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Abstract: 

 

Elk (Cervus elaphus) are increasing in fragmented landscapes that result from exurban 

human development throughout western North America. This problem is increasing 

human-wildlife conflicts and represents a significant new challenge to wildlife managers. 

Elk hunting must be intensively managed, if allowed at all, to reduce public relations 

problems. For example, the Montana Department of Fish, Wildlife & Parks has focused 

three hunts on a rapidly growing (~11% annually) elk herd in the wildland-urban 

interface (WUI) of Missoula, Montana, USA. Their goals were to reduce population 

growth rate, crop depredation, and habituation to humans. However, little was known 

about the indirect effect hunting has on anti-predator behavior, movement, resource 

selection, and human-elk conflicts. We first investigated the indirect effects of hunting 

on elk using an extensive comparison of elk anti-predator behavior across four human 

predation risk levels in western Montana. We collected 361behavioral observations 

across this predation risk gradient from October 2008 to March 2009.  Vigilance was 

highest in highest predation risk areas and lowest in lowest risk areas. Vigilance and 

movement attenuated with the removal of human predation risk within 3-5 weeks 

under intermediate human predation risk in Missoula, Montana. I then used an 

intensive investigation of elk outfitted with global positioning system (GPS) collars in the 

WUI of Missoula to test the indirect effects of hunting on elk. We used data from nine 

GPS collared adult female elk during three hunting seasons with increasing hunting 

pressure (2007-2009) to test relationships between movement rates measured by first 

passage time (FPT) and resource selection. FPT decreased annually, by season type, and 

by hunting mode (archery vs rifle), and was negatively correlated with hunter predation 

risk. Elk slowed down ~750 meters from and selected for areas ~1200 meters from 

houses and trails, suggesting habituation to humans contributed to WUI human-wildlife 

conflict. These results support the risk allocation hypothesis that elk modify behavior in 

relation to temporal and spatial variation in human predation risk, and provide some of 

the first insights as to the indirect effects of hunting on elk in the WUI. 
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Chapter 1. Introduction 

 

There is a growing recognition of the importance of residential human 

development on wildlife habitat in the interface between wildland and urban areas 

(Radeloff et al. 2005). The wildland-urban interface (WUI) now occupies 9% of the US 

(Radeloff et al. 2005) and is growing fastest in the western states. The WUI influences 

timber sales (Dombeck et al. 2004), increases demand for fire fuels reduction (Ohlson et 

al. 2006), and facilitates the spread of invasive weeds (Radeloff et al. 2005).  While the 

direct effects of WUI on forests are well known the indirect effects on wildlife have 

received less attention as few studies have investigated impacts of the WUI on wildlife 

(Bury 2004, Hagar et al. 2004, Converse et al. 2006).   

Because humans frequently develop residential and industrial projects in 

ungulate winter range (Haggerty and Travis 2006), predicting the effects of the WUI on 

ungulates will be critical for elk (Cervus elaphus) conservation and management. 

Historically, elk were considered wilderness species (Toweill and Thomas 2002), but in 

the last few decades, biologists have documented growing resident elk populations in 

agricultural lands, managed forest lands, and in WUI areas (Thompson and Henderson 

1998, Burcham et al. 1999). Elk populations are increasing in many WUI areas (e.g., 

Missoula and Gardiner, Montana, Ketchum, Idaho, Flagstaff, Arizona, Mammoth, 

Wyoming, Estes Park, Colorado, Banff and Jasper in the Canadian Rockies Hebblewhite 

et al. 2005, Snyder 2007), paradoxically suggesting that habitat fragmentation in the 

WUI may enhance elk populations. Despite this potential ‘positive’ effect on 



    

2 

 

populations, state wildlife management agencies like Montana Fish, Wildlife and Parks 

(MFWP) have identified urban wildlife as a growing management issue. Many studies 

reported that elk select refugia where hunting is not permitted, reducing mortality rates 

(Burcham et al. 1999), an emergent management problem of the WUI (Figure 1).  This 

reduces the ‘administrative control’ of growing elk populations by state wildlife 

management agencies, who really only have public hunting as an option to reduce 

growing elk populations, hampering their ability to manage complex objectives in the 

WUI (Haggerty and Travis 2006). Growing elk populations in WUI areas come with a host 

of associated ecological and management problems (Figure 1) including increased crop 

depredation, private property damage, loss of migration, increased risks of overgrazing, 

and the potential for elk habituation to humans (Thompson and Henderson 1998, 

Haggerty and Travis 2006, Hebblewhite et al. 2006, Snyder 2007).   

In the Missoula valley for example, the elk herd wintering in the North Hills 

(Figure 2) grew from 40 in the 1980’s (Weybright 1983) to ~300 elk in 2010 (MFWP, 

unpublished data). Historically, this elk herd used the National Wildlife Federation 

(NWF) lands (~324 hectares) in the WUI of Missoula as their core winter range. Since the 

1980’s, this herd has subsequently expanded use to low elevations throughout Grant 

and Butler creeks, resulting in increasing human conflicts with elk, particularly over crop 

depredation on ranches (Figure 2, Burcham et al. 1999). Ironically, habituating and 

increasing elk populations in these urban fringe ranches may cause sufficient economic 

damage as to favor further subdivision and urban growth, as ranchers sell of parts or all 

of their ranches (Figure 1, Haggerty and Travis 2006). These changes are also potentially 
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associated with increasing elk habituation to humans, which can lead to reduction or 

loss of migratory behavior, and subsequent risk of overgrazing winter ranges by newly 

resident elk during summer (Figure 1).  The main hypothesis for these changes in the 

North Hills elk herd is that protection of the Rattlesnake Wilderness and Recreation 

Areas north of Missoula, NWF lands, and growth of the WUI has rendered hunting 

marginally effective as a population control measure (MFWP unpublished data). With 

apparently low non-human predation (Appendix B), human predation is the only 

effective means to control population growth. Paradoxically, benefits for elk forage 

through fuels reduction and invasive weed control in the WUI (Radeloff et al. 2005) may 

potentially exacerbate problems of growing elk populations in the WUI.   

 In response to these challenges, I developed an elk research project in the 

wildland-urban interface of Missoula, Montana in January of 2007 in cooperation with 

MFWP, The University of Montana, The Rocky Mountain Elk Foundation, local ranchers, 

homeowners, and volunteers. My research goal was to test the indirect effects on 

hunting on elk behavior as predicted under the risk allocation hypothesis. The direct 

(lethal) effects of hunting are a well documented and widely used management tool for 

controlling ungulate populations (Burcham et al. 1999, Toweill and Thomas 2002, 

Wildlife-Division 2004). The lesser known but increasingly important indirect (non-

lethal) effects of hunting may help managers better understand the process of 

habituation, and may improve the management of hunting in fragmented landscapes 

settings.  
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First, in Chapter 2, I focused on comparing elk behavioral responses across a 

wide range of risk levels in 4 sites in western Montana to better understand how elk 

within the WUI behaved with respect to completely habituated and ‘wild’ elk subject to 

high predation risk from human and native carnivore predation. I examined the effects 

of human predation risk on anti-predator behavior (e.g., vigilance and movement levels) 

to test the predictions of the risk allocation hypothesis that animals should modify 

behavior when subject to varying levels of predation risk (Lima and Bednekoff 1999).  

Behavioral measurements began in October, 2008 and ended in March 2009, totaling 

361 observations across four risk levels (High Risk – human and wolf, Moderate – human 

(North Hills), Moderate – wolf (Northern Range), and Low Risk).  The effect of hunting 

on behavioral categories (grazing, vigilant, movement) significantly differed across all 

risk levels and time since hunting (p-value ≤0.005).  Movement and vigilance anti-

predator behaviors attenuated to low risk predation risk levels within five weeks of 

cession of hunting season in the moderate risk (human) area, but stayed constant in 

areas with either high or low predation risk.  Grazing levels did not correspond to 

changes in predation risk, contrary to predictions. These results confirmed that WUI elk 

were behaviorally intermediate between ‘wild’ and the habituated elk of 

Mammoth/Gardiner, and showed behavioral flexibility in allocating their antipredator 

behavior to avoid human predation risk.  

 Armed with this understanding of how elk within the WUI responded to spatio-

temporal variation in predation risk, I focused intensively on understanding how WUI elk 

moved and selected resources in response to human activity within the WUI. I outfitted 
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adult female elk (n=21) with radio collars, 10 with global positioning system (GPS) and 

11 with very high frequency (VHF) collars,  to document annual and winter home range 

size (Figure 1), movement patterns, and resource selection.  I used data from nine GPS 

collared adult female elk (39,000 telemetry locations from 2007-2009) to develop 

movement (first passage time) and resource selection models to better understand how 

temporal and spatial variation in human predation risk influences elk movement rates 

and resource selection in the heterogeneous wildland-urban interface landscape 

(Chapter 3).  In Chapter 3, I show that elk movement rates slow down ~750m from 

human related covariates such as distance to houses and trails which were surrogates 

for human predation risk. In contrast to movement, WUI elk showed resource selection 

for areas farther than when moving from humans, selecting for areas 1200m from 

human activity for areas to forage and bedding behavior. Furthermore, movement rates 

increased with annual increases in human predation risk during the hunting season from 

2007 to 2008 (p-value = 0.093), and 2008 to 2009 (p-value 0.031).  In contrast, there 

were no differences in movement rates (p-value = 0.50?) by elk during periods when 

they were not hunted. Rifle hunting had the greatest impact on moving compared to 

archery and non-hunting times (p-values < 0.011).  During the periods of highest 

predation risk, elk selected for high vegetation cover, and as predation risk from 

humans decreased, elk selection for spatial covariates related to forage increased, 

confirming that elk were able to respond to human predation risk through risk-forage 

trade-offs because of the temporal variation in human predation risk. 
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 These data provide wildlife managers perhaps the first understanding of the 

influence of hunting on elk behavior, movement, and resource selection in the WUI, and 

has important implications for management of elk in the WUI and other fragmented 

landscapes. Our results from the extensive comparison of elk behavior and detailed 

focus on the WUI in Missoula also confirm that human hunting seems to have more 

dramatic effects on elk distribution than predation by carnivores such as wolves and 

other native predators (Gude et al. 2006).  The knowledge that elk behavior attenuates 

to levels of knowingly habituated elk (e.g., Mammoth/Gardiner) within five weeks after 

hunting season suggests that hunting seasons could be structured to maintain higher 

anti-predator behavior (i.e., a hunting season every 3-5 weeks) if habituation is a 

concern to managers (Thompson and Henderson 1998).  By this logic, punctuated elk 

hunting seasons would restore a more natural ‘predator resembling’ pattern of 

overwinter mortality that should discourage habituation. When used in combination 

with block management programs designed to encourage hunter access to private land 

refuges, such ‘punctuated’ elk hunting seasons may help address the growing problem 

of elk use of private land refuges and associated agricultural damage from elk 

aggregation (Thompson and Henderson 1996, Burcham et al. 1999, Haggerty and Travis 

2006).  Ironically, the proliferation of game damage hunts on private lands indirectly 

supports our conclusions that extended hunting seasons may be needed where private 

lands create predation refugia. Other alternatives to ‘punctuated’ hunting seasons exist, 

but include costly aversive conditioning methods with near daily conditioning by 

humans on foot or horseback, dogs, or a combination of aversive conditioning tools 
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(Kloppers et al. 2006; Spaedtke 2009). For most state wildlife management agencies, 

hunting will continue to be the main realistic tool to use to help maintain ‘wild’ elk 

movements and behavior in WUI and other fragmented landscapes. 

The analysis of elk movement and resource selection also has important 

implications for exurban development in low elevation elk winter range. Our movement 

analyses showed that elk movements were lowest 750m from residential houses and 

that they selected areas 1200m from houses for foraging and bedding. Combined, these 

results suggests that residential development should be a minimum of 1,500m apart 

(i.e., 2 times 750m) to ensure movement corridors remain viable, and that as housing 

development increases in the WUI, elk may lose the ability to move between important 

winter range habitats. Alternately, without human predation risk, over time, this 

‘avoidance’ of human activity may diminish, increasing habituation. Combined, our 

results describe the behavior, movement and resource selection of a partially 

habituated elk herd resulting from close contact to human development in a WUI on 

low elevation elk winter range. Failure to reverse the trend of habituation, whether 

through ‘punctuated’ elk hunting, changes to residential zoning, or more active 

measures such as aversive conditioning, will likely lead to loss of migration, increased 

residency time on winter ranges year round, and the ensuing negative ecological effects 

of resident habituated elk herds (e.g., Figure 1).  

Chapters 2 and 3 are intended for scientific publication with coauthors and are 

written in second voice ‘we’ as a result. Authorship for Chapter 2 will be S. M. Cleveland 
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and M. Hebblewhite, and for Chapter 3, S. M. Cleveland, M. Hebblewhite, K. R. 

Foresman, P. R. Krausman, M. J. Thompson and R. E. Henderson.   
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Figure 1. A conceptual figure of a wild elk herd (a) becoming a resident wildland-urban 

interface elk herd (b) that leads to habituation and the ecological and social consequences 

associated with habituation and residency with this shift in behavior.  In a) elk on the 

winter range are negatively (-) influenced by hunting and predation which encourages (+) 

migration to the summer range.  The winter range has increased forage biomass which is 

positive for elk, but over the course of the winter the forage is depleted through grazing 

and the nutritional quality of forage on the summer range increases encouraging migration 

to the summer range. The more positive drivers associated with migration (gray dashed 

lines) the more likely migration is to occur between winter and summer ranges. In b) two 

of the primary drivers of migration (hunting and predation) are lost; humans artificially 

increase available and high nutritional value forage (i.e., lawns, golf courses, alfalfa fields) 

further reducing the nutritional advantages of migration. This leads to loss of migration, 

increases in population growth with no hunting or predation pressure, which in turn 

decreases fear of humans.  As population growth increases and residency time on the 

winter range increases, there are corresponding increases in herbivory which leads to 

habitat degradation. The more time spent with humans without a negative stimulus (i.e., 

hunting) the more habituation increases which increase human wildlife conflicts. 
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Figure 2. The annual (60,675 ha) and winter (8,865 ha) minimum convex polygon (MCP) 

home range from GPS collared adult female elk (n=9) of an urban elk herd in the 

wildland-urban interface of Missoula, Montana, USA. Data was collected from 2007-

2009. 
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Chapter 2. Temporal and spatial variation in anti-predator 

behavior of elk. 

 

Introduction  

 

Herbivores balance forage intake, energetic cost, and predation risk when 

selecting resources to maximize fitness across spatial and temporal scales (Altendorf et 

al. 2001, Creel et al. 2005, Lind and Cresswell 2005, Gude et al. 2006).  At the largest 

scales, ungulates such as wildebeest (Connochaetes taurinus), pronghorn (Antilocapra 

americana), mule deer (Odocoileus hemionus), and elk (Cervus elaphus) migrate to 

procure forage resources and avoid predation risk (Senft et al. 1987, Fryxell et al. 1988).  

Within their home ranges, ungulates select areas with low predation risk to improve 

reproductive success and survival (Hebblewhite et al. 2005, Berger 2007, Moe et al. 

2007, Tremblay et al. 2007, Proffitt et al. 2009, Valeix et al. 2009). For example, female 

moose (Alces alces) calve in areas that grizzly bears (Ursus arctos) avoid or in areas with 

reduced risk (Bowyer et al. 1999, White and Berger 2001). Elk select open grasslands 

with higher forage quality in the absence of wolves (Canis lupus) and forested areas with 

lower quality forage in the presence of wolves (Creel et al. 2005, Gude et al. 2006).  Elk 

select areas close to human refugia if hunting by humans is excluded to avoid predation 

by non-human predators (Burcham et al. 1999, Hebblewhite et al. 2005, Kloppers et al. 

2005, Snyder 2007). At the finest scales, ungulates adopt behavioral strategies minute-



    

14 

 

by-minute to avoid predation risk through vigilance behavior, grouping, and resource 

selection  (Lima and Dill 1990). 

In Lima and Dill’s (1990) citation classic, they proposed that anti-predator 

behavior, such as vigilance and flight response should change with temporal and spatial 

variation in predation risk (Lima and Dill 1990). Animals should behave differently across 

the landscape assuming they can determine which areas are more risky than others. 

Animals then adjust behavioral patterns resulting in spatial and temporal avoidance of 

the riskier areas (Lima and Zollner 1996).  These ideas lead to the development of the 

risk allocation hypothesis that suggests prey species should alter their foraging inversely 

in space and time with predation risk (Lima and Bednekoff 1999).  As predation risk 

increases, anti-predator behavior (i.e., vigilance) should increase and there should be a 

corresponding decrease in other costly behaviors (i.e., grazing).  Conversely, under 

reduced risk, animals should have decreased vigilance and increased foraging. The risk 

allocation hypothesis predicts that because anti-predator behaviors are energetically 

costly, animals must adjust to these temporally varying risks. This prediction has found 

wide support across predator-prey systems. For example, reindeer (Rangifer tarandus) 

increased flight distance  after hunting by humans was initiated on a previously  non-

hunted population (Reimers et al. 2009). Impala (Aepycerus melampus) densities, flight 

response, and vigilance levels were higher in protected areas than adjacent areas where 

only partially protected from illegal harvest (Setsaas et al. 2007). Impala and wildebeest 

(Connochaetes taurinus) also increased vigilance levels in areas of high predation risk 

from reintroduced lions (Pathera leo) and cheetahs (Acinonyx jubatus) when compared 
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to areas with no predators (Hunter and Skinner 1998). In Yellowstone National Park 

(YNP) where human hunting is prohibited, elk increased flight distance from recreating 

humans in areas of non-human predation risk compared to habituated elk in Mammoth, 

Wyoming without predation risk (Cassirer et al. 1992). Gude et al. (2006) reported that 

elk  group size was influenced more by humans than wolves and the probability of elk 

presence in preferred open grasslands was negatively correlated with time since wolf 

presence, supporting the risk allocation hypothesis.  These results show that ungulates 

adjust temporally to varying risk levels, but how quickly behavioral responses occur and 

attenuate after predation risk stimuli is still largely unknown (Ferrari et al. 2009).  

Selection of spatial refugia from predation can lead to significant ecological and 

socio-political problems.  Elk that select refugia may become sedentary rather than 

migrate between summer and winter ranges which alters predator-prey relationships 

(Kloppers et al. 2005, Hebblewhite et al. 2006, Snyder 2007). By foregoing migration, 

sedentary elk must forage year round in what was previously used only as winter range, 

increasing the demand on forage resources, which can lead to trophic consequences 

from increased herbivory (Ripple et al. 2001, Creel et al. 2005, Fortin et al. 2005, 

Hebblewhite et al. 2005). Many ungulate winter ranges are in close proximity to 

humans, which reduces both human (because hunting near homes is illegal) and non-

human predation, leading to rapidly growing elk populations (Snyder 2007). These 

urbanized elk populations pose a new challenge to wildlife managers because managers 

have limited ability to regulate harvest levels to control population growth (Thompson 

and Henderson 1998, Haggerty and Travis 2006, Berger 2007).  As humans pose little to 
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no threat in the urban setting, urbanized elk lose their fear of humans and become 

habituated (Whittaker and Knight 1998).  A growing problem facing wildlife managers is 

managing habituated wildlife populations such as deer (Warren 1997), elk (Thompson 

and Henderson 1998), and bears (Beckmann and Berger 2003) in wildland-urban 

interface settings. Habituated elk can begin in inhabit urban areas, leading to direct 

human wildlife conflict, including property damage and human injury (Snyder 2007). 

Especially for elk, managers lack information that can correct habituation, and do not 

know how long it takes to alter this change in behavior (Whittaker and Knight 1998, 

Kloppers et al. 2005). 

Previous studies have shown that elk and other ungulates spatially avoid 

predation risk (Creel et al. 2005, Hebblewhite et al. 2005, Berger 2007). For example, in 

Chapter 3 we show that elk avoided human related covariates such as distance to 

houses and trails which are surrogates for human predation risk. In addition, we found 

elk movement rates increased both temporally and spatially in relation to human 

predation risk as predicted under the risk allocation hypothesis. This confirms that elk 

may increase movement away from predation as an anti-predator strategy (Fortin et al. 

2005, Anderson et al. 2008). The few studies that have examined this relationship have 

examined grouping behavior before and during exposure to predation risk, and how 

naive prey lose their naiveté to predators over time  (Hunter and Skinner 1998). Few 

studies have examined how long anti-predator behavior lasts (i.e., attenuation time) 

following reduction in predation risk, or how quickly habituation responses occur 

(Ferrari et al. 2009).   
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Human hunting provides rich opportunities to test the risk allocation hypothesis 

presented by Lima and Bednekoff (1999). Elk hunting by humans is temporally and 

spatially constrained by hunting regulations and access laws (Gude et al. 2006). Under 

the risk allocation hypothesis we would therefore predict temporal and spatial variation 

in anti-predator responses of elk.  In this study, our goals were to test the following 

predictions of the risk allocation hypothesis for elk living under different combinations 

of human and non-human predation risk. We predicted that 1) elk anti-predator 

behavior, measured by vigilance, should vary spatially with predation risk; 2) elk 

vigilance should attenuate when human predation risk is removed; 3) increased 

vigilance should impart a cost of reduced grazing opportunities (Fortin et al. 2004), and 

4) elk should increase movement behavior as an anti-predator strategy as spatio-

temporal predation risk increases. These predictions have important implications for 

management of habituated ungulate populations (McShea et al. 1997, Thompson and 

Henderson 1998, Wolff and Van Horn 2003, Kloppers et al. 2005, Snyder 2007) to which 

we return in the discussion. 

Materials and methods 

Study area  

 

We conducted behavioral observations at different predation risk levels 

(hereafter, risk levels) at four different sites across western Montana and northern 

Wyoming that had similar climate, topography, and wildlife communities, but that 

differed in human and non-human predation risk: 1) Dome Mountain, Montana, 2) the 
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North Hills, Missoula, Montana, 3) Mammoth, Wyoming and Gardiner, Montana, and 4) 

the Northern Range, Yellowstone National Park, Montana and Wyoming (Figure 1, Table 

1).  We define predation risk as the cumulative probability of death by all potential 

predators on the landscapes (Lima and Dill 1990). Under our definition, a site with 

wolves and human hunters would have higher predation risk than a site with just 

humans or wolves, and predation risk also increases with increasing predator density 

(Lima and Dill 1990).  Our four sites therefore experienced varying levels of predation 

risk from human and non-human predators. The North Hills and Dome Mountain had 

similar human hunting seasons with a general rifle season (October 26-November 30, 

2008), an archery hunting season (September 6-October 19, 2008) and a late season 

rifle hunt (North Hills; January 3-February 15, 2008; Dome Mountain; January 2-26, 

2008, MFWP 2008).  However, predation risk was higher in Dome mountain because 

hunting regulations allowed for a maximum of 100 hunters/week compared to 6/week 

in the North Hills (Table 1). Furthermore, Dome mountain also experienced predation 

risk by wolves during winter (Hamlin and Cunningham 2009) compared to the North 

Hills where wolves were absent. In comparison, Gardiner and the Northern range 

experienced no human hunting, but varying levels of predation by non-human 

predators. Elk on the Northern Range experience primarily wolf predation risk during 

winter (Evans et al. 2006), and Mammoth and Gardiner have no human hunting and 

little documented wolf presence within the townsites. Our four sites also experienced 

recreational activities other than hunting (i.e., hiking, biking). 
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Data collection  

We recorded elk behavior (i.e. grazing, vigilant, bedded, moving, and standing) 

across the four risk levels as a function of the main treatments; predation risk (both 

human and non-human) and time since hunting season, following methods of other 

recent authors (Lung and Childress 2007, Winnie and Creel 2007, Liley and Creel 2008).  

We recorded behavior during and after the hunting season to determine the proportion 

of time elk spent in each behavioral category in the two human hunted sites (North 

Hills, Dome Mountain) and the two sites without hunting by humans 

(Gardiner/Mammoth and Northern Range) from October 2008 through March 2009. A 

grazing elk was defined as one with its head down and biting vegetation.  Previous 

authors have used varying definitions of vigilance, which has lead to criticisms that 

vigilance may not necessarily impose energetic costs and hence impart no foraging 

trade-off (Fortin et al. 2004).  We defined vigilant animals as those animals with head 

up, not chewing, and ears pointed in the same direction as their gaze (Winnie and Creel 

2007). This definition ensures an energetic cost as rumination requires chewing, thus 

vigilant animals that do not chew suffer an energetic cost.  Vigilant animals could be 

vigilant in a bedded and standing body position, but were simply recorded as vigilant. 

Bedded animals were those in a recumbent position, which does not exclude 

rumination.  Finally, moving animals were those animals walking or running, and 

standing animals are those animals upright in a non-bedded position and not moving.  

Elk groups were defined as animals within 5 body lengths of the nearest neighbor 

(Winnie and Creel 2007).  We opportunistically located elk groups, and then sampled 
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their behavior using instantaneous scan sampling (Altman 1974) at a distance of 0.05-

2.0 km to ensure our presence had no effect on behavior. In addition, all groups were 

sampled in open non-forested areas to minimize loss of visibility due to visual 

obstruction (see discussion).  

We tested the predictions of the risk allocation hypothesis that elk behavior 

varies with predation risk level, and that anti-predator behavior will attenuate following 

the hunting season.  Data were grouped into risk levels and categorical time periods 

(i.e., hunting season and weeks following hunting season) for statistical analysis. We 

controlled for other potentially confounding variables known to affect elk behavior in 

previous studies, including group size, temperature, group position, age, and sex 

(Winnie and Creel 2007, Liley and Creel 2008).  We scanned elk groups 3 to 6 times with 

the unaided eye (e.g., for habituated Gardiner/Mammoth elk), binoculars, or spotting 

scopes at 5 minute intervals and categorized behaviors by sex and age (female, calf, 

brow-tine male, spike, unknown), position in group (periphery or interior) and by 

behavioral status as defined above (Winnie and Creel 2007).  We then pooled repeated 

scans within one observation period to produce a single data point, thus a single 

proportion of time spent in each age-sex-position class for each group was calculated 

(Altman 1974).  If the group left the area or became vigilant at the onset of our presence 

the test was abandoned and a new group was found.  If elk behavior was influenced 

during sampling by other factors (i.e., domestic dog and/or human recreational 

harassment), data collection was terminated at that scan interval, although behavior 

measured prior to the disturbance were retained.   
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Statistical methods 

 

We used ANOVA to test our main hypothesis that anti-predator responses will 

attenuate following removal of human predation risk.  We analyzed the main treatment 

effects (i.e., hunting season and weeks since hunting season [time], risk level) for each 

behavioral category (proportion of time spent grazing, vigilant, bedded, moving, and 

standing). We repeated analyses for each different behavior. The duration of time since 

hunting (time) varied between sites because of differences in the date of the end of 

hunting season in each site.   We arcsine square-root transformed the proportion of a 

specific behavior to achieve normality, and analyzed each individual behavior using a 

fixed-effect analysis of variance (ANOVA) (Zar 1999) as a function of our main treatment 

effects using STATA 10 (College Station, Texas, USA). We tested our main hypothesis 

while controlling for the effects of sex, age class, time of day (time), temperature, and 

position within group (interior or peripheral). Post-hoc least squares difference tests 

were conducted to determine when and where significant differences between and 

among risk levels occurred for each behavior using SPSS 16.0 (Chicago, Illinois, USA, Zar 

1999). Group size and temperature were the only continuous covariates; all other 

independent covariates were categorical. We did not include distance to forest in 

analysis because it had no significant effect on elk behavior in similar study areas in 

Montana (Winnie and Creel 2007).  
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Results 

 

We collected 361 behavioral observations across all four risk levels (High Risk – 

human and wolf, Moderate – human (North Hills), Moderate – wolf (Northern Range), 

and Low Risk) from October, 2008 to March, 2009 (Table 1, Table 2). Dome Mountain 

(High Risk n=70), was significantly more vigilant than Missoula (Moderate Risk (NH) 

n=102), Gardiner/Mammoth (Low Risk n=104), and the Northern Range (Moderate Risk 

(NR) n=87).  Individuals on the periphery of all groups were significantly more vigilant 

than interior individuals (Table 3). We  were unable to collect data for the first three 

weeks following the end of hunting season in the high, moderate (NR), and low 

predation risk study areas due to logistical problems. The effect of hunting on all 

behavioral categories (except standing) significantly differed across all risk levels and 

time since hunting, as indicated by the significant interaction of risk level *time (p-value 

≤0.005).  Group size only affected grazing and movement behaviors (Table 3).  

Behavioral responses – grazing 

 

 The proportion of time elk spent grazing was significantly influenced by all 

variables except position within the group and temperature (Table 3).  In general, elk 

grazed more in the evening than morning (p-value = 0.043) or mid-day (p-value <0.001).  

The exception to this generalization was in the Mammoth/Gardiner study area where 

grazing was highest during mid-day when compared to morning (p-value 0.001) and 

evening (p-value <.001). Elk in the Northern Range study area grazed significantly less 
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than all other study areas (p-values: High Risk 0.018, Moderate Risk (NH) <0.001, Low 

Risk 0.004) and had the least within study area variation in time spent grazing (p-value 

0.615).   

Behavioral responses – vigilant 

 

 Vigilance was significantly explained by time of day, position with the group, and 

risk level*time (Table 3).  Group size did not influence vigilance. Within risk-level 

variation in vigilance was only significant for Dome Mountain and Missoula.  Dome 

Mountain vigilance was significantly less than hunting season levels by week 4, but 

rebounded to hunting season levels by week 5. Vigilance in the North Hills attenuated 

by week 5 following hunting season (Figure 3).  

Behavioral responses – movement 

 

 Elk moved significantly less in the morning than mid-day (p-value <0.001) or 

evening (p-value 0.002).  The exception was Mammoth/Gardiner when movements did 

not statistically vary during the day. The only weekly variation in movement occurred in 

Missoula where hunting season movements were significantly less during the hunting 

season than weeks after hunting season (Figure 4). There were no consistent predation 

risk effects on bedding or standing behavior, nor were these behaviors’ necessarily 

related to our predictions from the risk allocation hypothesis. Therefore, we report 

changes to bedding and standing behavior as a function of the same factors as grazing, 

vigilance and movement in Appendix A.  
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Discussion 

 

Animals must decide how to allocate resources as a function of predation risk 

(Lima and Bednekoff 1999).  We predicted elk vigilance would vary 1) spatially by risk 

level; 2) attenuate temporally following the removal of human predation risk; 3) 

increasing vigilance should result in a trade-off of decreasing grazing; and 4) movement 

behavior should increase with increasing predation risk. Our predictions were upheld in 

most sites supporting the utility of the risk allocation hypothesis to understand indirect 

effects of human hunting on elk in the wildland urban interface.  Elk vigilance was 

highest in Dome mountain, supporting the spatial predictions of the risk allocation 

hypothesis (Lima and Bednekoff 1999). Elk vigilance and movement levels attenuated 

within 3-5 weeks following the cessation of hunting by humans which supports the 

attenuation prediction and results of previous studies Wolff and Van Horn (2003). 

However, we saw no trade-off between increasing vigilance and grazing across any site 

(Figure 2). Grazing and vigilance behavior can easily be switched in the presence or 

absence of predation risk (Wolff and Van Horn 2003).  In addition, we may not have 

been able to detect a change in grazing due to our sampling design.  Elk could have been 

grazing more in timbered areas where we were not able to observe elk, or an increase in 

grazing could have occurred at night when we could not observe elk.  

Elk vigilance was significantly greater at high risk (human and wolf) vs. moderate 

(human) and high (human and wolf) vs. low predation risk levels.  Vigilance under 

moderate risk levels was only marginally significantly different in the human hunted 



    

25 

 

(North Hills) site when compared to the low risk site.  Humans had a significant and 

higher impact on elk vigilance behavior than did wolves across our four sites, similar to 

recent results of other studies (Gude et al. 2006, Proffitt et al. 2009). Specifically, our 

results echoed those of Wolff and Van Horn (2003) that elk vigilance were highest in the 

highest predation risk areas of their study and areas devoid of predation risk had the 

lowest vigilance (Table 5).  Contrary to predictions of the risk allocation hypothesis and 

our observations in Montana, Kloppers et al. (2005) observed a decrease in vigilance 

from ~13% to 7% following aversive conditioning in a habituated elk herd in Banff, 

Alberta.  The contradictory results of Kloppers et al. (2005) could be attributed to a 

reduced anti-predator behavior as these elk were habituated and naïve to predation, 

which has also been observed in impala (Hunter and Skinner 1998). Regardless of this 

lone example, the remainders of studies on wild, non-habituated elk support our results 

showing how quickly elk can switch between behaviors given varying perceptions of 

predation risk. 

Movement is another way in which animals mitigate predation risk. Movement 

occurs at multiple scales to avoid predation risk, from large scale migration 

(Hebblewhite and Merrill 2007), to local movements between habitat patches (Chapter 

3), to flight response in the presence of perceived predation risk (Stankowich 2008). We 

observed how movement behavior of elk changed given different levels of predation 

risk.  As predicted from the risk allocation hypothesis, we observed reduced movement 

behavior in the low risk site and declining movement levels following the removal of 

human predation risk in the moderate risk (human) site. These observational results 
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were confirmed with GPS collar data that also showed increased movement rates during 

exposure to hunting (Chapter 3).  Increased movement corresponded with a decline in 

vigilance following hunting season in the moderate risk (human) study site.  However, 

the trend in declining movement behavior following the cessation of hunting as 

predicted by the risk allocation hypothesis was not observed in all study areas. Elk in the 

high risk study area showed constant and reduced movement behavior (Figure 4). In 

addition, the moderate risk (wolf) site started with reduced movement behavior but 

escalated over time.  Elk in the high (human and wolf) and moderate risk (wolf) sites did 

not mitigate predation risk as expected under the risk allocation hypothesis considering 

elk behavior alone.  Wolf kill rates usually increase in late winter (i.e., February and 

March, Smith et al. 2004) with increasing snow depths (Huggard 1993), resulting in 

increased predation risk by elk (Kauffman et al. 2007).  This increase in predation risk in 

Yellowstone National Park in late winter likely explains the increase in movement 

behavior for elk in the moderate risk (wolf) study areas. This could also explain lower 

movement levels in the high risk area outside Yellowstone National Park where elk were 

also subject to wolf predation risk. It may be advantageous for the high risk group to 

reduce movement behavior as they were subjected to a lower wolf density outside of 

Yellowstone National Park than those elk inside the park (White and Garrott 2005).  

There was substantial variation in elk behavior among and between sites in our 

study that was further hindered by logistical sampling issues.  We were unable to 

sample behavior in the first three weeks following cessation of hunting in the high, 

moderate (wolf) and low risk study areas due to logistical constraints of access to some 
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of the study sites.  These gaps weaken the interpretation of our results, but our results 

are strengthened by their close correspondence to results from other regional studies 

(Table 5). The lack of direct measures of predation risk, specifically non-human 

predation risk, could explain some of the variation in response, for example, the sudden 

spike in week four vigilance in the moderate risk (human) study area (Figure 4). 

However, our failure to find an grazing cost to vigilance as predicted by the risk 

allocation hypothesis, suggests that vigilance, even as we stringently defined it, may not 

impart the energetic cost that is often assumed (Fortin et al. 2004).  While our results 

showed elk increased vigilance levels under increasing risk, there was not a 

corresponding drop in foraging. This suggests vigilance may not necessarily be a good 

indicator of a costly trade-off, supporting the suggestions of Fortin et al. (2004).  

However, we did detect increases in movement levels and movement rates (Chapter 3) 

that do impart known energetic costs (Cook et al. 1996).   

Increased movement and vigilance may combined to lead to increased energetic 

costs for elk under predation risk, especially when there is not an increase in foraging 

behavior to offset the energetic demands of moving (Bender et al. 2008).  The impacts 

of increased movement rates could be especially important if movement behavior 

compromises grazing during late summer and fall during hunting (Cook et al. 1996). 

Predation risk by wolves and humans is also known to cause shifts in diet selection even 

though there may not be a decline in grazing (Morgantini and Hudson 1985, 

Christianson and Creel 2007).  If ungulate foraging rates did not change, but forage 

quality or species composition did, then the combined changes in behavior we observed 
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here with predation risk could have energetic and population consequences. These 

increases in energetic demand from increased movements and potential shifts in diet 

could in part explain potential declines in reproduction under high predation risk 

reported for elk in Montana (Creel et al. 2007) and moose in Alaska (Testa 2004). 

 Vigilance in the human-only predation risk system had the fastest attenuation 

time (3 weeks). Following this attenuation, vigilance did not rebound to high levels again 

as observed in Dome Mountain (Figure 3).  The quick rebound of vigilance to high levels 

at Dome Mountain by week 5 may be attributed to increases in wolf predation risk 

following cessation of the human hunting season (Ruth et al. 2003, Berger 2007).  In 

contrast, the North Hills lacked predators of adult female elk following hunting season, 

and we observed a more rapid and consistent attenuation of vigilance throughout the 

winter. In fact, vigilance attenuated to levels of habituated animals from the urban areas 

of Banff National Park (Kloppers et al. 2005). This suggests that the North Hills elk herd 

is exhibiting signs of habituation (Whittaker and Knight 1998). It also illustrates that 

even reduced hunting threat by humans when compared to Dome Mountain has a 

significant impact on anti-predator behavior.   

 Ecosystem dynamics of the Northern Range in Yellowstone National Park may be 

recovering following the re-introduction of wolves (Ripple et al. 2001), but in areas 

devoid of predation risk (i.e. the towns of Gardiner/Mammoth) the trophic effects of 

locally high density resident elk herd are likely still functioning. Elk in mammoth showed 

such consistently low vigilance and movement rates as to be consistent with almost zero 

exposure to predation risk from all predators (Ferrari et al. 2009).  Thus, it is likely that 
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human activity has disrupted normal predator-prey dynamics and potentially ecosystem 

dynamics such as grazing by elk in the Gardiner/Mammoth areas. To restore natural 

behavior in these areas, predation risk (humans or wolf, for example) could be returned 

to the landscape.  Our results in the WUI of Missoula, Montana could be extended to 

attempt to restore ‘normal’ elk behavior in other WUI areas such as 

Gardiner/Mammoth.  Park managers could adopt predator-resembling aversive 

conditioning tools (i.e., hazing and range riding) to de-habituate elk and restore more 

natural anti-predator behavior (Kloppers et al. 2005, Spaedtke 2009). Our results also 

suggest that an optimum reapplication frequency could be derived from our attenuation 

rate, and aversive conditioning could be applied every 3-5 weeks to discourage 

habituated behavior. Certainly, hunting may achieve quicker results than aversive 

conditioning, such as with dogs or humans on horseback (Spaedtke 2009). Given the 

complexities of national park management, and potential opposition to direct hunting in 

national parks, predator-resembling aversive conditioning could achieve similar 

ecological results (Spaedtke 2009). 

 The direct (lethal) effects of hunting are a well documented and widely used 

management tool for controlling ungulate populations. The lesser known and 

recognized indirect (non-lethal) effects of hunting may help managers better 

understand the process of habituation, and may improve the management of hunting in 

urban settings. The hunting season in Montana is currently structured such that hunting 

occurs in blocks of five weeks with occasional late season hunts lasting 4-8 weeks where 

populations or conflicts are high (MFWP 2008). In part, this strongly temporally 
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structured hunting season has interacted spatially with private land refugia and risk 

allocation by elk to create growing problems of unmanageable elk populations 

(Burcham et al. 1999, Proffitt et al 2009). Our results suggest that one potential solution 

may be to consider restructuring hunting seasons to introduce predator-resembling 

hunting seasons. For example, given elk anti-predator behavior attenuated within 3-5 

weeks, to restore normal elk movements and behavior, hunting seasons could consist of 

multiple, shorter hunts spaced out over a longer period of time.  Increasing hunting 

pressure in these areas may also have a heightened and more prolonged effect on anti-

predator behavior as illustrated by the significant difference in vigilance between Dome 

Mountain and the North Hills (Figure 3), and could help break the elk aggregation cycle 

facing western wildlife managers. 

If managers do not try to modify habituated elk behavior, significant changes 

may occur on migration and movement patterns (Creel et al. 2005, Fortin et al. 2005), 

predator-prey dynamics (Hebblewhite et al. 2005), increased risk of disease 

transmission in predation refugia (Proffitt et al. 2009), reproductive rates (Phillips and 

Alldredge 2000, Shively et al. 2005, Creel et al. 2007),  and vegetative communities 

(Hobbs 1996, Hebblewhite et al. 2005).  In addition, direct human/wildlife conflict 

specifically in the urban setting may increase and result in decreased tolerance of elk 

(Kloppers et al. 2005, Snyder 2007).  As human-caused habitat fragmentation continues 

to move into winter range the problem of urban elk populations will only expand.  

Waiting to respond to these issue leads to serious ecological and social problems 
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(Snyder 2007), and can lead to elk populations being out of managerial control 

(Haggerty and Travis 2006).  
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Table 1. Predictions of the effect of spatial and temporal variation in human and non-human predation risk will have on grazing and 

vigilance behavior of elk following the end of hunting season October 2008 to March 2009. Plus signs (+) represent a predicted 

increase in a behavior, where as a negative sign (-) represents decrease in a behavior over time since the end of hunting season. 

Study Area Nonhuman Predation Human Predation Risk Level Spatial Prediction Temporal 

Prediction 

Dome Mountain Wolves 100 hunters/week High Grazing-Low 

Vigilance-High 

Grazing (++) 

Vigilance (-) 

North Hills Limited 6 hunters/week Moderate Grazing-

Moderate 

Vigilance-

Moderate 

Grazing (+) 

Vigilance (--) 

Northern Range Wolves None Moderate Grazing-

Moderate 

Vigilance-

Moderate 

Grazing 

Constant 

Vigilance 

Constant 

Gardiner/Mammoth Limited Limited Low Grazing-Low 

Vigilance-Low 

Grazing 

Constant 

Vigilance 

Constant 
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Table 2. Total sample size of elk behavioral observations collect from October 2008 to March 2009 by hunting season, time (weeks 

since the end of hunting seasons) and study area (High Risk (wolf and human) is the Dome Mountain Area, Montana, Moderate Risk 

(human) is the wildland-urban interface of Missoula, Montana, Moderate Risk (wolf), is the Northern Range of Yellowstone National 

Park in Montana and Wyoming, and Low risk is the towns of Gardiner, Montana and Mammoth, Wyoming, USA). 

Study Area Number of behavioral observations Total 

 Hunting Season 1 2 3 4 5 6 7  

High Risk 21 -- -- -- 12 10 17 10 70 

Moderate Risk (NH) 30 14 11 18 11 16 -- -- 100 

Moderate Risk (NR) 48 -- -- -- 21 6 8 4 87 

Low Risk 49 -- -- -- 16 16 10 13 104 
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Table 3. Female elk behavioral responses to hunting predation risk in western Montana, 

from October 2008 to March 2009. Results of fixed-factorial ANOVA of the effects of 

time of day (time), Risk Level (High Risk (wolf and human) is the Dome Mountain Area, 

Montana, Moderate Risk (human) is the wildland-urban interface of Missoula, Montana, 

Moderate Risk (wolf), is the Northern Range of Yellowstone National Park in Montana 

and Wyoming, and Low risk is the towns of Gardiner, Montana and Mammoth, 

Wyoming, USA), Risk Level*Time, Time, position in the group (position), temperature, 

and group size has on female elk behavior. 

 Grazing Vigilant Moving   

 F P F P F P     

1. Risk Level 8.25 <0.0005 1.77 0.1518 5.36 0.0013    

2. Time 5.60 <0.0005 1.17 0.3222 3.29 0.0021    
3. Risk 

Level*Time 4.27 <0.0005 2.46 0.0076 2.98 0.0013    

4. Position -- -- 27.82 <0.0005 -- --    

5. Time Period 13.85 <0.0005 2.60 0.076 11.04 <0.0005    

6. Group Size 6.54 0.011 -- -- 3.93 0.0481     

7. Temperature -- -- -- -- -- --     
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Table 4. Arcsine transformed vigilance levels as a function of threat level and categorical times of hunting season (HS) and weeks 

sense hunting season (1,2,3…) with standard errors (SE) by study area (High Risk (wolf and human) is the Dome Mountain Area, 

Montana, Moderate Risk (human) is the wildland-urban interface of Missoula, Montana, Moderate Risk (wolf), is the Northern Range 

of Yellowstone National Park in Montana and Wyoming, and Low risk is the towns of Gardiner, Montana and Mammoth, Wyoming, 

USA). 

 Vigilance Levels  

 HS SE 1 SE 2 SE 3 SE 4 SE 5 SE 6 SE 7 SE 

High Risk (human 

and wolf) 

0.27 0.04 -- -- -- -- -- -- 0.12 0.04 0.18 0.04 0.25 0.04 0.22 0.05 

Moderate Risk 

(human) 

0.18 0.03 0.16 0.05 0.15 0.03 0.09 0.03 0.20 0.04 0.03 0.02     

Moderate Risk (wolf) 0.18 0.03 -- -- -- -- -- -- 0.17 0.04 0.17 0.04 0.17 0.07 0.03 0.03 

Low Risk 0.10 0.02 -- -- -- -- -- -- 0.19 0.04 0.13 0.03 0.25 0.05 0.24 0.05 
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Table 5. Literature review of selected studies of vigilance levels of adult female elk in Montana that are subject to varying levels of 

predation risk. Vigilance percentage is the percentage of time that was reported in the study that adult female elk were vigilant 

given their sampling method.    

Article Adult Female 

Elk 

Vigilance 

Percentage 

Sampling 

Method 

Risk Type Study Area 

Lung and Childress (2006) Yes 18 Focal Species Wolf Yellowstone National Park 

Childress and Lung (2003) Yes 14.6 Focal Species Wolf Yellowstone National Park 

Winnie and Creel (2007) Yes 15.8 Scan Sampling Wolf Yellowstone National Park 

Wolff and Van Horn 

(2003) Yes 12 Scan Sampling Wolf Yellowstone National Park 

Yes 1 Scan Sampling none Rocky Mountain National Park 

Yes 1 Scan Sampling none Mammoth, Wyoming 

Liley and Creel (2007) Yes 22-32 Scan Sampling Wolf Yellowstone National Park 

Cleveland Thesis  Yes 27 Scan Sampling Wolf+Human Dome Mountain, Montana 

Yes 18 Scan Sampling Human Missoula, Montana 

Yes 18 Scan Sampling Wolf 

Northern Range, Yellowstone National 

Park 

  Yes 10 Scan Sampling none 

Gardiner, Montana, Mammoth, 

Wyoming 
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Dome Mountain

North Hills

Northern Range

Gardiner/Mammoth

 

Figure 1. Geographic location of the four predation risk level study areas for testing the 

risk allocation hypothesis for female elk in western Montana and northern Wyoming. 

From the north, Missoula (moderate risk level, human only), Dome Mountain (high risk 

level, human and wolf), Gardiner/Mammoth (low risk level), and Northern Range 

(moderate risk level, wolf only). 
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Figure 2. Elk grazing levels by predation risk level with standard errors as a function of 

time since hunting season from October 2008 to March 2009. HS is the grazing level 

during hunting season, 1 is one week post hunting season, 2 is two week post hunting 

season, etc. Figure a) is high risk (human and wolf, Dome Mountain area, Montana), b) 

is moderate risk (human, North Hills, Missoula, Montana), c) is moderate risk (wolf, 

Northern Range, Yellowstone National Park, Montana and Wyoming) d) is low risk 

(Gardiner, Montana and Mammoth, Wyoming). 
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Figure 3. Elk vigilance levels by predation risk level with standard errors as a function of 

time since hunting season from October 2008 to March 2009. HS is the vigilance level 

during hunting season, 1 is one week post hunting season, 2 is two week post hunting 

season, etc. Figure a) is high risk (human and wolf, Dome Mountain area, Montana), b) 

is moderate risk (human, North Hills, Missoula, Montana), c) is moderate risk (wolf, 

Northern Range, Yellowstone National Park, Montana and Wyoming) d) is low risk 

(Gardiner, Montana and Mammoth, Wyoming). 
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Figure 4. Elk movement levels by predation risk level  with standard errors as a function 

of time since hunting season.  HS is the movement level during hunting season, 1 is one 

week post hunting season, 2 is two week post hunting season, etc. Figure a) is high risk 

(human and wolf, Dome Mountain area, Montana), b) is moderate risk (human, North 

Hills, Missoula, Montana), c) is moderate risk (wolf, Northern Range, Yellowstone 

National Park, Montana and Wyoming) d) is low risk (Gardiner, Montana and Mammoth, 

Wyoming). 
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Chapter 3. Linking movement and resource selection of elk in a 

heterogeneous landscape 

 

Introduction 

 

Human activities can negatively affect animals through direct and indirect 

pathways (Gordon et al. 2004, Sinclair and Byrom 2006, Creel and Christianson 2008). 

For example, humans can cause population declines either directly via over-harvest or 

indirectly through habitat fragmentation and destruction (Jules et al. 1999, Sawyer et al. 

2006, Walker et al. 2007, Doherty et al. 2008).  Through these direct and indirect effects 

in food webs, humans affect the balance animals must make between forage intake, 

energetic cost, and predation risk when selecting resources to maximize fitness 

(Altendorf et al. 2001, Creel et al. 2005, Lind and Cresswell 2005, Gude et al. 2006). 

Optimal foraging theory suggests that animals should spend most of their time in areas 

of high forage resources maximizing intake and minimizing energetic costs (Senft et al. 

1987, Hobbs et al. 2003). However, animals are subject to more than just foraging 

constraints.  Predation risk modifies animal resource selection and behavior (Nicholson 

et al. 1997, Rettie and Messier 2000, Creel et al. 2005, Dussault et al. 2005, Hebblewhite 

and Merrill 2009).  For example, moose (Alces alces) calve in areas that grizzly bears 

(Ursus arctos) avoid, and select areas year-round with reduced predation risk (Bowyer et 

al. 1999, White and Berger 2001, Dussault et al. 2005). The influence of predation risk 

on resource selection can also vary by predator hunting mode and species.  For 
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example, sit-and-wait predators had larger effects on prey behavior than did coursing 

predators (Preisser et al. 2007, Schmitz 2008) such that the effects of predation risk 

often vary substantially between predator species, including humans.  

Hunting by humans can often have dramatic direct effects on the demography 

and indirect effects on the behavior of large mammals (Gordon et al. 2004, Darimont et 

al. 2009, Gordon 2009). Unregulated direct human harvest can obviously cause 

population declines (Milner-Gulland et al. 2003), and can also result in subtle life-history 

and evolutionary changes of harvested species (Darimont et al. 2009).  Under harvest by 

humans, wild boar (Sus scrofa) females made dramatic life history changes, investing 

more heavily in early reproduction at the cost of adult survival (Toigo et al. 2008).  But 

even the mere risk of being killed by human hunters had a greater indirect effect on elk 

(Cervus elaphus) resource selection than did wolf (Canis lupus) presence (Gude et al. 

2006). Under wolf and human predation risk, for example, elk selected refuge areas to 

avoid human predation risk in Montana (Burcham et al. 1999, Gude et al. 2006, Proffitt 

et al. 2009). Avoidance of human predation risk can even be strong enough to stop 

large-scale migratory behavior of elk (Boyce 1989;1991). These examples show that the 

risk of mortality from a predator, and in particular human predation risk, can cause 

animals to change resource selection strategies to avoid risk.  How animals adjust their 

movement behavior in response to spatial and temporal variation in predation risk 

remains a neglected, but important, area of study in human-wildlife interactions (Lima 

and Bednekoff 1999).  
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Previous studies showed that movement rates of elk are influenced by predation 

risk and forage availability (Fortin et al. 2005a, Frair et al. 2005, Morales et al. 2005, 

Amo et al. 2007, Anderson et al. 2008).  The risk allocation hypothesis suggests that 

animals should show more frequent anti-predator behaviors under high risk, and forage 

during low risk (Lima and Bednekoff 1999, Ferrari et al. 2009). Many previous studies 

have demonstrated changes in observational measures of anti-predator behavior, such 

as vigilance (Laundre et al. 2001, Liley and Creel 2008, Chapter 2), and found that 

ungulates modify vigilance in proportion to predation risk. Fewer studies have tested 

the resource selection and movement predictions of the risk allocation hypothesis. 

Under the risk allocation hypothesis, animals are predicted to slow down in areas and at 

times with high forage and speed up in areas and times of high predation risk (Ferrari et 

al. 2009). For example, Morales et al. (2005) identified “encamped” states in elk in 

which step lengths were small and turning angles were high that were associated with 

foraging areas, whereas “exploratory” states were those with long step length and small 

turning angles.  

Many resource selection studies have demonstrated spatial avoidance of 

predation risk (Hebblewhite and Merrill 2007, Kauffman et al. 2007), but from resource 

selection alone it is difficult to understand the mechanisms of risk avoidance such as 

whether animals adjust space use or movement behavior.  Gude et al. (2006) showed 

that elk avoid human predation risk spatially more than areas of high wolf predation 

risk, but were unable to explain the behavioral mechanism explicitly.  Did elk move 

more under human predation risk, or did they slow down and spend more time in safe 



    

52 

 

patches as expected under the risk allocation hypothesis? New movement analyses, 

such as first passage time (Fauchald and Tveraa 2003, Frair et al. 2005), provide novel 

approaches to test how spatio-temporal variation in predation risk influences the 

movement mechanisms of selection (Ferrari et al. 2009).  For example, Frair et al. (2005) 

used first passage time to identify bedded, foraging, and movement behavior in elk that 

were differentially influenced by levels of forage resources and predation risk by wolves. 

Human activity in the form of forestry and oil and gas activity resulted in increased wolf 

predation risk, affected elk movement rates (Frair et al. 2005), and ultimately, reduced 

elk survival and fitness (Frair et al. 2007). Knowing whether changes in resource 

selection affect movements is important because movement could expose animals to 

increased risk of being encountered or detected by predators (Yoder et al. 2004). In 

many taxa, increased movement rates result in lower survival or fitness (Biro et al. 2003, 

Schmaljohann and Dierschke 2005). Thus, understanding the impacts of human 

predation risk on movement will be especially important in fragmented and 

heterogeneous human-dominated landscapes.   

There are few landscapes more fragmented and rapidly changing in western 

North America than low elevation valley bottoms (Radeloff et al. 2005, Haggerty and 

Travis 2006) that are also critically important winter ranges for many ungulates (Toweill 

and Thomas 2002). The expansion of housing into ungulate winter range results in a 

complex matrix of land ownerships that vary spatially in human predation risk. In such 

landscapes, human predation risk varies from partial to complete exclusion, and is 

strongly temporally regulated with most hunting by humans restricted to mid-to-late 
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fall.  As habitat fragmentation encroaches on ungulate winter range, humans are 

increasing time in proximity to ungulates such as deer (Odocoileus spp.) and elk, 

potentially increasing the potential for habituation of wildlife to humans (Thompson and 

Henderson 1998, Haggerty and Travis 2006). Understanding the effects of predation risk 

and habitat fragmentation on elk movement and resource selection in these landscapes 

will provide managers information on avoiding human-wildlife conflict. Humans also use 

differing hunting modes, similar to coursing (rifle hunting) and sit-and-wait predators 

(archery hunting) that may also be expected to have different effects on risk allocation 

similar to the findings of recent experimental ecology studies (Preisser et al. 2007, 

Schmitz 2008). Thus, the winter range matrix of temporal and spatial variation in human 

predation risk and hunting modes provides an ideal and relevant setting to test the 

following predictions of the risk allocation hypotheses (Lima and Bednekoff 1999) as it 

pertains to elk movement and resource selection (see Chapter 2 for vigilance behavior):  

1) first passage time for elk will be lower (i.e., faster movement rates) in areas that allow 

hunting than areas of refugia, and in hunted areas hiding cover will reduce movement 

rates; 2) elk will move faster in areas of rifle predation risk than archery predation risk; 

3) elk will increase movement rates with incremental increases in human predation risk 

as predation risk varies annually; and 4) elk will select for areas away from houses, 

roads, and trails. We tested these predictions over a three year period (2007-2009) 

during which hunting increased by nearly 30% by measuring the effect of hunting 

access, hunting mode, distance to human influence (roads, trails, houses), and the 

influence of cover on first passage time and resource selection. 
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Study area 

Our study area focused on the montane winter range for elk living in the North 

Hills of Missoula, Montana, USA (Figure 1) from 2007-2009. During the study, the herd 

ranged from 300-350 elk and showed an intrinsic growth rate of 11% from 1990-2007 

with the population remaining stable from 2007-2009 (Montana Fish, Wildlife and Parks, 

unpublished survey data). The winter range was a matrix of subdivisions, private 

agricultural lands, National Forest, and the Rattlesnake Wilderness along the northern 

boundary of the study area. Land use was a mix of cattle ranching and recreation (i.e., 

hiking, biking, hunting). This matrix of land ownership exposes elk to varying intensity, 

duration, and modes (i.e., archery, rifle) of hunting pressure (Table 1, see methods). 

Northern slopes are dominated by mixed conifer forest, primarily Douglas fir 

(Pseudosuga menziesii), ponderosa pine (Pinus ponderosa), and lodgepole pine (P. 

contorta). Southern slopes are composed of ponderosa pine stands and mixed 

bunchgrass communities dominated by native grasses: blue-bunch wheatgrass 

(Agropyron spicatum), Idaho fescue (Festuca idahoensis), rough fescue (Festuca 

scabrella), green needlegrass (Stipa viridula), needle-and-thread grass (S. comata), 

timothy (Phleum pratense), and non-native Kentucky bluegrass (Poa pratensis), and 

cheat grass (Bromus tactorum).  The dominant native forbs are arrowleaf balsamroot 

(Balsamorhiza sagittata) and lupine (Lupinus spp.) and the dominant exotic forbs are 

spotted knapweed (Centaurea maculosa), cinquefoil (Potentilla spp.), and leafy spurge 

(Euphorbia esula). Elevation ranges from 1,100 to 1,500 m, with the lowest elevation at 

the southern boundary of the study area gaining in elevation northward.  Topography is 
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characterized by rolling hills with slopes from 0-60%. The primary aspect is to the south 

and west. The average annual precipitation was ~35 cm based on data from the National 

Oceanic and Atmospheric Administration 

(http://www.wrh.noaa.gov/mso/climfacts.php).  Precipitation primarily falls in the 

spring and autumn as rain, and snow and rain in the winter.  The average summer 

temperature is 29 C
○
 and the average winter temperature is -9 C

○
.  White-tailed deer 

(O.virginianus) and mule deer (O. hemionus) are the other native ungulates in the study 

area.  Despite the occasional presence of cougars (Puma concolor), humans were the 

main predators of elk in our study area (18% of mortality of radio-collared elk was 

hunting, compared to 9% non-hunting mortality, n=3 mortalities, S. M. Cleveland, 

unpublished data).  We defined predation risk as the relative probability of death by 

human hunters for an elk, which was a function of the duration of hunting season as 

well as the number of hunters (Lima and Dill 1990).  During periods where hunting is 

illegal (out of season) or not allowed (e.g., private land, close to residential houses), 

predation risk was defined as 0.   

Methods 

We trapped and radiocollared adult female elk with 4400M Global Positioning 

System (GPS) Lotek© (Ontario, Canada) during winter in 2007, 2008, and 2009. We 

captured elk using clover traps (Clover 1954, Thompson et al. 1989), a corral trap, and 

aerial helicopter darting in accordance with approved animal use protocol (International 

Animal Care and Use Committee 058-06MHECS-122706, University of Montana, USA). 

We used six hour location data from nine GPS collared elk for movement and resource 
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selection function analyses to test predictions of the risk allocation hypothesis. GPS 

collar fix-rates were high (mean fix rate > 95%) enough to ignore potential habitat 

induced bias in movement or resource selection analyses (Frair et al. 2010 In Press). 

Human predation risk on elk, as expressed in the number of huntable days (days in 

which elk could be legally hunted), increased from 211 days in 2007-2008 to 271 days in 

2008-2009. This represented an intentional increase of ~ 30% by the state Fish and 

Wildlife manager (MFWP, unpublished data) in human predation risk with the goal of 

curbing wildland-urban interface (WUI) elk population growth (MFWP, unpublished 

data, Table 1). This manipulation provided a serendipitous management experiment to 

test for effects of increased risk on elk movement and resource selection. 

Testing the risk allocation hypothesis with human predation risk on elk 

 

Under the risk allocation hypothesis, elk were predicted to slow down in areas 

and at times with high forage value and speed up in areas and times of high predation 

risk (Lima and Bednekoff 1999, Ferrari et al. 2009). The interplay between spatial and 

temporal responses, however, means that one cannot address only one dimension (time 

or space) of risk allocation. Consider the hypothesis that humans have a greater impact 

on elk resource selection (and thus indirectly on populations) than do wolves 

(Hebblewhite et al. 2005, Gude et al. 2006). Consider the example in Figure 2 of equal 

numbers of used elk locations in habitat A (moderate human predation risk and high 

resource value) and B (moderate wolf predation risk and high resource value) and the 

habitat patches are equally available (Figure 2).  Under standard resource selection 
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analysis the risk allocation hypothesis would not be supported as selection was equal for 

patches A and B, so wolves and humans have equal effect on resource selection. 

However, instead of only adjusting time spent in a patch, elk could change movement 

strategies in response to the spatio-temporal variation in predation risk. For example, 

under the risk allocation hypothesis one would expect a reduction in the proportion of  

foraging bouts and an increase in exploratory movement in riskier landscapes (Lima and 

Bednekoff 1999).  Animals could either become sedentary moving between patches only 

once, or move back and forth between A and B between foraging and resting bouts to 

reduce predictability (Figure 2, Ferrari et al. 2009). The optimal strategy depends on the 

relative spatial and temporal variance in predation risk and whether movement itself is 

risky (Lima and Bednekoff 1999, Ferrari et al. 2009). In Figure 2b, considering movement 

would support the hypothesis of the effects of humans on elk being greater than effect 

of wolves. We tested the predictions of the risk allocation hypothesis for elk using 

analysis of first passage time and resource selection across a heterogeneous winter 

range landscape with a wide range of spatio-temporal variation in human predation risk. 

First passage time and analysis of movement 

 

Movement is the processes by which animals make behavioral decisions to select 

resources in space and time (Turchin 1998, Moorcroft and Barnett 2008). Animal 

movement can be thought of a series of biological ‘moves’ between foraging, resting or 

safe ‘patches’. Recent movement analyses such as first passage time incorporate step 

length, turning angles, and tortuosity to determine the amount of time it takes an 
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animal to leave a patch (Fauchald and Tveraa 2003). This is an important improvement 

as our sampling of steps and turns does not necessarily represent the biologically 

relevant move, whereas first passage time can help identify the relevant scale of 

biological moves (Turchin 1998, Morales et al. 2005). Understanding the scale of 

behavioral switching between foraging and movement states can help explain how 

animals make resource selection trade-offs.  

We tested the effects of spatial and temporal variation in hunting pressure on 

first passage time and movement behaviors of GPS collared adult female elk.  First 

passage time calculates the time it takes an animal to leave a patch of a specified radius 

(Fauchald and Tveraa 2003). By examining the circle that maximizes variance in first 

passage time, ecologists can discriminate area-restricted search behavior, such as 

foraging and resting, from long-distance movement between foraging patches (Figure 

3).  We measured the first passage time of GPS collared elk forward and backward 

across the radius (t(r)), excluding the first location as the previous location was 

unknown, to derive the amount of time spent searching in the circle (Fauchald and 

Tveraa 2003). We calculated t(r) by taking the absolute value of forward movement plus 

the backward movement (Fauchald and Tveraa 2003), to test the maximized variance in 

first passage time (S(r)) that distinguishes area restricted search from directed 

movement (Fauchald and Tveraa 2003, Pinaud 2008). Circles of radii between 25-100 

and 100-2,500 m were applied to each location, increasing in 25 and 100 m increments 

respectively to determine the threshold where variation in area restricted search was 
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maximized, thus defining the decision space in which elk move. First passage time was 

calculated using the Hawthtools extension in ArcGIS 9.3.1 (ESRI). 

We next tested whether human hunting seasons and modes changed the way in 

which elk perceived their landscape and transitioned between foraging and exploratory 

states by evaluating the time spent in the identified radii for elk.  Under the risk 

allocation hypothesis, we predicted first passage time to decrease during the hunting 

season and to increase outside of the hunting season.  We also predicted that rifle 

hunters (coursing) would decrease first passage time when compared to archery 

hunters (sit-and-wait) (Table 2).  Finally, because predation risk increased 30% from 

2007 to 2009, we also predicted an annual decrease in first passage time. We tested 

these predictions on first passage time with two complimentary analyses.  First, we 

conducted simple descriptive one-way analyses of variance (ANOVA) across the four 

hunting seasons (i.e., non-hunted, archery, rifle, game damage, Table 1), hunting mode 

(i.e., archery, rifle), and time (i.e., year, month) (Zar 1999). We used simple post-hoc 

tests to test for differences in simple one-way ANOVA’s. 

Next, we tested how spatial and temporal covariates influenced first passage 

time at the area restricted search threshold we identified in the first step using a general 

linear modeling approach to accommodate data complexity more adequately than 

ANOVA.  We used a generalized linear mixed-model (GLMM) with the identity (Gaussian 

errors) link function (McCullough and Nelder 1989, Bolker et al. 2009) of first passage 

time fit to a function of hunting and landscape covariates using the following equation: 

First passage time i = β0 + γ0i + β1i X1….. + βni Xn+ є   ( Equation 1)  
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Where βo is the intercept or base, γ0i  is the random effect for individual elk i, βx is the 

individual selection for resource X, and  є is the residual variation unexplained by the 

model. We added a random effect (γ0i) for each individual elk to account for individual 

variation in elk movement behavior (Gillies et al. 2006). We predicted that elk 

movement will be exploratory (low first passage time) outside of refugia to avoid human 

predation risk during the hunting season. Within the hunting refugia, we predicted that 

movement will be reduced to a foraging state (Morales et al. 2004). If movement rates 

outside of refugia decreased following the cessation of hunting resulting in increased 

selection for previously hunted areas, then the prediction that elk are selecting for 

refuge during hunting season would be upheld.  We expected other factors such as 

topography, vegetation cover, and proximity to humans to also potentially influence 

first passage time of elk in predictable ways based on previous studies (Frair et al. 2005, 

Anderson et al. 2008). We summarize these effects below in the covariates section.  

Resource selection functions 

 

We predicted that factors that increase elk movements should be expected to 

decrease the strength of selection as measured by time in a patch because of the 

inverse relationship between time spent in a patch and movement rate (Table 2). A 

resource selection function is any statistical function that is proportional to the 

probability of use by an organism (Manly et al. 2002). We developed resource selection 

models for elk resource selection as a function of human predation risk on their winter 

home range using a used-available design (Manly et al. 2002) by comparing used 
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locations to random available locations along GPS collared elk movement paths. We 

used a matched-case control logistic regression (also known as conditional logistic 

regression) to evaluate the effect of landscape covariates on elk resource selection. We 

generated two locations from the empirical step length and turning angle distribution of 

the movement pathways (Hosmer and Lemeshow 2000, Compton et al. 2002). Matched-

case control designs appropriately use an animal’s biological movements to define a 

biologically meaningful measure of availability (Compton et al. 2002, Whittington et al. 

2005). We conducted a two-staged modeling where we estimated a matched-case 

logistic regression for each elk and then averaged among individuals (Sawyer et al. 2006, 

Fieberg et al. 2009, Fieberg et al. 2010 In Press). Two-stage regression modeling 

approximates mixed-effects models by treating the individual as the sampling unit, but 

is statistically more straightforward than adding a random effect for each individual elk 

to matched-case control models that normally do not have an intercept (Hosmer and 

Lemeshow 2000, Fieberg et al. 2009, Fieberg et al. 2010 In Press). We estimated 

individual elk resource selection along movement paths using fixed-effects conditional 

logistic regression for each individual elk (i) using:   

 w(x) i = (β1i X1….. + βni Xn+ є)/(1+ β1i X1….. + βni Xn+ є)  (Equation 2) 

where (i) is the individual elk, β is the individual selection for resource covariate Xn, and  

є is the residual variation unexplained by the model. The probability in equation 2, w(x) i, 

is a relative probability because of the problem of defining availability in use-availability 

resource selection designs (Keating and Cherry 2004, Johnson et al. 2006). Regardless, 

w(x) i can still be interpreted as a valid relative probability and the coefficients from 
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conditional logistic regression interpreted in terms of their effects on the relative or 

ranked selection by elk (Keating and Cherry 2004, Johnson et al. 2006). 

 

Covariates influencing first passage time and resource selection 

 

 We used spatial measures of hunter accessibility, distance from trails, roads, and 

houses (m), housing density (# houses/km
2
), distance to streams, Normalized Difference 

Vegetation Index (NDVI), elevation, slope, hillshade and landcover variables to develop 

a-priori models of elk resource selection (Anderson et al. 2000, Burnham and Anderson 

2001). Spatial data for hunter access, trails, roads, houses, streams, and a digital 

elevation model were all obtained from Montana Cadastral Mapping (http://gis.mt.gov). 

We spatially defined hunted (access) and refugia landcover classes from parcel data that 

identified landowners that were involved in cooperative hunting agreements with 

MFWP (MFWP unpublished data), and by following legal hunting district boundaries 

(MFWP Hunting Regulations 2007, 2008, 2009). As a surrogate for spatial human 

predation, we estimated human activity as function distance from known human use 

areas (trails, roads, houses) (Merrill et al. 1999) in the Spatial Analyst Extension of 

ArcGIS 9.2 (Olympia, WA, USA). We measured housing density by measuring the 

centroid point of individual landowner parcel data. We then screened the data to insure 

a house was in the parcel, and then calculated the number of houses per km
2
 in ArcGIS 

9.2. We obtained 30m pixel resolution digital elevation model, slope, and aspect 

covariates, and calculated hillshade using the default value in ArcGIS 9.3 (NE 315 
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degrees) to obtain a continuous variable where high variables represent warm 

southwest hillsides. We measured changes in primary productivity using NDVI data from 

the MODIS (Moderate Resolution Imaging Spectroradiometer) satellite at a 250m
2
 

resolution (Huete et al. 2002, Pettorelli et al. 2005). We included two measures of NDVI 

measured in winter (NDVI_W) and summer (NDVI_S) to represent the seasonal 

transition from high forage biomass in the fall to spring green up. We defined fall forage 

biomass using NDVI at the 193
rd

 day of the year (NDV_S), and spring green up as the 81
st

 

day of the year. High NDVI values for both winter and summer were representative of 

tree cover. We used the 30m pixel resolution United States Department of Agriculture 

Forest Service’s Northern Region Vegetation Mapping Project (VMAP) landcover map to 

determine available landcover components (Brewer et al. 2006 ).  We reclassified 

landcover covariates into open habitats composed of grasses, shrubs, and sparsely 

vegetated areas (OPEN), and closed habitats composed of tree dominated landscapes 

(CLOSED) as suggested for elk by Creel et al. (2005).  

We predicted landscape covariates (distance to houses, trails, and roads) that 

decreased first passage time would consequently be avoided in resource selection 

analysis (Table 2). For example, as forage biomass increased, elk were predicted to 

spend more time foraging in a patch, decreasing first passage time and increasing the 

signal for resource selection. Hiding cover, as represented by percent canopy cover, was 

expected to increase first passage time, as would steeper slopes that reduce movement 

rates (Fortin et al. 2005b).  Slope and hiding cover were predicted to be selected more 

strongly during hunting seasons to avoid predation. We did not include a year covariate 
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as we had done in first passage time analysis because available and used locations were 

paired temporally, such that a used location in 2007 could not have an available hunting 

level in 2008. We tested for interactions between access and hiding cover given 

previous evidence that elk select for closed forests when subject to predation risk (Creel 

et al. 2005).  In addition, we screened for quadratic relationships of selection for 

distance to streams, trails, roads, and houses to determine if elk were selecting for 

intermediate distances to these variable (Hosmer and Lemeshow 2000).   

First passage time and resource selection model selection and analyses 

 

We tested the predictions of the resource allocation hypothesis (Table 2) for 

both first passage time and resource selection in a stepwise model selection procedure 

following recommendations from Hosmer and Lemeshow (2000).  We first screened 

explanatory variables for collinearity (using a correlation coefficient, r ~= 0.50) using 

univariate analysis while accounting for confounded variables (Hosmer and Lemeshow 

2000). We then manually built three different suites of models using mechanical 

stepwise model selection following Hosmer and Lemeshow (2000) that considered only 

human-only covariates, environmental-only covariates, and a combined model. We 

selected the top first passage time or resource selection model from either human, 

environmental, or combined models using Akaike’s Information Criteria (AIC) (Burnham 

and Anderson 2004). We chose this ‘hybrid’ model selection form to avoid allowing 

collinear or confounded variables in the same models and because our study was 

inherently observational and not experimental (Stephens et al. 2005).  
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The fit of first passage time GLMM’s was evaluated with the coefficient of 

determination.  We evaluated model fit for conditional logistic resource selection 

models using a modified version of k-folds cross validation adapted for matched-case 

control designs. K-folds cross validation is an approach to evaluate predictive model fit 

in resource selection models (Boyce et al. 2002) and iteratively builds resource selection 

models on k random ‘partitions’ of data and then tests the predictive capacity of the 

model against out-of-sample data not used in model development (Boyce et al. 2002). 

We adopted this approach to the matched-case design using a jackknife k-folds cross-

validation where we excluded one elk, estimated resource selection with the remaining 

elk, and then tested predictive accuracy for each elk and averaged across elk to evaluate 

predictive capacity for the population (Boyce et al. 2002). If a resource selection model 

has high predictive capacity, then the rank observation of all out-of-sample locations 

should be well predicted within ranks of increasing habitat ‘bins’ from 1 (poor habitat) 

to 10 ( excellent habitat). We tested for high predictive capacity of excluded elk 

locations using spearman rank correlation (Boyce et al. 2002). All statistical analyses 

were conducted using STATA 10 (College Station Texas, USA) (Johnson et al. 2006).   

 

Results 

 

 We obtained 39,000 GPS telemetry locations of nine GPS collared elk during the 

focal sampling period (September to March of each year) over the three years of the 

study (2007-2009). The variance in area restricted search was maximized at 1,600m 
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radii, although there was also a lower peak at very small radii that is likely due to GPS 

error (Figure 4, Frair et al. 2005). Using this threshold of 1,600m to discriminate 

movements between patches, first passage time varied as a function of year, month, 

hunting season, and hunting mode (Figure 5).  Focusing first on the effect of changing 

hunting season, first passage time decreased as hunting pressure increased (Table 1) 

during the hunting season from 2007 (p-value 0.093), 2008 (p-value 0.031), and 2009, 

but was not significantly different during the non-hunting periods. In addition, first 

passage time of hunted elk was not significantly different from non-hunted elk in 2007, 

but first passage time was significantly lower in 2008 (p-value <0.0001) and 2009 (p-

value 0.0008), supporting the hypothesis that hunting decreased first passage time. First 

passage time was significantly lower between the archery and rifle hunt than non-

hunted periods (p-values < 0.011; Figure 2), yet multiple comparisons revealed first 

passage time during archery was not different than during non-hunting times.  Monthly 

variation in first passage time was lowest during September, peaking in December, and 

dropping again in February (Figure 2).  First passage time during hunting season was 

significantly lower than non-hunted times for all months except September and 

November, (Figure 5).  

 The top first passage time model combined human and environmental factors 

(Table 3). Individual variation in first passage time was substantial (var = 0.235) in the 

top model, confirming the need for a random effect for individual elk. Human related 

covariates (access, year, mode) caused the biggest reductions in first passage time, and 

hence greatest increases in movement rates (Table 4). Elk first passage time showed a 
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quadratic relationship with distance to houses (Table 4), with first passage time 

increasing until elk were ~750m from homes and then declining thereafter (Figure 6).   

Important environmental covariates that increased first passage time were distance (in 

meters) to streams (β= 0.0002) and hillshade (β= 0.00017); whereas first passage time 

declined in areas of highcover (β= -0.09, Table 4).  Distance to streams was highly 

correlated with distances to roads in our analysis (correlation coefficient= 0.50) and as 

such can be thought of as a human related variable. 

 The top model describing adult female elk resource selection was also the 

combined human and environmental model (r
2
= 0.83, Table 3). Distance to houses and 

distance to trails were the only human variables that had significant influence on 

resource selection. Elk selected for intermediate distances from both houses and human 

trails.  Elk resource selection peaked at 1200m from human activity, whereas their 

selection peaked from trails. Hunter access was statistically insignificant in the model (p-

value= 0.34) but was retained regardless to test Prediction 1 (Table 4). Elk selected for 

high NDVI values during winter months (β= 16.19), which we interpreted as selection for 

tree cover because NDVI was highest in closed forests in our study area. Conversely, 

during fall, elk avoided high NDVI values (β= -16.26, Table 4), suggesting elk selected for 

hiding cover during high risk times and selecting for high forage biomass during less 

risky time supporting the risk allocation hypothesis.  The k-folds cross validation of the 

top resource selection functions model predicted the rank order of observed habitat 

selection of the withheld elk very well across all individual elk (Spearman’s rank 

correlation, rs = 0.946, SE 0.017, range 0.861-1.0).   
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Discussion  

 

 We found that spatial and temporal variation in human predation risk drove 

patterns of elk movement, but not necessarily resource selection, in a heterogeneous 

wildland urban interface landscape.  As expected under the risk allocation hypothesis, 

elk first passage time declined where and when they were exposed to more human 

predation risk, except when hiding under cover, as a strategy to reduce exposure to 

human predation risk, similar to recent studies of elk movement (Conner et al. 2001, 

Frair et al. 2005, Anderson et al. 2008). In contrast, elk resource selection was not driven 

by hunting access, instead, resource selection was driven more by forage related 

covariates, also echoing recent studies that emphasized the importance of elk selection 

for forage biomass (Sheehy and Vavra 1996, Sawyer et al. 2007). This discrepancy in our 

analysis between movement and resource selection highlights the importance of 

considering the mechanics of movement in how animals select resources (Turchin 

1998). Unfortunately few studies consider both movement and resource selection 

analysis, yet had we conducted only one analysis, our understanding of elk –human 

interactions in the wildland urban interface would have been much poorer. 

How animals move is influenced by landscape heterogeneity and predation risk 

(Morales et al. 2005, Anderson et al. 2008). These movement decisions are made at a 

biologically relevant spatial scale (decision space) which can defined where the variance 

in movement is maximized (Fauchald and Tveraa 2003).  The threshold of elk 
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movements between foraging and movement scales was maximized at 1600m similar to 

elk in Frair et al. (2005) study in a wolf predation system, but much larger than Le Corre 

et al. (2008) study of roe deer (Capreolus capreolus) (area restricted search <100m).  

This suggests that elk were making decisions at a similar spatial scale under predation 

risk of wolves (Frair et al. 2005) and humans (this thesis), although humans had a larger 

impact on resources selection that do wolves in another study in Montana (Gude et al. 

2006).  We also observed a peak in variance in first passage time at very small radii that 

may be because of small-scale foraging decisions or GPS-induced error in apparent 

movement (Frair et al. 2010).  

However, within this threshold of movement behavior (1,600m), we did see a 

significant change in first passage time as a function of increased predation risk by year 

(Figure 6), by differing hunting modes, and by season type (Figure 2). During every year 

of the study, management agencies increased hunting pressure and we documented a 

corresponding decrease in first passage time, as expect under prediction 3.  The mode 

of predation with the largest negative influence on first passage time was rifle hunting, 

which we identified as a coursing predation type, which supported Prediction 2.  

However, this finding is contrary to the effect seen by Preisser et al. (2007) and Schmitz 

(2008) that found ambush predators had the largest effect on prey resource selection.  

This difference could in part be due to the large impact humans have on their prey 

species (Darimont et al. 2009), or that we did not have enough archery hunters to illicit 

a response.  Interestingly, season structure, whether archery, focused on the herd 

(Game Damage Rifle Season) or the general rifle season (MFWP, unpublished data), had 
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a significant impact on first passage time (Figure 2)(Wildlife-Division 2004). First passage 

time of elk did not differ during the non-hunting and archery seasons.  However, the 

first passage time of two rifle hunting seasons differed significantly (General Rifle 

Season vs. Game Damage Rifle Season). The significant decline in first passage time as a 

function of hunting season structure illustrates that focused hunting has a significant 

impact on elk movement patterns over a more general hunting season structure that is 

designed to control regional elk populations.  The relationship of first passage time 

declining as function of focused vs general was also evident in monthly first passage 

time as first passage time of hunted elk decreased from October and November 

(General Rifle Season) to January and February (Game Damage Rifle Season) (Figure 2). 

Thus, wildlife managers seeking to manage ungulates in the WUI and other fragmented 

landscapes might need to make a trade-off between the direct and indirect effects of 

human harvest on elk. 

 Accessibility to hunters (which decreased first passage time) and distance to 

streams (increased first passage time) were the primary drivers of first passage time in 

our top model (Table 4).  In contrast, human related variables (access, distance to 

streams, houses, trials, and housing density) had less of an impact on resource selection, 

which was more driven by environmental variables (forage, open habitats, and slope). 

For example, hunter access had little impact on resource selection (p-value= 0.3350) in 

the top resource selection model, contrary to other studies (Gude et al. 2006, Proffitt et 

al. 2009). Humans were still influencing the system with non-linear relationship of 

distance to trails and distance to houses (Figure 7). In addition, elk selected for areas 
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farther from streams (and, because of the correlation in our area of 0.5 between then, 

roads) which is well support in the literature (Lyon 1979, Rost and Bailey 1979, Rowland 

et al. 2000, Long et al. 2008). Elk selected for forested areas during winter as indicated 

by NDVI_W values (high NDVI values represented forested landscapes, Table 4), and 

selected for open grass lands in the fall given our NDVI_S values (Table 4).  These results 

were similar to Creel et al. (2005) and Gude et al. (2006) that showed elk selected for 

areas of forage availability in the absence of predation risk. 

 The results of this study might have been limited by a small sample size (n=9), 

except this elk herd of > 300 rarely split into >3 groups, and groups were never observed 

without a GPS collared elk.  However, it is worth noting that only adult female elk were 

collared and application of our results to adult male elk is limited, although male elk did 

use the WUI. One potential limitation of our study is that we used the surrogates of 

hunting access and distance to human related variables (trails, houses, and streams) to 

approximate the human predation risk.  Although we feel this is an acceptable method 

to determine the additive effects of humans (Merrill et al. 1999), our insights of actual 

hunting pressure would have been more accurate if we had temporal and spatial data of 

elk hunters on the landscape. Regardless, few wildlife management agencies are able to 

track the numbers of hunters on the landscape, and so our results that showed a 

significant effect of increasing hunting season length on elk movement and resource 

selection should be even more valuable to developing management strategies to 

address elk harvest in fragmented landscapes. 
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We believe that the general application of these results will be helpful in 

understanding how elk and other ungulates mitigate heterogeneous temporal and 

spatial predation risk. Under the common assumption that time spent in an area equals 

preference for these areas, one would assume that hunter access is not an important 

factor influencing elk behavior in the WUI. By combining first passage time and resource 

selection analyses we were better able to understand the influence of human predation 

risk on elk behavior and how elk move through a heterogeneous threat matrix.  

Understanding that elk first passage time is decreasing  in areas closer to humans 

suggests that elk are still viewing humans as a predation risk and that hunting is having 

an effect on habituation concerns voiced by Thompson and Henderson (1998).  We were 

able to identify that when elk are accessible to hunters they greatly reduce the amount 

of time spent in these areas and spend more time in (select for) areas that represent 

refugia. 

 

Management implications 

 

 By understanding that elk avoid houses at intermediate distances (750m) and 

move quickly through areas closer to humans, managers know that humans are still 

viewed as a potential predation risk, but their willingness to be close to a potential 

predator (humans) suggest they are showing signs of habituation (Frid and Dill 2002). 

These highly orchestrated hunts are reducing the risk of habituation, an import 

credibility challenge to wildlife managers (Thompson and Henderson 1998).  One 
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primary concern of wildlife managers is the effectiveness of these highly orchestrated 

hunts.  These data support the efficacy of these highly focused and orchestrated hunts’ 

ability to impact elk movement, as the focused Game Damage Rifle Season had the 

greatest reduction in first passage time.   

The mode of hunting was also important to the success of elk management in 

heterogeneous landscapes.  Archery had little effect on movement and resource 

selection.  If moving elk around is important to management objectives to make them 

more vulnerable to additional hunting pressure, then more effort should be put into 

implementing rifle seasons in these areas.  It has been suggested that movement 

increases the chance of  encounter of elk by wolves and thus increases predator success 

(Hebblewhite and Merrill 2007).  If this holds true for human hunting pressure, than 

increasing access to increase elk movement may result in population level reduction in 

elk populations in the WUI.  To answer these questions, more comparative work on 

human and non-human predators is needed. 

In our study area, elk selected areas 1600m from houses and started to slow 

down at 750m from houses (Figure 6). This information will allow managers to structure 

hunting access in a fashion to reduce conflict between WUI residents and hunters in the 

area by potentially allowing hunting access a minimum of 750m from homes.  Knowing 

that elk will move quickly through areas 750m from houses suggests a minimum of 

1,500m buffer between subdivisions to insure movement corridors remain functional.  

Maintaining migratory behavior of elk population is imperative to the maintenance of 

ecosystem function (White et al. 1998, Hebblewhite et al. 2005), as resident elk 
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population degrade range condition (Baker et al. 1997, Snyder 2007). In addition, 

migration of this elk herd allows elk to move through more public land rather than being 

sequestered on the winter range which is predominately private. The 1,500m buffer 

zones provide conservation organizations guideline by which to prioritize conservation 

easements in the WUI to insure continued migration of WUI elk populations. 
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Table 1. Elk hunting season structure by hunting mode and total number of days in the 

wildland-urban interface of Missoula, Montana, USA, 2007-2008 and 2008-2009. 

Year Season Type Dates of Hunt Hunting 

Mode 

Hunted Days 

2007-

2008 

Rattlesnake Wilderness  September 15-November 

25 

Rifle 71 

Archery  September 1-October 14 Archery 44 

General Season October 21-November 25 Rifle 35 

National Wildlife 

Federation  

No Hunt Archery 0 

Game Damage December 15-February 15 Rifle 61 

  Total 211 

2008-

2009 

Rattlesnake Wilderness  September 15-November 

30 

Rifle 76 

Archery  September 6-October 19 Archery 43 

General Season October 26-November 30 Rifle 35 

National Wildlife 

Federation  

September 6-October 19 

October 26-November30 

Archery 78 

Game Damage January 3-February 13 Rifle 41 

  Total 273 
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Table 2. The predicted effect selected covariates on first passage time (FPT) and 

resource selection of nine adult female elk in wildland-urban interface of Missoula, 

Montana, USA. The level of hunting access increases from 2007, 2008, and 2009 which 

has corresponding decreases in FPT and resource selection values.  Negative signs and 

positive signs represent the expected increase or decrease in either FPT or selection for 

that variable. 

Variables First Passage Time Resource Selection Function 

Access -- -- 

Distance to houses - - 

Access*Highcover + neutral 

Year -- n/a 

Rifle season -- n/a 

Archery season neutral neutral 

Distance to trails ++ + 

Housing density -- - 

NDVI ++ ++ 

Highcover neutral - 

Distance to roads + + 
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Table 3. Competing model selection results for first passage time mixed-effects models 

and resource selection functions from two-stage mixed-effect conditional logistic 

regression based from nine GPS collared elk in the wildland-urban interface of Missoula, 

Montana, USA.  Models in bold were selected as the top model based on Akaike 

Information Criteria (AIC) scores. 

Model Obs ll(model) df ΔAIC 

First Passage Time 

Top Human 39151 -13172.6 10 1122.09 

Top Environmental 39151 -14745.9 10 4763.22 

Top Combined 39151 -12607.5 10 0 

Matched Case Control Resource Selection Functions 

Top Human 117453 -38852 72 63128.64 

Top Environmental 117453 -7610.33 54 609.33 

Top Combined 117453 -7251.66 108 0 
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Table 4. The highest ranked first passage time (FPT) and resource selection function 

models from based Akaike Information Criteria (AIC) values of competing models from 

nine GPS collared adult female elk in the wildland-urban interface of Missoula, 

Montana, USA.  Bolded variables are those whose effect on elk differed between FPT or 

resource selection but were significant in FPT analysis or were of interest in hypothesis 

testing. Distances are expressed in meters and housing density is the number of houses 

per kilometer squared. 

First Passage Time Resource Selection Functions 

Variables β SE p β SE p 

Access -0.29 0.007 <0.0005 -0.11 -0.037 0.3350 

Distance to 

streams  

0.0002 4E-06 <0.0005 0.0007 0.00022 0.0334 

Distance to houses  0.0002 2E-05 <0.0005 0.003 0.0011 0.0047 

Distance to 

houses2 

-1E-07 1E-08 <0.0005 -2E-06 -5E-07 0.0181 

Access*Highcover 0.076 0.0119 <0.0005 -- -- -- 

Year -0.05 0.002 <0.0005 -- -- -- 

Rifle -0.11 0.004 <0.0005 -- -- -- 

Distance to trails  -- -- -- 0.001 0.0003 0.0183 

Distance to trails2 -- -- -- -3E-07 -9E-08 0.0065 

Housing density -- -- -- -0.006 -0.0020 0.1507 

Hillshade 0.0002 6.13E-05 0.0070 -0.003 -0.0010 0.1022 

Highcover -0.09 0.005 <0.0005 -- -- -- 

Lowcover -- -- -- -9.25 -3.085 0.0298 

NDVI_W -- -- -- 16.2 5.41 <0.0001 

NDVI_S -- -- -- -16.3 -5.42 <0.0001 

Slope -- -- -- 0.014 0.0046 0.8104 

Constant 103.17 3.788 <0.0005 -- -- -- 
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Figure 1. The location of the study in Missoula County, in the wildland-urban interface of 

Missoula, Montana, USA.  The study area was defined by the location data from nine 

GPS collared elk within the winter range of an urban elk herd in the North Hills of 

Missoula, Montana.  The cross-hatched grids (Access) are the areas where human 

hunters had access to elk hunting during the course of the study (2007-2009). 
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a)

b)

 
Figure 2. Conceptual representation of different anti-predator movement strategies that 

result in the same resource selection pattern in both a and b (animal locations sampled 

at regular intervals such as with GPS telemetry are represented by the black dots). 

Resource selection analyses alone would fail to recognize the different movement 

strategies employed in both examples. In a) animals are sedentary in the two habitat 

patches with only one move between patches, whereas in b) the animal is continuously 

moving between the habitat patches. Without combining analysis of movement and 

resource selection, conclusions drawn about the selection behavior of this animal would 

be misleading.   
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Figure 3. An example of first passage time (FPT) from a GPS collared adult female elk 

(Elk2) from the wildland-urban interface of Missoula, Montana, USA.  Both circles have a 

radii of 1,600m (drawn to scale) A) represents a low FPT B) represent a high FPT 

respectively.   
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Figure 4. The variance in log first passage time S(r) as a function of area to define area 

restricted search (ARS), given an increasing circle radius (r), for elk in the wildland-urban 

interface of Missoula, Montana, USA. ARS is maximized at a radii of 1,600m. 
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Figure 5. Log transformed first passage time values with standard errors from nine GPS 

collared adult female elk in the wildland-urban interface of Missoula, Montana, USA as a 

function of a) year b) month across all years (2007-2009) c) hunting season across all 

(2007-2009) d) hunting mode across all year (2007-2009). Year 2007 represents the 

lowest human predation risk increasing with risk increasing in 2008, and 2009.  
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a)

b)

 

Figure 6. The distance (m) to houses (a) and trails (b) where first passage time and the 

relative probability of resource selection was maximized from generalized linear models 

developed from nine GPS collared adult female elk.  The data was collected from 2007-

2009 in the wildland-urban interface of Missoula, Montana, USA.   
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a) 
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b) 

 
Figure 7. Map of predicted first passage time (FPT) from the combined generalized linear 

mixed model (GLMM) model for female elk in the North Hills of Missoula, Montana, as a 

function of human predation risk (access) and years 2007 (a) and 2009 (b).  Notice that 

FPT in a) has less access (access is outline but no hunting occurred) than b), and there is 

a corresponding decrease in FPT on accessible land from 2007 to 2009. High FPT values 

represent increased time spent in that area. 
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Figure 8. Spatial predictions of the relative probability of use from the top RSF model 

from GPS collared elk (n=9) in the wildland-urban interface of Missoula, Montana, USA 

(2007-2009).  Darker colors represent lower relative probability of use, where as lighter 

colors represent higher relative probability of use. 
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APPENDIX A 

Behavioral responses – Bedded 

 

Elk bedded more mid-day than during other times of day. Lamar bedded 

statistically more than did all other groups.   Missoula elk bedded less during hunting 

season than during the following weeks except week 4.  

Behavioral responses –Standing 

 

 Elk stood least in the morning than other times of day. Missoula elk stood less 

than all other study areas.  Elk stood more in Missoula during weeks 2, 3, and 4 post 

hunting season 
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Table 1.  Results of fixed-factorial ANOVA of the effects of time of day (time), Risk Level, 

Risk Level*Time, Time, position in the group (position), temperature, and group size has 

on female elk behavior. 

 Bedded Standing 

 F P F P 

1. Risk Level 5.88 0.0006 6.59 0.0002 

2. Time 3.43 0.0015 1.01 0.4257 

3. Risk Level*Time 3.36 0.0004 1.44 0.1594 

4. Position 4.46 0.0356 8.05 0.0048 

5. Time Period 9.72 0.0001 11.62 <0.0005 

6. Group Size -- -- -- -- 

7. Temperature 0.50 0.4805 -- -- 
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APPENDIX B 

Table 1.  The known fate of collared adult female elk in the North Hills, Missoula, 

Montana, USA from 2007-2009. Harvested animals were legally taken by elk hunters. 

Elk ID Frequency Collar 

Type 

Month Year Known 

Fate 

Month Year Comments 

A 150.8392 VHF March 2007 Deceased February 2008 Harvested 

B 150.1390 VHF March 2007 Alive April 2009  

C 150.1179 VHF March 2007 Alive April 2009  

D 150.1280 VHF March 2007 Deceased February 2008 Harvested 

E 150.0973 VHF March 2007 Alive April 2009  

F 150.1080 VHF March 2007 Deceased September 2008 Black bear 

G 150.0485 VHF March 2007 Alive April 2009  

I 150.4240 VHF February 2008 Alive April 2009  

J 150.2190 VHF March 2008 Alive April 2009  

L 150.2990 VHF April 2008 Alive April 2009  

Blue 1 150.1500 VHF March 2008 Alive April 2009  

Blue 2 150.8600 VHF March 2008 Alive April 2009  

1230 149.0464 GPS February 2007 Alive April 2009  

1231 150.5780 GPS March 2007 Alive April 2009  

1232 149.3950 GPS March 2007 Deceased January 2008 Harvested 

1232 149.3950 GPS February 2008 Alive February 2008  

1233 149.6477 GPS February 2007 Deceased March 2007 Unknown 

1233 149.6477 GPS March 2007 Alive April 2009  

1314 150.7988 GPS March 2007 Alive April 2009  

1315 150.8694 GPS March 2007 Alive April 2009  

1316 150.9400 GPS March 2007 Deceased January 2009 Harvested 

1317 151.3581 GPS March 2007 Alive April 2009  
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