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1it
INTRODUCTION

This paper is the result of an investigation of the
approximation theorems developed by M, Manis in Chapter II11
of his doctoral thesis ([2]). The results obtained in (2]
were those needed for the author's development of Galols
theory for rings. This study was made in an attempt to
discover additional and more general cases in which these
results apply. Particular emphasis was put on the so-called
"inverse property" which can be consideréd the weakest form

of an approximation theorem,

Sections I and 11 are adagted from Chapters 1 and II
of [i] #nd contain the definitions and background material
necessary fqr Sectiﬁps III and 1V, The arguments used are
all taken from [é] or from lecture nétes of a seminar g#ven

by M. Manis during the school year of 1966 and 1967.

In Section Il1I, we introduce the concept of extending a
valuation on a ring to an extension of the ring. Except for
those dealing with the inverse property, the theorems of
Section IV are limited to these extensions. Propositions
3.6 and 3,7 are included to show that every valuation on a
ring can be extended to any integral extension of the ring;
and hence, that these extensions occur with sufficient
frequency to merit the consideration given them. The argu-

'menrs in this section are taken from the same sourées as

i



iv
those in Sections I and Il with the exception of 3.6 which
was adapted from a more general theorem on page 255 of (1]’
and was simplified to its present form by M. Manis in the

course of this writihg.

Part 1 of Section IV outlines the approximation theorems
obtalnable for valuations on a field and indicates the results
desired for valuations on a ring.‘

Part 11 of Sectioﬁ IV considers the inverse property
which somewhat replaces the multiplicative inversesiinherent
in a field. PrOpositions 4,9 and 4,10 and Examples 1, 2,
and 3 are the result of an attempt to correlate the inverse
property for two valuations with the relationship between the
sets of elements from the ring for which the wvaluations assume
the value zero,

Part 111 of Section 1V shows that the conditions assumed
for Part 1V hold in the case of an integral extension.

Propositions 4.17 through 4.20 are the approximation
theorems of Chapter III of Eil. These theorems are limited
to sets of extensions of a single valuation. Proposition 4,21
concerns approximation properties 4.18 and 4.19 for sets of
extensions of more than one valuation; that is, given
conditions which -make the previous theorems apply in the
special case of extensions of a single valuation, then the
inverse properﬁy and 4,18 m"extend" to finite sets of distinct

pairwvise~-independent extensions,
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The material covered in this paper 1is but a beginning
of a compléte approximation theory for rings. Many cases

and éituations are still open to investigation,



SECTION I
VALUATIONS AND VALUATION PAIRS

Throughout this paper, we will use the following
conventions: "Ring" will mean "cémmutative ring with
identity", and subrings will always contain that identity.
Ring homomorphisms will always take identity to identity. |
Prime ldeals are always proper. The identity of a ring
will be denoted by 1 and that of a group by e. Once it
is introduced, notation will be assumed as standard wherever

it does not cause ambiguity. _

Definition 1.1. By a valuation semigroup G, we

mean an abelian (multiplicative) group with a zero ’

adjoined linearly ordered by a relation w<n gatisfying:
i) a<b => ac<be for all a,b,c in G, <¢#0,
ii) O.a=a.0=0=b for all a,b in G.

Definition 1.2, A wvaluation V on aring R 1is a
homomorphism of the multiplicative sémigroup of R onto
a valuation semigroup satisfying:

V(x+y) = mafo(x),V(yﬂ for all x,y in R.

We note that V(1) = e and V(O) 0 for all
valuations, If R 1is a field and t. a non-zero element of
R, then O £ e = V(1) = V(t)V(t'_'l), so V'I(EOJ) = [0]. For
this reason, in studying fields, one works with ordered

groups rather than semigroups. The condition of 1,2 is the



non-Archimedean condition in a field.

~

Proposition 1.3. Let V be a valuation on a ring R,

aquet AV=£xi.anV(_x)ﬁeg,

' P‘; = E: in R | V(x) <e], and

N, = [x tn R | V(x) = 0].

Then % is a subring of R, P, is a prime ideal of Av’
and N,, 1is a prime ideal of R. Further, if J is an

‘ideal of R, JCA,, and A, # R, then JEN,,

Proof: Note that V(-1) = e since G 1is linearly
ordered, .V is a homomorphism, and (-1)(~1) = 1., Thus,
V(ex) = V(=1)V(x) = V(x) for all x in R,. Thus we have |
A, = =A,, P, = -P,, and N, = =N_. The condition of 1.2
‘gives (A, + .\,)él\,, (Pv + PV)C Pv5. and- ‘(Nv + NV)C NV;

If x is in A, and y in P, then V(x)<e and V(y)’(e,‘
so V(xy) = V(xIV(y) < V(x)e = V(x) = e; thus AP CP,, and
P, 1is an ideal of A, a subring of R. If xis in R and
y in N,, then V(xy) = V(x)V(y) = V(x)O = O; so RN, <N, :
and N, 1is an ideal‘of. R, If ab is in Pv’ then e V(ab) =
V(a)V(b), so either e>V(a) or e>V(b), so P is a
prime ideal of A, (V(l1) =e so 1 is not in Pv'). -1f

ab is in N, then O = V(ab) = V(a)V(b), so V(a) = 0 ‘or
V(b) = 0, so N, is a prime ideal of R. -

Finally, suppose A_ #R and J 1is an ideal of R.

If J¢N , then V(a) #£ 0 for some a in J; but then ‘



V(a) = V(b)-'1 for some b in R, and V(c)> e for some
¢ in R since A # R. But then abc is in J while

V(abe) = V(a)V(b)V(c) = eV(c) = V(c) > e, s0 JFA,,

Definition 1.4. By a valuation pair of a ring R, we
mean a pair (A,P), where A 1is a subring of R and P 1is
a prime ideal of A, such that x in R\ A= xy in A\|P for

some Yy in P,

Proposition 1.5. (A,P) 1is a valuation pair of R
1ff there is a valuation V on R with A = Av and
P = P_. Furthermore, if V! is another valuation on R
with P =P , and A = A_,,# R, then there is an order-
preserving isomorphism ¢:Gv—,->G; with @eovV' =V,

Proof: Let V be a valuation on R with A = 4,
and P =P . If x in R\ A, then V(x)>e, and V(y) =
V(:ic)'.-"l ‘for some y in R, e = V(x)V(x)-l > eV(:':)'1 -
V(x)'l 80 y is in P, Now V(xy) = V(x)V(y) = V(x);l(x)-l =
e so xy is in A\ P. Thus'by 1.3, (A,P) 4is a valuation
pair of R. |

Conversely, let (A,P) be a valuation pair of R.
For x in R, define V(x) = Ez in R l xz in PJ, .and let
Gvsc = E’(x)lx 1nig‘.
Claim 1. V(x) = V(1) 4iff x in A\|P.
~ Subproof 1: If x in A\ P, then xPcP so Pc V(x).



V(x)/) (A\P) = ¢ since P 1is a prime ideal of A. If

y is not in A, then there is a p in P with yp in A\\P.
x(yp) = (xy)p is in A\P 80 xy is not in A since P 1is
an ideal of A, Thus, Xy is not in P, so y is not in V(x).
Therefore, V(x)CP so V(x) =P = V(1). ' |

Suppose V(x) = V(1) = P, 1If x is in P, then x-1l is
inP so 1 is in 6(x) = V(1) so 1-1 is in P, a contradiction.
If x is not in A, then xp is in A\ P for some p in P so
p is not in V(x) = P, a contradiction. Thus, x is in A\sP.

Claim 2, Let V(x)V(y) = V<xy). Then this is a well-
defined multiplication for G and mﬁkes q into an abelian
group with zero (= V(0)) adjoined,

Subproof 2: Let V(x) = Vta) and V(y) = V(b). Then;
t is in V(xy) iff txy is in P iff tx is in V(y) 1iff
tx is in V(b) iff txb is in P 4iff tb is in V(x) iff
tb is in V(a) iff tba is in P 4ff t is in V(ab). Thus,
V(xy) = V(ab) so V(x)V(y) = V(a)V(b) and multiplication
is well-defined., Furthermore, it is associative and commu-
tative since multiplication in R 1is; V(1) 1is clearly an
identity and V(0) a zero, and V(1) # V(0) since luis‘in'
v(0) but 1 is mot in V(1).

Fipally, if V(x) # v(0) ='R, then there is a y in R
such that xy is not in P. If xy is in A\P, then V(xy) =
V(1) = V(x)V(y) so V(x)'l = V(y). Otherwise, xylis not in
A, 80 xyp is in A\ P for some p in P; hence, V(xyp),a.

V(1) = VGOV(yp), and V(x)"l = V(yp). Thus, G\ [v(0)



1; an abelian group.
| Claim 3. Define V(x)<V(y) 1if V(y).ch(x). Then .
w<n" jg a linear ordering on G, and G is a valuation
semigroup, _ |
Subproof 3: Let x and y be in R and V(x)%V(Y).
Then there is an a in V(x)\V(¥); i.e., =xa is in P and
ya is not in P. If b is in V(y)\\V(x), then yb is in P
and xb is not in P; s0 there are t and t' in A with
txb in A\P [i.e., t = 1 if xb is in A, otherwise t is in
P since (A,P) is a valuation pai_r] and t'ya in A\ P.
Then (txb)(t'ya) is in A\\P since P is a prime ideal
of A; but (txb)(t'ya) = (tt')(xa)(yb), t.t:,' is in A, and
Xa and yb are in P, so (txb)(t'ya) is in P, a contradiction.
Thus, b in V(y) 4implies b is inl v(x), so V(x’)qfv(y)
implies V(y)€V(x); i.e., V(x) # V(y) implies V(‘x)d.V(y)
or V(y)<V(x). | |
Now if V(x)<V(y), z in R, and V(z) # V(0), then
V(y)f‘:V(x). t in V(2)V(y) = V(zy) =>tzy is in P..é tz is
in V(y)c V(x) =tzx is in P >t is in V(zx) = V(z)V(x), so
V(2IV(y) eV(2IV(x). V(z) £ V(0) DV(z)~} = v(z') for
some z' in R, 8o V(zx) = V(zy) = V(x) = V(1)V(x) = V(z2')V(x) =
V(z')V(zx) = V(z')V(zy) = V(z'2)V(y) = V(1)V(y) = V(y). Thus,
V(Y)S&V(x) V(z)V(y) ZV(z)V(x) for all V(z) # V(0); i.e.,
V(z)V(x)(V(z)V(y).. Thus condition 1) of 1.1 is satisfied.
0°V(x) = V(0O)V(x) = V(0-x) = V(0) for all x in R, and
v(0) = R%V(y)CV(O) for all y in R so V(0)Z2v(y) for



all y in R. Thus, condition ii) is satisfied, and G 1is
a valuation semigroup.
| Claim 4, V is a valuati.on on R,

Subproof 4: vV is obviously a homomorphism from R
onto G. by the definition of multiplication in G. Let
V(x) = maxEl(x),V(yﬂ. Then V(y)=V(x) so V(x)GV(y.).

If t is in V(x), then tx and ty are in P so (tx+ty) =
t(x+y) is in P so ¢t is in V(x+y); i.e., V(x)<EV(ix+y) |
so V(x+y) = V(x) = maxE(x),V(yﬂ. Thus, V 1is a
valuation on R. _

Claim 5. A=A, and P =P_. _ ‘

Subproof 5: If x is in P, then P = V(1)cV(x). ‘

" By Claim 1, V(1) = V(x) iff x is in A\P, so V(1)ZV(x)
so PcP,. Let x not be in P, Then x in A\P :'-}V(x') -
" v(l) éx is not in P_, '
P with xz in A\P = PZV(x) = V(x)cP = V(1) = V(1) <
V(x) = x is not in P,. Thus, P,<P. Therefore, P = ?v,'

or X not in A => there is a =z in’

v

and A, = Ec in R! V(x) = V(lﬂ UPv = (A\P)UP = A. Thus,

V 1is the valuation claimed in the proposition.

Now if V' is another valuation on R with A = A, #

3 ' angl P = P,,, define ¢:G;;,—'?G by #(V'(x)) = V(x)ﬁ. |

Claim: ® is an order-preserving isomorphism,

Subproof : Note that by 1.3, N_ = N since

v v?
NVCAv A, £# R and NV,CAV,' = A, # R. Thus, V'(x) = |
VI(0) = Vi(y) iff V(x) = V(0) = V(y). If V'(x) =



V'(y) # 0, then there is a z in R with xz in A,\NFP,s =
ANE,»  V'(1) = Vi (xz) = V' (x)V'(2) = V'(¥yIV'(2) = V'(y2)
so yz is in Avt\Pv! = AV\P « Thus, V(xz) = V(1) = V(yz),
and V(x) = V(x)V(1) = V(x)V(yz) = V(x2)V(y) = V(1)V(y) =
V(y). Interchanging V and V' we obtain. V(x) = V(y) =>
Vi(x) = V'(y), so V'(x) = V*'(y) iff V(x) = V(y). Thus,
¢ 1is well-defined and "l-l", @ is obviously a homomorphism
" and "onto" by the way it is defined, so @ is an isomorphism.
Finally, V'(x) <V'(y) = V'(y) £ V'(0) so that there
is a z in R such that V'(yz) = VI(1) = e'., V(yz) = ¢(e')
= e. Thus, V'(xz) = V' (x)V'(z) < VI (yIV'(z) = V'(yz) = e',
so xz is in P, = P, and V(xz) £ e. ‘I.‘hu.s, V(x) = V(x)V(yz)=
V(xz)V(y) < eV(y) = V(¥), so @(V'(x)) < @(V'(y)) as
claimed.
Thus, @ is the order-preserving isomorphism claimed
in the proposition; and hencgfort:h, we will speak of the

valuation determined by a valuation pair (A,P). .

Corollary 1,6. If (A,P) is a valuation pair of R,
then i) R\ A 1is closed under multiplication;

11) R\\P 1is closed under multiplication;

1ii) xy in A = x in A or y in P;

iv) x™ in A = x in A;
v) x% 4n A\P =) x in A\P';

vi) A= [xin R]xPCP]; and

vii) A=R or P=EcinA‘xyi.nAforsomey'not i.nj.
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Proof: Let V be the valuation assoclated with (A,P)
in 1.5, Translating, we have
| 1) V(x)V(y)>e 1if V(x)>e and V(y)>e:;
11) V(x)V(y)Z e if V(x)= e and V(y)=e;
111) V(x)V(y)Le D V(x)<e or V(y)<e;
iv) VW(x)P<e D V(x)<e;
v) V(x)P = eDV(X) = e}

vi) V(x)£e iff V(x)V(y)<e for all V(y)<e;

. vii) 1If V(z)> e for some =z in R, then .V(x)Le

1iff V(x)V(t)<e for some V(t)>e.

Proposition 1.7. Let V be a valuation on a ring R,
a,b in R with V(a) £ V(b). Then V(a+b) = maxE(a),V(bﬂ.

Proof: Without loss of generality, we may assume
V(a)>V(b). Then V(a) = V(a+b-b) £ max[V(a+b),V(b)] =
V(a+b) < _max&(a),V(bﬂ = v(a), so V(a) = V(a+b).

Corollary 1,8. Let V be a valuation on a ring R
n .
and a;inR for i = 1,2,°**,n. If V(i:élai)é max V(ay),

then V(aj) = max V(a;) = V(a,) for some J # k.
Proof: Let V(a,) = max V(ai). - Then since V( 2 ai)"-_-. :
J i=1

V(ié_lgi + aj) < max V(élai),\f(ajj,' V(i.%lai) = V(aj) by .-
i#3 i#3 143
. n ' .
l1.7. But V(iégai) < rir-x:.:j: V(ai), 80 T:’j‘ V(ai)?.'. V(aj) - |

max V(a;); that is, V(aj) - ;;23; V(.ai) = V(a, ) for some k # j.



Corollary 1.9, Let V be a valuation on a ring R

and ai in R for 1 = 1,2,ooc,n,n+1,oo-o ,k with V<ai) =0

14 n
for n<di<€k, Then V(< ai) = V( 281).
i=1 i=1

K n 13
Proof: V(% a;) = V( = a; + z ai) =
j=1 i=1 i=n+1

n k n
max 4V ( Zlai),V( = 1ai) =Vv( £ ai). The last equality
i= i=1

i=n4
k k
holds since V( <= ai) =0 by 1.3, vV( £ ai) < v( Zai)
i=n+l i=1 i=1

n k
implies V( Z ai) =V( £ a;) =0 by 1.7, but this
i=1 =n+1 '

contradicts the fact that zero is the least element of Gv’

so the claimed equality holds,

Definition 1,10, For R a ring, let T = T(R) =

EA,Q)I A is a subring of R and Q is a prime ideal of :\].
For (A,Q) and (B,S) in T define (A,Q) £(B,S) if ACB
and Q = A/ S,

nEn g clearly an inductive partial order on T, so
by Zorn's Lemma, T has maximal elements. We call maximal
elements of T maximal pairs., Note that if (A,Q) is in T,
then there is a maximal pair (B,S) with (B,S) Z(A,Q).

Proposition 1.11. (A,Q) is a maximal pair of R

iff it is a valuation pair of R.

Proof: If (A,Q) is a valuation pair and (A,Q) = (B,S),
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and if x is in B\A, then xp is in A\Q for some p in
Q€S; but x in B and p in S imply that xp i1s in S so that
¥xp is in (SNA)\Q contradicting (A,Q) < (B,S). Thus,
B\A =9, so B=A and S =0Q; i.e., (A,Q) is a maximal
pair. |

Conversely, let (A,Q) be a maximal pair of R, x in
R\A, B =A[X], and S = BQ. Then S 1is an ideal of B
with Q&(S/NA). 1f Q= ANS, then A\Q 1is a multiplicatively
‘closed subset of B with (A\Q)/)S = §. Then by Krull's Lemma
(see [1] page 253), there is a prime ideal S' of B with Scs!
and (ANQ)AS' = . That is, Q = S'/) A" and (B,S') = (A,Q).

But since A # B, this is a contradiction; hence, Q'g(SﬁA).
n i
Thus, there are p; inQ and a' in A Q with éopix = a',
. n i < '
so (%) £pix = a'-p, = a is in AN\Q. We can assume n .
' i=1 ' '

is minimal for an expression of this form.

If n=1, we are done: Pyx is in A\Q.

> i-1
Suppose n>l. Let y = 2_1pix
, i=

e« Then xy = a ‘is in
A\Q. If y is in A\Q, then ya is in A\Q and ya =

2 i-1 _ 2 i-1 | SR,
Z (pyxy)x = ﬁpi'x » an expression of form (%) with
i=1 i=1 : . |

degree n-1<n, a contradiction of the minimality of n.

Thus, Yy is not in A\Q.

If y is not in A, then the same arg’uinent used for x
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. m i
gives 93 in Q and b in A\Q with (%) -iﬁlqiy
Again, we can assume that m 1is minimal for an expression
of this type., Now either 1) nZm or 2) m>n,
Case 1) . m " i
> n _ - n-i.
If n2m, then p _bx j.glpnqi_(xy) X

n-1 -
a,b in A\Q ':bab in A\Q, and ab = élp bxi' + pnbx =
i

2 bx +éan(xy)i“"=n;_1pbxi+ 2.9
i=1 i - of=1 L jfn-mnnj

Cay)?Ixd =

n-1 .
i
iélqi"x E qo' if n=m, but then (ab-qo') is in A\Q '.

This is of form (%) and degree n-1<n, a contradiction;
therefore, m >n.

o 2 : o -
ase 2) Using qmaym= i‘%lpiqm(xy)iym'i, we obtain

m-1
ab = = pi"y'1 contradicting the minimality of m. "'There=-
fore, y is in A and ¥y is not in A\Q, so y is in Q;

thus, n=1 and (A,Q) is a valuation pair of R.
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SECTION Il
DOMINANCE

Definition 2.1, If V and V' are valuations on a ring
R; we say V' dominates V and write V'=V 4if there
is an order homomorphism @ of GV——>GV' with V' = geV,

We say V' =V if ¢ 1is an isomorphism.

Proposition 2,2, Let V and V' be valuations on R.
Then V'ZV iff Nvg PV.CPVCAVCA\,..

Proof: Let V=V, _

1) 1f V(a)<e, then V'(a) = #(V(a)) = @(e) = e' since
@ preserves order; i.e., AvéAv..

2) 1If vi'(a)y<et', then @(V(a)) = V'(a) < e' = @(e)
so V(a)2e but V(a) = e=>D@(V(a)) = @g(e) = e', so0
V(a)<e; i.e,, P, CP,.

3) 1f V(a) = 0, then V'(a) = @§(V(a)) = #(0) = 0 so0
N,CN ,CP,.

Conversely, let ch PV,C PVC !\,C A,+. Note: Nv = Nv'
by 1.3. Let @(V(a)) = V'(a).
Claim 1, ¢ 1is well-defined.
Sﬁbproof 1: Let V(a) = V(b).
1) 1If V(a) = V(b) = O, t:'hen a,b are in N, = N,
gso V'(a) = Vi(b) = O,
ii) 1r V(g) = V(b) # O, then there is a =z 1.1;1 R
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such that V(az) = e = V(a)v(z) = V(b)Vv(z) ==. v(bz), i.e.,
az, bz in (Av\pv)c(Av,\pv,); but then e' = V'(az) = V'(bz)
s0 Vi(a) = V1 (a)vr(bz) = V' (az)V'(b) = V'(b).

Thus V(a) = V(b) = Vi(a) = V'(b), and § is well-
defined and clearly a homomorphisfﬁ.

Claim 2, $ is order-preserving.,

Subproof 2: Let V(a) £V(b). If V(a) = 0, then
Vi(a) = 0 £Vi(b) since N, = N,,. If V(a) # O, then
V(b) # 0 80 there is a z in R with V(bz) = e.

V(az) =V(bz) = e so az is in A,cA_,; and thus,

Vt(az) =< e' = @(e) = #(V(bz)) = V'(bz). Therefore,

Vi(a) = Vi(ade' = V'(a)V'(bz) = V' (az)V'(b) £ e'V'(b) =
vi(b). Thus, ¢ ‘is the order-homomorphism required in 2,1.

Note that Pv' is a prime ideal of Av since
PvtcAchv' and P,¢ is a prime ideal of Av"

Proposition 2.3. If P and P' are prime ideals of A,»
NVCPCPV, and NVCP'C-PV, then PcP' or P'CP,

Proof: Let x be in P\P' and y be in P'\ P, then
V(x) # 0 and V(y) # O since ch P/AP' 8o there are
x',y' in R with V(xx') = e = V(yy'). Now V(x) < V(y) or
V() £V(x).

Case 1) V(x) < V(y) gives V(xy') = Vv(yy') = e 80
Xy' is in A,. Now y is in P' so yxy' is in P'; but then;
x in A, and yy' in (AV\PV)C(AV\P') imply that x is |
in P* s:l.rgcg P'* 1is a primé ideal of A,, which is a
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contradiction of x in P\ P'. Thus, V(x)4V(Y)-

" Case 2) V(y)2£V(x). Interchanging x and y, x' and y°',
P and P' in the above argument, we obtain y in PN (P'\ P),
a contradiction., Thus, V(y)$v(x)iv(y) which contradicts
the linear order on G,. |

Thus (P\\P') =& or (P*\\P) = §; L.,e., P'CP or
PCP',

Henceforth, we will use the sign ## for a contradiction.

Proposition 2.4, If V, V', and V* are valuations on

R, V'=V, and V">V, then V'>Vn or VW=V,

Proof: P, <P, or P,,<P,, by 2.3. Without loss
of generality, we may assume év.c Pone Lf x is not in A,,,
then x is not in A, so t:here‘ is a yin P, with
xy in ANP,C A NP, and xy in ANE,C A,NP,n 5O
Vixy) = é, Vi(xy) = e', and V"(xy) = e"., Now V' (x)De'>>
Vi(y)<e', i.e. y in P,,CP = V" (y)< en = Vn(x)> e = x not in
Ayne. Thus M, c M,n 8o A< A,y and we have -
Nyw = N,y C P, CP,,CAnCAy 3 Lee., VIZVn, |
Thus [:V'l V' a valuation on R and V'ZV for a fixed
valuation V] is linearly ordered by "<w,

Definition 2.5, A subgroup H of a valuation semi-
group G 1s said to be isolated 1f O is not in H and
vhenever a,b,c are in G with a<b=c¢c and a,c in H

then b is in H,
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Proposition 2.,6. The isolated subgroups of a

valuation 'semi.group G are linearly ordered by inclusion.

Proof: Let H and H' be isolated subgroups of G and
suppose that a is in H\\H' and b is in H'*'\H. Then
a,b in G implies that a<b or b<a. |
Case 1) a<b.
" 1) If e<a, then e<a<b, e,b in H' give
a in H', 13/ 8
ii) If aZ£e and bé.e, then a<b<e, a,e in H
give b in H, .
1ii) If a<e =<b, then b'lfe. 1f a..‘_b'lfe,
-1

then a,e in H give b * in H, ##. 1If b-lfa.‘.e, then

b-l,e in H* give a in H', ##.
Interchanging a and b, H and H', we likewise obtain
a contradiction for case 2); but case 1) or case 2) must

hold for a,b in G, so HCH' or H'CH.,

Proposition 2.7, Let V be a valuation on R and
G = Gv its valuation semigroup. Then there is a "l-1"
order-preserving correspondence between I1(G) =1 =
Ei 'H is an isolated subgroup of é] and D(V) =D =
E]" V' a valuation on R with V= ‘a.

Proof: For V' in D, let f(V' ) = ¢-1(e') ‘where @
is the order-homomorphism in the definition of V'2>V,
Claim_1. £:D—>I; 1i.e., ¢-1(e') is in I,
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Subproof l: 1f a,b,c are in G, a=b <c, and
#(a) = #(c) = e', then e =l @d(a) =d(b)=¢g(ec) = e' since
@ 1is order-preserving, Also, e' = ¢(aa"1) = ¢(a)¢(a'1) =
¢(a'1) and e' = ¢(a)d(c) = P(ac) so b, a~1
¢-1(e') 80 ¢'1(e') is an isolated subgroup of G and

, ac are in

hence in 1.
Also f 1is obviously well-defined and "l-1" since
VP = V" implies V'(x) = e' iff V"(x) = e". .
Claim 2, For H in 1, there is an order-homomorphism"
¢H =@ of G onto a valuation semigroup G¢ov‘ with
¢~1(e) = .
Subproof 2: Set @(a) = aH for all 'a in G. Then
since G abelian implies H normal in G, @(G) = ((G\[Oj )ﬁl) U[.Oj,,
with the usual coset multiplication, is an abelian group |
with zero adjoined and‘ H#£ OH= 0, _
Define: aH<bH if aH # bH and a<b.
If aH # bH and a<b ( => ab~'ZLe), then ah'>=bh" for

lin  and e,’h.."'1

‘some h',h" in H gives e>ab~l>nt" h" 4in H
so ab~! in H since H isolated so aH = bH, #i#. Thus,
ah'< bh" for all h',h" in H so "<&" is well-defined on
@#(G) and linear since if aH,bH are in #(G) and aH £ SH,
then a £b s0 a<b or b<a, |

It is easily checked that @(G) with this definit»ionf"
-of "ew sgatisfies conditions i) anci ii) of 1.1, Thus, |
@#(G) 1is a valuation semigroup, and @ is obviously an

order-homomorphism onto. #(a) = e = H iff a in H so
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@#~1(e) = H. Further, @oV = Vi 1is clearly a valuation on
R with Vy2V. Thus, giveh H in I, there 1s a valuation
Vg on R with f(VH) = H; L,e.,, f 1is onto.

Claim 3., Let V', V" be in D with V*=V', Then
£(VYYC (V).

Subproof 3: There are order-homomorphisms ¢,@°,0"
such that @':G—?Gyr, @":G—>Gyn, and @G:G;7>Gyn.
Bogr (V(x)) = (V' (x)) = V' (x) = ¢g"(V(x)) for all x in R, i.e,
all V(x) in G. Thus ¢go@g' = ¢gn so ¢"'1= ¢"¥a¢'1~ so
gr=l(em)= gr=1(g"1(em)) D@1 1(e"); L.e., E£(VTIDE(VT).

Thus, f is the claimed "1l-1l" order-preserving

correspondence between 1 and D.
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SECTION III
EXTENSIONS

Throughout this section, let V be a fixed valuation

on a ring K, and let R be an extension of K.

Definition 3.1. A wvaluation W on R is called an
extension of V to R 1if there is an order-isomorphism

@ of Gv into G, with O(V(x)) = W(x) for all x in K,

Proposition 3,2, Let W be a valuation on R. Then
the following are equivalent,
i) W 1is an extension of V to R.
. - o _
ii) (Aw’Pw) = (Av’Pv)' and N, = anK.
iii) (Aw’Pw) = (Av’Pv) and w,K is a valuation on K.

Proof: 1) =ii)
If x is in A, W(x) = &(V(x)) < d(V(e)) = e
since @ 1is order-preserving, so A,CA . If x is in K,
CW(x) = (V(x))<e iff V(x) <Le since @ is an order=
isomorphism, so P, = Pth = PN Av' Thus, (Aw’Pw) = (Av’Pv)'
Also, N_AK is an ideal of K and (N, n K) C(Pwﬂ K) = P, CA,
S0 (Nwﬂ K)c:Nv by 1.3. If WV(x) = 0, W(x) = #(V(x)) =
#(0) = 0, so NVC(an K); and hence, N AK = Nj.
11) = 144)
If x is in K with W(x) # 0, then x is not in N,
so there is a y in K with xy in I\,\PVC AAPw. W(xy) =
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e = WxW(y) so W(y) = w(x)~l, Thus, W(K) is a valuation.
semigroup contained in G, i.e., W'K is a valuation on K,
iii) = 1)

(AWIK’ ?W'K) = (A,NK,P_NK) > (A,,P,) so

(AwnK,Pwn K) = (AV,PV) since (A\,,Pv) is a maximal
element of T(K). Thus, by 1.5, there is an order-isomorphism
@ of Gv onto G,, with _W,K(x) = §(V(x)) for all x in K, |

CG .
w

4G Ix
an

W|K
Henceforth, if W is an extension of V to R, we will

identifty Gv with Gw and thus conside:_:' GvCGw‘

Ik
Proposition 3.3.. V has extensions to R iff

Proof: If V has an extension W to R, then N, €N

so (KARN,)C(KNARN,) = RAN, = N,. Thus, KARN =N,
- Conversely, suppose " K/) RN = N, Then let Q = P_ + RN,

w

and B = Av + RNV. Now Q is an ideal of B, and A, =BfIK
and P, = QNK =QJ A, 8o Q/')(AAPV) = ¢, Thus, by Krull's
Lemma, there is a prime ideal Q' of B with Qc£Q' and
Q'N (ANR,) = 85 i.e., (B,Q') Z (A,,P,). If (A_,P) 1is

any valuation pair of R with (Aw,Pw)Z (B,Q'), then
(AP) = (A,,R,). NSRN,CBCA, so RN, €N, by 1.3;
i.e., KRN, = N, €(N;NK). (NGAKIC(PGAK) =P so
(N,NK)CN,; hence, N_,/IK=N, and W is an extension of

V to R by 3.2,
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Definition 3.4, If W extends V to R, we write

{ic Noly/(c\[@ B VD] as c,/6,. Ve say that. G_/G,

is torsion iff for each a in G, there is an integer n>0

with a" in G.

Proposition 3,5, Let V and V' be valuations on K
with V'>V. Then | |
1) V has extensions to R 4iff V' has extensions
to R. |
ii) 1f W 4is an extension of V to R, then
there is an extension W' of V' to R
with W'>W;: and further, if Gw/cv. is

torsion, then the W' is unique.

Proof: N, =N, by 2.2 so i) is clear by 3.3.
ii) Let H be the isolated subgroup of G, corre-

sponding to V' (confer 2.,7)., Let S = .[a in Gw’there are

b,c in H with b<£a<c]. Then S is clearly an isolated

subgroup of G"7 with 8/ Gv = H, Now . let . W' be the .

valuation corresponding to S so that W!'Z2ZW., Note that

in proving 2.7, we also proved that Gv/H gGv. and

6,/s 6 _,. Define ¢:6,/H—>G_ /S by #(aH) = as

for all a in G,. aH = bH 2ab™! in u =;ab'.1 in s =>

as = bs so @ is well-defined. 1f. a,b are in Gv and

as = bS, then ab~) 1s in SAG, = H so aH = bH .so @&
is "l-1", ¢ is onto ¢(Gv/ H) and clearly a homomorphism
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with the usual coset multiplication, so ¢ is an isomorphism
onto ¢(Gv/H)' If aH <« bH, then aH # bH and a<b so
aS £# bS and a«<b; i.e., aS £ bS. Hence, ¢ 1is order=-
preserving. Thus, G, = G,/H Z@(Gy/H) €G,/s ZG,>
and the map required in 3.1 is the obvious one; so W'
extends %I'.

Claim 1. If W" 1is an extension of V' to R with
W*ZW and S' is the isolated subgroup of G,, corresponding
to W", then ScsS',

Subproof 1: By the above argument, W" extends the
valuation V"2V corresponding to S'/) G,. By 3.2,

(A usPyn) = (A,NK,P W NK) = (A,,,Pyn) so by 1.5,

Gys = Gya; that is, V' = V7, Thus, by 2.7, S'AG, = H.
Now let x be in S, Then there are a,b in H = S'/) Gv with
a<€x=b, s0 x is in S' since S' 1is isolated.

Claim 2. If G,/G_ 1is torsion, then S'CS.

Subproof 2: Let x be in S'; then x is in G, so

there is an integer n>0 with x" in G, i.e., x™ is in

S'I\Gv =H, 1) 1If x>e, then xn_>__ x>e and xn,e are in H,
so x is in S, 2) 1f x<e, then xnsx_t_e,' so x is in s,
Thus, if ‘GW/Gv is torsion, then S = S' so W" = W!

by 2.7; i.e., W' is unique.

Proposition 3.6, If (A,P) is a valuation pair of a
ring R, then A 1is integrally closed in R.

Proof: Let A be the integral closure of A in R,
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Then ACA clearly. Let c be in A, then there are a; in A
. : ‘n-l i | |
and n>»O0 such that P = éaic . Let V be the valuation
i=0
on R associated with (A,P). Now if c is not in A, then

V(e)>e so V(ajel) 2v(cl) < V(cP) for i<n. But then
n-1

v(c®) = V(= aici) < maxEl(aiciﬂ <L v(e®), ##. Thus, c is
i=0 ‘ i<n ' )

in A so ACA; and hence, A = A,

l?ro;)ositi.on 3.7. Suppose that R is integral over K.

If V ‘is a valuation on K and W a valuation on R with

(Aw,Pw)?_'(é\,,Pv), then W extends V to R.

Proof: KAN, CKAP =P, CA, and KAN, is an
ideal of K, so KAN,cN, by 1.3. |
Let ¢t be in Nv and x in R. Since R is integral over

n-
K, there are a; in K and n>0 with x? 4 éoaixi' = 0,
_ i=

n-1 '
Then tP?.0 = 0 = (tx)? + £oaitn"i(tx)i. But for i«n,
i= )

aitn'i is in NVCAW; that is, tx is integral over Ay,

Since A is integrally closed in R, tx is in A, Thus,
RNVCAw so RN,C€Ny, by 1.3, Therefore, N, < RN,NK :an K,
and W extends V by 3.2,

Thus, evefy valuation V on K has extensions if R

is integral over K.
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Proof: Choose Yy in F* with Vi(y1)<vi(xi) and

use 4.2.

Proposition 4.4. 1If XiseeerX, are in F*,' then there
is an a in F with Vi(a) = Vi(xi).

Proof: The a in 4.3 works since V;(a-x;) £ Vi(xi) <
maxEIi(a)‘,Vi(xi.ﬂ implies V (a) = V;(x;) by 1.7,

Proposition 4.5. Let Xj,...,%X, be in F¥; then there
is an a in F with Vv;(a) <Vi_(x‘,‘_).

Proof: Choose y, in F* with V,(y;) £V (x3) for

each 1 and use 4,4 on the yi' Se

Proposition 4,6. Let L be the set of all valuations
on F and let x be in F*, then there is a y in F with
V(xy) = e for all V in L.

Proof: Let y = <1,

Altough this last proposition is quite trivial in the
case of fields, we experience considerable difficulty in
obtaining a similar result for rings. Part 1l is directed

to this problem,
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Proof: Choose y, in F*¥ with V.(y,) £ V.(x;) and
i iV ivti

use 4.2,

Proposition 4.4. If XyseeeyX, are in F*, then there

is an a in F with Vi(a) = Vi(xi).

Proof: The a in 4.3 works since Vi(a-xi) £ Vi_(xi) <
mafoi(a),Vi(xi] implies V;(a) = V;(x;) by 1.7,

Proposition 4.5. Let Xj,...,X, be in F¥*; then there
is an a in F with- Vi(a) <Vj_(xi).

Proof: Choose y; in F* with Vi(yi_)LVi(xi) for

each 1 and use 4.4 on the yi'se

Proposition 4.6. Let L be the set of all valuations
on F and let x be in F*, then there is a y in F with
V(xy) = e for all V in L,

Proof: Let y = x"l.

Altough this last proposition is quite trivial in the
case of fields, we experience conslderable difficulty in
obtaining a similar result for rings, Part 1l is directed

to this problem.,
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PART 11
THE INVERSE PROPERTY

Definition 4.7. We say that a set L of valuations on
a ring R has the inverse property if for every x in R
there is an x' in R such that V(xx') = e whenever V is
in L and V(x) £# 0. L is said to have the strong inverse
property if for every x in R there is an X' in R with

V(xx'=1) £ e whenever ‘V is in L and V(x) # O.

Proposition 4.8. Let L be a set of valuations on R
which has the inverse property and L' a set of ‘valuations
on R such that for every V' in L' _there is a V in L wit;h
ve2>v., Tﬁen LYL' has the 'in;rerse property; in particular;

L' has the inverse property.

Proof: Let x,x' be in R with V(xx') = e whenever
Vis in L with V(x) # O, Let V' be in L' and suppose
VI2V, Vin L, and V'(x) # 0. Then V(x) # O by 2.2 so

V(xx') = e. Then xx' is in A\P_ € A \P_,, so V'(xx') = e.

Proposition 4,9. Let V,V' be valuations on R with
PV'CPV,.
iff A ,CAUN,.

Then L = [V,VB satisfies the inverse property

Proof: If A, €A UN,,, then A NP, c (A UN_ NP,
= APy  CA\P, and N CcN, by 1.3. If x is in R ‘and
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Vi(x) # O, then there is an x' in R with xx' in
AV.\PV.CAV Pv so V'(xx') = e #nd V(xx') = e.
If L satisfies the inverse property and x is in
\(&,UNV.), then V'(x) # 0 and V(x)>e so there is an
x' in P, cP,, with V(xx') = e and V'(xx') = e. X' in
P,y => Vi(x')<e =>VI(x)>e = x in M,,. Thus, “A UN,)c

\Av' » S0 AL C (A, UN,4).

Example 1, Let Q be the rational numbers and Qp =
[ab=1| b0, (a,b) = 1, and (b,p) = ﬂ Let R = Q[¥],
A, = QP]};], P, = pQP[:g, Ayv = Q, + xR, and P, =DpQ, + xR.
Then (A{,P,) and (A,,P,,) are valuation pairs of R, P, c
P,y» and N,y = xR, all of which the reader can check for .
himself. € = (1 4+ xp~!) is in A,,\ (AW UxR) so [V,V7]
does not satisfy the inverse property. Specifically, it is
not satisfied for t since t in ANPys => V'(t) = e
and t not in Av::) V(t)>e; and if V(tt') = e, then

V(t')<e =t is in P ,CP,, = VI(t')Le p Vi (tt*)<Le.

Notice that in Example 1, "x" is in Nv\Nv so that
Nv' # Nv' This observation led to the conjecture that perhaps
if Nv = Nv" then EV,V-'J satisfies the inverse property.

This is not always true as Example 2 will show,

For V a wvaluation on a ring R, R/Nv is a domain
and V(x + Nv) = V(x) defines a valuation on R/Nv with

Gy = Gy. Letting F be the quotient field of R/N, and
W defined by VW(ab"l) = V(ac) where V(bc) = e, then W
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is an extension of V to F with G, = G; = Gye. The
details of these statements are easily checked. Thus, if

V and V' are wvaluations on R with Nv = N then we

vt?
can consider N = Nv' = C@] since R//Nv = R Nv' and

V(x + Nv> = O iff x is in N, = N,.

Proposition 4.10., Let V and V' be valuations on a
domain R with N, = Ny, =[o] ana F be the quotient
field of R. Then the following are equivalent:

i) L= [?,fg satisfies the inverse property.,
ii) F = E:y'll x is in R and y is in SZ! where

| s = (ANP,N (AV\PV, ). |
iii) J a principle ideal of R with J/\S = ¢

implies that J = [0].

Proof: i) = ii), Let L satisfy the inverse

property and let t be in F. Then ¢t = xy'l for some

x,y in R, y£0. y in R, y#£0 imply that there is a =z in R

with V(yz) = e and V'(yz) = e by the inverse property.

Thus, ¢t = xy'l = xz(yz)'l, and Xz is in R and yz is in S.
ii) = i),' If x is in F, then there are y,z in R

with x = yz"'1 and V(z) = e = V' (z). If W and W' aré

the extensions to F noted preceeding the proposition, then.

W(x) = W(yz"!) = v(yIV(2)! = V(y) and Wi(x) = wi(yz"}) =

V'(y)V'(z)'1 = V'(y); i.e., if x is in F, then there is é

y in R with W(x) = V(y) and W'(x) = V'(y). Thus, :I.f'l
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t is in R, then 1:-1 is in F so there is a y in R with
w(t~l) = v(y) and’ w'(t‘l) = Vi(y) so e = W(t)W(t-l) =
V(t)V(y) and e = w'(t)w'(t"l) = V'(t)V'(Y).
i) =>iii). L has the inverse property implies that

for x in R, x#0, there is a y in R such that xy is in S.
Thus, xRAS =@ iff x = O.

© iii)=>i). x in R, x£0, => xR £ [0] = ®NsS # &;
i.e., there is a y in R with xy in S.

Example 2. Let Z be the integers, Let R = ZE"X-E’ "
% = Z[x], P, = xZ[ﬂ, A,y = ZE{"q , and P, = x'IZE:-'_}] .
The rea&er can ‘c:heck that (AV’PV) and (Av?’Pv') are
valuation pairs of R, N, = N_, = [6], and (AV\PV)/) (AVNPV,)
= 2. (1 + Xx)RNZ =9 but (1' + X)R # [5] s0 EI,VH' does |

not satisfy the inverse property. Also note that F #

E:y"ll 2 is in R and y is in j, since 11 cannot be
+X'

written as zy':l where =z is in R and y is in Z, Also

if t=1+x, then t is in A‘XPv and t is not in A_,, so
V(t) = e and V'(t)>e. Therefore, if V!'(tt') = e, then
ve(er)<e, i.e., t' is in P,,; but then, t' is not in A,
so V(tt!) = V(t')De.

Example 3, Let p and q be distinct prime integers.

Let R = ZE:,x"y,: A, = Z[x:l + pR, P, = XA, + pR,. Ay =
ZE:'H + qR, and Py = x'lAv, + qR. Then N,, = pR and

N{,, = qR; but EI,V] satisfies the inverse property. If

n .
t is in R\(NVU NV')’ then t = iﬁoaixl'k, aj is not in
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PZ for some j ‘and a,. is not in qZ for some r. Let J =
minElaj ié not in p?_'—_] and M = maxE: ' a,. is not in qZ].
Then t(qx*"J + px*M) is in (.‘L‘,\P )ﬂ(Av\Pv,) The
detalils are left to the reader. Thus, the fact that EI Vj

satisfies the inverse property does not imply that N, = Nys.

PART 111
ALGEBRAIC EXTENSIONS

Throughout Part III, R is assumed to be an extension
of a ring K, V a valuation on K with extensions to R,

and L a set of valuations on R which extend V.

Proposition 4,11, Let J 'be an ideal of R with
je€ v, [wini] ana JAK=1N,. 1f R/J is algebraic

over K/Nv, then 'L satisfies the inverse property.

Proof: Note that W(t) = 0 for all t in J and W in L.

If x+J is in R/J, then there are aj in K and
Z i

t in J with a, not in J (V(a,.) # 0) and Z a;xt = t.
i=0

Let s = minE. l V(a;) # (ﬂ. Then for W in L, O = W(t) =

w( 2 a; xi) = W(if aix W(xs)W(i;, aixi"s). Thus, if
=s =s

W(x) # 0, then W( é.a xi-s) =0 = W( f_ = g +-a | <
i=s © i.-s+1 s
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s;—x: so by 1.7, W( 2 aixi-s) =

maxE( 2 ai_xi's),W(a JZ

i=s+l

z jes-1 .
Z aj;x ). Choose a' in K with

Wag) = WGxM( 2
=84

. > i=sg=1
v(a a;) = e. Then with x' = a'( £ ajx ), W(xx') =
i=s+l1

W(a'as) = V(a'as) = e whenever W is in L with W(x) # O.

Proposition 4,12, Let J =/]E\Iw’ Win L and suppose

R/J is algebraic over K /(KNJ) = K/N,. Then G,/G,

is torsion for all W in L.

Let xbe inR and W in L. If W(x) =0,

Proof:
there is nothing to show, so suppose W(x) # O. Then
t inJ, and a, not in J such that

there are aj in K,

r

ﬁ%aixi = t., Since W(arx?) # 0, we have 0 = W(t) =

i= '
r . |

W( = aixi') Z. max E(aixlﬂ , S0 by 1.8, W(aixi) = maxEJ(aix‘{)}
i=0

= W(ajxj) # 0 for some i #£ j.
Assume i>j, and let W(x)'1 = W(x') and W(ai)-l =

W(a'); then W(xi'j) = W(aixi)W(x')jW(a') = W(ajxj)W(x')jW(a -1

i?

= W(aj)W(a') is in Gvf
Proposition 4.13, Let W be inL, W'ZW, and V' ="

W"K. 1f Gw,ﬂcv is torsion, then so is Gw./ﬁGv;.

Proof: Let ¢:GG-4>Gw, bé the homomorphism such that
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W' = pPpoW., Then V' = PpoV, If @(x) is in Gw" then

x® is in G,, for some n>0 so @(x®) is in Gy e

Proposition 4.14. If W is inL and G /G, 1is
torsion, then W(R) = [e,0] iff V(K) = [¢,0].

Proof: V(K)cW(R) so "w=>" is clear. W(xn) is in
Ee,(ﬂ for some n>0 only if W(x) is in @,6_] so "& ¢

is also clear.

Note 4,15, If R 1is integral over K and J is any
ideal of R, then R / J is integral (and hence algebraic)
over K/ (KNJ). Clear.

PART 1V
APPROXIMATION THEOREMS

In Part 1V, we assume that R is an extension of K,
V 1s a valuation on K, and L 1is a set of extensions of
V to R with the inverse property and such that GW / Gv
is torsion for each W in L. 1In some of the results, we

also require Pw;sz if W,W!' are in L and W # W',

w?
The following proposition indicates the effect of this

additional restriction.

Proposition 4.16., Let W and W' be distinct elements
of L with P, ,cP,4. Then P, 1is an ideal of K, and R
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is not integral over K.

Proof: If P is an ideal of K, then P and P,

v
are ideals of R by 4.14, Then A, = A, =R, and if R
were integral over K, we would also have P, = P, (see [4]
page 259), contradicting P, and P, distinct.
It remains only to show that if Pv is not an ideal
of K, then PW¢PW,.
1f 4Pv is not an ideal of K, than P, and P, are
not ideals of R, so by 1.6, Ay # A

Case 1) AW\AW, # @. Let ¥y be in Aw\Aw" Then
W(y)<e<W'(y). Since Gw'/Gv is torsion, there is an
integer n>0 and an a in K with W'(y") = V(a). Then
Wi(y) = Wwi{y?*lar) > e while 'W(yn"']'a') = W(yn"'l)W(a') Ze
since V(a') < e, Thus, y"™lar ig in Pw\Pw"

Case 2) Aw'\Aw # #. By Case 1), there is a y in R
with W(y)> e > W'(y). Then W(l + y) = W(y)> e while
Wl +y) =Wi(l) =e, so W((lty)')Le while W'((l+y)') =

e. Thus, (l+y)' is in Pw\Pw"

Proposition 4,17, Let Wj,...,W, be distinct elements

of L with pwiyépwl if 14 1. Then there is an x in R

with Wj(x) Z e and Wi(x)< e for i #1, Further, if

P, is not an ideal of K, one can require wl(x) > e,

Proof: Case 1) P, an ideal of K. Then P, is
. i
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a prime ideal of R, i=1%i,...,n, Choose x; in P“le’
i B

n
i=2,3,...,n and let x = 7fxi.
i=2

Case 2) P, not an ideal of K. Proof by induction on n.
For n = 2, choose y in sz\Pwl. Then WI(Y) = e 7'W2(y).
Since GW?-/Gv is torsion and G, # [e,O] , there is an n>0
and an a in K\N, with e >W,(a) >W,(y"). Then with
X = a'y® we have Wl(x) = Wl(a") > e while Wz(aa') = e
W,(x). | |
Now assume 4,17 holds for r = n-1, n>2, For i = 2,3,
choose y,; in R with wl(yi) > e and Wj(yi) <e if j £1
and j #£ i. 1If Wi(yi) =e, let X; =¥y} otherwise let
x; = (14y3)'y;. | ' |
Claim, Wl(xi) > e, Wi(xi) = e, Wj(xi) < e if ‘i#£j#l.
Subproof: This is automatic if X; = Yy Otvherwi.se,‘
W1(1+yi) = W;(y;) > e and wl(xi) = e; Wy (layy) = Wiy, ) >
e and Wi(xi> = e; i#j#l, Wj(l-l-yi) = Wj(l) = e and
Wilxy) = Wyly;) <e. | |
Thus, we have Wl(x2x3) Z e and Wi(ng3)< e Iif i#1.
Let =z = XyXge Again since Gwi/Gv is torsion and
G, £ E,E)J, there is an n>0 and an a in K\Nv with
e >wi(a) >Wi(zn) for all i#l, and x = a'z® has
Wl(x) > e and Wi(x) < e for all i#l.

Proposition 4.18. Assume P, 1is not an ideal of K

and Wl,...,Wn in L are pairwise independent., Then if
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a; is in GWL\COJ for i = 2,3,...,0, there. is an x in R
with Wl(x)Ze and Wi(x) <a; for i#1.

Proof: Since G /G is torsion for i = 2,3,...,n,

—_— % \
there are n,>0 wi.t:h:'L ail g G\[C;J Let O<a =<

i i n v .

minE, arili i=2,...,rg. It suffices to show that there is

Let H = Ea in Gv’ there is an x in R with Wl(x)?_:e
and Wi(x)-dmi.n(a,a"l) for i.;éﬂ. Then e is in H by 4.17,
and it is easily checked that H 1is an isolated subgroup of
Gv' The proposition will be established if H = GV\EO.], or
equivalently, that if V' is the valuation determined by H,
then V'(K) = E;,(B = GV/H. |

Since V'ZV and Gw /Gv is torsion for each i, by

i

3.5 there is a unique Wi'z_wi which extends V', i=l,...,n.
Since the W; are independent, either W;'(R) = [e,Oj. for
some 1 so that V!'(K) = [e,Oj by 4.14 and the proposition
is established, or the Wi' are distinct,

Assume the W.!' are distinct. By 4.8 and 4.13, 4.17

i

applies to Wl',...,Wn'.

Thus there is an x in R with
WI'(X)7G and Wi'(x)ée, i = 2,...,n.

By 4.13, there is an integer r>0 and a b in K with
Wt (xF) < Wi'(b) = V'(b) <e for i=2,3,...,n. Let y = x,
then Wi(y)Hd V(b)H < H; so wi(y) Z V(b)) < e 4V‘(b)"'l; S0
wi(y)“ minEl(b),v(b)"g i =2,3,...,n. But wl'(y) =Z e

gives Wji(y)H = H; so Wl(y) 2> e, This is a contradiction
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since then V(b) is in H so that V'(b) = e, Thus,
AVA (K) ’= Ce,q . |

Proposition 4.19. (Approximation Theorem) Suppose

) 4
are pairwise independent. Then if a; is in Gw.\ [(ﬂ, for
i

y 1is not an ideal of K and Wj;,...,W; are in L and
i=1,...,n, there is an x in R with Wi(x) = a; for

i=1,.oo’no

Broof: For each i, choose z; in R with W;(z;) = a4,
Choose x; in R with W;(x;)>e; and for j#i, ‘Wj(xi)¢ﬁ
min[ajwj(zi'),a 1f Wy(z;) # 0 and with Wj(x,)<e if B
Wj(zi) = 0. (This can be done by 4.18.) 'Let t; = xi(1+xi)f.‘
Then Wi(ti) = e, and‘ wj<ti)'='wj(xi) if i#3. |

Now Wi(tizi) = wi(zi) = a;, and if i#3, Wj(tizi) =
wj(ti>wj(zi) =(0 1if Wj(zi) =1

Wj(xi)wj(zi> <aj if Wj(zi) # O, |

Thus, wj(tizi) = m;x Wj(tkzk) only if i=j, so by

. n

Proposition 4.20., (Strong Approximation Theorem)'"

Suppose L' has the strong inverse property and Wj,...,W,
in L are pairwise ihdependent. If a; in R have Wi(ai) # 0;
i = 1,2,...,n, then there is an x in R with W;(x) = W;(a;)>"
Wi(x-a;) 1 =1,2,...,n. | |

Proof: Case 1) P,, an ideal of K. Then the P, -are
- i
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maximal ideals of R so P ¢P if i#£j and 4.17 applies.
For each i, choose x; in R with Wi(xi) = e and Wj(xi) =
0 if i#j. Choose x;' in Awi\Pw with  x3x;' = l4t, for
some t; in P, . Then wj(xixi'ai) =0 if i#j while

i
Wi(xixi'ai-ai) Wi(aiti) 0=<W. (a ) = Wi(xixi'ai)

jfixj j'a:l) 0.

Case 2) P, not an ideal of K. Choose a,' so that
Wj(aiai') = e whenever Wj(ai) £ 0. For each i, choose
X in R with Wi(xi)> e; Wj(xi).cminEJj(aj)Wj(ai'),ej if
Wj(ai) # 0, and Wj(xi) <e |if Wj(ai) = 0. Choose y; in
R with Wj(yiﬂ) = Wj(l-i-:-:i)"1 if Wj(l-l-xi) # 0 and so that
Wi(yi(l-i-xi)-l) <e.

Then yi(1+x.) = l+t; where W-(ti)é e; (xiyi-l)(l-i-xi)
= %3y (14x3) = 1 - x; = x, €8y = 15 so wi(xiyi-l)w (l+x3) =
maxEJi(xl_ i) Wi(ljéwi(xi) =W, (1+xi) so Wi(xiyi-l)d e
and W, (x;y,a,- a; )< Wi(ai).- .

Also if i#j, Wy(y;) = WJ(1+xi)-1 = wj(l)"1 =e 0
Wj(xiyiai) = W.(xi)w.(ai)é Wj(aj).

Now if x = éx:jy.j g e have W, (x-a-) = Wi((xiy.ai-ai) +

j%ix Y ) maxEI (:-:iy:'_ai ai), (x yja ) i;éj < wi(a ).
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Proposition 4.21. Let R be an integral extension of
K, B a set of pairwise-independent valuations on K, and
E a set of valuations on R with W in E =$'W‘K is in B.
For each V in B, suppose that P,, is not an ideal of K.
If finite subsets of B satisfy the inverse property and
the property of Proposition 4,18 (and hence 4.19) and if

wlgooo,w

m 4are distinct, pairwise-independent elements of E,

then [?1,...,VEJ satisfies the inverse property and 4,18
(and hence 4,19) .,

Proof: Separate the Wi's into clas§es wll’W21""’

Wnll;wlz’WZZ,...,wnzz; [ ] [ ] L ] ; er,...,wnrr SUCh that

wij]K=wksIK iff j = s. For j=l,...,r, Llet Wij,xc=vi

Note that G /G _is torsion for all i and j by 4.12.
i3/ V3

n.J

For each j we have W, .5000 W
_ 1j 5

?] satisfies the inverse
property, 4.17, 4.18, and 4.19; sé if r=1, we are done.
Assume r>1l, If x is in R, then by 4.11 there is a

y; in R with Wil(xyl) = e for i=l,...,n Let t = xy,.

1.

By 4.12 there is an n>0 with Wij(tn) in G (let n =

\
J

7T;ij where nij works for ij). By 4.19 there is a z in K
n.

| J
with V_ (z) = e and for j#l1, V,(z) < min wi.(t“)'l '
1 J i=1 J
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Wij(tn) aé—é]. Thus, Wil(ztn) = é; gnd for j#l, Wij(ztn)
= Vj(z)Wij(tn) <'Wij(tn)-lwij(tn) = e when Wij(tn) £ 0, and

ij(Zt ) =0<e when W ) = 0, Therefore, letting

ij(
n-1

t, = ylnx z, we have Wij(xtl) = e if j=1 and Wij(xtl) <e

if jAl. Thus, for each k=l,...,r, there is a t, in R with

= e if k=j and Wij(xtk) < e if k#j, so by 1.8

W
ij(th) =

r

W, (x(=1¢t . )) = e for all ij; i.e., the inverse property
+J k=1 k
is satisfied.

Let ay be in: Gys. \[C-)J By 4.18 there is an x in R

> ‘ =
with W ,(x) =e and Wil(x)<minE,aiﬂ for 1=2,3,...,n,.
By the torsion property, there is an n>0 with Wij(xn)

n . .
in Gv and (aij) in ij [(ﬂ for all i and j. By

J
4,19 there is a y in K with Vl(y) = e and for j#l,
23
\'4 (y)émizix j_J(xn) l(alJ)n -,'_:j(xn)'1 ’Wij(x) # Cﬂ. Thus if
l-

J#1, Wij(yxn) = 0<a;y when Wij(x) = 0; and when
W gGx) £ 0, W (™) = V()W <xn>4mm [akj ",

ij(xn)flwij(xn) fminﬁaij)n,g so that 1) if ai.j < e,
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t n
hen <aij) < a

i3 < e and wij (yxn) < min Eai.j )n,ej =

(aij)ncaij; or 2) if ajy=e, then wij(yxn) <=

minEaij)n,g = e faij. Hence if j#£1, Wij(yxn)é aij'

Now we have:

Wy (yx™) = Vi(ydWy ) ()™ = W, ()™ 2= e

for i=2,3,...,n1,

W, (rx™) = V1(Y>Wil(x>n

Tf~.':.|_1(;a;)n P wil(x) < min [e,ai:;] — ail;
and for j#l,

W n i |
ij(yx )éa-ij' That is, 4.18 is satisfied,
Thus, EJI,...,WI,J satisfies the inverse property and
4.18 (and hence 4.19).
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