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Chairperson: Dr. Ulrich Kamp 

 

The Turgen Mountains lie in northwestern Mongolia, roughly 80 kilometers south of 

the Russian border. The area was visited in 1910 by a Royal Geographical Society (RGS) 

expedition led by Douglas Carruthers. They undertook an extensive survey of the range and 

produced a detailed topographic map. They also documented the extent of the glaciers with 

photographs. This modern study consisted of three phases. The first step was to procure the 

historical documents from the RGS in London, including copies of the photos, journal 

entries, and the map. Field work in Mongolia entailed traveling to the remote study site and 

retracing portions the 1910 expedition. Camera locations were matched to the historical 

photographs and repeat images taken. In addition, the termini of the two main glacial lobes 

were surveyed by GPS. Finally, spatial analysis was conducted in the computer laboratory 

using a GIS to generate a „historic‟ elevation model from the 1910 map and compare it to a 

modern DEM generated from SRTM data. Map analysis software was employed to evaluate 

cartometric accuracy of the 1910 map against modern Russian topographic sheets. The 

results of the DEM and map analysis were then validated using the field GPS data and 

remotely sensed imagery to quantitatively describe the changes in the glacial system. The 

repeat photography was analyzed using photogrammetric techniques to measure glacier 

changes. Also, a custom cartographic product was produced in the style of the 1910 

Carruthers map. It displays the extent of the glaciers in 2010 and the locations of repeat 

photography stations for future expeditions. Placing the results of this study alongside 

previous work paints a clear picture of the Turgen glacial regime over the last century. The 

results suggest that while the snow and ice volume on the summits appears to be intact, lower 

elevation glaciers show significant ablation. This study successively demonstrates the utility 

of using historic expedition documents to extend the modern record of glacial change. 
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RETRACING THE 1910 CARRUTHERS ROYAL GEOGRAPHICAL SOCIETY 

EXPEDITION TO THE TURGEN MOUNTAINS OF MONGOLIA –  

RECONSTRUCTION OF A CENTURY OF GLACIAL CHANGE  

 

INTRODUCTION 

            The Turgen Mountains lie in northwestern Mongolia, roughly 80 kilometers south of 

the Russian border. A Royal Geographical Society (RGS) expedition under Douglas 

Carruthers visited the area in 1910 and undertook an extensive survey of the range. The 

expedition produced a detailed topographic map and also documented glacier extents with 

photographs. It is assumed that the current global climatic shifts have had an effect on 

glaciers in the Turgen Range however, the extent of these changes are unclear. Relatively 

little work has been done on glaciers of Mongolia, but it is important to monitor them as they 

are the „water towers‟ on which flora, fauna, and humans depend. It is vital to construct a 

body of research which can document previous changes and serve as a baseline to measure 

changes in the future. This research retraces portions of the 1910 expedition in order to 

reconstruct the last century of glacial variation.  

            The study has three parts. In the first step, historical documents were procured from 

the RGS in London, including copies of photos, maps, manuscripts, and diary entries. Then, 

during the Mongolian field campaign in the summer 2010, the Turgen Mountains survey by 

the 1910 RGS expedition was retraced. The historical photos were repeated and glacier 

termini were surveyed using GPS. Finally, spatial analyses was conducted using GIS to 

generate a „historic‟ elevation model from the 1910 map and compare it to a modern digital 

elevation model (DEM) generated from SRTM satellite data. The cartometric accuracy of the 

1910 map was also evaluated with specialized software developed for historical cartography. 

The repeat photography was assessed, along with comparing narratives of the two 
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expeditions, as a qualitative measure of glacier changes over the last 100 years. 

Photogrammetric measurements were taken to establish estimates of glacial recession over 

the study period. This final report includes a new map of the Turgen Range, side by side 

repeat photographs, and statistics of changes in the glacial conditions.  

            The study represents a unique opportunity to monitor an isolated glacial system that 

has a detailed account in the historical record. The results are a valuable indicator of glacial 

responses to environmental change in Mongolia over the last century.  

 

PURPOSE 

 In the warming of the current inter-glacial period, the glaciers of the world are 

experiencing pronounced wastage. Regardless of the anthropogenic contributions, the effects 

of the warming are observable and measurable. A global effort to assess the health of glaciers 

is underway. However, the majority of studies start with the satellite record of the sixties and 

seventies. By researching archives, it is possible to extend the baseline using expedition 

records from before the collection of modern satellite data. 

 The purpose of this project is to quantify glacial change over an extended centennial 

time span by integrating historical data with modern remotely sensed imagery. The scope of 

the research utilizes proven filed techniques to merge the archival record with the technology 

of satellite and GIS derived spatial statistics. It is a conglomeration of both qualitative and 

quantitative techniques to produce a more comprehensive measure of the glacial regime over 

time. In this way, a complete assessment can be accomplished that reveals glacier 

characteristics prior to the monitoring techniques of the modern age. 
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The work will answer these three research questions: 

1. Are the historical archives of mountain expeditions a valid resource for extending 

the modern record of glacial change? 

2. How has the glacial system of the Turgen Mountains changed over the last 

century? 

3. What is an effective methodology for integrating historical and modern data in 

order to increase our comprehension of long term glacial dynamics? 

 

The study addresses these questions by integrating analysis of cartometric evaluation, repeat 

photography, and remote sensing using both standard and hybrid methods. 

 

RESEARCH SETTING 

 

 The research was conducted in the Turgen Mountains in northwestern Mongolia 

(Figure 1). The range is heavily glaciated in northern aspects, feeding several rivers which 

flow northeast towards the regional capital of Ulaangom, and into the UNESCO World 

Heritage-designated Lake Uvs Nuur Basin. Turgen and its sister range, Kharkhiraa, lie within 

the Uvs Nuur Strictly Protected Area, part of the Mongolian national system of 

environmental conservation. The remote mountain range contains all the prerequisites 

required to address the focus of the study: 

 A variety of glaciers and periglacial landforms to measure in the field and compare to 

both historic and modern data. 

 A well-documented historic expedition to the range that produced a detailed survey 

and photographs of the glacial system exactly one century ago. 

 A modern satellite record that has already been evaluated by previous research on 

which this study can build. 
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 The mountains are an isolated rampart surrounded by foothills forming lush valleys 

that are the headwaters for multiple rivers. These summer pastures are rich in vegetation and 

have been used for centuries by Nomads grazing their herds. As an island in the Steppe, the 

ranges are also home to several endangered species, including snow leopards, Asian ibex and 

agali sheep, as well as being a haven for migratory birds. Carruthers (1914a, 276–277) 

described the range as they approached it from the north one hundred years ago: 

 With superb grandeur the snow pinnacles rise above the forested valleys and 

grassy plateaux. From every point of the compass, for many days‟ journey away, 

one can see the principal peak, a cone of ice, which rises to over 13,000 ft. in 

altitude. […] As a snow-capped mountain of alpine character, the Turgen stands 

solitary, rising sharply above the steppes and the desert-ranges which surround it 

on all sides.  

These words speak to the beauty and unique setting of this remote range, and add historical 

context to the research. 

Figure 1. Mongolia and study area.  
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 While isolated, the Turgen and Kharkhiraa ranges are generally accepted to be related 

to the Altai Mountains. They are not directly connected however; rising alone over the three 

lake basins of Uvs Nuur, Uureg Nuur, and Achit Nuur which make up the Mongolian Great 

Lakes Basin. The mountains are formed predominately by the strong tectonic uplift of the 

Altai Mountains, while the forces of glacial erosion have carved large U-shaped valleys 

bordered by cirques and evidence of previous hanging glaciers (Khrutsky and Golubeva 

2008). In the modern epoch, the glaciers have retreated to the highest basins and continue to 

recede (Lehmkuhl 1998). However, recent research has suggested that the rate of ablation has 

stabilized around the end of the 20
th

 century (Kadota and Davaa 2007). 

 This solitary range is known for persistent cloud cover, possibly due to orographic 

lifting (Khrutsky and Golubeva 2008). Even Carruthers (1914b, 383) a century ago remarked 

how the summer veil of clouds was responsible for the preservation of the large snowpack. 

Carruthers took sporadic temperature readings in his notes, but no complete weather data for 

1910 was found. He does mention that the bad weather during July and August of 1910 

hampered their work (Carruthers 1914a, 284). There may be climate records from this period 

in Russian archives, but they are inaccessible at this time. During the 2010 expedition, the 

weather in July was mostly stable and clear. However, recent studies have estimated that up 

to 70% of the annual precipitation falls in the summer months from June to August (Kadota 

and Davaa 2007). Much of that would fall as snow in the high elevations of the range, were 

summits can reach to above 4000 meters. The winters are cold and dry, with the Mongolian 

anti-cyclone dominating the regime, perhaps even ablating some summer snow (Khrutsky 

and Golubeva 2008). 
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 For Ulaangom (939 m; 49°55‟N, 92°03‟E) located in a basin northeast of Turgen-

Kharkhiraa Mountains and the closest urban center to the range with weather data, the 

measured mean annual temperature is 4ºC, and the mean monthly temperature ranges 

between 32ºC in January and 19ºC in July (Jansen 2010). The measured mean annual 

precipitation is 136 mm with a „rainy season‟ from June to September (Jansen 2010). Snow 

contributes less than 20 percent to the annual total precipitation (Batima et al. 2005), with the 

maximum snow depth occurring in January, and the main ablation period in March (Shinoda 

et al. 2001; Morinaga et al. 2003).  Without the presence of weather stations within the 

Turgen Range, Khrutsky and Golubeva (2008) estimated that above 2,500 meters, mean 

annual precipitation is 400-500 mm, while Böhner (2006) interpolated mean temperature in 

the region of the summits to be   –8°C, both substantially wetter and colder than Ulaangom. 

Looking at the time period of 1940–2003 Batima (2006) documented a temperature rise of 

1.8ºC, with clear warming from the beginning of the 1970‟s intensifying towards the end of 

the 1980‟s. This general trend of temperature increase in Mongolia is slightly above the 

general trend in the Northern Hemisphere (Jacoby et al. 1999). Both authors detected a slight 

increase in precipitation during the second half of the 20
th

 century, however, the changes 

were statistically insignificant and within the range of long term variations (Batima et al. 

2005; Jacoby et al. 1999). Finally, Batima and others (2004) estimated short term 

temperature increases of 2ºC, with long term increases of up to 7ºC when comparing studies 

that applied standard climate models to Mongolia and the Mongolian Great Lakes Basin. 
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CONCEPTUAL FRAMEWORK 

 Since the end of the Little Ice, approximately 12,000 years ago, the terrestrial alpine 

glacial regime has been in recession. Towards the end of the 20
th

 century, scientists began to 

document increasing temperatures, especially in high latitude and mountain environments. 

These changes are most evident in the glaciers of the world‟s mountains (McCarthy et al. 

2001). Mountain ranges on every continent, from the Alps to the Rockies, the Sierra Nevada 

to the Himalaya, and even the isolated super volcanoes such as Kilimanjaro, are seeing 

pronounced ablation in their glaciers. These glaciers are an important indicator of global 

climate changes, and perhaps more germane, are vital resources for human cultures and 

natural ecosystems. They need to be studied and monitored to evaluate the degree of these 

changes and develop adaptation strategies to address the environmental challenges already 

being felt (Bury et al. 2010).   

   Glaciers are the natural reservoirs of the hydrologic system on which innumerable 

downstream communities depend. They store water by converting winter snows to ice, which 

is then metered out during the hottest of the summer months, acting as a buffer to the 

seasonal variations in water supply (Knight 2009). This water supply is crucial not only to 

late season irrigation of agriculture, but also carries flora and fauna through dry periods and 

counter-acts episodic droughts. These seasonal fluctuations can literally be felt thousands of 

miles downstream, highlighting the dependence on glaciers of billions of people and entire 

ecosystems, covering large swaths of the planet (Oerlemans 1994).  

 Besides the dependence on glaciers as the stewards of water reliability, society is 

increasingly dependent on an even supply of water for the generation of hydroelectric power. 

Developing nations are investing heavily in hydroelectric infrastructure as a sustainable 
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source of electricity to fuel economic growth.  For example, Mongolia has evaluated and 

started construction of small scale hydroelectric power generation as part of a national 

strategy to increase renewable energy production (Enebish 2004). Without the consistent 

contribution of glacial melt water, these investments could cease to produce power part or all 

of the year. Therefore, assessment of glaciers is essential both in the planning stages of 

proposed hydroelectric development and in management of existing installations. 

  Another threat in need of evaluation, opposite of reduced water reliability, is too 

much water all at once. As glaciers retreat, many of them form lakes behind a dam of 

terminal moraine debris. These notoriously weak dams of unconsolidated till, regularly fail 

causing glacial lake outburst floods (GLOFs). This sudden release of water can destroy entire 

villages causing incalculable tragedies in lost human lives, not to mention the monetary loss 

of investments in downstream infrastructure. With proper measurement and evaluation of 

GLOF potential, many of the risks can be reduced, or eliminated altogether. Programs are 

already underway to drain high risk lakes throughout the Himalayan region (Mool 2001). 

Mongolia experienced large jökulhlaups on par with the Glacial Lake Missoula events in the 

Pleistocene (Herget 2005). The potential for future flooding certainly exists, however the risk 

has yet to be accessed. 

 For all of the reasons mentioned above, national governments and international 

organizations have undertaken a broad program to measure and document changes in alpine 

glaciers throughout the world. Due to the vast numbers of glaciers, with their broad 

distribution, the limited and expensive access, and the urgency of establishing a global 

baseline in the midst of rapid change, remote sensing techniques are being employed to 

catalogue the world‟s terrestrial glaciations. Programs such as the Global Land Ice 
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Measurement from Space (GLIMS) and World Glacier Inventory (WGI) are analyzing 

satellite data and compiling the results in regional centers such as the National Snow and Ice 

Data Center in Boulder Colorado (Raup et al. 2001). The programs continue to refine data 

and techniques to quantitatively assess the health of global glacial systems. Part of this 

process is the ground-truthing of results; however, it is only being performed on a limited 

scope. 

 While remote sensing techniques are improving every year, the most accurate way to 

evaluate the state of a glacial system is with long-term, annual mass balance measurements. 

This process requires fieldwork to measure ablation rates with highly accurate GPS surveys 

and the assessment of accumulation by digging mass balance pits on the glacier. It is also 

important to establish the Equilibrium Line Altitude (ELA) on the last day of summer for 

each year (Hubbard and Glasser 2005). When annual fieldwork data of longer temporal 

scales is compared, a very clear picture of glacial balance emerges. The accurate assessments 

of proxy glaciers can in turn be used to correct remotely sensed data, making global estimates 

more valid (Bamber and Rivera, 2007). 

 The Turgen-Kharkhiraa range has seen several remote sensing studies with various 

results. Using aerial photo generated topographic maps and satellite data, Lehmkuhl (1998) 

concluded that the Turgen glaciers had retreated between 200-500 meters from 1948 to 1991. 

Employing only remote sensing techniques, Kadota and Gombo (2004; 2007) reported that 

while the Turgen glacier had lost 19% of its surface area, the loss had occurred between 1970 

and 1990, remaining stationary afterwards. Interestingly, another study by Khurtshy and 

Golubeva (2008) found that the glaciers had lost 35% of their area in a similar time span. The 

inconsistencies in these reports speak to the problems that arise when comparing only 
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slightly different methodologies. Another discrepancy may stem from limited to no fieldwork 

being used to validate the results of remote sensing analysis.  

 Finally, all three studies look only to the beginning of the satellite record basically 

starting in the 1960‟s. Only Lehmkuhl (1998) attempted to extend the glacier record with 

maps. Recent studies by Racoviteanu et al. (2007) in the Peruvian Andes have taken modern 

topographic maps and used them to create DEMs for comparative glacial analysis. Schmidt 

and Nüsser (2009) combined remotely sensed imagery with rephotography in the Nanga 

Parbat region Pakistan, successfully demonstrating the multi-temporal, integrative data 

approach. Those methods are expanded here to incorporate Carruthers‟ data and peer back 

into the records at the beginning the century. 

 

EXPEDITIONS 

1910 ROYAL GEOGRAPHICAL SOCIETY EXPEDITION 

 The 1910 RGS expedition to the Turgen Mountains was only one small part of the 

longer journey lead by Douglas Alexander Carruthers. Along with his colleagues, Morgan 

Phillips Price and John Humphrey Miller, Caruthers traveled from London on the Siberian 

Express to Krasnoyarsk, then south through the Upper Yenisei River basin, over the divide 

onto the Mongolian Steppe, east over the Altai Mountains, and eventually south again 

through Kashmir and into India.  Traveling mostly on horseback and foot, the voyage took 

over two years to complete, with the team not returning to Great Britain until the fall of 1912. 

The expedition was one on the last classic Victorian explorations, epitomizing the style of 

English Geographers that were „masters of all they surveyed‟ (Burnett 2000). By this, it is 

meant that the party truly „explored‟ the landscapes that they moved through, collecting 
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samples of everything that they encountered, and documenting every waking moment. The 

expedition returned to England with over 300 unique flora and fauna samples, hundreds of 

photographs, and several detailed maps. The account of the journey filled two volumes of the 

book titled Unknown Mongolia, and provided content for at least half a dozen articles in the 

Geographical Journal.  

 Douglas Carruthers, the expedition leader, was born in 1882, and by his early 

twenties was a respected Geographer that had become an expert taxidermist and an 

accomplished cartographer. By the time he began the 1910 voyage, he had already 

participated in research trips to the Congo and the Syrian Desert where he collected 

specimens that still bear his name in the British Natural History Museum (RGS Biography 

2008). He was famous for his work ethic, spending entire days surveying, and then preparing 

skins by candle light until dawn, documenting everything in his journals, only to begin again 

after a few hours sleep (Lattimore 1978, 210). He wrote that “if you give a man more work 

than he can do, he will do it” (Carruthers 1914a, 289). However, he was also somewhat 

humble, asking the RGS in telegraphs to ensure that the trip not be labeled as “his show” in 

newspaper reports, insisting on credit for the contributions of Price and Miller (RGS 

Archives 2010). Upon his return, Carruthers was awarded the Gold Medal for Exploration by 

the RGS, and served as secretary of the Society from 1916 to 1921 (RGS Biography 2008). 

He worked as a cartographer for the British War Office during WWI, being recognized as an 

expert on the Middle East and Central Asia, writing in correspondence that the war effort was 

overwhelming his responsibilities to produce maps for the Geographical Journal (RGS 

Archives 2010). Later, he continued to work for the RGS, giving lectures and writing on 

various topics until his death in 1962.   
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 The period of the journey, in context with the overall geopolitical situation, can offer 

insight into the nature of the Carruthers expedition. At the time, 1910, Outer Mongolia was 

controlled by the Manchus of China, but was about to declare independence in 1912. The 

Chinese had a system of governors that ruled the Mongolian Steppe, while Russian traders 

freely traveled the area. Interestingly, there was very little knowledge of Central Asia in the 

English speaking western world. The Russian Empire had explored much of the area, but 

those records were increasingly withheld as the nation plunged into the Revolution of the 

Proletariat. Great Britain was in the last moves of the Great Game, holding on to the colony 

of India, even as The Great War loomed just around the corner. From this stage, England was 

trying to fill in the last blanks on its maps, and as it had done in the past, geographical 

exploration was used to establish some entitlement. As discussed by Burnett (2000), these 

expeditions, while scientific in nature, provided the British Crown with invaluable 

information on natural resources and routes of passage though the landscapes.  

 In The Power of Maps, Wood (1992, 42-47) relays how the race to chart an area often 

leads to assertions of control, sometimes using the accuracy of the latest map to trump the 

claims of previous explorers. Caruthers repeatedly mentions the need to “correct the wildly 

erroneous Russian maps,” and while not overt with any feelings of ownership, he does assert 

that he “knows” the landscape better than any who have come before him (RGS Archives 

2010). Carruthers does not seem to ever treat the expedition as a reconnaissance for 

colonization, but he could not have helped being a product of his society. He is judgmental of 

the cultures he visits, taking careful stock of class status as if to note which “breeds” could be 

trusted for trading or soldiering (Carruthers 1912, 533). There is contemplation in one 

passage over the plight of the Mongolian Nomads. Carruthers wondered if Buddhism was not 
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just another form of serf enslavement, and predicts the permanence of the Mongol Empire if 

only they had adopted Islam (Carruthers 1912, 532-533). He also freely participates in the 

common practice of inventorying resources such as timber, wildlife, and minerals. At one 

point he remarks that the lamasery at the foot of the Turgen Valley would likely be full of 

“treasure.” (Carruthers 1914a, 271). He is not an unkind man however, treating even the 

poorest people with respect and even packing toys for the children along the way (RGS 

Archives 2010). 

 It is interesting then that the expedition spent so much time with the detailed survey 

of the Turgen Range. Beyond the scientific purposes of the journey, the writings make clear 

that the men were also intrigued by the adventure of the endeavor. The Victorian gentlemen 

of the period were most enamored with the sport of mountaineering. Trips to the Alps were 

considered vital training for all trekkers, and the love of mountains runs through many 

explorers‟ narratives of the time (Gilbert 2004). Carruthers (1914a, 266) claimed that the 

“first sight of those eternal snows stirred us to a pitch of enthusiasm” that they changed their 

proposed route to visit the range. 

 They entered the Turgen Valley on August 13
th

, 1910, and after sending gifts to the 

local Khan, who was ill, they proceeded to head towards the peaks conducting a plane table 

survey. On the 15
th

, they camped on the bench above the Turgen River “within striking 

distance of the high peaks” (RGS Archives 2010). In bad weather, they made it to the divide 

of the East Turgen Glacier at around 11, 300 ft. on the 17
th

, after climbing “great amounts of 

snow” (RGS Archives 2010). Carruthers (1912, 534; 1914a, 283) writes that old moraines 

were present one mile from the snouts of the glaciers, with the East Turgen Glacier calving in 

seracs at the terminus, and “in all cases, were in a state of retreat.” They also attempted to 
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climb Turgen Peak, but found it too difficult (Carruthers 1914a, 282). After a deluge of rain 

on the 19
th

, the party headed down valley to the village near the lamasery and traded brandy 

for silks and a saddle with the Khan (RGS Archives 2010). They continued to the west, and 

then south, returning east up the Yamachu River valley. On the 21
st
, they encountered snow 

at 7,500 ft., which forced them to stay in a cave (RGS Archives 2010). They attempted 

Turgen from the south, but found the glacier too steep, so crossed the pass onto the Yamachu 

Plateau, headed west again, and finally proceeded down into the Achit Nuur Basin on the 25
th 

(Carruthers 1914a, 287). They finished the Turgen portion of the expedition with a swim in 

the lake, writing that they had “good fun” (RGS Archives 2010).  

 In an article by Price (1968) after the death of Carruthers, he remarked how they were 

possibly the last great geographical expedition undertaken in the „old way,‟ before the 

revolution of transportation. The style of travel completely changed in the ensuing decades, 

and Carruthers, in his last days, agreed that one could no longer be immersed in the world 

from behind the wheel of a motor vehicle (Price 1968). Theirs was truly an end of an era. 

 

2010 UNIVERSITY OF MONTANA EXPEDITION 

 Before leaving Montana, considerable time was spent developing a logistics plan for 

the field research. Contacts were continued from the previous summer‟s fieldwork and the 

groundwork was laid for the season‟s expedition. Preliminary work was done on the 1910 

map, including georeferencing and digitalization the routes and campsites of the original 

Carruthers expedition, which then were imported into GPS units for fieldwork.  

 Gear was organized and packed based on the weight limitations of international air 

travel. Unfortunately, restrictions made larger, more accurate GPS base-station systems 
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prohibitive. Both the research equipment and personal gear was condensed to fit into a single 

large expedition backpack. The logistics required self-contained mobility through many 

forms of transportation; including flights, vehicles, horses, and on foot. 

 The first leg of the journey in early June led to the Royal Geographical Society in 

London. The archive librarians had multiple items on reserve for the PI, and during the 

course of a three day visit, complete access to the records of the Carruthers‟ expedition was 

granted. Thorough notes were taken from the original journals and high resolution scans of 

the 1910 glacier photographs arranged. The original map and the notes concerning its 

construction were explored. The visit concluded with a members-only invitation to a 

showcase on arctic exploration. Incredibly, the PI was able to interact with artifacts including 

Shackelton‟s bible and Scott‟s monocular. The society‟s archives are truly an international 

treasure and it was a privilege to have access to them.  

  The team arrived in Ulaan Baatar the first week of July and only had a few days in the 

city to prepare. Visa extensions, permits, and visits to benefactors were carried out. The team 

shopped for provisions and made final plans for the field work, packing SUV trucks for the 

excursion. On the 7
th

 of July, the expedition began in earnest, starting the drive of over 1200 

km to the regional capital of Ulaangom, which took five days.  

 Arriving in the village on a Sunday, July 11
th

, a meeting with the superintendent of 

the Turgen Strictly Protected Area was arranged. Due to official letters and prearranged 

agreements made by Dr. Walther, the research permits were secured at a reduced cost. 

Resupplies were procured before heading over Ulan Dava Pass into the park. From the shores 

of Uureg Nuur Lake, the team drove south into the Turgen Range and contacted the ranger, 

Baatar Chou, who agreed to guide the party into the mountains and provide horses for the 
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gear. The next day, Dr. Kamp, Baatar Chou, Dashka and the PI packed four houses and 

followed the track of the 1910 expedition up-valley towards Turgen Peak. Dr. Walther 

remained in base camp with a colleague, repeating explorations of side valleys and peaks 

depicted on the Carruthers map. 

 Over the next seven days, the team ascended several mountains and repeated photos 

from the original stations occupied a century before by Carruthers. The climbs required 

technical glacier skills, and combined with long alpine days, proved to be very challenging. 

Camp was moved successively further into the range until an advanced base camp was 

established at the head of the valley below Turgen Peak. Based on GPS coordinates, the 

camp was likely within 30 meters of the 1910 Carruthers camp. Using horse support, the 

research team trekked up to and beyond the alpine meadows of the East Turgen Glacier, 

where Dashka and the PI climbed to the col and retook several photos of the unnamed 

glaciers further to the east. Both East and West Turgen Glacier were surveyed with GPS 

while repeating photographs within the moraine system. After all the 1910 photographs had 

been repeated and the glacier termini satisfactorily reconnoitered, the team returned to base 

camp over the course of two days.  

 The entire expedition party then returned to Ulaangom and spent several days re-

supplying. Dr. Kamp and Dr. Walther left the team, while Dashka and the PI, along with the 

cook, drove to the southern reaches of the Turgen Range. There, horses were hired again and 

ridden over 80 km into the Yamachu Plateau, where the Carruthers route was rejoined. 

Several days were spent exploring the southern reaches of the Turgen Range and repeating 

photographs from the original expedition. However, the weather had turned, and lightning 
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storms forced a retreat from the mountains. After riding out of the highlands, a few days were 

spent living with nomads until the long drive back to Ulaan Baatar was finally made.  

 

CARTOGRAPHIC ANALYSIS 

 

BACKGROUND 

 

Historical Mapping: 

 

 In the introduction to Unknown Mongolia, Carruthers (1914a, 278) states that not 

only was his expedition undertaken to be the first British explorers of the Yenisei River, 

North West Mongolia, and Dzungaria, but also to fill large empty quarters on the maps of 

Russian explorers that preceded him. To this end, Carruthers mapped vast regions along the 

track of the expedition by extensive plane table surveys in the field. In many cases, he used 

astronomically fixed points from previous Russian work, citing map sheets Nos. V and XIII 

of the Southern Frontier Regions of Asiatic Russia, published by the Topographical Section 

of the Russian General staff in 1891 and 1887 (Carruthers 1913). Where he found errors in 

the Russian work or unmapped terrain, his expedition fixed their own locations using a 

sextant, astronomical compass, and marine chronometer to derive latitude and longitude from 

the angle of the sun or stars, and the difference from Greenwich Meantime at high noon 

(Carruthers 1913). These locations were in turn used as the benchmarks for plane table 

stations along the transect of their survey. 

 For the Turgen Range, Carruthers (1914a) consulted the work of the Russian explorer 

Potanin, who mapped the eastern slopes from 1876-1879. However, Carruthers (1913) was 

unable to join the previous survey with his own work and simply let the eastern contours trail 

off, with only rough shading to depict the general lie of the terrain. Carruthers also differed 

from Potanin in the naming conventions of Turgen Peak. At the entrance of the Turgen 
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Valley, the river that runs north past the lamasery was called Kundelun by the locals in 1910. 

Carruthers (1914a, 266) bestowed the mountain at the headwater of this valley Kundelun 

Peak, while moving „Turgun‟ (Carruthers spelling) to the east. He expressed difficulty with 

determining place names as they often had a Turkic, Mongolia, Chinese and Russian version 

simultaneously (Carruthers 1913, 346). His solution was to use the Russian transliteration 

were available, as is commonly done today. Modern Russian topographic maps from 1970 

and the 2005 Mongolian Road Atlas by Tserennyam have reverted back to Turgen as the 

name of both the peak and the river, with all references to Kundelun being absent. Therefore, 

this study consistently uses Turgen to refer to the main peak (while not the highest), even 

when speaking of the Carruthers expedition and map. 

 The 1910 expedition carried extensive gear for the purposes of conducting a 

topographical survey as they traversed their route. Much of this gear was loaned to the party 

by the Royal Geographical Society (RGS) in London. The following list comes from the 

personal diaries of Carruthers viewed at the RGS archives in the summer of 2010: 

 Two Mark V prismatic compasses with bronzed cases and luminous pearl dials in 

leather carrying cases (Figure 2). 

 Two hypsometric apparatus with boiling point thermometers; one made by Cary and 

the other by Negretti & Zambra (Figure 3). 

 Plane table and wooden tripod with a Johnson Head inferred from photos (Figure 4). 

 Reeves folding distance finder telescopic alidade with a clinometer made by C.F. 

Casella & Co. Ltd (Figure 5).  

 Reeves astronomical (starfinder) compass made by Stanford. 

 Aneroid barometer reading to 20,000 ft.  
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 Two pedometers. 

 
Figures 2, 3, 4. Prismatic compass, hypsometric apparatus, plane table (Harvard, RGS). 

No record of returning the gear is documented other than to note the hypsometric 

thermometers were recalibrated at the Kew Observatory upon returning to London, and that 

they measured the same as at the onset (Carruthers 1914b, 385). With this kit, the expedition 

carried more than adequate instrumentation for producing detailed maps. 

In the Carruthers records, there is little information describing how the gear was used, 

however the procedures of a general plane table survey are well documented by the Textbook 

of Topographical Surveying from the Carruthers period (Cheetham 1905). In fact, the art of 

plane tabling was developed well before Carruthers by the likes of Gillespie (1855) and 

continued to be refined into the modern era (Low 1952).  Of the many considerations at the 

time of Carruthers was the issue of paper warping due to moisture, which can cause 

considerable error. This was alleviated by complicated preparation of the map sheets being 

laminated on wet linen and stretched onto the table, but it is unlikely Carruthers went to these 

lengths on the extended journey (Cheetham 1905). A more practical solution discussed by  
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Figure 5. Telescopic distance finding alidade (Harvard). 

Mather (1938) suggests the use of laminated paper with opposing grains to counteract paper 

shear. Notes by Carruthers hint at this with the inclusion of “prepared survey sheets” in the 

gear list (RGS Archive 2010).  

From research into the techniques, and clues from the writings of Carruthers, the 

plane table procedure may have progressed thus: Once the location of a control station was 

fixed as discussed previously, the altitude would have been established by measuring the 

boiling temperature of water with the hypsometric apparatus. Caruthers (1913, 349) mentions 

the use of the Climatological Atlas of the Russian Empire, St. Petersburg 1910, as the source 

of his elevation corrections. It appears that the android barometer was only used as a back-up 

instrument. Next, the table would have been leveled and oriented to north. From the fixed 

station pin placed on the table board, rays are drawn out with the ruler edge of the telescopic 

alidade to prominent features on the landscape. The ray azimuths shot from the prismatic 

compass are recorded directly onto the sheet, along with the distance to features read from 
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the focal stadia in the alidade. Simultaneously, the elevations of the points are recorded from 

the clinometer on the instrument. Once a representative number of points were mapped, the 

station was moved to one of the points shot along the transect, and the prior station back-

sighted to reorient the table. Finally, the previous points are re-shot, creating a triangulated 

network of rays that are used to confirm distances and angles. Index contours are drawn in 

the field, as well as labeling as many features as possible. In this way, a detailed map of the 

topography can be drawn as one moves through the landscape (Pugh 1975).  

In his diaries, Carruthers writes of “moving slowly through the terrain” and 

“preforming careful surveys of the varied relief” (RGS Archive 2010).  He describes 

spending long hours at the plane table while his partners, Price and Miller, collected samples 

and photographed the scenery (Carruthers 1914a, 288-289). He and his partners were 

enamored with the Turgen Range, saying “the remarkable beauty of this almost isolated 

highland, its Alpine valleys, forests of pine and larch, and high pastures, tenanted by the 

herds of yaks, leading up to glaciers and snowfields, attracted us more than anything else we 

saw in Mongolia” (Carruthers 1912, 533). The final product of his survey is a beautiful map 

of the Turgen Range that represents the landscape with surprising precision. So accurate in 

fact, that it was used to navigate while trekking through the region during the 2010 

expedition. 

 However, for the purposes of evaluating the changes in the glacial regime over the 

last century, the locations and elevation of those features on the Carruthers map must be 

quantified. This is the goal of the forthcoming analysis.  
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Analysis Phases: 

 The map data were processed and analyzed in two distinct phases, with a third phase 

consisting of a custom cartographic product being prepared. Preliminary work on the DEM 

evaluation phase was done prior to the expedition in the summer of 2010, and continued 

upon return. The tiles of the original map were mosaicked and georeferenced so that the 

camps and route of the 1910 expedition could be digitized. The data was then imported into 

GPS units for the fieldwork. The process produced a rough estimate of accuracy for the 

original 1910 map and reviled irregularities compared with the actual landscape. Once back 

in the computer lab, refinements to this first phase were conducted to analyze the accuracy of 

elevations in the 1910 map. 

 The second phase of cartometric analysis was a more detailed evaluation of the 1910 

map using specialized software to quantify positional error compared to modern Russian 

topographic maps. This phase consisted of extensive computer processing and data 

manipulation, with some tasks requiring overnight computation. Utilizing advanced 

techniques of historical map evaluation, the analysis attempts to demonstrate the usefulness 

of expedition maps in the monitoring of landscape evolution, specifically, glacial change. 

 Third phase methods consisted of constructing a highly stylized cartographic product. 

Image classification was also conducted during this phase to extract glacial extents and small 

lakes from the landscape. Specialized techniques and custom software were employed to 

produce a map which attempts to emulate the cartographic style of the original 1910 sheet. 

The final 2010 map incorporates historic cartographic techniques imitated within a modern 

digital workflow. 
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Figure 6. Legend of original 1910 Carruthers map (1912). 

 

DATA 

Maps: 

The 1910 map was originally published in the RGS Geographical Journal 

(Carruthers 1912). An archived copy was viewed in London, however, the fold-out that is 

bound inside the back cover 

of the magazine was too 

fragile to be scanned on a 

large format drum. A high 

resolution scan was found in 

an online pdf of the 

Carruthers‟ (1914b) article 

Further Information on the 

Turgen or Kundelun 

Mountains of North-Western 

Mongolia, and Notes on a 

New Map of this Region. The 

map was located in an 

appendix of the scanned 

document and covered six 

pages of the pdf.  The legend of the 1910 map calls out 500 foot contour intervals and a 

1:350,000 scale. It also details natural features including glaciers, moraines and passes. In 

addition, it shows specific cultural sites such as temples, trading posts, as well as the route 

and camps of the original expedition (Figure 6). The margins contain latitude and longitude 
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ticks at two second intervals. The extent of the map is 49° 17′ N to 50° 21′ N, by 90° 19′ E to 

92° E. No map projection was provided.   

Russian 1:100,000 topographic maps were downloaded from the Mapstor web portal. 

The ground surveys for the Russian maps were originally conducted in 1942, and then 

updated in 1949. The area around the Turgen Range was updated with aerial photography in 

1970 and the map of Turgen Peak sites this date as the latest revision on the collar. Twenty 

map tiles were obtained to cover an extent somewhat larger than the 1910 map. 

 

Imagery:  

 Landsat 5 TM scenes were downloaded from the Earth Explorer data portal.  They are 

of 30 meter horizontal resolution and were imaged between August 29
th

 and September 10, 

2010. Ideally, late summer scenes with little to no snow cover should be used, however, this 

period is also the rainy season over the study area. There was difficulty in finding cloud-free 

scenes, though the August 29
th

 scene is very clear and covers 90% of the 1910 map extent. 

There are a few smoke streaks from fires and some low clouds, but the entire Turgen Range 

is cloud and smoke-free. Unfortunately, the matching path from August that covers the 

southern 10% of the study area was obscured by clouds, so a corresponding path image from 

September was substituted. The colormaps do not match perfectly, but this is of no 

consequence for the glacier analysis. The geotiff files measure 8281 x 7521 pixels at 96 dpi 

and have the standard terrain correction (Level 1T) applied. 

 A Landsat MSS scene was downloaded from the Global Land Cover Facility (GLCF) 

data portal.  It has a 60 meter horizontal resolution and was imaged on June 25, 1992. It was 

only used as a visual aid for georeferencing in the first phase of analysis. 
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DEMs: 

 A set of ASTER gDEM tiles were downloaded from the WIST data portal. They have 

an estimated resolution of 20 m vertically, and of 30 m horizontally. The tiles are composed 

of a number of ASTER scenes and also have numerous pixels filled by SRTM data that can 

be viewed in the accompanying „Quality Assessment‟ files downloaded with the gDEM. 

Because so many scenes are used to generate the gDEM, no single date could be confirmed 

that the surface represents. This is an issue when trying to measure glacial change. 

 A set of SRTM DEM tiles were downloaded from the Earth Explorer data portal. The 

finished grade DEMs with a 3 arc-second horizontal resolution (90 meter) were obtained for 

an area extending past the extent of the 1910 map. The DEMs, which were collected in 2002 

and last updated in 2010, were received in a bil format. In addition, SRTM DEM coverage of 

the study area was also downloaded from the CGIAR data portal. It is also a 90 meter 

horizontal resolution dataset, but has been corrected and filled to provide 16 meters of 

resolution in elevation. This set of filled DEMs was used to compliment and patch holes in 

the data from Earth Explorer. The process is discussed in the methods.  

 

Vector Data: 

 The Geo Community data portal provided vector layers covering all of Mongolia. 

These include roads, rivers, lakes, villages and soums (districts). While in Mongolia, a set of 

nationwide 1:500,000 scale road shapfiles were also procured from the Mongolia Academy 

of Sciences, but were only useful as a reference.  
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GPS Data: 

 Various point and line data were collected in the field including photo station 

waypoints and tracks around the glacial margins. A consumer grade Garmin 60CSx was 

used. The more robust Trimble Recon GPS unit failed in the mountains because of software 

boot issues. Accuracy information for the Garmin unit was noted in field books with the 

average error being 9-12 meters. This error falls within the resolution of both the satellite and 

DEM data. The time stamped active GPS track files were used to geotag the photographs 

taken during the trek into the Turgen Range, while the glacial extents were saved as 

individual track records. Table 1 shows all of the raw data collected in the various resolutions 

and formats. 

Table 1. Digital data collected for project. 

Name Format Date Resolution Source 

Map of the Turgen 

Mountains, 

Carruthers 

Paper Topographic, 

Digital Mosaic of 

pdf Scans 

1912 1:350,000 RGS 

Russian Topographic 

Maps 

Digital Scans of 

Paper Sheets 

Updated 1970, 

from 1968 

Aerial Photos 

1:100,000 Mapstor 

Landsat L5 TM 
Digital Satellite 

Imagery 

8/29/2010 and 

9/27/2010 
30 m 

Earth 

Explorer 

Landsat MSS 
Digital Satellite 

Imagery 
6/25/1992 60 m GLCF 

ASTER gDEM Various 30 m, 20 m Z WIST 

SRTM  DEM 2002 90 m 
Earth 

Explorer 

CGIAR SRTM DEM 
2002, Updated 

2010 
90 m, 16 m Z CGIAR 

Mongolian Roads 

Rivers, Lakes, 

Villages 

GIS Shapefile Various Various 
Geo 

Community 

GPS Field Data GPX July 2010 9-12 m PI 
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DEM EVALUATION 

BACKGROUND 

 The science of DEM evaluation for the detection of glacial change has been in use for 

over two decades (Rentsch et al. 1990). Pellikka (2010) gives a thorough treatment of 

modern techniques for mapping glaciers, including the monitoring of ice loss by comparing 

multi-temporal DEMs. The combination of satellite imagery and DEMs to map glaciers is 

covered by Bolch and Kamp (2006), while Chaplot et al. (2006) evaluated the various 

interpolation methods for DEMs used in landscape analysis. Kamp et al. (2003) went further 

in describing the generation of high resolution DEMs from ASTER satellite data, which was 

then applied to geomorphometric analysis of glacial features. The use of cartographic data as 

a source for the measurement of geomorphic and glacial change is justified by Lawniczak 

(2008) citing previous work by Bartkowski (1974), who considered maps as valid field 

surveys of the terrain. The work of Brown et al. (1998) further established the use of DEMs 

derived from cartographic products as a means of classifying glacial landscapes. Pearson et 

al. (2009) used laser scans of 18
th

 century plaster terrain models of the Swiss Alps to create 

historic DEMs which were then compared to modern SwissTopo elevation data similar to the 

methods used here. The methodology of Racoviteanu et al. (2007) was helpful, as they also 

digitized historic Peruvian topographic maps to create DEMs, and then used raster 

calculations to compare them to multiple elevation datasets on a cell by cell basis. However, 

the maps in that study were from 1952 and did not have the georeferencing challenges 

present in the Carruthers map from 1910. The extended technique here then was to reference 

the hand-drawn map and create a model of the 1910 terrain for comparison to satellite 

derived elevation data. 
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Figure 7. Geodatabase structure. 

 

METHODS 

Geodatabase Construction: 

 A number of intermediate geodatabases (GDB) were constructed to facilitate the 

various GIS operations leading up to a “clean” dataset for analysis. For example, a working 

raster GDB was created to hold mosaic, composite, 

resample and georeference operations on the raster data 

before it was clipped and imported into a master GDB. 

A working vector GDB was also created to hold the 

intermediate processing steps of the point, line and 

polygon data such as GPS, roads and lakes features. The Master Turgen file GDB was 

structured in a way as to organize data along their respective classes (Figure 7). A point, line, 

and polygon feature dataset format were employed to organize each feature class element of 

the data. The feature datasets were all assigned WGS 84 as a geographic coordinate system 

throughout. As the final feature classes were imported into the feature datasets, they inherited 

this projection. Raster catalogs were also constructed within the GDB to accept the clipped 

rasters and standardize those projections to WGS 84. However, because of the tendency for 

raster data to hold projection information, each image was re-projected before import into the 

catalog. The structure of the Master Turgen GDB was built along the best practices outlined 

by Zeiler (1999).  

 

Map Image Preparation: 

 The six pdf scans of the 1910 map were converted to hi-resolution tiff files using 

Adobe Photoshop (PS). Each was saved at 4200 x 6000 pixels with a dpi of 600. The six 
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converted tiffs were then mosaicked using the Photomerge tool in PS (Adobe, 2010). The 

default settings produced very good results; aligning the six tiles into a virtually seamless 

reconstruction of the original work. The large map file was flattened, cropped, and resized in 

accordance with the measurements derived from the original scale bar. Guides were set up in 

PS and small crosshair tick marks drawn at six internal points of latitude and longitude based 

off the coordinate grid in the neat line of the original map. The final map file was down-

sampled to 360 dpi and saved as a 5120 x 5120 pixel tiff that measures 14.2 x 14.2 inches. As 

a visual check, the map was printed on two tiled 11 x 17 inch sheets and the graphic scale 

measured by hand. The reconstructed image matched with the paper map, corresponding 

exactly to the 1:350,000 scale at 1 mile to 5.52 inches. The final 1910 map was then imported 

unprojected into the working raster geodatabase (GDB). See Figure 8 for an example of the 

entire 1910 map. 

 

DEM Processing: 

 A blank target raster dataset was created within the working raster GDB and assigned 

a geographic coordinate system of WGS 84. The Import Raster Dataset (Mosaic) tool was 

used in Arc Catalog to stitch the six ASTER gDEM tiles together as they were loaded into 

the target raster. The resulting data set was a seamless gDEM that extend beyond the extent 

of the original 1910 map. This process was also used to mosaic the SRTM data from both 

Earth Explorer (EE) and CGIAR. The EE metadata reviled that NoData pixels had been 

assigned the value of 32,769. This value was reclassified as NoData in the mosaic tool. To 

fill the NoData pixels in the EE DEM, a Mosaic To New Raster routine was run using the  
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Figure 8. Digital mosaic of scanned 1910 Carruthers map (1912). 

 

CGIAR DEM as the patch. As these results were unsatisfactory, another method was 

employed to fill the NoData holes in the EE DEM. The conditional statement: 

new_DEM_name = con(isnull(old_DEM_name), focalmean(old_DEM_name, rectangle,4,4), 

old_DEM_name) was employed were each pixel is checked with „isnull‟, and if true, is then 

filled with a focal mean of the four pixels around it (Easson, 2001). The process was run 

several times to fill the largest holes, instead of increasing the sample grid and running the 
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risk of filling voids with erroneous values. After comparing all of the processed DEMs, it 

was determined that the CGIAR DEM was of the best quality and should be used throughout. 

The reasoning behind this decision is addressed in the discussion section. From this point 

forward, all references to the modern DEM refer to the data from CGIAR. 

 A Turgen GeoRef ArcMap document was created and the mosaicked DEM added as 

a layer. A hillshade was then generated from the DEM using a z-factor of 0.00003. This z-

factor is needed to compensate for the fact that the DEM data is in mixed units. The x and y 

are in decimal degrees, while the z units are in meters. The conversion factor corrects for the 

discrepancy and allows a „smoother‟ hillshade to be created, removing overly dark shadows 

and „warming‟ the plastic texture found in many hillshades (ESRI 2007). The hillshade was 

then re-sampled during display to bilinear interpolation, and draped with a semi-transparent 

version of the original DEM that has a stretched color ramp applied. This process created a 

hypsometric tinted shaded relief that aided in visual recognition of terrain features for the 

georeferencing procedure (Figure 9). 

 

Georeferencing: 

 The 1910 map image was added to the Turgen GeoRef document and the Fit To 

Display command used in the Georeferencing toolbar to pre-align the map. The map was 

then ready to be georeferenced. Georeferencing is the process of assigning geographic 

coordinates to unreferenced data, so that it can be aligned spatially (Hill 2006). The process 

requires that points on the unreferenced data be matched to coordinates within a GIS. This 

can be done either graphically by clicking concomitant locations with crosshairs, or by 

entering known coordinates for given points. A polynomial affine transformation is then 
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Figure 9. Hypsometric shaded relief map of the 2010 Turgen expedition. 
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Figure 10. Affine transformation (ESRI). 

 

applied with a least squares fitting algorithm (ESRI 2009). The first order transformation is 

shown in Figure 10. 

First, the six tick marks in the body of the map were assigned coordinate pairs using 

the Add Control Points tool and the Enter Coordinates DMS field accessed when right-

clicking the crosshairs. A First Order 

Polynomial (Affine) transformation 

was done and the map visually 

checked. The map features did not 

line up with the landscape, so                                                                             

fourteen additional coordinate pairs 

were added to the grid in the map 

margins. The points were ordered in 

clockwise fashion starting with the 

four pairs around the Turgen Range, 

and radiating out from the center (Table 2). 

 Using the twenty coordinate pairs that correspond to known latitude and longitude, 

1
st
, 2

nd
, and 3

rd
 Order Polynomial transformations were performed. The RMS values were 

lowest for the 3
rd

 order transformation, however, this transformation causes the most 

distortion (Figure 11). A straight Spline transformation, where the points are snapped directly 

to the coordinates specified, produced a georeference of the 1910 map that was true to the 

coordinate grid in the neatline.  
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Table 2. Georeferencing coordinate pairs. 

Point Number Latitude Longitude 

1 (Study Clip Corner) 50° N 91° E 

2 (Study Clip Corner) 50° N 91° 30′ E 

3 (Study Clip Corner) 49° 30′ N 91° 30′ E 

4 (Study Clip Corner) 49° 30′ N 91° E 

5 (Internal Coordinate) 49° 30′ N 90° 30′ E 

6 (Internal Coordinate) 50° N 90° 30′ E 

7 (1910 Extent Corner) 50° 21′ N 90° 20′ E 

8 (Internal Coordinate) 50° 21′ N 90° 30′ E 

9 (Internal Coordinate) 50° 21′ N 91° E 

10 (Internal Coordinate) 50° 21′ N 91° 30′ E 

11 (1910 Extent Corner) 50° 21′ N 92° E 

12 (Internal Coordinate) 50° N 92° E 

13 (Internal Coordinate) 49° 30′ N 92° E 

14 (1910 Extent Corner) 49° 17′ N 92° E 

15 (Internal Coordinate) 49° 17′ N 91° 30′ E 

16 (Internal Coordinate) 49° 17′ N 91° E 

17 (Internal Coordinate) 49° 17′ N 90° 30′ E 

18 (1910 Extent Corner) 49° 17′ N 90° 20′ E 

19 (Internal Coordinate) 49° 30′ N 90° 20′ E 

20 (Internal Coordinate) 50° N 90° 19′ E 

 

 
Figure 11. Distortions in georeferencing transformations (ESRI 2010). 
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In order to perform a true „Rubber Sheet‟ transformation, the Landsat MSS image 

was pan-sharpened by the hypsometric relief and control points added to geomorphologic 

structures. Stable features were chosen such as large river confluences, summits, and glacier 

terminus moraines (Figure 12). Fifty control points were added mostly within the core study 

area of the Turgen Valley and south towards Turgen Peak. A Spline transformation was 

applied and each control point snapped to the exact location specified. The results showed 

acceptable agreement, especially in the core study area around Turgen Peak.  

 
Figure 12. Screenshot of rubber-sheet transformation of core study area. 

 

Significant portions in the north western and south eastern sections of the 1910 map 

were missing contours, so a clipping polygon was sized to avoid most of these areas, while 

still encompassing the core study area. A rectangular area based on four of the original 
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coordinate pairs used to georeference was the best compromise and a polygon feature class 

was digitized to this extent (Table 2, Study Clip Corners). The rubber-sheeted 1910 map was 

then clipped to the study area in preparation for digitizing the contours. The CGIAR DEM, 

and Landsat images were clipped as well. As a visual check, the study area clip of the 1910 

map was draped over the modern hillshade, showing general agreement with the true 

landscape (Figure 13). It must be noted here that the 1910 study area clip was severely 

distorted from the historic map and does not represent the original Carruthers‟ survey. 

 

Contour Generation: 

 A new Feature Class was created within the GDB with fields for the contour 

elevations in both meters and feet. Each of the 500 ft. contours was digitized manually and 

the corresponding elevation values entered into the CONTOUR_FEET field of the attribute 

table. Contours that were missing in the NW and SE corners of the study area were 

interpolated using 500 ft. contours generated from CGIAR DEM as a visual aid. The 

CONTOUR _METER attribute column was then populated with the Field Calculator, 

multiplying the CONTOUR_FEET field by 0.3048. The finished contour class was finally 

simplified using the Bend Simplify method with a tolerance of one third the CGIAR DEM 

resolution, or 30 meters. This was done to remove the sharp corners that creep in due to the 

limitations of the digitizing tools in ArcMap.  

 The contours were then processed into a 1910 DEM using the Topo To Raster tool. 

The tool utilizes the Inverse Distance Weighted (IDW) Interpolation method based on the 

ANUDEM program developed by Hutchinson (1993). As recommended by Hutchinson 

(1988, 1989), the output was evaluated by producing contours from the constructed surface at  
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Figure 13. Clip of the 1910 map showing general agreement with SRTM DEM. 
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half the original contour interval and displaying both sets together. The 1910 DEM was used 

to make a hillshade, draped with the original map, and then displayed with both sets of 

contours for visual evaluation of the terrain generalization (Figure 14). 

Finally, to evaluate the elevation accuracy, the 1910 DEM of the study area was 

divided by the clipped CGIAR DEM using the Raster Calculator. The resulting division 

calculation (DV) shows the range of elevation differences between the DEMs by computing 

an error factor where 1 is equality. Also, the contours from the 1910 map were converted to 

raster and then to points, with the values for both DEMs being extracted at those points. The 

resulting table of 17,710 rows of paired values was pasted into the Validation Statistics 

spreadsheet in Excel to evaluate the elevation accuracy of the 1910 DEM. 

 

RESULTS 

The resulting division calculation reveals that the elevation error in the 1910 clip 

DEM varies across the study area. The regions in the NW and SE corners show high error 

values, where the contours were interpolated. Conversely, the areas of low elevation error are 

variable; sometimes in valleys and other times located on ridges. The error factor ranges 

from 0.59 to 1.41, with 1 representing equality between the DEMs displayed as the division 

between yellow and blue in Figure 15. Blue to green represents low values, while yellow to 

red represents high values in the 1910 DEM. The mean error factor for the Division 

Calculation is 0.99, while the standard deviation is ± 0.12. As can be seen in Figure 16, the 

majority of values fall within one standard deviation with the distribution being weighted 

towards errors of low elevation.  
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Figure 14. Contour comparison between original and derived surfaces.  
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Figure 15. Elevation error between 1910 and modern DEMs. 
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 Table 3 compares the minimum, maximum, and selected point values for the 

respective DEMs, along with the differences. While both the minimum and maximum 

elevation of the 1910 DEM have a positive error factor of 1.14 and 1.02 respectively, there is 

a greater overall error in various regions. In the area with the lowest error factor of 0.59, the 

1910 DEM is 1362 meters lower than the CGIAR DEM. In the area with the highest error 

factor of 1.42, the 1910 DEM is 759 meters higher than the CGIAR DEM.   

Table 3. Value differences between DEMs. 

 Min m  Max m  Turgen Peak m 
Lowest Error 

m 

Highest Error 

m 

Turgen 1910 

DEM 
1811  4133  3843 1985 2592 

CGIAR  

DEM 
1589  4039 3898 3347 1833 

Difference + 222 + 94  - 55 - 1362 + 759 

Error Factor 1.1397 1.0232 0.9858 0.5930 1.42 

% Error 

1910 DEM 
114% 102% 99% 59% 142% 

Figure 16. Histogram showing distribution of elevation error.         
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 The validation statistics (VS) spreadsheet results represent sampled data of both 

DEMs along the lines of the digitized 1910 contours. Table 4 shows the difference between 

the means of the observed and predicted samples as -58.4 meters. The Mean Absolute Error 

(MAE) is 240 m and the standard deviation is ± 294 m. The plot of the data in Figure 17 

shows a generally good fit. The red line represents the mean, while the white line is the 

regression of the data with a 0.88 Indices of Agreement and an even distribution of data 

around the mean. 

 

DISCUSSION 

The elevation error in the geo-referenced clip of the 1910 map varies across the sheet, 

with less inaccuracy along the route of the expedition, where more careful surveying would 

have been conducted. The interface of equality line tends to correspond with the Carruthers 

track, especially in the Turgen Valley proper. However, there are some of the lowest error 

factors along the expedition track on the southern side of the range. This may be due to the  

Table 4. Validation spreadsheet results. 

Overall General Stats: 

  Observed Predicted Delta 

mean 2776.2  2717.8 -58.4 

min 1610.0 1819.2 -1370.4 

max 4011.0 4125.8 910.5 

stdev 438.8 472.5 293.8 

count: 17,710 17,710 17,710 

 
Model Performance Stats:  

MBE= -58.4 m 

MAE= 239.5 m 

RMSE= 299.6 m 

Ind. Agreement, d= 0.88 

R Squared 0.63 
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Figure 17. Plot of 1910 and CGIAR DEM comparison from validation statistic spreadsheet.  

 

storms encountered in the Yamachu Valley affecting barometric readings (RGS Archives 

2010). It may also be caused by misaligned georeferencing, however the track of the 1910 

expedition does generally follow the valley floor on the CGIAR DEM. Regardless, the 

overall mean error factor of 0.99 and the standard deviation of only ± 0.12 communicate the 

relative elevation accuracy of the 1910 map. This accuracy also speaks to the close fit of the 

georeferencing. 

 Validation statistics (VS) seem to show more error, however, they represent a smaller 

sample that was only taken along the contour lines. Because of the interpolation methods 

used to create the 1910 DEM from the contours, some of the error would necessarily have 
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been „smoothed‟ out in the generalization of the terrain. This appears to have occurred more 

on the mountain tops than the valleys, as demonstrated by the maximum high difference in 

the VS being 151 meters more than in the division calculation (DC). The maximum low 

difference was only 8 meters lower. The VS is consistent with the DC in that the standard 

deviation of ± 294 meters is roughly the standard deviation of the error factor ± 0.12 

multiplied by the range of elevation values from the modern CGIAR DEM.  

 The combined statistics support the statement that the elevations represented on the 

clip of the 1910 map are low, with the average elevation being 0.99 of the true height. Of all 

sampled locations, 68% will have an error factor of 0.99 ± 0.12, while 95% will fall within 

an error factor of 0.99 ± 0.24. However, the range of error extends from 0.59 to 1.14 and can 

be substantial in some areas as shown in the DC. The DC can be used to extract the error 

factor for any given point in the study area clip; so, depending on the positional error, it may 

be possible to evaluate elevation accuracy of specific locations mapped by Carruthers, 

including glacier termini. The MAE of 240 meters shown in the VS representing the variance 

between the two DEMs is most likely larger than the amount of vertical ice ablation in the 

last century. However, the uniform distribution of the error speaks to the tendency 

Carruthers‟ survey techniques to self-correct and cluster around the true elevations in the 

landscape. While the elevation errors may be too great to quantify overall changes in glacial 

volume, the 1910 map certainly was an effective generalization that depicts the landscape 

well, considering the techniques of the period.  
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CARTOMETRIC EVALUATION 

BACKGROUND 

  The analysis of historic maps is a traditional tool for geographers to evaluate cultural 

changes in the landscape (Jenny and Hurni 2011). Rumsey and Williams (2002) convincingly 

demonstrated how the science of georeferencing historical maps in a GIS was sparking a 

technological revolution in historical geography. In the field of glaciology, SAR and Lidar 

data, along with high resolution spectral imagery, make it possible to take detailed 

measurements of current ice coverage, but baseline data of past states is harder to find 

(Bamber 2009). Recent advances in technology and the availability of geospatial data have 

increased accuracy in ways that now facilitate monitoring of changes in the global glacier 

regime (Raup et al. 2007). In particular, new programs have been developed that allow for 

detailed measurements of historic maps that can help recreate past glacial extents (Jenny et 

al. 2007).  

 To conduct a detailed analysis of the 1910 Carruthers map, a program developed by 

Jenny (2006) was employed. The Java-based tool, MapAnalyst (MA), requires the inputs of 

both a historic and modern map that have been matched in pixel size and extent. The modern 

map also requires a world file (.tfw) that contains the geographic reference for the image. In 

order to perform an effective analysis, the original projection of the historic map needs to be 

duplicated and applied to the modern reference map.  

 The original map was plotted by Caruthers with the top northwest corner being one 

minute longer in longitude than the southwest corner, 90° 19′ E vs. 90° 20′ E. It is believed 

that this was done to compensate for the meridian convergence at the high latitude allowing 

the map extent to be drawn square, and supports the assumption that the 1910 map is in 
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straight longitude and latitude, essentially unprojected. The georeferencing was carried out 

with the shared coordinate of 90° 20′ E, considering that the one minute of extra longitude 

depicted in the 1910 map was behind the title legend marque, and contained no information 

critical to the analysis. 

Based on discussions with cartographic professionals (Strebe 2011) and 

experimentation suggested in Tobler (1966), an equidistant cylindrical projection was 

chosen. After designing a custom display projection with a local central meridian and 

standard parallel positioned in the middle of the 1910 map extent, the minutes of longitude 

measured correctly for their corresponding latitude (Table 5). 

Table 5. Custom dataframe projection. 

Name Turgen Equidistant Cylindrical 

Central Meridian 91° 9′ 30″ E 

Standard Parallel 1 49° 49′ 12″ N 

Datum WGS 1984 

 

 Once the projected reference map and the historic map of matching dpi have been 

imported, the program is ready for analysis. Controls points are set in both maps at 

coordinates of know location. The program then computes the difference between known x, y 

location on the modern map, and the corresponding locations on the historic map. As 

outlined in Fortsner and Oehrli (1998), the Helmert affine least squares transformation is the 

accepted starting point for the analysis. Coordinates of the historic map (X, Y) are evaluated 

against the same locations on the reference map (x, y) as: 

X = x0 + ax – by and Y = y0 + bx + ay 

Where:  a = M * cos (map rotation) and b = M * sin (map rotation) 

And:  x0 = Horizontal Translation, y0 = Vertical Translation and M = Scale Factor 
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 The transformation computes a mean positional error of the historic locations, a 

standard deviation from the mean and a table of residuals for each point. The generated 

report also identifies those points that are ≥ 3 σ. The program produces a number of 

visualizations that can help in describing the differences between the maps. These include 

distortion grids, displacement vectors, neighbor proximity circles, and scale isolines. From 

this suite of statistics and graphics, one can quantify planar accuracy of the historic map.  

 Considerations must be taken to establish as many points as possible; however, this 

proves difficult in mountainous regions with few anthropogenic features (Jenny and Hurni 

2011). This is the case on the 1910 Turgen map. It is also important to note that the 

visualizations can be misleading as more distortions will be observed around clusters of 

points when there is an uneven distribution. On the Turgen map, there were far more 

identifiable points along the route of the expedition and few matches near the margins. These 

two factors lead to the use of a Hampel Robust Estimator to modify the affine transformation 

by limiting the influence of the most egregious outliers (Andrews 1974).   

 

METHODS 

Map Image Preparation: 

 The twenty individual Russian topographic maps were collected for comparison to 

the 1910 map. Each 4722 x 5200 pixel tiff was cropped in PS to remove the collars and then 

all twenty images were mosaicked by hand. The Photomerge tool in PS was not satisfactory 

due to the lack of contrast between the maps and the variable rotation of each map tile. 

Therefore, each cropped map was aligned on the vertical edge with the neighboring tile into 

five rows of four maps each. Then the rows were rotated so they could be aligned along the 
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horizontal edges. The large map file was flattened, cropped, resized and re-sampled to 360 

dpi. The final composite of the Russian maps was saved as a 21,074 x 26,897 pixel tif. The 

final Russian map was then imported into the working raster GDB for georeferencing in the 

manner outlined above. Each Russian map sheet contains an internal crosshair of coordinates, 

totaling twenty points in the final composite. After the Russian map was georeferenced, it 

was clipped to the extent of the 1910 map. It was finally exported as a 360 dpi tif in the 

custom Turgen Equidistant Cylindrical projection for use in Map Analyst.   

 

Map Analysis: 

  The projected Russian topographic map of the entire study extent was imported into 

MapAnalyst. Then the unprojected 1910 map was imported and given its 360 dpi setting 

within the program. The process of cartometric analysis requires multiple iterations; 

preliminary results are evaluated and then parameters are adjusted to fine-tune the program. 

For the initial analysis, the four corner points from the coordinate grid of the 1910 map and 

the nine internal crosshairs added in Photoshop were input. First run results of the Helmert 

affine transformation with 4, 5, and 6 parameters did not indicate shrinkage or shear of the 

paper map as there were not large differences between the transformation means and 

standard deviations (Jenny and Hurni 2011).  Additional matching points were then added to 

the maps for identifiable features. Only two permanent cultural entities could be located: the 

monastery, which is in ruins today, and the settlement of Delgermoron (abandoned), which 

was labeled as the HQ of the Dalai Khan on the 1910 map (Figure 18). Further matching 

points were chosen from stable physical features in the landscape such as peaks, passes, rock 

out crops, and major river confluences in canyons. A total of 31 points were identified and 
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matched between the maps (Figure 19). With each iteration of the analysis the displacement 

vectors, distortion grid and statistics report were evaluated, which supported decisions about 

parameter adjustment.  

 
Figure 18. Map depictions of monastery and settlement in 1910 and 1970. 

 
Figure 19. Map Analyst software with historic map, reference map, and coordinate pairs.  

 

 Experimentation with Robust Estimators of Huber, Hampel, and V after Hardy (1971) 

helped narrow the estimate of planar accuracy in the 1910 Carruthers map. The Robust 

Hampel Estimator was deemed the best and used to set cut-off values to reduce influence of 
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points more than three standard deviations from the mean (Andrews 1974). The lower the k 

parameter is set, the less weight is given to the outliers. However, care must be taken as 

setting k too low pushes more points past the σ 3 threshold. With the Hampel, this threshold 

can be further refined by setting b to a midpoint that allows semi-contaminated points partial 

influence. The least valid points are then capped by the value c, which discards those above 

the acceptable limit for the analysis. There is no empirical formula for setting the thresholds, 

other than to start with the lowest and highest k and c, respectively, and then work towards 

the middle in successive iterations (Jenny 2005). This was done with caution not to induce ≥ 

σ 3 displacement vectors in the core area around Turgen Peak, while at the same time not 

allowing more than one third of the points to be discarded.  The process resulted in an 

approximation of overall cartometric error, which is addressed in the results section. 

 Additionally, an entirely separate analysis was done on the georeferenced study area 

clip of the 1910 map. The goal was to evaluate the georeferencing in the core study area 

around the Turgen glaciers. The cartometric analysis workflow was applied to this clip and a 

localized error factor computed to facilitate comparison of the historic and modern glacial 

extents. 

 

RESULTS 

 As mentioned, the analysis was an iterative process that produced many intermediate 

statistics. The default and best fit results will be reported here. The initial report of the 

Helmert least squares four parameter affine transformation are shown in Table 6. The mean 

positional error for matched locations was ≈ 3.1 kilometers with a standard deviation of ≈ 2.1 

kilometers. Using the 31 matched locations, the mean computed scale ratio was 1:347,813. 
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To reduce the influence of outlier points, the Hampel Robust Estimator with the values of k = 

1.2, b = 4.9, and c = 7.0 was used. The results of the Hampel Estimator on the entire 

unreferenced Carruthers map are shown in Table 7. The mean positional error for matched 

locations using the Hampel Estimator was ≈ 1.0 kilometer with a standard deviation of ≈ 0.7 

kilometers and a calculated scale of 1:350,782. The Hampel Robust Estimator applied to the 

georeferenced clip of the 1910 map utilized 21 matched points. The RMSE of positions on 

the referenced historic map are 338 meters with a standard deviation of ± 239 meters and a 

calculated scale of 1:350,607 (Table 8). The analysis also produced a number of graphics that 

are evaluated in the discussion.  

Table 6. Initial Helmert four parameter transformation results for full 1910 map. 

x0 Translation Horizontal 0.3143 m ± 0.00113 

y0 Translation Vertical 5101.94 m ± 0.00113 

Mean Scale Factor: 1:347,813 ± 3248.22 

Alpha Rotation deg. ccw. 0.31346 ± 0.53508 

Root Mean Square Position Error in Historic Map: 3,086.39 m 

Standard Deviation in Historic Map: ± 2,182.41 m 

 

Table 7. Hampel robust estimator transformation results for full 1910 map.  

x0 Translation Horizontal 0.2635 m ± 0.68802 

y0 Translation Vertical 5102.04 m ± 0.68802 

Mean Scale Factor: 1: 350,782 ± 0.00496 

Alpha Rotation deg. ccw. 0.06822 ± 0.0 

Root Mean Square Position Error in Historic Map: 1038.42 m 

Standard Deviation in  Historic Map: 734.27 m   

 

Table 8. Hampel robust estimator transformation results for study area clip.  

x0 Translation Horizontal 0.1984 m ± 2.43499 

y0 Translation Vertical -16.3022 m ± 2.43499 

Mean Scale Factor: 1: 350,607 ± 0.00902 

Alpha Rotation deg. ccw. 0.19274 ± 0.0 

Root Mean Square Position Error in Historic Map: 338.24 m 

Standard Deviation in  Historic Map: 239.17 m   
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DISCUSSION 

The default Helmert transformation produced a fairly large mean positional error. 

However, this was to be expected considering the non-uniform distribution of sample points 

and the mountainous nature of the terrain being mapped. When the analysis was weighted 

using the Hampel robust estimator transformation, the mean positional error was dropped 

considerably. This is justified for the purpose of this study as the main area of concern is the 

Turgen Valley and specifically, the glaciers north of Turgen Peak. Since Carruthers‟ survey 

would have been more accurate along the route of the expedition where the plane table 

stations were located, reducing point weight further from the survey is valid with this 

analysis (Jenny and Hurni 2011).  

Using the Hampel transformation, the computed scale on the original map endorses 

the theory of increased accuracy along the expedition route. Figure 20 displays the scale 

variation with isolines at a 5,000 unit interval. The average computed scale of 1:350,782 is 

somewhat greater than the original of 1:350,000. However, as seen on the map, the area 

around Turgen Peak remains consistently lower than the original stated scale and then 

increases rapidly away from the study area. A test done with a 1,000 unit interval did not 

produce additional isolines below 1:350,000.  

In Figure 21 the distortion of the original map is shown using a grid of 5,000 m. The 

general trend of the map is a considerable distortion to the north, and slightly to the west. The 

displacement vectors shown in red are ≥ 3σ from the mean. Interestingly, the only 

identifiable anthropogenic locations, i.e. the settlement and the monastery, are points with 

high error. The settlement could have been moved owning to the nomadic nature of the 

Mongolians, but the location of the monastery ruins were firmly established by GPS in the  
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Figure 20. Scale variance in the 1910 map by Carruthers. 
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Figure 21. Distortion and displacement in the 1910 map by Carruthers. 
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summer of 2010. The ridge that borders the east side of the Turgen Valley is displaced 

northward by almost five kilometers at its head where the monastery is located. These seem 

to be simply errors in the Carruthers survey. An interesting trend of note is that most of the 

displacement vectors point inwards toward the core study area at the foot of Turgen Peak, 

indicating that Caruthers took more care with the surveying of the peak and its glaciers. 

Owning to fact the Turgen Valley is a closed cul-de-sac, the expedition spent more time in 

the range, traversing the landscape twice. The neighbor proximity circles in the core confirm 

this as well, with the locations of matching points that were physically visited having less 

error than the surrounding peaks shot with an alidade and clinometer from the plane table.  

Figure 22 shows the variation of scale within the georeferenced clip of the Carruthers 

map. Again the isoline interval is 5,000 units, with the average computed scale of 1:350,600 

being only slightly higher than the original of 1:350,000. The core study area is again the 

most consistent near Turgen Peak and its northern glaciers; all falling between 1:350,000 and 

1:355,000. The areas where the contours were inferred during digitizing, i.e. to the south of 

Kharkhiraa Peak, show the largest variance. An interesting low zone is present near the 

monastery, which mirrors the positional error found at this location in the unreferenced 

analysis. 

 The overall distortion of the georeferenced study area clip is shown in Figure 23. The 

2,000 meter grid is less warped than the unreferenced map, but reflects it in several ways. 

There is northward distortion to the north of Turgen Peak and reverse to the south. Westward 

and eastward distortion is towards the peak. The area directly around the core study area 

shows some slight expansion. Again, displacement vectors tend to angle towards the peak 

except for a few points out on the Yamachu Plateau. The six red vectors that are ≥ 3σ from  
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Figure 22. Scale variance in the georeferenced clip of 1910 map by Carruthers. 
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Figure 23. Distortion and displacement in the georeferenced clip of 1910 map by Carruthers. 
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the mean match many of the outliers from the unreferenced map. One exception is the 

monastery, which is now close to its proper location, and therefore contributed more weight 

in the analysis. The neighbor proximity circles are smaller than on the unreferenced map, 

displaying a generally good fit within the central Turgen Valley. The georeferenced clip of 

the Turgen map is more accurate than the original when compared to the Russian topographic 

maps, however, it is not a perfect match. This speaks to the many sources of error that may 

have crept in, including the work of Carruthers, the Russian cartographers, and the data 

manipulations done for this study. The mean positional error of ± 338 meters for the sampled 

points is likely smaller in the core study area and the standard deviation of ± 239 meters is 

roughly equal to the variation in scale at the head of the valley. Regardless, the statistics 

confirm that the accuracy of the Carruthers map is insufficient to evaluate the exact positions 

of the Turgen glaciers in 1910. However, when combined with evaluation of the repeat 

photography, a good estimate of the 1910 glacial landscape emerges. 

  

SPECIALIZED CARTOGRAPHY 

BACKGROUND 

The iconic Swiss cartographer, Eduard Imhof felt that the base of almost all maps was 

the relief representation (Imhof 1982). He further remarked that the “proper rendering of 

relief is one of the primary tasks in cartography” (Imhof 1982, preface). In the past, this was 

accomplished by skilled artists that drew the landscape by hand, often from memory and 

sketches made in the field (Bagrow and Skelton 1964). With the advent of digital map 

making, the generation of relief from highly accurate digital elevation models has become 

prevalent, but the quality has suffered. The detail in modern relief can sometimes obscure the 
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most important features of a landscape, masking them in a blur of highlights and shadows. 

Tom Patterson (2010b), the master relief artist for the National Park Service believes 

“manual shaded relief often provides a clearer picture of major terrain features, especially at 

small scales”. Arthur Robinson, the grandfather of modern American cartography, speaks of 

the inherent challenge in mapping within a two dimensional environment, while trying to 

portray a three dimensional reality (Robinson 1952). The balance of this enigma is the 

threshold between cartography and art. Stock rendering of terrain is often the downfall of 

many maps. However digital relief does not have to be metallic and mechanical. With a little 

effort and some specialized techniques, digital relief can be customized beyond the „one 

button click‟ defaults in the latest programs. Patterson (2010a, 13-14) calls for the pursuit of 

elegance in mapping, the aesthetic faculty to only include what is necessary for 

communication of the landscape. The goal here then is to present the map of the 2010 

expedition in the style of the Carruthers‟ map, using the best of the digital tools, and leaving 

the superfluous behind. 

 

METHODS 

DEM Processing: 

 The CGIAR DEM was mosaicked and clipped to the extent of the 1901 Carruthers 

map as previously mentioned. It was then output as an ASCII text file. The file was then 

imported into Terrain Sculptor, “a specialized application for the generalization of terrain 

models for relief shading” (Jenny and Leonowicz 2010). The Java-based software for custom 

cartography permits the user to remove some complexity from terrain and emphasize the 

most prominent features in the landscape. The GUI controls allow for a generalization in the 
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overall level of detail, and the exaggeration or reduction of mountains and valleys. In this 

way, the cartographer can reproduce the look of classic shaded relief within the modern 

digital workflow.  

 Once the terrain was generalized, it was exported from Terrain Sculptor as a DEM 

and re-imported back into ArcMap. There, a custom set of models were run to generate a 

Swiss Hillshade (ESRI 2008a). Through the use of focal statistics, the original hillshade is 

generalized and then combined with a highlighted version of the same calculation that 

deepens the shadows in the valleys and lightens the peaks (Figure 18). The process produces 

two distinct hillshade  

 
Figure 24. Swiss hillshade model (ESRI). 

 

layers that are then overlain with the original sculpted DEM. All three layers were 

symbolized using a grey-scale color ramp and exported as 360 dpi tiffs to be blended in 

Photoshop. 
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Imagery Processing: 

 All seven bands of the L5TM_082910 Landsat scene were combined using the 

Composite Raster tool in Arc Catalog, and then imported into the working raster GDB as the 

2010_L5TM layer. Each individual band was also imported into the GDB so that raster 

calculations and band ratios could be performed for analysis of the glaciers. The 2010_L5TM 

layer was symbolized in a true color combination of 3-2-1 and then pan-sharpened by a 7-4-2 

band combination to aid in visually identifying the glacial extents against the classification 

calculations. 

 To construct a complete coverage of the entire 1910 map extent, the individual bands 

of the three L5TM Landsat scenes were mosaicked into Master Bands 1 through 7.  The 

Mosaic tool parameters were set to use the Aug, 29
th

, 2010 scene as the first value, and fill 

subsequent values with the two September scenes. The tool was also set to match colormaps 

and ignore NoData values, removing the black collars around the images. The seven bands 

were then combined into a Master_2010_L5TM raster and clipped to the 1910 map extent. 

 Using the raster calculator, band 4 was divided by band 7 of the clean 2010_L5TM 

scene. The resulting calculation was then symbolized as two classes and the threshold 

adjusted until the split line matched the 2010 glacial extents. In this case, the breakpoint was 

1.9. This technique, after Krumwiede (2010), differentiates very well between ice and the 

surrounding landscape. There can be a tendency to falsely misclassify debris-covered 

glaciers, but the Turgen ice is relatively debris free. The classification was also visually 

checked against the pan-sharpened 2010_L5TM, which displays the extent of the ice in 

surprising detail, even exposing moraine covered glacier at the margins (Figure 25). The final 

glacier classification was then converted to polygon feature classes and edited for a few small  
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Figure 25. Identified Turgen glaciers in 2010 Landsat TM5. 
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proglacial lakes that had been mistakenly included. A copy of the glacier polygons were then 

simplified for cartographic representation, while the original was saved for area calculations 

at a later stage. 

 Next, a multivariate Maximum Likelihood Classification was performed to extract the 

boundaries of the small lakes in the scene. A sample point feature class of training signatures 

was constructed with nine classes consisting of at least ten samples each. Then, the Max-Like 

classification routine was run using all seven bands of the Master_2010_L5TM and the 

signatures from the training points. The calculated raster was then symbolized to show only 

the lakes, which were selected, converted to polygons, and edited. The final analysis 

collected roughly 90% of the small lakes within the 1910 map extent.  

 

Graphic Design: 

 All vector layers, including roads, settlements, summits, contours, rivers, lakes, and 

the glacier features where exported from GIS into an Adobe Illustrator (AI) format at 720 

dpi. ArcMap places the nodes of the vectors on a raster grid, so a high dpi is warranted to 

prevent vertices from being snapped to a course resolution and affecting accuracy (ESRI 

2008b). The vector layers were then opened in AI and stripped of extra paths such as clipping 

masks. Excessive nodes were simplified and the layer structure constructed to organize visual 

hierarchy and facilitate placing the raster shaded relief.  

 The raster hillshade layers exported previously were processed in Photoshop (PS) 

using custom blending techniques developed by the researcher from experimentation with 

principles outlined by master relief artists (Patterson 2006). Using a combination of the layer 

modes, transparency, and the dodge/burn tools, the highlands of the relief were accented, 
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while the lowlands were subdued. The glacier outlines were imported as paths and custom-

shaded with various brush tools to blend the aspects into the ambient lighting effects of the 

hillshades. Fine detail brushes were created and employed to produce the random detail of 

glacial moraines, placing each pixel with pain-staking detail. Finally, the raster was placed 

into the Illustrator (AI) document as a linked file. This allowed updates to be instantly 

refreshed without slowing the processing speeds of the programs. 

 In AI, all vector artwork was carefully styled to emulate the feel and look of the 1910 

map. The vector contour lines were labeled in AI, masked to knockout the line behind each 

label, then rasterized and blended into the landscape back in PS. This technique was 

developed to avoid the appearance of „floating contours.‟ The route of the 2010 expedition 

was rendered from the GPS tracks and the photo stations labeled, along with the camps 

occupied during the trek. 

 Particular attention was placed on the font choices and type design. The title and 

legend block of the two maps is compared in Figure 26. Following best practices suggest by 

Robinson et al. (1995) and Dent (1985), a complimentary fontset of three families were 

chosen. The parent font of Franklin Gothic was used for main titles and important geographic 

point features. It is a heavy block sans serif typeface that closely resembles the Akzidenz 

Grotesk used on the original map. All Caps, Small Caps, and Super Script styles were 

employed to match the work of Carruthers. Monotype Modern was used for intermediate 

titles and large geographic features. Both the Extended and Wide formats were utilized. 

Finally, Bodoni Italics were used as a flowing serif script for rivers and blocks of text 

information.  



 

 

65 

 

  
Figure 26. Comparison of typesets for 1910 and 2010 maps. 

 

RESULTS 

In extent and scale, the modern map exactly matches the 1910 Carruthers map. 

However, the depiction of locations and the lay of physical features are much more accurate. 

Some fine detail of the 90 meter CGIAR SRTM DEM was lost in generalization, but all 

tracks and GPS waypoints have a maximum error of 15 meters. The extent of the glaciers is 

also highly accurate, but that is addressed in the final chapter. In order to preserve the historic 

context of the original, the units of scale and contour intervals were duplicated in feet and 
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Figure 27. Summit labels.                      

miles. The coordinate grid in the neatline remained in latitude and longitude. Once final 

styling was completed, the full size map, which measures 15” x 15” inches, was packaged for 

CMYK offset printing, and saved to RGB format for digital display. 

 

DISCUSSION 

 Digital shaded relief may never be able to match the artistic flair of hand painted 

terrain. However, the process of trying to imitate those techniques leads to the invention of 

new methods that advance the science of modern cartography. 

 Research into the fonts and typesetting techniques at the turn of the 20
th

 century 

revealed specific practices that were ubiquitous at the time (Casey 2005; Harley and 

Woodward 1987). All Caps sizes were regularly combined with Small Caps within the same 

word to produce visual hierarchy. Also, the use of Super Script styles that ascend above the 

Cap Height in the second and third letters of abbreviations added to the style. Unfortunately, 

modern type engines in graphic programs cannot reproduce all styles that were available on 

manual typeset printing presses. An example is the 

period directly below the Super Script ascender. This 

can be seen in the label of Turgen Peak (Figure 27). 

The process of imitating the cartographic style of a previous era lead to a map of the 

modern expedition that appears at first glance to be from the Carruthers period. Working 

within a modern digital workflow, the task of trying to duplicate long forgotten techniques 

required the invention, or rediscovery, of methods lost to a new generation of cartographers. 

This work also inspired respect for the quality and craftsmanship of the Carruthers map, and 

fascination with the technologies used to produce it.     
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REPEAT PHOTOGRAPHY ANALYSIS 

BACKGROUND 

Historical Photography: 

 The science of repeat photography was invented and first applied to the study of 

glaciers in the Alps by Sebastian Finsterwalder in the late 19
th

 century (Webb 2007). In 

general terms, the methods only require that previous locations of historical photographs be 

reoccupied for a new series of pictures which are then used for comparative interpretation of 

landscape transformation (Nüsser 2001). Rogers et al. (1984) compiled a comprehensive 

summary of reimaging techniques, which were then adopted by the United States Forest 

Service to monitor re-vegetation after wildfire and the expansion of urban zones (Hall 2001). 

Previous repeat photography studies in the mountains have concentrated on vegetation 

changes in relation to the cultural uses of the land by local peoples (Ives 1987; Nüsser 2000). 

However, recent research has reintroduced comparative photography to the monitoring of 

glaciers not only in the Alps, but in the ranges of Africa, and the Americas (Zängl and 

Hamberger 2004; Hastenrath 2008; Schmidt and Nüsser 2009). The glaciers of Asia have 

recently been included in rephotography studies, with Byers (2007) working in Nepal and 

Schmidt and Nüsser (2009) in Pakistan, but this study is the only one found applying the 

techniques in Mongolia.  

Challenges arise in that many historic photo locations are not well documented, 

especially in mountain settings, and require extensive fieldwork to reacquire (Fagre 2010). 

This is the case with the Carruthers collection from 1910. While the route of his expedition 

was well recorded on his map of the region, the specific locations of photographs are not 

marked, nor are they noted in the field journals. Only by careful examination of photo 
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captions and the occasional non-specific remark in a field book, were the 1910 photo points 

narrowed in on. Through the use of virtual rephotography, the Carruthers route was traveled 

utilizing the 3D model within Google Earth and the probable photo stations estimated (Webb 

et al. 2010). Then, once in Mongolia, the 1910 route was followed by GPS paying careful 

attention to the landscape until a viewpoint could be matched with a printed historic photo.  

The Carruthers expedition carried several cameras and a good supply of film for their 

two year journey. It is unclear whether the camera equipment was on loan from the Royal 

Geographical Society or owned by the expedition members. The following list comes from 

the personal diaries of Carruthers viewed at the RGS archives in the summer of 2010:  

 Kodak A3 Postcard camera (Figure 28) 

 New Newman & Guardia “Nydia” w/ changing box (Figure 29)  

 Kodak Panorama camera (Figure 30) 

 Pack Film Adapter 

 200 Plates @ 78 speed  

 72 Pack Films 

 72 Postcard Rolls 

 80 Panoramas 

There was also a note about a supply of developer to make trials in the field and periodically 

develop prints to test the cameras.  

There are no explanations of how the cameras were used either in the personal diaries 

or in the published accounts of the expedition. It appears that the cameras were utilized more 

as a tool for documentation of the journey, and not viewed as scientific instruments. Most of 

the pictures are of a cultural nature, consisting of portraits of the various ethnic groups  
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Figures 28 and 29. Kodak A3 postcard camera and a Newman & Guardia “Nydia” camera. 

encountered along the way. The scenes of landscape photography seem to have been chosen 

purely by the vistas which most inspired the expedition members. The majority of scientific 

investigation was concentrated on collection and preparation of geologic, botanical and 

taxidermy samples. The mapping of the landscape was also a priority. 

The journals do not mention which camera was used for each photograph. This makes 

it difficult to determine the focal length for individual pictures and prevents the use of more 

advanced photogrammetric techniques in this study. There is also no credit given to the 

photographers responsible for specific images. Carruthers (1914a, 289) writes of Miller 

taking photographs in between hunting forays, while in another section noting that Price was 

occasionally with a camera in hand. At least one photograph shows both Price and Miller, 

implying that Carruthers was sometimes behind the lens. Considering the extended periods 

that Carruthers spent at the plane table and preparing skins, it is likely that most of the 

photographs were taken by Miller or Price. The exact credits, however, will never be known. 
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Figure 30. Kodak panorama camera from 1910. 

 

In most cases, the photographs in the Carruthers collection are in focus and properly 

exposed. Some appear to be clearer than others, likely due to the camera model, with the one 

panoramic of the Turgen Range being the sharpest. They are all of sufficient quality for 

repeat photography purposes, which is amazing considering that the exposed film was carried 

for over twenty months, across 5000 miles, and under every conceivable condition.  

 

DATA 

1910 Photos: 

 In the archives of the Royal Geographical Society, dozens of photos from the 

Carruthers expedition were viewed in the summer of 2010. Of the eleven related to the 

Turgen Range, four matched the photographs that were published in Unknown Mongolia 

(Carruthers 1914a), however, many are unpublished or were taken from a slightly different 

vantage points. Several of the published photographs were not in the RGS collection, and 
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only exist in the Carruthers book. Unfortunately, the RGS archives are not in possession of 

original negatives, holding only prints that are almost a century old. There are two pages 

covering the Turgen portion of the expedition in a large format photo album that contains 

hundreds of images. The photos are mounted to the pages with glue and are in fair condition, 

showing some staining and yellowing. The average size of these nine images is 4 x 3 inches, 

with two in portrait format and the rest in a landscape orientation (Figures 31 and 32). In 

addition, there are two large prints loose in a folder. One is a landscape panorama of the 

Turgen Range measuring 3 ½ x 11 ¾ inches, while the last   9 x 12 inch shot is of the summit 

Turgen Peak (Figures 33 and 34). The RGS picture librarian arranged for the images to be 

scanned with a large format flatbed scanner at 96 dpi and uploaded to an ftp site. The scans 

were downloaded en-route to Mongolia and printed in Kathmandu for use in the field.  

 Upon returning from the field, the images were cropped from the larger pages, rotated 

to square, and filtered for contrast and brightness. Some images with extensive yellowing and 

stains were restored using black & white filters and content aware fills (Fitzgerald 2010). 

Care was taken not to alter any portions of the images that depicted mountains or glaciers, 

which was easily accomplished, as most of the damage was along the peripheral edges. 

2010 Photos: 

 The repeat photographs captured in the summer of 2010 were all taken with a Nikon 

D90 digital camera. The body has a 12.3 megapixel sensor that writes RAW 4288 x 2848 

pixel files at 240 dpi to SD digital media cards. All photographs were shot in both RAW NEF 

and jpg formats using a Nikon 18-105 mm f/3.5-5.6 lens. The pictures were bracketed in ± 

one third stop increments to ensure proper exposure in the variable lighting conditions of the 

mountains. However, with the use of RAW format images, the problems of incorrect  



 

 

72 

 

 
Figure 31. Original page of Carruthers photo album (RGS). 
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Figure 32. Original page of Carruthers photo album (RGS). 
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Figure 33. Original Carruthers large format photograph of Turgen Peak (RGS). 

exposure are easily addressed in post processing as all data captured by the sensor is retained.  

In most cases, the camera was mounted on a Slik Sprint Mini tripod for stabilization during 

recapture. All images were transferred from SD cards to a laptop, and then backed up on a 

portable hard drive in the field. Initial processing of the RAW files was done in Adobe 

Lightroom 2, where all images were archived, sorted, and tonally adjusted based on a preset 

calibrated camera profile.  

Of the eleven scanned photographs from the RGS, eight photo stations were able to 

be located in the field and recaptured. Two of the images not relocated were shots of subjects 

with non-definable landscape features in the background. These include a shot of Price and 

Miller on the Kundelun [Turgen] Glacier and one of the 1910 expedition horses on a snowy 
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pass. The third picture that was not repeated is of a grassy hillside with small stands of trees 

that were not distinct from any vistas within the Turgen landscape. 

 
Figure 34. Original Carruthers large format panorama of Turgen Range (RGS). 

 

Field Techniques: 

 From the preliminary work, GPS tracks and waypoints digitized from the 1910 

Carruthers map were used to approximate the original photo stations. There were also clues 

in the original captions written in Carruthers‟ hand below many of the photographs. The 

locations were generally not easy to access, demanding accents of a thousand meters or more, 

with field days above basecamp regularly lasting from sun-up to sun-down. Some sites 

required the use of specialized mountaineering gear and techniques to safely traverse 

moderately crevassed, steep glacial terrain. Utilizing a copy of the Carruthers map and a 

handheld Garmin 60CSx GPS, the general location of a station was approached on foot until 

views matching the original photo could be aligned by hand (Figure 35). At the assumed 

point, the location was further refined using parallax assessment of ridgeline intersections, 

perspective alignments, and location of foreground features (Hall 2001; Rogers 1984). Once 

the photo station was accepted, the tripod was set-up and re-imaging conducted. A GPS 

waypoint was taken and its name, positional accuracy, azimuth of shot, date and time were 

recorded in a notebook along with any comments concerning the physical setting of the  
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Figure 35. Aligning the historical photograph from 1910 to the modern landscape. 

location. The map in Figure 36 displays the core study area at the head of the Turgen Valley 

and the locations of the photos stations, along with the route and camps of the 2010 

expedition. 

In most cases, a series of handheld overlapping shots were taken by rotating 360º on 

the station. This was done to document the area and facilitate the stitching of individual 

photos into panoramas of the entire landscape (Figure 37). As the days progressed, 

establishing one station often led directly to finding the next, settling into the footsteps of the 

historic expedition. Table 9 lists the photo stations of the repeat pairs and various information 

including their coordinates.  
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Figure 36. Map of the Turgen study area. 
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Figure 38. 1910 – 2010 blend mask to check alignment. 

COMPARATIVE ANALYSIS 

METHODS 

 The scans of the original Carruthers photographs from RGS were loaded into 

Photoshop CS5 (PS) and processed as previously mentioned. The individual scenes were 

resampled and saved as 300 dpi .tif files. Each 1910 scene was then compared to the bracket 

of repeat images taken in the summer of 2010. A match for each photo station was selected 

from the library in Lightroom, processed, and then saved as a 300 dpi .tif as well. Each set of 

paired repeats was then placed on a separate layer in PS, with the 2010 picture on top and set 

to 75% transparency. The 2010 image was then positioned and resized until the best fit was 

achieved. The images were not 

distorted in any way, only resized 

and aligned after methods 

outlined by Webb (2010). As a 

visual check, a transparency mask 

was applied on another layer 

which allows the 2010 image and 

the 1910 image to fade into each 

other on any axis set in the mask. 

The results confirmed a high 

degree of alignment between the 

paired repeats (Figure 38). Three 

paired repeats were then labeled 

with letters corresponding to areas 
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of noticeable change between the images. Number labels were applied to features that exhibit 

little or virtually no change, similar to the techniques used in the Desert Laboratory Repeat 

Photography Collection (Webb 2007). This labeling for qualitative analysis was applied to 

images from photo stations PS01, PS05 and PS06. The remaining pairs were better suited for 

quantitative analysis. 

 

RESULTS 

PS01 – Photo station one is located on the summit of Duramyn Peak, which was 

called White Peak in 2010 field notes. The mountain was approached by way of the grassy 

slopes rising to the southeast above Camp 1. The final stages of the accent required technical 

glacier climbing of the last 300 meters leading to the summit. The 2010 re-photography from 

this point does not exactly match the 1910 image taken from a similar vantage. It is likely 

that the original photo was taken from a point to the southwest and slightly lower, possibly 

along the ridge leading off the summit. On the day that the station was visited in 2010, time 

considerations and impending weather forced the team to abandon the summit back towards 

Camp 1, not exploring the southwest ridge. However, the paired images share enough 

similarities to facilitate comparative analysis. As depicted in Figure 39, the hanging glacier 

marked as „A‟ has ablated considerably between 1910 and 2010. The bergschrund at „B‟ has 

moved upslope and there is more rock exposed on the face. In the modern picture, there is a 

small rock rib protruding out of the glacier at „C,‟ while the seracs at this spot in 1910 appear 

to have completely ablated. The main Turgen icecap, labeled „1‟ shows almost no change; 

the large serac face appearing roughly the same as in 1910.  
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Figure 39. Repeat 1910 and 2010 photo pair of Turgen Range from PS01. 

PS05 – Photo station five is located on the ridge above the East Turgen Glacier that 

forms the divide between the Turgen and Tsagaan watersheds. The repeat photo point was 

approached from the Turgen Valley by way of ascending the moraine to the glacial snout, 

and then climbing the 40° slope of the accumulation zone using roped glacier travel 

techniques. The photo pair looks southeast to a rock horn between two larger un-named 

peaks. There are glaciers flowing on either side of it. This 2010 repeat is an exact match of 

the 1910 counterpart as seen in Figure 40. The area of label „A‟ shows a substantial ablation 

of ice behind the horn. The glacier has melted down to exposed moraine and appears to no 

longer flow around the south side of the horn. There is also a significant loss of ice on the 

slopes of the background peak labeled as „B‟ and „C,‟ with considerably more exposed rock 

in the 2010 photo. Label „1‟ on the high slopes of the peak looks similar in both images,  
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Figure 40. Repeat 1910 and 2010 photo pair of rock horn from PS05. 
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however, the modern photo shows bare ice in this area indicating that the equilibrium line 

may have risen high onto the peak over the last century. The slope also looks to be steeper in 

the modern picture, indicating a loss of volume. 

PS06 – The photos of station six were taken from a similar vantage point as PS05, 

only looking to the east. The repeat image could not be made to match the rocks on the left of 

the 1910 picture because the snow on the col has melted and lowered the position of the 

station an estimated five meters. Regardless, the nunatak in the distance and the surrounding 

slopes are coincident enough for analysis (Figure 41). The steep glacier in area „A‟ has 

wasted severely in the preceding hundred years and no longer flows into the glacier below it. 

The snow and ice on the slopes in areas „B‟ and „C‟ has completely ablated exposing bare 

rock and moraines. Again, the area of label „1‟ on the high slopes looks similar between the 

years, but the ice appears to be bare and steeper in the modern photo, indicating that the ice 

there has at least begun to recede.  
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Figure 41. Repeat 1910 and 2010 photo pair of nunatak from PS06. 
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PIXEL ANALYSIS 

METHODS 

 Previous studies have attempted various techniques to quantify change between pairs 

of oblique photographs. Roush et al. (2007) overlaid images with a grid in GIS to extract 

pixel values of each photo that were classified as vegetation types. Munroe (2003) used a 

random sample grid, but also digitized meadows in GIS to measure relative changes in size. 

More advanced methods by Aschenwald et al. (2001) georeferenced oblique photographs to 

DEMs for change analysis, but this required a network of installed ground control targets 

visible in the images. All these procedures produce quantitative results; however they were 

impractical here due to the nature of the photographic pairs.  

To quantify relative change in glacial cover for this study, specialized image analysis 

software from the biological sector was adapted. The program Pixcavator (2007) is generally 

used to measure quantity, area and perimeter of features like bacteria in microscope images. 

The software determines contours, or outside edges, based on contrast, color and brightness. 

When paired temporal photographs are processed to have exactly matching resolutions and 

extents, it is possible to quantify differences in features based on pixel calculations. Tests 

were run on both the 1910 and matching 2010 images, but the differences between B & W, 

color, clarity and sharpness produced unsatisfactory results. The decision was made to 

digitize the exposed ice on each paired image with Adobe Illustrator to construct pure bi-

tonal slides where white polygons represent ice, and black equals no ice (Figure 42). The „no 

ice‟ polygons included all vegetation, moraines, rocks and sky. The pairs were then analyzed 

individually in Pixcavator, where the program delineated the contours of the white and black 

polygons.  
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Figure 42. Bi-tonal classification.  

Paired images from stations PS02, PS03, 

and PS08 were processed in this way. The 

program output statistics on the percentage of 

light and dark pixels, along with the perimeter 

and total pixel count of the white „ice‟ polygons 

(Figure 43). By comparing these measures for 

paired images, changes in relative ice cover were 

assessed. Since photographic pairs were all of 

the Turgen ice cap, but taken from differing 

viewpoints, the percent of relative change for the 

three image pairs was averaged to estimate the 

total change in ice cover on the Turgen summit. 

 
Figure 43. Pixcavator output screen. 
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RESULTS 

PS02, PS03, PS08 – The photos in these pairs, all depicting the main Turgen Peak, 

are very well aligned. PS02 pairs were taken on the slope just east of Advanced Base Camp, 

looking southeast toward the mountain. The summit ice cap looks unchanged in the set, but 

the small glacier descending from the cirque on the right has retreated, along with a reduction 

of ice in the center frame seracs. The debris-covered ice in the center of the moraine has also 

completely ablated (Figure 44). The debris-covered glacier of 1910 was photographed close-

up from PS08, along with a view of the summit from within the western moraine. Again, the 

debris-covered ice is completely absent from the moraine in 2010, but the summit appears 

almost identical (Figure 45). The photo pair taken from PS03 looks west toward the main 

summit of Turgen, and is located high on the slope of the East Turgen Glacier. There are 

large sections of slope in the foreground, but only the glacial cap was considered here, which 

again looks to be almost the same between the two years (Figure 46). 

The results of the Pixcavator analysis on these photo pairs are shown in Table 10. The 

changes are almost undetectable by visual evaluation, but the pixel analysis results suggest a 

slight decrease in ice ranging from -0.29% to -2.36% with an average ice loss of -1.5% 

between the three pairs. The process also reveals the changes graphically when the traced ice 

polygons on one image pair from 1910 and 2010 are overlain (Figure 47). 

 

Photo 

Station 

% Dark 

Pixels 

% Light 

Pixels 

Ice Area 

Pixels² 

Ice Perimeter 

Linear Pixels 

% Difference 

1910 to 2010 

PS02 _1910 80.31% 18.97% 54,748 1,705 -1.87% 

 PS02 _2010 82.97% 17.10% 49,295 1,461 

PS03 _1910 87.15% 12.13% 35,417 1,306 -2.36% 

 PS03 _2010 89.94% 9.77% 28,487 1,136 

PS08 _1910 97.55% 2.45% 7,150 461 -0.29% 

 PS08 _2010 97.84% 2.16% 6,310 481 

Table 10. Results of Pixcavator analysis.  
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Figure 44. Repeat 1910 and 2010 photo pair of Turgen Peak from PS02. 
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Figure 45. Repeat 1910 and 2010 photo pair of Turgen Peak from PS08. 
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Figure 46. Repeat 1910 and 2010 photo pair of Turgen Peak from PS03. 
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Figure 47. 1910 ice contour in red vs. 2010 ice contour in black from Pixcavator analysis. 
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Figure 48. 3D model of nunatak in 2010. 

MULTI-DATA INTEGRATIVE ANALYSIS 

METHODS  

The relationship between repeat oblique photography and topographic maps for 

glacial ablation studies has thus far been limited to locating the photo stations on the maps 

(Roush et al. 2007; Fagre 2010). The delineation of changes in glacial extent from multi-

temporal series maps and satellite imagery is well established, however, inclusion of 

terrestrial photography in these measurements tends to be problematic since most scenes are 

wide panoramas taken from high vantage points (Byers 2007; Schmidt and Nüsser 2009). 

Most of the rephotography in this study falls into this category, but two pairs lend themselves 

to more accurate measurements. 

PS04 – Photo station four is part of the group of stations located on the col above the 

East Turgen Glacier as previously described. The images were taken facing northeast and 

cover the same nunatak photographed from PS06. The photo pair captures two glaciers 

converging in a medial moraine around a nunatak to the east of the East Turgen Glacier. The 

nunatak was identified in the CGIAR DEM and measured using the ArcScene 3D program. 

The DEM was draped with the 

2010 Landsat image and rotated on 

multiple axes to locate the top of 

the rock formation and the 

relatively flat surface of the glacier 

below it. Elevations for the 

corresponding pixels where subtracted to determine that the height of the nunatak was 300  ± 

16 meters above the glacier in 2010 (Figure 48). The paired photographs of matching 
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resolution were then loaded onto separate layers in Adobe Illustrator and baseline vectors 

drawn at the 1910 and 2010 glacier levels. Vertical lines were then drawn perpendicular to 

the glacier baselines up to the summit of the nunatak. The length of the lines is given by the 

program in pixels and was used in the simple ratio: 

 

Where  equals the height of the nunatak in meters above the glacier in 1910. The ablation of 

the glacier over the last century at that location was derived from the elevation difference.  

PS07 – Photo station seven is located on the high sloping western moraine of the 

West Turgen Glacier, with the images taken facing to the east. It is about a two hour hike 

from ABC over loose talus. The position is directly below the summit seracs of Turgen Peak 

and may be exposed to calving ice. The historic 1910 photograph from PS07 was taken 

perpendicular to the West Turgen Glacier terminus. The repeat photo station occupied in 

2010 was matched almost exactly with the 1910 position using the parallax techniques 

outlined previously. A blended hybrid photograph of the 1910 and 2010 images was created 

so that the 1910 terminus could be seen simultaneously with prominent landscape features in 

the background of the 2010 image. Then a vector (line) was drawn from the known location 

of the photo station, across the historic 1910 terminus, and intersecting with a peak in the 

distance (Figure 49). The azimuth of this „terminus vector‟ was then plotted between the GPS 

location for PS07 and the background peak visible in the Landsat image from 2010. By 

measuring the distance between the 1910 terminus vector and the 2010 glacier terminus in 

the GIS, a century of glacial recession was measured. Also, outlines of the West Turgen 

Glacier terminus were digitized from the 1970 Russian topographic map and the 1992 

Figure 41. 3D model of 2010 terrain.  
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Landsat image. The glacial recession between these years was measured for comparison to 

the repeat photography results.  

 
Figure 49. Rephotography blend with plotted terminus vector bisecting West Turgen Glacier. 

 

RESULTS 

PS04 – The two glaciers that converge below the rock face and flow north show 

considerable ablation over the one hundred year time span (Figure 50). The ice also seems to 

be thinning more rapidly downslope as evidenced by the trim lines and changing surface 

angles between the two images. From the ratio of pixels to nunatak height described in the 

methods, the exposed rock above the glacier in 1910 was measured at 228 ± 16 meters. 

Subtracted from the 300 ± 16 meters height in 2010, the glacier surface at the base of the 

nunatak has down wasted 72 ± 16 meters in the last century (Figure 51).  

 



 

 

96 

 

 

 

 
Figure 50. Repeat 1910 and 2010 photo pair of nunatak from PS04. 
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Figure 51. Photo pair from PS04 showing differences in height of nunatak above glacier. 

PS07 – The paired photographs from this station match exactly and display the most 

extreme glacial recession of the study. Cropped to the 1910 extent, the tongue of the West 

Turgen Glacier is completely absent in the picture from 2010 (Figure 52). The debris-covered 

ice visible in the 1910 photo has also completely disappeared, changing the structure of the 

moraine noticeably. The azimuth of the capture angle plotted over the hybrid Landsat and 

DEM relief map in GIS revels that the glacier has retreated 600 meters in the last century 

(Figure 53). Multi-temporal glacier termini locations are also plotted on the map from the 

1970 Russian topographic sheets, as well as the Landsat images from 1992 and 2010. An 

estimated frontal lobe for the West Turgen Glacier in 1910 was extrapolated from the known 

terminus, the shape of the ice in the 1910 photo, and the curvature of the moraine. Table 11 

shows the recession differences between the years and the changing rates of retreat.  For the 

first sixty years of the study period, the West Turgen Glacier retreated 403 meters, averaging 

6.7 meters per year. Then, the retreat rate appears to have slowed to 3.9 meters per year, 

receding 87 meters over the next two decades. In the last two decades, the retreat rate has 

increased to 6.1 meter per year, losing 110 meters of ice.  The measurements from this photo 

pair are the only ones that demonstrate high accuracy quantitative glacial changes. Therefore, 

PS07 is the most important repeat station in the project. 
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Figure 52. Repeat 1910 and 2010 photo pair of West Turgen Glacier from PS07. 
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Figure 53. Map of West Turgen Glacier with glacier termini changes from 1910 to 2010. 
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Table 11. Results of multi-data integrative analysis. 

Year 1910  1970  1992  2010 

Years between images  60 yrs.  22 yrs.  18 yrs.  

Avg. m retreat per year   6.7 mpy  3.9 mpy  6.1 mpy  

Total avg. m per year 5.6 m 

Retreat between years  403 m  87 m  110 m  

Retreat 1910 – 1992 490 m  

Retreat 1910 – 2010 600 m 

 

REPEAT PHOTOGRAPHY DISCUSSION 

Multiple analysis techniques were used to assess the repeat photography of the 

Turgen Range. Whereas comparative re-photography has generally been applied to 

qualitatively describe landscape change, as was demonstrated with several pictures here, 

advanced methods that produce more quantitative measurements were successfully 

implemented. While the comparison of pixels between temporal images can provide 

percentages of relative change in ice cover, the most robust calculations of glacial recession 

came from photographic measurements made in combination with remotely sensed data.  

From the comparative analysis of the side-by-side temporal images, some general 

statements can be made about the state of the glaciers in the Turgen Range. The ice of the 

upper glaciated zones above 3500 meters appears to have changed very little in the last one 

hundred years. Conversely, the glacier cover and thickness at lower elevations has reduced 

noticeably. While it is not possible to make definitive statements expressing exact quantities 

of ice loss from visual assessments of photographic pairs, there is little doubt that the glaciers 

of the range have continued their retreat that was first documented by Carruthers (1914a; 

1912) a century ago. However, there are clues present in the images that portend the current 

trends. Of interesting note is the thin layer of brown sand covering substantial areas of the 

glaciers in the 2010 images, likely blown in off the Gobi desert to the south. As mentioned 
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by Hewitt (2005), this layer of dust has the opposite effect of a thicker insulating layer of 

debris, actually enhancing ablation of the ice. The dust layer observed in the filed in 2010 

was only a few millimeters to a centimeter thick, coating the base of ablating sun cups.  

Unfortunately, no research was found that addresses the patterns and frequency of dust 

storms in the study area. Also, the presence of bare ice on high, steep slopes in the 2010 

photographs may indicate that the accumulation zones of theses peaks have moved above the 

physical elevation of some glaciers. When all snow from a previous winter is ablated before 

summers end, the prospect for a rapidly wasting glacier is high (Knight 1999).  

The extent of coverage and thickness of the ice on the Turgen icecap is almost 

identical between the photographs, but using pixel analysis, some small decreases were 

detected. The average ice loss from the three image pairs analyzed with Pixcavator is –1.5%. 

Although small, the differences in ice cover that are undetectable by eye were quantified by 

this technique. However, the pixel comparison does have several limitations. In the field, the 

camera locations, azimuth, angle and elevation must match perfectly. In the lab, the 

resolution and size of the paired images also have to be exactly coincident. Slight variations 

in any parameter will affect the percentages calculated by the software. There may also be 

error introduced by the manual digitization of the ice polygons, were visual interpretations 

have to be made. Changes in volume of ice that ablates directly away from the camera angle 

would be indiscernible as well. Also, ice or snow surfaces at varying focal lengths should not 

be analyzed together. For example, in the photo pair from PS03, a reduction of the snow 

along the ridgeline in the foreground would reveal more ice on the summit cap in the 

background, prejudicing the measurements. Regardless, the technique is a valuable 

confirmation of visual assessments that inferred slight reductions in the ice cap. 
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 The measurement of down-wasting in the glaciers captured from PS04 is a hybrid of 

techniques, combing the use of DEMs after Surazakov and Aizen (2006), and the 

incorporation of oblique imagery referenced to the modeled landscape as demonstrated by 

Aschenwald et al. (2006). The limitations of the technique lie in the error inherent in the 

DEM and the same host of photographic considerations that were mentioned previously. 

Considering that the capture parameters of the re-photography appear to match very well, 

those errors are likely within the ± 16 meters of vertical inaccuracy in the DEM. There may 

be some locational inconsistencies with the surface measurements of the 1910 and 2010 

glaciers, but the summit of the nunatak was easy to pinpoint in each photo. Therefore, the 

measurement of glacial ablation over the last century for this one location can be considered 

fairly accurate.  

 The glacial recession measurement derived from PS07 is another example of 

rephotography being integrated with remote sensing data to derive measurements that had 

previously only been possible with temporal satellite imagery or topographic map 

comparison (Schmidt and Nüsser 2009; Bishop et al. 2007). Again, the photo capture angle 

must be perpendicular to the glacier terminus and exactly matched to the historical location. 

If this is accomplished to a high degree of accuracy, as was the case here, the conversion of 

an oblique measurement to a planar distance on a satellite image can precisely locate the 

frontal margin of the historic terminus. Then, when evaluated against previous remote 

sensing research, not only can the total amount of recession be determined for a lengthened 

timespan, but also the variations in the rate of change over the entire study period. This 

technique can therefore be utilized to effectively extend the modern satellite archives, 

theoretically, to the earliest photographic records of glaciers.  
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CONCLUSION 

 This study employed multiple techniques to evaluate the historic records of the 1910 

Carruthers expedition against modern sources of data for the same area. The aim was to 

assess the viability of incorporating classical geographic field studies within a modern 

program of glacier monitoring, largely conducted with remotely sensed imagery. Because the 

contemporary satellite records in most cases cover only fifty years, an inadequate span in 

geologic time, it is desirable to integrate older records of glacial positions. To this end, the 

cartographic work of Carruthers was scrutinized to determine both the planar and elevation 

accuracy. The photographs of the expedition were also repeated and analyzed for signs of 

glacial change. Finally, the notes and publications of Carruthers were researched for 

indications of the glacial positions in 1910.  

 Looking back to the original research questions, this study has clearly demonstrated 

that historical archives of mountain expeditions are a valid resource for extending the modern 

record of glacial change. While not all of the Carruthers records provided definitive 

measurements of glacial recession, the sum total of qualitative and quantitative analysis 

applied to multiple forms of data built a comprehensive overview of the Turgen glaciers in 

the last century. In the end, the cartography by Carruthers was not as valuable for glacier 

monitoring as the repeat photography. Nonetheless, all of the historical data did play an 

important role in constructing the complete assessment. 

 The Turgen map from 1910 is a beautiful piece of cartography that represents the 

historic landscape surprisingly well considering that it was largely hand-drawn in the field. 

The elevations are slightly low for the core study area, but this is only once some severe 

planar distortions are corrected by way of a „rubber-sheet‟ transformation. The 1910 map at 
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its full extent has too many generalized or missing contours to even compare it to the modern 

DEMs. The „best fit‟ cartometric calculation of 338 ± 239 meters means that while the center 

of the Caruthers map is probably within a margin of error for its scale, it is not sufficiently 

precise to locate the glaciers in 1910 with any certainty. In fact, the highest estimate of planar 

error, 577 meters, is very close to the 600 meters of recession measured for the West Turgen 

Glacier from the PS07 rephotography analysis. Also, the 1910 location of the West Turgen 

Glacier terminus on the georeferenced clip of the Carruthers map is roughly 620 meters 

misplaced from the derived 1910 position in the GIS. Consequently, the locational error of 

the Carruthers map is on par with the glacial recession being measured, rendering it unusable 

for change detection.  

In all fairness, even Carruthers admitted the possibility of errors in his map stating 

that while he had constructed it with every detail, he could not “vouch for its correctness” 

(1913, 347). Instead, he acknowledged the “ample work awaiting [future] explorers” in the 

resurvey and correction of his work, which was attempted here (Carruthers 1913, 347). Even 

so, the Carruthers map was a valuable resource in the field and lab for pinpointing the 

photographic capture locations of the 1910 expedition. 

 The full gamut of rephotography techniques applied to the photo pairs, ranging from 

visual assessment to measurements derived from integrative methods, produced the most 

effective measurements of the Turgen glaciers. The standard repeat photography approach of 

side-by-side comparison detected recognizable reductions of both volume and area in the 

glaciers of the range. The visual evaluation of glacial change was supported further here with 

pixel analysis of the photo pairs, a new technique developed for this study. This method 

quantified a slight ice loss on the Turgen summit and confirmed the slight ablation inferred 
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by the photographic comparisons. Then, techniques for extrapolating DEM elevation from 

the oblique repeat photographs were refined here to estimate loss of volume at the glacial 

surface. This method for evaluating surface change using a ratio of DEM elevation to pixel 

counts is limited only by the accuracy of the data and thoroughness of the fieldwork. Finally, 

the total recession of the West Turgen Glacier between 1910 and 2010 was calculated with a 

newly developed hybrid technique. An azimuth angle was shot across the historic terminus 

photograph from the known photo station, and then plotted over the rephotography, 

intersecting with a physical feature visible in the background. When this „terminus vector‟ 

was plotted over the satellite imagery in the GIS, a very accurate measurement of recession 

was made. In total, the various techniques applied in this study produced a clear assessment 

of the Turgen glacial conditions over the last century, verifying the utility of integrating 

historic records into the modern programs of glacial monitoring. 

The second research question that the study answered addresses how the glacial 

system of the Turgen Range has changed over the last century. From the visual assessment of 

the repeat photography, the higher elevation ice appears more intact, while the lower altitude 

termini show a more pronounced recession and ablation. There is also some evidence of 

rising lines of equilibrium, as inferred by the existence of snow-free glaciers extending to the 

ridgelines of some slopes. The glacier on Turgen Peak shows a slight reduction of -1.5%, as 

measured by the pixel analysis. The twin glaciers on the east side of the range have a 

measured ice loss of 72 ± 16 meters below the nunatak, as calculated from the DEM and 

rephotography integration. The West Turgen Glacier has receded 600 meters in the last 

century, as demonstrated by the precise „terminus vector‟ technique that combined the 

rephotography with the accuracy of the latest 2010 Landsat imagery. 
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These measurements can in turn be applied to related glaciers in proximity to the 

proxy with some confidence. For example, it seems reasonable to suggest that the recession 

of the East Turgen Glacier would have been comparable to the measured 600 meters of 

retreat for the West Turgen Glacier over the same period. This assertion is corroborated by 

the 1910 termini elevations given by Carruthers (1912: 1914a). His measurement of 2895 m 

(9500 ft) for the East Turgen Glacier frontal lobe is 50 meters lower than the DEM at a point 

600 meters down moraine from the 2010 terminus. The Carruthers‟ measurement of 2974 m 

(9758 ft) for the West Turgen Glacier terminus has more error, being 200 meters below the 

DEM elevation at the derived 1910 terminus, but both errors are < 1 σ of the mean error 

computed from the Carruthers map.  

The 490 meters of recession between 1910 and 1992 for the West Turgen Glacier 

found in this study is comparable to the 200-500 meters of retreat estimated by Lehmkuhl 

(1998) between 1948 to 1991, although the periods do not match exactly. Interestingly, 

Kadota and Gombo (2004; 2007) found that the Turgen glaciers had lost 19% of their surface 

area between 1970 and 1990, but remained stagnant thereafter. This is the exact opposite of 

the trends found here for the West Turgen Glacier where the recession rate decreased from 

1970 to 1992, and then increased to the present. As mentioned previously, these 

inconsistencies probably stem from the differing methodologies and data sources. Rectifying 

these differences would require careful examination and recreation of the previous studies, 

which was not attempted here. The surface measurements below the nunatak could likewise 

be used to develop ablation estimates for local glacial surfaces at similar altitudes, however 

estimating total volume loss for entire ice bodies would require advanced modeling beyond 

the scope of this study. 



 

 

107 

 

 Finally, by way of making recommendations for future research of this scope, a 

possible methodology for integrating historical and modern data is presented here. The 

records of expeditions may have many diverging data types, collected in numerous ways and 

with varying precision. Therefore, it is important to locate historical records that have a 

mixture of data that will allow for a multitude of analytical techniques. A diverse dataset will 

also insure against the problems of insufficient resolution that can impede valid results, as 

was the case with the historical cartography here. 

 Any future research of this nature would necessarily start with a review of the 

archival data. Concerning historical cartography, the method of production and scale are 

important considerations for glacial studies. Smaller scales should have more accurate glacial 

margins, however, only the most careful fieldwork can render the precision required. Plane 

table methods may produce satisfactory results, but it depends on the generalization decisions 

made by the cartographer. Maps produced from aerial photography can generally be 

considered accurate to within the limitations of scale, but they should be assessed as well. 

Therefore, the best practice would be to start with a cartometric evaluation of the maps planar 

accuracy as outlined in this work. If this is found to be acceptable, then a historic DEM can 

be generated as described here, and compared to modern sources of elevation data. When 

combined with multi-temporal glacial extents, map analysis can produce robust estimates of 

changes to both glacial area and volume.  

The next step would be to evaluate the quality, format, and orientation of the original 

photographs to determine the kinds of rephotography analysis possible. The comprehensive 

work done here suggests that for glacial change monitoring, the location and capture angle of 

photographs plays a large role in the kind of measurements that can be derived. In general, 
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panoramic photographs of summits and glacial landscapes without a clearly discernable ice 

margin are only useful for qualitative visual analysis. Conversely, photographs taken 

perpendicular to the termini or encompassing large stable features which can be located 

within a DEM are prime candidates for quantitative measurements that yield very strong 

estimates of former glacial phases. Even without additional fieldwork, the refinement of the 

integrative techniques herein could be implemented to analyze existing scientific repeat 

photography studies with photographs taken perpendicular to the glaciers. 

Once in the field, the repeat photo stations must be matched as closely as possible. 

This may require visiting sites at different times during the day, and under different weather 

conditions, as subtle changes in lighting conditions can greatly influence decisions when 

attempting to match photographs to the landscape. It is advisable to take photographs from 

many different locations surrounding the estimated recapture location, and carefully 

document all the photo parameters in a field book. Each shot should also be bracketed to 

cover a range of exposures. By over documenting each site, there is some measure of 

insurance that at least one image will be properly matched to the historic photograph. The use 

of a laser range finder in the field could also be employed to increase the accuracy of 

landscape feature measurements that will be compared to DEM data. It may be helpful to 

document distance measurements and the bearings of capture angles directly onto 

topographic map sheets. It is also advisable to keep a GPS unit actively logging a track as the 

team moves through the landscape. This way all of the images taken during the research can 

be geotagged by syncing the timestamps. This is also a backup of the individual waypoints 

taken at the photo stations.  
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 Upon returning to the spatial analysis laboratory, it is important to immediately start 

to organize the data while the particulars of the expedition are still fresh in the mind. All 

spatial data should be entered into a well-designed geodatabase, with the proper coordinate 

system and projection assigned. The photography should be processed as outlined here and 

geotagged. It is also prudent to edit and clarify the field notes while fine details can still be 

recalled. Once all of the data is arranged, the analysis can commence. 

In closing, retracing portions of the 1910 Royal Geographical Society Expedition to 

the Turgen Mountains has clearly demonstrated the value of historical expedition material to 

the modern science of glacier monitoring. By combing thorough fieldwork with multi-

methods lab analysis, it was possible to compare the Carruthers material with remotely 

sensed data. At the time of this writing, no other study could be found that so thoroughly 

integrates historic records with modern remote sensing data for the purpose of glacial studies. 

Through the use of a breadth of techniques, some newly developed here, it is possible to 

extend the records of glacial change and peer back to a time when the „truth on the ground‟ 

was the only reliable mode of measurement. 
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