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H.S. "Suppose you had pursued the profession of a painter. 

Do you feel that your career as a painter might have paral-

led that as a composer?" 

A.S. "Yes, I'm sure it would have. So, I must say, techni

cally I possessed some ability, at this time at least, and 

I'm afraid that I have partly lost it. For instance I had 

a good sense of space relations, of measurements. I was 

able to divide the line rather correctly in 3, 4, 5, 6, 7, 

even 11 parts, and they were quite near the real division. 

And I had also a good sense of other such measurements. At 

this time I was able to draw a circle which deviated very 

little from the objective Cone] with a compass. I could 

draw really very well, but I think I lost this capacity. 

But I had the idea that this sense of measurement is one of 

the capacities of a composer, of an artist. It is probably 

the basis of correct balance and logic within, if you have 

a strict feeling of the sizes and their virtual relationships." 

Arnold Schoenberg, in an 
interview with Halsey Ste
vens, recorded on Columbia 
M2S 709, The Music of Ar
nold Schoenberg, Volume III . 
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I. INTRODUCTION - THREE RIDDLES 

When asked his view, why the flute should be again enjoy

ing such popularity after over a century of neglect, the eminent 

French flutist Jean Pierre Rampal (n.d., p. 2) replied 

"I think this is due to the need of the people after the 
last world war. They had a need for something well-
balanced. Baroque music is ideal for this balance needed 
after a period which was so full of terrible things." 

Harmonia was, after all, considered by the Greeks to be a 

daughter of Aphrodite and Ares (beauty and war). In Plato's 

dialogue The Republic, written in the aftermath of the terrible 

Peloponnesian War between Athens and Sparta, Socrates asks Glau-

con (in Book III, St. II, pp. 410-411) 

. . . "May we say that the purpose of those who established 
a joint education in music and gymnastic was not, as 
some people think, that they might tend the body with one 
and the soul with the other?" 

"What was it then?" 
"It is more likely ... that both music and gymnastic 

are meant especially for the soul." 
"How?" 
"Have you never noticed ... how a lifelong training 

in gymnastic without music affects the character, or what 
is the effect of the opposite training? ... I know . . . 
exclusive devotion to gymnastic turns men out fiercer 
than need be, while the same devotion to music makes 
them softer than is good for them. ... It is the spi
rited element in their nature that produces the fierce
ness, and naturally enough. ... Then is not gentleness 
involved in the philosophic nature; but if it relaxes too 
much into gentleness, the temperament will be made too 
soft, while the right training will make it both gentle 
and orderly, will it not? ... Then seemingly for those 
two elements of the soul, the spirited and the philo
sophic, God, I should say, has given men the two arts, 
music and gymnastic. Only incidentally do they serve 
soul and body. Their purpose is to tune these two ele
ments into harmony with one another by slackening or 
tightening, till the proper pitch be reached." 

Anatomically, the organ of balance on which the body relies 

in gymnastic exercise is the set of semicircular canals in the 

inner ear — three curved pathways, lying in approximately mutual
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ly orthogonal planes, in which tiny "earstones" (otoliths) 

tumble against sensory hairs to make possible the analysis of 

spatial attitudes as well as momentary changes in spatial motions 

— accelerations and decelerations, due to muscular effort or the 

force of gravity. It is a riddle of nature that this organ is 

placed in immediate juxtaposition to the cochlea with its spi

ral arrangement of sensory hairs whereby we analyze the sounds 

of speech and music 

C = car canal; D = car drum; E = Eustachian tube; T = temporal 
bone; H = hammer; A = anvil; S = stirrup; V =» vestibule; SC = 

semicircular canals; Co = cochlea. 

Round view of hammer, an-
Cross-section view of vil, stirrup, semicircular 
outer and inner ear canals and cochlea, from 
from Winckel (1967). Palmer and LaRusso (1965), 

We are thus presented with three riddles; one spiritual (what 

is the nature of harmony as issue of beauty and war), one psy

chological (how does training in music and gymnastic fine-tune 

the soul), and one physical (what is the significance of the 

fusion of cochlea and semicircular canals). 

Two routes seem open, by means of which to approach these 

inter-related riddles. One is m us ic as it was understood 

by the Pythagoreans of pre-classical Greece, for their term 

p.ovcfiKrj was more comprehensive than that in Socratic times, 
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embracing the koyo<; , or meaningful word (whether spoken or 

thought), |iri^c>£ - melody of what we have come to perceive as 

music proper (vocal or instrumental), and xop°£ dancers in 

a rhythmically moving circle. Each aspect partook of the other 

twos ancient Greek speech was tonal (what is preserved today as 

accents being of the same nature as neumes — rudimentary indi

cations of the rise-and-fall of speech melody) as well as me

tered (with vowels of long and short duration); the dancers at 

a comedy or tragedy also commented on the meaning of the action, 

and did so in song (the revival of which in the Italian Renais

sance led to the birth of modern opera performance). Poetry, 

song, and dance were all subsumed under "music" as art of the 

Museso (Cf. de Santillana [1961], Ch. 5.) 

The other route is mathematics, whose Greek name |!<£0SCJI£ 

meant simply "learning." To the extent that any subject is uni

versal today, in an age of super-specialization, it is mathema

tics. (Cf. Leonardo Da Vinci: "There is no certainty in science 

where one of the mathematical sciences cannot be applied.") 

One possible answer to the riddle of fused cochlea and semi

circular canals may be the inter-relatedness of song and dance 

in ancient music, another the inter-relatedness of analysis 

and geometry in modern mathematics. 

In what follows, we shall attempt a middle road between the 

two, concentrating on the work of a scholar who stood at the 

threshhold between ancient and modern mentality, Johannes Kepler, 

whose life-work, the Harmonice Mundi, is as rooted in the Pytha

gorean tradition of music as it is anticipatory of the develop

ment of much later mathematics. 



II. WORD ORIGINS - HARMONY AS RATIONAL ART 

Liddell and Scott's Greek-English Lexicon (1879), p. 211, 

defines capp,ovta as "a fitting, joining together, joint, 

cramp, like ^apino^," which is defined as "a fitting or join

ing," whether belonging to "a limb, esp. the shoulder" or "in 

the fastening of a door;" hence it is cognate to English "arm" 

(via Old English "earm") as well as to "arms," "armature," " ar 

miliary," etc. (from Latin "arma") — cf. the etymological ar

ticle on ar- in the appendix to the American Heritage Dictio

nary (1969), p. 1506. The sense of the Greek word seems to 

refer to the way in which parts fit together to form a whole, 

for we find in Liddell and Scott the further entries: ^apfioCto 

"Ql] fit together, join, ..., fit on clothes," whence in par

ticular "armor" refers to the close-fittingness of a garment; 

cap|io6ios, as an adjective, meant "well-fitting, accordant, 

agreeable;" an <ap(j.ocfr^ was one who "joins, arranges, governs 

as the "harmost" or governor of one of the islands; ^apiiotfis 

meant "a joining together, fitting, adapting," while most 

pertinent for our purposes cap|iocfia meant "arrangements tuning 

of an instrument." In Latin (cf. the article on ar- again) 

we find "artus" meaning "a joint" as a noun, "tight" as an 

adjective; we also find "ars" meaning "art" and "iners" mean

ing "unskilled, without art." 

More problematically, the American Heritage Dictionary 

(loc. cit.) attempts to follow back the Indo-Germanic roots 

of the Greek 7/ap0pov (meaning "a joint, esp. the socket of a 

joint," according to Liddell and Scott) to relate it to ord-

words in Latin, such as "ordo" (from a conjectured Indo-Germ. 

"5rdh-") meaning "a row of threads in a loom," and all their 
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English derivates such as "ordain," "order," "ordinal," etc. 

On the other hand, it postulates a further relationship to 

Latin re- words, leading to English "arraign," "rate," "ratio" 

and "reason," as well as a relationship to Old Norse and Ger

manic "radh" and "rat," meaning "counsel," but most interest

ingly to Latin "rltus" and Greek (a)p i8|j.o- words from which 

we get "arithmetic" and "logarithm" (from a conjectured Ind.-

Germ. rath) referring to the science of "number." Perhaps 

the most important of all these related word-meanings is "ratio," 

for it reveals most clearly a sense which is common to both 

families of words, (h)ar(m)- and (a)rat(h)-/(a)rit(h) -, the 

sense of proportion, or harmonious arrangement. Moreover, to 

the extent that harmony is a rational art, its principles may 

discovered by reason. 
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III. THE QUADRIVIUM IN PLATO'S REPUBLIC 

Plato's Republic could be said (perhaps redundantly, in 

light of the foregoing) to be about the art of well-ordering. 

In Book V, philosophers and non-philosophers are contrasted 

as "lovers of reality" (truth, wisdom) as opposed to "lovers 

of belief" (St. II 480). In Book VI (St. II 484), he lets 

Socrates ask Glaucon rather archly: 

"As those are philosophers who are able to grasp that 
which is always invariable and unchanging, while those are 
not who cannot do this but are all abroad among all sorts of 
aspects of many objects, which of these ought to be leaders 
of the city? ^ Clearly the philosophers! 

The question then arises how such philosophical leaders, or 

guardians, should most fittingly be trained. This is ans

wered in Book VII. Four subjects are recommended by Socra

tes as training the intelligence in the pursuit of truth} 

these are not quite the four, as Socrates numbers them, which 

we normally think of as comprising the classical quadrivium, 

but — with a slight shift of emphasis — they are recognizably 

similar. 

The first (St. II 525) is arithmetic, which Socrates shows 

"to lead towards truth ... in a pre-eminent degree." The 

second (St.. II 527) is geometry, as the study of "knowledge . . . 

of that which always is." (Interestingly, this comes closest, 

on the one hand, to agreeing with the definition of what a 

philosopher is primarily concerned with, according to Plato, 

hence the famous inscription over his academy door to let no 

one enter who was ignorant of geometry, while on the other hand 

it anticipates Felix Klein's famed Erlangen program [1872] to 
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study geometry as the science of that which is invariant under 

transformations.) The geometry intended here is plane geo

metry, for when Glaucon attempts to suggest astronomy as third 

subject (St. II 527) Socrates rebukes him for omitting solid 

or spatial geometry (St. II 528), from which the study of 

motions in space, as astronomy, follows naturally (St. II 529). 

Finally we arrive (St. II 530) at "harmonics," or what we might 

call music theory. This Plato conceives as a further part of 

the study of motion, complementing astronomy, for he has Soc

rates says 

"Motion presents ... not one, but several forms, I imagine. 
The wise will perhaps be able to name the full list. But even 
I can distinguish two. ... One we have had, ... the other is 
its counterpart. ... Apparently, as the eyes are fixed on astro
nomy, so are the ears on harmonics, and these are sister sci
ences as the Pythagoreans say, and we, Glaucon, agree with 
them. Do we not?" 

Glaucon, of course, agrees. Plato lets Socrates go on to says 

"Then ... since the subject is complicated, let us inquire of 
them what they say on these matters, and whether they have any 
other information to give us. And throughout we shall look 
after our special interests." 

"What is that?" 
"That those, whom we are to bring up, shall not attempt 

to study anything in those sciences which is imperfect and 
which does not always reach to that point at which all things 

531 ought to arrive, as we have just been saying about astronomy. 
Do you not know that the same sort of thing happens in har
monics? Men expend fruitless labour, just as they do in as
tronomy, in measuring audible tones and chords. ... But I shall 
not weary you with my simile by telling you of the blows they 
inflict with the plectrum and the accusations they bring, and 
of the strings* denials and blusterings. I leave that, and 
declare that I don't mean these people, but the Pythagoreans, 
whom we have just said we should question about harmonics. 
For they behave like astronomersj they try to find the num
bers in audible consonances, and do not rise to problems, to 
examining what numbers are and what numbers are not consonant, 
and for what reasons." 

"That would be a more than human inquiry." ... 
"In any case, ... it is useful in the search for the beau

tiful and the good, but if it is pursued in any other way, it 
is useless." 
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Depending on one's inclination, one might count the above 

list item by item as containing five subjects to be studied; 

or one might lump the plane and the solid together as two as

pects of geometry, and combine astronomy with harmonics as two 

forms of motion study, according to Plato, coming up with just 

three subjects. Perhaps it was the numinous quality of the 

number seven which caused the medieval scholastics to contrast 

the three subjects (grammar, logic, and rhetoric) of the Trivium 

with the four (arithmetic, geometry, astronomy and music) of 

the Quadrivium, in listing the seven liberal arts. 

It should, perhaps, be remarked in passing that the Tri

vium subjects were in no wise considered "trivial." Both terms 

mean a "three(-fold) way," but the Trivium should be conceived 

a s  f o r m i n g  a  p e r f e c t  ( e q u i l a t e r a l )  t r i a n g l e  o f  s u b j e c t s  ( A o r  A )  

while the latter refers to something like a side-street ( ~) ), 

hence of side-interest. In terms of modern mathematics, the 

subjects of the old Trivium could be seen as ancestors of foun

dation questions, as presently studied in category theory 

(the grammar of functions and functors, etc.), topos and 

set theory (the basis of logic), and (something academically 

neglected) the art of presenting arguments most effectively 

(rhetoric as understood and defended by Pirsig [1974]). 
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IV. KEPLER'S HARMONICE MUNDI 

A. Textual Background 

Plato's comments, through Socrates, on the "right" sort 

of study of harmonics which would lead to knowledge of truth, as 

distinct from beauty or goodness, were quoted at length because 

Johannes Kepler — whose poor eyesight made him listener not looker 

— set out some 2000 years after the time of Plato to pursue just 

that which Plato had advised againsts a science of consonance, 

consonance that can be "known," not merely appreciated as beau

tiful or good! As a scientist, he makes the idea of "know-" 

or intelligibility central to all the arguments in the main 

work which he kept polishing all his life, the Harmonice Mundi, 

Welt-Harmonik, or Harmony of the World. 

In the textual history supplied by Max Caspar, the first 

translator of the entire book into a modern language (1939), 

p. 13, we read how the world first learned of Copernicus' new 

Sun-centered theory in a Narratio prima by Georg Joachim Rhe-

ticus in 1540 (Copernicus' own book De revolutionibus' publi

cation being delayed until 1543, the same year as Vesalius' 

equally revolutionary anatomy). In this "first narration," 

Rheticus takes up the theme of Pythagoreanism and the special 

significance of the number 6 (whose equality to 1+2+3, its divisor-

sum, makes it a so-called "perfect" number), claiming that God 

had so arranged the world most perfectly 

"... that a heavenly harmony is achieved by the six 
movable spheres, in that all these spheres follow one ano
ther in such a manner that no immeasurability arises in the 
distances from one planet to the next, but rather each one, 
geometrically enclosed, receives its place in such fashion 
that, if one wished to remove it from its place, the entire 
system would at once collapse." [My translation — S0E.] 
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This idea of an arrangement of the six known planets 

by means of a system of geometrically nested spheres enclos

ing their respective orbits — a system that would "explain" 

why there should be exactly six such planets — was taken up 

by the then 25-year-old Kepler in 1596 in a youthful work 

entitled Prodromus dissertationum cosmographicarumc conti-

nens mysterium cosmographicum. The "cosmographic mystery" 

at the heart of the work was his system of nested spheres, 

a fore-runner of later armillary spheres. A static concept, 

it was designed solely to explain why there should be six 

planetsp and how they are spaced (as nearly as this was known) t 

That there should be six spheres needed, and how they should 

be spaced — both of these things at once — he explained by 

appealing to the five regular or "Platonic" solids, knowledge 

of which was attributed to the Pythagoreans (6th to 5th cent. 

B.C»)f but first published as the culmination of Euclid's Ele

ments (ca. 330-320 BcC.): there are six spheres because there 

are five such solids to separate them, and the distances be

tween them depend on the order of the solids (see illustrations 

next page). Outermost, we find the sphere of Saturn, in which 

is inscribed a regular cube, touching its cornersj within 

that, touching its face-middles, we find the sphere of Jupi

ter} this is separated from the sphere of Mars by a similarly 

in- and circumscribed regular tetrahedron} a similarly in- and 

circumscribed dodecahedron separates the Mars from the Earth 

sphere} and a similarly in- and circumscribed icosahedron se

parates the Earth from the Venus sphere} only in the case of 

Mercury did Kepler have to make an exception to his procedural 
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TABVLAII1.OR.DIVM?LANETAR.VM DIMENSTONES ET DISTANT/AS PER-qVIKOVE. i-tOVLAR-lA CORPORA OtOMETMCA EXHIBENS. 
ILLVSTR-ISS* PR.1NCIPI.AC DNO DWoTRIDERf^DVCIWIfc 

TtNltt6KO,tr TItCIO, £OMITI MONTW BCI-OAItVM. ETC.COPiSfcCR-ATA. 

Model of the Solar System 
from Kepler's Youth - Work 
"Mysterium Cosmographicum" 
(showing spheres of Saturn, 
Jupiter, Mars and Earth) 

[_ Illustrations 
reproduced 

from Bindel (1971) 
pp. 32 and 34] 

Enlargement of Central Portion 
(showing spheres of Mars, Earth, 
Venus and Mercury, with central Sun) 
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rules a regular octahedron is inscribed in the Venus sphere, 

but the Mercury sphere passes not tangent to the octahedron's 

face-middles, circumscribed by itP but rather through the 

octahedron's edge-middles, partially penetrating it. This, 

of course, was fudging, and Kepler knew it. He remained 

proud of this youth-work, and convinced of its basic true in

tent, circulating as many copies as he could afford to print 

among the nobility of Europe, much as Galileo circulated copies 

of his telescope. The commoner Kepler never received a tele

scope from Galileo — couldn't even get Galileo to send him 

clear reports of what he'd seen (moons of Jupiter, phases 

of Venus) for Galileo would only send him messages cryptically 

encoded in Latin anagrams I But near-sighted as he was, he 

would have made a poor observer in any case. Instead, des

tiny called Kepler to the court of Emperor Rudolph in Prague, 

together with the very skilled Danish observer Tycho Brahe, 

and it was Kepler's understanding of Brahe's observational 

data that first revealed the true distance relationships with

in the solar system. At age 50, Kepler redid his youth-work 

on a much more ambitious scheme, following the order of sub

jects of Plato's Republic, but pushing the investigation fur

ther at each stage, contrary to Plato's advice, to ask which 

things "are ... and are not consonant, and for what reasons." 
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B. Knowledge of Individual Figures 

The first book of the Harmonice Mundi treats plane geo

metry, but its interest is exclusively in regular polygons, 

divisions of the circle into so-and-so-many equal parts. 

For those figures which were known to be constructible with 

straightedge and compass since classical times, Kepler merely 

reviews what is already known? the triangle, square, pentagon, 

hexagon, octagon, decagon, 12-, 15-, and 20-gons. (He does not 

at first make clear how this series is to be continued, but im

plicitly it is 3, 4, 5, or 15 times 2n for any n = 0,1, 2,3, ••• . ) 

For those figures not known to be so constructible he attempts 

to investigate in one case, the regular heptagon, why their 

construction should be elusive, coming up with various equa

tions for the side of such a polygon inscribed in a unit circle, 

e.g. "7j - I4iij + 7v - Ivij" on p. 49 of (1939), corresponding 

to the modern equation 7x - 14x3 + 7xs - x7 = 0, whose roots are 

x = ±2 sin(y« 180°) • 2 sin(i-y^) - 0.867767478 is the side of 

the regular heptagon inscribed in a circle of unit radius, and 

the seven distinct values {0, ±0.433883739, ±0.781831483P 

±0.974927912} assumed by ±sin(y'180°) give the vertical dis

tances to its seven corners as directed lengths of half-sides 

or half-chords. 
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Such an equation has come to be known as "cyclotomic," for 

it is "circle-splitting" in the evident sense. Kepler would 

have been able to find approximate numerical values for these 

roots, but he is geometer enough to know that that is of no 

use in determining the construction, sayt of the ratio of the 

heptagon side to the radius of its circumscribed circle. 

"No, since this proportion is not given to me by any 
geometrical construction, I shall wait, for the time being, 
until someone comes and shows how I can produce it." (loc. cit.) 

In Theorem XLVII, p. 58, he says finally that the situation 

is the same (undecided — probably unconstructible, but we must 

wait until someone comes to show us) for all figures with an 

odd number of sides greater than 5, with sole known exception 

of the regular 15-gon, which is readily constructible. He 

is aware of close, but false, approximate constructions, e.g. 

that on p. 52 which approximates a heptagon side as half the 

side of an inscribed equilateral triangle (which would give 

a side length value of = 0.866025404), and rejects them. 

More interestingly, he is aware of angle trisection procedures 

by means of transcendental curves such as the conchoid of 

Nichomedes, p. 56, which would permit the exact construction 

of a heptagon side — cf. Morley and Morley (1954), §90j these, 

too, he rejects, since the conchoid e.g. would require place

ment of a mark on one's straightedge, thus for Kepler "begging 

the question" of knowing how to construct it, p. 50. 

The key to his thought throughout the work is contained 

early on in Definitions VII ° IX, p. 20s A figure (regular circle 

division) is said to be "know-" or "intelligible" if and only 

if it can be "demonstrated" (produced) by a (finite) chain, 
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however long, of construction steps using only an unmarked 

straightedge and compass. Only such figures, he felt, have 

ratios fully accessible to the human ratio, hence the signi

ficance of their constructibility for Kepler's thought. But 

why should the figures be regular divisions of a circle? 

Why the emphasis on cyclotomy? 
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C. Formation of Space-Filling Harmonies 

"Why divisions?" is easily answered — Kepler is consistently 

pursuing what is of ratio nature, representing each number n 

as ratio nil. "Why circles?" That we see next.1 The whole 

work is, after all, entitled the Harmony of the World, and 

Book II begins to make good the promise of this title. As 

the first book dealt with the demonstrability of such figures, 

so the second deals with what he calls their "congruences," 

how they fit together to fill out the plane as tilings or 

mosaics, appealing to the Greek word lap(i6rre iv (Attic variant 

of cap(i6^s lv) , p. 63, "to fit together" as being like the La

tin "congruere," so that a fitting-together of such regular 

polygons into space-filling tesselations constitutes quite 

literally a kind of harmony, Latin "congruentia" corresponding 

to Greek cap(aovLa. 

While a single circle can be divided regularly into any 

number of parts, the whole plane or surface of a sphere can

not. The plane can be covered in most regular fashion (all 

pieces, tiles, or faces alike and all their meetings at cor

ners alike) in only three ways: by equilateral triangles (six 

per corner), regular squares (four per corner), or regular hexa

gons (three per corner). 
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In 3-dimensional space, the curved surface of a sphere can 

be covered in this most regular fashion in five different ways, 

corresponding to the so-called "Platonic solids" (after Plato's 

treatment of them in the Timaeus), the culminating figures of 

the 13th book of Euclid which Kepler used in his youth-work — 

triangles; three (tetrahedron), four (octahedron), or five (i-

cosahedron) per corner; squares; three per corner (cube); or 

pentagons; three per corner (dodecahedron). 

If one relaxes the requirement that all faces or tiles 

be alike, but still insists that same numbers of same things 

come together at every corner in the same manner (and that 

the plane or sphere not have any one distinguished direction 

or axis), then seven more so-called semi-regular tesselations 

of the plane become possible, five of which may be thought of 

as derived from the three regular ones by progressive "trun

cation" of corners, creating 6-, 8-, and 12-sided figures 

out of the former 3-, 4-, and 6-sided ones. 
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The other two mix triangles and squares, or triangles and 

hexagons, five at each corner — an odd number, entailing 

some sort of imbalance at the corners, which is off~set or 

brought into larger balance again in the mosaic as a whole 

by other means. In the case of the one with triangles and 

squares, there is an evident alternation between two kinds 

of handednesses: half of the squares are tilted slightly 

clockwise, and the other half slight counterclockwise, each 

of one kind surrounded by four of the other kind. In the 

case of the one with triangles and hexagons, the entire mo

saic is either oriented in a clockwise sense (as here), or 

is its mirror twin. 

If one tries to fit pentagons together in the plane, 

then two of them leave a 144° gap, just right to be filled 

in by a decagon, while three of them leave a 36° gap, just 

right for a pentagram star corner. Kepler found all sorts 

of ways to fill the plane semi-regularly with 6-, 8-, or 12 

pointed stars, but when he tried to imitate them with 5- or 

10-pointed ones he found he kept being forced to merge some 

of them in pairs, or even multiple pairs as in the case of 

the 10-pointed decagram stars. 
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which never uses any figure more complicated than a single 

pair of (symmetrically) overlapping decagons} yet it does 

have to use these pairs, and it does have a distinguished 

central figure. 

A pair of regular heptagons placed side to side leave 

open corners of 102|° which cannot be filled in by any third 

regular figures, while three heptagons side to side at a cor

ner overlap by 25|° so, Kepler reasoned, there can be no way 

to cover either a flat plane or a spherically curved surface 

with them (surfaces of negative curvature, whereon a covering 

would be possible, being unknown at the time). Heptagons 

are not harmony-producing, and by similar arguments neither 

are 9-, 11-, or 13-gons. The 15-gon can start to produce a 

harmony in the plane by surrounding itself with a wreath of 

alternating triangles and pentagons, but 15 being an odd num

ber the alternation cannot succeed. Like one of the foolish 

virgins, the 15-gon arrives too late after the doors to harmony 

have been shut by the 7-tol3-gonsj cf. p. 27* of (1939). 

Kepler concludes this book by enumerating the seventeen 

semiregular sphere-coverings (the so-called Archimedean solids), 

to which he adds two new ones using pentagram star faces, three 

or five to a corner — the stellated icosa- and dodecahedra. 
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If figures with five-fold symmetry were only limitedly suc

cessful at forming space-filling harmonies in the plane, on 

a spherical surface in solid space three kinds succeeds the 

regular pentagon itself (on the Platonic dodecahedron and 

four of the Archimedean solids, including the pattern now 

found on soccer balls), the decagon (on two other Archimedean 

solids), and the pentagram star (on Kepler's two stellated 

solids) . 

The full list of harmony-producing figures which Kepler 

provides, p. 82, includes seven regular polygons — the 3-, 4-, 

5 8 5-, 6- p 8-, 10-, and 12-gons — and four stars — the -, -j-, 

and ̂  - gonal penta-, octa-, deca-, and dodecagrams. 

His case for including the 4^ star is weak, as the plane til

ing it creates requires fusion of increasingly many pairs $ 

there have been, however, further star-faced polyhedra discovered 

since Kepler's time which incorporate it satisfactorily (Wennin

ger [1971]) so his intuition on this has been borne out. More 

problematic is his inclusion of the regular 20~gon, on the 

grounds that it admits a complete wreath of alternating squares 

and pentagons. If this were grounds for admission into the 

select company of "harmonious figures," then he should have 

also included the 24-gon, which admits a wreath of alternating 

triangles and octagons, all of which are "demonstrable" and 

should have been welcome5 but then he would also have had to 

have included the "non-demonstrable" hepta- and enneagons, 

for the former are capable of completing a wreath around a 

42-gon, and the latter around an 18-gon, both in alternation 

with triangles (discovered by the present author some fifteen 
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years ago, and apparently unmentioned elsewhere in the litera

ture) c If the list of harmony-producing figures is to be 

stretched to twelve members, then a worthier inclusion would 

be the double triangle or Star of David as j - star (hexagram), 

occurring e.g. in the stellation of the octahedron as a pair 

of interpenetrating tetrahedra. Then the twelve would decom

pose as seven polygons plus five star polygrams, a decomposi

tion elsewhere in geometry, e.g. in the way any 12-edged network 

to be assembled into a cube or octahedron will always require 

seven edges to be glued and five folded or vice versa, and to 

be met again in the realm of dodecaphonic music. C L̂D 
If allowed this revision (about which more later) of the 

"harmonious twelve," we see that there is excellent agreement 

between the notions of those regular figures which are know-

able (accessible to the human ratio) as individuals in the 

sense of Book I and those which go on to cooperate socially, 

as it were, forming space-filling harmonies in the sense of 

Book II. It is in the nature of the circle, as opposed to 

the plane and sphere, that while infinitely many regular divi

sions of the former are possible, even infinitely many of them 

knowable (all powers of 2), only finitely many of these can 

qualify to fill out regular divisions of the latter? the 

doors to spatial harmony are shut at the 5-gon, among the odd-

sided ones, and at the 12-gon among the evens. This leaves 

the 15-gon "out in the cold," as we have seen. On this, Kep

ler concludes Book II, p. 84, by saying 

"For as its demonstration is no proper one, but only acci
dental, so is its congruence not a complete one, but only one 
which makes a beginning and does not enclose the entire figure. 
This is to be considered below in the IIIrc* Book with regard 
to the origin and application of the semitone." 
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Dt Theory of Musical Proportions 

This IIIrc* Book is entitled "On the Origin of the Harmo

nious Proportions and the Nature and Differences of Musical 

Things." We are prepared to take the third step in our study 

of the quadrivium by the prefatory quote from Proclus' intro

duction to Euclid, p. 85 of (1939) to the effect that mathematics 

"spreads before us the well-ordering of the virtues, doing so 
in one fashion in numbers, differently in figures, and differ
ently again in musical harmonies." 

But as we noted on p. 9 above, Kepler has a different intent 

than Plato and the Pythagorean tradition. After a brief 

excursion on the Pythagoreans' love of whole numbers, and 

their derivation of numinous properties of the sums 1+2+3 = 

6 (perfect number) and 1+2+3+4 = 10 (tetraktys) to which we 

shall return later, Kepler rejects these considerations, pp. 

92-949 as being too abstract and not taking the judgment of the 

ear into consideration, siding rather with Ptolemy, who did 

so, but preferring a middle ground. Whereas Ptolemy went so 

far as to admit the proportions 6:7 and 7:8 as harmonious 

(what Kepler describes as "Ut Ri Fa" instead of "Ut Re Mi Fa," 

i.e. G ̂ Bb" C as opposed to G A Bl) C), Kepler finds this offen

sive to his ear and rejects it, too, but accepts Ptolemy's 

proportions of 8:9 and 9:10 as harmonious for passing tones, 

melodically, reserving the honor of full harmoniousness in 

standing chords, as intervals, to those numbers found to be 

knowable and congruence-producing in Books I and II. (Perhaps 

his notation of both the sums 1,2,3 etc. and proportions 6,7 

etc. alike with commas, rather than + and : signs, kept him 

from noticing a more cogent reason to think the Pythagorean 
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considerations inappropriate for the theory he is about to 

develop — they add and subtract to form partitions, where he 

multiplies and divides to form ratios. 

The reason for the study of regular divisions of the circle 

in Book I is revealed clearly, at last, in the first chapter 

of Book Ills We are to think of such circles as like mono-

chord strings bent round, vibrating, and study the extents to 

which the parts are consonant or dissonant with the whole. 

How Kepler would have loved to have seen a Chladni plate in 

action — a circular plate of steel, supported in the center, 

dusted with a very light powder, bowed with a well-rosined 

violin bow at some point and touched with a finger tip at 

anothers Where the bow strikes, there is vibration, hence 

a scattering of the powder; where the finger touches, there 

is stillness, hence a gathering of the powder. The angular 

distance between bow and finger, and the intensity of the bow

ing, determine a rhythmic activity throughout the plate, result

ing in kaleidoscopic patterns of motion and rest, standing 

waves, made visible by the medium. Exquisite divisions of 

a circular drop of water, for example, can be achieved, vibra

ting in response to sound waves, as caught e.g. by the camera 

of Hans Jenny (1967, 1974) — see the photographs reproduced 

on the next page from (1974), p. 113, which stroboscopically 

"freeze" a tiny drop of water momentarily sculpted into plas

tic shapes with 5-, 7-, or (crossed!) 4-fold symmetry. It is 

something like this which Kepler is anticipating, some 350 yrs. 

before the physical and photographic means to demonstrate it. 

(Cf. Goethe's famous aphorisms "Architecture is frozen music.") 
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Compare Jenny's language (1974), p. 100 . .c 

"The more one studies these things, the more one realizes 
that sound is the creative principle. It must be regarded as 
primordial. No single phenomenal category can be claimed as 
the aboriginal principle. We cannot say, in the beginning 
was number, or in the beginning was symmetry, etc. These are 
categorial properties which are implicit in what brings forth 
and what is brought forth. By using them in description we 
approach the heart of the matter. They are not themselves 
the creative power. This power is inherent in tone, in sound. 
Tone and sound are, so to speak, the entelechies which are 
active here." 

... with Kepler's, p. 93: 

"Neither can it suffice the theoretician that the numbers 
1,2,3 are the symbols of basic principles, of which all na
tural things consist. For an interval is not a natural thing, 
but a geometric one. If then these numbers did not count some
thing which was closely related to intervals, a philosopher 
could lend no credence to this cause; he would have to be sus
picious of it as cause." 

Jenny rejects the "in the beginning was number" or "symmetry" 

approach to harmonical forms as merely descriptive, without 

the power to create. Similarly, we saw Kepler recognize the al

gebraic approach through cyclotomic polynomials as also merely 

descriptive, without the power to construct. But there are 

also common convictions to be found comparing Plato with Kepler. 

Just as Plato berates those who "expend fruitless labour ... in 

measuring audible tones and chords" (see p. 7 above), so Kep

ler points out, p. 93, that one can tune strings to any pro

portion, but that "as soulless things these offer no judgment, 

merely following without resistance the hand of the unskilled 

theoretician." Yet both seem to agree that one must start 

with observations before attempting to interpret them theo

retically, whether in astronomy (the need for observation 

here was to be filled by Brahe, in Kepler's case) or in music. 

The principal difference between them, then, is in the direc

tion the interpretation should take from there. Plato warns 
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against becoming all too mired in the observations of the conso

nances (Kepler agrees) , counselling the would-be harmonist to 

"try to find the numbers" therein (which Kepler does) but not 

to attempt to examine "what numbers are and what numbers are 

not consonant" in themselves. Kepler attempts nothing less 

than a qualitative grading of the consonance or musical har

monic properties of the numbers themselves, as realized in 

the form of a resounding circle, as notes on a vibrating mono-

chord in the round! 

There are two important parts of, or aspects to, Kepler's 

difference with Plato and the Pythagorean tradition (with 

which he is otherwise in profoundest sympathy, to the point 

of wondering whether the soul of Pythagoras might not have 

migrated to himself — see Max Caspar's quotation of a Kepler 

letter to Herwart in the introductory pages 23*-24*). First

ly, he is in possession of an adequate theory of irrational 

numbers, permitting gradation of degrees of irrationality. 

Secondly, he is determined not merely to start with accurate 

observations, but to return to them again and again until 

they are satisfactorily accounted for (Max Caspar on this, 

p. 17*s "As much as his lively spirit was inclined to a priori 

speculations, even so was it clear and self-evident to him 

that the testable results of his deductions would have to be 

checked against positive facts"). 

Regarding degrees of irrationality. The school of Pytho-

goras (ca. 6th cent. B.C.) is credited with two major dis

coveries (whether, and to what extent, these are indebted to 

Babylonian precursors being left here moot) — the fact that 
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the simplest musical intervals are based upon rational re

lationships of the lengths of the sounding bodies to one ano

ther, and hence reciprocally to their rates of vibration, 

and the fact that there exist geometric quantities (arising 

through the "Pythagorean theorem") which cannot be rationally 

expressed; the former are rational in that their proportions 

may be simplified to lowest terms as a fraction, or quotient, 

of two relatively prime whole numbers (numbers having no common 

factor larger than 1), while the latter are irrational in that 

the assumption that such a ratio or quotient of relatively 

prime integers exists leads to a contradiction (if 72, for 

example, is assumed to be = p/q for some pair of relatively prime 

whole numbers p and q, then it is easily shown that p and q must 

have a common factor of 2 after all, contrary to assumption). 

So long as we think classically of our monochord laid out 

straight, as a stretched string, we are in the position of be-

ing able to divide an arbitrary line segment easily into any 

number of equal parts by straightedge and compass: Simply 

carry off that many parts on some other line crossing the 

first at one end, join the other ends, and transfer the com

pass marks by parallel lines. 

But as soon as we take Kepler's intuitive leap to bend the 

sounding medium around into a circle (how it is to be done, 

p. 96, he says "would lead too far here"!) the situation 

changes completely! Trisecting an arbitrary line-segment is 
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no problemj trisecting an arbitrary angle, on the other hand, 

is a very big problem, not settled clearly until the time of 

Galois in the early 19th century (to which we shall return). 

An entire circle (angle of 360°) may be readily trisected to 

form an inscribed equilateral triangle9 but the measurements 

of this triangle involve the irrational quantity -/3. 

When we "try to find the numbers in the audible consonances" 

of musical octave - fifths, Pythagorean-style, we come up with 

the rational relationship of 3slj when we think of the same 

musical interval in Kepler's terms we find a figure with side 

length -J3 inscribed in a unit circle. Rationality vs. irra

tionality, in the Pythagorean sense, is not at issue for Kep

ler — all of the regular polygons will involve irrationalities 

of varying degrees. The problem is to grade these irrational

ities by a new kind of rationality-criterions accessibility 

to the human ratio, as degrees of knowability, intelligibility. 

For, p. 94, 

"since it is a spiritual being which has so fashioned 
human souls that they take delight in such an inverval (in 
this lies the true definition of consonance and dissonance)P 
so too must the differences of one interval from another and 
the causes why these intervals are harmonious be of spiritual 
and intelligible nature, i.e. this nature must consist in 
the fact that the determining parts of the consonant intervals 
are properly knowable, those of the dissonant ones improperly 
knowable or unknowable-" 

Kepler's idea, then, is that the figures he deems "knowable" 

are in some sense connatural with the human spirit, hence 
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accessible to it, while those that are not do not produce 

that delight of recognition wherein, he claims, true conso

nance lies. The intervals he associates with the regular 

triangle and the doubling process (musical fifths and fourths, 

octave transpositions) involve irrationalities of first de

gree, such as -J2 and 731 these were the harmonies used in 

medieval Europe. The intervals associated with the regular 

pentagon and its doubles (musical thirds and sixths) involve 

what he considers to be irrationalities of second degree, 

i.e. two-layered ones, the side length of a pentagon inscribed 
-T= 

in a unit circle being J —"2 * these were the harmonies 

that arose with the revival of interest in Greek art and 

geometry during the European renaissance. That same pentagon 

turn the side length of a regular decagon inscribed in the 

Both the triangle and the pentagon, therefore, consist of 

parts that are knowable, and properly so, though of differing 

degrees; hence the historical precedence of musical fifths 

and fourths over thirds and sixths, as perceived consonan

ces. If one constructs first a regular triangle, and then 

a pentagon starting at each of its corners, a regular 15-gon 

side s can be written in factored form 

- 0.618033989 is the ratio of "golden section" cp, in 

same unit circle 
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results — not properly, on its own merits, but "accidentally" 

as Kepler saysj hence he accepts the ratio 15 : 16 as leading 

tone Mi Fa melodically, but denies its ability to stand on 

its own as a consonant interval. 

There is a slight problem with this. As the observant 

reader may have noticed on p. 30 above, the decagon side-length's 

simple one-layer-deep radical expression should have classified 

it as more directly knowable than the pentagon, yet if one is 

given a decagon then a pentagon follows from it immediately 

by omitting every other corner; hence the pentagon's degree of 

knowability should be no greater than that of the decagon, yet 

the expression for its side length is two layers deep. Kepler, 

in fact, rates them both as being of his second degree, 15- and 

20-gon both third. In his appended notes, p. 369, Max Caspar 

points out that the areas of triangle and square have one layer 

deep radical expressions, those of pentagon and decagon two lay

ers, and those of 15- and 20-gons both three. This is apt to 

strike the reader as rather ad hoc, but it will turn out to be 

searching in very appropriate directions, once the light which 

algebra can shed on these questions is understood (v. note, p. 69). 

Meanwhile, it may be appreciated that the most important 

thing which Kepler's own work contributed toward a qualitative 

understanding of European musical harmony was to have selected, 

on an intuitive basis that proved to be essentially correct, a 

middle road between earlier Greek tuning theories built exclu

sively upon powers of 2 and 3 (the Pythagorean ratios) and 

those admitting powers of both 5 and 7 (due to Plato's friend 

Archytas and the Alexandrian Ptolemy) some three and six hun
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dred years later. By choosing to include powers of 2, 3, and 

5, but exclude those of 7, Kepler's work accounts well for the 

actual course of harmonic history in the west. 

By making this choice* pp. 129 ff.t Kepler is forced to 

break with the tradition of the medieval church modes (al

though he dutifully describes them all briefly) and the older 

Greek tonalities ("diatonic," "chromatic," and "enharmonic" 

which he avoids altogether, despite a description of the 

Greater Perfect System elsewhere, pp. 144 ff.) and begin in

stead to lay the groundwork for an understanding of what 

have since become the two principal European modes, major 

and minor, relating them explicitly to the proportions of 

the regular pentagon. The diagonal chord of a pentagon is 

to a side length as 1.61803 : 1, and one diagonal divides 

another into 1 + .61803, satisfying 1.61803 : 1 = 1 : c61803 

(the whole being to the larger part as the larger is to the 

smaller, one definition of "golden section")„ This was 

first encountered numerically on p. 26 in Book 1} now in 

Book III we meet it again on p. 107 in simplest approxima

tions in the number series lsl,2 of unison and octave and 

1,2,3 of octave and fifth, thinking of pairs of successive 

members of these series being set into ratio with one another 

1:1, 1:2, etc. If these two simplest series-segments are 

V_ 
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joined end to end, overlapping in common terms, they give rise 

to the well-known series of Fibonacci numbers 1,1,2,3, ••• form

ed via adding 1 + 1 = 2, 1 + 2 = 3, whose next members would be 

2 + 3 = 5» 3 + 5 = 8, etc. , yielding successive ratios 2 s 3, 3 s 5f 

5 s 8, etc** growing ever closer to the "golden" pentagon ratio 

0.618ic,sl, or 1 : 1.618"* , alternately over- and under-approxi

mating it as 0.666 , 0.6, 0.625, 0.615—, Oc619—, and so on, 

i' „" ?  
-a 

1 2 3 4 5 6 8 91012 1516 4 5 6 3 5 8 

Thinking in Pythagorean terms, we must imagine a series 

of monochord strings, the first vibrating as a whole, the se

cond stopped half way, the third in thirds, etc<, but otherwise 

originally of equal length and tension. The series of pitches 

formed thereby produce an octave ratio between the first and 

second string (say C and Cf), a fifth between the second and 

third (C' and G1), and so on. The major third (E") as 5th tone 

was classically justified as arithmetic mean between the root 

and fifth as 4th and 6th tones. Thinking instead in Fibonac

ci terms, we see that it can also be regarded as major/minor 

division of the interval from the fourth below to octave above 

as 3rd and 8th tones, like pentagon proportions, and we call 

the ratio 3 : 5 (G' to E") "major" and that of 5 i 8 (E" to C f") 

"minor" as two different sizes of intervals of a sixth, the 

complements with respect to the octave of the ratios of 5 : 6 
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and 4 s 5 as "minor" and "major" thirds. The "perfect" inter

vals of the octave® fifth and fourth, as ratios 1:2, 2s3 and 

3s4, based upon arbitrary powers of 2 and the 1st power of 3, 

come in only one size apiece* medieval music theory was ground

ed upon them. As soon as the 5th tone is admitted we arrive 

at thirds and sixths in two different sizes * Even the two sizes 

of seconds and sevenths as ratios 9s10 and I5sl6, 5s9 and 8s 15, 

respectively, are all seen to involve 5 or multiples of it, 

as well as bringing the 2nd power of 3 into play (9th tone 

used in passing). Kepler relates the notions of major and mi

nor modalities to major and minor divisions of the pentagon on 

pp. 165-166, likening them to the division of humanity into 

male and female genders. The tendency toward pairing noted 

in Book II would seem to belong here too, thematically, but 

Kepler does not mention it further. 

The harmonious relationship of the number 2 to the number 

5 (witness the family of 2-seed-leaved or dicotyledonous plants 

and their almost universally 5-fold-symmetric flowers — Bindel 

[1962], p. 198, notes that Kepler intended to write about them 

someday but never did) but to no other odd number shows up also . 

in the following manner, according to Kepler. He takes it to 

be axiomatic, pp. 96-97, that for all odd numbers greater than 

5 and their doubles all numbers relatively prime to them are 

dissonant to them. To illustrate this, he finds it sufficient 

to examine the numbers from 1 up to half the number in question, 

producing the table of dissonant parts shown on the next page. 

As an axiom, it needs no formal justification$ informally, he 

tells us he needs it to mark off the consonances he wishes. 
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"The parts dissonate with the whole 

1. 2. 3 e 

1. 2, — 4 
lc 2o 3. 4. 5 
1. 2. 3. 4. 5. 6 
lc 2. — 4. 7 
1. 2. 3. 4. 5. 6. 7. 8 
1. 5, — 7. — # e * 
1. 2. 3. 4. 5. 6. 7. 8. 9 0 

7 
9 
11 
13 
15 
17 
18 
19 

and so on indefinitely/' 

With this axiom (it is no. Ill) he seeks to prove a theorem 

(noo V), albeit with what strikes us as rather ad hoc argumen

tation, to the effect that although demonstrable (constructible) 

star figures form parts of a circle that are just as consonant 

with the whole as the sides of demonstrable polygons, neverthe

less certain of their sides are to be excepted as dissonant. 

These are found as followss Take the number of the star side, 

say 9, and divide the number of the whole, say 20, by 2 repeat

edly until you arrive at a number that is less than half of the 

side0 The side in question is deemed consonant if and only if 

the resulting ratio is one of the admissible harmonious divi

sions of a monochord string. In the example, then, we form suc

cessive halves of 20 until we reach 2-J- < 4^-; then we test the 

ratio 2b : 4-J- and find it equal to 5:9, which is not one of the 

admissible divisions, so although the 20°gon is constructible 

20 q 
the -g- star is deemed dissonant0 The ̂  star, similarly tested, 

leads to the admissible ratio of 5:8, hence is harmonious, 

as is the ̂  star by virtue of the harmoniousness of the ratio 

5 s 6, and so on. (The proposed "Star of David" to be added 

to Kepler's list is harmonious since 3:4 is.) 

The list of admissible divisions of a string is arrived 

at on p. Ill in just as ad hoc a manner, as shown on the next 

page, by starting with the unison ratio, then at every stage 
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taking the given ratio p/q and testing the sum p+q§ if it is 

a number of form 2a3^5c (where a = 0,1,2, ••• but b and c are 

either 0 or 1) then he forms two new ratios l/(p+q) and 

(p+q-l)/(p+q) and repeats the test, but if it is not of that 

form then he writes the offending sum after a dashed line to 

show the process has ended. 

2 
3 

3 
'5 

2 
5 
I 
! 
i 
.1 
i 
( 

1 
2 

3 
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r 

1 
3 
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1 
2 

similarly 

13 11 

1 
4 

5 
6 
i 

i 
i 
11 

In this manner he finds a total of seven admissible divisions.^ 

Actually, he tells us, he found them first by ear and searched . 

a long time for a satisfying explanation, calling what he 

wrote earlier in his Mysterium Cosmographicum "fantasy" by 

comparison. The observation of what is harmonious is made 

first by the ear$ then and only then is mathematics brought 

to bear by way of explanation. 

^"(I.e. into whole, halves, thirds, quarters, fifths, sixths, 

and eighths.) 
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E. Effective Aspects in Astrology 

If the Ill^d Book had to do with proportions of side-

or chord-lengths of regular figures inscribed in circles, re

presenting somehow-wrapped-around monochord strings as har

moniously sounding divisions, so the IV^h Book treats much 

these same figures but now as they are experienced from the 

center point, angularly, Both the Earth and the individual 

human being are conceived as possessing a soul, and the soul 

extends circularly out from both, surrounding them, and re

sponding to harmonious angular separations between the various 

planets as they move about the Zodiac, provided these angles 

are "knowable," for therein Kepler sees the effectiveness of 

harmony« 

That Kepler ever received a call to the court of the Em

peror Rudolph in Prague was probably due much more to the suc

cess of the political and agricultural predictions made in 

farmers' almanacs which he edited than to the ambitious con

structions of his Mysteriurru The emperor, after all, retain

ed an alchemist attempting to make gold (from which, alas, 

Kepler was to be paid). Kepler, for his part, knew that he 

had been lucky in some predictions (such as the year of a 

Turkish invasion), but in other matters he knew he had made 

extensive observations and based his statements on experience 

(cf. his account of the weather during the winter of 1609, 

compared with day-to-day astrological aspects, as given in 

[1971], §138). The idea of a world- as well as human soul 

bent round the Zodiac he took from Plato's Timaeus (31b-47e), 

whence also the "Platonic solids." This is not the place 
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to discuss the merits of an astrological world-viewj the in

terested reader is referred to the work of Jung and Pauli (1955). 

Concerning this book of the Harmoniceg it is sufficient 

for our purposes to note that Kepler finds again (allegedly 

on the independent practical experience in the field) twelve 

aspects (angles between planets, as seen from the Earth) to 

which wind and weather and the affairs of men seem to respond 

to a significant extent. The twelve that he cites (plus con

junction as an implicit thirteenth) correspond essentially to 

the original list of harmonious figures in Book I. There are 

seven aspects derived from centriangles of regular polygonss 

120° from the triangle, 90° from the square, 72° from the pen

tagon, 60° from the hexagon, 45° from the octagon, 36° from 

the decagon, and 30° from the dodecagon. 

db 
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There are four aspects derived from star polygrams: 144° 

from the 2°st:ar or pentagram, 135° from the star or octa-

10 gram, 108° from the —-star or decagram^ and 150° from the 

^—star or dodecagrarrio 

Alone of the list in Book I the 20-gon contributes no effec

tive aspect. As twelfth aspectp Kepler takes the opposition 

of two planets, corresponding to a digon, but the reader may 

be willing to accept the proposed "Star of David" or hexagram 

as pair of triangles in opposition to one another — indeed the 

outstanding example of conjunctions and oppositions which Kep

ler studied elsewhere was the 60-year cycle of Jupiter and 

Saturn, describing successive corners of such a hexagram every 

10 yearst that being 5/6 of Jupiter's 12-year period and l/3 

of Saturn's 30„ 

These twelve also correspond to twelve of the fourteen 

ratios cited in Book III (see p. 36 above), if one takes them 

as fractions of 180°. Only the ratios of 5 : 8 and 3 : 8, cor

responding to angles 112.5° and 67.5°„ do not form effective 

aspects, according to Kepler (because of the half degrees?). 
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Fo Ordering of the Solar System 

The Vth and final chapter or book of Kepler's mature 

work is subtitled "The most perfect Harmony in the Heavenly 

Motions and the Eccentricities, Orbital Diameters, and Revo

lutionary Periods arising therefrom." In his youth-work, he 

had once modelled the orbits of the 6 known planets as equa

tors of spheres in- and circumscribed about the 5 Platonic 

solids, hoping to explain thereby both their number and their 

spacing. He had already felt slightly uneasy about having to 

place the innermost Mercury sphere through the edge-middles 

of the innermost octohedral solid, rather than tangent to its 

face-middles as with all the other larger inscribed spheres. 

When improved observational data refined the knowledge of 

Mercury's actual orbit and forced Kepler to conclude that 

it was not circular but elliptical, with a definite eccentri

city, his first attempt to revise the model was to imagine 

each sphere's wall as having a particular thickness propor

tional to the eccentricity of the orbit of the planet which 

it modelled! considerable for Mercury and Mars, moderate for 

Earth, Jupiter and Saturn, very slight for Venus (cf. illus

tration on p. 11 — the little circle on the rim of the Jupi

ter and Saturn sphere indicates the eccentricity of that pla

net's orbit)o But this was hardly an improvement in the model! 

Instead, Kepler was eventually forced to abandon the 

old statuesque geometry and work through countless pages of 

Tychonic data before finally arriving at a new dynamic con

ception of geometry in motion. A last remembrance of his 

youthful construction is shown on p„ 287 of (1939), indicating 
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for each planet by three circles the ex

tent of its orbit at Perihelion (nearest 

the Sun), at mean distance, and Aphelion 

(farthest from Sun). Tycho himself be

lieved neither the old Ptolemaic system 

nor the new Copernican one entirely, but 

preferred to place the Earth in the cen

ter and let the Sun circle about it, with 

all other planets circling the Sun$ this 

is indicated in Kepler's drawing by a 

dashed circle labelled "Tychoni Iter So-

lis," centered on the orbit of the Earth 

and Moon (Telluris et Lunae). The names 

of the 5 Platonic solids are printed be

tween the orbits, where Kepler had thought 

them placed as a youth. 

In the hard-won conception of his maturity, each planet 

moves in an elliptical orbit, with one focal point at the 

Sun. A line joining that planet to the Sun (radius vector) 

sweeps out equal areas in equal times, fastest at perihelion 

and slowest at aphelion. Finally, if the orbital diameters 

(or radii) of any 2 planets are compared with the lengths of 

the corresponding revolutionary periods, then cubes (3rd po

wers) of the former are proportional to the squares (2nd po

wers of the latter — a purely algebraic statement, having no 

pictorial counterpart in terms of visualizable cubes or squares. 

I 1\ VoVXW';' / /'/ H 

For example, if we compare Jupiter's distance from the Sun and 
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length of year with those of the Earth, we find it is 5.20 

times as far away and takes 11,86 times as long to complete 

one revolution} in modern terms, 5.203 « 110863, so that the 

ratio of 5.203 : 11.863 is approximately equal to the ratio of 

1 astronomical unit (Earth-Sun distance of 93 million miles) to 

1 year (365 Earth days). These three laws of planetary motion, 

for which every modern text on astronomy praises Kepler, take 

up a scant paragraph of Kepler's own work (pc 289, bottom half 

of page). What interests Kepler is the following: 

Rather than conceiving of each planet's eccentricity 

pictorially as a relative thick- or thinness of a static sphe

rical shell wall, Kepler thinks of the planet in motion, speed

ing up as it comes slightly nearer the Sun, slowing down again 

as it recedes in its elliptical patho For each planet he rec

kons angular distance travelled, as seen from the Sun, at ap

helion and at perihelion, and relates each ratio of slowest to 

fastest motion to a musical interval (p. 301 of [1939| ] ) c  

PT ATNTRT APPARENT DAILY MOTION OWN MUS. IN- PAIRWISE RATIOS 
at aphelc at perihel. RATIO TERVAL converg. diverg. 

^ Saturn a=l'46" b=2'l5" 

^ Jupiter c = 4'30" d=5'30" 

d* Mars e = 26*14" f=38'l" 

Earth g = 57 • 3" h=61'18" 

% Venus i=94'50" k = 97'37" 

% Mercury X = 164'0" m= 384'0" 

a 4 
b " 5 

c 5 
d ~ 6 

e ~ 2 
f ~ 3 

£ 
h ~ 16 

i ~24 
k 

L „ 5 
m 

Min. 3r<^ 

Perf. 5th 

Semitone 

Diesis 

b 1 a ~ I 
c " 2 d ~ 3 

d 5 c 
e " 24 f ~ 8 

f 2 e 
6 = 3 h "TZ 
h 5 £ 3 
i * 8 k ~ 5 

k 3 i . 1 
J0 * 5 m ~ 4 

Only the first (outermost) planet, Saturn, exhibits a musical 

ratio of its own extreme daily motions which is virtually exact 
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(to within 2" of arc — a should be l'48")j the others could 

be improved by taking c=4,35" , e = 25'2l", g=57'28", k=98'47M , 

and m= 394'0", as he notes (p. 301). "But" he writes (on p. 302) 

"if one compares the extreme motions of pairs of planets, then 

at once the Sun of Harmony appears in all its glory, whe

ther one considers the divergent [outer at aphel., inner at 

perihel.] or convergent [outer at perihel., inner at aphel."] ex

tremes." Actually, the divergent extremes and inner two con

vergent ones are also only near approximations, though nearer 

than any of the planets by themselves; but the outer three con

vergent extremes are virtually exact. More importantly, all 

ten pairs are good approximations to familiar musical intervals' 

Even mores taken together, they form major and minor scales'I 

Following the Guidonian "gamma-ut" tradition of letting r,A,B, 

c. represent do, re, mi, Kepler lets Saturn's lowest note 

(slowest motion, shortest apparent arc) be represented as a Gj 

then if that Saturn G is taken as the aphelion value a=l'46" 

he obtains a major scale (with extra C# but missing A) 

o, a* frj 
^ I ^ > H- X3 > w ~ TJ ^ > > 2 
K U ~ tl? 11 ~  S ~ > 

£. r  n O r o n 02-T r ~ 
2 - ~ X X ~ X • o 
a5?  ̂ o r* 

but if it is taken as the perihelion value b=2*l5" he obtains 

a minor one (with extra but missing F). 
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In each case there are two doublings. (Jup. at aphel. is octave 

of Sato at perihel., and Merc, at perihel. is double octave of 

Ven. at perihel.) and two omitted (in the major scale, Earth 

at perihel. would be a quartertone between Gff and A, Ven. at 

perihel. a quartertone between E and F^ — in the minor scale, 

Mars at perihel 0 would be a G# on pitch but foreign to the scale, 

Veni at aphel. a semiquartertone below pitch C). 

Returning each planet's pitch to its proper relative 

octave, but letting each vary over the interval found by com° 

parison of its own ap- and perihelion motion, Kepler obtains 

finally the following ranges of the "voices" in the heavenly 

"motet" perceived in this way (pp. 309-310), including a per-

feet 4th contributed by the Moon's ^ motion ratio at apo= and 

perigee (farthest and nearest the Earth): 

% 

Saturn Jupiter Mars (apfox*) Earth 

A 6 
-S-C-0Q- . __Q. b .— 

JEEE 
^ cnus Mercury 1 floor* 

Kepler then contemplates the kaleidoscopic effect of all of 

the 6 planetary harmonies shifting in rhythms that are essen

tially irrational to one another, wondering if the same combina

tion ever occurs twice in the history of the universe, but con

tenting himself to pick out a few of the possibilities in 

which all 6 could join in a single consonance, describing 

chords in e minor, C major, Eb major, and c minor. In Eb, 

the plaintive "G-Ab-G" line of the Earth's melody becomes "Mi-

Fa-Mi," which Kepler interprets as an allusion to the seemingly 
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endless round of "Miseria" and "Famina" of life during the 

30 years' war. (The latter two keys are possible since Venus 

is always hovering between E and D# or Eb, and could be in

terpreted either way.) For hunger miserably he does — the 

emperor's alchemist never succeeds in making gold, and Kep

ler is eventually forced to leave Prague for Linz. 

In 1621, two years after publication of the Harmonice 

Mundi, Kepler has to risk a dangerous trip back to Wtlrttemberg 

to defend his mother against accusations of witchery (she dies 

a year later at age 75). In 1625, the Counter-Reformation 

forces him to leave catholic Linz in Austria for the more 

tolerant Regensburg near the Swiss border of southwest Germany, 

after several years of wandering* dying there in 1630. 

In 1633, Galileo Galilei is tried and convicted for 

teaching the heresy of a Sun-centered universe, dying in 1642. 

In 1643 Isaac Newton is born. 

Note i 

Professors Willie Ruff and John Rodgers, members of 
the music and geology faculties of Yale University, respec
tively, have created an electronically synthesized realization 
of Kepler's "motet," including rhythmic pulses to represent 
the otherwise inaudible subsonic contributions of Uranus, Nep
tune, and Pluto, writing up their results in the American Sci
entist, Vol. 67, No. 3 (May-June 1979), pp. 286-292. The re
cording, LP 1571 (Kepler's birth year), The Harmony of the World, 
introduces each planet individually, then combines them at vari
ous speeds, finally playing the full "motet" over Kepler's life
time and over one full Pluto year (248 Earth years). 
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G. The Newtonian Reformulation 

Each of the three Keplerian laws of planetary motion 

changes under the hand of Newton: 

The first law, that all planets move in elliptical 

orbits, paths that are algebraically quadratic in nature, 

becomes deducible on the assumption of a gravitational force 

that diminishes inversely proportionally to the square of the 

distance between the two attracting bodies. The elegance of 

the deduction is mitigated by the fact that once three or more 

bodies are involved the orbits become essentially ineffable, 

forever shifting. 

The second law is modified to recognize the Sun as hav

ing much the greatest mass of any body in the solar system, 

which places it near the ideal focal point of a given planet's 

elliptical orbit} but the actual•' center (were there just two 

bodies involved) is the average center of mass of Sun and pla

net together, like a large adult and small child on a teeter-

totter, with the fulcrum nearer the larger person„ Even with 

just two bodies, the Sun is no longer at rest in the center of 

the Copernican system but ever moving to stay in balance with 

each of its planetary children. (The common center of the Sun-

Jupiter system lies in the outer atmosphere of the Sun* so that 

the Sun must move by an amount equal to its own radius just to 

off-set that one other body.) 

The third law is changed in more subtle manner. If r and 

R are the radii of a given pair of planets' orbits, and t and T 

the times taken respectively to revolve once around them, then 

Kepler would have formulated his law in modern notation as 
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r3 / R3 = t3 / T3 (setting R = T = 1 for the Earth's distance and 

time, we saw that this meant 5.203 « II0863 for Jupiter). Since 

distances are being compared to distances, and times to times, 

it does not matter what the units of measure are — they cancel, 

leaving pure numbers, musical ratios, a unique "sound" emitted 

in spirit by each member of the solar system. As reformulated 

by Newton, this becomes r3 / t3 = R3 / T3, a single physical 

constant holding for all members of the solar system at once, 

but one whose numerical size is meaningless, dependent on arbi

trary choices of units involved. It is the old medieval 

debate between the Platonic realists and the Aristotelian 

nominalists I In terms of the three riddles posed in the intro

duction, the difference between the two formulations of this 

law might also by characterized by saying that Kepler's think

ing remained within the cochlea, expressing everything in 

terms of musical ratios, while Newton's thinking took into 

consideration what the semicircular canals told of gravity. 

Or again: In Kepler's musical view of the solar system as 

singing a motet by the dynamics of its movements, the Earth 

"holds" the middle or tenor voice, while the other six planets 

move " against!' that "holding" as contra-tenors, altus (higher, 

faster) or bassus (lower, slower), the way counterpoint was 

conceived from the middle voice outward, above and below, by 

composers of his day, while Newton's reformulation parallels 

his century's re-thinking of harmony as rooted in the bass, 

as though by gravity. 
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V. THE LARGER HISTORY OF THE QUADRIVIUM 

A. Ptolemaic Epicycles 

The paths of the planets (from the Greek rrXavr)? , a wander

er) were observed very carefully by both the ancient Chinese 

and Babylonian civilizations, who kept faithful records of 

which asterisms they appeared against from season to season. 

But that was a pointillist approach: isolated positions here 

and there. 

1 

^MERCURY^ { J 

^VENUT^^\ 
^^VENUS^ i 

\ MARS^^\ 
i -V 
j 

1 JUPITER^ 

I ^ 

SAT i jjRN 
J 

PATHS OF PL ANET5I9S8 

24 18 12 6 O 
< RIGHT ASCENSION HRS 

To appreciate the difficulty of describing the actual 

continuous loop-the-loop paths, consider the above illustra

tion (reproduced from Tricker [1967], p. 44) showing the geo

centric appearances of Mercury through Saturn from the year 

1959 (January 1st positions being marked with a J). The ver

tical lines mark hours of right ascension (0 corresponding to 
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the Sun's position at time of the spring equinox, at present 

between the constellations of Pisces and Aquariusj 6 corres

ponds to its northernmost position at midsummer, 12 autumnal 

equinox, and 18 southernmost position at midwinter.) The hori

zontal lines are repeated copies of the celestial equator (the 

projection outward onto the sky of the Earth's equatorial cir

cle). Each planet follows essentially the Sun's path, climbing 

23i° north in summer, then falling 23i° south of the equator in 

winter$ but each planet embroiders this path from time to time 

with zig-zag and loop-like figures of the most varied nature. 

The center of the backward or retrograde motion which forms the 

loop always coincides with the period of brightest luminosity 

of the planet, calling even greater attention to the phenome

non. Comparable to the full moon, the planets rise at sunset 

and set at sunrise during their loop-motions, remaining visible 

all night long. Mars at such times is a brilliant object, out

shining all other natural lights in the nighttime sky except 

the Moon and Venus, while at the time of its apparent fastest 

forward motion it appears only as a medium-bright star, made 

all the dimmer by rising or setting shortly before or after the 

Sun. The times of these brilliant periods were known to the 

Egyptians; isolated intermediate places were recorded by the 

Chinese and Babylonians; but it remained for the Greeks to 

penetrate the phenomenon with mathematical understanding. 

As put forward by Claudius Ptolemaeus in Alexandria 

(Egypt) during the 2nd century A„D.9 the essential forward 

motion of each planet was accounted for by thinking it to 

move along a deferent circle of appropriate size (small for 
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the swifter-moving ones, large for the slower)0 The retro

grade loops were accounted for by picturing the planet to be 

departing from the simple circular motion of the deferent by 

following instead a smaller second circle atop the first, called 

an epicycle (or "on=circle")i its center in turn followed the 

deferent. Finally, the varied zig-zag and loop-the-loop forms 

were accounted for by thinking of the epicycles as tilted with 

respect to the deferents. The deferents were all more or less 

in the plane of the Sun's path (the ecliptic), tilted at about 

23\° to the plane of the Earth's equator\ slight further tilts 

of the epicycles caused their motions to sometimes appear back-

and~forth when seen edge°on, sometimes as looping upward or 

downward when seen from below or above 0 

The absolute sizes of the de

ferents were not known, but re

cognized as relating to the 

times taken to revolve around 

them (the exact relationship is 

Kepler's 3rc* law). The relative 

sizes of deferent and epicycle 

were determined by direct obser

vation, measuring how much an ac

tual planet seems to lead or trail 

a steadily moving ideal point. Those 

inner planets (Mercury and Venus) 

moving faster than the Sun had the centers of their epicycles 

affixed to a radial line-of-sight from Earth to Sunp while the 

outer planets (Mars, Jupiter, Saturn) had epicycles which could 
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move freely along their deferents, thus accounting for the 

observation that Mercury and Venus never wandered more than 

36° or 45° respectively to one side or other of the Sun, while 

the other three could appear at any angular distance from it 

around the zodiac. All this tends to strike the modern men

tality as so much clockwork without material gears, and with

out a driving mechanism, but it does describe the appearances 

purely geometrically] 

When the versatile English science writer R. A. R. Tricker 

was approached by his publisher (Cambridge U0 Press) to put 

out a modern book on constructing Ptolemaic epicycles, he balked 

at firstj but as he got into the work, its true nature and in

tent became clear to him, and he grew enthusiastic. Indeed, 

it was his remarks in the preface to the resulting book (1967) 

that formed a seed-point in the present author's mind, about 

which many other experiences began to crystallize. Tricker 

wrote: 

"It is hardly to be expected that such elementary work 
would expose problems of interest to current thought, yet in 
putting the book together the author found his own apprecia
tion of certain aspects developed further as a result. In par
ticular he had hardly realised before the essential role played 
by the Ptolemaic theory in the development of science. In com
mon with many other writers he had tended to regard it as an 
obstacle to progress which had to be removed rather than as a 
contribution to the final end. The achievement of Copernicus 
consisted essentially in transferring an annual component in 
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the motion of all planets from them to the earth, thus re
placing five independent movements by a single motionc How
ever, ..0 there is no annual component to be directly discern
ed in the movement of the planets. There is, in fact, only 
one annual movement to be observed in the sky, and that is 
the apparent movement of the sun itself, or of the earth, ac
cording to the point of view. The annual components in the 
motions of the planets only become apparent after the harmonic 
analysis, provided by Ptolemy's theory, has shown them up." 

And with that we meet the first historical instance of 

what is known in modern mathematics as harmonic analysis: the 

resolution of a complicated but periodic phenomenon into simple 

cyclic components. Its history begins where Kepler's work 

ends, with astronomy} and there it was to lie dormant for 1600 

years before reawakening in another field which gave it its 

name, musical harmony (parallelling the next-to-last book of 

Kepler's work), as analyzed by the 18th century French com

poser and theorist Jean-Philippe Rameau. 

To see the connection between epicycles and wave forms, 

we need only let the radius of the deferent circle become in

creasingly large; then the epicyclic path undergoes a gradual 

transformation from looped to cusped to undulant fom, ap

proaching sine wave shape in the limit as the deferent circle 

approaches a straight line (circle of infinite radius). This 

process may be used to describe the propagation of water waves 

by observing how a suspended particle moves in a circle. 
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B. The Discovery of Overtones and Exotic Tunings 

Some periods seem ripe for certain discoveries, so that 

they are made independently by several different people at 

about the same time. One often-cited example is the disco

very of non-Euclidean geometry at the turn of the 19th cen

tury. Another, less well-known, is the discovery of over

tones at the turn of the 18th. 

The first published account, giving experimental evidence 

for the existence of overtones, was due to Joseph Sauveurs 

Principes d'acoustique et de musique, included in the Histoire 

de 1' Academie Royale des sciences, Paris, 1700/01. A much ear

lier observation of at least the first partial is found as a 

remark by Descartes in his 1618 Compendium Musicae: "We ne

ver hear any sound without its upper octave somehow seeming to 

strike the ear," but he did not develop the idea. 

Rameau was well aware of Descartes' writings on music, 

to the extent of borrowing entire passages from their French 

translation (out of the Latin) by Father Poisson, as well as 

those of other theorists such as Saint-Lambert, merely changing 

the odd word or two per sentence — very strange behavior for 

one of the most original minds of his century.' Yet Rameau 

seems to have been entirely unaware of the physical work of 

his countryman Sauveur, at least at the time of the publishing 

of the first edition of his famous Traite de 1'Harmonie reduite 

a ses Principes naturels in 1722. By the time of writing the 

Nouveau systeme of 1726 he has begun to read and appreciate 

Sauveur's work, and in the Generation harmonique of 1737 he 

discusses in detail how the two theories bear one another out. 
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The Traite adopts the notion of harmony as founded upon 

the lowest sounding tone the way Copernicus' De Revolutionibus 

adopts the description of planetary motions as centered on the 

largest body: it is merely a reckoning convenience. Rameau is 

engaged in setting forth the practice of figured bass* Coperni

cus was originally concerned with computing many Easter dates 

(based on rhythms of Sun, Earth, and Moon)o Only gradually did 

a sense of physical reality creep into their work (the bass is. 

the fundament, the Sun j_s the center) , 

A chord such as C-E-G could have its root C (Do) in the 

bass, or its third E (Mi), or its fifth G (Sol), referred to 

as "perfect position," "first" and "second inversion," respec

tively. In the Traite (p. 41 of its English translation [1971]) 

these three positions are shown schematically in an equilateral 

triangle, a figure that would have gladdened the heart of any 

medieval theorist: 

Second . . , First 
Inversion // Inversion 

The numbers 4,5,6,8,10 are naively identified with octave 

doublings of the root 1, fifth 3, and third 5. A chord was 

Perfect Chord 
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presumed to contain the third and fifth degree (scale step) 

above the first note in its bass unless otherwise specified„ 

A perfect chord had both, so required no notatione a chord in 

first inversion (E-G-C) had the third above the bass but sixth 

in place of the fifth, so was known as a "sixth chord," denoted 

65 one in second inversion (G-C-E) had notes six and four de

grees above the bass note instead of five and three, so was 

known as a "six-four chord," denoted While the placement 

of the root position chord at the base of the triangle and its 

name "perfect" suggest a preferred status, the overall symmetry 

of the diagram stresses an essential similarity of the three 

chords. Indeed, Rameau writes "no matter what corner is chosen 

as the base, we shall always find a consonant chord. We shall 

find Do, Mi, and Sol in each chord, and the differences among 

these chords will arise only from the different arrangement of 

these three notes or sounds" (loc* cite). 

The confusion between the numbering of chord and scale 

notes on the one hand, and the different sound impressions of 

the inversions on the other, are both clarified when the concept 

of overtones is availablec The Pythagoreans had known that a 

monochord string yields a succession of different pitch-levels 

when stopped at different proportions of its whole length, but 

it was apparently Sauveur who first realized that one and the 

same string could do all these things at once (vibrate in all 

these different modes), producing a coloristic effect. With 

the aid of a modern oscilloscope it can be shown that part of 

the characteristic of a flute sound is the relative strength 

of its fundamental, while an oboe has strong second harmonic or 
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overtone (the octave) and a clarinet a strong third harmonic 

(the octave-fifth) — see the illustrations on this page and 

the next from the article "Musical Tones" by Hugh Lineback, 

Scientific American. May 1951 „ 

Fundamental Third harmonic 

Second harmonic Fourth harmonic 

Scale-degree numberings follow steps, while chord-tones follow 

0 m 0 harmonics: 

Iq3L 
oJZ 

r&B-
-cr~( 

If we now examine the rest of the chord-tones (the series of har

monics) above the note in the root of, say„ a C major chord 

in root or perfect position, first and second inversions, 

we see that the root position is "perfect" in that all of 
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Combination of fundamental and second harmonic 

Tone of French horn Combination of fundamental and fourth harmonic 

Combination of all even harmonics Tone of trumpet 

Combination of fundamental and eighth harmonic Tone of flute tvith strings 
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its chord steps are in perfect agreement with the overtone 

series of its bass*. 

A chord in second inversion (a ̂  chord) has only its bass in 

common with the overtone series of that bass, but the overtone 

series of its fourth degree note has third harmonic in agree-

o <a 
ij-

A chord in first inversion (a 6 chord), however, has third 

harmonic of the bass agreeing with fifth harmonic of the third, 

while the fifth harmonic of the bass clashes strongly. 

= I : -4- • -
'VD3 STF-O $ Q % —— 

5 - y ° & 
O 2> > O 5 

** -cr , 
Out of the relative agreement or disagreement of the harmonics 

of the lowest and next-to-lowest notes of a chord follows the 
r 

impression it makes on the musical ear: The ^ chord is one 

of mild suspense, and is typically struck by the orchestra 

just before an instrumental soloist launches into a cadenza. 

The 6 chord's more pungent character is appropriate to inter

rupting the dramatic action of an opera or oratorio, as typi

I 
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cally struck by the harpsichord before a singer declaims a 

short speech or sings a short recitative. 

One other innovation of the early 17th century must be 

mentioned before we can proceed with further discussion of 

musical intervals and scales: the creation of tables of loga° 

rithms, again apparently independently by two different people 

at nearly the same time. In Edinburgh, 1614, Sir John Napier, 

Lord of Merchiston, published his Mirifici Logarithmorum Ca-

nonis Descriptio, showing how problems of multiplication and 

division could be reduced to addition and subtraction, and those 

of powers and roots to multiplication and division, all by means 

of certain "artificial numbers," exponents to a base e=2.718*•• 

possessing many wonderful properties. Meanwhile, on the con

tinent, a Swiss mathematician Jobst Btlrgi in charge of the lit

tle astronomical observatory of the Margrave of Hesse developed 

equivalent tables of what he called "red and black numbers" pub

lished in his Arithmetische und Geometrische Progress at Prague 

in 1620} these were to a base near 1 (1.0001). The Londoner 

Henry Briggs advanced the theory of Napierian logarithms, but 

proposed use of base 10 for common reckoning, while Kepler, in 

Prague, invented the familiar notation of "putting out" (whence 

the name exponent) the red numbers in small print to the upper 

right hand corner of the base to express the same sense or value 

(A.6yos) as the other numbers (apiOfio i) which Btlrgi printed in 

black. Briefly, if a = b+c or b*c, then we can solve for b as 

easily as for c by subtraction or division, respectively? but 

if a= bc, then we must extract b as Va (c^*1 root of a) but ex

press c as logba (logarithm base b of a). To the base 2, for 
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example, the product 4x8 = 32 becomes 23*23 = 22+3 = 25, a sum 

2+3=5, where the 2, 3, and 5 are logarithms base 2 of 4, 8, and 

32, respectively. The difficulty* of course, lay in establish

ing the values of powers with fractional exponents; 2'5 = 22 = -Jl 

since = 22 *22 = 22 + 2 = 21 = 2, but 2'49 and 2,oX? What should 

they equal? This was the accomplishment of Napier and Btlrgi J 

Without logarithms, Kepler could not have computed the 

note-values of the planets' daily angular motions in his "motet." 

As a sample computation, using the commonly available logarithms 

base 10, let us see how close Mercury's daily motion at aphel

ion comes to being proportional to a C# (Kepler says it is on

ly approximate — cf. the upper chart on p. 43) if Saturn's daily 

motion at aphelion is taken as a G: AC# should be 6 equal-

tempered chromatic steps (twelfths of an octave) up from a Gt 

1' 46" = 1.7666-1' and 164'0" = 164. 000The former is between 

1 = 10° and 10 = 101, so its logarithm base 10 must be between 0 

and 1; similarly, the latter is between 100=102 and 1000=103, 

so its logarithm base 10 must be between 2 and 3. In fact (to 

4 place accuracy, by table look-up), logio(l64.000/l.7667) = 

logiol64-000 - logxol.7667 = 2.2148 - 0.2472 = 109676, so log2 

of 164.000/1.7667 = 1.9676/logi02 = 1.9676/0.3010 = 6.5369. The 

integer part of this, 6, tells us that the "pitch" of Mercury 

is six octaves (six doublings) above that of Saturn, while its 

fractional part 0.5369 tells us that it is 53.69% of the way 

up the 12 chromatic steps of the next octave, and 0.5369*12 = 

6.4428, so we recognize that the tone in question is rather 

high, nearly half way (6.5) between 6 and 7 steps above a G, 

i.e. nearly half way between a C# and a D. In general, to 
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convert any ratio (of vibration rates) p/q to the number of chro

matic steps (half-steps* semitones, in equal 12-tone tempera

ment) of the corresponding musical interval, divide logp - log q 

by log 2 (to whatever base is available) and multiply by 12j 

or, incase the cents system is preferred, multiply by 1200, tak

ing 100 cents = 1 chromatic step (twelfth of an octave). The 

G to C# interval computed above would measure 644.28 cents, 

44.28 cents higher than an equal-tempered tritone of 600 cents. 

We can now address the problem, raised on p. 22, of how 

the octave, both in European and Chinese music, came to be di

vided into 12 parts, and why this 12 is naturally partitioned 

as 7 + 5. Taking any given pitch as a fundamental, vibrating 

at a unit rate, the 2nd harmonic will simply be an octave of 

the fundamental, but the 3rd harmonic will be a new pitch. 

If we keep on cubing, taking 3rd harmonics of 3rd harmonics, 

how many new pitches do we generate? Do we ever return to some 

higher octave of the fundamental? Numerically, this is equi

valent to asking whether there exist integers m and n such that 

2m= 3n, to which the answer must clearly be no, since the former 

will forever remain even and the latter odd. Failing that, we 

ask whether there are integers m and n such that 2m«3n, or 

that 1 » 3n/2m, or 2m~n = (2/l)m-n « 3n/2n = (3/2)n, i.e. such 

that m-n musical octaves approximate n musical fifths (ratios 

2/l and 3/2). Yes, m=19 and n=12 yields 7 octaves approxi

mately equal to 12 fifths, so one fifth must be approximately 

equal to 7/l2 of an octave; i0e. the ratio 3/2 & 27/ia (in 

fact, 3/2 = 1.5 > 27/la « 1.4983$, larger by almost 2 cents, so 

fifths must be tuned slightly flat on a modern piano and octaves 
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slightly sharp). The complementary interval of a fourth 

is thus 4/3*25/13, and the octave as fifth + fourth is 21 = 

2 7/13+6/12# Musical addition of intervals is at the exponen-

tial levelj the human ear hears not the physical vibration rates 

themselves but their logarithms I 

Supposing neither the musical fifth or fourth were con

sidered of primary harmonic importance, but the major third ... 

what equal-tempered division of the octave would approximate 

the ratio 5/4? This is equivalent to asking for a rational 

approximation of the logarithm of 5/4 base 2, or 0. 321928cct, 

and the theory of finding rational approximations to irrational 

numbers is well understood« One expresses the given irrational 

number as a so-called continued fraction l/(p+l/(q+l/cct)) , 

and then truncates it to find l/p as first approximation, 

l/(p+(l/q)) = l/((pq+l)/q) = q/(pq+l) as second improved ap

proximation, and so forth* The p's and q's etc* are found as 

follows: Invert the given number 0.321928••• to find l/o. 321928 

= 3.106283"* and take its integer part 3 = p, then take the frac

tional part 0.106283and repeat the process? l/o„ 106283••• = 

9.408778-, 9 = q$ l/o.408778••• = 2.446310--, 2 = r* etCo etc., 

giving 0.321928"* expanded as l/(3+l/(9 + l/(2+ •")))= To un

ravel this expression and find the rational convergents l/p 

etc., we set up the simple computational scheme in which for 

>37x9^ ̂"2^ a number < 1 we take 
1^^1^9-19 ... . . 10 

0 1 I 3 28 59 — initial entries Q 1 , 

then use the continued fraction entries to fill each row in as 

follows: 1 + 0*3 = 1, 0+1*9 = 9, 1 + 9*2 = 19, etc., and similar

ly 0 + lx3 = 3, 1 + 3x9 = 28, 3 + 28*2 = 59p etc0 In the case of 
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a major third, this tells us that the 5/4 ratio is musically 

l/3 of an octave in first approximation (the 5/4 ratio is 386.31 

cents, while 21/3 is 400 cents, 13.69 cents too high). More 

closely, it is 9/28 of an octave (9/28 of 1200 is 385„71 cents, 

0.60 cents too low). Still more closely, it is 19/59 of an 

octave (19/59 of 1200 is 386 * 44 cents, 0d3 cents too high), 

and so on, alternately over- and under-approximating the given 

value ever more closely. (Cf. Schechter [1980].) 

Looking at the complementary interval 8/5 (always twice 

the reciprocal of the original ratio) of a minor sixth, we first 

compute log3(8/5) = (logio8 - logic5)/logic2 = 0.678071--*, and 

recognize this as just 1 - 0 c 321928 c Then we expand 0c678071c--

as a continued fraction, finding l/oc 678071 ••• = lc474769"-, l = pj 

l/o. 474769 ••• = 2.106283--, 2 = q* l/o. 106283- = 9.408778--, 9 = r5 

1 2 9 to find, not sur-
1 2 19 
^ 3 28 .0. the complements of 

etc., then set up 
1 0 

prisingly, just Q 

the ratios we found above„ 

In this way, we can show that a minor third ratio of 6/5 

is extremely accurately approximated by 5/l9 of an octave (true 

interval measures 315.64 cents, whereas 5/l9 of 1200 is 315.79 

cents, 0.15 cents too high). An equal 19-tone temperament of 

the octave would be a fairly natural extension of our present 

12-tone system, necessitating the addition of one more black key 

next to each of the five present black keys plus one more between 

each of the two pairs of white keys not at present separated by 

a black key: 7 white keys + 12 black keys in all, permitting dis

tinction between Db and C#, etc. 

We can also work the other way: Suppose we start with 
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the Javanese slendro scale (see Kunst L1949]), which is ap

proximately equal-tempered pentatonic9 and ask what overtone 

ratio the scale step 21/5 might be close to. First find logic2 

= 0.301029--, 1/5 of which is 0.060205—, so 21/5 = i0-060305 

= 1.148698••• (from table), then expand as l/(l + l/(6 + l/(l + ••'))) 

and set up 1 6 1 which tells us that 
0 1 fl 7 8 ~ 

the natural 0 j 1 6 7 ••• ^ overt:one (which 

western ears hear as a "blues" note "in the cracks" between Bb 

and A above a fundamental C) provides a good approximation to 

such an equal-tempered pentatonic step down to its lower neigh

bor the sixth harmonic (266.87 cents, as opposed to ideal l/5 

of 1200 = 240), and a better one up to its higher neighbor the 

eighth harmonic (231.17 cents — only 8.83 cents too low instead 

of 26.87 cents too high)0 (Note the change in initial entries 

^ J for a number > 1. ) 

Similarly, we can ask what natural overtones are heard 

in the equal-tempered 7-tone scale sometimes used in Thai music, 

expanding 21/'7 = 1.104089 ••• as l/(l + l/(9 + l/(l + •••))) and 

finding 19 1 it approximated 
0 1 

by the steps i q 
1 10 11 
1 9 10 ••• between the 10th 

overtone and its lower (182.40 cents) and upper (165.00 cents) 

neighbors, as compared with an ideal l/7 of 1200 = 171.43 cents 

(10.97 cents too high and 6,43 cents too low, respectively). 

This is interesting, since diatonic 7-tone scales in East Asia 

have, for the most part, a fourth degree that departs sharply 

from both the equal-tempered (25/12 = 1.3348"*) and mean-tempered 

(4/3 = 1.3333-) ones, being closer to ll/8 = 1.375, with Do : Re i 
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Mi s Fa s Sol « 8 s 9 s 10 s 11 s 12, locally approximating equal 

7-tone temperament. 

Returning to Kepler's image of the monochord string bent 

round in a circle, we may ask finally whether there might be 

some psychological reason why some cultures (Greek and Chinese) 

with a strong tradition of interest in geometric constructions 

should find octaves divided into 12 parts musically pleasing, 

inasmuch as these favor subdivisions into 3, 4, and 6 equal 

parts, while other cultures (Javan and Thai) without that geo

metric tradition favor use of the natural 7th and 11th overtones 

leading to equal 5- and 7-part divisions, recalling that 3-, 

4- and 6-gons can tile the plane regularly (are "harmony-

forming" in the sense of Kepler's Book II) while 5- and 7-gons 

cannot. (The music of India would be hard to discuss in this con

text, since it partakes of both traditions, akin to Southeast 

Asian cultures religiously and iconographically, but with Greek 

art and science imposed on it from the time of the Alexandrian 

invasion} we will not attempt to do so. It should be men

tioned, however, that it was exposure to Javanese music at 

the Paris World Exhibition of 1889 that induced Debussy to 

experiment with whole-tone scales — cf. p. 116 of Lockspeiser 

[1978]). 

Any answer to such a question would have to deal with matters 

of comparative culture-based epistemology quite beyond the scope 

of this thesis, yet it may perhaps be permitted to point in cer

tain directions: Favoring lower vs. higher overtones may cor

respond to religious emphasis on this vs. higher worlds, pre

ference in dwelling on the (rationally) know- vs. non-knowable. 
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C. Gauss and Galois 

Looking at the cyclotomic polynomials (cf. pp. 13-14) 

for the regular 7-, 9-, 11-, and 13-gons (discovered, inci

dentally, by BOrgi), Kepler felt that such equations were un-

solvable, could not be factored by ordinary algebraic means, 

that their roots were "ineffable" — could not even be named, 

much less constructed by ordinary means. Only the trigono

metric solutions in terms of sin(18o/7)° etc. seemed to exist, 

but he could not prove it. That had to wait for others. 

One of the others who had to come was Carl Friedrich 

Gauss, who in 1796 (at the age of 19) decided to become a 

mathematician when he discovered a proof that the only regu

lar polygons having a prime number of sides which could be 

constructed with straightedge and compass were divisions of 

2n a circle into 2 +1 parts, provided that number is prime. 

From a purely number-theoretic view, numbers of this form 

had been studied by Fermat who thought they were prime for all 

2 6 
values of n, but Euler showed that 2 + 1 is composite. 

? n  

n 22 + 1 

0 3 
1 5 
2 17 
3 257 
4 65537 

(5 4294967297 = 641*6700417) 

Extensive computer sweeps for n into the thousands have been 

?n 
tried, but none > 4 found for which 2 + 1 is prime. 

To be constructible, any other odd-number-sided polygon 

must be a product of at most 1st powers of such Fermat primes, 

such as 3*5 = 15, while the constructible even-sided ones 

are these times arbitrary powers of 2. Ironically, Kepler 

held a key to this in the beginning of his IIIr<^ book when, 
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describing the Pythagorean tetraktys on p. 91 as sum of 

numbers from 1 to 4, totalling 10, he illustrates a saying 

of Proclus concerning the quality of the number 10 

"All-embracing Mother, surrounding on all sides, 
Who knowest not of change, untiring, sublime" 

by omitting the central number 1 from the usual triangular 

display, replac- 1 ing it with a 0, 

and thus arrives ^ ^ inadvertently at 
10 1 

the beginning of 1111 what could be 

construed as the Pascal triangle of binomial coefficients 

in which the en- 1 tries are replaced 

by l's when odd, ^ ^ 0's when even (i.e. 
12 1 

they are read 13 3 1 as members the 

finite field of integers "modulo 2," as set forth by Gauss 

in his Disquitiones arithmeticae). If entire rows of this 

modular triangle are then read in base 2 arithmetic as coef

ficients of successive powers of 2 [as when expanding the bi

nomial (1+ 2)n for n = 0,1, 2, and 3, but all done "mod 2"], 

the zeroth row reads 1«2° = 1 =1 

the first row 1»2°+1«21 = 1+2 =3 

the second 1 • 2° + 0 • 21 + 1 • 23 = 1+0 + 4 = 5 

and third 1-2° + 1-21 + 1-23 + 1-23 = 1+2+4 + 8 =15 = 3-5, 

t h e  f o u r t h  1 - 2 °  +  0 - 2 1  +  0 - 2 3  +  0 - 2 3  +  1 - 2 4  g i v i n g  1 + 0  +  0  +  0  +  1 6  

which is 17, the next constructible prime, followed by 3»17 

in the fifth row, 5«17 in the sixth, 3-5»17 in the seventh, 

and the next new prime 257 in the eighth, and so on, through 

65537 in the sixteenth row and the product of all of these in 

the 31st row (the 32nc* row, as 5^ power of 2, yields the 5^ 

Fermat number, which fails to be prime). Rows 0 through 31 
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of the Pascal triangle, read first mod 2 then base 2, provide 

an exhaustive list of all knowable harmony-producing numbers, 

"proper" ones in rows 1, 2, 4, 8, and 16 (powers of 2), "impro

per" ones elsewhere. How Kepler would have loved this! 

Do these larger constructible primes have musical uses? 

Kepler freely admitted the leading tone below the 16th note 

or quadruple octave — why not the leading tone above it? As 

Coxeter (1962/1968) points out, pp. 317-318, 

"The interval fifteen, from a low C to a high B, has 
thrilled audiences for two hundred years in the unearthly 
grandeur of the appoggiatura that ends the St. Matthew Pas
sion. " 

L 

DNN 

"The interval seventeen, from a low C to a high Db is 
not as ugly as we might at first expect, especially if we 
use the sustaining pedal and hold it long enough for some 
of the intermediate harmonics to assert themselves, giving 
the effect of a minor ninth chord such as Brahms used in 
each of three consecutive bars in the development section 
of the first movement of his First Sonata for Cello and Piano« 
Beethoven used the same interval at least once in the first 
movement of his Ninth Symphony. So perhaps the 'rule of small 
numbers' is really a 'rule of cyclotomic numbers.'" 

(Coxeter uses "cyclotomic" here in the sense of "construc-

tibly circle-splitting," not just "circle-splitting.") 
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In fact, if we expand 21/13 by continued fractions as in sec

tion B preceding, we find that the first rational approximants 

to the basis of 12-tone tuning are 17/16 and 18/l7 (104.96 and 

98.95 cents respectively, 4.96 cents too high and 1.05 cents 

too low compared to one chromatic step of 100 cents)„ How 

Kepler would have loved this, too2 

The more general question of what geometric construc

tions are possible to be carried out with straightedge and 

compass was settled by Evariste Galois who proved in 1832 

(on the eve of his tragic death in a duel at age 21) that 

only those numbers are Euclideanly construetible which can 

t  
be expressed by nested square roots $ technically, they must 

be quantities whose minimal polynomials can be factored over an 

extension field of degree a power of 2, hence Gauss's result as 

a special case. The minimal polynomial for heptagon and 13-

sided polygon side/radius ratios are of degree 3, and that 

for the regular 11-gon of degree 5, ruled out by Galois. 

Likewise ruled out are extractions of cube roots (the Delian 

problem) and trisection of a general angle, not to mention 

the famous "squaring of the circle" (finding a square of area 

equal to that of a given circle) since any expression with rr as 

a root would have to be transcendental. 

^(This is the result to which we referred earlier on p. 31, say
ing that ordering degrees of "knowability" of certain polygons 
by the number of layers' depth of certain square roots was an in
tuitively correct approach on Kepler's part, anticipating Galois. 
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D. Fourier, Cantor, and the Infinite 

The forward progress of history has taken us backward 

through the Platonic quadrivium from astronomy to music to 

geometry to the realm of number. The last stage, the 

foundations of arithmetic in modern analysis, took its in

spiration also from the vibrating monochord string and led 

into study of the infinite. 

While the details are too technical to discuss here, 

it is interesting to note that the founder of harmonic anal

ysis, Jean Baptiste Fourier, was present as a young man on 

the Napoleonic expedition to Egypt, and witnessed the beau

ties of decorative geometric patterns on tomb friezes. Like 

his 20th century counterpart Andreas Speiser (1922/1956), he 

was moved by this experience to the study of abstract symmetry 

patterns in mathematics (groups and group characters). In 

Fourier's case9 this led to the expansion of periodic func

tions in trigonometric series form, which have come to be 

known as Fourier series in his honorc The essential idea is 

the same as it was at the time of Ptolemy: the resolution of 

complicated but periodically repeating phenomena into their 

simple cyclic components (in this case, circular trigonometric 

functions). See Mackey (1980) for a historical survey of 

"harmonic analysis as the exploitation of symmetry." 

The name of Georg Cantor is associated with the develop

ment of the theory of transfinite cardinals through the Eng

lish translation of his work on this topic (1915/1955), but 

even among mathematicians few people are aware of the prob

lems that led him to their study. In a series of five papers 
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written from 1870-1871 (summarized by Dauben [1971]) Cantor 

set out to prove that if a real function f(x) was represented 

by a trigonometric series which converged for all x, then the 

series was necessarily unique — i.e. the coefficients (how much 

is contributed by each term of the series, corresponding to 

how large the radius of each little wheel-upon-a-wheel should 

be to obtain the overall wave-form)are all well-determined. 

The difficulty was that some functions have exceptional 

points where their behavior is momentarily not defined* How 

many such exceptional points could there be, and still guaran

tee uniqueness of the Fourier expansion? For finitely many excep

tional points, Cantor managed a relatively easy proof in 1870; 

but it was not until the nature of the problem had forced him 

to recognize two different sizes or cardinalities of infinite 

sets that he was able to extend the proof to the infinite case 

in 1871. If the set of exceptional points was countable (pair° 

able with the set of counting numbers 1, 2, 3, ..c, or with any 

other set pairable with them, such as the set of all rational 

numbers) then uniqueness still heldj if the set was uncountable 

(e.g. a Cantor set, or set including some interval), then, & only 

then, uniqueness no longer held. His creation of the distinc

tion between K (the cardinality of the integers) and C (the 

cardinality of the continuum) aroused considerable anger on 

the part of some leading mathematicians of his day, notably 

Kronecker, who considered the proper activity of a mathema

tician to be investigative, not creative; but others such as 

Hilbert realized the gain and championed him0 
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VI. MUSEMATHEMATICS - LISTENING AS LOGARITHMIC ACT 

In the "Sirens" chapter of James Joyce's Ulysses (1961), 

p. 278, we find Leopold Bloom in the bar of the Ormond Hotel, 

attempting to pen a letter to a secret lady-friend, Martha, 

while assorted arias are being sung around him. "Grandest num

ber in the whole opera," remarks one by-stander. "It is," a-

grees Bloom, and continues thinking to himself: 

"Numbers it is. All music when you come to think. Two 
multiplied by two divided by half is twice one. Vibra
tions: chords those are. One plus two plus six is seven. 
Do anything you like with figures juggling. Always find 
out this equal to that ... Musemathematics. And you 
think you're listening to the ethereal. But suppose you 
said it like: Martha, seven times nine minus x is thirty-
five thousand. Fall quite flat. It's on account of the 
sounds it is." 

What is being expressed here, humorously, is recognition 

that music and mathematics are almost universally perceived as be

ing closely related, yet paradoxically music is generally a 

source of pleasure and mathematics a source of pain. To ex

press the singer's air vibrations in mathematical equations 

would not win the love of fair ladyj they must sound, and be 

listened to, for musical effect. What happens when musical 

sounds are listened to? 

Very little is actually known about the workings of the in

ner ear, due to its protected location in the body. In Helm-

holtz' day (1862), it was thought that particular hairs of the 

basilar membrane in the cochlea were attuned to particular fre

quencies of sound, viewing the inner ear somewhat in the manner 

of an Aeolian harp. This is now known not to be true. If the 

skin of the forearm is exposed to sources of gradually in- and 

decreasing warmth over several inches, the perception is not 
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of gradually in- and decreasing warmth but of a concentration 

of that warmth at the place of greatest stimulation, as though the 

source were localized there. Similarly, the entire basilar mem

brane of the cochlea is now known to respond to every frequency 

of in-falling sound, to varying degrees, giving a sense of lo

calization of each sound of definite musical pitch at a particu

lar place of greatest stimulation. Response-amplitudes of sam

ple frequencies from 16000 to 25 cycles per second at upper and 

lower limits of human hearing are shown here over the ca. 35 mm. 

length of the cochlea, uncoiled (from Winckel [1967]). 

200 100 50 2Scps 1600 800 too mo 16000 

30 mm 
Uncoiled Length of the Cochlea 

The bulging of the basilar membrane as a function of frequency. 

It will be seen from this that the response is not even over 

this range, does not accord to a single mathematical law; but 

on closer examination it may be seen to follow two different 

laws, approximately, over different parts of that range. The peaks 

at 100, 200, 300 (interpolated), and 400 cps are roughly evenly 

spaced, as are the peaks at 400, 800, 1600, and 3200 (interpola

ted). The former are 100 times 1,2,3,4 while the latter are 200 

times 2 to the 1st, 2nd, 3rd, or 4th power, i-e. times 2,4,8, or 16. 

1,2,3,4 are the logarithms base 2 of 2,4,8,16, hence while 

the former are said to be linearly spaced, the latter are 

s p a c e d  l o g a r i t h m i c a l l y .  

Musicians are familiar with logarithmic spacing (if unawares) 

for they have all seen piano and organ keyboards . Behind the keyboard, 
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lengths of the piano's strings or organ's pipes vary directly 

as the wave-lengths of the pitches to be sounded (at least in 

first approximation — in practice string and pipe thicknesses 

are changed in different registers for reasons of housing and 

color control, which complicates matters), hence inversely as 

their frequencies, giving rise to an (approximately) exponen

tial curve followed by the string-ends or pipe-tops. Succes

sive concert A's vibrating at 220, 440, 880, and 1760 cps. are 

produced by elements one half, quarter, eighth, and sixteenth 

the length, respectively, of that producing A 110. 

II 1II1! Ill l|l! M inn 
A A' A" AM 

Yet on the keyboard, each octave (each frequency-doubling) is 

the same hand's breadth apart. Instead of multiplying or divid

ing by 2 for each octave, we move another hand's breadth. The 

process of passing from spacing according to 21 , 22 , 23 , 2*expo

n e n t i a l l y  t o  1 , 2 ,  3 , 4  l i n e a r l y  i s  c a l l e d  t a k i n g  l o g a r i 

thms base 2, hence any scale on which exponentially-spaced 

numbers appear to be linearly spaced is called a logarithmic 

scale. Piano and organ keyboards are one example, a slide rule 
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is another. On all such scales, once the powers of one base 

(say 2, corresponding to the comfortable octave reach of a nor

mal hand) have been evenly spaced, so have those of every other 

(the powers of 3, say, corresponding to octave-fifths A, E', B", 

F#,M , all lie equally within the reach of a hand of Rachmaninoff-

ian dimensions). Since this is the case, it is customary to 

label logarithmic scales by powers of 10. If we use such a 

scale to plot the frequencies (in kilocycles, or thousands of 

cycles, per second) logarithmically against positions of peak 

responses (in mm.) linearly, we can see graphically how the data 

from p. 73 fit different laws over different portions of our 

hearing range. (Adapted from Winckel [1967].) 

CD ZO 

high 
20 15 10 8 Z IS  3 H-

Throughout the mid-range of such a graph, the data plot to 

form essentially a straight line, indicating that the location 

of peak response in the cochlea varies as the logarithm of the 

stimulus. Only below .6 or .5 kps (600 or 500 cps) does the 
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graph-plot become curved here (but would straighten out if li

near scales were used on both axes, location in the cochlea 

then varying with the stimulus). 

Because pitch-location in the inner ear follows a logarith

mic law throughout most of the range of human hearing, it was 

grouped together with many other phenomena such as subjective 

perceptions of strength of other stimuli (e.gc loudness on a 

decibel scale) as examples of the Weber-Fechner law of sense-

perception in the 19th century (perception varies as the loga

rithm of the stimulus — the stimulus must become physically 2, 

4, or 8 times as intense to be perceived psychologically as in

creasing 1, 2, or 3-fold). Because this is not a perfect law 

with regard to exact locations of peak responses in the cochlea 

(failing for low frequencies, and to a lesser extent for high 

ones, whence the danger of performing low notes too flat and 

high ones too sharp), and because the analogous laws applied 

to other senses all rest on difficult-to-quantify subjective 

impressions, 20th century researchers have tended to de-empha

size them as a class of phenomena, yet they remain realities 

to the performing artist. 

Many professional scientists have some musical background, 

especially those leaning toward theoretical mathematics, but 

few professional musicians have mathematical or other scienti

fic backgrounds — this is another paradoxic aspect of the close-

relatedness of the two disciplines. One happy exception is 

Ernest Ansermet, long-time conductor of the Orchestre de la 

Suisse Romande, under whose baton many works of Stravinsky were 
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premiered. Besides his musical training, Ansermet was conver

sant with the language of electrical engineering and acoustics, 

i.e. with the mathematics of wave phenomena, and in 1961 he at

tempted to synthesize his musical and mathematical experiences 

in a 2-volume work entitled Les Fondements de la Musique dans 

la Conscience Humaine. Like Kepler before him, he is concerned 

with how the intellect, or sentient soul, gains knowledge of mu

sical intervals, so that in his discussion of the Weber-Fechner 

law he speaks of "logarithmes noetiques" — logarithms as essen

tial to the auditive act, as instruments of cognition. 

The basic properties of logarithms are that they convert 

• products to sums, log(a*b) = log a + log b, 

• quotients to differences, log(a/b) = log a - log b, 

• powers to products, log(ab) = (log a) xb or bloga, and 

• roots to quotients, log(Va) = log(a1/'b) = (log a)/b or —log a. 

Accordingly, if a single musical interval is expressed as a ra

tio of vibration frequencies a/b, then to say that it is perceiv

ed logarithmically is to say that it is converted into a differ

ence, log a - log b, making it akin to more familiar kinds of 

intervals (e.g. a time interval "from start to finish" is mea

sured as a difference, clock-time-at-finish minus clock-time-

at-start). The composition of two intervals, on the other hand, 

is a product of frequency-ratios, and the logarithm of this is 

a sum (e.g. a fifth plus a fourth compose as J x 3 " J or ar* 

octave, which if we take log2(^) « ̂  and log3(-g) « ̂  becomes 

27^13X26/13 = 27 /13 + 5/'13 = 21 as we saw on p. 62 — a sum of ex

ponents, i.e. logarithms base 2), unless the first interval is 
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taken to be rising and the second to be falling (e-g. 

3 4 9 
= 2"/"3 = 8' a maJor second) in which case we again have a loga

rithm of a quotient converted to a difference of logarithms (^ -

Y2 ~ where 21/<s « ̂ ) , giving us an intervallic expression for 

the net rise in frequency similar to expressions for such things 

as profit = income - expense. (Notice that in the former case 

the commutivity of a/b as ax~=ix a is without interpretation 

since the vibrations with this frequency-ratio are taking place 

simultaneously, whereas in the latter case the distinction ̂be-

tween a* b"1 and b"1 x a has melodic meaning, e.g. as /fr) J a 

and 0 i " - » moving from G to A by different melodic routes 
9 0 

rather than sounding them simultaneously as *) Finally, if 

only the difference in amplitude or volume is of concern, then 

by the Weber-Fechner law this is a physical ratio, say v/w, 

perceived psychologically as logv - log w, a difference of loga

rithms . 

These are the three aspects of music as ancient art of the 

Muses, in modern mathematical guises The first, intervallic 

harmony proper, requires use of logarithms to translate into 

something like a spatial or temporal interval, for while it 

lives in space as ratio of periods or wave-lengths and recipro

cally in time as ratio of frequencies, it lives also in the tone 

colors of individual instruments, and personalities of human 

voices, enabling them to be recognized even when played back on 

a recording — this is the koyos of music. The second, melody, 

obviously lives in time as (LiriXos, while the third, dynamic cre

scendo and decrescendo, imitates the spatial advance and retreat 

of the xj3p°r» or gives rhythmic pulses to their dance. 
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Fourier analysis may be said to concern itself with the 

first and third of these aspects, as it resolves the complica

ted motion of the ear drum (or loudspeaker or ambient air) into 

a sum of cyclic components ax sin b2t + a2 sin b3t + a3 sin b3t + 

••• of amplitude ai and frequency bj./2ir, picking out the indivi

dual voices in a chord and noting their relative strengths 

(something possible only with aural colors, not visual — we 

have no sense comparable to a spectrograph to resolve light mix

tures into constituent parts). 

This brings us to the difference between the physical pro

cess of addition, whether of finitely many voices in a chordal 

harmony or of infinitely many in a tonal color, and the psycho

logically converted process of addition of logarithms of physi

cal factors, whether denoting volume or pitch. There is no way 

mathematically to simplify log(a+b) — addition is the simplest 

process of combination — nor is there any way to pass mathemati

cally from the logarithm of the sine of some quantity to the lo

garithm of that quantity, since sinb = e ̂  0 (where e = 2.718,*# 

is the base of so-called "natural logarithms" and i = the 

unit of "imaginary numbers") so that the logarithm of a sine is 

again a logarithm of a sum or difference, not admitting any fur

ther simplification. 

We noted on p. 24 that Kepler rejected Pythagorean parti

tions such as 1 + 2 + 3 = 6 and 1 + 2 + 3 + 4 = 10 as irrelevant to 

the study of harmony since^ for this, not sums or differences but 

products and quotients — ratios — were of the essence 7 noting 

also that his use of commas rather than +'s or *'s between terms 

or factors tended to obscure this distinction. We now realize 
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the deeper significance of the distinction between sums or 

differences per se and products or ratios converted logarith

mically into sums or differences: When confronted with a phy

sical sound wave, mathematically of form xi ai sin bj_t, the inner 
i=l 

ear may well convert frequency ratios (bi/2rr)/(bj/2rr) = bi/bj 

to differences logbi - logbj and amplitude ratios a^/aj to 

differences log a^ - logaj in its analysis of intervals be

tween pitch- and volume-levels, thus converting these melodic 

and choric or dynamic aspects of music into forms analogous to 

interval relationships in time and space. But the tone-color 

aspect of wave addition is already logically a sum, thus nei

ther requiring nor admitting further logarithmic conversion. 
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VII. CONCLUSION 

The qualitative number theory of the Pythagoreans was of 

two kinds, multiplicative and additive. They approached har

monic and melodic intervals in music multiplicatively as pro

portions of lengths of strings (under equal tension) or pipes 

(of same diameter), viewed as ideal lines in space which could 

be split into any number of equal parts. According to Plato, 

which of such proportions produced consonances and which did 

not was for the ear alone to decide. Only when Kepler made 

the imaginative leap to bend straight monochord strings around 

into zodiacal circles some li to 2 thousand years later did the 

splitting of circles — cyclotomy — introduce a basis on which 

to classify harmonies (equating the sensation of consonance to 

the soul with constructability by compass and straightedge and 

knowability to the intellect)p culminating in the work of Galois. 

The additive theory of partitions which the Pythagoreans 

studied in the form of figurate numbers via close-packings of 

circles in the plane (such as O for 1, for 1 + 2, for 1 + 

2 + 3 ,  e t c . )  h a d  n o  i m m e d i a t e  a p p l i c a t i o n  t o  m u s i c .  W h e n  K e p l e r  

extended the study of tilings as a "social" aspect of harmony, 

seeing which regular polygons could cooperate with which others 

to fill a surface and which could nott a point of view was in

troduced from which one could consider harmonic vibration-states 

of the plane, as experimented with subsequently by Chladni and 

Jenny. But these, too, amounted to regular divisions, albeit 

with certain interesting restrictions (only 12 polygons were 

found to be fully social or harmony-forming, on plane or sphere). 
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Truly additive phenomena in the theory of harmony were not 

recognized until the early 18th century, when Rameau intuitively 

postulated and Sauveur experimentally demonstrated the existence 

of partial vibration states capable of simultaneous support and 

responsible for our perceptions of tone color. To recognize 

them, the classical spatial view of vibration in terms of wave 

length had to be complemented by the Renaissance temporal view 

in terms of frequency, much as Kepler felt the need to enliven 

his earlier static model of the solar system to a dynamic one 

that "sang" by virtue of relative speeds. One and the same 

string or pipe, of fixed length, can be subdivided at differ

ent frequencies over different partial lengths, and the over

tones produced in this manner combined additively to yield that 

musical quality which e.g. distinguishes the sound of flutes 

from that of oboes or clarinets (by favoring 1st, 2nd, or 3rd 

partials) and makes the performance of violins from some manu

facturers preferable to that of others. 

Having arrived at this distinction between the group aspect 

of harmony, produced multiplicatively as ratios or proportions 

(though heard logarithmically as differences or intervals), and 

the individual coloristic aspect given additively as cumulative 

effect of simultaneous partials, we may brave an answer to the 

first and hardest of the three riddles posed in the introduction, 

the spiritual one concerning understanding harmony as issue of 

beauty and wars Wars are commonly waged as boundary disputes 

over contested landsj each party wants peace on its own terms, 

and if the sundry parties manage to unite at all, then it is on
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ly to form a partition, mathematically a disjoint union. Such 

is the nature of additive thought, attempting to work from the 

parts to the whole. Beauty, on the other hand, is perceived 

when each part bears a fitting relationship to the whole, when 

the factors contribute to produce something jointly, and ratio

nality prevails, working from the whole to the parts with some 

over-all design in mind. It is fruitful and multiplies. In 

the color quality of what is truly additive in our perception 

of music we recognize characteristics of individuals; in the 

intervallic blend of what is multiplicative we recognize what 

makes group cooperation possible. In the balance between these 

two (mythologicallys what issues from their interaction) we re

cognize harmony, finally, as the challenge to free individuals 

to unite cooperatively in the formation of a society — a phil

harmonic society — out of love for the commonweal. 
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