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Philip , N oel  S., M.S., M a y , 2004 Geology

Ground Penetrating Radar and Seismic Refraction as tools to Characterize Shallow 
Subsurface Conditions on Tongass National Forest, Alaska

Department Chair: Steven D. Sheriff

Ground penetrating radar (GPR) and seismic refraction surveys conducted'at a 
critical location on a glacial moraine near Yakutat, Alaska reveal its inferred 
stratigraphy. The moraine material observed from exposures and shallow excavation 
is composed of material ranging in size from medium sand to boulders >lm  in 
diameter. Seismic data acquired on the moraine show a subsurface depth to refractor 
of -10-15 meters. GPR images show events that reveal the stratigraphy to bedrock 
depth at 30m. The stratigraphy is like that seen at outcrops 10km northeast. With 
this interpretation, I produced a reasonable subsurface stratigraphy that identifies 
hydrogeologic units and depth to bedrock with one meter estimated resolution of 
depth (10%). The subsurface model provides valuable insight to potential stream 
incision during the next cyclical closure of Russell Fjord by Hubbard Glacier, the 
water body bordering the glacial moraine to the north. Based on the sediment depth, 
there does not appear to be any danger of them being scoured to bedrock.

GPR and seismic refraction surveys conducted at a different site, a Forest Service 
road near Petersburg, Alaska, help measure depth to bedrock and the water table. 
Data collected at several culvert sites show classic hyperbolic response from the GPR 
in imaging cultural artifacts. Engineering plans, made during construction, provide 
known depths to reflectors allowing radar wave velocity to be derived at each 
location, promoting the calculation of accurate depth to reflectors.
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A b s t r a c t :

Ground penetrating radar (GPR) and seismic refraction surveys conducted at a 
critical location on a glacial moraine near Yakutat, Alaska reveal its inferred 
stratigraphy. The moraine material observed from exposures and shallow excavation 
is composed of material ranging in size from medium sand to boulders > lm  in 
diameter. Seismic data acquired oh the moraine show a subsurface depth to refractor 
of -10-15 meters. GPR images show events that reveal the stratigraphy to bedrock 
depth at 30m, The stratigraphy is like that seen at outcrops 10km northeast. With 
this interpretation, I produced a reasonable subsurface stratigraphy that identifies 
hydrogeologic units and depth to bedrock with one meter estimated resolution of 
depth (10%). The subsurface model provides valuable insight to potential stream 
incision during the next cyclical closure of Russell Fjord by Hubbard Glacier, the 
water body bordering the glacial moraine to the north. Based on the sediment depth, 
there does not appear to be any danger of them being scoured to bedrock.

GPR and seismic refraction surveys conducted at a different site, a Forest Service 
road near Petersburg, Alaska, help measure depth to bedrock and the water table. 
Data collected at several culvert sites show classic hyperbolic response from the GPR 
in imaging cultural artifacts. Engineering plans of existing culverts provide known 
depths to reflectors allowing radar wave velocity to be derived at each location, 
promoting the calculation of accurate depth to reflectors.

PART I. H y d r o g e o l o g ic  U n it  C h a r a c t e r iz a t io n  o n  a  R e c e n t l y  A c t iv e  
G l a c ia l  M o r a in e  U sin g  G r o u n d  P e n e t r a t in g  R a d a r  a n d  S e is m ic  
R e f r a c t io n

In tro d u ctio n

Purpose and Objective

Cyclical advances of the Hubbard Glacier and the resultant elevated water 

levels and hydraulic head of Russell Fjord threaten to flood the Situk River near 

Yakutat, Alaska (Figure 1). Sport and commercial fishing on the river is Yakutat’s 

main industry. The response of groundwater in a glacial moraine, the southern 

boundary of the fjord, to the increased water pressure is not known. Ground 

penetrating radar (GPR) and seismic refraction surveys were conducted at the
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spillway through which the flooding would most likely occur to measure the depth to 

bedrock and the water table. The objective of this project is to identify hydrogeologic 

units of the moraine (composed of sand, gravel, cobbles, and boulders) to assist the 

Forest Service in qualitatively judging its response to changing hydrogeologic 

conditions associated with a cataclysmic flood.

Setting and description o f the problem

The study area is a spillway (Figure 2) cut by water trapped within a late 

Holocene terminal moraine complex formed by Hubbard Glacier at the southern end 

of Russell Fjord (Barclay et al.„ 2001), and is on United States Forest Service (USFS) 

wilderness land within Tongass National Forest. The climate is temperate and 

precipitation exceeds 300cm per year. Judging from local observations and distant 

wells, the water table depth is guessed to be within five meters of the surface (USGS, 

1995).

Uprooted trees on the moraine show underlying poorly sorted sediments that 

vary in size from coarse sand to boulders over one meter in diameter. No 

stratigraphie sections from previous studies are available at the exact location of the 

study area, but those described by King (1995) ten kilometers to the northeast (Figure 

1) show horizontal beds of sandy gravel, fine sand and clay extending to bedrock 

about 21m beneath the surface (Figure 3).

The study area, being pristine wilderness and largely inaccessible, warrants

subsurface exploration methods such as GPR and seismic refraction because they are

non-invasive and portable. The dense forest growth is restrictive to GPR surveying in

most areas, but there are areas that are clear enough to grant access. The seismic
3



Figure 2. Study Area: Approximate location of GPR and Seismic surveys indicated by arrow. This spillway cut through a glacial moraine once carried 
imnounded water northward ('to rieht in oicturel to Russell Fiord.
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Figure 3. Stratigraphie sequence observed 10km northeast o f study area. Modified from King, 1995.



survey was less affected by growth because the cabling can be routed around 

vegetation. The thick layer of forest litter proved a difficult medium in which to 

place geophones, a problem corrected with some minimal excavation (less than one 

liter).

GPR and seismic refraction are applicable to this study area because the 

materials of interest are close (<25m) to the surface, and because the subsurface is 

composed primarily of unconsolidated sediment. These two factors played heavily in 

the selection of antenna frequency for the GPR and geophone spacing along the 

seismic refraction survey lines.

Ground penetrating radar (GPR) has been used in a wide range of applications 

to locate subsurface artifacts and structure including depth to bedrock (Birkhead et 

al., 1996). In addition to locating water tables in push nrioraines (van Overmeeren, 

1994), GPR has successfully imaged the extent and thickness of sediments beneath 

water bodies (Haeni et al., 1987). Surveys have also been conducted on an 

unconfined, heterogeneous and anisotropic glacial outwash aquifer composed of 

coarse to fine sands (Sandberg et al., 2002) to investigate the affect of features within 

this material on preferential groundwater flow. Shallow applications (<10m) of GPR 

in aquifer studies by Huggenberger, et al., 1994, Carreon-Freyre, et al., 2003, O’Neal 

and McGeary (2002), and Russell, et al., 2001, describe GPR as a tool for mapping 

structure and stratigraphy in unconsolidated sediments. Penetration depths by GPR 

can reach 21.3m with 80MHz antennas in coarse sand and gravel (Beres, et al., 1991). 

Based on previous work, the decision to use GPR on the shallow, saturated,

horizontally bedded, unconsolidated sediments in the study area is a good one.

6



Seismic refraction is a reliable method for shallow subsurface analysis 

because seismic waves offer excellent penetration depth and resolution. It has been 

used to successfully image karst terrain and an underground tunnel in a shallow 

setting (Belfer, et al., 1998). Behera, et al., (2002) and Sain, et al., (2002) used 

seismic methods to map sediment structure in settings where sediments overlay

bedrock. Ayers (1990) used seismic refraction on an atoll in Micronesia to identify
/

freshwater lenses in an aquifer and characterize carbonate facies based on seismic 

velocity and classify unconsolidated sediment in the top-most layer. A shallow 

bedrock study by Pant and Murty (1981) explored the use of a hammer source and 

single channel time-recorder to quickly map the bedrock surface. Solution 

disconformities in the Great Barrier Reef Province in Australia by Harvey (1977) 

show its use in identifying subsurface structure. Burke (1973) discusses the use of 

seismic refraction to map the thickness of Quaternary deposits in a shallow setting. 

The geologic setting at the moraine near Yakutat displays all of these characteristics, 

and seismic refraction is applicable for this investigation.

M eth od s

Ground Penetrating Radar

GPR measures the contrast in dielectric properties of the subsurface through 

which transmitted electromagnetic waves of a given frequency (radiowaves at 25MHz 

to IGHz) travel. A portion of the wave’s energy is reflected and absorbed, with the 

rest being transmitted at media interfaces with different dielectric constants. The



GPR control unit records the strength and two-way travel time of reflected waves and 

typically plots these as wiggle traces (Reynolds, 1997).

In general, greater image resolution is obtained with higher frequency 

(500MHz -  IGHz) antennas and greater depth penetration with lower frequency 

(2^MHz -  50MHz) antennas (van Overmeeren, 1994). I used 50 MHz unshielded 

antennas because the depth to bedrock is thought to be ~25m in "depth (King, 1995).

Radiowaves lose energy in a number of ways. Absorption from heat loss, and 

losses due to spreading are inherent within the system and cannot be removed by 

careful survey planning. Spreading occurs as radiowaves spherically diverge, and the 

energy per unit area decreases at a rate of 1/r  ̂(Reynolds, 1997), where r is the 

distance traveled by the wave. Geologic materials with low dielectric constants allow 

GPR to pass through unimpeded, and those with high dielectric constants can 

attenuate or block the signal entirely. Large contrast in this property creates strong 

reflections. While this is the primary way of identifying subsurface features, it also 

serves to reduce signal strength. Objects with dimensions similar to the signal’s 

wavelength provide no common planar surface against which the wave can reflect, 

and cause attenuation known as Mei scattering, sending reflections in multiple 

directions resulting in a noisy radar image. The wavelength is the product of the 

pulse period of the antennas and the velocity of the medium (Reynolds, 1997). The 

electric properties of a material also influence wave attenuation. Materials with high 

conductivity such as clay absorb wave energy and increase signal attenuation, 

prohibiting further penetration (Reynolds, 1997).

8



GPR records reflections measured in two-way travel time along a survey line. 

Deriving the GPR wave velocity allows conversion of travel time to depth and thus 

construction of subsurface stratigraphie models. Wave velocity in a subsurface 

medium is the speed of light (in free space), divided by properties of the material, as 

described by the following equation:

v = d  { ( z f i i2)[\+ F^y+ i]Ÿ '^

where:

V = velocity (m/s)

c = speed of light in free space (m/s)

£•= relative dielectric constant 

// = relative magnetic permeability 

P = loss factor (Reynolds, 1997).

In practice theoretical or lab-determined velocities don't work well; empirical 

determinations are best.

One common field experiment used to determine velocity is the common mid­

point (CMP) method. As distance between transmitting and receiving antennas is 

increased, the two-way travel time to a particular reflector also increases. The result 

on a radar image is a hyperbola (Figure 4). This makes for convenient velocity 

analysis, as the most visible reflectors can be used. Nakashima, et al., (2001) 

describe using CMP surveys to calculate the dielectric properties and derive velocities 

for multiple layers in the subsurface from hyperbolae in GPR images. A plot of T  ̂

vs. linearizes the hyperbolic data, and the slope of a best-fit line yields the squared

wave velocity (Beres, et al., 1991). My execution of the CMP survey lines took place
9
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Figure 4. Sketch describing the transmission of radar waves between GPR transmitting and 
receiving antennas during a CMP survey. Picture also shows a simplified plot reflecting 
longer travel times with increasing antenna separation.
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Figure 5. Results from one common mid-point (CMP) survey. Line 18C, executed in the spillway with 
points chosen along a reflector for velocity analysis. The line segment indicates the period during 
which the antenna separation was occurring. Filters used: DC Offset Removal (102), Band Pass 
(Upper: 140, Lower: 35), Time Varying Gain (Start: 102, Linear: 100, Exponential: 3).
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in a grassy field somewhat removed from the most dense concentration of survey 

lines. Two field personnel moved the antennas away from a common mid-point at a 

constant rate while the GPR collected traces at a rate of 4Hz. Figure 5 shows a 

representative image obtained with CMP surveying.

I used a MALA Geoscience RAMAC GPR system, and their Groundvision®

V. 1.3.6 software to record and process the data. Groundvision® v. 1.3.6 is a user- 

friendly graphical user interface that allows the surveyor to adjust the GPR settings to 

collect data in a manner applicable to the study area, and antenna frequencies used. I 

used a Time Window setting of 1557ns to record reflection events within that time 

period, and the Sampling Frequency was 1163MHz. I collected traces along the 

survey lines at 0.1-meter intervals, and the antenna separation (common-offset) was 

two meters.
/

I chose the location of the survey lines by examining topographic data 

generated from ground-based and LIDAR surveys performed in 2002 by the USFS 

(Figure 6). The data reveal the shape of the study area and provide elevation 

constraints for calculating bedrock and subsurface feature elevation. The topography 

is relatively level in the spillway (slope < 0.2%), but the thick vegetative groundcover 

and dense Sitka spruce groves proved exceedingly prohibitive to the GPR system's 

fiber optic cables, making it difficult to survey long, unbroken lines. As a result, 12 

lines varying from 10-40m make up the GPR data set.

11
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Figure 6. Location o f GPR and Seismic survey lines in study area. Solid black lines represent GPR and 
circle-lines represent seismic surveys (numbered). The contours show elevation (dark -  low elevation). 
The axes are labeled with northing and easting values in the NAD 27 coordinate system.

Seismic Refraction

Seismic refraction exploration exploits bending of seismic rays at velocity

interfaces. Snell’s law governs the geometry of the travel path and standard

techniques allow for recovery of layer velocities and depths to those layers. To

collect the seismic waves, geophones evenly spaced from the seismic source recorded

12
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Figure 7. Depiction o f a critically refracted ray.

the arrivals of p-waves returning to the surface. Increasing the distance between 

source and receivers and increasing the source signal strength increases the effective 

depth of resolution obtained with a seismic survey. The path of a critically refracted 

wave is generalized in Figure 7. Processing the data requires choosing the first 

arrival of the signal at each geophone, and plotting the time (t) taken from source to 

geophone versus the distance (x) the wave traveled. The inverse slope of the t-x plot 

is the velocity of the seismic wave through the higher-velocity layer overlain by the 

slower layer (Fig 8). I collected forward and reverse shot data as standard procedure 

to test for asymmetric travel times and lateral velocity changes as well as any dip of 

the refractors.

We used a Geometries SmartSeisSE 12-channel seismograph to collect 

seismic refraction data. Geophone spacing ranged from 1.5 - 5m, according to

13
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Figure 8. Example of seismic data t-x plot for the two-layer case. ' The inverse slopes o f the best-fit 
lines yield velocity o f the upper layer (steeper slope) and second layer.

available space in the study area. Shotpoints (created with a sledgehammer and an 

aluminum baseplate) also fell in the same area where the topography is relatively flat. 

Figure 6 shows the location of the seismic survey lines. Use of this method assumes 

velocity increases with depth. Collecting refraction data on the generally flat 

topography of the spillway floor eliminated the need for topographical corrections to 

the data. Data processing was expedited using SIP® software (Sipwin®) from 

Rimrock Geophysics. SIP® allows the user to input multiple spreads, source shot 

locations, and reverse lines. Data collected from shots performed at both ends of each 

line allowed SEP® to calculate the geometry of shallowly (< 10°) dipping layers.

14



R esu lts

GPR: CMP and Common-offset Survey lines in the Study Area

The raw GPR images are processed with a series of filtering and gain 

functions in Groundvision® to improve the resolution of the radar images. The 

reflection events were strong, and required little enhancement by filtering. Of the 

seven available tools, only a DC filter. Band Pass filter, and Time Varying Gain were 

used to clarify the images (App. A-1,2). Filtering out the DC component removes the 

constant offset in the data. The Time Varying Gain uses a function of time (two-way 

travel time of a radar wave) to amplify the features in the radar image that are weak 

due to absorption and attenuation caused by subsurface properties as travel time 

increases.

Band Pass filtering removes high- and low-end background noise from the

wave traces. Among this noise is “wow,” a low frequency noise component that is a

caused by the GPR unit (Gerlitz, et al., 1993). Other sources of noise include power

lines, cellular phones, and the notebook computer used to record GPR data traces

(Olhoeft, 2000). All of these have an electromagnetic signature at varying

frequencies that contribute distortion to a GPR image. Ringing caused by ground-

coupling of the antennas with the surface (Reynolds, 1997) causes the alternate black

and white banding that is found in all the GPR images. Typically, the appropriate

pass band is centered on the main antenna frequency with frequencies above and

below main antennae components filtered out. I chose to use the automatic setting

controls for Groundvision®'s Band Pass and Time Varying Gain tools because doing
15
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Figure 9. vs. plot o f points taken from CMP surveys.

SO brought out the three separate events common to each radar image relatively well. 

However, the start sample for the DC correction and the Time Varying Gain were set 

manually.

Figure 9 shows the T^-X^ plots of point-values taken from all four CMP 

gathers. The average velocity derived with this method is 64m/ps with a standard 

deviation of 5.5ps/m. I used this average velocity to calibrate the radar images in 

Groundvision*^ and resolve the depth to reflection events along the GPR survey lines.
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Figure 10 shows the before and after filtering images of GPR Lines 7 and 10. 

These images are representative of the data returned from most of the lines surveyed 

in the spillway (Appendix A-1). Most of the images show numerous reflections in ■ 

the first few meters of signal transmission, followed by a marked absence of 

reflections beneath 10m. A sudden, strong reflection event is shown in all of the 

images near 30m. The shape and location of this reflector is consistent through 

several of the images and is most likely from bedrock. The beginning of Line 7 is 

nearly coincident with the end of Line 10 in the field (Inset, Figure 9) and the radar 

images show the bedrock reflector at the same depth at this location. Other instances 

where GPR lines approach or cross one another also show the same depth to the 

bedrock reflector. A detailed image of the GPR line orientation appears in Figure 11.

Seismic Images

Plotting user-picked first-arrival times of the seismic signal from each 

geophone (Figure 12) allows layer assignments from t-x plots of the input data. SIP® 

calculates depths and velocities with an inversion algorithm. It uses least squares to 

compute velocities, the delay-time method (Reynolds, 1997) to estimate depths, and 

follows with three iterations of ray tracing from the source to each geophone, 

comparing their travel times to those recorded in the field. It then adjusts model 

depths to minimize the difference between computed and measured travel times. This 

assumes a two-layer case with velocity increasing with depth. For additional layers, 

SIP® repeats the process ignoring the overlying layer used in the previous calculation.
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Figure 11, GPR Lines as they are located in the study area. Line 10 is 37 meters in 
length.

For example, instead of tracing the rays critically refracted along the interface of

Layers 1 and 2, it traces those along the boundary between Layers 2 and 3, et cetera.

Images created with SIP® software consistently show refraction between

layers with high contrasting p-wave velocity at a depth around 15m (Figure 13). This

result is common among the seismic lines surveyed in the spillway. Two of the

geophone spreads were long enough to give reasonable travel times to derive a three-

layer solution. Figure 14 shows the location of refractors in each of these profiles.

SIP® software generated Profile A in Figure 14 from three forward shots only
19



Ch ms

1 26 500

2 33.375

k.(w <MV..jiKi*iwA&3 37.750

4 38.125

5 39.625

6 41.375

7 43.625

8 45 875

9 47.000

0 48.875

48.625

12 50.375

10 20 30 40 50 60 70 80 90 100 110 120

Figure 12. Screenshot from Sipwin software when making first arrival picks (shown by arrow). The traces 
are shown clipped and shaded to provide clarity in the image. Channels (geophones) are numbered at the 
left with pick-times (in ms). Numbers at right show the gain level o f a particular channel.

(reverse lines were aborted in the field). Details regarding survey geometry 

(geophone spacing, locations, etc.) are found in Appendix B-1.

Image Interpretation and Discussion of Derived Subsurface Properties

The advantage of using both GPR and seismic refraction surveys is the ability

to provide evidence supporting the findings of each survey. The seismic refraction

surveys provide depth to refractors. Seismic velocities are indicative of certain

environments and good guesses of composition are possible. The GPR uses different
20
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material properties that lead to a determination of the layer’s composition and, 

provided a reasonable velocity can be assumed or derived, estimates of depth are 

represented on GPR images. Together, they tell a more complete story than either 

could alone.

Three distinct events are visible in images from the GPR data. Hyperbolae 

and noisy scattering are shown in the topmost region of the radar images to 10 meters 

depth, indicative of objects in the subsurface on the same order of magnitude in size 

to the signal wavelength (Figure I5)(Reynolds, 1997). Using the average velocity 

(64m/ps) found with CMP surveying, the wavelength is 1.28m. This suggests a layer 

comprised of large cobbles to boulders on this order of size, and is consistent with 

rocks observed at the surface.

There are few if any radar reflections appearing beneath the topmost noisy 

zone in Figure 15. This quiet zone suggests signal attenuation upon contact with a 

conductive layer, which is most likely rich in clay. Clay is a known conductor and 

absorbs wave energy, resulting in a weaker signal propagating further into the 

substrate. There is no clear location of this attenuating layer, but the signal is 

markedly weaker beneath 10m in depth.

Images generated from three-layer seismic refraction data show a refractor 

occurring at about this same depth, 10 meters (Figure 14). The velocities of each 

upper layer are <1000m/s, and the velocity of the next lower layer range from 1500- 

2800m/s. These velocities are within acceptable ranges for near-surface sand and 

gravels and clay bodies (Reynolds, 1997).
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A strong radar reflection event occurred in each survey line around 30m depth in spite 

of signal scattering attribiited to the top-most layer of sediment, and the unknown 

degree of signal absorption caused by the apparent presence of a clay-bearing layer. 

The most likely interpretation is bedrock at around 30m depth. The agreement 

between the GPR images shows lateral continuity of the strong bedrock reflection, 

both in the area of high survey concentration and at those survey lines farther west 

and south of the concentration. Considering the climate and the one-meter change in 

elevation of the reflector over distances less than 40 meters, the reflection occurring 

as result of interaction with the water table can be ruled out; the dip is too deep and 

steep to be the water table. The water table is within the first few meters, and cannot 

be seen on the GPR images because it is within the ground-coupling zone.

The data from the seismic spreads long enough to show a three-layer case 

include a refractor around 30m in depth. The velocities derived from that application 

of the data for the third layer are 2019m/s and 4,444m/s, a reasonable value for 

bedrock velocity. Thus both radar and seismic refraction show bedrock at about 30 

meters.

A topmost layer of sediments ranging in size from sand to boulders, overlying 

a clay-bearing layer, above more unconsolidated material that overlies bedrock is the 

general sequence found with the GPR and seismic surveys. This same general pattern 

is shown at the exposure to the northeast (King, 1995). Comparing a simple 

stratigraphie column created from the moraine data (Figure 16) and the strat-column
• I

put forth by King shows the similarities between the two. Therefore, I suggest the .

style of the stratigraphy is laterally continuous from the site 10km northeast of the
25
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Figure 16. Simple stratigraphie column showing seismic and GPR velocities in each 
layer.
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study area through the spillway itself. Most likely, the same glacial and fluvial 

processes that formed the sequence to the northeast deposited the spillway material. 

The three GPR events in each image provide evidence of this, and are supported by 

the seismic data that suggest refraction in the vicinity of the attenuating clay-bearing 

layer and provide derived seismic velocities of the clay-bearing layer and the 

unconsolidated sediments above it. The 3-layer seismic data also show a refractor in 

the same place as the strong bedrock reflection in the GPR images. Furthermore, this 

study shows the utility of using two geophysical methods to increase the ability to 

interpret the structure and properties of the subsurface.
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PART II. L o c a t in g  B e d r o c k  S u r f a c e s  in  A r e a s  w it h  K n o w n  F e a t u r e s  

U s in g  G r o u n d  P e n e t r a t in g  R a d a r  a n d  S e is m ic  R e f r a c t io n

Introduction

The Tongass National Forest has been implementing a culvert replacement 

program to improve fish passage on the Forest. One project located on Mitkoff 

Island, Alaska, replaced culverts installed in the 1980’s to create streamlike 

conditions beneath Forest Service roads. These new culverts occupy more space than 

the originals requiring excavation for their installation. The USFS asked me to 

determine the depth to bedrock at culvert sites to estimate the amount of material that 

needed to be removed, and therefore provide a method by which to better estimate 

costs associated with each site. Given that the USFS was going to excavate where we 

surveyed the profiles, I was presented with an ideal situation in which to get some 

"excavation truth" after collecting GPR data.

The culvert sites are situated at five locations stretched along Forest Service 

Road #6245, Mitkoff Island (Figure 17). The crown of the road constructed over the 

culverts is composed of unconsolidated silt, sand, and gravel, containing larger rocks 

up to 0.5m in diameter. Depth to the culverts is known at each survey site, and ranges 

from one-half to about 2.5 meters’ depth 6elow the road.

There are numerous culvert locations that do not serve as adequate fish

passage sites in Tongass National Forest and their replacement requires the

expenditure of vast resources. In order to properly budget and appropriate funds to
28
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Figure 17. Map o f Southern Mitkoff Island showing culvert site survey locations.

these projects, a better understanding of the cost accrued by excavation of bedrock is 

needed. The cost per unit of excavated bedrock is considerably greater than that of 

unconsolidated sediment. Observations of streambeds and exposures near the culvert 

sites promote the assumption of bedrock depth to be >10 meters at each location. The
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objective of these surveys is to collect data with both GPR and seismic refraction 

inexpensively and non-invasively to resolve depth to bedrock, to assist the Forest 

Service in estimating excavation volume.

Methods

The methods and equipment described earlier for the glacial moraine surveys 

are generally the same as those applied to the culvert sites.

I chose lOOMHz radar antennas to achieve better resolution at the expense of 

depth because the target depth was less than 10m. Nakashima, et al., (2001) and van 

Overmeeren (1994) show resolution to 10m with GPR on glacial push moraine 

deposits and unconsolidated sediments, respectively. Executing common mid-point 

surveys was not necessary at the culvert locations because the known depths to the 

existing culverts make it a simple task to calculate velocity from two-way travel 

times.

I collected traces along three parallel GPR lines at 0.1m intervals. Each line is 

20m long and runs east to west; the lines are separated by about three meters.

Seismic refraction lines were established on both edges of the road across the culvert 

and on both east and west sides of the culvert to collect data that were not influenced 

by the presence of the culvert. In most cases, geophone spacing was one meter, and 

shotpoints stepped away by increments of five meters. Geometry and locations of the 

seismic lines with respect to the culverts are given in Appendix B-2.
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Results and Discussion

GPR data

Figure 18 shows the classic hyperbolic shape of an object with varying 

dielectric constant detected with the GPR as the unit approached the feature at 

Milepost 1.256. The velocity is found by taking the known depth to the top of the 

culvert and changing the velocity setting in Groundvision® until the depth on the 

image matches the known depth. Thus the depth in the figures is accurate. I repeated 

this process at each culvert location and found the velocity to be an average of 

83|uim/s with a standard deviation of 4.03m/|xs.

Comparing the moraine and culvert surveys' velocities shows a discrepancy 

between the two areas. The areas are similar compositionally, and both are saturated 

(or at least wet). However, the unconsolidated sediments along the Forest Service 

road are mechanically compacted. Velocity tables (Reynolds, 1997) show higher 

velocities through homogeneous, igneous, non-porous rock, than those through 

unconsolidated material. Compacting the road materials reduces the amount of air
f

and water in the material, making it more homogeneous and conducive to the 

propagation of radio waves.

Black and white banding at the top of each image is apparent in these GPR 

images just like in those collected at the moraine. This negates the ability to 

distinguish objects in the very shallow subsurface. Comparison of Figure 18, with 

Figure 19 at Milepost 4.962 reveals how ground-coupling interference hinders 

interpretation. The top of a 30-inch çulvert at this location is apparent at a depth of
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about one meter, and can't be seen, whereas the culverts in Figure 18 at Milepost

1.256 are readily visible. There is no clear observable bedrock reflection in the GPR 

images. Scattering due to rocks in the subsurface approaching the signal wavelength 

(0.85m) is witnessed in many of the culvert images (Figure 20), and the culvert 

reflections are so strong (when it is at sufficient depth) they take up a majority of the 

image itself.

Seismic refraction data

Seismic data used to create the profiles beneath the culverts show refractions 

in the first five meters of this representative seismic profile located at Milepost 4.962 

(Figure 21). Excavation occurred at a few of the culvert sites allowing observation of 

bedrock depth, found to be about two meters at milepost 4.962, consistent with the 

refractor depth in Figure 21, Velocities of 1070m/s and 2639m/s calculated with 

SIP® software are reasonable for the low-grade metamorphic shale found at Milepost

1.256 and 1.503 (Reynolds, 1997).

Because the geophone spreads extended beyond the culvert more than ten 

meters in each direction (Appendix B-2), there wefe data collected on either side 

away from culvert influence. This led to more reasonable determination of bedrock 

depth than was possible in the GPR images because the data from those surveys were 

dominated by the presence of the culverts in many cases. Had data been collected 

farther from the culvert at each site, a bedrock reflector may have been present and its 

depth determined. The bedrock depth beneath the culvert could then be interpolated 

from those calculated depths.
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Figure 21. Seismic profile at Milepost 4.962. Excavation at this site confirmed a bedrock depth 
of about 2 meters.

Benefits and Limitations of GPR at Culvert Sites

GPR is a non-invasive, inexpensive technique that can successfully image the

subsurface to the desired depth and resolution. The application of GPR to culvert site

analysis is a reasonable method by which to estimate depth to bedrock and thereby

approximate the expenditure required to install a culvert at any particular location.

Knowing the rippability of an excavation site aids in their prioritization and can

minimize cost associated with multiple field visits. GPR surveys can accumulate

large amounts of information in short periods of time with few personnel required to

successfully perform GPR surveys and maintain quality control of the collected data.
35



The main problem encountered in surveying at the culvert locations was the 

culvert itself, acting as such a prominent reflector in the radar images. No 

information could be obtained about any planar reflectors (bedrock) in the vicinity of 

a culvert. A solution to this problem would be to tow a GPR antenna at a constant 

velocity while surveying the entire length of the road. This would provide continuous 

results over a long enough profile to witness any planar reflectors and interpolate 

their depth beneath cultural artifacts (culverts). A shielded GPR antenna unit is 

designed for this application, as it is housed in a protective covered box and often 

equipped with a wheel allowing surveys to cover a lot of ground. It is important to 

remember that compact units are only available in the higher antenna frequencies 

because of the short antenna separation (< one meter) required by those higher 

frequency antennas (lOOMHz to lOOOMHz) with shallower penetration depth (but 

with higher resolution). Low Frequency (25MHz to lOOMHz) unshielded antennas, 

like the ones used in these surveys, have exposed cables, require antenna separation 

of one to four meters, and are more appropriate for rAanual surveying. Researchers at 

the University of Montana have had success in rigging a towing-sled for lower 

frequency antennas by attaching the GPR apparatus to a large sheet of vinyl 

(Hawkins, 2003).

An assessment of velocity made with known reflectors is the most accurate 

method. However, reasonable estimates are empirically available with CMP 

surveying techniques. Attention should be directed at the means by which the 

velocity of the radiowave is assigned when reviewing future GPR survey results. It
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should be noted, that due to the manual nature of CMP surveys, it increases the labor- 

hours and coincidentally the cost associated with the project.

The large amount of data collected during a GPR survey is easily managed. 

The profiles (such as those created with software packages like Groundvision®) are 

single files unto themselves, and there is no manipulation of the data with the 

exception of filtering. This is important when considering the cost associated with 

GPR surveys due to the minimal amount of time spent by Forest employees in 

handling the data and putting it into presentable form. The filtering process operates 

from a graphical user interface that allows them to be "turned on or off," enhancing 

the image at the users' discretion.

Large amounts of data can be collected in relatively small amounts of time. 

This efficiency in data collection keeps cost low whether equipment is rented or a 

contractor accomplishes the surveying.

GPR is a non-invasive method for data collection in pristine wilderness areas 

that are subject to regulation that disallows excavation or construction. This, 

combined with the reasons above, show GPR to be a cost-effective, non-invasive 

method by whidh to collect data.
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