Approximation theorems for valuations on commutative rings

Bernard William Irlbeck
The University of Montana

Follow this and additional works at: https://scholarworks.umt.edu/etd

Let us know how access to this document benefits you.

Recommended Citation

Irlbeck, Bernard William, "Approximation theorems for valuations on commutative rings" (1967). Graduate Student Theses, Dissertations, \& Professional Papers. 8198.
https://scholarworks.umt.edu/etd/8198

This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, \& Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact scholarworks@mso.umt.edu.

APPROXIMATION THEOREMS FOR VALUATIONS ON COMMUTATIVE RINGS

By

Bernard William Irlbeck B.S., West Texas State University, 1965

Presented in partial fulfillment of the requirements for the degree of

Master of Arts
UNIVERSITY OF MONTANA
1967

Approved by:

Dean Graduate School

AUG 151967
Date

All rights reserved
INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

Dissertation Publishing

UMI EP38999
Published by ProQuest LLC (2013). Copyright in the Dissertation held by the Author.
Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code

ProQuest LLC.
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

TABLE OF CONTENTS
Introduction $11 i$
I. Valuations and Valuation Pairs 1
II. Dominance 12
III. Extensions 18
IV. The Inverse Property and Approximation Theorems 23
References 40

INTRODUCTION

This paper is the result of an investigation of the approximation theorems developed by M. Manis in Chapter III of his doctoral thesis ([2]). The results obtained in [2] were those needed for the author's development of Galois theory for rings. This study was made in an attempt to discover additional and more general cases in which these results apply. Particular emphasis was put on the so-called "inverse property" which can be considered the weakest form of an approximation theorem.

Sections I and II are adapted from Chapters I and II of [2] and contain the definitions and background material necessary for Sections III and IV. The arguments used are all taken from [2] or from lecture notes of a seminar given by M. Manis during the school year of 1966 and 1967.

In Section III, we introduce the concept of extending a valuation on a ring to an extension of the ring. Except for those dealing with the inverse property, the theorems of Section IV are limited to these extensions. Propositions 3.6 and 3.7 are included to show that every valuation on a ring can be extended to any integral extension of the ring; and hence, that these extensions occur with sufficient frequency to merit the consideration given them. The arguments in this section are taken from the same sources as
those in Sections I and II with the exception of 3.6 which was adapted from a more general theorem on page 255 of [1] and was simplified to its present form by M. Manis in the course of this writing.

Part I of Section IV outlines the approximation theorems obtainable for valuations on a field and indicates the results desired for valuations on a ring.

Part II of Section IV considers the inverse property which somewhat replaces the multiplicative inverses inherent in a field. Propositions 4.9 and 4.10 and Examples 1, 2, and 3 are the result of an attempt to correlate the inverse property for two valuations with the relationship between the sets of elements from the ring for which the valuations assume the value zero.

Part III of Section IV shows that the conditions assumed for Part IV hold in the case of an integral extension.

Propositions 4.17 through 4.20 are the approximation theorems of Chapter III of [2]. These theorems are limited to sets of extensions of a single valuation. Proposition 4.21 concerns approximation properties 4.18 and 4.19 for sets of extensions of more than one valuation; that is; given conditions which make the previous theorems apply in the special case of extensions of a single valuation, then the inverse property and 4.18 "extend" to finite sets of distinct pairwise-independent extensions.

The material covered in this paper is but a beginning of a complete approximation theory for rings. Many cases and situations are still open to investigation.

SECTION I

VALUATIONS AND VALUATION PAIRS

Throughout this paper, we will use the following conventions: "Ring" will mean "commutative ring with identity", and subrings will always contain that identity. Ring homomorphisms will always take identity to identity. Prime ideals are always proper. The identity of a ring will be denoted by 1 and that of a group by e. Once it is introduced, notation will be assumed as standard wherever it does not cause ambiguity.

Definition 1.1. By a valuation semigroup G, we mean an abelian (multiplicative) group with a zero adjoined, linearly ordered by a relation $"<\|$ satisfying:

$$
\begin{aligned}
& \text { i) } a<b \Rightarrow a c<b c \text { for } a l l a, b, c \text { in } G, c \neq 0 \text {, } \\
& \text { ii) } 0 \cdot a=a \cdot 0=0 \leqslant b \quad \text { for } a l l \text { a,b in } G .
\end{aligned}
$$

Definition 1.2. A valuation V on a ring R is a homomorphism of the multiplicative semigroup of R onto a valuation semigroup satisfying:

$$
V(x+y) \leq \max [V(x), V(y)] \text { for all } x, y \text { in } R .
$$

We note that $V(1)=e$ and $V(0)=0$ for all valuations. If R is a field and t a non-zero element of R, then $0 \neq e=V(1)=V(t) V\left(t^{-1}\right)$, so $V^{-1}([0])=[0]$. For this reason, in studying fields, one works with ordered groups rather than semigroups. The condition of 1.2 is the
non-Archimedean condition in a field.

Proposition 1.3. Let V be a valuation on a ring R, and set

$$
\begin{aligned}
& A_{v}=[x \text { in } R / V(x) \leq e], \\
& P_{v}=[x \text { in } R \mid V(x)<e], \text { and } \\
& N_{v}=[x \text { in } R \mid V(x)=0] .
\end{aligned}
$$

Then A_{v} is a subring of R, P_{v} is a prime ideal of A_{v}, and N_{v} is a prime ideal of R. Further, if J is an ideal of $R, J \subset A_{v}$, and $A_{v} \neq R$, then $J \subset N_{v}$.

Proof: Note that $V(-1)=0$ since G is linearly ordered, V is a homomorphism, and $(-1)(-1)=1$. Thus, $V(-x)=V(-1) V(x)=V(x)$ for all x in R.. Thus we have $A_{v}=-A_{v}, P_{v}=-P_{v}$, and $N_{v}=-N_{v}$. The condition of 1.2 gives $\left(A_{v}+A_{v}\right) \subset A_{v},\left(P_{v}+P_{v}\right) \subset P_{v}$, and $\left(N_{v}+N_{v}\right) \subset N_{v}$. If x is in A_{v} and y in P_{v}, then $V(x) \leq e$ and $V(y)<e$, so $V(x y)=V(x) V(y)<V(x) e=V(x) \leq e$; thus $A_{V} P_{V} \subset P_{v}$, and P_{v} is an ideal of A_{v}, a subring of R. If x is in R and y in N_{v}, then $V(x y)=V(x) V(y)=V(x) 0=0 ;$ so $R N_{v} \subset N_{v}$, and N_{v} is an ideal of $R_{\text {. }}$ If $a b$ is in P_{v}, then $e>V(a b)=$ $V(a) V(b)$, so either $e>V(a)$ or $e>V(b)$, so P_{v} is a prime ideal of $A_{V}\left(V(1)=e\right.$ so 1 is not in $\left.P_{v}\right)$. If $a b$ is in N_{V}, then $0=V(a b)=V(a) V(b)$, so $V(a)=0$ or $V(b)=0$, so $N v$ is a prime ideal of R.

Finally, suppose $A_{v} \neq R$ and J is an ideal of R. If $J \notin N_{v}$, then $V(a) \neq 0$ for some a in J; but then
$V(a)=V(b)^{-1}$ for some b in R, and $V(c)>e$ for some c in R since $A_{v} \neq R$. But then $a b c$ is in J while $V(a b c)=V(a) V(b) V(c)=e V(c)=V(c)>e$, so J\& A_{V},

Definition 1.4. By a valuation pair of a ring R, we mean a pair (A, P), where A is a subring of R and P is a prime ideal of A, such that x in $R \backslash A \Rightarrow x y$ in $A \backslash P$ for some y in P.

Proposition 1.5. (A,P) is a valuation pair of R iff there is a valuation V on R with $A=A_{V}$ and $P=P_{v}$. Furthermore, if V^{\prime} is another valuation on R with $P=P_{V^{\prime}}$ and $A=A_{V} \neq R$, then there is an orderpreserving isomorphism $\varnothing: G \longrightarrow{ }_{V^{\prime}} G_{v}$ with $\phi \circ V^{\prime}=V^{\prime}$

Proof: Let V be a valuation on R with $A=A$ and $P=P_{v}$. If x in $R \backslash A$, then $V(x)>e$, and $V(y)=$ $V(x)^{-1}$ for some y in R. $e=V(x) V(x)^{-1}>e V(x)^{-1}=$ $V(x)^{-1}$ so y is in P. Now $V(x y)=V(x) V(y)=V(x) V(x)^{-1}=$ e 80 my is in $A \backslash P$. Thus ${ }^{\circ}$ by 1.3, (A, P) is a valuation pair of R.

Conversely, let (A,P) be a valuation pair of R. For x in R, define $V(x)=[z$ in $R \mid x z$ in $P]$, and let $G_{\mathbf{v}}=\mathbf{G}=[V(x) \mid x$ in $R]$.

Claim 1: $V(x)=V(1)$ eff x in $A \backslash P$.
Subproof 1: If x in $A \backslash P$, then $x P \subset P$ so $P \subset V(x)$.
$V(x) \cap(A \backslash P)=\varnothing$ since P is a prime ideal of A. If y is not in A, then there is a P in P with ip in $A \backslash P$. $x(y p)=(x y) p$ is in $A \backslash P$ so $x y$ is not in A since P is an ideal of A. Thus, $x y$ is not in P, so y is not in $V(x)$. Therefore, $V(x) \subset P$ so $V(x)=P=V(1)$.

Suppose $V(x)=V(1)=P$. If x is in P, then $x \cdot 1$ is in P so 1 is in $V(x)=V(1)$ so $1 \cdot 1$ is in P, a contradiction. If x is not in A, then $x p$ is in $A \backslash P$ for some P in P so p is not in $V(x)=P$, a contradiction. Thus, x is in $A \backslash P$. Claim 2. Let $V(x) V(y)=V(x y)$. Then this is a welldefined multiplication for G and makes G into an abelian group with zero ($=\mathrm{V}(0)$) adjoined.

Subproof 2: Let $V(x)=V(a)$ and $V(y)=V(b)$. Then, t is in $V(x y)$ iffy toy is in P iffy $t x$ is in $V(y)$ eff $t x$ is in $V(b)$ if $t x b$ is in P ff $t b$ is in $V(x)$ if tb is in $V(a)$ iff tba is in P iff t is in $V(a b)$. Thus, $V(x y)=V(a b)$ so $V(x) V(y)=V(a) V(b)$ and multiplication is well-defined. Furthermore, it is associative and commatative since multiplication in R is; $V(1)$ is clearly an identity and $V(0)$ a zero, and $V(1) \neq V(0)$ since 1 is in $V(0)$ but 1 is not in $V(1)$.

Finally, if $V(x) \neq V(0)=R$, then there is a y in R such that $x y$ is not in P. If $x y$ is in $A \backslash P$, then $V(x y)=$ $V(1)=V(x) V(y)$ so $V(x)^{-1}=V(y)$. Otherwise, $x y$ is not in A, so typ is in $A \backslash P$ for some p in P; hence, $V(x y p)=$ $V(1)=V(x) V(y p)$, and $V(x)^{-1}=V(y p)$. Thus, $G \backslash[V(0)]$
is an abelian group.
Claim 3. Define $V(x)<V(y)$ if $V(y) \neq V(x)$. Then $n<n$ is a linear ordering on G, and G is a valuation semigroup.

Subproof 3: Let x and y be in R and $v(x) \notin V(y)$. Then there is an a in $V(x) \bigvee V(y)$; ie., $x a$ is in P and ya is not in P. If b is in $V(y) \backslash V(x)$, then $y b$ is in P and $x b$ is not in $P ;$ so there are t and $t '$ in A with tab in $A \backslash P \quad$ [ie., $t=1$ if $x b$ is in A, otherwise t is in P since (A, P) is a valuation pair] and tia in $A>P$. Then (txb)(t'ya) is in $A \backslash P$ since P is a prime ideal of A; but (txb)(t'ya) = (tc') (fa) (yb), te! is in A, and wa and $y b$ are in P, so (tub)($t^{\prime} y a$) is in P, a contradiction. Thus, b in $V(y)$ implies b is in $V(x)$, so $V(x) \notin V(y)$ implies $V(y) \subset V(x)$; i.e., $V(x) \neq V(y)$ implies $V(x)<V(y)$ or $V(y)<V(x)$.

Now if $V(x)<V(y), z$ in R, and $V(z) \neq V(0)$, then $V(y) \neq V(x)$. t in $V(z) V(y)=V(z y) \Rightarrow t z y$ is in $P \Rightarrow t z$ is in $V(y) \subset V(x) \Rightarrow t z x$ is in $P \Rightarrow t$ is in $V(z x)=V(z) V(x)$, so $V(z) V(y) \subset V(z) V(x) . \quad V(z) \neq V(0) \Rightarrow V(z)^{-1}=V\left(z^{\prime}\right)$ for some z^{\prime} in R, so $V(z x)=V(z y) \Rightarrow V(x)=V(1) V(x)=V\left(z z^{\prime}\right) V(x)=$ $V\left(z^{\prime}\right) V(z x)=V\left(z^{\prime}\right) V(z y)=V\left(z^{\prime} z\right) V(y)=V(1) V(y)=V(y)$. Thus, $V(y) \varsubsetneqq V(x) \Rightarrow V(z) V(y) \nsubseteq V(z) V(x)$ for all $V(z) \neq V(0)$; ie., $V(z) V(x)<V(z) V(y)$. Thus condition i) of 1.1 is satisfied. $0 \cdot V(x)=V(0) V(x)=V(0 \cdot x)=V(0)$ for all x in R, and $V(0)=R \Rightarrow V(y)<V(0)$ for all y in R so $V(0) \leq V(y)$ for
all y in R. Thus, condition ii) is satisfied, and G is a valuation semigroup.

Claim 4. $\quad V$ is a valuation on R.
Subproof 4: V is obviously a homomorphism from R onto G. by the definition of multiplication in G. Let $V(x)=\max [V(x), V(y)]$. Then $V(y) \leq V(x)$ so $V(x)<V(y)$. If t is in $V(x)$, then $t x$ and ty are in P so $(t x+t y)=$ $t(x+y)$ is in P so t is in $V(x+y)$; i.e., $V(x) \subset V(x+y)$ so $V(x+y) \leq V(x)=\max [V(x), V(y)]$. Thus, V is a valuation on R.

Claim 5: $\quad A=A$. and $P=P_{v^{\circ}}$
Subproof 5: If x is in P, then $P=V(1) \subset V(x)$. By Claim 1, $V(1)=V(x)$ iff x is in $A \backslash P$, so $V(1) \neq V(x)$ so $P \subset P_{V}$. Let x not be in P. Then x in $A \backslash P \Rightarrow V(x)=$ $V(1) \Rightarrow x$ is not in P_{v}, or x not in $A \Rightarrow$ there is a z in P with $x z$ in $A \backslash P \Rightarrow P \not \subset V(x) \Rightarrow V(x) \subset P=V(1) \Rightarrow V(1)<$ $V(x) \Rightarrow x$ is not in P_{v}. Thus, $P_{v} \subset P_{\text {. }}$. Therefore, $P=P_{v}$, and $A_{v}=[x$ in $R / V(x)=V(1)] \cup P_{v}=(A \backslash P) \cup P=A$. Thus, V is the valuation claimed in the proposition.

Now if V^{\prime} is another valuation on R with $A=A^{\prime} \neq$ R and $P=P_{V^{\prime}}$, define $\phi: G \longrightarrow G$ by $\phi\left(V^{\prime}(x)\right)=V(x)$. Claim: \varnothing is an order-preserving isomorphism.

Subproof: Note that by $1.3, N_{v}=N_{v}$ since $N_{v} \subset A_{v}=A_{v^{\prime}} \neq R$ and $N_{v^{\prime}} \subset A_{v^{\prime}}=A_{v} \neq R$. Thus, $V^{\prime}(x)=$ $V^{\prime}(0)=V^{\prime}(y)$ iff $V(x)=V(0)=V(y)$. If $V^{\prime}(x)=$
$V^{\prime}(y) \neq 0$, then there is a z in R with $x z$ in $\left.A_{V}\right\rangle_{V^{\prime}}=$ $A_{V} P_{V^{\prime}}, V^{\prime}(1)=V^{\prime}(x z)=V^{\prime}(x) V^{\prime}(z)=V^{\prime}(y) V^{\prime}(z)=V^{\prime}(y z)$ so $y z$ is in $A_{V} \backslash P_{v}=A_{V} \backslash P_{v}$. Thus, $V(x z)=V(1)=V(y z)$, and $V(x)=V(x) V(1)=V(x) V(y z)=V(x z) V(y)=V(1) V(y)=$ $V(y)$. Interchanging V and V we obtain. $V(x)=V(y) \Longrightarrow$ $V^{\prime}(x)=V^{\prime}(y)$, so $V^{\prime}(x)=V^{\prime}(y)$ inf $V(x)=V(y)$. Thus, \emptyset is well-defined and "l-1". \varnothing is obviously a homomorphism and "onto" by the way it is defined, so \emptyset is an isomorphism. Finally, $V^{\prime}(x)<V^{\prime}(y) \Rightarrow V^{\prime}(y) \neq V^{\prime}(0)$ so that there is a z in R such that $V^{\prime}(y z)=V^{\prime}(1)=e^{\prime} \cdot V(y z)=\phi\left(e^{\prime}\right)$ $=e$. Thus, $V^{\prime}(x z)=V^{\prime}(x) V^{\prime}(z)<V^{\prime}(y) V^{\prime}(z)=V^{\prime}(y z)=e^{\prime}$, so $x z$ is in $P_{v}=P_{v}$ and $V(x z)<e$. Thus, $V(x)=V(x) V(y z)=$ $V(x z) V(y)<e V(y)=V(y)$, so $\phi\left(V^{\prime}(x)\right)<\phi\left(V^{\prime}(y)\right)$ as claimed.

Thus, \varnothing is the order-preserving isomorphism claimed in the proposition; and henceforth, we will speak of the valuation determined by a valuation pair (A,P).

Corollary 1.6. If (A, P) is a valuation pair of R, then i) $R \backslash A$ is closed under multiplication;
ii) $R \backslash P$ is closed under multiplication;
iii) $x y$ in $A \Rightarrow x$ in A or y in P;
iv) x^{n} in $A \Rightarrow x$ in A;
v) x^{n} in $A \backslash P \Rightarrow x$ in $A \backslash P ;$
vi) $A=[x$ in $R \mid x P \subset P]$; and
vii) $A=R$ or $P=[x$ in $A \mid x y$ in A for some y not in $A]$

Proof: Let V be the valuation associated with (A, P) in 1.5. Translating, we have
i) $V(x) V(y)>e$ if $V(x)>e$ and $V(y)>e$;
ii) $V(x) V(y) \geq$ e if $V(x) \geq e$ and $V(y) \geq e ;$
iii) $V(x) V(y) \leq e \Rightarrow V(x) \leq e$ or $V(y)<e$;
iv) $V(x)^{n} \leq e \Rightarrow V(x) \leq e ;$
v) $V(x)^{n}=e \Rightarrow V(x)=e$;
vi) $V(x) \leq e$ ff $V(x) V(y)<e$ for all $V(y)<e ;$
vii) If $V(z)>e$ for some z in R, then $V(x)<e$ iff $V(x) V(t) \leq e$ for some $V(t)>e$.

Proposition 1.7. Let V be a valuation on a ring R, a, b in R with $V(a) \neq V(b)$. Then $V(a+b)=\max [V(a), V(b)]$.

Proof: Without loss of generality, we may assume $V(a)>V(b)$. Then $V(a)=V(a+b-b) \leq \max [V(a+b), V(b)]=$ $V(a+b) \leq \max [V(a), V(b)]=V(a), \quad s 0 \quad V(a)=V(a+b)$.

Corollary 1.8. Let V be a valuation on a ring R and a_{i} in R for $i=1,2, \cdots, n^{\prime}$. If $V\left(\sum_{i=1}^{n} a_{i}\right)<\max V\left(a_{i}\right)$, then $V\left(a_{j}\right)=\max V\left(a_{i}\right)=V\left(a_{k}\right)$ for some $f \neq k$.

Proof: Let $V\left(a_{j}\right)=\max V\left(a_{i}\right)$. Then since $V\left(\sum_{i=1}^{n} a_{i}\right)=$ $v\left(\sum_{\substack{i=1 \\ i \neq j}}^{n} a_{i}+a_{j}\right)<\max \left\{v\left(\sum_{\substack{i=1 \\ i \neq j}}^{n} a_{i}\right), v\left(a_{j}\right)\right\}, v\left(\sum_{\substack{i=1 \\ i \neq j}}^{n} a_{i}\right)=v\left(a_{j}\right)$ by 1.7. But $V\left(\sum_{\substack{i=1 \\ i \neq j}}^{n} a_{i}\right) \leq \max _{i \neq j} V\left(a_{i}\right)$, so $\max _{i \neq j} V\left(a_{i}\right) \geq V\left(a_{j}\right)=$ $\max V\left(a_{i}\right)$; that is, $V\left(a_{j}\right)=\max _{i \neq 1} V\left(a_{i}\right)=V\left(a_{k}\right)$ for some $k \neq j$.

Corollary 1.9. Let V be a valuation on a ring R and a_{i} in R for $i=1,2, \ldots, n, n+1, \ldots, k$ with $V\left(a_{i}\right)=0$ for $n<i \leq k$. Then $V\left(\sum_{i=1}^{k} a_{i}\right)=V\left(\sum_{i=1}^{n} a_{i}\right)$.

Proof: $\quad v\left(\sum_{i=1}^{k} a_{i}\right)=v\left(\sum_{i=1}^{n} a_{i}+\sum_{i=n+1}^{k} a_{i}\right) \leq$
$\max \left\{v\left(\sum_{i=1}^{n} a_{i}\right), v\left(\sum_{i=n+1}^{k} a_{i}\right)\right\}=v\left(\sum_{i=1}^{n} a_{i}\right)$. The last equality
holds since $V\left(\sum_{i=n+1}^{k} a_{i}\right)=0$ by 1.3. $V\left(\sum_{i=1}^{k} a_{i}\right)<v\left(\sum_{i=1}^{n} a_{i}\right)$
implies $V\left(\sum_{i=1}^{n} a_{i}\right)=V\left(\sum_{i=n+1}^{k} a_{i}\right)=0$ by 1.7, but this
contradicts the fact that zero is the least element of G, so the claimed equality holds.

Definition 1.10. For R a ring, let $T=T(R)=$ $[(A, Q) \mid A$ is a subring of R and Q is a prime ideal of $A]$. For (A, Q) and (B, S) in T define $(A, Q) \leq(B, S)$ if $A \subset B$ and $\quad Q=A \cap S$.
$" \leqslant "$ is clearly an inductive partial order on T, so by Zorn's Lemma, T has maximal elements. We call maximal elements of T maximal pairs. Note that if (A, Q) is in T, then there is a maximal pair (B, S) with $(B, S) \geq(A, Q)$.

Proposition 1.11. (A,Q) is a maximal pair of R ff it is a valuation pair of R.

Proof: If (A, Q) is a valuation pair and $(A, Q) \leq(B, S)$,
and if x is in $B \backslash A$, then $x p$ is in $A \backslash Q$ for some p in $Q \subset S$; but x in B and p in S imply that $x p$ is in S so that $x p$ is in $(S \cap A) \backslash Q$ contradicting $(A, Q) \leqslant(B, S)$. Thus, $B \backslash A=\varnothing$, so $B=A$ and $S=Q$; ie., (A, Q) is a maximal pair.

Conversely, let (A, Q) be a maximal pair of R, x in $R \backslash A, B=A[x]$, and $S=B Q$. Then S is an ideal of B with $Q \subset(S \cap A)$. If $Q=A \cap S$, then $A \backslash Q$ is a multiplicatively closed subset of B with $(A \backslash Q) \cap S=\varnothing$. Then by Krill's Lemma (see [1] page 253), there is a prime ideal S ' of B with $S \subset S '$ and $(A \backslash Q) \cap S^{\prime}=\varnothing$. That is, $Q=S^{\prime} \cap A$ and $\left(B, S^{\prime}\right) \geqslant(A, Q)$. But since $A \neq B$, this is a contradiction; hence, $Q G(S \cap A)$. Thus, there are p_{i} in Q and a^{\prime} in A with $\sum_{i=0}^{n} p_{i} x^{i}=a^{\prime}$, so (*) $\sum_{i=1}^{n} p_{i} x^{i}=a^{\prime}-p_{0}=a$ is in $A \backslash Q$. We can assume n
is minimal for an expression of this form.
If $n=1$, we are done: $p_{1} x$ is in $A \backslash Q$.
Suppose $n>1$. Let $y=\sum_{i=1}^{n} p_{i} x^{i-1}$. Then $x y=a$ is in
$A \backslash Q$. If y is in $A \backslash Q$, then ya is in $A \backslash Q$ and $y a=$ $\sum_{i=1}^{n}\left(p_{i} x y\right) x^{i-1}=\sum_{i=1}^{n} p_{i} \cdot x^{i-1}$, an expression of form (*) with degree $n-1<n$, a contradiction of the minimality of n. Thus, y is not in $A \backslash Q$.

If y is not in A, then the same argument used for x
gives q_{i} in Q and b in $A \backslash Q$ with ($\left.* *\right) \sum_{i=1}^{m} q_{i} y^{i}=b$.
Again, we can assume that m is minimal for an expression of this type. Now either 1) $n \geq m$ or 2) $m>n$.

Case 1) If $n \geq m$, then $p_{n} b x^{n}=\sum_{i=1}^{m} p_{n} q_{i}(x y)^{i} x^{n-i}$.
a, b in $A \backslash Q \Rightarrow a b$ in $A \backslash Q$, and $a b=\sum_{i=1}^{n-1} p_{i} b x^{i}+p_{n} b x^{n}=$
$\sum_{i=1}^{n-1} p_{i} b x^{i}+\sum_{i=1}^{m} p_{n} q_{i}(x y)^{i} x^{n-i}=\sum_{i=1}^{n-1} p_{i} b x^{i}+\sum_{j=n-m}^{n-1} p_{n} q_{n-j}(x y)^{n-j} x^{j}=$ $\sum_{i=1}^{n-1} q_{i}{ }^{\prime} x^{i} \quad\left[+q_{0}^{\prime}\right.$ if $n=m$, but then $\left(a b-q_{0}{ }^{\prime}\right)$ is in $A \backslash Q$.

This is of form ($*$) and degree $n-1<n$, a contradiction; therefore, $m>n$.

Case 2) Using $q_{m} a y^{m}=\sum_{i=1}^{n} p_{i} q_{m}(x y)^{i} y^{m-i}$, we obtain $a b=\sum_{i=1}^{m-1} p_{i} " y^{i}$ contradicting the minimality of m. Therefore, y is in A and y is not in $A \backslash$, $s 0$ is in Q; thus, $n=1$ and (A, Q) is a valuation pair of R.

SECTION II
dOMINANCE

Definition 2.1. If V and V are valuations on a ring R; we say V (dominates V and write $V i \geqslant V$ if there is an order homomorphism \varnothing of $G \longrightarrow G_{V}$, with $V^{\prime}=\varnothing \circ V$. We say $V^{\prime}=V$ if \varnothing is an isomorphism.

Proposition 2.2. Let V and V be valuations on R. Then $V V_{V}$ inf $N_{v} \subset P_{V} \subset P_{V} \subset A_{V} \subset A_{V}$.

Proof: Let $V^{2} \geq V_{\text {. }}$

1) If $V(a) \leq e$, then $V^{\prime}(a)=\phi(V(a)) \leq \phi(e)=e^{\prime}$ since \varnothing preserves order; ice., $A_{V} \subset A_{V}$.
2) If $V^{\prime}(a)<e^{\prime}$, then $\phi(V(a))=V^{\prime}(a)<e^{\prime}=\phi(e)$
so $V(a) \leq e$ but $V(a)=e \Rightarrow \phi(V(a))=\phi(e)=e^{\prime}$, so $V(a)<e ; i . e ., \quad P_{v i} \subset P_{v}$
3) If $V(a)=0$, then $V^{\prime}(a)=\phi(V(a))=\phi(0)=0$ so $N_{v} \subset N_{v_{i}} \subset P_{v^{\prime}}$

Conversely, let $N_{v} \subset P_{v} \subset P_{v} \subset A_{V} \subset A_{v}{ }^{\prime}$. Note: $N_{v}=N_{V}$ by 1.3. Let $\phi(V(a))=V^{\prime}(a)$.

Claim 1. $\quad \varnothing$ is well-defined.
Subproof 1: Let $V(a)=V(b)$.
i) If $V(a)=V(b)=0$, then a, b are in $N_{v}=N_{v}$,
so $V^{\prime}(a)=V^{\prime}(b)=0$.
ii) If $V(a)=V(b) \neq 0$, then there is a z in R
such that $V(a z)=e=V(a) V(z)=V(b) V(z)=V(b z)$, i.e., $a z, b z$ in $\left(A_{v} \backslash P_{v}\right) \subset\left(A_{v} \backslash P_{v i}\right)$; but then $e^{\prime}=V^{\prime}(a z)=V^{\prime}(b z)$ so $V^{\prime}(a)=V^{\prime}(a) V^{\prime}(b z)=V^{\prime}(a z) V^{\prime}(b)=V^{\prime}(b)$.

Thus $V(a)=V(b) \Rightarrow V^{\prime}(a)=V^{\prime}(b)$, and \varnothing is welldefined and clearly a homomorphism.

Claim 2. \varnothing is order-preserving.
Subproof 2: Let $V(a) \leq V(b)$. If $V(a)=0$, then $V^{\prime}(a)=0 \leq V^{\prime}(b)$ since $N_{v}=N_{V^{\prime}}$. If $V(a) \neq 0$, then $V(b) \neq 0$ so there is $a \quad z$ in R with $V(b z)=e$. $V(a z) \leq V(b z)=e$ so $a z$ is in $A_{v} \subset A_{v}$; and thus, $V^{\prime}(a z) \leqslant e^{\prime}=\phi(e)=\phi(V(b z))=V^{\prime}(b z)$. Therefore, $V^{\prime}(a)=V^{\prime}(a) e^{\prime}=V^{\prime}(a) V^{\prime}(b z)=V^{\prime}(a z) V^{\prime}(b) \leq e^{\prime} V^{\prime}(b)=$ V (b). Thus, \varnothing is the order-homomorphism required in 2.1.

Note that P_{v}, is a prime ideal of A_{v} since $P_{v}, \subset_{A_{v}} \subset A_{v}$ and $P_{v}{ }^{\prime}$ is a prime ideal of $A_{V^{\prime}}$.

Proposition 2.3. If P and P^{\prime} are prime ideals of A_{V}, $N_{v} \subset P \subset P_{v}$, and $N_{v} \subset P^{\prime} \subset P_{v}$, then $P \subset P^{\prime}$ or $P^{\prime} \subset P$.

Proof: Let x be in $P \backslash P i$ and y be in $P i \backslash p$, then $V(x) \neq 0$ and $V(y) \neq 0$ since $N_{V} \subset P \cap P P^{\prime}$ so there are x^{\prime}, y^{\prime} in R with $V\left(x x^{\prime}\right)=e=V\left(y y^{\prime}\right)$. Now $V(x) \leq V(y)$ or $V(y) \leq V(x)$.

Case 1) $\quad V(x) \leq V(y)$ gives $V\left(x y^{\prime}\right) \leq V\left(y y^{\prime}\right)=e \quad$ so $x y^{\prime}$ is in A_{v}. Now y is in P^{\prime} so yxy' is in $P^{\prime} ;$ but then, x in A_{v} and $y y^{\prime}$ in ($\left.A_{v} \backslash P_{v}\right) \subset\left(A_{v} \backslash P^{\prime}\right)$ imply that x is in P^{\prime}. since P^{\prime} is a prime ideal of A, which is a
contradiction of x in $P \backslash P^{\prime}$ ．Thus，$V(x) \neq V(y)$ ．
Case 2）$V(y) \leqslant V(x)$ ．Interchanging x and y, x^{\prime} and y^{\prime} ， P and $P P^{\prime}$ in the above argument，we obtain y in $P \cap(P D \quad P)$ ， a contradiction．Thus，$V(y) \neq v(x) \neq V(y)$ which contradicts the linear order on G_{v} ．

Thus $\left(P \backslash P^{\prime}\right)=\varnothing$ or $\left(P^{\prime} \backslash P\right)=\varnothing$ ；ice．，$P^{\prime} \subset P$ or PCP＇．

Henceforth，we will use the sign $\# ⿰ ⿰ 三 丨 ⿰ 丨 三 一$ for a contradiction．
Proposition 2．4．If V, V^{\prime} ，and V＂are valuations on R ，$V^{\prime} \geq V^{\prime}$ ，and $V^{\prime \prime} \geq V$ ，then $V^{\prime} \geq V^{\prime \prime}$ or $V^{\prime \prime} \geq V^{\prime}$ ．

Proof：$P_{V^{\prime}} \subset P_{v^{\prime}}$ or $P_{V_{!!}} \subset P_{v^{\prime}}$ by 2．3．Without loss of generality，we may assume $P_{V^{\prime}} \subset P_{V^{\prime \prime}}$ ．If x is not in $A_{v i}$ ， then x is not in A_{v} so there is a y in P_{v} with $x y$ in $A_{V} P_{v} \subset A_{v} \backslash P_{v}$ and $x y$ in $A_{V} P_{v} \subset A_{v^{\prime \prime}} \backslash P_{v n}$ so $V(x y)=e, V^{\prime}(x y)=e^{\prime}, \quad$ and $V^{\prime \prime}(x y)=e^{\prime \prime}$ ．Now $V^{\prime}(x)>e^{\prime} \Rightarrow$ $V^{\prime}(y)<e^{\prime}$ ，ice．y in $P_{V^{\prime}} \subset P_{V^{\prime \prime}} \Rightarrow V^{\prime \prime}(y)<e^{\prime \prime} \Rightarrow V^{\prime \prime}(x)>e^{\prime \prime} \Rightarrow x$ not in $A_{V n}$ Thus $A_{V}, C A_{V n}$ so $A_{v n} \subset A_{V \prime}$ and we have $N_{v \prime \prime}=N_{v}, C P_{v^{\prime}} \subset P_{v^{\prime \prime}} \subset A_{V^{\prime \prime}} \subset A_{v^{\prime}} ; i . e ., V^{\prime} \geqslant V^{\prime \prime}$.

Thus $[V / / V \cdot$ a valuation $n R$ and $V i \geq V$ for a fixed valuation $V]$ is linearly ordered by $n \leqslant n$ ．

Definition 2．5．A subgroup H of a valuation semi－ group G is said to be isolated if O is not in H and whenever a, b, c are in G with $a \leq b \leq c$ and a, c in H then b is in H ．

Proposition 2．6．The isolated subgroups of a valuation semigroup G are linearly ordered by inclusion．

Proof：Let H and H^{\prime} be isolated subgroups of G and suppose that a is in $H \backslash H^{\prime}$ and b is in $H^{\prime} \backslash H$ ．Then a, b in G implies that $a \leqslant b$ or $b \leq a$ ．

Case 1）$a \leqslant b$ ．
i）If $e \leq a$ ，then $e \leq a \leq b, e, b$ in H^{\prime} give
a in H^{\prime} ，非。
ii）If $a \leq e$ and $b \leq e$ ，then $a \leq b \leq e, a, e$ in H give b in H ，非．
iii）If $a \leq e \leq b$ ，then $b^{-1} \leq e$ ．If $a \leq b^{-1} \leq e$ ， then a, e in H give b^{-1} in H ，非．If $b^{-1} \leq a \leq e$ ，then b^{-1} ，e in H^{\prime} give a in H^{\prime} ，非。

Interchanging a and b, H and H^{\prime} ，we likewise obtain a contradiction for case 2）；but case 1）or case 2）must hold for a, b in G ，so $H C H$ or $H^{\prime} C H$ ．

Proposition 2．7．Let V be a valuation on R and $G=G_{v}$ its valuation semigroup．Then there is a＂ll＂ order－preserving correspondence between $I(G)=I=$ $[H \mid H$ is an isolated subgroup of $G]$ and $D(V)=D=$ $[V \cdot \mid V \cdot a \operatorname{valuation~on~} R$ with $V i \geq V]$ ．

Proof：For V^{\prime} in D ，let $f\left(V^{\prime}\right)=\phi^{-1}\left(e^{\prime}\right)$ where ϕ is the order－homomorphism in the definition of $V^{\prime} \geqslant V$ ． Claim＿1．$f: D \rightarrow I ;$ i．e．，$\phi^{-1}\left(e^{\prime}\right)$ is in ．

Subproof 1: If a, b, c are in $G, a \leq b \leq c$, and $\phi(a)=\varnothing(c)=e^{\prime}$, then $e^{\prime}=\varnothing(a) \leq \phi(b) \leq \phi(c)=e^{\prime}$ since \varnothing is order-preserving. Also, $e^{\prime}=\varnothing\left(a a^{-1}\right)=\varnothing(a) \phi\left(a^{-1}\right)=$ $\phi\left(a^{-1}\right)$ and $e^{\prime}=\varnothing(a) \phi(c)=\varnothing(a c)$ so b, a^{-1}, ac are in $\phi^{-1}\left(e^{\prime}\right)$ so $\phi^{-1}\left(e^{\prime}\right)$ is an isolated subgroup of G and hence in I.

Also f is obviously well-defined and "ll" since $V^{\prime}=V^{\prime \prime}$ implies $V^{\prime}(x)=e^{\prime}$ if $V^{\prime \prime}(x)=e^{\prime \prime}$.

Claim 2. For H in I, there is an order-homomorphism $\phi_{\mathrm{H}}=\varnothing$ of G onto a valuation semigroup $\mathrm{G}_{\boldsymbol{\phi} \boldsymbol{v}}$ with $\phi^{-1}(e)=H$.

Subproof 2: Set $\phi(a)=a H$ for all a in G. Then since G abelian implies H normal in $G, \phi(G)=((G \backslash[0]) / H) \cup[0]$, with the usual coset multiplication, is an abelian group with zero adjoined and $H \neq 0^{\circ} \mathrm{H}=0$.

Define: $a H<b H$ if $a H \neq b H$ and $a<b$.
If $a H \neq b H$ and $a<b\left(\Rightarrow a b^{-1}<e\right)$, then $a h^{\prime} \geqslant b h^{\prime \prime}$ for some h !, $h^{\prime \prime}$ in H gives $e>a b^{-1} \geq h^{-1} h^{\prime \prime}$ and $e ; h^{-1} h^{\prime \prime}$. in H so $a b^{-1}$ in H since H isolated so $a H=b H$, 非. Thus, ah'<bh" for all $h^{\prime \prime}, h^{\prime \prime}$ in H so $"^{\prime \prime}{ }^{\prime \prime}$ is well-defined on $\phi(G)$ and linear since if $a H, b H$ are in $\phi(G)$ and $a H \neq b H$, then $a \neq b$ so $a<b$ or $b<a$.

It is easily checked that $\phi(G)$ with this definition of " $<$ " satisfies conditions i) and ii) of 1.1. Thus, $\phi(G)$ is a valuation semigroup, and \varnothing is obviously an order-homomorphism onto. $\phi(a)=\theta=H$ ff. a in H so
$\phi^{-1}(e)=H$. Further, $\phi \circ V=V_{H}$ is clearly a valuation on R with $V_{H} \geq V_{\text {. Thus, given }} H$ in I, there is a valuation V_{H} on R with $f\left(V_{H}\right)=H$; ice., f is onto.

Claim 3. Let $V^{\prime}, V^{\prime \prime}$ be in D with $V^{\prime \prime} \geqslant V^{\prime}$. Then $f\left(V^{\prime}\right) \subset f\left(V^{\prime \prime}\right)$.

Subproof 3: There are order-homomorphisms $\varnothing, \phi 1, \phi n$ such that $\phi^{\prime}: G \longrightarrow G^{\prime \prime}, \phi^{\prime \prime}: G \longrightarrow G_{v^{\prime \prime}}$, and $\phi: G_{\mathbf{v}^{\prime}} G_{v^{\prime \prime}}$. $\phi \cdot \phi \cdot(V(x))=\phi\left(V^{\prime}(x)\right)=V^{\prime \prime}(x)=\phi^{\prime \prime}(V(x))$ for all x in R, i.e. all $V(x)$ in G. Thus $\phi 0 \phi 1=\phi^{n}$ so $\phi^{-1}=\phi^{-1} \phi^{-1}$. so $\phi n^{-1}\left(e^{\prime \prime}\right)=\phi \eta^{-1}\left(\phi^{-1}\left(e^{\prime \prime}\right)\right) \supset \phi^{-1}\left(e^{\prime}\right)$; i.e., $f\left(V^{\prime \prime}\right) \supset f\left(V^{\prime}\right)$.

Thus, f is the claimed "1-1" order-preserving correspondence between I and D.

EXTENSIONS

Throughout this section, let V be a fixed valuation on a ring K, and let R be an extension of K.

Definition 3.1. A valuation W on R is called an extension of V to R if there is an order-isomorphism \emptyset of G into G_{w} with $\phi(V(x))=W(x)$ for all x in K.

Proposition 3.2. Let W be a valuation on R. Then the following are equivalent.
i) W is an extension of V to R.
ii) $\left(A_{w}, P_{w}\right) \geq\left(A_{v}, P_{v}\right)$ and $N_{v}=N_{w} \cap K$.
iii) $\left(A_{w}, P_{w}\right) \geq\left(A_{v}, P_{v}\right)$ and $\left.W\right|_{K}$ is a valuation on K.

Proof: i) \Rightarrow ii)
If x is in $A_{v}, W(x)=\varnothing(V(x)) \leq \phi(V(e))=e$
since \varnothing is order-preserving, so $A_{V} \subset A_{w}$. If x is in K, $W(x)=\phi(V(x))<e$ inf $V(x)<e$ since \varnothing is an orderisomorphism, so $P_{v}=P_{w} \cap K=P_{w} \cap A_{v}$. Thus, ($\left.A_{w}, P_{w}\right) \geqslant\left(A_{v}, P_{v}\right)$. Also, $N_{w} \cap K$ is an ideal of K and $\left(N_{w} \cap K\right) C\left(P_{w} \cap K\right)=P_{v} \subset A_{V}$ so $\left(N_{w} \cap K\right) \subset N_{v}$ by 1.3. If $V(x)=0, W(x)=\phi(V(x))=$ $\phi(0)=0$, so $N_{v} \subset\left(N_{w} \cap K\right)$; and hence, $N_{w} \cap K=N_{v}$. ii) \Rightarrow iii)

If x is in K with $W(x) \neq 0$, then x is not in N_{v} so there is a y in K with $x y$ in $A_{v} \backslash P_{v} \subset A_{w} P_{w} \quad W(x y)=$
$e=W(x) W(y)$ so $W(y)=W(x)^{-1}$. Thus, $W(K)$ is a valuation semigroup contained in G_{W}; ie., $\left.W\right|_{K}$ is a valuation on K. iii) \Rightarrow i)

$$
\left(\left.A_{w}\right|_{K},\left.P_{w}\right|_{k}\right)=\left(A_{w} \cap K, P_{w} \cap K\right) \geq\left(A_{v}, P_{v}\right) \text { so }
$$

$\left(A_{w} \cap K, P_{w} \cap K\right)=\left(A_{v}, P_{v}\right)$ since $\left(A_{v}, P_{v}\right)$ is a maximal
element of $T(K)$. Thus, by 1.5 , there is an order-isomorphism \varnothing of G_{V} onto $\left.G_{W}\right|_{K}$ with $\left.W\right|_{K}(x)=\varnothing(V(x))$ for all x in K, and $G_{W_{\mid K}} C G_{w}$.

Henceforth, if W is an extension of V to R, will will identify G_{v} with $G_{w / K}$ and thus consider $G_{V} \subset G_{w}$

Proposition 3.3. V has extensions to R iff $\mathrm{K} \cap \mathrm{RN}_{\mathrm{v}}=\mathrm{N}_{\mathrm{v}}$.

Proof: If V has an extension W to R, then $N_{V} \subset N_{w}$ so $\left(K \cap R N_{v}\right) \subset\left(K \cap R N_{w}\right)=K \cap N_{w}=N_{v}$. Thus, $K \cap R N_{v}=N_{v}$. Conversely, suppose $\cdot K \cap R N_{v}=N_{v}$. Then let $Q=P_{v}+R N_{v}$ and $B=A_{v}+R N_{v}$. Now Q is an ideal of B, and $A_{v}=B \cap K$ and $P_{v}=Q \cap K=Q \cap A_{v}$ so $Q \cap\left(A_{v} P_{v}\right)=\varnothing$. Thus, by Trull's Lemma, there is a prime ideal Q^{\prime} of B with $Q \subset Q^{\prime}$ and $Q^{\prime} \cap\left(A_{v} \backslash P_{v}\right)=\varnothing$; ice., $\left(B, Q^{\prime}\right) \geq\left(A_{v}, P_{v}\right)$. If $\left(A_{w}, P_{w}\right)$ is any valuation pair of R with $\left(A_{w}, P_{w}\right) \geqslant\left(B, Q^{\prime}\right)$, then $\left(A_{w}, P_{w}\right) \geqslant\left(A_{v}, P_{v}\right) . \quad N_{v} \subset R N_{v} \subset B \subset A_{w}$ so $R N_{v} \subset N_{w}$ by 1.3; i.e., $K \cap R N_{v}=N_{v} \subset\left(N_{w} \cap K\right) . \quad\left(N_{w} \cap K\right) \subset\left(P_{w} \cap K\right)=P_{v} \quad$ so $\left(N_{w} \cap K\right) \subset N_{v}$; hence, $N_{w} \cap K=N_{v}$, and W is an extension of V to R by 3.2.

Definition 3.4. If W extends V to R, we wite $\left\{\left(G_{w} \cup[0]\right) /\left(G_{v} \backslash[0]\right)\right\} \cup[0]$ as G_{w} / G_{v}. We say that. G_{w} / G_{v} is torsion ff for each a in G_{w} there is an integer $n>0$ with a^{n} in G_{v}.

Proposition 3.5. Let V and V be valuations on K with Vi 叉V. Then
i) V has extensions to R iff V ' has extensions to 0°.
ii) If W is an extension of V to R, then there is an extension W of V^{\prime} to R with $W^{\prime} \geqslant W$; and further, if $G_{w / G} / G_{v}$ torsion, then the W^{\prime} is unique.

Proof: $N_{v}=N_{v}$ by 2.2 so i) is clear by 3.3.
ii) Let H be the isolated subgroup of G_{v} corsesponging to $V^{\prime}($ confer 2.7$)$. Let $S=\left[\right.$ in $G_{w} /$ there are b, c in H with $b \leq a \leq c]$. Then S is clearly an isolated subgroup of G_{w} with $S \cap G_{v}=H_{*}$. Now let. W' be the valuation corresponding to S so that $W^{\prime} \geq W$. Note that in proving 2.7, we also proved that $G_{v} / H \cong G_{v}$ and $G_{w} / S \cong G_{w^{\prime}} . \quad$ Define $\phi: G_{v} / H \rightarrow G_{w} / \mathrm{S}$ by $\phi(a H)=a s$ for all a in $G_{v} \quad a H=b H \Rightarrow a b^{-1}$ in $H \Rightarrow a b^{-1}$ in $S \Rightarrow$ $a S=b S$ so ϕ is well-defined. If. a, b are in G_{v} and $a S=b S$, then $a b^{-1}$ is in $S \cap G_{V}=H$ so $a H=b H$ so \varnothing is "1-1". ϕ is onto $\phi\left(G_{v} / H\right)$ and clearly a homomorphism
with the usual coset multiplication, so \varnothing is an isomorphism onto $\phi\left(G_{v} / H\right)$. If $a H<b H$, then $a H \neq b H$ and $a<b$ so $a S \neq b S$ and $a<b ; i . e ., a S<b S$. Hence, \varnothing is orderpreserving. Thus, $G_{v} \cong G_{v} / H \cong \phi\left(G_{v} / H\right) \subset G_{w} / s \cong G_{w^{\prime}}$, and the map required in 3.1 is the obvious one; so W I extends V '.

Claim 1. If $W^{\prime \prime}$ is an extension of V^{\prime} to R with $W^{\prime \prime} \geqslant W$ and S^{\prime} is the isolated subgroup of G_{w} corresponding to $W^{\prime \prime}$, then $S C S^{\prime}$.

Subproof 1: By the above argument, $W^{\prime \prime}$ extends the valuation $V^{\prime \prime} \geq \mathrm{V}$ corresponding to $\sin G_{v}$: $B y$ 3.2, $\left(A_{v^{\prime \prime}}, P_{v^{\prime \prime}}\right)=\left(A_{w_{11}} \cap K, P_{w^{\prime \prime}} \cap K\right)=\left(A_{V^{\prime}}, P_{v^{\prime}}\right)$ so by 1.5, $G_{v^{\prime}} \cong G_{v^{\prime \prime}}$; that is, $V^{\prime}=V^{\prime \prime}$. Thus, by 2.7, $\sin ^{\prime} \cap G_{v}=H_{\text {. }}$ Now let x be in S. Then there are a, b in $H=\sin G_{v}$ with $a \leq x \leq b$, so x is in S^{\prime} since S^{\prime} is isolated. Claim 2. If G_{w} / G_{V} is torsion, then $S^{\prime} C S$. Subproof 2: Let x be in S^{\prime}; then x is in G_{w} so there is an integer $n>0$ with x^{n} in G_{v}; i.e., x^{n} is in $\sin G_{v}=H$. 1) If $x \geq e$, then $x^{n} \geq x \geq e$ and x^{n}, e are in H, so x is in S. 2) If $x \leq e$, then $x^{n} \leq x \leq e$, so x is in S. Thus, if G_{w} / G_{v} is torsion, then $S=S^{\prime}$ so $W^{\prime \prime}=W^{\prime}$ by 2.7; i.e., W ' is unique.

Proposition 3.6. If (A, P) is a valuation pair of a ring R, then A is integrally closed in R.

Proof: Let \bar{A} be the integral closure of A in R.

Then $A \subset \bar{A}$ clearly. Let c be in \bar{A}, then there are a_{i} in A and $n>0$ such that $c^{n}=\sum_{i=0}^{n-1} a_{i} c^{i}$. Let V be the valuation on R associated with (A, P). Now if c is not in A, then $V(c)>e$ so $V\left(a_{i} c^{i}\right) \leq V\left(c^{i}\right)<V\left(c^{n}\right)$ for $i<n$. But then $V\left(c^{n}\right)=V\left(\sum_{i=0}^{n-1} a_{i} c^{i}\right) \leq \max _{i<n}\left[V\left(a_{i} c^{i}\right)\right]<V\left(c^{n}\right)$, 非. Thus, c is in A so $\bar{A} \subset A$; and hence, $A=\bar{A}$.

Proposition 3.7. Suppose that R is integral over K. If V is a valuation on K and W a valuation on R with $\left(A_{w}, P_{w}\right) \geqslant\left(A_{v}, P_{v}\right)$, then W extends V to R.

Proof: $K \cap N_{w} \subset K \cap P_{w}=P_{V} \subset A_{v}$ and $K \cap N_{w}$ is an ideal of K, so $K \cap N_{w} \subset N_{v}$ by 1.3.

Let t be in N_{v} and x in R. Since R is integral over K, there are a_{i} in k and $n>0$ with $x^{n}+\sum_{i=0}^{n-1} a_{i} x^{i}=0$. Then $t^{n} \cdot 0=0=(t x)^{n}+\sum_{i=0}^{n-1} a_{i} t^{n-i}(t x)^{i}$. But for $i<n$, $a_{i} t^{n-i}$ is in $N_{v} \subset A_{w}$; that is, tx is integral over A_{w}. Since A_{w} is integrally closed in R, $t x$ is in A_{w}. Thus, $R N_{v} \subset A_{w}$ so $R N_{V} \subset N_{w}$ by 1.3. Therefore, $N_{v} \subset R N_{v} \cap K \subset N_{w} \cap K$, and W extends V by 3.2.

Thus, every valuation V on K has extensions if R is integral over K.

Proof: Choose y_{i} in F^{*} with $V_{i}\left(y_{i}\right)<V_{i}\left(x_{i}\right)$ and use 4.2.

Proposition 4.4. If x_{1}, \ldots, x_{n} are in $F *$, then there is an a in F with $V_{i}(a)=V_{i}\left(x_{i}\right)$.

Proof: The a in 4.3 works since $v_{i}\left(a-x_{i}\right)<v_{i}\left(x_{i}\right) \leq$ $\max \left[V_{i}(a), V_{i}\left(x_{i}\right)\right] \quad$ implies $V_{i}(a)=V_{i}\left(x_{i}\right)$ by 1.7.

Proposition 4.5. Let x_{1}, \ldots, x_{n} be in F^{*}; then there is an a in F with. $V_{i}(a)<v_{i}\left(x_{i}\right)$.

Proof: Choose y_{i} in $F *$ with $V_{i}\left(y_{i}\right)<V_{i}\left(x_{i}\right)$ for each i and use 4.4 on the y_{i} 's.

Proposition 4.6. Let L be the set of all valuations on F and let x be in $F *$, then there is a y in F with $V(x y)=e$ for all V in L.

Proof: Let $y=x^{-1}$.

Altough this last proposition is quite trivial in the case of fields, we experience considerable difficulty in obtaining a similar result for rings. Part II is directed to this problem.

Proof: Choose y_{i} in F^{*} with $V_{i}\left(y_{i}\right)<V_{i}\left(x_{i}\right)$ and use 4.2.

Proposition 4.4. If x_{1}, \ldots, x_{n} are in F^{*}, then there is an a in F with $V_{i}(a)=V_{i}\left(x_{i}\right)$.

Proof: The a in 4.3 works since $V_{i}\left(a-x_{i}\right)<v_{i}\left(x_{i}\right) \leq$ $\max \left[V_{i}(a), V_{i}\left(x_{i}\right)\right]$ implies $V_{i}(a)=V_{i}\left(x_{i}\right)$ by 1.7 .

Proposition 4.5. Let x_{1}, \ldots, x_{n} be in $F *$; then there is an a in F with. $V_{i}(a)<V_{i}\left(x_{i}\right)$.

Proof: Choose y_{i} in $F *$ with $V_{i}\left(y_{i}\right)<V_{i}\left(x_{i}\right)$ for each i and use 4.4 on the $y_{i}{ }^{\prime}$ s.

Proposition 4.6. Let I be the set of all valuations on F and let x be in $F *$, then there is a y in F with $V(x y)=e$ for all V in L.

Proof: Let $y=x^{-1}$.

Altough this last proposition is quite trivial in the case of fields, we experience considerable difficulty in obtaining a similar result for rings. Part II is directed to this problem.

Definition 4.7. We say that a set I of valuations on a ring R has the inverse property if for every x in R there is an x^{\prime} in R such that $V\left(x x^{\prime}\right)=e$ whenever V is in L and $V(x) \neq 0$. L is said to have the strong inverse property if for every x in R there is an x^{\prime} in R with $V\left(x x^{\prime}-1\right)<e$ whenever V is in I and $V(x) \neq 0$.

Proposition 4.8. Let L be a set of valuations on R which has the inverse property and L (' a set of valuations on R such that for every V in L there is a V in L with V' \geq V. Then $L U L$, has the inverse property; in particular, L' has the inverse property.

Proof: Let x, x^{\prime} be in R with $V\left(x x^{\prime}\right)=e$ whenever V is in L with $V(x) \neq 0$. Let V be in L and suppose $V^{\prime} \geq V, V$ in L, and $V^{\prime}(x) \neq 0$. Then $V(x) \neq 0$ by 2.2 so $V\left(x x^{\prime}\right)=e . \quad$ Then $x x^{\prime}$ is in $A_{V} \backslash P_{v} \subset A_{v^{\prime}} \backslash_{v^{\prime}}$, so $V^{\prime}\left(x x^{\prime}\right)=e$.

Proposition 4.9. Let V, V be valuations on R with $P_{V} \subset P_{V^{\prime}}$. Then $L=[V, V]$ satisfies the inverse property Vf $A_{v} \subset A_{v} \cup N_{v}$.

Proof: If $A_{v i} \subset A_{v} U N_{v i}$, then $A_{V} \backslash_{v^{\prime}} \subset\left(A_{v} U_{N_{V}}\right) P_{v^{\prime}}$ $=A_{v} \backslash P_{v i} \subset A_{v} P_{v}$ and $N_{v} \subset N_{v i}$ by 1.3. If x is in R and
$V^{\prime}(x) \neq 0$, then there is an x^{\prime} in R with $x x^{\prime}$ in $A_{V} \backslash P_{v^{\prime}} \subset A_{V} \backslash P_{v}$ so $V^{\prime}\left(x x^{\prime}\right)=e$ and $V\left(x x^{\prime}\right)=e$.

If L satisfies the inverse property and x is in
$\left.Y_{A_{V}} \cup N_{V}\right)$, then $V^{\prime}(x) \neq 0$ and $V(x)>e$ so there is an x^{\prime} in $P_{V} \subset P_{V^{\prime}}$ with $V\left(x x^{\prime}\right)=e$ and $V^{\prime}\left(x x^{\prime}\right)=e . \quad x^{\prime}$ in
 $\lambda_{A_{V}}$, so $A_{V}, C\left(A_{V} \cup N_{V}\right)$.

Example 1. Let Q be the rational numbers and $Q_{p}=$ $\left[a b^{-1} \mid b \neq 0,(a, b)=1\right.$, and $\left.(b, p)=1\right]$. Let $R=Q[x]$, $A_{v}=Q_{p}[x], \quad P_{v}=p Q_{p}[x], \quad A_{v^{\prime}}=Q_{p}+x R, \quad$ and $P_{v^{\prime}}=P Q_{p}+x R$. Then (A_{v}, P_{v}) and (A_{v}, P_{v}) are valuation pairs of $R, P_{v} \subset$ $P_{v^{\prime}}$, and $N_{v^{\prime}}=x R$, all of which the reader can check for himself. $\quad t=\left(1+x^{-1}\right)$ is in $\left.A_{V},{ }^{-1} A_{V} V_{x R}\right)$ so $[V, V]$ does not satisfy the inverse property. Specifically, it is not satisfied for t since t in $A_{V^{\prime}} \backslash P_{V^{\prime}} \Rightarrow V^{\prime}(t)=e$ and t not in $A_{V} \Rightarrow V(t)>e$; and if $V\left(t t^{\prime}\right)=e$, then $V\left(t^{\prime}\right)<e \Rightarrow t^{\prime}$ is in $P_{V} \subset P_{V^{\prime}} \Rightarrow V^{\prime}\left(t^{\prime}\right)<e \Rightarrow V^{\prime}\left(t t^{\prime}\right)<e$.

Notice that in Example 1, " x " is in $N_{v} \backslash N_{v}$ so that $N_{v} \neq N_{v}$. This observation led to the conjecture that perhaps if $N_{v}=N_{v^{\prime}}$, then $\left[V, V^{\top}\right]$ satisfies the inverse property. This is not always true as Example 2 will show.

For V a valuation on a ring $R, R / N{ }_{v}$ is a domain and $\bar{V}\left(x+N_{v}\right)=V(x)$ defines a valuation on R / N_{v} with $G_{v}=G_{v}$. Letting F be the quotient field of R / N_{v} and W defined by $W\left(a b^{-1}\right)=\bar{V}(a c)$ where $\bar{V}(b c)=e$, then W
is an extension of \bar{v} to F with $G_{w}=G_{\bar{v}}=G_{v}$. The details of these statements are easily checked. Thus, if V and V^{\prime} are valuations on R with $N_{v}=N_{v^{\prime}}$, then we can consider $N_{v}=N_{V^{\prime}}=[0]$ since $R / N_{v}=R / N_{V}$ and $\bar{v}\left(x+N_{v}\right)=0$ iff x is in $N_{v}=N_{v} \cdot$

Proposition 4.10. Let V and V be valuations on a domain R with $N_{v}=N_{V}=[0]$ and F be the quotient field of R. Then the following are equivalent:
i) $L=[V, V]$ satisfies the inverse property.
ii) $F=\left[x y^{-1} \mid x\right.$ is in R and y is in $\left.S\right]$ where $S=\left(A_{v} \backslash P_{v}\right) \cap\left(A_{v} \backslash_{v_{i}}\right)$.
iii) J a principle ideal of R with $J \cap S=\varnothing$ implies that $J=[0]$.

Proof: i) \Rightarrow ii). Let L satisfy the inverse property and let t be in F. Then $t=x y^{-1}$ for some x, y in $R, y \neq 0$. y in $R, y \neq 0$ imply that there is a z in R with $V(y z)=e$ and $V^{\prime}(y z)=e$ by the inverse property. Thus, $t=x y^{-1}=x z(y z)^{-1}$, and $x z$ is in R and $y z$ is in S.
ii) \Rightarrow i). If x is in F, then there are y, z in R with $x=y z^{-1}$ and $V(z)=e=V^{\prime}(z)$. If W and W^{\prime} are the extensions to F noted preceeding the proposition, then $W(x)=W\left(y z^{-1}\right)=V(y) V(z)^{-1}=V(y)$ and $W^{\prime}(x)=W^{\prime}\left(y z^{-1}\right)=$ $V^{\prime}(y) V^{\prime}(z)^{-1}=V^{\prime}(y)$; i.e., if x is in F, then there is a y in R with $W(x)=V(y)$ and $W^{\prime}(x)=V^{\prime}(y)$. Thus, if
t is in R, then t^{-1} is in F so there is a y in R with $W\left(t^{-1}\right)=V(y)$ and $W^{\prime}\left(t^{-1}\right)=V^{\prime}(y)$ so $e=W(t) W\left(t^{-1}\right)=$ $V(t) V(y)$ and $e=W^{\prime}(t) W^{\prime}\left(t^{-1}\right)=V^{\prime}(t) V^{\prime}(y)$.
i) \Rightarrow iii). I has the inverse property implies that for x in $R, x \neq 0$, there is a y in R such that $x y$ is in S. Thus, $x R \cap S=\varnothing$ if $x=0$.
iii) \Rightarrow i). $\quad x$ in $R, x \neq 0, \Rightarrow x R \neq[0] \Rightarrow x R \cap S \neq \varnothing ;$ i.e., there is a y in R with $x y$ in S.

Example 2. Let Z be the integers. Let $R=z\left[x, x^{-1}\right]$, $A_{v}=z[x], P_{v}=x z[x], \quad A_{v^{\prime}}=z\left[x^{-1}\right]$, and $P_{v^{\prime}}=x^{-1} z\left[x^{-1}\right]$. The reader can check that $\left(A_{v}, P_{v}\right)$ and (A_{v} !, P_{v}) are valuation pairs of $R, N_{v}=N_{v^{\prime}}=[0]$, and $\left(A_{v} P_{v}\right) \wedge\left(A_{v^{\prime}} \backslash P_{v^{\prime}}\right)$ $=z$. $\quad(1+x) R \cap Z=\varnothing$ but $(1+x) R \neq[0]$ so $[V, v]$ does not satisfy the inverse property. Also note that $F \neq$ $\left[z y^{-1} / z\right.$ is in R and y is in $\left.Z\right]$, since $\frac{1}{1+x}$ cannot be written as $z y^{-1}$ where z is in R and y is in Z. Also if $t=1+x$, then t is in $A_{V} P_{V}$ and t is not in A_{V}, so $V(t)=e$ and $V^{\prime}(t)>e$. Therefore, if $V^{\prime}\left(t t^{\prime}\right)=e$, then $V^{\prime}\left(t^{\prime}\right)<e, i . e ., t^{\prime}$ is in $P_{v^{\prime}} ;$ but then, t^{\prime} is not in A_{V} so $V\left(t t^{\prime}\right)=V\left(t^{\prime}\right)>e$.

Example 3. Let p and q be distinct prime integers. Let $R=z\left[x, x^{-1}\right],: A_{v}=z[x]+p R, P_{v}=x A_{v}+p R, \quad A_{v},=$ $z\left[x^{-1}\right]+q R$, and $P_{v^{\prime}}=x^{-1} A_{v^{\prime}}+q R$. Then $N_{v}=p R$ and $N_{V} V^{\prime}=q R ;$ but $[V, V]$ satisfies the inverse property. If t is in $R \backslash\left(N_{V} \cup N_{V^{\prime}}\right)$, then $t=\sum_{i=0}^{n} a_{i} x^{i-k}, a_{j}$ is not in
$p Z$ for some j and a_{r} is not in $q Z$ for some r. Let $J=$ $\min \left[j \mid a_{j}\right.$ is not in $\left.p Z\right]$ and $M=\max \left[r \mid a_{r}\right.$ is not in $\left.q Z\right]$. Then $t\left(q x^{k-J}+p x^{k-M}\right)$ is in $\left(A_{v} \backslash P_{v}\right) \cap\left(A_{v} \backslash P_{v i}\right)$. The details are left to the reader. Thus, the fact that $[V, V]$ satisfies the inverse property does not imply that $N_{v}=N_{v}$.

PART III

ALGEBRAIC EXTENSIONS

Throughout Part III, R is assumed to be an extension of a ring K, V a valuation on K with extensions to R, and L a set of valuations on R which extend V.

Proposition 4.11. Let J be an ideal of R with $J \subset \cap\left[N_{W} \mid W\right.$ in $\left.L\right]$ and $J \cap K=N_{V}$. If R / J is algebraic over K / N_{v}, then L satisfies the inverse property.

Proof: Note that $W(t)=0$ for all t in J and W in L. If $x+J$ is in R / J, then there are a_{i} in K and t in J with a_{r} not in $J\left(V\left(a_{r}\right) \neq 0\right)$ and $\sum_{i=0}^{r} a_{i} x^{i}=t$. Let $s=\min \left[i \mid V\left(a_{i}\right) \neq 0\right]$. Then for W in $L, 0=W(t)=$ $W\left(\sum_{i=0}^{r} a_{i} x^{i}\right)=W\left(\sum_{i=s}^{r} a_{i} x^{i}\right)=W\left(x^{s}\right) W\left(\sum_{i=s}^{r} a_{i} x^{i-s}\right)$. Thus, if $W(x) \neq 0$, then $W\left(\sum_{i=s}^{r} a_{i} x^{i-s}\right)=0=W\left(\sum_{i=s+1}^{r} a_{i} x^{i-s}+a_{s}\right)<$
$\max \left[W\left(\sum_{i=s+1}^{r} a_{i} x^{i-s}\right), W\left(a_{s}\right)\right]$, so by $1.7, W\left(\sum_{i=s+1}^{5} a_{i} x^{i-s}\right)=$
$W\left(a_{s}\right)=W(x) W\left(\sum_{i=s+1}^{r} a_{i} x^{i-s-1}\right)$. Choose al in K with
$V\left(a^{\prime} a_{s}\right)=e$. Then with $x^{\prime}=a^{\prime}\left(\sum_{i=s+1}^{s} a_{i} x^{i-s-1}\right), \quad w\left(x x^{\prime}\right)=$ $W\left(a^{\prime} a_{s}\right)=V\left(a^{\prime} a_{s}\right)=e$ whenever W is in L with $W(x) \neq 0$.

Proposition 4.12. Let $J=\bigcap\left[N_{W} \mid W\right.$ in $\left.L\right]$ and suppose R / J is algebraic over $K /(K \cap J)=K / N_{v}$. Then G_{W} / G_{v} is torsion for all W in L.

Proof: Let x be in R and W in L. If $W(x)=0$, there is nothing to show, so suppose $W(x) \neq 0$. Then there are a_{i} in K, t in J, and a_{r} not in J such that $\sum_{i=0}^{r} a_{i} x^{i}=t$. Since $W\left(a_{r} x^{r}\right) \neq 0$, we have $0=W(t)=$ $W\left(\sum_{i=0}^{r} a_{i} x^{i}\right)<\max \left[W\left(a_{i} x^{i}\right)\right]$, so by $1.8, W\left(a_{i} x^{i}\right)=\max \left[W\left(a_{i} x^{i}\right)\right]$ $=W\left(a_{j} x^{j}\right) \neq 0$ for some $i \neq j$.

Assume $i>j$, and let $W(x)^{-1}=W\left(x^{\prime}\right)$ and $W\left(a_{i}\right)^{-1}=$ $W\left(a^{\prime}\right)$; then $W\left(x^{i-j}\right)=W\left(a_{i} x^{i}\right) W\left(x^{\prime}\right)^{j} W\left(a^{\prime}\right)=W\left(a_{j} x^{j}\right) W\left(x^{\prime}\right)^{j} W\left(a_{i}\right)^{-1}$ $=W\left(a_{j}\right) W\left(a^{\prime}\right)$ is in G_{v}.

Proposition 4.13. Let W be in $L, W^{\prime} \geq W^{\prime}$, and $V^{\prime}=$ W^{\prime} / K° If G_{W} / G_{V} is torsion, then so is $G_{W} / G_{V^{\prime}}$.

Proof: Let $\phi: G_{w} \longrightarrow G_{w}$, be the homomorphism such that
$W^{\prime}=\varnothing \circ W$. Then $V^{\prime}=\phi \circ V$. If $\phi(x)$ is in $G_{W^{\prime}}$, then x^{n} is in G_{v} for some $n>0$ so $\phi\left(x^{n}\right)$ is in G_{v}..

Proposition 4.14. If W is in L and G_{w} / G_{v} is torsion, then $W(R)=[e, 0]$ iff $V(K)=[e, 0]$.

Proof: $V(K) \subset W(R)$ so $" \Rightarrow "$ is clear. $W\left(x^{n}\right)$ is in $[e, 0]$ for some $n>0$ only if $W(x)$ is in $[e, 0]$ so " " is also clear.

Note 4.15. If R is integral over K and J is any ideal of R, then R / J is integral (and hence algebraic) over $K /(K \cap J) . \quad$ clear.

PART IV
APPROXIMATION THEOREMS

In Part IV,' we assume that R is an extension of K, V is a valuation on K, and L is a set of extensions of V to R with the inverse property and such that G_{W} / G_{V} is torsion for each W in L. In some of the results, we also require $P_{W} \notin P_{W^{\prime}}$ if W, W^{\prime} are in L and $W \neq W^{\prime}$. The following proposition indicates the effect of this additional restriction.

Proposition 4.16. Let W and W be distinct elements of L with $P_{w} \subset P_{W^{\prime}}$. Then P_{V} is an ideal of K, and R
is not integral over K.

Proof: If P_{v} is an ideal of K, then P_{w} and P_{w} are ideals of R by 4.14. Then $A_{w}=A_{w^{\prime}}=R$, and if R were integral over K, we would also have $P_{w}=P_{w}$ (see [4] page 259), contradicting P_{w} and P_{w}, distinct.

It remains only to show that if P_{v} is not an ideal of K, then $P_{w} \not \mathscr{F}_{\mathrm{w}^{\prime}}$.

If P_{v} is not an ideal of K, than P_{w} and $P_{w \prime}$ are not ideals of R, so by $1.6, \quad A_{W} \neq A_{w}$.

Case 1) $A_{w} \backslash A_{w} \neq \varnothing$. Let y be in $A_{w} \backslash A_{w^{\prime}}$, Then $W(y) \leq e<W^{\prime}(y)$. Since G_{W} / G_{v} is torsion, there is an integer, $n>0$ and an a in K with $W^{\prime}\left(y^{n}\right)=V(a)$. Then $W^{\prime}(y)=W^{\prime}\left(y^{n+1} a^{\prime}\right)>e$ while $W\left(y^{n+1} a^{\prime}\right)=W\left(y^{n+1}\right) W\left(a^{\prime}\right)<e$ since $V\left(a^{\prime}\right)<e$. Thus, $y^{n+1} a^{\prime}$ is in $P_{w} P_{w^{\prime}}$.

Case 2) $A_{w} \backslash A_{w} \neq \varnothing$. By Case 1), there is a y in R with $W(y)>e>W^{\prime}(y)$. Then $W(1+y)=W(y)>e \quad$ while $W^{\prime}(1+y)=W^{\prime}(1)=e$, so $W\left((1+y) \cdot<e \quad\right.$ while $W^{\prime}((1+y) \cdot)=$ e. Thus, $(1+y)$ is in $P_{w} \backslash P_{w}$.

Proposition 4.17. Let W_{1}, \ldots, W_{n} be distinct elements of I with $P_{w_{i}} \notin P_{w_{1}}$ if $i \neq 1$. Then there is an x in R with $W_{1}(x) \geq e$ and $W_{i}(x)<e$ for $i \neq 1$. Further, if P_{v} is not an ideal of K, one can require $W_{1}(x)>e$.

Proof: Case 1) P_{v} an ideal of K. Then $P_{w_{i}}$ is
a prime ideal of $R, i=i, \ldots, n$. Choose x_{i} in $P_{w_{i}} P_{w_{1}}$, $i=2,3, \ldots, n$ and let $x=\prod_{i=2}^{n} x_{i}$.

Case 2) P_{v} not an ideal of K. Proof by induction on n.
For $n=2$, choose y in $P_{w_{2}} \backslash P_{w_{1}}$. Then $W_{1}(y) \geqslant e>W_{2}(y)$. Since $G_{W_{2}} / G_{v}$ is torsion and $G_{v} \neq[e, 0]$, there is an $n>0$ and an a in $K \backslash N_{v}$ with $e>W_{2}(a)>W_{2}\left(y^{n}\right)$. Then with $x=a^{\prime} y^{n}$ we have $W_{1}(x) \geqslant W_{1}\left(a^{\prime}\right)>e$ while $W_{2}\left(a^{\prime}\right)=e$ $\mathrm{W}_{2}(\mathrm{x})$.

Now assume 4.17 holds for $r=n-1, n>2$. For $i=2,3$, choose y_{i} in R with $W_{1}\left(y_{i}\right)>e$ and $W_{j}\left(y_{i}\right)<e$ if $j \neq 1$ and $j \neq i$. If $W_{i}\left(y_{i}\right) \leq e$, let $x_{i}=y_{i}$; otherwise let $x_{i}=\left(1+y_{i}\right) \cdot y_{i} \cdot$

Claim. $W_{1}\left(x_{i}\right) \geqslant e, \quad W_{i}\left(x_{i}\right) \leq e, W_{j}\left(x_{i}\right)<e \quad$ if $i \neq j \neq 1$.
Sunproof: This is automatic if $x_{i}=y_{i}$. Otherwise, $W_{1}\left(1+y_{i}\right)=W_{1}\left(y_{i}\right)>e$ and $W_{1}\left(x_{i}\right)=e ; W_{i}\left(1+y_{i}\right)=W_{i}\left(y_{i}\right)>$ e and $W_{i}\left(x_{i}\right)=e ; \quad i \neq j \neq 1, W_{j}\left(1+y_{i}\right)=W_{j}(1)=e$ and $W_{j}\left(x_{i}\right)=W_{j}\left(y_{i}\right)<e$.

Thus, we have $W_{1}\left(x_{2} x_{3}\right) \geqslant e$ and $W_{i}\left(x_{2} x_{3}\right)<e$ if isl. Let $z=x_{2} x_{3}$. Again since $G_{w_{i}} / G_{v}$ is torsion and $G_{v} \neq[e, 0]$, there is an $n>0$ and an a in $K \backslash N_{v}$ with $e>W_{i}(a)>W_{i}\left(z^{n}\right)$ for all $i \neq 1$, and $x=a^{\prime} z^{n}$ has $W_{1}(x)>e$ and $W_{i}(x)<e$ for all $i \neq 1$.

Proposition 4.18. Assume P_{v} is not an ideal of K and W_{1}, \ldots, W_{n} in L are pairwise independent. Then if
a_{i} is in $G_{w_{i}}[0]$ for $i=2,3, \ldots, n$, there is an x in R with $W_{1}(x) \geq e$ and $W_{i}(x)<a_{i}$ for $i \neq 1$.

Proof: Since $G_{w_{i}} / G_{v}$ is torsion for $i=2,3, \ldots, n$, there are $n_{i}>0$ with $a_{i}^{n_{i}}$ in $G_{V}[0]$. Let $0<a<$ $\min \left[e, a_{i}^{n_{i}} \quad i=2, \ldots, n\right]$. It suffices to show that there is an x in R with $W_{1}(x) \geqslant e$ and $W_{i}(x)<a$ for $i=2, \ldots, n$. Let $H=\left[a\right.$ in $G_{v} \mid$ there is an x in R with $W_{1}(x) \geqslant e$ and $W_{i}(x)<\min \left(a, a^{-1}\right)$ for $\left.i \neq 1\right]$. Then e is in H by 4.17, and it is easily checked that H is an isolated subgroup of G_{v}. The proposition will be established if $H=G_{V}[0]$, or equivalently, that if V^{\prime} is the valuation determined by H, then $V^{\prime}(K)=[e, 0]=G_{v} / H$.

Since $V^{\prime} \geqslant V$ and $G_{w_{i}} / G_{V}$ is torsion for each i, by 3.5 there is a unique $W_{i}{ }^{\prime} \geq W_{i}$ which extends $V^{\prime}, i=1, \ldots, n$. Since the W_{i} are independent, either $W_{i} \prime(R)=[e, 0]$ for some i so that $V^{\prime}(K)=[e, 0]$ by 4.14 and the proposition is established, or the W_{i} ' are distinct.

Assume the $W_{i}{ }^{\prime}$ are distinct. By 4.8 and 4.13, 4.17 applies to W_{1}, \ldots, W_{n} '. Thus there is an x in R with $W_{1}{ }^{\prime}(x)>e$ and $W_{i}{ }^{\prime}(x)<e, i=2, \ldots, n$.

By 4.13, there is an integer $r>0$ and $a b$ in K with $W_{i}{ }^{\prime}\left(x^{r}\right)<W_{i}^{\prime}(b)=V^{\prime}(b)<e$ for $i=2,3, \ldots, n$. Let $y=x^{r}$, then $W_{i}(y) H<V(b) H<H$; so $W_{i}(y)<V(b)<e<V(b)^{-1}$; so $W_{i}(y)<\min [V(b), V(b)-1] \quad i=2,3, \ldots, n$. But $W_{1}^{\prime}(y) \geqslant e$ gives $W_{1}(y) H \geq H$; so $W_{1}(y) \geq e$. This is a contradiction
since then $V(b)$ is in H so that $V^{\prime}(b)=e$. Thus, $V^{\prime}(K)=[e, 0]$.

Proposition 4.19. (Approximation Theorem) Suppose P_{v} is not an ideal of K and W_{1}, \ldots, W_{n} are in L and are pairwise independent. Then if a_{i} is in $G_{w_{i}} \backslash[0]$, for $i=1, \ldots, n$, there is an x in R with $W_{i}(x)=a_{i}$ for $i=1, \ldots, n$.

Proof: For each i, choose z_{i} in R with $W_{i}\left(z_{i}\right)=a_{i}$. Choose x_{i} in R with $W_{i}\left(x_{i}\right)>e$; and for $j \neq i, W_{j}\left(x_{i}\right)<$ $\min \left[a_{j} W_{j}\left(z_{i} \prime\right), e\right]$ if $W_{j}\left(z_{i}\right) \neq 0$ and with $W_{j}\left(x_{i}\right)<e$ if $W_{j}\left(z_{i}\right)=0$. (This can be done by 4.18.) Let $t_{i}=x_{i}\left(1+x_{i}\right)$ '. Then $W_{i}\left(t_{i}\right)=e$, and $W_{j}\left(t_{i}\right)=W_{j}\left(x_{i}\right)$ if $i \neq j$.

Now $W_{i}\left(t_{i} z_{i}\right)=W_{i}\left(z_{i}\right)=a_{i}$, and if $i \neq j, W_{j}\left(t_{i} z_{i}\right)=$ $W_{j}\left(t_{i}\right) W_{j}\left(z_{i}\right)=\left\{\begin{array}{l}0 \quad \text { if } W_{j}\left(z_{i}\right)=1 \\ W_{j}\left(x_{i}\right) W_{j}\left(z_{i}\right)<a_{j} \text { if } w_{j}\left(z_{i}\right) \neq 0 .\end{array}\right.$

Thus, $W_{j}\left(t_{i} z_{i}\right)=\max _{k} W_{j}\left(t_{k} z_{k}\right)$ only if $i=j$, so by 1.8, $W_{j}\left(\sum_{i=1}^{n} t_{i} z_{i}\right)=W_{j}\left(t_{j} z_{j}\right)=a_{j}$ for $j=1,2, \ldots, n$.

Proposition 4.20. (Strong Approximation Theorem) Suppose L has the strong inverse property and W_{1}, \ldots, W_{n} in L are pairwise independent. If a_{i} in R have $W_{i}\left(a_{i}\right) \neq 0$ $i=1,2, \ldots, n$, then there is an x in R with $W_{i}(x)=W_{i}\left(a_{i}\right)>$ $W_{i}\left(x-a_{i}\right) \quad i=1,2, \ldots, n$.

Proof: Case 1) P_{v} an ideal of K. Then the $P_{w_{i}}$ are
maximal ideals of R so $P_{w_{i}} \notin P_{w_{j}}$ if $i \neq j$ and 4.17 applies. For each i, choose x_{i} in R with $W_{i}\left(x_{i}\right)=e$ and $W_{j}\left(x_{i}\right)=$ 0 if $i \neq j$. Choose $x_{i} \prime$ in $A_{w_{i}} P_{w_{i}}$ with $x_{i} x_{i} \prime=1+t_{i}$ for some t_{i} in $P_{w_{i}}$. Then $W_{j}\left(\dot{x}_{i} x_{i}^{\prime} a_{i}\right)=0$ if $i \neq j$ while

$$
W_{i}\left(x_{i} x_{i}^{\prime} a_{i}-a_{i}\right)^{i}=W_{i}\left(a_{i} t_{i}\right)=0<W_{i}\left(a_{i}\right)=W_{i}\left(x_{i} x_{i}^{\prime} a_{i}\right)=e
$$

Let $x=\sum_{i=1}^{n} x_{i} x_{i}{ }^{\prime} a_{i}$, then $W_{i}\left(x-a_{i}\right)=W_{i}\left(x_{i} x_{i}{ }^{\prime} a_{i}-a_{i}+\right.$

$$
\left.\sum_{j \neq i} x_{j} x_{j}^{\prime} a_{j}\right)=0
$$

Case 2) P_{v} not an ideal of K. Choose $a_{i}{ }^{\prime}$. so that $W_{j}\left(a_{i} a_{i}{ }^{\prime}\right)=e$ whenever $W_{j}\left(a_{i}\right) \neq 0$. For each i, choose x_{i} in R with $W_{i}\left(x_{i}\right)>e ; \quad W_{j}\left(x_{i}\right)<\min \left[W_{j}\left(a_{j}\right) W_{j}\left(a_{i}{ }^{\prime}\right)\right.$, e] if $W_{j}\left(a_{i}\right) \neq 0$, and $W_{j}\left(x_{i}\right)<e$ if $W_{j}\left(a_{i}\right)=0$. Choose y_{i} in R with $W_{j}\left(y_{i}\right)=W_{j}\left(1+x_{i}\right)^{-1}$ if $W_{j}\left(1+x_{i}\right) \neq 0$ and so that $W_{i}\left(y_{i}\left(1+x_{i}\right)-1\right)<e$.

Then $y_{i}\left(1+x_{i}\right)=1+t_{i}$ where $W_{i}\left(t_{i}\right)<e ; \quad\left(x_{i} y_{i}-1\right)\left(1+x_{i}\right)$ $=x_{i} y_{i}\left(1+x_{i}\right)-1-x_{i}=x_{i} t_{i}-1$; so $W_{i}\left(x_{i} y_{i}-1\right) W_{i}\left(1+x_{i}\right)$ $\max \left[W_{i}\left(x_{i} t_{i}\right), W_{i}(1)\right]<W_{i}\left(x_{i}\right)=W_{i}\left(1+x_{i}\right)$; so $W_{i}\left(x_{i} y_{i}-1\right)<e$ and $W_{i}\left(x_{i} y_{i} a_{i}-a_{i}\right)<W_{i}\left(a_{i}\right)$.

Also if $i \neq j$, $W_{j}\left(y_{i}\right)=W_{j}\left(1+x_{i}\right)^{-1}=W_{j}(1)^{-1}=e$ so $W_{j}\left(x_{i} y_{i} a_{i}\right)=W_{j}\left(x_{i}\right) W_{j}\left(a_{i}\right)<W_{j}\left(a_{j}\right)$.

Now if $x=\sum_{j=1}^{n} x_{j} y_{j} a_{j}$, we have $W_{i}\left(x-a_{i}\right)=W_{i}\left(\left(x_{i} y_{i} a_{i}-a_{i}\right)+\right.$ $\left.\sum_{j \neq i} x_{j} y_{j} a_{j}\right) \leq \max \left[W_{i}\left(x_{i} y_{i} a_{i}-a_{i}\right), W_{i}\left(x_{j} y_{j} a_{j}\right) i \neq j\right]<W_{i}\left(a_{i}\right)$.

Proposition 4.21. Let R be an integral extension of K, B a set of pairwise-independent valuations on K, and E a set of valuations on R with W in $\left.E \Rightarrow W\right|_{K}$ is in B. For each V in B, suppose that P_{V} is not an ideal of K. If finite subsets of B satisfy the inverse property and the property of Proposition 4.18 (and hence 4.19) and if $\mathrm{W}_{1}, \ldots, \mathrm{~W}_{\mathrm{m}}$ are distinct, pairwise-independent elements of E , then $\left[W_{1}, \ldots, W_{m}\right]$ satisfies the inverse property and 4.18 (and hence 4.19) .

Proof: Separate the W_{i} 's into classes W_{11}, W_{21}, \ldots, $W_{n_{1} 1} ; W_{12}, W_{22}, \ldots, W_{n_{2} 2} ; \cdots ; W_{1 r}, \ldots, W_{n_{r} r}$ such that $\left.W_{i j}\right|_{K}=\left.W_{k s}\right|_{K}$ iff $j=s$. For $j=1, \ldots, r$, let $\left.W_{i j}\right|_{K}=V_{j}$. Note that $G_{w_{i j}} / G_{j}$ is torsion for all i and j by 4.12. For each j we have $\left[W_{1 j}, \ldots, W_{n_{j}} j\right]$ satisfies the inverse property, 4.17, 4.18, and 4.19; so if $r=1$, we are done. Assume $r>1$. If x is in R, then by 4.11 there is a y_{1} in R with $W_{i 1}\left(x y_{1}\right)=e$ for $i=1, \ldots, n_{1}$. Let $t=x y_{1}$. By 4.12 there is an $n>0$ with $W_{i j}\left(t^{n}\right)$ in G_{j} (let $n=$ $\Pi_{n_{i j}}$ where $n_{i j}$ works for $\left.i j\right)$. By 4.19 there is a z in K with $V_{1}(z)=e$ and for $j \neq 1, \quad V_{j}(z)<\min _{i=1}^{n_{j}}\left[W_{i j}\left(t^{n}\right)^{-1} \mid\right.$
$W_{i j}\left(t^{n}\right) \neq 0$. Thus, $W_{i 1}\left(z t^{n}\right)=e ;$ and for $j \neq 1, W_{i j}\left(z t^{n}\right)$ $=v_{j}(z) W_{i j}\left(t^{n}\right)<W_{i j}\left(t^{n}\right)^{-1} W_{i j}\left(t^{n}\right)=e$ when $W_{i j}\left(t^{n}\right) \neq 0$, and $W_{i j}\left(z t^{n}\right)=0<e$ when $W_{i j}\left(t^{n}\right)=0$. Therefore, letting $t_{1}=y_{1} n^{n-1} z$, we have $W_{i j}\left(x t_{1}\right)=e$ if $j=1$ and $W_{i j}\left(x t_{1}\right)<e$ if $j \neq 1$. Thus, for each $k=1, \ldots, r$, there is a t_{k} in R with $W_{i j}\left(x t_{k}\right)=e$ if $k=j$ and $W_{i j}\left(x t_{k}\right)<e$ if $k \neq j$, so by 1.8 $W_{i j}\left(x\left(\sum_{k=1}^{r} t_{k}\right)\right)=e$ for all jj; i.e., the inverse property is satisfied.

Let $a_{i j}$ be in $G_{w_{i j}}$ [0]. By 4.18 there is an x in R with $W_{11}(x) \geqslant e$ and $W_{i 1}(x)<\min \left[e, a_{i 1}\right]$ for $i=2,3, \ldots, n_{1}$. By the torsion property, there is an $n>0$ with $W_{i j}\left(x^{n}\right)$ in $G_{v_{j}}$ and $\left(a_{i j}\right)^{n}$ in $G_{v_{j}}[0]$ for all i and j. By 4.19 there is a y in K with $V_{1}(y)=e$ and for $j \neq 1$, $v_{j}(y)<\min _{i=1}^{n_{j}}\left[W_{i j}\left(x^{n}\right)^{-1}\left(a_{i j}\right)^{n}, W_{i j}\left(x^{n}\right)^{-1} \mid W_{i j}(x) \neq 0\right]$. Thus if $j \neq 1, \quad w_{i j}\left(y x^{n}\right)=0<a_{i j}$ when $w_{i j}(x)=0 ;$ and when $W_{i j}(x) \neq 0, \quad W_{i j}\left(y x^{n}\right)=v_{j}(y) W_{i j}\left(x^{n}\right)<\underset{k=1}{\min _{j}}\left[\left(a_{k j}\right)^{n}\right.$,
$\left.W_{k j}\left(x^{n}\right)-1_{W_{i j}}\left(x^{n}\right)\right] \leq \min \left[\left(a_{i j}\right)^{n}, e\right] \quad$ so that $\left.\quad 1\right)$ if $\quad a_{i j}<e$,
then $\left(a_{i j}\right)^{n}<a_{i j}<e \quad$ and $\quad W_{i j}\left(y x^{n}\right)<\min \left[\left(a_{i j}\right)^{n}, e\right]=$

$$
\begin{array}{ll}
\left(a_{i j}\right)^{n}<a_{i j} ; & \text { or } \quad 2) \text { if } a_{i j} \geq e, \text { then } w_{i j}\left(y x^{n}\right)< \\
\min \left[\left(a_{i j}\right)^{n}, e\right]=e \leq a_{i j} . & \text { Hence if } j \neq 1, \quad w_{i j}\left(y x^{n}\right)<a_{i j}
\end{array}
$$

Now we have:

$$
W_{11}\left(y x^{n}\right)=v_{1}(y) W_{11}(x)^{n}=W_{11}(x)^{n} \geqslant e ;
$$

for $i=2,3, \ldots, n_{1}$,

$$
W_{i 1}\left(y x^{n}\right)=v_{1}(y) W_{i 1}(x)^{n}=W_{i 1}(x)^{n}<w_{i 1}(x)<\min \left[e, a_{i 1}\right] \leq a_{i 1} ;
$$

and for $j \neq 1$,

$$
W_{i j}\left(y x^{n}\right)<a_{i j} . \quad \text { That is, } 4.18 \text { is satisfied. }
$$

Thus, $\left[W_{1}, \ldots, W_{m}\right]$ satisfies the inverse property and 4.18 (and hence 4.19).

REFERENCES

[1] N. Jacobson, Lectures in Abstract Algebra, Vol. III, Van Nostrand, New York, 1964.
[2] M. Manis, Valuations on a Commutative Ring, (Doctoral Thesis, University of Oregon, 1966).
[3] E. Weiss, Algebraic Number Theory, McGraw-Hill, New York, 1963.
[4] O. Zariski and P. Samuel, Commutative Algebra, Vol. I, Van Nostrand, New York, 1960.
[5] O. Zariski and P. Samuel, Commutative Algebra, Vol. II, Van Nostrand, New York, 1960.

