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Carr, Jeffrey J., M.S., December 2000 Chemistry

Development o f an Autonomous In Situ Instrument For Stable and Precise Freshwater 
Measurements

Director: Michael D. DeGrandpre

The determination o f pH is significant in characterizing and understanding the aqueous 
equilibrium and kinetics. For example, the CO2 system can be characterized with 
equilibrium constants and two o f the following parameters, pH, alkalinity, dissolved 
inorganic carbon, or the partial pressure o f carbon dioxide (pCOz). Changes in the 
concentration o f dissolved CO2 through biological processes such as photo synthesis and 
respiration and through physical processes of air-water gas exchange and surface-ground 
water mixing, are evident in pH. Trace metal spéciation and biological processes of lakes 
and rivers are also dependent on pH. To more effectively study pH variability, a 
Submersible Autonomous Moored Instrument for pH (SAMI-pH) has been developed. 
The instrument operates by mixing a sulfonephthalein indicator with a freshwater sample. 
Once the solutions are mixed, absorbances for the acid (HL‘) and base (L^ ) forms o f the 
indicator are collected using spectrophotometric techniques. The SAMI-pH utilizes a 2 
cm flow cell, tungsten light source, fiber optics, spectrograph, and microprocessor for 
collecting data. Laboratory tests have demonstrated a precision o f better than ±0.005 pH 
units and accuracy relative to another method o f ±0.010 pH units. Testing o f  the in situ 
instrument was performed multiple times in the Clark Fork River o f the Columbia River 
Basin near Missoula, Montana.
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Chapter 1 

Introduction

1.1 Literature Review

The title “master variable” has been given to pH due to its importance in aquatic 

ecosystems. It is defined as the —log an+ where, Uh+ is hydrogen ion activity, and is one o f 

the most measured parameters in freshwater. It controls the spéciation o f the various 

forms o f aqueous inorganic carbon (H2CO^, HCO3 , and COg^ ) which creates the 

buffering capacity o f most freshwater environment. The changes in concentration o f 

aqueous CO2, through biological processes (respiration and photosynthesis) and physical 

process (mixing o f ground water and surface water and air-water gas exchange), are 

reflected in pH. Determination o f pH is therefore critical in understanding aqueous 

chemical and geochemical processes such as chemical equilibria (Stumm and Morgan 

1996), trace metal solubility and spéciation (Kramer and Tessier 1982; Herzeg et al. 

1985; Psenner 1994), and kinetic processes (Herzeg and Hesslein 1984). The importance 

o f pH is exemplified in its effect on biological activity, where, for example, an 

acidification o f 0.5 pH units can lead to severe consequences for fish populations 

(Henriksen 1979; Hoenicke et. al. 1991).

Environmental monitoring has become an important contemporary issue 

throughout the world. Given the expense, time, and sampling constraints associated with 

typical laboratory analyses, there exists a need for real-time monitoring that is precise, 

cost-effective, and suited for environmental applications. Increasing environmental 

regulations and public concern have also resulted in an expanding interest in the

1
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development o f in situ sensors. The ability to develop autonomous sensors has been 

enhanced mainly by improvements in the size and quality o f analytical instrumentation as 

well as advances in fiber optic technologies (Janata et. al 1994). The utilization o f 

autonomous in situ instrumentation eliminates the need for sampling and therefore avoids 

storage and contamination problems associated with sample collection. It also provides 

real time analysis, which yields better temporal coverage than is possible with discrete 

sampling. Autonomous instruments also allow research in areas that are remote and 

potentially dangerous environments (Angel et al. 1989).

In situ monitoring devices have proven to be useful in a wide variety o f 

environmental applications. They have, for example, been used to study CO2 cycling in 

oceanic waters (Hales et al. 1997; DeGrandpre et al. 1997), temperature in deep 

geothermal wells (Angel et al. 1989), and nitrate in seawater (Jannasch et al. 1994). 

There have been many different designs ranging from fiber optic based systems like 

optrodes (Motellier et al. 1993) and evanescent wave spectroscopy (Mizaikoff et al.

1999) to the use o f  flow injection based instruments (Andrew et al. 1994).

In the case o f pH, discrete sampling techniques are very limited in their ability to 

resolve diel and episodic (run-off from rain or snow or hazardous waste spills) changes in 

pH. In situ pH instrumentation would provide more extensive data for characterizing 

natural physical and biological dynamics in aquatic systems. Continuous monitoring 

would also be very advantageous for studying episodic events. The availability o f in situ 

instrumentation for pH applications is very limited. Most data from the in situ 

instruments have limited usefulness due to the lack o f precision and reproducibility (Ben- 

Yaakov and Ruth 1973, Maberly 1996).
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Although potentiometric methods are commonly the method o f choice for 

freshwater measurements there are several problems associated with their use in low 

ionic strength and poorly buffered waters. First, no standard protocols have been found 

that can ensure reproducibility and reliability in interlaboratory, intralaboratory, and field 

measurements because o f electrode error (Gardner et al. 1997). The major sources of 

error that are commonly found with the use o f electrodes in dilute waters are associated 

with the liquid junction potential. Junction potential errors are caused by a build up of 

charge, which occurs when ions with different ionic mobility diffuse through the junction 

(Brezinski 1983). These errors have been found to increase with decreasing ionic 

strength o f the sample solution (Hoenicke et. al. 1991). Some of the common sources o f 

junction potential errors are:

a) Voltage anomalies - there are two commonly observed types:

1) Precipitation o f KCl at the liquid junction (this type o f anomaly 

becomes more prominent at lower temperatures)

2) Precipitation o f  AgCl compounds in KCl solution when it is in contact 

with low ionic strength samples (Hoenicke 1991, Ozeki et. al. 1998).

b) Calibration using high ionic strength buffers — causes a difference in the liquid 

junction potentials to be observed when the electrode is used in low ionic strength 

medium.

As a result o f the inherent problems associated with standard glass electrodes 

there has been a pursuit to find new methods for the determination o f freshwater pH. In 

an earlier investigation, Covington et al. (1983) designed a free-diffusion liquid junction 

that reduced liquid junction potential errors. Although this method out-performed the
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conventional glass electrode by attaining a precision o f  ±0.01 pH units, drift was still 

apparent and the apparatus was too cumbersome for field applications.

Another method that has been utilized for more than 100 years is the use o f 

colorimetric indicators in determining aqueous pH. In comparison to potentiometric 

methods, indicators have a rapid equilibration time, they are more stable over time, and 

there is no liquid junction potential to worry about. Traditional colorimetric methods 

have used pH kits, which depend on visual determination o f pH against a color scale. 

These methods have demonstrated a poor accuracy o f +0.2-1.2 pH units based on

comparisons with potentiometric readings (Haines 1983). A flow injection instrument,

based on a multi-indicator system (Pia et. al. 1990) for ft-eshwater applications, was 

reported to have reproducibility from ±0.07 to ±0.14 pH units. This method showed an 

improvement over traditional visual colorimetric methods because the method used 

spectrophotometric measurements. The low precision resulted from measurements at a 

single wavelength, which are both concentration and pathlength dependent.

Over the past 20 years, advances in analytical methodology, instrumentation, and 

environmental concern have fostered vast improvements in techniques for determination 

o f seawater pH (Robert-Baldo et al. 1985, Byrne 1987, King and Kester 1990, Bellerby et 

al. 1995, Sedjil and Lu 1998). A precision o f better than ±0.0003 pH units (Clayton and 

Byrne 1993) and an accuracy o f ±0.001 pH units (Millero et al. 1993) has been achieved 

when using indicators and spectrophotometric techniques. The major contributor to the 

advancement o f  the colorimetric methodology was from the research done by Robert 

Byrne and colleagues. The methodology involves measuring the absorbance o f an
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indicator at two different wavelengths. The ratios o f the two absorbances (base/acid) are 

obtained, which is then independent o f concentration and pathlength.

Unlike seawater methods, improvements in the measurement techniques for 

freshwater have not materialized. French (1999), a previous M.S. student o f Dr. Michael 

DeGrandpre, has investigated the development o f an automated pH system utilizing the 

“Byrne Method” for freshwater applications. The benchtop pH system achieved a 

relative accuracy o f  ±0.008 pH units (when compared to an UV-VIS spectrophotometer) 

and a precision o f ±0.001-0.004 pH units.

A problem associated with pH indicators is that they are weak acids, so when they 

are implemented for freshwater analyses they may alter the observed pH o f a sample. 

The use o f  a single indicator dye is also limited to a set pH range, which is ±1 pH unit 

from the pKa o f the indicator o f choice.

1.2 Research Objectives

The research goal is to improve and expand upon the work done by French (1999), 

with the objective to build and deploy an autonomous in-situ pH instrument for 

monitoring freshwater pH. The French (1999) system however had various shortcomings 

(slow response time, extended flush time and extensive power consumption) which 

required further modifications to be practical for in situ applications. To achieve this 

goal, an evaluation o f the pH indicator for freshwater conditions was conducted. Then 

modifications to the laboratory design, measurement cycle, power consumption, and the 

response and flush time were performed, which ultimately lead to development o f a
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stable and precise submersible autonomous moored instrument for determination o f 

freshwater pH (SAMI-pH).

In the following chapters I will first describe the methods that were utilized in 

building, optimizing, deploying, and verifying the performance o f the autonomous 

instrument. Then the results from laboratory and river studies will be presented, 

followed by a discussion and conclusion o f  the resulting data.



Chapter 2 

Operating Principle

2.1 Theory of the Byrne Method

It is necessary to first review the Byrne method to understand the design and 

operation o f the autonomous in situ instrument. The theory is based on the acid-base 

characteristics o f a weak acid indicator.

HL" (1)

where HL' is the protonated or acid form o f the indicator, L  ̂ is the deprotonated or base 

form o f the indicator (the sulfonephthalein-type indicators we use are diprotic, but the 

H2L form only exists near a pH o f 1.5). Based on the condition stated in Equation (1) the 

equilibrium relationship is:

K„ = Yh*Yi.!-
[H L-] J < ĤL- J

(2)

where [ ] denotes concentration, and y represents the ion activity coefficients o f  the 

individual species. Taking the -log o f Equation (2) yields the Henderson-Hasselbalch 

equation.

pH = pK, +log
[HL-]

+ log
V^HL- /

(3)



Equation 3 can be combined with Beer’s Law,

A. = E, be (4)

where Ex is the molar absorptivity o f  indicator at wavelength X, b is the optical 

pathlength, c is the concentration o f indicator solution in the optical cell, and Ax is the 

absorbance at wavelength X, to derive an equation for pH as a function o f temperature 

and indicator absorbance ratio. The equation is represented as:

pH = pK^'+ log (5)

where R is the ratio o f absorbance maxima for the acid (Xi, -  439 nm) and base (X,2, ~ 

577 nm) forms (Axz/Axi) and the temperature dependant variables are the pK®', which is 

the apparent dissociation constant that includes the y term in Equation 3 and the molar 

absorptivity ratios (e%, ez and es) o f the acid and base forms:

e, =£sîzl 6 3 = ^ .  (6 )
^ a439 ^ a439  ^ a439

The autonomous instrument operates by collecting intensities, which are then 

converted, into absorbances by,

= -lo g (Ix /Ix .)  (7)
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where 1\ is the intensity transmitted through the indicator/sample solution and I;̂ o is the 

instensity transmitted through the blank solution (water sample).

To utilize the operating principle for freshwater applications the e’s will had to be 

obtained as a function o f tempertature. Once the e ’s were found, the pK@' could then be 

determined using a low ionic strength solution. After the indicator was characterized, the 

autonomous instrument was be constructed and optimized (plumbing, response time, 

optics, the indicator mixing, and pH perturbation) to collect intensities.



Chapter 3 

Methods

3.1 Indicator Characterization

An appropriate indicator should be used that has a pK&' within approximately ± 1 

pH unit o f  the aquatic system that is to be monitored. The proposed study site, the Clark 

Fork River o f the Upper Columbia River Basin near Missoula, Montana, was determined 

to have an approximate pH o f - 8 . 6  to 7.8 (French 2000). This led to the use o f the 

sodium salt o f cresol red with a pK@' o f -8.20 ±0.05 at 20 °C (Kolthoff 1930) (Figure 

3.1).

OH

C H

Figure 3.1. 2'dimensional molecular structure of cresol red (sodium salt).

3.1a Determination of Molar Absorptivities

The molar absorptivities o f  the pH indicator cresol red, have been determined to

be a very weak function o f temperature (Robert-Baldo et al 1985). A previous

determination o f the molar absorptivities was done at a single temperature o f 20.0**C
10



11
(French 1999). Due to fluctuations in the seasonal water temperatures, typically as low 

as 0 during the winter and greater than 15®C in the summer, the determination o f  the 

molar absorptivities as a function o f temperature is critical in obtaining a more accurate 

pH.

To determine the molar absorptivities, the indicator had to be converted into its 

monoprotic and fully deprotonated forms. A buffer o f pH 4 was chosen so that the fully 

protonated (present at a pH < 3) and the fully deprotonated (present at a pH > 7) forms o f 

the indicator would be excluded, leaving the indicator exclusively in the singly 

protonated form. The pH 4 solution was prepared by adding potassium hydrogen 

phthalate (dried for 1 hr @ 110"C) to 1 kg o f HPLC grade deionized (DI) water (Fisher 

Scientific). The pH 12 solution was prepared by dissolving 0.400 g of sodium hydroxide 

into 1 kg o f DI water.

Measurements were made using a UV-VIS spectrophotometer (Perkin-Elmer, 

Lambda 11) equipped with a 1 cm thermostated cell holder. The cell holder was 

temperature controlled by a bath/circulator (NESLAB, RTE-111). Due to temperature 

fluctuations from the water bath to the cell holder, an external digital temperature probe 

(HH64 Thermistor, Omega Engineering Corp.) with a reported accuracy o f 0.1 was 

used to monitor the water temperature exiting from the cell holder. The temperatures 

were then adjusted in the water bath so that the external thermistor displayed the desired 

temperature. Temperatures o f 20, 15, 10, 8 , and 5**C were used during the experiment.

The test samples were prepared by adding 1.008x10'^ mol kg'* cresol red solution 

to a portion o f the acid and the base buffer resulting in a concentration o f 1.795x10'^ 

mole kg \  Initially, a blank (buffer without indicator) was run at the beginning o f the
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temperature test and then the cuvet was filled with the indicator/buffer solution. The 

sample solution was then equilibrated at each temperature and an absorbance spectrum 

was collected from 700 nm to 350 nm. Once the spectra were collected, another blank 

was run at the last temperature measurement to compensate for any instrumental drift. 

This procedure was repeated three times for each o f the buffer solutions over the full 

ten^erature range. Figure 3.2 represents the averaged absorbance data that were 

collected and used in determining the molar absorptivities and ultimately the molar 

absorptivity ratios (Equation 6 ).

Acid (5"C) 
Acid (20“C) 
Base (5"C) 
Base (20“C)

c
0.6

Ô
</)
g
<  0.4

0.2

0.0
450 500400 550 600350 650 700

X  (nm)

Figure 3.2. Absorbance spectra of the cresol red indicator in a basic solution (with a 
peak at —573 nm) and in an acid solution (with a peak at ~435 nm). Concentrations for 
both solutions were 1.795x10'^ mole kg'\
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The absorbance from the molar absorptivity test demonstrates very v^eak 

dependence of temperature by the acid form o f the indicator. The basic form o f the 

cresol red indicator exhibits a stronger dependence on temperature (Figure 3.2) with a 

decrease o f about 0.030 absorbance units (a.u.) from the 5°C trial to the 20“C trial. 

Therefore the temperature dependence is significant and must be incorporated into the pH 

calculation.

The resulting absorbances, pathlength, and indicator concentration were used in 

the Beer’s Law equation to determine the molar absorptivities as function o f temperature 

at the 439 nm and 577 nm (the basis for selecting these two wavelengths will be 

discussed later in the chapter). The absorbances were averaged over a range o f ±2 and 

±12 nm, which are the bandpasses for the UV-VIS spectrophotometer and the 

spectrograph o f the autonomous instrument, respectively. Table 3.1 summarizes the 

temperature dependent molar absorptivities as linear equations, which are used to 

compute the molar absorptivity ratios.

Table 3.1. Equations for the temperature (°C) dependent molar absorptivities.

Molar
Absorptivity

±12 nm bandwidth 
(M~* cm'^) r^

±2 nm bandwidth 
(M"' cm ')

Ca439 -32.43 (T) + 2.287x10'' 0.9887 -31.70(T) + 2.325x10“ 0.9851

G&577 <1 NA <1 NA

Cb439 9.676 (T) + 2.179x10" 0.9713 11.60(T) + 2.108x10“ 0.9854

Gb577 -47.69 (T) + 5.596x10" 0.9988 -111.5(7)4-6.435x10“ 0.9991
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3.1.b pKa Determination

With the temperature dependence o f the molar absorptivities determined, a more 

accurate pKa' (free o f  the s ’s temperature dependence) could be determined. The pKa' 

was characterized by using a low ionic strength buffer with a known pH as a function o f 

temperature (5 - 25®C). The low ionic strength buffer (0.01 M) was prepared by 

dissolving 0.1183 g o f K H 2 P O 4  and 0.4320 g o f Na2HP0 4  (both reagents were dried for 

~1 1/2 hrs @ 120®C) in 1 kg o f degassed DI water (Covington et al. 1983). The pH o f 

this buffer is 7.621 at 20 ®C. This experiment utilized the same instrumental setup as 

described for the molar absorptivity experiment.

Initially, a blank was run using the buffer solution. To the blanked buffer, 80pl o f 

the 1.008x10^ mole kg’* cresol red solution was added. The solution temperature was 

then allowed to equilibrate to 20, 15, 10, and 5®C. An absorbance measurement was 

collected for each o f the equilibration temperatures, by which then R values ( A 5 7 7 / A 4 3 9 )  

could be determined. With the R values, the molar absorptivity ratios, and the known 

pH’s from the buffer solution, the pK»' could be solved using Equation (5). The pKa as a 

function o f temperature is given in Figure 3.3.

The data were fit to the equation (Ramette et al. 1977):

p K .'= Y  + B + C lo g T  (8)

where T is the temperature in Kelvin and A, B, and C are thermodynamic constants. The 

determination o f he thermodynamic constants was performed using a nonlinear least 

squares analysis (Sigma Plot, SPSS Inc.).
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Figure 33* The determination of cresol red as a function of temperature using a 
low ionic strength buffer. The line represents the linear regression with a r̂  =  0.9999.

The results o f the analysis produced the following equation for the pK@

pK '= î l l â .  + 2.049 +1.266log T. (9)

The ability to accurately measure pH is directly linked with the accuracy o f the pKa'. 

Even though the pK@' trials gave a reproducibility o f ±0.001 (N=3), the overall accuracy 

is limited to ±0.01 pH units due to the accuracy o f the buffer pH (Covington et al. 1983).

It is important to note that the pKa' was quantified using a solution that was of 

higher ionic strength (p = 0.01 M) than that o f typical fresh water environments (p <



16
0.005 M). Because o f the activity coefficients in Equation 3, the difference in ionic 

strength causes a salt error to be observed in the calculated pH (Kolthoff 1928). Due to 

the inability to calculate the effective hydrated radius o f the indicator the activity 

coefficients in Equation 3 can not be determined using the extended Debye-Huckel 

equation. I f  the hydrated radius for cresol red can be calculated, a correction for the salt 

error could be applied for the differences in the ionic strength between the buffer and the 

freshwater sample. Although the accuracy o f the pK»'and its ionic strength dependence 

needs to be improved, this does not alter the ability to compile accurate and reliable 

absorbance data. Absorbance measurements free from random or systematic error will 

always be valid because they are only dependent on the thermodynamic properties o f the 

indicator. Therefore, a more accurate determination o f the pK&' will only facilitate a 

more accurate determination o f pH.

3.2 Construction of SAMI-pH

The construction o f the SAMI-pH instrument utilized a combination o f new and 

pre-existing parts. The pre-existing parts were obtained from an autonomous CO2 sensor 

(the Submersible Autonomous Moored Instrument for CO2 or SAMI-CO2) (DeGrandpre 

et al. 1995) and the prototype benchtop pH instrument (autonomous laboratory pH 

instrument or ALpHI) designed by French (1999), The basic strategy used when 

constructing the instrument was to make the system resemble a flow injection system. 

That is, there would be a continuous carrier stream (water sample) to which indicator 

would be injected. The carrier stream would then mix and be transported to an optical 

flow cell where measurements would be performed. The proposed system only differs
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from a flow injection system by utilizing multiple pulses o f sample instead o f a 

continuous flow.

3.2.a Conversion of Old SAMI-CO2

The development o f the SAMI-pH was greatly facilitated by the use o f many o f 

the components from the SAMI-CO2 system. The major components are shown and 

labeled in Figure 3.4. Materials used from the existing SAMI-CO2 to build the SAMI-pH 

were the main pressure housing, the external pump and valve housing, and the 

electronics. The main pressure housing consists o f a 61 cm length o f 6” ID PVC pipe 

that is sealed on both ends with o-rings to make a waterproof seal. The top end cap is 

also attached to the internal bracketing, to which aU o f the internal components are 

fastened. The top end cap also supports the external pump and valve housing. The 

pump and valve housing is constructed out o f a 2” ID PVC tubing with a length o f 10.2 

cm. One end is sealed with an o-ring fitted end cap and the other end utilizes a rubber 

diaphragm to equalize the hydrostatic pressure, thus allowing the pump and valve to 

operate properly underwater.

Other components that were also adapted from the CO2 instrument are the data 

logger (TattleTale 4A, Onset Computer Corporation), internal electronics (clock board, 

voltage regulator, and wiring), and spectrograph (American Holographies Inc., MS 10). A 

custom designed 1.8 cm flow cell and 600 pm core fiber-optics (F-MSC-OPT, Newport 

Corporation) were used from the AlpHI.
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3.2.b Instrument Layout and Components

A general layout o f the components used in the SAMI-pH is displayed in Figure 

3.5. The instrument’s plumbing utilizes a three-way solenoid valve (model 2535043, 

Cole-Parmer) to switch between the normally open port (connected to the water sample) 

and the normally closed port (attached to the indicator reservoir, which is a reagent bag 

(Pollution Measurement Corporation) filled with the cresol red indicator). The common 

port is connected to a 50 pl/pulse solenoid pump (LPLAl210050L, The Lee Co.). The 

outlet valve o f the pump is then linked to the optical flow cell by the mixing coil. The 

sample then passes through the flow cell to the waste outlet.

valves—NO 
4 sanple

waterpunp

mdicator
reservoir

detector
module

^  mixing coil

fiber-optic [
power supplies 
and model 4A 

datalogger

flow cell _  fiber-optic Tungsten
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waste

Figure 3.5. A  schematic of the SAMLpH components (NO =  normally open, NC 
normally closed) (French, 1999).
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The optical system consists o f a tungsten light source (5 V, 0.12 A, Gilway 

Technical Lamps) with output transmitted to the flow cell via the 600 pm core fiber­

optic. The resulting attenuated light is captured on another section o f  fiber-optic and 

propagated to the spectrograph. The light is dispersed by the spectrograph onto three 

photodiodes located at 439, 577, and 735 nm. The detected voltages are converted into 

digital signals and stored in the data logger, which are used later in the calculation o f pH.

3.3 Instrument Optimization

3.3.a Plumbing

When constructing the SAMI-pH a few response characteristics had to be 

addressed to ensure that the instrument would be functional as an in situ instrument. 

Essential instrument characteristics include good long-term stability, a good working 

precision (±0,005 pH units or better), a relative accuracy better than ±0.01 pH units, low 

reagent and power usage, and the ability to sample in a short time period (fast response 

time). The following optimizations o f SAMI-pH will be in reference to the bench-top 

ALpHI instrument developed by French (1999).

The ALpHI design used a 152 cm length o f 0.007” ID tubing to create 

backpressure in the optical flow cell (Figure 3.5). The backpressure was used to force 

bubbles into solution, therefore eliminating optical interferences in the flow cell. This 

however, made the sample flow rate very slow (~2 minutes for every 50 pL pulse). The 

ALpHI also used a 152 cm length o f 0.040” ID tubing coiled up to serve as the mixing 

coil. With this length o f coil it would take ~ 1 hour for a full pulse (50 pi) o f indicator or
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water sample to travel from the pump to the optical flow cell. Thus, for the ALpHI to 

obtain data in a reasonable rate o f time, the amount o f indicator injected into the 

plumbing had to be controlled by a long length (~1 m) o f restriction tubing (.010” ID) and 

a 1 ms pump pulse o f indicator. The indicator pulse was then followed by a 50 pi pulse 

o f  sample water and the cycle was repeated. The restriction tubing and quick indicator 

pulse resulted in inconsistent pump performance and a slow response time.

The sole purpose o f the design and layout o f the ALpHI was to eliminate the 

problem o f bubbles forming in the flow cell. To minimize the problem of bubble 

formation in the optical flow cell, changes were made to the plumbing and the indicator 

and in-lab sample preparation. The first step in bubble reduction was to replace all o f  the 

Teflon tubing (with the exception o f the tubing to and from the pump, due to 

incompatibility with the pump fittings) with non-gas-permeable PEEK tubing. In 

addition, all solutions were degassed under a vacuum and were transferred into reagent 

bags gravimetrically to minimize gas uptake.

The original exit tubing was replaced with a 13.5 cm length o f 0.040” ID tubing. 

The next improvement was the removal o f the restriction tubing that ran from the 

indicator reservoir to the valve. The tubing was replaced with a larger diameter tubing 

(0.030” ID). This permitted the pump to deliver a full 50 pi pulse. By reducing the 

length and increasing the diameter o f the restriction and back-pressure tubing, the flow 

rate o f  the 50 pi pulse increased from ~2 minutes to -1 second.

Now that the indicator and sample could be pulsed rapidly through the plumbing, 

changing the length o f the mixing coil was required to further optimize the SAMI-pH. 

The original 152 cm length o f tubing required the pump and the valve to be activated 25
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times to transport the sample through the mixing coil. This increased the response time 

and consumed large quantities o f power. To optimize the mixing o f a freshwater sample 

and the indicator, many different lengths o f  0.040” ID mixing coils were tested. I f  the 

tubing was too long (over 100 cm), too much power was consumed to pump the sample 

through the excess length. If  the mixing coil was too short (less than 10 cm), the 

indicator and the water sample would not mix adequately. Through trial and error, a 

length o f 24 cm 0.040” ID PEEK tubing was found to give optimal mixing along with 

minimal pumping.

The response time enhancements resulted in the ability to rapidly pulse indicator 

and water samples. At the same time, rapid flow rate and tubing volumes did not reduce 

the abiUty o f the instrument to extract bubbles. The SAMI-pH now operates by drawing 

a 50 pi pulsing o f indicator followed by a number o f sample pulses. The response time 

for a measurement and blank cycle for the ALpHI was 50 and 80 min., respectively. The 

optimizations to the SAMI-pH have reduced the measurement and blank cycles to ~ 2 

and 5 minutes, respectively.

3.3.b Optical System

The major optical components o f the SAMI-pH will now be discussed in more

detail. The SAMI-pH utilizes two 1 m sections o f 600 pm core fiber optic. Great care is 

taken so that the ends o f  the fibers are cleaved at a right angle resulting in a flat and 

smooth surface. The light propagating through the fiber optic is dispersed by the 

spectrograph and collected by one o f the three photodiodes. The spectrograph was fitted 

with a plastic plate (Figure 3.6) v^ith holes in it to accommodate the three diodes used in 

the instrument. The linear reciprocal dispersion o f the spectrograph (10 nm/mm) was
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Figure 3.6. The diode spacing on the plate used in the SAMI-pH.

used to determine the distance for holes in the diode plate. As stated earlier, the peak 

wavelengths for the acid and base form the cresol red indicator is 435 nm and 573 nm, 

respectively. Due to availability and inexpensive cost o f a 577 nm bandpass filter, the 

spectrograph is calibrated (described in the next section) at 577 nm to measure the base 

form o f the indicator. The hole for the 577 nm diode was drilled in the center o f the 

plate. Based on the reciprocal linear dispersion of the spectrograph’s grating, a distance 

from the 577 nm channel can be calculated for the placement o f the 439 channel and the 

735 nm channel. For the SAMI-pH diode plate, holes were drilled 13.8 mm and 15.8 

mm, respectively away from 577 nm diode hole. These distances resulted in 439 nm for 

channel and 735 nm for the reference channel.

A GaP photodiode (G-1962, Hamamatsu Corp.) with a peak sensitivity o f  440 nm 

was used for the acid channel and the other channels were fitted with a Si photodiode (S- 

2386-5K, Hamamatsu Corp.) with peak sensitivities o f  960 nm.
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3.3.b.l Wavelength Calibration

The following method was performed to calibrate the SAMI-pH spectrograph at 

577 nm. First, the spectrograph was attached to a light source via a length o f the 600 pm 

core fiber optic. The detector power to the photodiodes was turned on. A multimeter 

(Fluke, 87 III True RMS) was attached to the 577 nm channel to measure the resulting 

light intensities. Then, the 577 nm bandpass filter (577FS05-25, Andover Corporation) 

was placed in front o f the light source and covered with black cloth to eliminate stray 

light from outside sources. The grating o f the spectrograph was then adjusted so that the 

maximum intensity was observed on the multimeter. Once the maximum intensity was 

determined the grating is locked into place. Because the distance between the 

photodiodes is set, the other two channels are simultaneously calibrated when the 577 nm 

channel is calibrated.

3.3.b.2 Stray Light Determination

The same set up used in the wavelength calibration of the spectrograph was also 

used for the determination o f stray light. Scattering from dust particles, grating 

scattering, and reflections from the spectrograph walls are all possible sources o f stray 

light, which can affect the photometric accuracy o f the autonomous instruments 

spectrophotometric measurements (Ingle and Crouch 1988). The procedure for the 

determination o f stray light first involves the acquisition o f a dark measurement (this is 

with the light source turned off). A raw light intensity was then measured (with light on), 

followed by collection o f an intensity when a long pass filter is put in front o f the light 

source. A 700 nm and a 600 nm long pass filter (Andover Corporation) were used in the
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measuring o f stray light at the 577 nm and 439 nm channels respectively. Stray light is 

determined by the following equation:

%Stray Light = x 100. (11)
^Raw ^Dark

Stray light for the optical system should be less than 0.1%. Stray light for SAMI-pH at 

the 439 ( the GaP photodiode is insensitive to IR) and 577 channels were 0.00 % and 

—30.00 % respectively. Using a combination o f filters it was determined that the stray 

light was infrared emission from the tungsten light source. To correct this problem the 

577 nm channel S-2386-5K diode with a peak intensity o f 960 nm was replaced with a 

01126-02 diode, from Hamamatsu Corporation, with a peak intensity o f  610 nm and a 

spectral range o f 190 nm to 680 nm. This new photodiode reduced the stray light at the 

577 nm channel to 0.00 %.

3.3.b.3 Absorbance Accuracy of the Spectrograph

After the stray light was reduced, the absorbance accuracy could then be 

addressed. Neutral density filters, o f 0.1 a,u. and 0.2 a.u. with a tolerance o f 10%, were 

used to determine the absorbance accuracy o f the SAMI-pH. The absorbance determined 

on the UV-VIS (Varian, Cary Bio 300) was used as a reference for the SAMI-pH 

spectrograph. The absorbance filter was determined with the UV-VIS using,

^ T e s t  =  ^ 0 . 2  -  ^ 0 . 1  ( 1 2 )

where A 0 . 2  and A o . i  are the absorbances for the 0.2 and 0.1 neutral density filters.
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(13)

where I0.2 and Jo 1 are the intensities for the 0.2 and 0.1 neutral density filters. Although 

the difference in Ajest results between the SAMI-pH and the UV-VIS was very small, it is 

still o f significance (N = 3) (Table 3.2). The standard deviation for the SAMI-pH 

equates into a maximum pH change o f ±0.028 pH units. The error associated with the 

SAMI-pH measurements was in the placement and positioning o f the filter in front o f the 

light source. The absorbance accuracy is determined using his method because the 

reflection off the filter in the SAMI-pH is different than the UV-VIS. This is due to the 

angular output o f the fiber. By taking the difference between the two filters, the 

differences in reflection between the two methods is eliminated.

Table 3,2. Absorbance accuracy results using 0.1 and 0.2 neutral density filters.

S A M I - p H U V - V I S

A j e s t  (439 n m )  

(N = 3)
A x e s t  (5 7 7  n m )  

(N = 3)
A x e s t  (439 n m )  

(N = 3)
A x e s t  ( 5 7 7  n m )  

(N = 3)

Absorbance
Avg. 0.082 0.093 0.080 0.089

S t d .

Dev. 0.004 0.003 0.001 0.001
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3.4 Measurement Cycles

The collection o f pH data by the SAMI-pH is performed by two separate 

measurement cycles, the blank measurement cycle and the pH measurement cycle. The 

two cycles are operated by the pHV3.TT4 program (Appendix 1). A typical 

measurement cycle consists o f collecting time, date, temperature, and intensities for the 

three wavelengths.

3.4.a Blank Measurement Cycle

To calculate the absorbances for the SAMI-pH at 439 and 577 nm, Uo must be 

determined for a blank sample. Due to the significant consumption o f power and time the 

instrument is programmed to run a blank measurement only twice per day. The blank 

cycle flushes the indicator from the plumbing and optical flow cell with 100 pulses o f 

water, which is —5 ml o f sample water (68 from the blank cycle and 32 from the prior 

measurement cycle) (Figure 3.7). Once the 100 pulses o f water are finished, the 

intensities from the 439, 577, and the 735 channels are recorded. The intensities are then 

used to determine the blank constants ( K 4 3 9  and K 5 7 7 )  which will be used in the 

calculation o f absorbances between blank measurements. The K ’s are determined as 

follows:

K4 3, = | ^  and (14)
■*•735 ^735

where I 4 3 9 , 1 5 7 7 ,  and I 7 3 5  are the intensities at 439, 577, and 735 nm, respectively.
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Figure 3.7. The blank constants K439 and K577 shows that it takes approximately 4 
minutes to flush the indicator out of the plumbing.

The blank constants for the 439 and 577 nm channel (Figure 3.8A and B, 

respectively) collected during a deployment in the Clark Fork River in October o f 2000 

demonstrate a dependence on temperature (Figure 3.8D). As the temperature decreases 

the calculated blank constants also decrease. The substantial magnitude differences 

observed in both the 439 and the 577 nm channel over the duration o f the test period 

demonstrates the need for frequent blank constant determination during testing periods o f 

large temperature variability.
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3.4.b pH Measurement Cycle

For pH to be calculated, the R ( A 5 7 7 / A 4 3 9 )  must be determined. The optical 

absorbances at 439 and 577 nm can be calculated using.

Ax = - lo g
J

(15)

where Ax, is the sample absorbance at wavelength X, Ix is the intensity transmitted 

through the sample, Kx is the blank constant for the most recent blank measurement 

cycle, and (I735) is the transmitted intensity at a wavelength where the indicator does 

not absorb. I735 is used to correct for intensity fluctuations from the source or 

transmittance in the optical system that may occur between absorbance measurement. 

Once the absorbances for the acid and base forms are calculated the R value can be 

computed and used in Equation 5 to calculate pH.

A pH measurement using the SAMI-pH consists o f three sequences. First, there 

is an initial 50 pi pulse o f  the cresol red solution (2.0x10*^ mole kg '). Second, the 

indicator slug is transported through the plumbing to the optical flow cell by 18 rapid 

pulses o f  sample water. Finally, the detectors and light source are turned on and 

intensities for the three wavelengths are recorded for 14 water pulses. For the SAMI-pH, 

the 18 and 14 pulse combination was used so absorbances between 0.09 and 1.00 a.u. 

would be collected. By changing o f the measurement cycle to a full pulse o f indicator, it 

was assumed that pH measurements could be collected near the tail end o f the slug where 

the indicator would mix with the ensuing water pulses. This change led to a very 

interesting observation in the output intensity at the 735 nm channel. The intensity
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Figure 3,9, This figure demonstrates how the reference intensity (A) and the pH change 
as a 50 p-L indicator slug passes through the optical flow cell. The test was run using a 
buffer with a pH of —8.2.
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fluctuated as the slug o f mdicator passed through the flow cell (Figure 3.9A). As the 

highly concentrated indicator slug passes through the optical cell the intensities at the 735 

nm channel increase and then rapidly decrease. This effect is due to changes in the 

refractive index o f the solutions in the cell. Although the leading edge o f the slug caused 

undesirable intensity changes, the tail end o f the slug mixed well with the ensuing pulses 

o f water (Figure 3.9B). By observing the trailing end o f the slug where indicator 

concentrations are lower than 1.00x10'^ M, pH measurements can then be collected.

A single freshwater measurement cycle is illustrated in Figure 3.10. In Figure 

3.10A the absorbances (calculated from the raw intensity signals) exhibit a decline as the 

total indicator concentration (Figure 3 .IOC, the determination o f the total indicator 

concentration will be addressed in a later section o f this chapter) is diluted by the sample. 

By using the temperature that is collected during each measurement cycle, the molar 

absorptivity ratios (e’s) and the pKa' can be calculated using Table 3.1 and Equation 6 

and Equation 9, respectively. Then by inserting the pK®', molar absorptivity ratios, and 

the absorbances into Equation 5, a pH for each o f the 14 intensity measurements can be 

determined. Figure 3.10 is a single mdicator pulse from a river water sample, showing 

the 14 intensity measurements obtained during the 14 pulse sequence.

Figure 3.1 OB demonstrates the perturbation effect o f the indicator on the pH o f a 

freshwater sample. As the concentration o f indicator decreases, the measured pH 

plateaus near the ‘̂ rue pH” (free o f perturbation). The indicator perturbation will be 

discussed in more detail later.
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3.5 Power Draw and Deployment Duration

The power usage o f the instrument components had to be assessed to determine 

the in situ duration o f the instrument. Two separate power sources, a 16 C-cell 12-V 

internal battery pack (14,000 mA hr) and an 18 D-cell 13-V external battery pack (30,000 

mA hr) (Figure 3.4), are utilized with the autonomous instrument. From Table 3.3 the 

data logger is displayed as having no current draw during the indicator and blank cycles, 

this is because it is continually powered. The 14,000 mA hr supplies the needed power to 

the data logger. The other instrument components (pump, valve, light, and detector 

amplifier) are powered by the 30,000 mA hr source.

Table 3.3. Current draws for the components of the SAMI-pH during blank and 
indicator measurement cycles.

Item Current
(mA)

Time On (sec) 
[For indicator cycle]

Time On (sec) 
[For blank cycle]

Current Draw 
(mA hr)

Indicator Blank
Data

Logger 2 0 Always On Always On NA NA

Amplifier
Detector 70 129 252 2.51 4.90

Valve 1 2 0 1 2 0.03 0.07

Pump 2 1 0 33 92 1.93 5.37

Light 1 2 0 1 2 1 2 1 2 4.03 7.07

Total 1 8.60 17.05
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For the 14,000 mA hi power supply, the data logger has a continuous draw o f 20 

mA (Table 3.3), therefore its duration is 700 hrs (14,000 mA-hr/20 mA) or 29 days. With 

the 30,000 mA hr power source the indicator and blank cycle mA hr draws have to be 

converted into a daily usage. The daily power draw o f the SAMI-pH’s component can be 

calculated as follows:

pH cycle = x 24 hr day"’ =413 mA • hr • day"’
hr

________ Blank cycle =_________________________ = 17.05mA • hr - day"’

Total = 430 mA • hr • day"’

In the calculation it is assumed that there would be a pH measurement twice every 

hour (2 X 8.60 mA hr, from Table 3.2) and a blank once a day. The resulting duration o f

the 30,000 mA hr source is then an addition o f the daily power draw from the indicator

cycle and a single blank cycle, which is —69 days (30,000 mA hr/430 mA hr day"’). The 

data logger is the limiting factor for the in situ instrument, allowing it to last for 

approximately 1 month. The power restriction o f the data logger can be dramatically 

improved by using other commercially available low power data loggers.

3.6 Precision and Relative Accuracy

Precision is very important for any instrument to be credible or usable. One way 

to check the precision o f an instrument is to determine the agreement between 

measurements under constant conditions. The desired precision for the SAMI-pH is <
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±0.010 pH units. To test the precision o f the autonomous instrument, river water 

samples from the Clark Fork River near The University o f  Montana were collected in 500 

ml glass bottles fitted with Teflon sealed caps. The bottles were acid washed and rinsed 

before collection to ensure they were free of contaminants. When collecting samples 

from the river, the bottles were rinsed three times with river water and then filled to the 

top and capped immediately leaving little or no headspace. The samples were then 

promptly transported back to the laboratory where the water was filtered to extract all the 

biota and particulates. The samples were then brought to atmospheric saturation, with 

respect to CO2, to reduce chance o f error that could occur due to gas exchange.

Once the water was equilibrated with atmospheric CO2 (solution was stirred for 

~2 hours) it was placed in an evacuated reagent (sample) bag via a syringe. This 

procedure was used to ensure that the reagent bag was free o f air. The bag was then 

attached to the instrument for analysis.

A thermostated chamber, placed on the top o f the instrument, was used to regulate 

the temperature. The chamber is designed to make a watertight fit around the top end cap 

o f the SAMI-pH so that it could be filled with water to surround the external components 

(pump housing, flow cell, and the reagent and sample bags). A Bath/Circulator (Neslab, 

RTE 111) pumped water into a copper tubing heat exchanger within the chamber to 

maintain a constant temperature. The temperature was monitored using the SAMI-pH 

thermistor. Once the desired temperature was achieved, continuous sample 

measurements were taken. Results for the test are presented in the next chapter.
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Relative accuracy is a term used to describe the accuracy of a measurement 

relative to another method. The relative accuracy o f  the SAMI-pH was determined with 

respect to measurements on an UV-VIS spectrophotometer. The relative accuracy 

between the two methods has previously been found to be ^0.008 pH units (French 

1999).

3.7 Determination of the Total Indicator Concentration

To characterize the perturbation o f cresol red on a freshwater sample (presented in 

the next section), the total concentration o f the indicator in the optical pathlength was 

determined. As Figure 3.2 shows the recorded absorbance signals at the 577 nm channel 

is strictly from the base form. From this observation, the concentration o f the base form 

can be found by using Beer’s Law,

[L^-] = ̂  (19)
S57?b

where b is the optical pathlength and A577 and 8577 are the absorbance and molar 

absorptivity at 577 nm respectively. From the Henderson-Hasselbalch equation 

(Equation 5) the concentration o f the acid form can be determined as follows:

Base _ f  [L" ] 
Acid l[H L ']

R - e ,
V ~ R®3 y

(20)

and with rearrangement the acid form can be calculated by.
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[HL-]=  ̂ (21)
R-e»

V ^ 2  ~  R C 3  J

Finally, the total indicator concentration could then be calculated with:

=[HL"] + [L'"]. (22)

This technique allowed the pH perturbation dependence on C j in both the SAMI-pH and 

the UV-VIS operations to be determined.

3.8 pH Perturbation

Dilution o f the river sample by the indicator solution, effects o f the indicator on 

different alkaline samples, and the addition o f a weak acid indicator to a freshwater 

sample were determined.

Addition o f  the indicator can dilute the sample. However, because o f the small 

dilution factor, dilution has a very minimal effect on the freshwater pH. The UV-VIS 

spectrophotometric method uses a 10 cm cell that has a 28 ml volume. To that volume 

25 pL o f cresol red is added resulting in a 0.09% dilution of water sample. In 

FRESHH20.BAS the dilution factor results in a pH change o f <0.0002 pH units.

Cresol red is a weak acid and when added to a poorly buffered sample it causes a 

decrease in the sample pH. The magnitude o f the pH perturbation depends on the 

sample’s acid neutralizing capacity. A theoretical program called PHINDICATOR.BAS, 

written in QuickBasic (Microsoft Corp.) by Mike DeGrandpre, was used to characterize
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the effect o f  the indicator on various alkaline freshwater samples. The program utilizes 

carbonate alkalinity, temperature, indicator concentration, pfQ', and dissolved inorganic 

carbon (DIC) to determine the pH perturbation (ApH). Since PHINDICATOR.BAS 

program was not capable o f computing the DIC, another program, FRESHH20.BAS, 

was used to compute it. FRESHH20.BAS is a freshwater version o f the C02SYS.BAS 

program (Lewis and Wallace 1998), converted by Matt Baehr, that calculates the 

carbonate parameters (DIC, alkalinity, pH, and pQOj) if two or more o f the parameters 

are measured or known.

For the conditions specified in Figure 3.11 caption, when the alkalinity is above 

2250 |iM there is a minimal change in the pH perturbation o f a freshwater sample. 

Conversely, with alkalinities lower than -2250 pM the indicator perturbation increases 

exponentially. The alkalinity range in the Clark Fork River varied from -2500 pM to 

—2900 pM during October 1998 to March o f 1999 (Ronald et al. 1999, unpublished data). 

The difference in the perturbation over this range results in a difference o f only 0.004 pH 

units.

In situ pH and indicator concentration can be used to determine the pH 

perturbation in lower alkalinity waters (< 2250 pM). A plot o f pH against indicator 

concentration is nonlinear over the full range o f indicator concentrations. But as the pH 

reaches indicator concentrations o f 9.0x10"^ M and lower the plot becomes linear (Figure 

3.12). From this observation an extrapolation back to the y-axis (pH) can be performed 

to find the unperturbed pH.
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Figure 3.11. For small alkalinity changes above —2250 (iM there is little change in the 
pH perturbation. Whereas below 2250 pM concentrations there is a substantial change 
observed (minimum of —0.01 pH units over a 500 pM change in alkalinity). The actual 
pH used was fixed at 8.4675 at a temperature of 10 and an indicator concentration of 
6.00x10'^ M.

Rather than using multiple measurements as in Figure 3.12 to estimate the 

perturbation theoretical estimates can be obtained with an approximate sample alkalinity. 

Theoretical modeling o f the pH perturbation was accomplished using the 

PHTNDICATOR.BAS. Initially, an alkalinity o f 2600 pM and a pH o f 8.397 were used 

to compute a DIC at a temperature o f 20®C. The resulting DIC and the alkalinity were 

used in the PHINDICATOR.BAS program over varying indicator concentrations to find 

the pH perturbation on a freshwater sample (Figure 3.13).
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Figure 3.12. A single pH measurement of a freshwater sample measured by the SAMI- 
pH. The overall plot is non linear in shape, but as the indicator concentration decreases 
below 9.0x10'^ M the curve can be assumed to be linear.

Experimental determination o f the pH perturbation can be attained by adding 

small increments o f  cresol red indicator to river water sample and measuring on the UV- 

VIS. This experiment used a 10 cm jacketed cell that was thermo stated at 20±0.1®C. 

Initially a blank, using river water, was obtained after the desired temperature was 

reached. To the blank 10 pL increments o f indicator solution (1.008x10'^ mol kg ‘) was 

added until 2 a.u. was reached at the acid or base wavelength. The absorbances, which 

used to calculate the indicator concentration, were then plotted against the calculated pH 

(Figure 3.13). The data were linear over the range of indicator additions (r  ̂= 0.9570).



42

8.40

8 .3 9

8 .3 8

XQ.

8 .3 7

8 .3 6

8 .3 5
0.0 2 .0 e -6 4 .0 e -6 6 .0 e -6 8 .06-6 1 Oe-5 1 .2e-5

Total Indicator Cocentration (M)

Figure 3.13. Theoretical perturbation (•) calculated using PHINDICATOR.BAS with 
an alkalinity of 2600 pM, a DIC of 2683 pM, and temperature at 20 . Experimental
perturbation (a ) was performed using 10 pL increments of a 1.008x10'^ mole-kg'^ cresol
red solution also at 20 ‘’C. The linear regression output for the theoretical and 
experimental data resulted in slope of -4413 pH units M'  ̂ and -4103 pH units M'^and a r̂  
of 0,9998 and 0.9570, respectively.

By virtue o f the theoretical and experimental methods being linear, the pH 

perturbation for the two methods can be determined by using two different 

concentrations. To compare the UV-VIS and the SAMI-pH, indicator concentrations of 

1.0x10^ M for the UV-VIS and 6.0x10"^ M for the SMI-pH will be used to determine the 

pH perturbation. These concentrations are used because the resulting absorbances for 

each method are approximately equal at the 439 and 577 nm channels. The theoretical
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and experimental methods resulted in slopes o f -4413 pH units M"' and —4103 pH units 

M "\ respectively. The difference in the calculated pH perturbation between the two 

methods was in good agreement, 0.002 pH units (Table 3.4). Based on these tests, a pH 

for any given concentration can be determined using pH for a single indicator 

concentration and the slope from linear regression o f the theoretical data.

The method just described can be implemented to obtain the unperturbed pH. For 

example, if the SAMI-pH found a water sample to have a pH o f 8.465 at a concentration 

o f 6.0x10"^ M the resulting pH at 0.0 M indicator would be calculated as follows,

pH^pem^ = 8.465 -  [(6.0 X 1 O'* M X -4413) _ (O.OM X -4413)] = 8.492 

giving a pH perturbation o f 0.026 pH units.

Table 3.4. The theoretical and experimental calculated pH the perturbation 
experiments are at indicator concentrations of 1.0x10'^ M and 6.0x10'^ M.

1.0x10"^ M 6.0x10"® M

Differences in the 

Calculated Perturbation

Theoretical pH 8.493 8.470 0.022

Experimental pH 8.380 8.356 0.020
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3.9 Deployment of the Autonomous Instrument

3.9.a. Preparation of SAMI-pH for Deployment

Once the instrument was laboratory tested, the instrument was ready for 

deployment in the selected study site (the Clark Fork River). Before the instrument was 

deployed a few precautionary steps were taken to ensure that the instrument would not be 

damaged by debris in the river. First a protective copper cage was placed around the 

external components to keep the exposed fiber optics and tubing from being damaged. 

The instrument was then securely fastened into a stainless steel cage for added protection 

and to help anchor it on the river bottom (Figure 3.14). To secure the instrument on the 

riverbed, two cement anchors were attached to the stainless steel cage and placed 

upstream from the instrument.

3.9.b. Deployment Sites

The SAMI-pH was deployed in two different sections o f the river on three 

separate occasions. One site is a short distance due east o f The University o f  Montana, 

marked A in Figure 3.15. The other site is located east o f East Missoula at the Sha-Ron 

fishing access located just north o f the Bandmann Bridge, marked B in Figure 3.15. The 

second site was a preferred location because the water had a high flow rate to reduce 

bio fouling and the site was also more accessible for discrete sample collection.
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Figure 3.14. SAMI pH in the protective cage, ready for deployment

3.9.C. Deployments of SAMI-pH and Other Instrumentation

This section will describe the three deployments and what improvements and tests 

were performed on the autonomous instrument to ready it for the next deployment. The 

first deployment was east o f The University o f Montana (marked A in Figure 3.15), the 

second and third deployments were near the Sha-Ron fishing access (marked B in 

Figure 3.15). The experiments will be described in the order they occurred. The results 

o f the deployments will be presented in the next chapter in the same format as this 

section.
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Figure 3.15, The SAMI-pH was deployed in the Clark Fork River near Missoula, MT at 
two different sites, one just east of The University of Montana (A) and another north of 
the Bandmann Bridge east of East Missoula, MT (B).

The SAMl-pH was first deployed on December 22, 1999 and retrieved on 

December 24, 1999. The instrument was programmed to collect pH data every 15 

minutes. During the experiment Jason Reynolds had deployed an autonomous sensor that 

monitored the partial pressure o f CO2 (pCOz), SAMI-CO2 (DeGrandpre et al 1997), at 

same site as the SAMl-pH. The advantage o f having additional instrumentation is that it 

enables independent calculations o f pH for comparison with the SAMl-pH performance.
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Due to the short duration o f the first deployment, a second deployment was 

essential for determining the performance of the instrument over a more extended period 

o f time. Changes were made to the operating program so that more intensity 

measurements were obtained during the pH measurement cycle. The second deployment 

also used a SAMI-CO2 system in combination with SAMI-pH. The instruments were 

deployed on January 8, 2000 and recovered on January 12, 2000. The testing time was 

cut short due to the formation o f ice on the instruments (Figure 3.16).

The third deployment was performed with the same intention as the second 

deployment, to obtain an extended sampling period. For this trial a few changes were 

made on the instrument. First, the intensity levels for the 439 and 577 nm channels were 

too low in comparison to the 735 nm channel, causing a decrease in the signal-to-noise 

ratio. This problem was solved by reducing the amplification o f the 735 nm intensity 

signal (reduction in the feedback resistance o f the 735 nm channel) and increasing the 

light intensity through the optical system (moved the fiber optic closer to the light 

source). The operational program was changed so that 10 pulses o f water would precede 

the original indicator and water sample pulses. This change was made to account for the 

dead volume in the punq> and valve, as well as lag time between the inlet tubing to the 

valve. Additional samples were also collected for the analysis o f  alkalinity. Alkalinity 

was determined via potentiometric titration and subsequent Gran Plot analysis. The 

instrument was placed back in the river on October 29, 2000 and was recovered on 

November 3, 2000.
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Figure 3.16. The deployment during January of 2000 was cut short due to the formation 

of ice on the SAMTpH.

3.10 Discrete Sampling

Sampling was used to verify SAMI-pH measurements during each deployment. 

Discrete samples were obtained two to four times every day during the deployments. The 

bottles and sampling technique used are the same as discussed in section 3.6.a (excluding 

filtration and equilibration to atmospheric CO2). After all the samples were collected the 

temperature o f  the river was obtained using a portable electronic temperature probe 

(Omega HHD, with a reported accuracy o f ±0.1 ®C). The samples were transported back
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to the lab in a bucket o f ice (river temperature was from 6.0 - 0.1 °C), where they were 

immediately analyzed with a benchtop spectrophotometer at the measured river 

temperature.

Prior to the first deployment, some of the discrete samples were spiked with 

saturated mercuric chloride (HgCt). HgCb is commonly added to water samples to 

prevent biological activity from changing the alkalinity and DIC o f the sample. It was 

serendipitously discovered that the determined pH’s from spiked samples were 

consistently lower than that o f the non-spiked samples. The addition of HgCb to a 

freshwater sample causes an observed decrease in the pH o f —0.1 pH units. This is due to 

hydrolysis by the mercury ion. Also, when HgCb is added to a water sample with 

indicator concentration lower than 4.0x10"^ M there is an “pseudo” buffering effect on the 

pH (Figure 3.17). For indicator concentrations larger than 4.0x10"^ M, there seems to be 

no deviation between the spike (with HgCk) and non-spiked samples. Although it is not 

concretely known on what causes this phenomenon, it is assumed that there is a 

complexation between the Hg^^ metal and the indicator, thereby causing an alteration in 

the pH perturbation. As a result, the discrete samples for the deployments were analyzed 

without the addition o f HgCb To limit the biological activity the discrete samples were 

transported immediately back to the lab for analysis (within 1 hrs from the sampling 

time).

Discrete samples from the first and second deployments were analyzed in the lab 

with an UV-VIS spectrophotometer (Perkin-Elmer, Lambda 11). Portions o f the 

freshwater samples were transferred into a 10-cm thermostated flow cell (that was rinsed 

three times with sample water) to which 75 pL o f a 3.75x10^ pmole kg'* cresol red
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Figure 3.17. The addition of mercuric chloride to a freshwater sample causes an 

alteration in the pH perturbation at indicator concentrations below 4.0'^xlG M. This 

alteration is believed to be caused by complexation of with the indicator.

solution was added. The absorbances at 439, 577, and 735 nm were then collected. The 

analysis was performed three times for each discrete sample collected.

For the third deployment an UV-VIS spectrophotometer (Varian, Cary 300 Bio) 

was used for analyzing the grab samples. The Cary UV-VIS is a double beam 

spectrophotometer equipped with 10 cm cell holders that are temperature controlled using 

the bath/circulator (Neslab, RTE 111). A 10 cm cell filled with DI water is used as the
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reference sample. Another 10 cm cell, filled with sample water, was placed in the sample 

beam where a blank was recorded. Then 25 pi o f a 2.00x10'^ mole kg ’ o f  cresol red 

solution was added to the sample cell. The cell was then placed in the bath/circulator for 

5 minutes to reach the desired measurement temperature. After the allotted time, the cell 

was set back in the UV-VIS to collect absorbance measurements.

3.11 Temperature Correction

The river temperature was measured by the SAMI-pH and by the previously 

mentioned portable electronic thermistor when discrete samples were collected. When 

the deployments were finished and the data were collected, the two temperatures did not 

always agree. Using the FRESHH20.BAS program along with an alkalinity o f  2780 

pM, DIC o f 2783 pM, and varying temperatures, the pH sensitivity to temperature was 

determined (Figure 3.18). From the resulting data, a linear offset was calculated and 

used to correct the UV-VIS data to the in situ temperature.

Experimental tests were also performed to characterize the effects o f temperature 

on the pH o f a river water sample. Two trials were done on the same discrete sample 

taken from the Clark Fork River. The tests utilized the same methods in the 

determination o f the discrete samples during third deployment. The only exception was 

that the cell was placed back in the water bath where it was allowed to equilibrate to the 

next temperature.
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Figure 3.18. Theoretical (■) determination of freshwater pH variability with respect to 
temperature using an alkalinity of 2780 pM and DIC of 2783 pM. Linear regression 
resulted in a slope of -0.0127 pH units °C \  a y-intercept of 8.3309, and a r̂  of .998. The 
experimental determination of pH dependence on temperature was performed on a 
freshwater sample. The two experimental trials were performed using the same collection 
of discrete samples. The slope and correlation coefficient for the first trial (a) are -0.0140 
pH units °C and 0.9999 and for the second trail (#) are -0.0147 pH units '’C and 
0.9995.

The resulting slopes from the theoretical (-0.0127 pH units ®C‘*) and 

experimental data (-0,0140 pH units ®C'*and —0.0147 pH units ®C‘ )̂ are within 

approximate agreement, resulting in a difference o f —0.002 pH units over a 1.00 °C 

temperature difference. Therefore the theoretical estimate can be applied for correcting 

the temperature difference between the SAMI-pH and the UV-VIS.



Chapter 4 

Results

This chapter will present a comparison o f data collected from the SAMI-pH and 

discrete samples during the three deployments. Changes made in methodology, data 

manipulation, or to the SAMI-pH will be presented in the order as they occurred during 

the research period. This format will provide a logical timeline for the changes that were 

made for the subsequent deployments. (All pH data in this section is uncorrected until 

corrections are discussed).

4.1. First Deployment

The data collected from the first deployment was imported into a Quattro Pro 

(Corel Corp.) file where the intensities were converted into absorbances (Equation 7) and 

ultimately into pH and blank values (Equations 5 and 14). Temperature, 735 nm intensity 

(1735)5 absorbances (439 and 577 nm), and pH from the SAMI-pH were plotted versus 

year day for the full deployment (Figure 4.1). Temperature and calculated pH from the 

discrete sample analyses were also graphed with the in situ data.

Temperatures recorded during the grab samples were not in agreement with the in 

situ temperature (Figure 4.1 A) with differences ranging from 0.5 ®C to 0.1 “C. Therefore, 

temperatures from the CO2 sensor were also plotted to determine which data set was 

valid. The temperatures from the CO2 sensor were in good agreement with the SAMI-pH 

(better than 0.1 ®C) over the duration o f the deployment. The temperature difference 

between the SAMI-pH and UV-VIS will be addressed throughout this chapter.

53
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Figure 4*1. Data collected from the SAMI-pH during the December 1999 deployment 
(in black). Along with temperature (□) and pH data (A) from the discrete samples and
temperature from the SAMI-CO2 sensor ( -) .
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The plot o f  the reference wavelength intensity (I735) versus year day demonstrates 

its slight dependence on temperature (Figure 4 .IB), as the temperature decreases the 

resulting output intensity decreases. This effect is probably due to changes in the light 

throughput through the flow cell due to contraction and expansion o f the cell. This 

illustrates why it is important to correct for the intensity fluctuations using a reference 

channel during absorbance measurements.

According to the equilibrium expression (Equation 1), absorbances for the 

two forms o f the indicator will be inversely related, it can be assumed that the two forms 

will act as “mirror images”. For example, if the pH o f a water/indicator solution was 

increased, then the acid form would be depleted causing a decrease in absorbance 

(Figures 4.1C). Conversely, the base concentration would increase, causing an increase 

in absorbance («e) (Figure 4 .ID). This characteristic is useful in determining if the 

instrument was functioning properly. The step-like appearance in absorbance data is due 

to changes in indicator concentration. By calculating absorbance ratios, the fluctuation in 

the absorbance for the acid and base channel are canceled as seen in the pH data (Figure 

4. IE). The average relative accuracy between the discrete sample calculations and the in 

situ measurements (UV-VIS - SAMI-pH) is 0.038 ±0.010 pH units (N = 7).

A diurnal cycle, with two maxima and a variability o f  about 0.250 pH units is 

observed when the pH from the SAMI-pH is plotted against the year day (Figure 4 .IE). 

Freshwater pH is predominately controlled by the carbonate system and the processes 

that affect it, particularly the biological respiration and photosynthesis and also diffusion 

o f CO2 across the air-water boundary. By using the SAMI-CO2 in combination with the 

SAMI-pH, the dependence o f pH on the carbonate system can be characterized.
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Figure 4.2. The pH (measured with the SAMI-pH) of the Clark Fork River appears to be 
predominately controlled by the partial pressure of CO 2 (PCO2) (measured with the 
SAMI-CO2).

Figure 4.2 illustrates the expected inverse relationship o f pH with river pCOi- Another 

advantage o f monitoring the pCOi is that it can be used with another carbonate parameter 

(alkalinity or DIC) to calculate pH. Jason Reynolds collected periodic discrete samples 

for one week prior to the first deployment for the analysis o f alkalinities. These data 

were used in conjunction with the pQOi to obtain a calculated pH (Figure 4.3). The 

calculated pH was on average ~0.1 pH units greater than the recorded in situ pH from the 

SAMI-pH. This plot will be discussed in the next chapter.
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Figure 4.3. The calculated pH was determined using an average alkalinity of 2753 pM 
and the in situ pCOx and temperature data.

4.2 Second Deployment

A second deployment quickly materialized to collect data over a longer duration 

o f about 7 days. The longer deployment would test the instrument’s long-term stability 

and would also determine if the offset in the relative accuracy was reproducible. The 

only modifications made to the SAMI-pH were a recalibrz^ion o f the spectrograph 

wavelengths and the number o f  intensities collected for the pH measurements cycle was 

increased from 14 to 18. A SAMI-CO2 was again deployed adjacent to the SAMI-pH.

The second deployment, near the Sha-Ron fishing access east o f East Missoula, 

included some mistakes and a little misfortxme. As was stated in the previous chapter the
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deployment was stopped short (only -  4 V2 days) due to instrument acting as a nucléation 

site for ice in the river. After the data fi-om the SAMI-pH was downloaded, there was an 

error found in the operational program o f the instrument. The instrument was 

programmed to collect data once every hour instead o f 4 times per hour. This mistake led 

to few comparisons between the SAMI-pH and the calculated sample analyses. Also 

during the testing period, grab samples were not collected for alkalinity determination, 

therefore comparison between the SAMI-pH data and tabulated pH from pC02  and 

alkalinity could not be performed. The SAMI-pH functioned very well however, despite 

operator blunder.

The temperatures recorded during the grab sampling and by the SAMI-pH did not 

agree during the second river trial period. There was an observed differences greater than 

0.25 °C (Figure 4.4A). The reference channel demonstrated the same dependence on 

temperature as the first deployment (Figure 4.4B). The pH data from the SAMI-pH 

demonstrated the same diurnal variability as in the first deployment, with two maxima 

per day and a variability o f  -~0.I75 pH units. The graph o f in situ and discrete sample pH 

versus year day (Figure 4.4C) exhibits a larger difference between the two methods than 

the first deployment. The relative accuracy between the two methods was approximately 

0.067 ±0.013 pH units (N = 4).
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Figure 4.4. Data from the SAMI-pH along with temperature (□) and pH (A) from the 
discrete samples collected during the second deployment.

The pCOi and pH were plotted against year day to determine if the decrease 

magnitude in the diurnal cycle was real and also if the pH instrument was performing 

properly (Figure 4.5). The characteristic inverse relationship between the two carbonate 

parameters was very evident as was observed in the first deployment.
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Figure 4.5, The characteristic inverse relationship between PCO2 and pH was evident 
again during the second deployment. There was a decrease in the magnitudes of 
variability for both the PCO2 and pH in comparison with the first deployment.

4.3. Experimental and Theoretical Corrections and Offsets

Before the SAMI-pH could be placed back into the river for a third time, the large 

difference in relative accuracy (within a deployment and between the two deployments) 

had to be addressed. As mentioned earlier, a relative accuracy o f ±0.01 pH units is 

desired. Another issue investigated was the inconsistency in the temperatures o f the 

external temperature probe and the thermistor o f  the autonomous instrument. Finally, 

modifications that were performed on the SAMI-pH to improve its performance will be 

addressed.
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The first correction examined for improving the relative accuracy was the molar 

absorptivity dependence on temperature. We also discovered that the method of 

calculating the molar absorptivities over ±12 nm bandpass o f  the SAMI-pH was another 

source o f error. Initially the molar absorptivities were computed by averaging 

absorbance over the ±12 nm range whereas the SAMI-pH averages intensities over a ± 12 

nm range. The problem with this method is that the absorbance is linear function and 

intensity is a nonlinear function with respect to the molar absorptivities. To resolve the 

problem, absorbances from the molar absorptivity experiments were converted into 

intensities, averaged, and then converted back into an absorbance.

Perturbation o f freshwater pH by the addition o f the cresol red indicator was also 

causing differences in the two methods. The pH perturbation was characterized 

theoretically and experimentally over a range o f indicator concentrations so that an offset 

could be applied to the pH measurements.

With theoretical modeling, a correction for the dependence o f freshwater pH on 

tenperature was determined and applied to all discrete samples. After various 

experiments in the lab, it was concluded that the external temperature probe and the 

SAMI-pH work properly and were within ±0.2 ®C o f each other.

Once all o f  the corrections were determined, they could be applied to the first two 

deployments data sets to reassess the relative accuracy (Table 4.1 and 4.2). The molar 

absorptivity and pH perturbation corrections were applied to the SAMI-pH 

measurements. The molar absorptivity correction resulted in a pH increase o f  0.019 pH 

units and the pH perturbation led to a range o f corrections difference (ranging from 

-0.021 to -0.019 pH units) depending on the difference in indicator concentration
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between the UV-VIS and SAMI-pH. The UV-VIS pH calculations were corrected by 

deducting the error associated with temperature (from -0.007 to +0.005 pH units).

With all o f  the corrections applied, the relative accuracy for the two deployments 

was improved but the discrepancy between the deployments was not (Tables 4.1 and 4.2). 

The average relative accuracy for the deployments was determined by calculating the 

mean offset and the standard deviation about the mean offset for the pH differences o f all 

the trials. The corrected discrete samples and in situ data for the December 1999 trial

Table 4.1. The relative accuracy for corrected pHs for the SAMI-pH and discrete 
samples collected during the December 1999 deployment. (The mean offset is considered 
the average relative accuracy).

SAMI-pH A pH

Uncorrected Corrected UV-VIS (UV-VIS-SAMI-pH)

356.00 8.5712 8.6105 8.6201 0.0095

356.28 8.4441 8.4817 8.4708 -0.0110

1 356.71 8.4630 8.5014 8.4959 -0.0055

Ê
356.79 8.5526 8.5928 8.5966 0.0038

1 356.90 8.6278 8.6684 8.6814 0.0130

357.25 8.3941 8.4322 8.4223 -0.0100

357.67 8.4782 8.5158 8.5133 -0.0025

Mean offset -0.0004

Std. o f mean 
offset ±0.009
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Table 4.2. The relative accuracy for uncorrected and corrected pHs for the SAMI-pH 
and discrete samples collected during the January 2000 deployment.

SAMI-pH
UV-VIS

A pH

Uncorrected Corrected (UV-VlS-SANlI-pH)

9.83 8.5087 8.5467 8.5806 0.0338

S'
Q 10.83 8.5240 8.5632 8.5982 0.0350

1 11.71 8.5036 8.5424 8.5560 0.0137

12.08 8.3871 8.4267 8.4593 0.0326

Mean offset +0.0288
Std. o f mean 

offset ±0.0101

resulted in a mean offset o f -0.004 pH units and a standard deviation o f ± 0.0004 pH units 

(Table 4.1). The January 2000 corrected data produced a mean offset o f ±0.029 pH units 

(Table 4.2) and a standard deviation o f ±0.010 pH units.

With all o f  the modifications to the SAMI-pH completed and the corrections 

calculated, we decided to further test the precision and relative accuracy o f the SAMI-pH 

in lab. Both o f the performance characteristics were determined in the experiment 

described below.

A sample collected from the Clark Fork River was transported back to the lab 

where it was immediately filtered and equilibrated with atmospheric CO2. After filtration 

the water was transferred into a reagent bag. The reagent bag was then attached to the 

SAMI-pH, where the tests were run at room temperature (25.0 ”C). The instrument 

flushed the plumbing and collected intensities for blank constants and then ran 12 pH
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measurement cycles. The water that remained in the collection bottle after filling the 

reagent bag was used to collect pH measurements on the UV-VIS. The data for the 

SAMI-pH and UV-VIS resulted in a pH o f 8.505 ±0.003 pH (N = 12) units and 8.499 

±0.005 pH units (N = 2), respectively a relative accuracy o f -0.006 pH units. Another 

trial from a different grab sample obtained relative accuracy o f  a -0.001 pH units.

Samples were also transferred into a reagent bag without filtering or equilibration 

with atmospheric CO2 . The reagent bag was attached to the SAMI-pH, which was 

covered with a temperature-controlled chamber (this is to have a constant control over the 

temperature o f the indicator reservoir and the sample water). The internal compartment 

o f the chamber was then equilibrated to a temperature o f  15*̂ C. Once the desired 

temperature was achieved, the SAMI-pH ran 16 pH measurement cycles and a blank 

measurement cycle.

The calculated pHs from the 16 cycles were plotted versus the total indicator 

concentration (Figure 4.6). The calculated pH over the range o f indicator concentrations 

was very reproducible for the multiple cycles (Figure 4.6A), As the indicator becomes 

more dilute (< 4.0E-6 M) the pH begins to scatter, which is due to the low absorbance 

measurements being within the noise o f  the instrument. For each measurement cycle, a 

single pH was collected with an indicator concentration as close to 6.0E-6 M as possible 

(Figure 4.6B). The average o f the 16 single points resulted in an average pH o f 8.607 

with a precision o f  ±0.003 pH units.

The water that remained in the discrete sangle bottle after the reagent bag was 

filled was analyzed by the UV-VIS spectrophotometer (Varian, Cary Bio 300) at a 

temperature o f  15.0 ®C. There were three total measurements made on the UV-VIS, one
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from the bottle and two from the reagent bag. The tests resulted in a pH o f 8.6813 

±0.002 pH units. With all the offsets applied the relative accuracy was determined to be 

0.07 pH units. This trial will be discussed later.

4.3. Third Deployment

With the improvements made to the SAMI-pH operation a third deployment was 

scheduled. A longer deployment was still needed to test the long-term stability o f the 

instrument. It would also enable more discrete samples to be collected, which would be 

used to investigate relative accuracy discrepancies between the first and second 

deployment. The third trial would also involve the collection of water samples to 

determine alkalinity.

The SAMI-pH was put back in the river, near the Sha-Ron fishing access (marked 

B in Figure 3.14), for a third time on October 25, 2000 and recovered November 3, 2000. 

The instrument was periodically retrieved from the river (on year day 300, 301, and 303) 

to download the data. After all corrections were applied to the data, temperature, I 7 3 5 ,  

and pH were then plotted versus Year Day (Figure 4.7).

The temperature measured with the portable temperature probe for the discrete 

samples was in good agreement with the autonomous instrument (Figure 4.7A). A 

plausible reason for the difference in the temperatures for the first two deployments was 

concluded after closer inspection o f the river. The stretch o f the river, where the SAMI- 

pH was deployed, had two distinctly different sections o f  water. One section was from
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an eddy source, while the second represented the main part o f the river. The temperature 

probe was tested in both sections o f  the river and it was verified that a temperature 

gradient was present between the two sections.

The I 7 3 5  over the test period demonstrated a similar dependence on temperature as 

was observed in the prior deployments (Figure 4.7B). Two major intensity fluctuations 

year day 300 and 301 in the data were caused by the retrieval o f the instruments.

The comparison o f the corrected pH data from the discrete samples and the 

SAMI-pH resulted in a similar difference to the second deployment (Figure 4.7C). The 

average relative accuracy during the testing period was 0.041 pH units with a standard 

deviation o f ±0.005 pH units (N = 18). The average alkalinity over the deployment was 

found to be 2775 ±30 pM. With the alkalinity well above the 2250 pM concentration it 

can be concluded that perturbation variability is not a major source o f error in the relative 

accuracy.

The longer duration o f the third deployment allowed for more discrete sample 

comparisons. By plotting the difference between the UV-VIS and the SAMI-pH over the 

duration o f the deployment gives an indication if the instrument had drifted (Figure 4.8). 

Over the deployment error in the difference between the two methods was very 

systematic, ±0.005 pH units. This implies that instrument performance was stable and 

drift free over the extended period o f time.



69

0.055

0 .0 5 0  -

^  0 .0 4 5  -

X  0 .0 4 0  -

0 .0 3 5  -

0 .0 3 0
2 9 8  2 9 9  3 0 0  301 3 0 2  3 0 3  3 0 4  3 0 5  3 0 6  3 0 7  308

Y ear Day (2000)

Figure 4.8. The SAMI-pH long-term stability over the duration of the October 2000 
deployment, achieving an average relative accuracy of 0.041 pH units and a standard 
deviation about the mean of ±0.005 pH units (N =  18).



Chapter 5 

Discussion and Conclusion

5.1 Discussion

5 .1a  Summary of the River Deployments

Comparisons o f pH versus year day for the three deployments yield a very 

noticeable difference in the magnitude o f the diel cycles. The first deployment (near The 

University o f  Montana, Figure 3.14) resulted in a magnitude change o f —0.250 pH units 

while the second and third deployments (near the Sha-Ron fishing access. Figure 3.14) 

were —0.150 and 0.135 units, respectively. Jason Reynolds, who deployed pCOi 

instrumentation at each o f the sites to collect time series data, also documented a 

difference in the diel magnitude o f pCOz between the two sites. The range was also 

found to be more variable at the downstream site.

Diel variability o f the SAMI-pH and SAMI-CO2 corresponded very well over the 

deployment times. If  instrumental drift had occurred, there would have been a noticeable 

deviation in the inverse relationship between the SAMI-pH and pCOi instrumentation 

(Figure 4.2 and 4.7). Also, when all corrections were applied (including the correction 

for perturbation to zero indicator concentration) to the December 1999 data, there was a 

reduction from -0.100 to -0.055 pH units between the calculated and measured pH 

(Figure 5.1 A).

70
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The observed difference in the two different methods is due to discrepancies in the 

determination o f the pK*', the calculation o f pH using the FRESHH20.BAS program, 

and instrument responses times. When the pK@' was determined, a buffer o f higher ionic 

strength (0.01 M) than the Clark Fork River (<0.005 M) was used. This caused the 

SAMI-pH to underestimate the “true” pH o f the river. The calculated pH on the other 

hand overestimated the pH because it used equilibrium constants at infinite dilution or 

zero ionic strength. The variability in the difference plot is caused by response time 

differences between the two instruments (Figure 5. IB). Although there is variability I the 

data as previously mention, there is no observed instrumental drift. This demonstrates 

that it is stable over time. The SAMI-pH also proved to be a very stable and robust 

instrument during the third deployment when it taken out o f the river (for a minimum o f 

Vi hr.) three separate times to download the data (Figure 4.7). When the instrument was 

placed back into the river the pH data did not show any offset caused by the removal.

S .l.b  Overview of SAM I-pH Performance

The SAMI-pH has attained all but one o f the many operational standards set at the 

beginning o f the research period (Table 5.1). It has demonstrated a precision o f ±0.005 

pH units, good long-term stability and freedom from drift, low power requirement 

(allowing for longer in situ duration), minimal indicator usage, and rapid response time 

('-' 2 minutes). The only shortfall o f  the autonomous instrument was the relative accuracy 

when compared to the UV-VIS.

The average relative accuracy o f the three trials was -0.001, 0.029, and 0.041 pH 

units. I f  pH and alkalinity were used to determine /7CO2, these pH errors would result in



73
errors o f  ±19, ±57, and ±89 jLiatms in the calculated pQOz. Although the SAMI-pH did 

not attain the desired relative accuracy o f better than ±0.01 pH units for all o f  the 

deployments, it has still outperformed an electrode. Electrodes have proven to be 

unreliable for freshwater pH measurements, producing an uncertainty o f  ±0.1 pH units 

(Maberly 1996). An error o f ±0.1 pH units in pH measurements leads to an uncertainty 

o f  ±173 patms in pCOi calculations. As demonstrated earlier, the diurnal variability of 

pCO i in the Clark Fork River was only 230 patms, so the error associated with a single 

pH measurement would result in 75% o f the total variability in the river pCO: 

concentration.

The overall accuracy, which was determined by taking the difference o f the 

calculated pH (derived from pCOz and alkalinity) and the pH from the SAMI-pH, was 

reported as - 0 .1 pH units. After correction for the SAMI-pH were made for perturbation 

and molar absorptivity, the overall accuracy was reduced to -0.06 pH units. This 

discrepancy between the calculated and in situ data is caused by the differences in ionic 

strength when pH is determined using the FRESHH20.BAS program and the SAMI-pH 

(uncertainty is in the pK&' determination o f cresol red). The program assumes that the 

ionic strength o f the river is at infinite dilution (p = 0.000 M) and the pIQ' was 

determined in an ionic strength o f 0.01 M. Since the ionic strength o f the river is <0.005 

M, the SAMI-pH will compute a pH o f  the river that is underestimated while the program 

will overestimate the true pH o f the river.
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Characteristic Description Result

Dynamic Ran^e
The working range o f the indicator 

(Determined assuming on absorbance minimum 
of 0.1 and a maximum indicator concentration of 

6.5x10-^ M, at 1 0 * C )

7 .6 1 -8 .7 3  
pH units

Response Time Time required to detect 90% o f a pH 
change ~ 2 minutes

Flush Time Time required to completely flush the 
indicator from the plumbing ~ 5 minutes

Indicator
Consumvtion

50 |iL per pH measurement cycle 
(assuming 30 minute cycle interval)

73 mL o f 
0.020 mole kg’* 

CR month'’

Relative
Accuracy

The agreement between the UV-VIS and 
SAMI-pH

0.041 ±0.005 pH 
units

Precision The reproducibility for 
a single sample

Better than 
±0.005 pH units

Power Limit The length o f deployment 
(assuming 2 measurement cycles per hour) -  1 month
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As previously stated, the dynamics o f  the river at the two study sites were 

distinctly different. The study site near the University was more uniform (i.e. without 

rapids or eddies). At the upstream site (at Sha-Ron fishing access) there were rapids and 

eddies just above (~50 m) the deployment site along with eddies below the instrument. 

Although this may be a possible source o f error when discrete samples were collected, it 

cannot be statistically verified because few relative accuracy tests were performed in the 

lab and in the field.

Comparisons o f lab tests between unmodified river water and samples that had been 

filtered and equilibrated with atmospheric CO2 demonstrates that there is a possible 

source o f error caused by the composition o f the river water. Although there is evidence 

o f a difference between the experiments, the data can not be used to assess the difference 

in the various deployments due to few sample tests.

5.2 Conclusion

The relative accuracy o f the instrument is an important issue that needs to be 

addressed so that the SAMI-pH can be used in further characterization o f the carbonate 

system. Extensive lab testing using solutions of varying alkalinity and pC02 (this would 

control the pH) could be used to verify the overall and relative accuracy o f the SAMI-pH. 

River samples that have been filtered and equilibrated with atmospheric CO2 should also 

be thoroughly investigated against unmodified samples to ensure that the composition o f 

the river is not a factor in the relative accuracy. The overall accuracy o f the instrument 

could also be greatly enhanced if the pK&' was determined using a low ionic strength
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medium or at infinite dilution. A notable difference in the dynamics o f the deployment 

sites necessitates more deployments to determine the possible source o f error in the 

relative accuracy.

With improvements in electrical and instrumentation technology, the operation o f 

the SAMI-pH can be enhanced. For example, a new low power data logger (Onset 

Computer Corporation) would decrease power consumption and increase the deployment 

duration o f the instrument. The use o f liquid core wave-guides would increase the optical 

pathlength, thereby reducing indicator concentrations and pH perturbation. The optical 

bandpass o f  the SAMI-pH could be improved by replacing the holographic grating with a 

photodiode/filter combination (Intor Corp.). And finally, for the SAMI-pH to be used in 

a system that experiences large fluctuations in pH, like acid mine drainage, multiple 

indicator solutions could be characterized and used to detect wide ranges o f pH.

In combination with pCOi instrumentation, the SAMI-pH would be 

beneficial in collecting long-term time series data for determining diel, episodic, and 

seasonal trends o f  the carbonate parameters. With these improvements and the 

combination o f other in situ instrumentation a better understanding o f the cycling



Appendix 1 

SAMI-pH Operating Program (pHV3.TT4)

DIM (128,4096)

3 REM SAMI-pH SENSOR CONTROL (VERSION 3)
4 REM MODIHED OCTOBER 25, 2000 BY JEFF CARR
5 REM
10 REM GOTO 2000 (DATA DUMP), 3000 (SET CLOCK, DATA COUNTER)
15 REM 1/0(0) = POWER 1/0(1) = LAMP
20 REM 1/0(2) = PUMP 1/0(3) = VALVE
25 REM 1/0(6) = DETECTOR +/- 12V SUPPLY
30 REM CHAN(0) = 434 nm (RED) CHAN(l) = 577 nm (GREEN)
35 REM CHAN(3) = 740 nm (BLUE) CHAN(7) = TEMPERATURE 
40 REM
50 ASM &H9B, DB 8 :REM 5I2K MEMORY EXPANSION 
60 PCLR 0,1,2,3: PSET 6 :REM SHUT OFF ALL DEVICES 
80 GOSUB 3000 : REM SET DATE AND TIME 
90 H = I : GOTO 200: REM IF STARTING DONT WAIT 1/2 HOUR
99 REM =-=-=-=-=-=-=-=-=-=- CTRL-C DESTINATION
100 PCLR 0,1,2,3: PSET 6
105 ASM &HBB,DB &HOA:C = CHAN(O) 
n o  STOP
200 REM =-=.=-=-=-=-=-= START OF MEASUREMENT SEQUENCE 
210 U = U  + 1 : IF U  >= 96 GOTO 350: REM BLANK CYCLE COUNTER (USE 96 IF 

I/4H RM EA S.)
215 IF H=1 GOTO 250
218 PCLR 0,1,2,3: PSET 6
230 GOSUB 6000: REM 15 MIN. WAIT LOOP
250 PCLR 0,I,2,3: PSET 6
255 H = 0
260 PSET 0
262 ASM &HBB,DB &HOE: REM TURNS ON DETECTOR POWER 
264 C = CHAN(O)
266 PSETO: PCLR 6 
268 SLEEPO:SLEEP 600
270 REM DARK SIGNAL AVERAGES ♦♦♦*
272I = 0:J = 0 :K  = 0 
274 FOR C = 1 TO 25
276 A = CHAN(O): B = CHAN(I): D = CHAN(2)
278 I =I + A: J = J + B: K = K + D
280 SLEEP 0: SLEEP 1
281 N EX TC
2 8 2 1 = 1/25: J  = J/25: K = K/25

77
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283 SLEEP0:SLEEP200
284 REM **** TURN LAMP ON ****
285 PSET 1
286 FOR S=1 TO 10
287 PSET2; SLEEPO: SLEEP 100: PCLR2
288 SLEEPOiSLEEPlOO 
290 NEXT S
292 REM ** SINGLE INDICATOR PULSE **
293 PSET 3: SLEEP 0: SLEEP 10
294 PSET 2: SLEEP 0: SLEEP 100: PCLR 3
295 SLEEP 0: SLEEP 10: PCLR 2
296 REM ** NUMBER OF SAMPLE PULSES BEFORE MEASUREMENT **
297 FOR R = 1 TO 14
299 PSET 2: SLEEP 0: SLEEP 100: PCLR 2
300 FOR S=1T02
304 SLEEP 0: SLEEP 100 
306 NEXT S 
310 NEXT R 
312 SLEEP0:SLEEP100
315 REM *♦ NUMBER OF MEASUREMENT CYCLES **
320 FOR P = 1 TO 18 
325 GOSUB 1000 
330 NEXT P
340 REM *♦** SHUT OFF: LAMP, AMPS, V SWITCHED ****
342 PCLR 1: PSET 6: PCLR 0 
344 C = CHAN(O)
346 ASM &HBB,DB &HOA 
348 GOTO 200
350 REM =-=^=-=-=-=-=-=-= BLANK AND REAGENT FLUSH = = = = =  =
355 U =192 
357 PSET 0
362 ASM &HBB,DB &HOE 
364 C = CHAN(O)
366 PSETO: PCLR 6
368 SLEEPO:SLEEP 600
370 REM **** DARK SIGNAL AVERAGES
372I = 0:J = 0 :K  = 0
374 FOR C = 1 TO 25
376 A = CHAN(O): B = CHAN(l): D = CHAN(2)
378 I =I + A: J = J + B: K = K + D
380 SLEEP 0: SLEEP 1
381 N EX TC
382 I = 1/25: J = J/25: K = K/25
383 SLEEP0:SLEEP200
384 REM TURN LAMP ON****
386 PSET 1
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388 FOR S = 1 TO 82
390 PSET 2: SLEEP 0: SLEEP 100: PCLR 2: REM **** PUMP ****
470 REM -  WAIT 2 SECS -  
480 FOR R = 1 TO 2 
490 SLEEP 0: SLEEP 100 
500 NEXT R 
520 NEXT S
522 REM **** GO TO MEASUREMENT ROUTINE ****
524 REM ASM &HOE
525 REM C = CHAN(O)
527 REM PCLR 6
528 GOSUB 1000 
530 GOSUB 1000
540 REM **** SHUT OFF: LAMP, AMPS, V SWITCHED ****
542 PCLR 1 : PSET 6: PCLR 0 
544 C = CHAN(O)
546 ASM &HBB,DB &HOA
548 H=0:U = 0
549 REM *♦** INDICATOR PULSE TO FLUSH OUT BLANK ****
550 PSET 0
555 FOR S = 1 TO 2
560 PSET 3: SLEEP 0: SLEEP 10
565 PSET 2: SLEEP 0: SLEEP 100: PCLR 2
570 SLEEP 0: SLEEP 100: PCLR 3
580 F O R R =  1 TO 2
585 SLEEP 0: SLEEP 100
590 NEXT R
600 FOR Q = 1 TO 10
605 PSET 2: SLEEP 0: SLEEP 100: PCLR 2
610F O R R  = 1 TO 2
615 SLEEP 0: SLEEP 100
620 NEXT R
625 NEXT Q
630 NEXT S
710 GOTO 200
1000 REM =-=-=-=.=-=.=-=-=- MEASUREMENT SEQUENCE = = = =
1090 RTIME
1095 PRINT "************************************************"
1100 PRINT #02, "CURRENT TIME = ",?(2),":",?(1),":",?(0);
1105 PRINT #02, " ON ",?(4),''/",?(3),"/",?(5)
1107G = CHAN(7)
n i l  PR IN T#04, "TEMPERATURE = ”,TEMP(G)
1112 PRINT "434 nm 577 nm 740 nm"
1115 STORE X,#2,?(2),?(l),?(0)
1117 STORE X,#2,?(4),?(3),?(5)
1119STOREX,#2,G
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1155 Y=0
1160 IF U >=192 Y=2222 
1176 PRINT #5," BLANK COUNTER",Y 
1178 STORE X,#2,Y
1170 PRINT #5,"DARK SIGNALS", 1," ",J," ",K 
1280 PSET 2: SLEEP 0: SLEEP 100: PCLR 2 
1290 SLEEP 0: SLEEP 100 
1344 REM ***• LIGHT SIGNALS ♦♦♦♦
1360 T = 0 :F  = 0 :V  = 0 
1365 FOR C = 1 TO 25
1370 A = CHAN(0): B = CHAN(l): D = CHAN(2)
1375 T = T + A :F  = F + B : V = V  + D 
1380 SLEEP 0 : SLEEP 1 
1385 NEXT C
1390 T = (T/25-I): F = (F/25-J): V = (V/25-K)
1395 PRINT #5,T," ",F," ",V
1465 STORE X,#2,T,F,V
1466 REM PCLRl
1547 SLEEP 0: SLEEP 100
1548 REM SHUT OFF: LAMP, AMPS, V SWITCHED ***♦
1550 REM PCLR 1 : PSET 6: PCLR 0
1552 REM C = CHAN(0)
1564 REM ASM &HBB,DB &HOA
1549 RETURN
1999 =-="=-=-=-=-=-=-=-=-=-=-= READ DATA FILE - -  - - - - - - -
2000 FOR W = 1 TO (X/22)
2010 IF W =  1 X = 0
2015 PRINT #02,GET(X,#2),":",GET(X,#2),":",GET(X,#2)," ";
2025 PRINT #02,GET(X,#2),"/",GET(X,#2),"/",GET(X,#2)," ";
2030 Y=GET(X,#2)
2031 PRINT #5,TEMP(Y)," ";
2032 Y=GET(X,#2)
2034 IF Y = 0 GOTO 2038
2036 PRINT "BLANK","
2037 GOTO 2040
2038 PRINT "♦****","
2040 PRINT #5,GET(X,#2)," ",GET(X,#2)," ",GET(X,#2)
2062 SLEEP 0 : SLEEP 10 
2065 NEXT W 
2070 STOP
3000 REM =-=-=-=-=-=-=-=-=-=-= SET TIME AND DATE 
3010 INPUT "ENTER YEAR (0 -9 9 )7 (5 )
3020 INPUT "ENTER MONTH (1 -12 )  7(4)
3030 INPUT "ENTER DAY (1 -31 )  ’?(3)
3040 INPUT 'ENTER HOUR (0 - 23) 7(2)
3050 INPUT "ENTER MINUTE (0 - 59) "?(1)
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3060 INPUT "ENTER SECOND (0 - 59) ’?(0)
3070 STIME 
3080 RETURN
6000 REM =-=-=-=-=-=.=- WAIT FOR NEXT WHOLE HALF HOUR = = = = =
6005 RTIME
6007 IF ?(1) < 10 Z -  15: GOTO 6040 
6010 IF ?(1) < 25 Z = 30: GOTO 6040 
6015 IF ?(1) < 40 Z = 45: GOTO 6040 
6020 IF ?(1) < 55 Z -  0: GOTO 6040 
6040 SLEEP 0: SLEEP 500 
6050 RTIME
6060 IF ?(1) o  Z GOTO 6040 
6070 RETURN
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