le  to allow estimation of the absolute age of the Jocko 

diamictons. I t  is obvious that the Jocko diamictons are pre-Wisconsinan 

(pre-Bull Lake) in age, but correlations with other pre-Wisconsinan 

(or pre-Bull Lake) glaciat ions would be purely speculative.
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APPENDIX A

DETAILED DESCRIPTIONS OF REPRESENTATIVE FIELD SECTIONS

(See Figure 5, page 8)
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SECTION 1

East end of Lower Crow Reservoir.
SW SE SW Section 7, Twp 20N, Rge 20W,

2.0 m siVty_cjay loam t i l l ;  yellowish-brown
OOVR5/4); strongly calcareous; massive; Sample LCR-4
etched carbonate pebbles abundant.

10cm s i l t y c lay; brown (lOYR 5 /3 ) ;  massive

20m very f ine  sand; brown (lOYR 5 /3 ) ;
well sorted; cross-beds sip southeasterly Sample LCR-3

1.5m gjl^ve^lj dark yellowish-brown (lOYR 4 /4 ) ;
clean and openwork; strongly calcareous;
minor medium-gravel sand lenses in te r -  Sample LCR-2
bedded; cross-beds in sand lenses 
dip south.

? ^i lj^ j: la y _ l^ a n ^ ^ jn [; brown (lOYR 5 /3 ) ;
strongly calcareous; massive; Sample LCR-1
etched carbonate pebbles common.

Base of Section
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SECTION 2

Junction of Crow Creek and Flathead River.
SE SE SW Section 21, Twp 20N, Rqe 21W.

10.0m s i j j ^ j ^ l J L L L I »  yellowish-brown
OOYR 5 /4 ) ;  strongly calcareous; massive; Sample MCC-1
etched carbonate pebbles common.

7.5m very f ine  sand; brown (lOYR 5 /3 ) ;
strongly calcareous; interbedded Sample MCC-2
with thin lenses of s i l t y  clay;  
cross-beds in sand dip south and west.

? si l ty clay lo am t i l l  ; yellowish-brown
OOYR 5/4) ; strongly calcareous; massive. Sample MCC-3

Base of Section
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SECTION 3

Crow Creek Canyon
NW SE SE Section 21, Twp 20N, Rge 21W.

82

0.5m f in e  gravel to cobbles; clean and
openwork; f a i r  to poor sorting;  
subrounded to subangular; contains 
lenses of well sorted cobbles.

l.Oni s i l t y  c la y ; brown (lOYR 5 /3 ) ;  varved;
contains dropstones

3.0m s i l ty clay loam t i l l ; yellowish-brown
OOYR 5 /4 ) ;  Strongly calcareous; massive

1.0m s i l ty clay; brown (lOYR 5/3)
strongly calcareous; massive; 
occasional dropstone.

1.0m gravel; dark yellowish brown
(lOYR 4 /4 ) ;  clean and openwork 
gravel as above.

3.0m s i l t y  c lay; brown (lOYR 5 /3 ) ;
strongly calcareous; massive; 
occasional dropstone.

2.0m gravel ; s im i la r  to above;
cross-beds dip southwesterly.

6.0m s11ty clay 1oam t i l l ;  y e l 1owish-brown
flOYR 5 /4 ) ;  strongly calcareous; 
massive.

0.5m st i l t y  c lay; brown (lOYR 5 /3 ) ;
massive

? si_L^y^lJ_; brown (lOYR 5 /3 ) ;
contains discontinuous lenses 
of s i l t y  clay and poorly sorted 
g rav e l .

Sample CCC-5 

Sample CCC-4

Sample CCC-3

Sample CCC-2

Sample CCC-1

Base of Section
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SECTION 4

F l a t h e a d  R i v e r  B l u f f  s e c t i o n .
SE SE NE S e c t i o n  1 9 ,  Twp 21N,  Rqe 21W.

2.5m brown (lOYR 5 /3 ) ;
massive; scattered pebbles.

20. Om s i l t y  c l ay l oam t i l l ; ye 11 owi s h -  b rown
OOYR 5 /4 )  r  strongly calcareous; Sample FRF-15
massive.

2.0m yellowish-brown (lOYR 5 /4 ) ;  Sample FRF-.16
varved; contains dropstones.

' 20.0m s i l t y  clay loam t i l l ;  brown (lOYR 5 /3 ) ;  Sample FRF-17
strongly calcareous; massive

1.5m s i l t y  clay; brown (lOYR 5 /3 ) ;
varved; contains scattered 
dropstones.

20.0m s i l t y  cl ay 1 oam t i l l ;  yel 1 owi sh-brown
OOYR 5/41; strongly calcareous; Sample FRF-18
massive.

Base of Section

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



84

SECTION 5

Flathead River — canyon section.
SU NE MU Section 20, Twp 21N, Rge 21W.

5.0m si^lty^c^l^y ; y e l l  owi sh-brown (lOYR 5 /4 ) ;
strongly calcareous; thin-bedded (5-lOcm); Sample FRF-10
contains s tr ia ted  pebble dropstones.

6.0m s i l t y clay l oam t i l l ;  brown (lOYR 5 /3 ) ;
strongly calcareous; massive. Sample FRF-11

2.5m .cj_aŷ  brown (7.5YR 5 /4 ) ;  thin-bedded;
occasional dropstone. Sample FRF-12

6.0m si l t y  clay loam t i l l ;  brown (lOYR 5 /3 ) ;
strongly calcareous; massive. Sample FRF-13

2.0m s i l t y  c la y ; brown (lOYR 5 /3 ) ;
strongly calcareous; massive; 
occasional dropstone.

1.5m cobbly gravel ; clean and openwork;
poorly sorted; continuous horizon 
throughout the canyon.

? si l t y  clay l oam t i l l ; brown (lOYR 5 /3 ) ;
strongly calcareous; massive. Sample FRF-14

Base of Section
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SECTION 6

D u b l i n  G u lc h  l a n d s l i d e  s e c t i o n .
SE NW SW S e c t i o n  2 0 ,  Twp 19N,  Rqe 20W.

20cm si_H; dark grayish-brown; high
organic content; soil  development on 
loess.

2.0m clayey s i l t ; reddish-brown (SYR 5 /3 ) ;
s l ig h t ly  calcareous; varves; contains Sample DGL-1
abundant dropstones; contains a few 
thin (5-10) gravel lenses; base of 
soil in this unit .

1.0m interbedded f ine  sand and s i l t ;
b r^ T lW R 'T /T T ;‘ T fn T -Y rT iliV d ' sand Sample DGL-2
contains cross-beds dipping to south; 
a thin (30cm) discontinuous t i l l  (?)
lens l ies  within this u n i t ,  sample Sample DGL-4
DGL-4 from the t i l l  (? ) .

70cm cobbly ,  gravel ly  loam; poorly
sorted mixture of pea gravel and
cobbles in a sandy s i l t  matrix; Sample DGL-3
discontinuous; gran size coarsens 
toward base; dark yellow-brown (lOVR 4 /4 ) ;  
strongly calcareous.

? s i l t y c lay loam t i l l  ; yellowish-brown
OOYR 5 /4 )7  strongly calcareous; massive. Sample DGL-5

Base of Section

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



86

SECTION 7

Dublin Gulch Highway and RR section.
SW SW SW Section 20, Twp 19N, Rge 20W.

4.0m si^[^tx (^l_^_loam_tiJLl; yellowish-brown
(lOYR 5 /4 )T  strongly calcareous; massive. Sample DGH-1

30-50 cm s i l t  loam; brown (lOYR 5 /3 ) ;  massive;
contains thin lenses of festoon-type
cross-bedded sands, cross-beds dip Sample DGH-2
predominantly south; s i l t  unit  contains 
scattered dropstones.

20cm medium-grained sand; brown (lOYR 5 /3 ) ;
w el l -sorted;  contains scattered gravel;  
clean and openwork.

40cm coarse sand and gravel; brown (lOYR 5 /3 ) ;
rounded to subrounded; also contains 
rounded clay ba l ls ;  aand is clean and 
openwork; organic fragments are common.

50cm cobbly sand and grave l ;  brown (lOYR 5 /3 ) ;
abundant large cobbles, especially  
near base; rounded to subrounded; 
clean and openwork; also contains 
rounded clay b a l ls ;  no bedding evident;  
grades eastward into a d i r ty  matrix -
supported cobbly gravel (Sample DGH-5). Sample DGH-5

? s i l t y  c lay loam t i l l ;  yellowish-brown Sample DGH-3
OOYR 5 /4 ) ;  strongly calcareous; massive; Sample DGH-4
a 0-10 cm thick (discontinuous) oxidized Sample DGH-6
zone occurs on the surface of th is t i l l .  Sample DGH-7
probably a groundwater e f fe c t ;  samples 
DGH-3 and DGH-6 from oxidized t i l l  
samples DGH-4 and DGH-7 from unaltered t i l l .

Base o f  Section
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SECTION 8

V a l l e y  C r e e k  s e c t i o n
SW NE SW S e c t i o n  8 ,  Twp 17N,  Rge 20W

Normal fa u l ts ,  with as much as 0.5m of o f fs e t ,  occur in th is section.
These fau lts  cannot be traced above the base of the upper diamicton.

? clayey s i l t ;  brown (lOYR 5 /3 ) ;  varved
lacustrine s i l t  with dropstones; unoxidized; 
calcareous; a few large chunks of wood 
scattered throughout the s i l t ;  this s i l t  
is presumably of Lake Missoula or ig in .

0 . 0 - 2 . Dm clayey si l t ;  yellowish-brown (2.5Y 5 /4 ) ;
contains scattered cobbles and boulders; Sample VC-10
massive to f a i n t l y  laminated; d is 
continuous poorly sorted gravel lenses 
scattered through the s i l t  u n i t ,  s i l t  
is noncalcareous.

7.0-9.0m s i l t y clay loam diami c t on; yellowish-brown 
OOYR 4 .5 /4 ) ;  non-calcareous; contains
abundant rounded to subangular gravel Sample VC-9
and cobbles; l i g n i t i c  wood fragments 
scattered randomly throughout the
diamicton; considerable r e l i e f  on surface Sample VC-8
of this diamicton.

2.0m sandy s i l t ; l i g h t  yellowish-brown (2.5Y 5 .5 /4 ) ;
non-calcareous; massive; a 10cm thick
gravel lens occurs in the middle of th is  un i t ;  Sample VC-7
at  the surface of th is  unit  is a 10cm thick  
well -sorted ,  medium to coarse pea gravel.

1 .5 -2 .Om si l t y  c l ay; yellowish-brown (lOYR 5 /4 ) ;
Fon-calcareous; trace of gravel scattered
throughout; a thin (5cm) but continuous marker
bed o f  l i g n i t i c  wood fragments occurs a t  Sample VC-6
the top of th is  un it ;  ju s t  below the wood
horizon is a carbonate-cemented pea gravel.

75cm f i ne sand; yellowish-brown (2.5Y 5 /2 ) ;
well sorted; non-calcareous. Sample VC-5

50cm pea gravel ; poorly sorted with a sandy
s i l t  matrix; non-calcareous. Sample VC-4
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SECTION 8 (continued)

75cm clayey s i l t ;  yellowish-brown (lOYR 5/4) Sample VC-3
massive; non-calcareous.

2 . 0 - 2 . 5m s i l t y  clay loam diamicton; Sample VC-2A
brown (lOYR 5 /3 ) ;  contains abundant
gravel,  pebbles and cobbles; strongly  
oxidized; clasts subangular to rounded;
black l i g n i t i c  wood fragments Sample VC-2
scattered throughout; non-calcareous.

1 .0 -2 .Om sandy s i l t ; o l ive-gray (5Y 5 /2 ) ;
strong oxidation along jo in ts ,  otherwise Sample VC-1
unaltered; l i g n i t i c  wood fragments 
scattered throughout un it ;  noncalcareous

? green sandy to clayey s i l t ;  massive;
l i g n i t i c  wood abundant; strongly 
oxidized; noncalcareous.

Base of Section
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APPENDIX B 

GRAIN SIZE DISTRIBUTION CURVES
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REPRESENTATIVE X-RAY DIFFRACTION PATTERNS
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CuKĉ  ra d ia tio n  
î ï i  f i l t e r  
30 kv, 20riA 
Rate meter: 

m u lt ip l ie r  -  0.8 
time constant -  L 
scale fa c to r  -  32 

Scanning speed -  l7min 
Chart speed -  ^ '/m in

1

2

9.98 A

Degrees 20

U)o



131

oc»;

•rH

É
a
I

TJ
tO

rHO
K

*rH
o oo 1—1 £1 >1—1 1 1

c 1 c u X}
o to o 0 1

•H ■< u -p -p 0
+3 E <u 3 Ü Q . -O

O
k •H to to 0

•H Ih 0} rH o «H 0
■o 0) CsJ -P P , Ü U) o .
(0 +3 O) 0) K CO
F-> E +3 0> r * -f -r l

•H i iH £ to c -p
«M (D 0 f t U C U

+3 £ +3 CO CO to
0 •H O to o

O ft: CO o

(M:
OO0\
Os

(Dcy
w
Q)

Ë
O

CM

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



132

c m ;

CO

o

vO
o

XJ

oo 0=4
t '—

•U ‘H 1̂ O <U 0) X) m CM +)
C 4*

P  o  ' i 6 i  ©  
tL .  o  - p

t o  fc o =<
COOn

O n
O n

NO

CM

Oro

CO
CM

NO
CM

CM
CM

CO I—I

O

CD
CMU1
©
©h
n

oo

NO

CM

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



s

1
%

(Û

3CD
-nc
§
CD

3-O
ac
I3
■O
O

î
3"O
C

(/)(/)
o'
3

16.67 Â

111 .26 K

SAMPLE VC-2A 
glycolated 

C üKd ra d ia tio n  
î l i  f i l t e r  
30 kv, 20 n/l 
Rate ne te r:

M u lt ip l ie r  -  0.0 
scale fa c to r -  16 
time constant -  ii 

Scanning speed -  l7min 
h a rt speed -  l^ ’/m in

1
10 12

I
111

1 I
16 18

Degrees 29

20
I

22
I

2ii
1

26
1

28
1

30

1
32

CO
CO



CD
■ D
O
Q .
C

g
Q .

■D
CD

C/)
C/)

8

ci'

3
3"
CD

CD■D
O
Q .
C

aO3
"O
O

CD
Q .

■D
CD

C/)
C/)

17.33 Â
IL  .26 Â

7.12 Â

10.00 Â

SAl'IPLE VC-7 
g lyco la ted 

CuK(i ra d ia tio n  
Mi f i l t e r  
30 kv, 20 Fu\
Rate meter; 

m u lt ip l ie r  -  0.6 
time constant -  L 
scale fa c to r -  8 

Scanning speed -  l^min 
Chart speed -  ^ '/m in

3.3L Â

1.26 Â
2.83 ^

1 1 ) 1 1 1 1
10 12 I L  16 18 20 22

Degrees 20

I I I I I
2U 26 28 3o 32 W



CD
■ D
O
Q .
C

g
Q .

■D
CD

C/)
C/)

CD

8

CD

3.
3"
CD

CD■D
O
Q .
C

aO3
"O
O

CD
Q .

■D
CD

C/)(/)

9 .9 6  Â

16.99 X lli.?6 Â 7.10 K

SAI'.PLE ÎjGR-U 
g lyco lated 
CuKût ra d ia tio n  
Ni f i l t e r  
30 kv, 20 mA 
Rate meter: 

m u lt ip l ie r  -  0.6 
time constant -  It 
scale fa c to r -  16 

Scanning speed -  l^m in 
Chart speed -  '^*/min

3.32 K

3.0U I  2.83 %

I I I I I I I I I I I
ij 6 8 10 12 111 16 18 20 22 2li

Degrees 26

I I I I
26 28 30 32 U>(Jl



73
CD
“O

O
Q.
C

g
Q.

■g
C/)(gO*3

CD

8
:§ë'

CD

3.
3 "
CD

CDTD
O
Q.

O3
O3

&

O
C

■g
c/)

o ‘
3

16.99 S.

lit .20 Â

10.00 A

1 I I I i I
U 6 8 10 12 lU

s a it ü ; dg h -3
glyco lated 
CuKcC ra d ia tio n  
I l i f i l t e r  
30 kv, 20 mk 
Rate meter; 

m u lt ip l ie r  -  0.8 
time constant -  L 
scale fa c to r -  16 

Scanning speed -  l^m in 
Chart speed -  V /m in 3.55 I

I I I
16 18 20

Degrees 2e
22

I I I I I
21; 26 28 30  32

w



73
CD■O
O
Q.
C

3
Q.

■D
CD

C/)
C/)

8

ci-

3.
3"
CD

CD"O
O
Q.
C

aO3

&

O
C

■o
CD

C/)(g
o'
3

10,00 K

10 12

SAl'IPLE SÎT-1 
g lyco la ted 

CuKc( ra d ia tio n  
Ni f i l t e r  
30 kv, 20 mA 
Rate meter; 

m u lt ip l ie r  -  1,0 
time constant -  
scale fa c to r -  8 

Scanning speed -  l7 n in  
Chart speed -  ^ '/m in

16,99 A

lU .30 A

3.33 a

s.eii Î

I I I
111 16 18

Degrees 26

I
20

1
22 2h

1
26

I
28

I 1
30 32

w



CD
■ D
O
Q.
C

g
Q.

■D
CD

C/)
C/)

8

ë'

3
3"
CD

CD■D
O
Q.
C

aO3
"O
O

CD
Q.

■D
CD

C/)W
o"
3

17.19 Â 10,00 Â

7.11 Â

11.35 A

SAI'PLE SIT-ii 
g lycolated 
CuKoc ra d ia tio n  
l î i  f i l t e r  
30 kv, 20 ttîA 
Rate meter: 

m u lt ip l ie r  -  0.8 
time constant -  b 
scale fa c to r -  8 

Scanning speed -  l7min 
Chart speed -  ^ '/m in

3.33 &

2.83 S

t i l l  I I
10 12 II4 16 18 20

Degrees 20

I I
22 21 26

I
28

I I
30 32 CO

00



APPENDIX D 

SAND FRACTION LITHOLOGY DATA
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SAMPLE ÇC_C-J^

G r a i n s  c o u n te d  293

limestone — 11% 

tan sandstone - -  23%

ye llow ish-white  q u a r tz l te  and a r g i l l i t e  — 9% 

green q u a r tz l te  and a r g i l l i t e  — 10% 

gray q u a r tz l te  and a r g i l l i t e  — 20% 

purple and purpl ish-red  q u a r tz l te  — 14% 

purple and purpl ish-red  a r g i l l i t e  — 13%
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SAMPLE CCC-5

g r a i n s  c o u n t e d  3 06

limestone — 10% 

tan sandstone — 16%

y e l lo w is h -w h ite  q u a r t z l t e  and a r g i l l i t e  — 21% 

green q u a r t z l t e  and a r g i l l i t e  — 11% 

gray q u a r t z l t e  and a r g i l l i t e  - -  24% 

purple and p u rp l ish -red  q u a r tz i te  - -  7% 

purple and p u rp l ish -red  a r g i l l i t e  — 11%
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SAMPLE M Ç ^ 3

g r a i n s  c o u n t e d  291

limestone — 9% 
tan sandstone - -  17%

ye l lo w is h -w h ite  q u a r t z i t e  and a r g i l l i t e  — 21% 

green q u a r t z i t e  and a r g i l l i t e  — 8% 

gray q u a r t z i t e  and a r g i l l i t e  — 30% 

purple and p urp l ish -red  q u a r t z i t e  — 3% 

purple and p u rp l is h -re d  a r g i l l i t e  — 12%

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



143

SAMPLE

grains counted 303

limestone - -  9% 
tan sandstone - -  23%

y e l lo w is h -w h ite  q u a r t z i t e  and a r g i l l i t e  — 15% 

green q u a r t z i t e  and a r g i l l i t e  — 6% 

gray q u a r t z i t e  and a r g i l l i t e  — 31% 

purple and p urp l is h -re d  q u a r tz i te  — 13% 

purple and p u rp l is h -re d  a r g i l l i t e  — 8%
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SAMPLE D.GH-_7

g r a i n s  c o u n t e d  2 9 8

limestone — 7% 

tan sandstone - -  25%

y e l lo w is h -w h ite  q u a r t z i t e  and a r g i l l i t e  — 15% 

green q u a r t z i t e  and a r g i l l i t e  - -  12% 

gray q u a r t z i t e  ^nd a r g i l l i t e  - -  27% 

purple and p u rp l is h -re d  q u a r t z i t e  — 6% 

purple and p u rp l is h -re d  a r g i l l i t e  — 5%
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SAMPLE FRF -1 1

g r a i n s  c o u n t e d  2 9 5

l imestone — 14% 

tan sandstone — 22%

ye l lo w is h -w h ite  q u a r tz i te  and a r g i l l i t e  - -  12% 

green q u a r t z i t e  and a r g i l l i t e  — 9% 

gray q u a r t z i t e  and a r g i l l i t e  - -  23% 

purple and p urp l ish -red  q u a r tz i te  — 9% 

purple and p urp l ish -red  a r g i l l i t e  — 11%
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SAMPLE F R F -1 7

g r a i n s  c o u n t e d  307

limestone - -  15% 

tan sandstone - -  23%

y e l lo w is h -w h ite  q u a r t z i t e  and a r g i l l i t e  — 9% 

green q u a r t z i t e  and a r g i l l i t e  — 7% 

gray q u a r t z i t e  and a r g i l l i t e  - -  23% 

purple and p u rp l ish -red  q u a r tz i te  — 14% 

purple and p u rp l is h -re d  a r g i l l i t e  — 9%
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SAMPLE S I T - 4

g r a i n s  c o u n t e d  3 04

limestone — 11% 

tan sandstone — 16%

ye l lo w is h -w h ite  q u a r tz i te  and a r g i l l i t e  — 10% 

green q u a r t z i t e  and a r g i l l i t e  — 11% 

gray q u a r t z i t e  and a r g i l l i t e  — 27% 

purple and p u rp l ish -red  q u a r tz i te  — 8% 

purple and purp l ish -red  a r g i l l i t e  — 18%
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SAMPLE V C -2A

g r a i n s  c o u n t e d  3 0 0

limestone — none 

tan sandstone — 25%

y e l lo w is h -w h ite  q u a r tz i te  and a r g i l l i t e  — 

green q u a r t z i t e  and a r g i l l i t e  — 2% 

gray q u a r t z i t e  and a r g i l l i t e  — 54% 

purple and p urp l ish -red  q u a r tz i te  — 6% 

purple and p urp l is h -re d  a r g i l l i t e  — 5%

A l l  grains are non-calcareous and ox id ized ,  some quite  strongly .  

The m atr ix  o f  many of  the q u a r tz i tes  is often oxid ized,  giving the 

q u a r tz i te s  a p i t te d  appearance.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



149

SAMPLE VC -9

g r a i n s  c o u n te d  307

limestone — none 

tan sandstone — 30%

yellowish-white quartz i te  and a r g i l l i t e  - -  4% 

green quartz i te  and a r g i l l i t e  — 5% 

gray quartz i te  and a r g i l l i t e  — 54% 

purple and purplish-red quartz ite  — 2% 

purple and purplish-red a r g i l l i t e  — 5%

All  grains are non-calcareous and oxidized, some quite strongly.  

The matrix of many of the quartzites is often oxidized, giving the 

quartzites a p i t te d  appearance.
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