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Hassani, Mary, Ph.D., Spring 2007                                                                     Toxicology 
 
NAD(P)H:quinone oxidoreductase (NQO1)-directed lavendamycin antitumor agents: 
Structure-based design, molecular modeling and structure-activity studies 
 
Chairperson: Howard D. Beall 
 
  NAD(P)H:quinone oxidoreductase 1 (NQO1) is a two-electron reductase that catalyzes 
an NAD(P)H-dependent activation of many quinone-based antitumor agents.  NQO1, 
expressed at high levels in many human solid tumors, can be used as a target for enzyme-
directed bioreductive antitumor drug development.  We hypothesized that 
lavendamycins, quinolinedione antitumor antibiotics, can be activated by NQO1 in 
cancer cells that overexpress NQO1 to exhibit selective toxicity toward those cells.  The 
effects of functional group changes on the metabolism of lavendamycins by recombinant 
human NQO1 were studied using a spectrophotometric assay.  These structure-activity 
relationship (SAR) studies determined key structural features that were required for 
lavendamycin substrate specificity.  Cytotoxicity toward human colon adenocarcinoma 
NQO1-deficient (BE) and NQO1-rich (BE-NQ) cells was also determined using 
colorimetric and clonogenic assays.  The best lavendamycin substrates for NQO1 were 
also the most selectively toxic to the BE-NQ cells compared to BE cells.  To facilitate 
structure-based design of more optimal lavendamycin substrates and NQO1-directed 
lavendamycin antitumor agent development, we developed a 1H69 crystal structure-
based in silico model of the NQO1 active site and performed lavendamycin-docking 
studies.  The docking was performed using the FlexX module of SYBYL software.  
Lavendamycin analogues were designed as NQO1 substrates utilizing our SAR and 
docking data as structure-based design criteria.  Docking and biological studies on the 
analogues were performed and were consistent suggesting the in silico model of the 
enzyme possessed practical predictive power.  Our results also suggested practicality of 
the design criteria resulting in the discovery of good NQO1 substrates with selective 
toxicity toward BE-NQ cells.  The mechanisms of NQO1-mediated selective cytotoxicity 
of good lavendamycin substrates in BE and BE-NQ cells were also investigated including 
induction of oxidative stress and apoptosis.  Biomarkers of oxidative stress including 
formation of 8-hydroxy-2'-deoxyguanosine (8-oxo-2dG), an indicator of oxidative DNA 
damage, and depletion of reduced glutathione (GSH) were examined using an HPLC-
based method and a colorimetric assay, respectively.  Induction of apoptosis was 
examined using a colorimetric assay.  Our results revealed that oxidative stress and 
subsequent apoptosis induction by a good lavendamycin substrate was NQO1 dependent 
and that the poor substrate for NQO1 caused neither oxidative stress nor apoptosis. 
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Chapter 1 

Introduction: NAD(P)H:Quinone Oxidoreductase 1 (NQO1)-directed 

Lavendamycin Antitumor Agents 

 
1.1 Enzyme-directed Bioreductive Drug Development 

 
 The goal of current cancer therapy and antitumor drug development is to design 

cytotoxic drugs that selectively interact with molecular targets ideally unique to tumor 

cells with minimal toxicity to normal cells.1-5  This approach, selective anticancer 

therapy, aims to design drugs that employ the feasible biochemical and physiological 

differences between tumor and uninvolved tissues.4  One approach to achieve selective 

toxicity is through bioreductive activation and identifying reductase enzymes that are 

overexpressed in tumor cells in comparison to normal counterparts.1,3-5  Workman and 

Walton presented the concept of enzyme-directed bioreductive drug development for the 

first time at an international symposium in Italy in 1989.5,6  They published their report 

on the proposed concept in the conference proceedings in the following year.5,6  In the 

enzyme-directed approach, tumor selectivity utilizes the presence of specific reductase 

enzymes in high enough levels in tumors to reductively bioactivate chemical agents that 

are substrates for the reductases.1,3-7  Potential substrates known as bioreductive 

anticancer agents can then undergo reductive activation to selectively produce highly 

cytotoxic species in the corresponding tumors.1,3,6-8   

In the conference proceedings and 1994 review paper, Workman et al. defined the 

major elements of this approach in detail.5,6  Enzyme-directed bioreductive drug therapy 

can take advantage of medicinal chemistry as a proper tool to design improved substrates 
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for the related enzymes to maximize metabolic reduction of the substrates and subsequent 

antitumor response.1,4-6  Another cornerstone of this approach is to determine appropriate 

enzymological features of patient tumors (enzyme profiling of tumors).1,4-6  This will 

determine presence of elevated levels of reductases in the corresponding tumors and 

select patients with the desired enzymatic profile who will most likely respond to 

bioreductive anticancer agents.1,4,5  Appropriate design and conduct of clinical trials in 

the enzyme-directed approach will be required to correctly assess the efficacy of 

bioreductive agents and achieve clinical efficacy.4,5  

It has been suggested that NAD(P)H:quinone oxidoreductase 1 (NQO1) is one  

important candidate for the enzyme-directed bioreductive drug discovery approach due to 

its unique features.1,4,6,8  Elevated NQO1 activity and expression in many solid tumors as 

well as the ability of this enzyme to reductively bioactivate many quinone-based 

antitumor agents have centered the focus on NQO1 as a proper target for bioreductive 

therapy.1,4,6,8 

  

1.2 NAD(P)H:Quinone Oxidoreductase 1 (NQO1) 

 

 NAD(P)H:quinone oxidoreductase 1 (NQO1, DT-diaphorase, DTD, QR1 or EC 

1.6.99.2) is a widely distributed homodimeric flavoenzyme composed of two closely 

associated monomers of 273 residues, each containing one molecule of the noncovalently 

attached FAD cofactor molecule that is required for NQO1 catalytic activity.9-13  This 

enzyme was first detected by Ernster and Navazio in 1956 and they presented their 

findings on the enzyme at both the Swedish Biochemical Society meeting and Federation 
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Meetings in the United States in 1958.14  The purification procedure for NQO1 from rat 

liver and assay conditions, stability, inhibitors, activators and electron acceptors of the 

enzyme were detailed by Ernster et al. in 1962.15  This obligate two-electron reductase is 

present in cytosol (> 90%)16 and nucleus,17 and catalyzes a nicotinamide nucleotide 

[NAD(P)H]-dependent two-electron reduction14,18 and the bioactivation of many 

quinone-based anticancer compounds.  Antitumor quinones including streptonigrin 

(SN),19-21 mitomycin C (MMC),22,23 β-lapachone (a 1,2-naphthoquinone analogue),24,25 

various indolequinones such as EO9 ,26-28 and a number of aziridinylbenzoquinones such 

as RH129-32 and diaziquone (AZQ)33-35 are bioactivated by NQO1 (Chart 1.1). 

1.2.1  NQO1 Structure.  The crystal structures of the apo human NQO112,13 and 

human NQO1 in complex with several agents have been reported.13,36-38  Each monomer 

of the physiological dimer of NQO1 is composed of two distinct domains, a major 

catalytic (1-220 residues) and a small C-terminal domain (221-273 residues).10,13,37,38  

Two equivalent active sites are located at the dimer interface and are formed by portions 

of both subunits.12,13  The active site of the enzyme is a hydrophobic and plastic pocket 

that is capable of forming van der Waals and hydrogen bond interactions with quinone 

compounds.13,37,39 
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Chart 1.1.  Chemical structures of qninone-based bioreductive antitumor agents. 
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In the NQO1 active site, Tyr-126, -128 and Phe-178 amino acid residues form the 

roof of the active site.13,37  The floor is made up of the isoalloxazine ring of FAD, while 

Trp-105, Phe-106 and -178 residues form the internal wall and His-161, Gly-149 and -

150 residues flank the cavity.13,37  Gly-149, -150 and His-194 residues also restrict the 

entrance to the active site.13 

1.2.2  NQO1 Enzymatic Mechanism.  The substrate binding pocket of the 

enzyme sequentially binds NAD(P)H (electron donating cofactor) and the quinone 

substrate during an obligatory two-electron reduction process known as a ping-pong 

mechanism (Figure 1.1).10,13,37  In the first half of the reaction a hydride ion from 

NAD(P)H is transferred to the N5 of FAD followed by the release of NAD(P)+.10,40,41  

The hydride donation from the FADH2 N5 to the  quinone hydride-acceptor substrate 

(across a 4 Å distance41) can then be done at either a carbonyl oxygen or ring carbon 

followed by hydroquinone release.  The remaining proton can be provided by Tyr-126, -

128 or His-161.10,40,41  Quinone substrates can bind to the NQO1 active site in more than 

one orientation, and homologous compounds with different substituents may bind to the 

NQO1 active site in different orientations.37,40 
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Figure 1.1.  Ping-pong enzymatic mechanism of NQO1.42 
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1.2.3  NQO1 Overexpression in Tumors.  One crucial element of enzyme-

directed bioreductive drug development in cancer therapy is the presence of high levels 

of reductase enzymes in tumors.1,3-7  Increased NQO1 enzymatic activity has been 

reported in human lung, breast, colon and liver primary solid tumors compared to 

corresponding normal tissues from the same patients.43  The NQO1 enzymatic activity in 

the lung adenocarcinoma sample of a patient was found to be 123-fold higher than the 

adjacent uninvolved tissue.43  Lung tumors from cancer patients also displayed up to 80-

fold higher NQO1 activity than the paired surrounding normal tissue.44  Comparison of 

the NQO1 gene expression in liver biopsy samples of normal individuals and cancer 

patients determined a 50-fold increase in NQO1 mRNA level in liver tumors compared to 

normal human liver tissue.45  It has also been suggested that the NQO1 gene is expressed 

at high levels in mouse hepatoma cells versus normal mouse liver.45  A good correlation 

between NQO1 mRNA levels and enzymatic activity has been observed in many lung 

tumor cell lines.44  These studies have clearly demonstrated increased NQO1 enzymatic 

activity and mRNA levels in various tumor tissues versus normal counterparts.  

Increased levels of NQO1 protein in tumor tissues have also been reported.  One 

group utilized Western blot analysis for immunological detection of NQO1 protein using 

a mouse anti-human monoclonal NQO1 antibody in paired colorectal tumors and normal 

peripheral tissues.46  They detected higher amounts of NQO1 protein in colorectal tumors 

in comparison to related normal tissues.46  They also determined that there was an 

excellent correlation between the levels of the enzyme and its activity in colon and gastric 

carcinoma cell lines, and surgically removed colorectal adenocarcinoma tumors.46  In 

addition, elevated levels of NQO1 protein in pancreatic cancer cell lines as well as a 
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significant increase in the amount of the protein in human pancreatic adenocarcinoma 

tumors compared to normal pancreas specimens have been observed .21  High levels of 

NQO1 enzymatic activity, mRNA and protein in tumor versus normal tissues 

demonstrated in these studies suggest that NQO1 is an important target for bioreductive 

therapy.  

  1.2.4  NQO1 Polymorphism.  One important element of enzyme-directed 

bioreductive drug development is the individualization of patient treatment that can be 

accomplished through identification of patients with appropriate enzymatic profiles.5,8  

One means of individualizing patient therapy in the enzyme-directed approach is 

pharmacogenetic analysis of polymorphisms in the reductase of interest.47  Since NQO1 

is considered a good target in enzyme-directed bioreductive drug development, its 

potential polymorphisms that affect NQO1 enzymatic activity would be anticipated to 

impact quinone-based cancer therapy.47,48  

The human NQO1 gene is approximately 20 kb long, possesses six exons with 

five interrupting introns and is located on human chromosome 16q22.1.49-51  Traver et al. 

have characterized an important polymorphism in the NQO1 gene (NQO1*2) in human 

colon adenocarcinoma cells (BE) and human non-small-cell lung cancer (NSCLC) H596 

cells that results in the loss of NQO1 activity in these cell lines.52,53  They did not detect 

the mutant NQO1 protein in the cytosol of BE and H596 cells utilizing immunoblot 

analysis suggesting the possible cause for the lack of NQO1 activity was the lack of the 

NQO1 protein.48,52,53  Both cell lines exhibited high levels of mRNA, but no NQO1 

enzymatic activity.48,52,53  This polymorphism, NQO1*2/*2, is a homozygous C to T 

point mutation at position 609 of the coding region of the human NQO1 gene, exon 6.52,53  



 9 

This mutation results in a protein with a proline to serine substitution at position 187 that 

possesses only 2-4% of the enzymatic activity of the wild-type NQO1.52,53  The 

NQO1*2/*2 genotype possesses an incidence of 4-22% varying across different ethnic 

groups. 

The NQO1*2 polymorphism can highly impact bioreductive cancer therapy.48  

One clinical study determined that among patients with peritoneal cancer that were 

administered MMC, individuals with heterozygous or homozygous NQO1*2 

polymorphisms exhibited reduced survival compared to those with the wild-type NQO1 

genotype (NQO1*1/*1).54  The authors also confirmed genotype-phenotype relationships 

such that individuals with the heterozygous genotype displayed less tumor NQO1 activity 

in comparison to patients with the wild-type genotype.54  This study highlights the 

significant impact that NQO1*2 polymorphism could have on the outcome of NQO1-

directed quinone anticancer therapy.  Genotyping of patients to identify the NQO1*2 

polymorphism could greatly contribute to individualization of patient treatment in 

bioreductive cancer therapy.47  

1.2.5  Reductive Activation of Antitumor Quinones by NQO1.  The role of 

NQO1 in the reductive activation of many quinone-containing bioreductive agents has 

been reported.  SN, MMC, EO9, RH1 and AZQ are examples of quinone-based 

bioreductive agents that are activated by NQO1.  Siegel et al. determined MMC-induced 

DNA interstrand cross-link formation in human colon adenocarcinoma HT-29 cells 

(NQO1-rich) when compared to BE cells (NQO1-deficient).22  They observed higher 

levels of sensitivity to MMC-induced cytotoxicity in HT-29 cells versus BE cells.22  

NQO1-mediated metabolism of MMC in a cell-free system has also been shown to result 
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in the bioactivation of MMC, and induction of DNA adduct formation and DNA cross-

linking.23  In addition, Beall et al. reported selective toxicity of a number of 

indolequinones and mitosenes toward the NSCLC H460 cell line with high NQO1 

activity compared to H596 cells with no measurable NQO1 activity,28 and the 

indolequinone EO9 was found to be 92 times more toxic to the H460 cells compared to 

the H596 cells.55  Another bioreductive quinone anticancer agent, SN, exhibited similar 

preferential cytotoxicity toward H460 cells versus H596 cells (86-fold).56  Furthermore, 

SN displayed higher levels of toxicity (similar to MMC) and DNA strand breaks in HT-

29 cells compared to BE cells.19  These studies determine that NQO1-mediated activation 

of bioreductive agents MMC, SN and EO9 in NQO1-rich versus NQO1-deficient cancer 

cells results in the selective toxicity of these agents toward NQO1-rich cells.  

Bioreductive activation of aziridinylbezoquinones by NQO1 has also been 

reported.  BE and HT-29 cells have been used as a model system to investigate 

bioreductive activation of AZQ by NQO1.34  In this study, DNA interstrand cross-linking 

by AZQ was examined in both BE and HT-29 cell lines.34  A high degree of dose-

dependent cross-linked DNA was detected in HT-29 cells whereas low levels of DNA 

cross-links were observed in BE cells after exposure to AZQ at the same 

concentrations.34  Significant generation of cross-linked DNA in the human breast 

adenocarcinoma cell line MDA468 transfected by wild-type NQO1 (NQ16) was observed 

after treatment by another bezoquinone, RH1, at a concentration as low as 50 nM.30  

However, very low induction of DNA cross-linking was observed in the parental cell line 

(MDA468) that had no measurable NQO1 activity after exposure to RH1 at a 

concentration 10-times higher than the concentration used in NQ16 cells.30  One group 
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also determined activation of RH1 both in vitro and in vivo in NQ16 cell line and NQ16 

xenografts, respectively.31  The authors observed a significant dose-dependent reduction 

in tumor size in mice bearing NQ16 human tumor xenografts after treatment with low-, 

medium- and high-dose RH1.31  In contrast, tumor growth inhibition in mice with NQO1-

deficient MDA468 xenografts was demonstrated only at high doses of RH1.31   

Selective formation of DNA interstrand cross-links, adducts and strand breaks by 

the quinone-based anticancer agents, and their preferential cytotoxicity in different 

NQO1-rich versus NQO1-deficient cells in these studies demonstrate the important role 

that NQO1 plays in the bioreductive activation of these agents.  This is of primary 

interest since agents that are bioactivated by NQO1 can result in selective tumor toxicity 

without high levels of toxicity to normal tissues.9  This characteristic of NQO1 is 

considered as one major element of enzyme-directed bioreductive drug development.5 

 

1.3 Antitumor Quinones 

 

 Quinones are among the most important and largest groups of natural and 

synthetic anticancer drugs.57  Two general mechanisms of quinone-based toxicity have 

been identified; redox cycling and macromolecule alkylation reactions.57 

1.3.1  Quinone-based Bioreductive Agents in Use or in Clinical Trials.  SN, 

MMC, EO9, AZQ and RH1 are examples of quinone-based bioreductive agents that are 

currently in use, clinically evaluated or in clinical trials.1   

SN is a natural aminoquinone antitumor antibiotic that has demonstrated 

antitumor activity toward a broad range of tumors such as lung, head and neck, breast, 
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lymphoma and melanoma.58  This drug was in clinical use until the 1970s when its use in 

chemotherapy was discontinued due to high toxicity and severe bone marrow 

depression.58  MMC, a naturally occurring antitumor bioreductive drug, is the only 

quinone-containing alkylating agent that is currently in use in the clinic.1  MMC 

possesses activity against stomach, lung, prostate, head and neck, bladder and breast 

tumors.1,9  However, its dose-limiting toxicity, delayed bone marrow suppression, has 

greatly restricted the clinical use of this drug.1,9,59   

The aziridinylbenzoquinone AZQ with good solubility, underwent clinical trials 

for the treatment of central nervous system (CNS) tumors.1,9,59  Although it displayed 

some antitumor activity against brain tumors, it was not significantly more effective than 

other agents already in use.9,59  AZQ also exhibited dose-limiting toxicities such as 

leukopenia and thrombocytopenia.1,59  EO9, a synthetic analogue of MMC, is an 

improved substrate for NQO1 compared to MMC.9  It was selected for clinical trials in 

the early 1990s due to its excellent antitumor activity in preclinical studies and lack of 

bone marrow suppression.1,9  Despite the promising preclinical results, EO9 failed to 

exhibit any antitumor activity against breast, colon, gastric, pancreatic and non-small-cell 

lung cancer in phase II clinical trials.1,9  EO9’s failure in the clinical trials has been 

attributed to its short half-life and poor tissue penetration.1,9,59  RH1, a water-soluble 

aziridinylbenzoquinone, is an excellent substrate for NQO1 and is currently in clinical 

trials.9  Bone marrow suppression and inflammation in the injection site have been 

reported as the RH1 toxicities.9  Due to the high levels of toxicity of these compounds 

there is an ongoing need for discovery of improved bioreductive quinone-based antitumor 

agents with higher safety profiles.   
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1.3.2  Lavendamycin.  Lavendamycin, a naturally occurring 7-aminoquinoline-

5,8-dione antitumor antibiotic, was first isolated from the fermentation broth of 

Streptomyces lavendulae (strain C-22030) by Balitz et al. in 1981 and was reported in 

1982.60  They  characterized the producing culture, fermentation and isolation conditions 

of lavendamycin, and tested its biological activity.60  Prior to this report, the structure of 

lavendamycin was determined and reported by Doyle et al. in 1981.61  This study 

determined that lavendamycin is a 7-aminoquinoline-5,8-dione pentacyclic structure with 

two moieties including quinoline-5,8-dione and indolopyridine (β-carboline) (Chart 

1.1).61   

Lavendamycin has been shown to possess both in vitro and in vivo antitumor 

activity.60,62  In an in vivo study, this compound exhibited antitumor effects against P-

388-J leukemia ascites cells implanted into BDF1 mice (i.p.) when administered on a 

daily basis for 9 days.60  Lavendamycin increased the median survival time (MST) of the 

treated animals compared to control animals that received saline.60  Lavendamycin-

treated animals also displayed higher MST values and MST treated/MST control x 100 

ratios when results were expressed in days and as percentage of control MST, 

respectively.60  In addition, lavendamycin has displayed in vitro antiproliferative 

activities against cancer cell lines such as P388 murine leukemia, MKN45 human gastric 

carcinoma and WiDr colon adenocarcinoma cells.62  The maximum tolerated dose of 

lavendamycin in mice is 12.8 mg/kg which is 32 folds higher than that for SN and is 

therefore less toxic than SN.60  Despite the interest in lavendamycin as an antitumor 

agent, this agent was precluded from preclinical development due to its poor aqueous 

solubility and its toxicity toward normal human cells.63-65      
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1.3.3  Lavendamycin Analogues and Significance.  Lavendamycin has been the 

focus of several synthetic studies to elucidate the structural features that are required for 

its cytotoxic activity and to develop improved analogues with potent antitumor properties 

and lower animal toxicity.  Initial structure-activity relationship (SAR) studies have 

demonstrated that the essential moiety for the cytotoxic activity of lavendamycin is the 7-

aminoquinoline-5,8-dione moiety.63  In a recent study in vitro and in vivo antitumor 

effects of several lavendamycin analogues were tested.65  Four analogues, MB-21, -47, -

121 and -311, suppressed the clonogenic survival of A549 human lung carcinoma cells at 

concentrations less than 100 nM with MB-121 being the most potent analogue that 

inhibited A549 colony growth by 70% at a concentration of 100 nM.65  Also, the colony 

outgrowth of the cells was reduced by 70% at 10 nM and by 100% at 100 nM 

concentration of the lavendamycin analogue MB-97.65  Although PC-3 human prostate 

cancer cell line is rather resistant to antitumor effects of many antitcancer agents, these 

cells displayed sensitivity toward the cytotoxic properties of MB-97 at a concentration as 

low as 10 nM.65  MB-97 also exhibited promising antiproliferative activities against 

cancer cell lines of the National Cancer Institute (NCI) 60-cell line panel including colon, 

ovarian and renal cells, and cancer cells in a hollow fiber tumorigenesis assay.65   

It has been reported that lavendamycin analogues possess low animal toxicity 

especially compared to SN and the parent lavendamycin compound.64,66  The NCI in vivo 

studies have reported that the maximum tolerated dose of three lavendamycin analogues 

MB-22, -76 and -97 in mice is 400 mg/kg which is 31 and 1000 times higher than that for 

lavendamycin and SN, respectively.64,66  The lavendamycin analogue MB-51 greatly 

reduced tumor volume (up to 80%) in mice bearing tumor xenografts at a daily dose of 
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300 mg/kg for 10 days without exhibiting drug-related weight loss or lethality.67  A 

recent study also demonstrated that the normal rat kidney epithelial cell line (NRK-52E) 

exhibited much less sensitivity to several lavendamycin analogues compared to the tumor 

cells with the same origin.64  When lavendamycin analogues MB-50 and -51 at a daily 

dose of 300 mg/kg and MB-21 at a daily dose of 100 mg/kg were administered to nude 

mice for eight and seven days, respectively, no drug-related deaths or toxicity were 

observed.64  Analogues MB-21, -50 and -51 inhibited tumor growth in nude mice by 69, 

88 and 78%, respectively, when administered at 100, 150 and 300 mg/kg for 7, 8 and 8 

days, respectively.64  These studies demonstrate remarkable low in vivo toxicity of 

lavendamycin analogues and highlight them as appropriate candidates for anticancer drug 

development.  

 
1.4 NQO1 X-ray Crystal Structures and Molecular Docking Studies  

 
 1.4.1  NQO1 Crystal Structures.  X-ray crystallography is the principal source 

to acquire structural information for protein-ligand complexes.68  X-ray crystal structures 

of protein-ligand complexes have played a key role in drug discovery and development 

for therapeutically relevant target proteins in recent years.69-71  Complex crystal structures 

of protein-ligand have provided researchers with useful information on the ligand 

orientation in the active site and corresponding protein-ligand interactions.69  These data 

can in turn contribute to SAR studies and subsequent structure-based ligand design and 

optimization.69  NQO1 crystals for the purpose of x-ray crystallographic studies were first 

prepared from mouse and rat liver in the late 1980s by Amzel et al. and Ysern et al.72,73  

They reported preliminary x-ray diffraction data on NQO1 crystals.72,73   
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Detailed structural information of NQO1 has been a crucial factor in proper 

understanding of the catalytic mechanism (ping-pong mechanism) of the obligatory two-

electron reduction by NQO1.10  Li et al. employed three-dimensional (3D) crystal 

structures of NQO1 to elucidate the enzymatic ping-pong mechanism of NQO1.10  In 

1995, They determined the crystal structure of rat liver NQO1 by x-ray diffraction to a 

resolution of 2.1 Å (Protein Data Bank = PDB ID: 1QRD).10  They prepared two complex 

NQO1 crystal structures, complex I containing both Cibacron blue (a potent inhibitor of 

NQO1) and duroquinone, tetramethyl-1,4-benzoquinone, and complex II containing 

NADP+.10  Comparison of the two complexes indicated that duroquinone overlaps the 

position occupied by the nicotinamide ring of NADP+.10  This clearly explains the ping-

pong catalytic mechanism of NQO1 where substrate binding and reduction cannot occur 

until NADP+ is released.10  They also determined that Cibacron blue occupied the same 

position as the rest of the NADP+, but did not overlap the duroquinone position.10  This 

observation shed light on the inhibition pattern of NQO1 by Cibacron blue that is 

competitive with respect to NADH and noncompetitive in regard to quinone substrates.10     

The information obtained in another study from the 3D crystal structures of 

human NQO1 in complex with RH1, EO9 and ARH019 (PDB ID: 1H66, 1GG5 and 

1H69, respectively) determined that antitumor quinones can bind to NQO1 in different 

orientations.37  The study of these complex crystal structures further determined that 

NQO1 possesses a highly plastic active site that can accommodate quinone compounds of 

different sizes.37  The authors suggested that these complex crystal structures could 

provide crucial insights for the optimization of bioreductive anticancer quinones.37  They 

demonstrated that amino acid residues Tyr-126, -128 and His-161 can interact with the 
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quinone substrates inside the active site and stabilize the binding.37  This group also 

determined the crystal structure of NQO1 in complex with duroquinone to 2.5-Å 

resolution.13  They subsequently defined the NQO1 active site structure and demonstrated 

the importance of Trp-105, -106, Tyr-126, -128 and Phe-178 residues in formation of 

interactions with the ligand.13  The crystal structure of NQO1 in complex with 

indolequinone ARH019 was recommended by this group as a potential model for docking 

studies of other anticancer quinones including SN.37  

The binding characteristics of lavendamycin analogues in the NQO1 active site 

are not yet known.  Due to the fact that there are no available complex crystal structures 

of NQO1 with lavendamycin analogues, one can utilize crystal structure-based molecular 

docking studies to obtain detailed understanding of the molecular basis of interactions of 

these compounds with NQO1.     

1.4.2  Molecular Docking Studies of Bioreductive Quinones with NQO1.  

Molecular modeling studies of quinone-based antitumor compounds with NQO1 could 

indicate structural limitations on the potential substrates for the enzyme.74  Docking 

studies could greatly assist with SAR studies and structure-based design of novel NQO1 

quinone substrates.1,74  These studies could also predict the preferred orientation of 

quinone antitumor compounds within the active site.40  Molecular docking studies also 

assist researchers to obtain insights into the role that amino acid residues play in substrate 

binding affinity.75    

The indolequinone SAR study by one group demonstrated that when the 

aziridinyl group of EO9 or the methoxy group of another indolequinone at the C5 

position was replaced with methylaziridine, substrate specificity of the compounds was 



 18 

reduced.74  They were able to explain this observation by performing molecular modeling 

studies of the indolequinone EO9 with NQO1.74  They determined that the Trp-106 

played a major role in forming favorable van der Waals interactions with an aziridinyl or 

a methoxy group at the C5 position.74  However, methylaziridinyl substituent at C5 

created steric interactions with the Trp-106 residue resulting in unfavorable positioning 

of the quinone moiety for reduction.74  In addition, Zhou et al. observed that when the 

number of fused rings in the quinone nucleus of quinone compounds increased from one 

ring in benzoquinones to two or three rings in naphthoquinones or anthraquinones, 

respectively, the substrate specificity of the compounds was improved.40  They took 

advantage of docking studies to demonstrate the importance of π-ring stacking in 

determination of ligand binding affinity.40  Another group designed a series of quinone 

substrates including dipyrroloimidazobenzimidazole and dipyridoimidazobenzimidazole 

systems as potential good substrates for NQO1 compounds.75  They then modeled these 

substrates into the NQO1 active site to investigate the correlation of docking data with 

the substrate specificity of the compounds.75  The correlation of the docking models with 

biological data provided the researchers with information regarding structural 

requirements of the substrates.75  They observed that derivatives with unsubstituted 

pyrido or pyrrolo rings, or with one acetate group on the rings were excellent substrates 

for NQO1.75  Docking models displayed that the pyrido or pyrrolo ring of derivatives 

bearing no or only one substituent could intercalate between and form favorable van der 

Waals interactions with the Trp-105 and Phe-106 residues.  However, derivatives with 

substituents on both rings created steric interactions with the residues leading to poor 
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substrate specificity of these compounds.75  All these studies took advantage of docking 

studies to explain observed substrate specificity of ligands and the related SAR data.  

Molecular docking methods have become very useful tools in structure-based 

ligand design because they provide information on the binding events and key 

interactions between a known or newly designed ligand and its target protein.  

Understanding these interactions is crucial to the success of drug design for bioreductive 

antitumor quinone development.  

       

1.5 Structure-based Ligand Design 

 

 Structure-based ligand design - also known as structure-based design or rational 

ligand design - is a process that involves the optimization of ligand affinity and logic-

based transformation of hit compounds to candidate drugs.68,76  The theory behind the 

structure-based design process is that development of improved ligands will result in 

higher binding affinities and higher activities against the biological targets.77,78  The 3D 

structure of therapeutic targets is the starting point in this process and due to increasing 

availability of these structures, structure-based design has gained momentum in recent 

years.77,78  This process utilizes information obtained from an available 3D structure of a 

biological target-ligand complex to design new drugs for human diseases.77  In a practical 

structure-based design process computational docking tools are very useful in extracting 

the information about binding events.77,78  They are utilized to characterize the type of 

interactions between a known or designed ligand and the target protein.77,78  Use of in 

silico (computer-based) methods in structure-based design entails a sequence of steps 
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such as coordinate preparation of target molecule, docking and post-docking analysis to 

extract the required structural information.76  This contributes to the design of improved 

ligands from which a small, most promising group can be selected to be synthesized and 

tested.68,77  It has been reported that on average it takes 14-15 years and hundreds of 

millions of dollars for a hit compound to evolve to an approved drug.76,77  Computational 

methods including docking programs and ligand scoring functions used in drug design 

can accelerate this process and decrease high expenses of drug discovery and 

development.77  The discovery of important classes of drugs such as HIV-protease 

inhibitors, carbonic anhydrase II inhibitors, and late-clinical-stage candidates including 

inhibitors of human non-pancreatic secretory phospholipase A2 has been greatly 

facilitated by the structure-based design process.68 

  

1.6 Redox-cycling Bioreductive Antitumor Quinones 

 

NQO1 plays a major role in the bioactivation of several quinone-based anticancer 

agents including SN,19,20 MMC,22 β-lapachone,24 AZQ33-35 and RH1.30,31  The 

hydroquinone produced after the two-electron reduction of these agents is the 

biologically active form that can cause DNA alkylation and/or oxidative stress.1,24,79  

Quinones are powerful redox active agents that can undergo redox cycling, which is the 

enzymatic reduction of quinones and subsequent auto-oxidation of the reduced forms to 

parent compounds with concomitant generation of superoxide anion radical (O2
-.) .79,80  

When quinones undergo redox cycling following a two-electron reduction by NQO1, the 

corresponding redox active hydroquinones can react with molecular oxygen through a 
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one-electron oxidation process to yield semiquinones and O2
-..79,80  Semiquinones can 

then react with molecular oxygen to generate O2
-. and auto-oxidize back to parent 

quinones.79,80   

Produced O2
-. in this process is a propagating species that can dismutate into 

hydrogen peroxide (H2O2) with ultimate production of extremely toxic hydroxyl radicals 

(OH.).9,42,58,81-83  This NQO1-mediated redox-cycling process of quinones can produce 

large quantities of reactive oxygen species (ROS).83  Excessive levels of produced ROS 

in cells can overpower the antioxidant defense systems and modulate the intracellular 

redox balance leading to a situation known as oxidative stress.84,85  

Many studies have demonstrated the NQO1-mediated redox-cycling ability of 

anticancer quinone-based agents.  Hydroxyethylaminoalkylamino-substituted 

anthraquinones (AQs) such as 1-AQ and 1,8-AQ have displayed redox-cycling 

characteristics in NQO1-rich human breast cancer MCF-7 cells.86  Also, NQO1-mediated 

ROS and semiquinone formation by AZQ, hydroxyl radical formation by a variety of 

quinone antitumour compounds and ROS formation by anthraquinone-based antitumour 

agents in the presence of purified rat liver NQO1 and NQO1-rich MCF-7 cells have been 

determined.35,87-89  These studies have demonstrated that the hydroquinone form of these 

quinone agents, following reduction by NQO1, undergoes a two-step one-electron 

oxidation process with concomitant production of the damaging species such as 

semiquinones and ROS.  

Indolequinones, naphthoquinones and quinolinediones are also among the 

antitumor compounds that generate biologically active species after reduction by NQO1 

via redox cycling.  The ability of the indolequinone EO9 to redox cycle in the presence of 
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purified rat Walker tumor cell NQO1 and NAD(P)H following a two-electron reduction 

has been reported.90  Furthermore, Pink et al. determined that NQO1 reduces β-lapachone 

to an unstable hydroquinone that can auto-oxidize back to the parent form, possibly 

through a semiquinone intermediate.24  They proposed this redox cycling can cause 

oxidative stress and cytotoxicity.24  SN, a prototypical and efficient redox-cycling 

antitumor agent, can also produce large quantities of ROS after bioactivation by 

NQO1.19,56,83  The ability of SN to undergo redox cycling after bioactivation by NQO1 in 

NQO1-rich HT-29 cells and to produce hydroxyl radical-mediated DNA strand breaks 

has been reported.19  These studies suggest that NQO1-mediated metabolism of redox-

cycling antitumor quinones can alter the intracellular redox balance, cause DNA damage 

and the corresponding cytotoxicity. 

1.6.1  Redox-cycling Antitumor Quinones and Intracellular Redox State.  The 

intracellular redox responses and antioxidant defense systems in neoplastic cells play a 

major role in their protection against antitumor agents.79,85  Chemotherapeautic agents 

that possess the ability to alter the intracellular redox environment in favor of oxidative 

stress can induce apoptosis and be utilized in cancer treatment.79,85  It has been 

determined that the production of ROS is an important mechanism of cytotoxicity of 

many antitumor agents.85  Tumor cells employ antioxidant defense systems such as 

reducing species to neutralize ROS and avoid potential ROS-mediated cellular damage 

and subsequent induction of apoptosis.85  Glutathione (GSH), a non-protein cellular thiol, 

is a key component of the intracellular defense system against oxidative stress and is 

involved in detoxification of ROS.85  The ability of cells to maintain GSH levels during 
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an oxidative challenge is of vital importance in the maintenance of cellular function, 

integrity and viability.91 

Thiol oxidation by the ROS produced during metabolism and redox cycling of 

quinones is a key feature of quinone toxicity.81  GSH oxidation and depletion in a cell-

free system due to NQO1-mediated redox cycling of AZQ have been demonstrated.92  

Menadione, a redox cycling 1,4-naphthoquinone, caused oxidative stress in cultured 

human-derived endothelial cells (EA.hy926) that was assessed by oxidation of 

intracellular dihydrofluorescein.93  This compound at a concentration of 100 µM 

significantly reduced the intracellular GSH levels in EA.hy926 cells after a 30-minute 

exposure period.93  GSH oxidation and consumption by O2
-. during NQO1 catalysis of 2-

methylmethoxy-1,4-naphthoquinone have also been observed.94  The reduction of 2-

methylmethoxy-1,4-naphthoquinone by NQO1 in this study was associated with 

formation of calf thymus DNA strand breaks that were suppressed by the presence of 

superoxide dismutase and catalase by 85-90%.94  These findings suggest that intracellular 

redox state alteration can occur as the result of metabolism of redox-cycling quinones.  

The ability of a cell to maintain a proper oxidant-antioxidant balance can determine the 

outcome of an apoptosis-triggering signal.79  Production of ROS and depletion of GSH 

can lead to oxidative stress with subsequent induction of apoptosis in cancer cells.85  

1.6.2  Redox-cycling Antitumor Quinones and Oxidative DNA Damage.  

DNA has been recognized as the principal target of quinone-based antineoplastic 

compounds.57  Quinone redox cycling can generate excessive amounts of ROS and when 

the generated ROS are not adequately neutralized, they become involved in many 

oxidative stress-related events such as DNA strand breaks or oxidative DNA damage.57,95  
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Hydroxyl radical, the most destructive species among oxygen radicals, is highly toxic, 

capable of attacking DNA, and oxidizing guanine bases resulting in the formation of 

mutagenic 8-hydroxy-2'-deoxyguanosine (8-oxo-2dG) lesions.57  Among the purine and 

pyrimidine bases of DNA, guanine is the most sensitive base to oxidation.96,97  During an 

oxidative attack, a hydroxyl group is added to the eighth position of the guanine base 

generating an 8-oxo-2dG oxidative adduct.96  8-Oxo-2dG is one of the most frequently 

studied and predominant forms of oxidative DNA damage.98  During DNA replication, 

the modified base, 8-oxo-2dG, pairs with adenine instead of cytosine, resulting in G:C → 

T:A transversion mutations.97   

The most important reactions involving quinones are generation of ROS and 

DNA damage.79  It has been reported that redox cycling of AZQ produces 8-oxo-2dG 

lesions (unpublished data).95  Pagano et al. also demonstrated significant production of 8-

oxo-2dG in sea urchin embryos after exposure to the antitumor quinone MMC at a 

concentration as low as 1 µM.99  Their results further associated MMC-induced toxicity 

with the induction of oxidative stress and oxidative DNA damage.99  Investigation of 

DNA damage production by antitumor agents is important since it has been known for 

more than 25 years that DNA damage can induce apoptosis.100    

1.6.3  Redox-cycling Antitumor Quinones and Apoptosis.  Apoptosis, or 

programmed cell death, can be induced by DNA damage,100 and plays a key role in tumor 

suppression and in regulation of cell populations.101  Many cancer cells develop strategies 

to deregulate or circumvent apoptosis and these are important contributing factors in 

tumor development.101  Therefore, the ability of anticancer agents to efficiently induce 

apoptosis in tumor cells is of great importance.  Although, apoptosis can be induced in 
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various ways, it can be distinguished by highly conserved morphological characteristics 

including nuclear condensation, cell shrinkage and DNA fragmentation into 

oligonucleosomes.101  

Quinones are an important group of anticancer agents that induce apoptosis via 

redox cycling.102  Since the mechanism of cytotoxicity of redox-cycling quinones is due 

to free radical production, induction of oxidative stress and DNA damage, quinones are 

considered as powerful inducers of apoptosis.79  Induction of apoptosis is the principal 

mechanism of cytotoxicity of β-lapachone in human prostate103 and breast104 cancer cells.  

NQO1 activity is a key determinant of β-lapachone-mediated cytotoxicity and apoptosis 

induction in NQO1-expressing prostate cancer cells.25  In addition, MMC, MeDZQ (an 

aziridinylbenzoquinone) and SN can preferentially induce NQO1-mediated apoptosis in 

NQO1-rich HT-29 cells compared to NQO1-deficient BE cells.20  Therefore, an 

association between the NQO1 activity in these cells and the corresponding cytotoxicity 

and apoptosis induction by these quinone anticancer compounds is observed.  

 

1.7 In Vitro Models for NQO1-directed Bioreductive Anticancer Quinone 

Development 

 

 To examine the importance of the role of NQO1 in the bioactivation of quinone-

based antitumor agents, a common approach has been to use tumor cell lines that differ in 

NQO1 expression levels.22,28,34,56  When non-isogenic paired cell line models are utilized, 

the results of bioreductive activation of compounds by NQO1 are prone to the effects of 

confounding factors including genotypic differences in the cell lines.31,105,106  Differences 
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in activities of other reductases and in the expression of genes that impact drug 

metabolism are examples of different genotypic profiles of non-isogenic cell lines.31,105  

To better control and study the role of NQO1 in the bioreductive activation of antitumor 

quinones, isogenic cell line pairs that only differ in NQO1 expression have been 

developed.31,105,106   

An isogenic cell model for NQO1 expression employing BE cells was established 

by Sharp et al in 2000.105  They stably transfected BE cells, which possess no NQO1 

activity due to a disabling genetic polymorphism (NQO1*2/*2), with an expression 

vector containing human NQO1 cDNA.105  They demonstrated stable high-expression 

levels of NQO1 in the transfected cells (BE2) using Western blot analysis and enzyme 

activity assay.105  They did not observe any differences in the cell lines in regards to the 

activity of other reductases that may be involved in drug metabolism.105  This group 

observed selective toxicity of EO9 and SN towards NQO1-rich clones compared to 

NQO1-deficient BE cells.105  Similar to this model, stably transfected BE-NQ cells that 

express wild type NQO1 were also developed using BE cells by a second group in 

2001.106  They demonstrated using MTT and clonogenic assays that BE-NQ cells were 

more susceptible to the cytotoxic effects of SN and RH1 in comparison with BE cells.106  

These pairs of isogenic cell lines have been suggested as proper models for NQO1-

mediated mechanistic studies and antitumor quinone development.105,106 

Dehn et al. have also developed and validated an isogenic cell line pair using 

human breast adenocarcinoma cells, MDA468, which lacks NQO1 activity due to the 

same homozygous point mutation in the NQO1 gene.31  They stably transfected MDA468 

cells with human wild-type NQO1 cDNA to generate the NQ16 cells that express very 
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high levels of NQO1.31  Levels of reductases, soluble thiols and superoxide dismutase 

were compared in both cell lines and no significant differences in the corresponding 

levels were determined.31  The selective toxicity of RH1 and SN towards NQ16 cells 

compared to NQO1-deficient MDA468 cells demonstrated functional validation of this 

isogenic model.31 

 

1.8 Hypothesis 

 

Using SAR, metabolism, in vitro cytotoxicity studies, and computer-aided and 

structure-based ligand design methods, this project studied NAD(P)H:quinone 

oxidoreductase (NQO1)-directed lavendamycin antitumor agents.  We hypothesized that 

NQO1 could bioactivate good lavendamycin substrates resulting in their redox cycling 

with concomitant induction of oxidative stress.  The activated lavendamycin substrates 

would be expected to display selective toxicity towards NQO1-rich cancer cells via thiol 

depletion, oxidative DNA damage and apoptosis induction.  In addition, development of 

an in silico model of the NQO1 active site in conjunction with SAR studies would highly 

contribute to the structure-based design of more optimal lavendamycin substrates and 

NQO1-directed lavendamycin antitumor agent development. 

 

1.9 Specific Aims 

 

1.9.1  Specific Aim I.  Determine the role of NQO1 in the bioreductive 

activation and cytotoxicity of lavendamycin analogues in NQO1-deficient (BE) and 
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NQO1-rich (BE-NQ) cancer cells and indicate the structural requirements for substrate 

specificity of these compounds - SAR studies (Chapter 2). 

1.9.2  Specific Aim II.  Develop an in silico NQO1 active site model and perform 

docking studies to facilitate NQO1-directed lavendamycin antitumor agent development 

and structure-based design of novel lavendamycin analogues (Chapters 3 and 4). 

1.9.3  Specific Aim III.  Investigate mechanisms of NQO1-mediated selective 

cytotoxicity of good lavendamycin substrates towards NQO1-rich BE-NQ cell line 

compared to BE cells (Chapter 5).    
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Chapter 2 

Novel Lavendamycin Antitumor Agents: Electrochemistry, Structure-metabolism 

Studies and In Vitro Cytotoxicity with NAD(P)H:Quinone 

Oxidoreductase 1 (NQO1) 

 

2.1 Abstract 

 
 A series of novel lavendamycin analogues bearing various substituents were 

evaluated as potential NAD(P)H:quinone oxidoreductase (NQO1)-directed antitumor 

agents.  The effects of substituents and functional group changes on the metabolism 

(reduction efficiency) of these analogues by recombinant human NQO1 were studied. 

Lavendamycin analogues reduction was monitored using a spectrophotometric assay in 

which the rate of reduction of cytochrome c was quantified at 550 nm.  Structure-

metabolism studies demonstrated that small to medium-size substituents at the 

quinolinedione-7-position were well tolerated whereas large, bulky substituents were not.  

Substituents at the quinolinedione-6-position of lavendamycins generally reduced rates of 

reduction compared to compounds with no substituents at this position.  Small or large 

substituents at the indolopyridine-2'-position were tolerated.  Addition of NH2 and 

CH2OH groups at the quinolinedione-7-position and indolopyridine-2'-position, 

respectively, had the greatest positive impact on substrate specificity.  The best and 

poorest lavendamycin substrates were MB-353 (2′-CH2OH-7-NH2 derivative) and MB-

323 (2′-CONH2-7-NHCOC3H7-n derivative) with reduction rates of 263 ± 30 and 0.1 ± 

0.1 µmol/min/mg NQO1, respectively.  The electrochemical reduction potentials of the 

lavendamycin analogues were measured by cyclic voltammetry.  The findings suggest a 
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more important role of lavendamycin substituent size and steric influence compared to 

electronic effects to determine the reduction efficiency of the compounds by NQO1.  The 

cytotoxicity toward human colon adenocarcinoma cells with either no detectable NQO1 

activity (BE) or with high NQO1 activity (BE-NQ) was determined in representative 

lavendamycin analogues.  The best lavendamycin substrates for NQO1 were also the 

most selectively toxic to the NQO1-rich BE-NQ cell line compared to the NQO1-

deficient BE cells with the 2′-CH2OH-7-NH2 derivative (MB-353) being 11 times more 

toxic to BE-NQ cells versus BE cells.  

 

2.2 Introduction 

  

A large number of antitumor agents have been discovered empirically without the 

theoretical understanding of the corresponding molecular targets or mechanisms of 

action.1  A rational approach to chemotherapy, selective cancer therapy, takes advantage 

of molecular targets that are unique to cancer cells utilizing the differences existing 

between cancer and normal cells.1,2  In selective cancer therapy antitumor agents are 

designed with pre-existing knowledge of the biochemical mechanism of the drug action.3  

This approach is aimed to destroy cancer cells via exclusive interaction of antitumor 

agents with unique tumor targets (selective toxicity) while posing minimal toxicity to 

normal cells.2-5  One approach to achieve antitumor selectivity is enzyme-directed 

bioreductive drug development.2,4,5  In this approach, selective toxicity can be obtained 

by identifying reductase enzymes that are overexpressed in tumor cells when compared to 

normal cells.2,4-6  Then, bioreductive agents that are substrates for and bioactivated by the 
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related reductase can be designed to selectively target the tumors with the up-regulated 

reductase.2,4-6  

One proper candidate for enzyme-directed bioreductive drug development is 

NAD(P)H:quinone oxidoreductase 1 (NQO1).  NQO1 is a ubiquitous homodimeric 

flavoenzyme that possesses two closely associated monomers of 273 residues.  Each 

monomer contains one molecule of the FAD prosthetic group that is required for NQO1 

enzymatic activity.7-11  This obligate two-electron reductase is a mainly cytosolic enzyme 

(> 90%),12 although lower amounts of this reductase have been detected in nucleus, 

mitochondria and endoplasmic reticulum.13  NQO1 catalyzes a nicotinamide nucleotide-

dependent two-electron reduction14,15 and the bioactivation of quinone anticancer 

compounds such as quinolinequinones, mitomycins, indoloquinones and 

aziridinylbenzoquinones.16-20  In addition, marked elevations in NQO1 activity and 

mRNA content in primary tumors from lung, liver, colon and breast,21 and lung,22 liver,23 

brain24 and colorectal25 tumors have been reported.  These suggest that antitumor 

compounds that are bioactivated by NQO1 can be selectively toxic to tumors that 

overexpress this enzyme. 

Lavendamycin (Chart 2.1), a bacterially derived quinolinedione antibiotic, was 

isolated from the fermentation broth of Streptomyces lavendulae in 1981.26  

Lavendamycin is structurally26,27 and biosynthetically28-30 related to streptonigrin (SN) 

(Chart 2.1), another potent 7-aminoquinoline-5,8-dione antitumor antibiotic.  Earlier 

work has shown that the use of both of these antitumor agents as potential drugs has been 

precluded due to their high degree of toxicity.27,31,32  However, in contrast to the parent 
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compound, it has been found that a significant number of lavendamycin derivatives have 

low animal toxicity but exhibit strong antitumor activity.33-35  

Bioreductive enzyme-directed antitumor agent development depends on 

identification of antitumor agents with high substrate specificity for target reductases.36  

Several approaches have been applied to identify efficient quinone-based substrates for 

NQO1, optimize the substrate specificity, and reduce the non-selective toxicity toward 

normal tissues.  A large number of metabolism studies of quinone-based anticancer 

agents excluding lavendamycins with NQO1 have been performed during the last twenty 

years to identify the most efficient quinone substrates for NQO1.  One common approach 

has been to investigate the effects of functional group alterations on reduction efficiency 

and bioactivation of antitumor quinones by NQO1.36  This can assist in identification of 

the structural features that confer substrate specificity and are required for selective 

bioactivation of quinone compounds by NQO1 and their selective cytotoxicity.36,37  Many 

studies reported that functional group changes in a series of indolequinone, 1,4-

naphthoquinone and benzoquinone mustard analogues significantly affected the substrate 

specificity and selective cytotoxicity of the analogues towards NQO1-rich cell lines in 

vitro.36-43  
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Chart 2.1.  Chemical structures of lavendamycin, streptonigrin and the lavendamycin 

analogues with substituent positions indicated by R1, R2, R3 and R4. 
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This study was conducted to clarify the role of NQO1 in the bioactivation of 

lavendamycin analogues.  Specifically, the objectives were to perform structure-activity 

relationship (SAR) studies to analyze the effects of functional group changes on the 

reduction efficiency of lavendamycin analogues by NQO1 and to verify whether 

activation by NQO1 resulted in selective cytotoxicity of these compounds toward NQO1-

rich cells.  This is the first study that has been performed to verify structural features of 

lavendamycin analogues that are required for their efficient reduction by NQO1 and the 

selective toxicity of these analogues toward human colon adenocarcinoma NQO1-rich 

BE-NQ cells compared to NQO1-deficient BE cells.  In addition, there is currently no 

information on how electrochemical characteristics of lavendamycin analogues correlate 

with their substrate specificities for NQO1.  Therefore, we also sought to determine the 

electrochemical ease of reduction of the lavendamycin analogues and to examine how the 

electronic features of these compounds impact their rate of reduction by NQO1.  

 

2.3 Materials and Methods 

 
2.3.1  Chemistry.  Our studies have been possible through the success of Dr. 

Mohammad Behforouz’s laboratory in developing short and efficient syntheses for a 

variety of variously substituted lavendamycin analogues (Chart 2.1) possessing the full 

pentacyclic structure.  General Methods are described in the 2003 and 2005 papers by 

Behforouz et al. and Hassani et al.44,45  

2.3.2  Electrochemistry.  Cyclic voltammetry (CV) for lavendamycin analogues 

was conducted using a BAS CV-50W electrochemical analyzer equipped with a standard 

three-electrode cell.  This cell was designed to allow the tip of the reference electrode to 
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approach closely to the working electrode.  Voltammetric experiments were performed 

using Ag/AgCl as the reference electrode, a glossy carbon (GC) rod as the working 

electrode and a platinum (Pt) wire as the auxiliary electrode.  Potential data are referred 

to the Ferrocene (0/+) couple, which is oxidized in dried dimethylsulfoxide (DMSO) at 

+0.52 V vs. Ag/AgCl.  Positive-feedback iR compensation was routinely applied.  The 

working electrode was regularly polished using alumina.  Typically, a solution containing 

1 mM of the lavendamycin analogues and 0.1 M supporting electrolyte, 

tetrabutylammonium hexafluorophosphate (Bu4NPF6), was prepared using dried DMSO.  

All samples were purged with argon prior to use and kept under a continuous flow of 

argon during the course of the experiments.  All CV data were recorded at a potential 

range between 0.00 and -2.00 V and at potential sweep rates of 50 to 500 mV/s.  All 

measurements were performed at 22 ± 1 °C. 

2.3.3  Cell Culture.  BE human colon adenocarcinoma cells and stably NQO1-

transfected BE-NQ cells46 were a gift from Dr. David Ross (University of Colorado 

Health Sciences Center, Denver, CO).  Cells were grown in a minimum essential medium 

(MEM) with Earle’s salts, non-essential amino acids, L-glutamine and 

penicillin/streptomycin, and supplemented with 10% fetal bovine serum (FBS), sodium 

bicarbonate and HEPES.  Cell culture medium and supplements were obtained from 

Gibco, Invitrogen Co., Grand Island, NY.  The cells were incubated at 37°C under a 

humidified atmosphere containing 5% CO2. 

 2.3.4  Cytochrome c Assay.  Lavendamycin analogue reduction was monitored 

using a spectrophotometric assay in which the rate of reduction of cytochrome c was 

quantified at 550 nm.  Briefly, the assay mixture contained cytochrome c (70 µM), 
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NADH (1 mM), human recombinant NQO1 (0.1-3 µg) (gift from Dr. David Ross, 

University of Colorado Health Sciences Center, Denver, CO) and lavendamycins (25 

µM) in a final volume of 1 mL Tris-HCl (25 mM, pH 7.4) containing 0.7 mg/mL BSA 

and 0.1% Tween-20.  Reactions were carried out at room temperature and started by the 

addition of NADH.  Rates of reduction were calculated from the initial linear part of the 

reaction curve (0-30 s), and results were expressed in terms of µmol of cytochrome c 

reduced/min/mg of NQO1 using a molar extinction coefficient of 21.1 mM-1 cm-1 for 

cytochrome c.  All reactions were carried out at least in triplicate. 

 2.3.5  MTT Assay.  Growth inhibition was determined using the MTT 

colorimetric assay.  Cells were plated in 96-well plates at a density of 10,000 cells/mL 

and allowed to attach overnight (16 h).  Lavendamycin analogue solutions were applied 

in medium for 2 hours.  Lavendamycin analogue solutions were removed and replaced 

with fresh medium, and the plates were incubated at 37 °C under a humidified 

atmosphere containing 5% CO2 for 4-5 days.  MTT (50 µg) was added and the cells were 

incubated for another 4 hours.  Medium/MTT solutions were removed carefully by 

aspiration, the MTT formazan crystals were dissolved in 100 µL DMSO, and absorbance 

was determined on a plate reader at 560 nm.  IC50 values (concentration at which cell 

survival equals 50% of control) were determined from semi-log plots of percent of 

control vs. concentration.  Selectivity ratios were defined as the IC50 value for the BE cell 

line divided by the IC50 value for the BE-NQ cell line. 

 2.3.6  Clonogenic Assay.  Cells were harvested from logarithmic-phase growing 

cultures and plated at densities of 1000 cells per 100-mm dish to yield a readily 

quantifiable number of colonies at the end of the experiment.  After 24 hours, cells were 
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treated with lavendamycin analogues, 2% DMSO (drug vehicle) or no treatment (control) 

for 2 hours at 37 °C.  After 2 hours, drug-containing medium was replaced with fresh 

drug-free medium.  Cells were incubated at 37 °C under a humidified atmosphere 

containing 5% CO2 for 12 days.  Then, the medium was removed and colonies were 

washed twice with PBS, fixed and stained with 0.1% (w/v) Coomassie Blue dye in 30% 

methanol and 10% acetic acid for 1-2 minutes.  Surviving colonies (> 50 cells) were 

counted and the surviving fraction determined by dividing the number of colonies in a 

treatment dish by the number of colonies in the control dish.  IC50 values (concentration 

at which cell survival equals 50% of control) were determined from semi-log plots of 

percent of control vs. concentration.  Selectivity ratios were defined as the IC50 value for 

the BE cell line divided by the IC50 value for the BE-NQ cell line. 

 

2.4 Results and Discussion 

 
2.4.1  Electrochemistry.  The aim of the electrochemical studies was to 

determine the relative ease of reduction of the lavendamycin analogues and to investigate 

how the electrochemical behavior of these compounds correlates with their reduction rate 

by NQO1.  Electrochemical studies of a number of lavendamycin analogues were carried 

out.  In these studies, dried DMSO and Bu4NPF6 were used as solvent and the supporting 

electrolyte, respectively.  Cathodic and anodic peak potentials, Epc and Epa, respectively, 

were measured and the midpoint of the peak potentials was used to determine E1/2 values, 

E1/2  = (Epc + Epa)/2.  E1/2 values were consistent for the potential sweep rates in the range 

of 50 to 500 mV/s.  The E1/2 values determined from the recorded voltammograms at the 
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potential sweep rates of 50, 100, 200, 400 and 500 mV/s were averaged and reported with 

reference to Ferrocene (Fc0/+) E1/2 value (Table 2.1). 

 All of the lavendamycin analogues exhibited reversible electrochemistry.  The 

analogues with electron-withdrawing groups at the R1
 position showed similar E1/2 values, 

between -0.85 and -0.99 V, with the exception of compound MB-361 that exhibited a 

slightly more negative E1/2 value (-1.13), which can be in part due to the presence of an 

electron-donating group at the R2
 position (Table 2.1).  The lavendamycin analogues with 

electron-donating groups at the R1
 position showed slightly more negative E1/2 values, 

between -1.01 and -1.09 V, compared to the former group (Table 2.1).  In general, the 

lavendamycin analogues with electron-withdrawing groups at the R1
 position were easier 

to reduce electrochemically compared to the ones with electron-donating groups at this 

position (Table 2.1).  
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Table 2.1.  Electrochemical reduction potentialsa (in DMSO) of lavendamycin analogues 

(MB) versus Ferrocene. 

NR1

O

O

N

HN

R3

R2

R4

 

 
MB R1 R2 R3 R4 Epc 

(V) 

Epa 

(V) 

E1/2 (V) 

vs Fc 

65 CH3CONH H H H -0.95 -0.95 -0.95 

47 CH3CONH H CO2CH3 H -0.92 -0.83 -0.88  

361 CH3CONH N(CH2)4 CO2CH3 CH3 -1.16 -1.10 -1.13  

362 CH3CONH N(CH2)2 CONH2 H -0.99 -0.93 -0.96  

21 CH3CONH H CO2CH3 CH3 -0.91 -0.85 -0.88  

320 CH3CONH H CO2(CH2)2OH H -1.02 -0.95 -0.99  

76 CH3CONH H CONH2 H -0.88 -0.82 -0.85  

323 n-C3H7CONH H CONH2 H -0.92 -0.89 -0.91  

328 NH2 Cl CO2CH3 CH3 -1.01 -1.01 -1.01  
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22 NH2 H CO2CH3 CH3 -1.10 -1.04 -1.07  

97 NH2 H CONH2 H -1.09 -1.05 -1.07  

353 NH2 H CH2OH H -1.11 -1.06 -1.09  

348 NH2 H H H -1.12 -1.06 -1.09  

355 H H H H -0.88 -0.85 -0.87  

 

 

a E1/2 values (± 0.005V) calculated as (Epc+ Epa)/2 are averages of the values determined 

from voltammograms recorded at potential sweep rates of 50, 100, 200, 300, 400 and 500 

mV/s; Epc = Cathodic peak potential; Epa =  Anodic peak potential. 

 

 

 

 

 

 

 

N(CH2)4N = (CH2)2N = N
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Although all of the investigated lavendamycin analogues possessed similar E1/2 

values (-0.85 to -1.13 V) (Table 2.1), the rate of reduction of these compounds by NQO1 

differed dramatically (Table 2.2).  Compounds MB-22, -97, -348 and -353 were among 

the good substrates for NQO1 (high rate of reduction by NQO1) (Table 2.2), but they 

exhibited the most negative E1/2 values and were among the most difficult to reduce 

electrochemically (Table 2.1).  This suggests that their substituent size and potential 

ability to form efficient interactions such as hydrogen bonds inside the active site of the 

enzyme may play a more important role than the electrochemical reduction potentials in 

their substrate specificity (See Chapter 3).  Although, compound MB-323 possessed an 

E1/2 value that is in the higher range of the observed E1/2 values (-0.91) (Table 2.1), it 

displayed very poor substrate specificity for NQO1 (Table 2.2).  This also indicates that 

other factors such as lavendamycin substituent size, steric influence and lack of formation 

of efficient interactions in the NQO1 active site may be more important than the 

electronic effects to determine the reduction efficiency of these compounds by NQO1 

(See Chapter 3).  In general, when the electrochemical reduction potential and rate of 

reduction of the lavendamycin analogues by NQO1 were compared, no overall linear 

correlation between the two factors was found (r2 = 0.029, P = 0.578) (Figure 2.1).  These 

findings imply that the reduction potentials of the lavendamycin analogues do not play a 

major role in determination of substrate specificity of these analogues for NQO1.  

Electrochemical studies can be used to determine the ease of reduction of 

compounds, but there is often no overall or very small association between the rate of 

reductions by NQO1 and reduction potentials for quinones such as indolequinones38,42,47 

and quinolinequinones48 as previously reported.  In addition, Fourie et al. suggested the 
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more important role of steric effects of the functional groups of a series of benzoquinone 

mustard analogues rather than electronic effects on the reduction efficiency of these 

compounds by NQO1.36,49  The lavendamycin analogues exhibited similar reduction 

potential values to the quinolinequinone compounds studied by Fryatt et al.48  Also, they 

were easier to reduce (E1/2 values = -0.85 to -1.13 V) than the indolequinones previously 

studied by Beall et al. and Swann et al. (E1/2 values = -1.19 to -1.61 V).38,42 

2.4.2  Metabolism and Structure-activity Relationship (SAR) Studies.  

Metabolism of the novel lavendamycin analogues by recombinant human NQO1 was 

examined.  The effect of functional group changes on reduction efficiency and rate of 

reduction by NQO1 was studied using a spectrophotometic assay that employs 

cytochrome c as the terminal electron acceptor37 and gives initial rates of lavendamycin 

analogues reduction (Table 2.2).  The initial reduction rates (µmol cytochrome c 

reduced/min/mg NQO1) were calculated from the linear portion (0-30 s) of the reaction 

graphs.    
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Table 2.2.  Metabolism of lavendamycin analogues (MB) by recombinant human NQO1 

monitored by spectrophotometric cytochrome c assay. 

NR1

O

O

N

HN

R3

R2

R4

 
 
 
 
MB R1 R2 R3 R4 Metabolism by 

NQO1 

(µmol/min/mg) 

(Cytochrome c 

Reduction) 

65 CH3CONH H H H 2.7 ± 1.2 

47 CH3CONH H CO2CH3 H 0.9 ± 0.2 

302 CH3CONH H CO2C4H9-n H 8.6 ± 2.6 

303 CH3CONH H CO2C5H11-n H 9.2 ± 6.6 

50 CH3CONH H CO2C5H11-i H 35.4 ± 6.9 

304 CH3CONH H CO2C6H13-n H 11.7 ± 5.3 

120 CH3CONH H CON(CH2)5 H 15.2 ± 11.5 
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118 CH3CONH H CON[(CH2)2O(CH2)2] H        7.5 ± 1.5 

69 ClCH2CONH H CO2C5H11-i H 9.9 ± 5.6 

361 CH3CONH N(CH2)4 CO2CH3 CH3 1 ± 1 

362 CH3CONH N(CH2)2 CONH2 H 0.2 ± 0.2 

21 CH3CONH H CO2CH3 CH3 1.9 ± 1.7 

51 CH3CONH H CO2C8H17-n H 1.5 ± 0.8 

320 CH3CONH H CO2(CH2)2OH H 11.0 ± 2.5 

344 CH3CONH H CO2(CH2)2OPO3H2 H 15.4 ± 0.9 

76 CH3CONH H CONH2 H 33 ± 12 

323 n-C3H7CONH H CONH2 H 0.1 ± 0.1 

328 NH2 Cl CO2CH3 CH3 0.9 ± 0.8 

22 NH2 H CO2CH3 CH3 21 ± 12 

366 Br H CO2CH3 CH3 0.7 ± 0.3 

83 NH2 H CO2C8H17-n H 106 ± 15 

97 NH2 H CONH2 H 18.3 ± 13.6 

353 NH2 H CH2OH H 263 ± 30 
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348 NH2 H H H 24.0 ± 6.5 

355 H H H H 3.4 ± 1.2 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CONCON(CH2)5 = CON[(CH2)2O(CH2)2] = CON O

N(CH2)4N = (CH2)2N = N
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Figure 2.1.  Correlation of the reduction potential values and rate of reduction of 

lavendamycin analogues by NQO1. 
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Figure 2.1.  Correlation of the reduction potential values and rate of reduction of 

lavendamycin analogues by NQO1.  The reduction potential values of lavendamycin 

analogues were plotted along the horizontal axis and rates of reduction of lavendamycin 

analogues by NQO1 were plotted along the vertical axis.  r2 = 0.029 (P = 0.578). 
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Our SAR studies determined that large substituents at the quinolinedione-7-

position (R1) of the lavendamycin analogues were poorly tolerated and greatly reduced 

the metabolism rate of the analogues by NQO1 compared to smaller substituents (MB-97 

vs. MB-323, MB-50 vs. MB-69, MB-51 vs. MB-83 and MB-76 vs. MB-323) (Table 2.2).  

Large substituents such as NHCOC3H7-n in MB-323 at the 7-position had the most 

negative impact on the rate of reduction by NQO1 whereas NH2 followed by the 

NHCOCH3 group were the best substituents for this position (Table 2.2).  This could 

partly be due to steric hindrance between the quinolinedione moiety (5,8- dione ring 

enters the active site first) and NQO1 active site that results in unfavorable positioning of 

the lavendamycin analogues for hydride ion reception from FADH2 and quinone 

reduction.  Our molecular modeling studies have also demonstrated that placing a small 

substituent at the R1 position that is capable of hydrogen bonding with key residues of the 

active site could be a contributing factor to substrate specificity of these analogues (See 

Chapter 3).  Faig et al. determined that positions of RH1, 2,5-diaziridinyl-3-

(hydroxymethyl)-6-methyl-1,4-benzoquinone,50 that point to the inner part of the NQO1 

active site could accommodate only small substituents.51  Furthermore, 1,4-

naphthoquinones with small substituents such as an aziridine ring or CH3 at C2 and no 

substituents at C3 were reported to be good substrates for NQO1.52  

Dipyrroloimidazobenzimidazole compounds with both pyrrolo rings bearing bulky 

substituents were determined to be poor substrates for NQO1 due to steric interactions 

with residues of the NQO1 active site.53  

Comparison of analogues MB-328 vs. MB-22 and MB-362 vs. MB-76 determined 

that 6-unsubstituted (R2) lavendamycin analogues are far better substrates for NQO1 than 
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the corresponding 6-substituted counterparts (Table 2.2).  This is likely due to active site 

constraints and steric effects caused by substituents that hinder entrance or proper 

positioning of the 5,8-dione moiety of the analogues toward the key residues of the active 

site and the FAD isoalloxazine ring for hydride ion reception and quinone reduction.  

This finding is consistent with other studies that previously showed that increased 

bulkiness of the substituents at C5 position on EO9, 3-hydroxy-5-aziridinyl-1-methyl-2-

(1H-indole-4,7-dione)-propenol,54 dramatically reduced rates of reduction by NQO1.37,51  

Another study determined that indolequinones and mitosenes with bulky amine 

substituents at C5 and C7 positions, respectively, are not substrates for NQO1 due to 

steric effects.38   

A number of substituents at the 2'-position of the fused indolopyridine moiety 

(R3) were also investigated.  Among the analogues that shared an NH2 group at the R1
 

position and had no substituent at R2, 2'-CH2OH derivative (MB-353) was the best 

substrate followed by the 2'-CO2C8H17-n derivative (MB-83) (Table 2.2).  Also, our 

molecular modeling studies have demonstrated that the CH2OH group at R3 was capable 

of hydrogen bond formation with the key residues of the NQO1 active site and therefore 

could be an important contributing factor to substrate specificity (See Chapter 3).  A 

CH2OH group at the C6 position of a series of substituted 1,4-naphthoquinones also 

contributed the most to substrate specificity for NQO1.52  Phillips et al. determined that 

some of the good indolequinone substrates for NQO1 including EO9 possessed a CH2OH 

group at the analogous C3 position.37  Furthermore, RH1, which is an excellent substrate 

for NQO1, possesses a CH2OH group at C3 position.8,50  

2.4.3  In Vitro Cytotoxicity.  Cytotoxicity studies were also performed on 
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representative lavendamycin analogues with cell survival being determined by the 

colorimetric MTT and clonogenic assays.  We used the BE human colon adenocarcinoma 

cells stably transfected with human NQO1 cDNA.50  The BE cells had no measurable 

NQO1 activity whereas activity in the transfected cells (BE-NQ) was greater than 660 

nmol/min/mg total cell protein using dichlorophenolindophenol (DCPIP) as the standard 

electron acceptor.  We also evaluated the correlation between the chemosensitivity results 

of clonogenic and MTT assays in both cell lines for three lavendamycin analogues, MB-

22, MB-323 and MB-353.  There was an excellent positive linear correlation between the 

IC50 values of the two assays for the three lavendamycins for BE (r2 = 0.999, P = 0.03), 

BE-NQ (r2 = 0.999, P = 0.025) and both cell lines (r2 = 0.990, P = 0.0001) (Figure 2.2).  

In this study the cytotoxicity of representative lavendamycin analogues (Table 2.3) has 

been compared using these cell lines.  
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Figure 2.2.  Correlation of the mean IC50 values obtained by MTT and clonogenic 

assays. 
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Figure 2.2.  Correlation of the mean IC50 values obtained by MTT and clonogenic 

assays.  The mean IC50 values obtained by MTT assay were plotted along the horizontal 

axis and mean IC50 values obtained by clonogenic assay were plotted along the vertical 

axis.  r2 = 0.990 (P = 0.0001).
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Table 2.3.  Cytotoxicity of lavendamycin analogues (MB) towards BE (NQO1-deficient) 

and BE-NQ (NQO1-rich) human colon adenocarcinoma cell lines. 

NR1

O

O

N

HN

R3

R2

R4

 

 
Cytotoxicity IC50 (µM) MB R1 R2 R3 R4 

BE-NQ BE 

Selectivity 

Ratio  

[IC50 (BE-

WT) / IC50 

(BE-NQ)] 

302 CH3CONH H CO2C4H9-n H 20.5 ± 0.6 20.0 ± 2.3 1.0 

21 CH3CONH H CO2CH3 CH3 13.2 ± 0.7 19.3 ± 4.3 1.5 

51 CH3CONH H CO2C8H17-n H >50 >50 - 

344 CH3CONH H CO2(CH2)2OPO3H2
 H 6.8 ± 0.6 8.1 ± 0.5 1.2 

76 CH3CONH H CONH2 H 0.8 ± 0.0 3.5 ± 0.7 4.4 

323 n-C3H7CONH H CONH2 H 21.4 ± 1.2 >50 2.3 

22 NH2 H CO2CH3 CH3 0.5 ± 0.1 4.7 ± 0.7 9.4 

366 Br H CO2CH3 CH3 >50 >50 - 

83 NH2 H CO2C8H17-n H 3.4 ± 0.7 35.0 ±3.4 10.3 
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97 NH2 H CONH2 H 0.2 ± 0.0 1.8 ± 0.1 9.0 

353 NH2 H CH2OH H 0.4 ± 0.1 4.5 ± 0.2 11.3 

348 NH2 H H H 8.0 ± 0.5 16.8 ± 1.0 2.1 

355 H H H H 12.4 ± 1.0 9.3 ± 1.2  0.8 
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Lavendamycin analogues such as MB-22, -76, -83, -97 and -353 that were good 

substrates for NQO1 (Table 2.2) were also more toxic to the NQO1-rich BE-NQ cell line 

than the NQO1-deficient BE cell line (Table 2.3).  Compound MB-353, the best substrate 

for NQO1 (Table 2.2), had the greatest differential toxicity with a selectivity ratio [IC50 

(BE) / IC50 (BE-NQ)] of 11 (Table 2.3).  Antitumor and antiproliferative activity of 

lavendamycin against implanted leukemia cells in BDF1 mice and three other cancer cell 

lines has been previously reported.27,55  A recent study investigating cytotoxic activities 

of a series of lavendamycin analogues against A549 human lung carcinoma cells 

indicated that compounds with an amide or amine substituent at the R3 position displayed 

the most potent colony formation inhibitory effects.35  At a concentration of 10 nM, the 

most potent compound of this group, MB-97, reduced the colony outgrowth of A549 

cells by 70%.35  Since MB-97 also displayed promising cytotoxic and antitumor activities 

in the National Cancer Institute’s (NCI) 60-cell line panel and in vivo hollow fiber 

tumorigenesis assay, it has been considered for in vivo testing against tumor xenografts in 

mice.35  Our study also determined that lavendamycin analogue MB-97 showed highly 

selective toxicity toward BE-NQ cells (selectivity ratio = 9).  

Lavendamycin analogues such as MB-21, -51, -323, -366 and -355 that were poor 

substrates for NQO1 demonstrated no selective toxicity toward BE-NQ cells or had no 

measurable cytotoxicity (IC50 > 50 µM) (Table 2.3).  Although compound MB-348 was a 

rather good substrate for NQO1, it displayed only minimal selective toxicity toward BE-

NQ cells.  This could be due to the less toxic nature of MB-348 (high IC50 values for both 

cell lines) compared to other good substrates such as MB-76, -22 and -97 that have lower 

IC50 values (Table 2.3).  Overall, our results determined that the best lavendamycin 
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substrates for NQO1 were also the most selectively toxic to the high NQO1 BE-NQ cell 

line. 

  

2.5 Conclusions 

 

Large substituents at the quinolinedione-7-position (R1) of the lavendamycin 

analogues were poorly tolerated and greatly decreased the rate of reduction of the 

analogues by NQO1.  Absence of substituents at the quinolinedione-6-position (R2) was 

highly preferred.  Small or large substituents were well tolerated at the 2'-position of the 

fused indolopyridine moiety (R3).  Addition of an NH2 group at R1 and CH2OH or 

CO2C8H17-n groups at the R3 position had the greatest positive impact on substrate 

specificity compared to other substituents at these positions.  The best substrate was the 

2'-CH2OH-7-NH2 derivative (MB-353) with a reduction rate of 263 ± 30 µmol/min/mg 

NQO1 and selectivity ratio of 11.  The best lavendamycin substrates for NQO1 were also 

the most selectively toxic to the NQO1-rich BE-NQ cell line compared to NQO1-

deficient BE cells.  Lavendamycin substituent size and steric influence compared to 

electronic effects had a greater impact on determination of the reduction efficiency of the 

compounds by NQO1.  These SAR findings greatly enhance our understanding of the 

required structural features for lavendamycin analogue substrate specificity for NQO1.  

Performance of molecular docking studies will assist us to better understand and explain 

the observed SAR data.  These studies can be used for the purpose of structure-based 

design of novel lavendamycin agents with improved NQO1 substrate specificity.  
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Chapter 3 

Development of an In Silico Model of the NAD(P)H:Quinone Oxidoreductase 1 

(NQO1) Active Site and Computational Molecular Docking Studies on 

Lavendamycin Antitumor Agents 

 

3.1 Abstract 

 

To facilitate NAD(P)H:quinone oxidoreductase 1 (NQO1)-directed lavendamycin 

antitumor agent development and perform corresponding docking studies, our laboratory 

developed a 1H69 crystal structure-based in silico (computer-generated) model of the 

NQO1 active site.  The coordinates of the crystal structure of the NQO1 complex with the 

indolequinone ARH019 obtained from the Protein Data Bank (PDB ID code: 1H69) was 

used as a reference structure.  In order to develop the in silico model, the energy-

minimized compound MB-353 was superposed to the coordinates of the original 

reference ligand ARH019.  FAD was introduced to the active site of NQO1 as a 

heteroatom file.  Computational molecular docking studies were performed on two 

lavendamycin analogues, MB-353 and MB-323, good and poor substrates for NQO1, 

respectively.  The molecular docking was performed using the FlexX module of SYBYL 

6.9.1 software suite.  FlexX used MB-353 as the reference ligand for docking 

experiments.  The docked conformations (poses) of ligands were evaluated using the 

CSCORE module in SYBYL.  Geometric post-docking analyses that determine 

hydrogen-bonding interactions of the ligands with the key residues of the active site and 

FAD and hydride ion transfer from the flavin to the ligands were performed.  Of thirty 
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possible docked poses of MB-353, nineteen had CSCORE ≥ 4 indicating that this ligand 

was a good substrate.  All of the nineteen poses were capable of forming effective 

hydrogen-bonding interactions and hydride ion transfer.  However, none of the MB-323 

poses had a CSCORE = 5 nor was capable of hydrogen bond formation and hydride ion 

transfer.  Molecular docking supported a model in which the good (MB-353) versus poor 

NQO1 substrate (MB-323) was capable of effective hydrogen-bonding interactions with 

FAD and the key amino acid residues of the active site along with hydride ion reception. 

 

3.2 Introduction 

 

Molecular docking was first introduced in the early 1980s and since then has 

become a useful tool and a principal component in the field of drug development and 

discovery.1,2  Protein-ligand docking as a subcategory of the general field of molecular 

docking has received enormous attention from the scientific community due to its 

application in many fields of research including medicinal chemistry and cancer 

studies.1,3  This approach has emerged as a powerful tool in the design of selective 

substrates for validated targets in cancer therapy.3  

Molecular docking is defined as computational methods that predict binding 

orientations of ligands in the active site of the target.4-6  This approach consists of 

utilizing a computer program to generate an in silico model of the target based on the 

available three-dimentional (3D) crystal structure.1,2  There are two major components to 

protein-ligand docking protocols including docking and scoring.1-3  Docking, which is 

also known as searching/search algorithm/posing/pose prediction, is the placement of 
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ligands in the target binding site.  Docking makes it possible to search for and correctly 

predict the ligand conformations and binding orientations.1-3  A search algorithm should 

be fast and capable of effective coverage of the relevant search space.1   

The prediction of binding affinities and how well ligands bind to the protein are 

performed by scoring.1,2  The scoring function should distinguish the correct binding 

mode (pose) among others explored through the search algorithm , and evaluate and rank 

the search results accordingly.1,3  The computed interaction energy of ligand-protein 

(score) of a pose determines its final rank-ordering.2  One proper scoring approach - 

consensus score - employs several scoring functions to rank different poses.2  For a pose 

to be selected and kept based on this approach , it has to be assigned high scores by a 

number of different component scoring functions.2   

Molecular docking methods need to utilize three-dimensional protein structures to 

investigate protein-ligand molecular recognitions and binding events.2  Today, there are 

more than 35,000 structures of proteins and nucleic acids stored in the Protein Data Bank 

(PDB).1  This wealth of the available three-dimensional structures of proteins and 

protein-ligand structural data has highly contributed to the field of molecular docking and 

subsequently to the drug development process.6 

When the target binding site has been already determined, one way to perform a 

ligand-protein fit search is the manual docking of the corresponding ligand into the active 

site.3  However, manual docking requires a great expertise and is a very labor intensive 

and time consuming practice.3  Therefore, development of a general in silico model of the 

target protein active site that can be used in automatic docking processes can greatly 

facilitate and accelerate these processes.  Several modeling studies of NQO1-quinone 
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substrates have been performed to identify key components of quinone compounds, 

which confer high substrate specificity.7-10  However, there has not been any systematic 

attempt to develop an in silico general model of the NQO1 active site as a predictive tool.  

An active site model can be utilized for docking studies and prediction of the substrate 

specificity of a series of structurally related antitumor quinone compounds.9  

To facilitate NQO1-directed lavendamycin antitumor agent development, we 

developed an in silico model of the NQO1 active site.  This model served to gain insights 

into the details of molecular basis of lavendamycin binding events at the NQO1 active 

site that would be used along with our structure-activity relationship (SAR) data for 

structure-based design of novel lavendamycin substrates (See Chapter 4).  Development 

of this model will also enable rapid docking of a large number of lavendamycin 

substrates into the NQO1 active site without bearing the extra effort and expense of 

synthesizing and testing all the analogues.  This will provide a useful tool, which is 

capable of accurate prediction of the best potential lavendamycin substrates for NQO1 

with high preferential toxicity towards cancer cells that overexpress this enzyme.   

  

3.3 Materials and Methods 

 

3.3.1  Coordinates Preparation.  The coordinates of the crystal structure of 

human NQO1 complex with bound FAD and the indolequinone ARH019, 3-

(Hydroxymethyl)-5-(2-methylaziridin-1-yl)-1-methyl-2-phenylindole-4,7-dione,11 were 

obtained from the Protein Data Bank (PDB ID code: 1H6912).  This structure was used as 

a reference structure for the docking experiments and compound ARH019 served as the 
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original reference ligand.  The physiological dimer in the crystal unit was used for 

docking purposes. 

3.3.2  Development of In Silico Model of the NQO1 Active Site.  The 

molecular modeling studies were performed using SYBYL 6.9.1 software suite13 (Tripos, 

Inc.; St. Louis, MO).  The coordinates of the crystal structure of human NQO1 complex 

with bound FAD and ARH019, obtained from the Protein Data Bank (PDB ID code: 

1H6912), were utilized to develop the in silico model of the NQO1 active site.14  In order 

to develop the model, the energy-minimized compound MB-353 was superposed to the 

coordinates of the original reference ligand ARH019 such that overlap was optimal.  

Ligand MB-353 was again energy minimized in the context of the active site and 

therefore the position of the ligand within the pocket was considered optimized for the 

purpose of this study.  The active site was then defined as all the amino acid residues 

confined within 6.5 Å radius sphere centered on the superposed ligand MB-353.  The 

coordinates were locally minimized and subjected to energy minimization with minimal 

iterations (100) by Powell minimization standard method using Minimize Subset option 

within SYBYL.  This option automatically selected 24 seed amino acid residues 

surrounding the superposed ligand MB-353 to perform the local minimization.  Default 

parameters and values within the minimization dialog were used except where otherwise 

mentioned.  This procedure yielded a weighted root-mean-square distance of 0.26 Å 

between the 24 corresponding non-minimized and minimized residues in the structures.  

The file of the composite structure containing ligand MB-353 and FAD was saved.  The 

composite structure without MB-353 utilized as the in silico model of the NQO1 active 

site for docking studies.  Ligand MB-353 served as the reference ligand for the docking 
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studies.  Docking calculations were performed using one of the two identical active sites. 

3.3.3  Ligand Preparation.  The structures of ligands were sketched and 

prepared as MOL2 files employing the Sketch Molecule module of SYBYL 6.9.1 

software suite13 (Tripos, Inc.; St. Louis, MO).  Initially sketched Ligands were subjected 

to energy minimization (10,000 iterations) by Powell minimization standard method.  

Initial Optimization and Termination parameters were set to None and Energy Change 

options, respectively.  Default parameters and values within the minimization dialog 

(Minimize Details) were used except where otherwise noted.  The final ligand 

conformational coordinates were stored as MOL2 files within the database. 

3.3.4  Docking.  Flexible docking was performed using the FlexX module of 

SYBYL 6.9.1 software suite.13  FlexX is an automatic docking program for 

conformationaly flexible ligands that employs the 3D structure of the target protein in 

PDB format, and is capable of determining 30 possible conformations for each docked 

ligand.  The final rank order of the conformations is based on the free binding energy.  

This program automatically selects the base fragment of a ligand (the ligand core).  The 

base fragment is then placed into the active site of the target protein using the algorithmic 

approach called pose clustering that is based upon a pattern recognition paradigm.  

Subsequent incremental reconstruction of the complete ligand molecule is then performed 

by linking the remaining components.15,16  For the in silico model, the active site was 

defined as all the amino acid residues confined within 6.5 Å radius sphere centered on the 

superposed ligand MB-353.  FAD was introduced to the active site as a heteroatom file in 

MOL2 format.    

3.3.5  Scoring Functions.  The docked conformations of ligands were evaluated 
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and ranked using FlexX and four scoring functions implemented in the CSCORE module 

in SYBYL.  CSCORE is a consensus scoring program that integrates multiple well-

known scoring functions such as FlexX, ChemScore,17 D-Score,18 G-Score19 and PMF-

Score20 to evaluate docked conformations.  Individual scoring functions are used to 

predict the affinity of the ligand binding to a target protein.  CSCORE creates columns in 

a molecular spreadsheet that contains raw scores for each individual scoring function.  

The consensus column contains integers that range from 0 to 5; where 5 is the best fit to 

the model.  Docked conformations whose scores exceed the threshold for a particular 

function contribute one to the value of the consensus, whereas those with scores below 

the threshold add a zero. 

3.3.6  Molecular Graphics System.  The molecular graphics images and surface 

representations were prepared with PyMOL molecular graphics system version 

PyMOLX11Hybrid 0.9721 (Delano Scientific, San Carlos, CA, USA).  The data of the 

coordinates of the NQO1 complex with bound FAD and docked conformations of ligands 

were prepared in PDB format as PyMOL input files.  PyMOL session files of the NQO1 

active site with docked conformations of ligands and the superimposition of clustered 

conformations were created.  The images were then stored as graphic files. 

 

3.4 Results and Discussion 

 

3.4.1  Development of In Silico Model of the NQO1 Active Site.  The 

molecular modeling and docking studies were performed using SYBYL 6.9.1 software 

suite13 (Tripos, Inc.; St. Louis, MO).  The crystal structure of human NQO1 complex 
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with bound FAD and ARH019 (Chart 3.1) (PDB ID code: 1H6912) has been suggested as 

an appropriate model for molecular docking studies of other quinone compounds such as 

streptonigrin (SN).12  Therefore, the coordinates of this crystal structure were used as the 

reference structure to develop an in silico model of the NQO1 active site for docking 

studies.  To develop the in silico model that can be used in lavendamycin docking studies 

we introduced a reference ligand into the active site that could be recognized by the 

FlexX docking program.  Since FlexX could not recognize ARH019 as the reference 

ligand, compound MB-353 (Chart 3.1) was used as the reference ligand for lavendamycin 

docking studies.  MB-353 was superposed to the coordinates of ARH019 such that 

overlap was optimal.  ARH019 served as the reference of location for MB-353.  The 

active site was then defined as all the amino acid residues confined within 6.5 Å radius 

sphere centered on the superposed ligand MB-353.  The file of the composite structure 

containing ligand MB-353 and FAD was saved.  This composite structure without MB-

353 utilized as the in silico model of the NQO1 active site for automatic docking studies 

(Figure 3.1).  FlexX used MB-353 as the reference ligand in automatic docking processes 

and FAD was introduced to the active site as a heteroatom file in MOL2 format. 
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Chart 3.1.  Chemical structures of the indolequinone ARH019 and lavendamycin 

analogue MB-353. 
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Figure 3.1.  The developed in silico model of the NQO1 active site. 
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Figure 3.1.  The developed in silico model of the NQO1 active site.  The coordinates of 

the crystal structure of human NQO1 complex with bound FAD and ARH019 (PDB ID 

code: 1H69) were utilized to develop the in silico model of the NQO1 active site.  To 

develop the model, the energy-minimized compound MB-353 was superposed to the 

coordinates of the ligand ARH019.  The active site was then defined as all the amino acid 

residues confined within 6.5 Å radius sphere centered on the superposed ligand MB-353.  

The composite structure containing ligand MB-353 and FAD was saved.  The composite 

structure without MB-353 was utilized as the in silico model of the NQO1 active site for 

lavendamycin docking studies.  Residues of the active site (lime) and FAD (blue) are 

represented as stick models.  The rest of the structure is represented as a secondary 

structure cartoon.  The atoms are colored:  red, oxygen atoms; blue, nitrogen atoms; 

orange, phosphorus atoms and white, hydrogen atoms. 
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3.4.2  Docking Studies.  Computational and comparative molecular docking 

studies were performed on two lavendamycin analogues, MB-323 and MB-353, poor and 

good substrates for NQO1, respectively.  Flexible docking was performed using the 

FlexX module of SYBYL that is capable of determining 30 possible poses for each 

docked ligand.15,16  The docked conformations of ligands MB-323 and MB-353 were 

evaluated and ranked using FlexX and four scoring functions implemented in the 

CSCORE module in SYBYL. CSCORE is the consensus score computed from FlexX, 

ChemScore,17 D-Score,18 G-Score19 and PMF-Score20 scoring functions, in which docked 

poses are evaluated and ranked from 0 to 5; where 5 is the best fit to the model.  Table 

3.1 displays the number of poses of ligands MB-323 and MB-353 in each score group of 

CSCORE function. 
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Table 3.1.  Number of poses of ligands MB-323 and MB-353 in each score group of 

CSCORE function. 

 

  

Compound  MB-323  MB-353 

CSCORE  0 1 2 3 4 5  0 1 2 3 4 5 

Number of 

Poses 

 18 8 - - 4 -  3 3 1 4 15 4 
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Ligand MB-353 possessed a higher number of poses with more optimal CSCORE 

values compared to MB-323 (Table 3.1).  To minimize the number of false positives 

and/or negatives, visual screening of the binding orientations of the poses and geometric 

post-docking analyses were performed.  The analyses included distance measurements 

and poses geometries that determined: a) hydrogen-bonding interactions of the ligand 

poses with the key amino acid residues of the NQO1 active site including Tyr-126, -128, 

Gly-149 and His-161, b) hydride ion transfer from the N5 of the FAD isoalloxazine ring 

to the ligands at either carbonyl oxygens (O5 or O8) or at a ring carbon, and c) the angle 

between the quinone-moiety plane of the ligands and the FAD isoalloxazine ring.  

Residue numbers in this study are those used in the Protein Data Bank coordinates, PDB 

ID code: 1H69.12  

Of the thirty possible docked conformations of ligand MB-353, twenty-four poses 

(CSCORE ≥ 2) displayed binding orientations similar to that of the original reference 

ligand ARH019.  Compound ARH019 has been shown to enter the active site by the 4,7-

dione moiety where the plane of the indolequinone forms a partial aromatic-ring parallel 

stacking with the FAD isoalloxazine ring, and the corresponding plane-to-plane angle is 

16°.12  The methyl-aziridinyl group of ARH019 stacks against the Trp-105 indole and 2-

phenyl group stacks over Gly-149 and Gly-150 and points toward the outside of NQO1 

active site.12  The binding orientation of ARH019, and ligands MB-323 and MB-353 in 

the NQO1 active site were similarly determined by the positioning of quinone carbonyl 

oxygens and atoms toward the isoalloxazine ring atoms of FAD and residues of the active 

site.  Compound ARH019 carbonyl oxygen O4 in comparison to O7 is positioned closer 

to Tyr-126, -128 and the N5 of FAD.12   
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Nineteen poses of ligand MB-353 had CSCORE ≥ 4 (Table 3.1).  Poses with 

CSCORE ≥ 4 fell into four clusters, where a cluster is defined as a group of poses that 

gives a root mean square deviation (RMSD) less than 0.8 Å for the quinolinedione and 

indolopyridine moieties atoms.  Poses 1, 9 and 15 (Figure 3.2a) and 20, 24 and 27 (Figure 

3.2b) fell into two clusters in which the RMS deviation of the poses equaled zero and the 

difference was in the binding orientation of the CH2OH group in the NQO1 active site 

(Figures 3.2a and 3.2b).  Poses 3, 4, 5, 6, 7, 11 and 12 (Figure 3.2c) and 8, 10, 18, 19 and 

26 (Figure 3.2d) were clustered into two groups that yielded RMS deviations of < 0.8 Å.  

All of the clustered poses of MB-353 entered the active site by the 5,8-dione moiety 

similar to ARH019, where the departure of the planes of most of these poses from a 

complete aromatic-ring parallel stacking with the FAD isoalloxazine ring closely 

resembled that of ARH019 (Figure 3.2) (Table 3.2).   

The purpose of pose clustering is to determine the preferred binding orientation of 

ligands.10  The carbonyl oxygen O5 of the clustered poses compared to O8 was 

positioned closer to Tyr-126, -128 and the FAD N5 (Table 3.2) resembling compound 

ARH019 binding orientation, suggesting that this could be the preferred binding 

orientation for ligand MB-353 (Figure 3.2).  Also, the departure of the planes of the most 

of these poses from an exact aromatic parallel stacking with FAD closely resembled that 

for the reference ligand ARH019 (Table 3.2). 
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Figure 3.2.  View of the superposition of the docked poses of MB-353 (CSCORE ≥ 4) in 

the NQO1 active site. 
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Figure 3.2.  View of the superposition of the docked poses of MB-353 (CSCORE ≥ 4) in 

the NQO1 active site.  a) View of the superposition of the docked poses 1, 9 and 15 of 

ligand MB-353 (magenta, cyan and yellow) (CSCORE = 5, 4 and 4) in the NQO1 active 

site (RMSD = 0 Å).  b) View of the superposition of the docked poses 20, 24 and 27 of 

MB-353 (magenta, cyan and yellow) (CSCORE = 4) in the NQO1 active site (RMSD = 0 

Å).  c) View of the superposition of the docked poses 3, 4, 5, 6, 7, 11 and 12 of MB-353 

(magenta, cyan, yellow, salmon, blue, orange and green) (CSCORE = 4) in the NQO1 

active site (RMSD < 0.8 Å).  d) View of the superposition of the docked poses 8, 10, 18, 

19 and 26 of MB-353 (yellow, salmon, magenta, cyan and orange) (CSCORE = 5, 5, 4, 4 

and 4) in the NQO1active site (RMSD < 0.8 Å).  Residues of the active site (lime), FAD 

(blue), and MB-353 are represented as stick models.  The atoms are colored:  red, oxygen 

atoms; blue, nitrogen atoms and white, hydrogen atoms.  
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Table 3.2.  Geometric post-docking analysis, measurements and calculations of the thirty 

possible poses of ligand MB-353 in the NQO1 active site. 

 

Pa Cb O5 

- 

Tyr126 

(Å) 

O5 

- 

Tyr128 

(Å) 

O8 

- 

Tyr126 

(Å) 

O8 

- 

Tyr128 

(Å) 

N5 

- 

O5 (Å) 

N5 

- 

O8 (Å) 

N5 

- 

C6 (Å) 

N5 

- 

C7 (Å) 

Anglec 

(º) 

2 5 3.960 2.051 9.165 6.132 4.515 7.382 4.310 5.198 24.96 

1 5 3.705 2.055 8.743 5.774 4.359 7.053 4.044 4.893 18.18 

10 5 3.865 2.190 9.015 6.199 4.355 7.133 4.122 4.988 21.29 

8 5 3.822 2.142 8.849 6.061 4.311 7.004 3.963 4.820 21.63 

27 4 3.880 1.842 8.853 5.678 4.609 7.331 4.296 5.146 16.87 

24 4 3.880 1.842 8.853 5.678 4.609 7.331 4.296 5.146 16.87 

19 4 4.240 1.991 9.437 6.419 4.693 7.522 4.451 5.326 25.87 

18 4 3.635 1.752 8.682 5.783 4.674 7.032 4.148 4.897 21.04 

9 4 3.705 2.055 8.743 5.774 4.359 7.053 4.044 4.893 18.18 

26 4 4.240 1.991 9.437 6.419 4.693 7.522 4.451 5.326 25.87 

15 4 3.705 2.055 8.743 5.774 4.359 7.053 4.044 4.893 18.18 

7 4 3.896 2.100 9.008 6.017 4.379 7.271 4.261 5.146 15.40 

12 4 3.760 2.257 8.976 6.058 4.237 6.934 4.009 4.848 18.33 

6 4 3.896 2.100 9.008 6.017 4.379 7.271 4.261 5.146 15.40 

5 4 3.896 2.100 9.008 6.017 4.379 7.271 4.261 5.146 15.40 

4 4 3.896 2.100 9.008 6.017 4.379 7.271 4.261 5.146 15.40 

3 4 3.760 2.257 8.976 6.058 4.237 6.934 4.009 4.848 18.33 

11 4 3.842 1.981 9.071 6.159 4.593 7.066 4.265 5.026 18.88 

20 4 3.880 1.842 8.853 5.678 4.609 7.331 4.296 5.146 16.87 

21 3 4.273 2.592 9.493 6.405 4.138 7.517 4.302 5.322 27.95 
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13 3 3.792 1.704 9.022 6.026 4.952 7.154 4.555 5.219 18.25 

16 3 3.826 1.724 8.924 5.918 4.714 7.092 4.314 5.048 13.46 

14 3 3.792 1.704 9.022 6.026 4.952 7.154 4.555 5.219 18.25 

22 2 3.853 1.690 8.916 5.976 4.753 6.996 4.262 4.960 14.29 

28 1 6.654 4.783 9.874 7.394 7.306 12.051 9.310 10.551 102.72 

29 1 9.117 6.163 4.100 1.869 7.306 4.653 5.502 4.735 11.76 

23 1 7.305 5.108 2.521 2.661 7.690 6.728 5.708 5.376 114.20 

30 0 6.654 4.783 9.874 7.394 7.306 12.051 9.310 10.551 102.72 

17 0 6.458 4.530 9.980 7.878 6.974 12.182 9.198 10.491 108.29 

25 0 7.027 4.920 9.890 7.543 7.699 12.561 10.035 11.223 98.04 

 

a P = Pose 

b C = CSCORE 

c Plane-to-plane angle between the isoaloxazine ring of FAD and the quinolinequinone 

moiety of ligand MB-353 
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In the NQO1 active site, the hydroxyl groups of Tyr-126 and -128 and/or the N or 

NH of His-161 can form hydrogen bonds with carbonyl oxygens and/or other atoms of 

quinone substrates.10,12,22  One crucial determining factor of quinone substrate binding 

strength in the NQO1 active site is the quinone oxygens capability of forming hydrogen-

bonding interactions with Tyr-126 and -128.10  The carbonyl oxygens O4 and O7 of the 

quinone nucleus of ARH019 form hydrogen bonds with the OH of Tyr-126 and NH of 

His-161, respectively.12  Good substrates for NQO1 such as RH1 and EO9 are capable of 

forming hydrogen-bonding interactions with the key residues of the NQO1 active site.12  

The carbonyl oxygens O1 and O4 of RH1 also form hydrogen bonds with the NH of His-

161 and the hydroxyl group of Tyr-128, respectively.12  The O4 and O7 of EO9 is 

capable of hydrogen-bonding interaction formation with the Tyr-126 OH and NH of His-

161, respectively.12   

Although all of the clustered poses of MB-353 were capable of forming 

hydrogen-bonding interactions and hydride ion reception from the FAD N5, these poses 

differed in the number of and ability to form hydrogen bonds with FAD and the residues 

of the NQO1 active site (Table 3.2).  Among the poses of ligand MB-353, poses 1 and 2 

formed the highest number of hydrogen bonds in the active site of the enzyme.  The 5,8-

dione moiety of pose 1 with CSCORE = 5 stacked over the isoalloxazine ring of FAD 

and the NH2 group at the quinolinedione-7-position was placed close to His-161 (Figures 

3.3a and 3.3b).  The fused three-ring indolopyridine moiety pointed toward the outside of 

the active site.  The CH2OH group at the indolopyridine -2'-position was placed close to 

Gly-149 (Figures 3.3a and 3.3b).  Pose 2 (CSCORE = 5) also positioned in the NQO1 

active site in a very similar way to pose 1 (Figure 3.3c) (Table 3.2).  The carbonyl oxygen 
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O5 of MB-353 poses 1 and 2 formed a hydrogen bond with the Tyr-128 OH and one 

hydrogen atom of the NH2 substituent formed a hydrogen bond with the N of His-161 

(Figures 3.3b and 3.3c).  Another hydrogen atom of the NH2 substituent was capable of 

forming hydrogen-binding interactions with the O2 and N3 of FAD (Figures 3.3b and 

3.3c).  The CH2OH group of the indolopyridine moiety further stabilized the binding by 

making a hydrogen bond to the carbonyl oxygen of Gly-149 (Figures 3.3b and 3.3c).  

Poses 1 and 2 of ligand MB-353 with high CSCORE of 5 made the highest number of 

hydrogen-bonding interactions in the active site resulting in favorable binding orientation 

for efficient hydride ion reception and quinone reduction.  
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Figure 3.3.  Molecular model of the poses of MB-353 (CSCORE = 5) docked into the 

NQO1 active site. 
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Figure 3.3.  Molecular model of the poses of MB-353 (CSCORE = 5) docked into the 

NQO1 active site.  a) Depiction of the molecular surface of the NQO1 active site region.  

The surface of the pocket is colored lime with FAD (blue) and the docked pose 1 of MB-

353 (magenta) (CSCORE = 5) represented as stick models.  b) Molecular model of the 

pose 1 of MB-353 docked into the NQO1 active site.  c) Molecular model of the pose 2 

of MB-353 (CSCORE = 5) docked into the NQO1 active site.  In (b) and (c) the carbonyl 

oxygen O5 of MB-353 poses 1 and 2 formed a hydrogen bond with the Tyr-128 OH and 

one hydrogen atom of the NH2 substituent formed a hydrogen bond with the N of His-

161.  Another hydrogen atom of the NH2 substituent was capable of forming hydrogen-

binding interactions with the O2 and N3 of FAD.  The CH2OH group of the 

indolopyridine moiety further stabilized the binding by making a hydrogen bond to the 

carbonyl oxygen of Gly-149.  In (b) and (c) residues of the active site (lime), FAD (blue), 

and MB-353 (magenta) are represented as stick models and the rest of the structure is 

represented as a secondary structure cartoon.  The atoms are colored:  red, oxygen atoms; 

blue, nitrogen atoms and white, hydrogen atoms.  Hydrogen bonds are represented as 

yellow dashed lines. 
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However, of the thirty possible docked conformations of ligand MB-323, twenty-

six poses possessed CSCORE ≤ 1 and no conformation had a CSCORE = 5 (Table 3.1).  

None of the thirty poses had a binding orientation similar to that of the ligand ARH019.  

Pose 12 with CSCORE = 4 had a binding orientation opposite that of the original 

reference ligand where carbonyl oxygen O8 of pose 12 compared to O5 was positioned 

closer to Tyr-126, -128 and the FAD N5 (Figure 3.4a) (Table 3.3).  The quinone nucleus 

partially stacked over the isoalloxazine ring of FAD and the NHCOC3H7-n group at the 

quinolinedione-7-position stacked over the isoalloxazine ring of FAD (Figure 3.4a).  The 

fused three-ring indolopyridine moiety pointed toward the outside of the active site 

(Figure 3.4a).  Neither of the carbonyl oxygens O5 and O8 of pose 12 was capable of 

forming hydrogen bonds with the residues of the active site unlike poses 1 and 2 of ligand 

MB-353 (Figure 3.4a) (Table 3.3).  The other three poses (11, 26 and 28) of MB-323 with 

CSCORE = 4 entered the active site of NQO1 with the fused three-ring indolopyridine 

moiety where the quinolinedione moiety pointed toward the outside of the active site 

(Figures 3.4b and 3.4c) (Table 3.3).  Compound ES1340, 5-Methoxy-3-

(phenyloxymethyl)-1,2-dimethylindole-4,7-dione,23 which is a poor substrate for NQO124 

has been shown to position in the NQO1 active site such that the 4,7-dione moiety points 

to the outside of the active site.25  The binding orientations of the poses of ligand MB-323 

were not favorable for formation of hydrogen-bonding interactions, hydride ion reception 

and quinone reduction.  The remaining twenty-six poses with CSCORE of 0 or 1 did not 

merit further considerations. 
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Figure 3.4.  Molecular model of the poses of MB-323 (CSCORE = 4) docked into the 

NQO1 active site. 
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Figure 3.4.  Molecular model of the poses of MB-323 (CSCORE = 4) docked into the 

NQO1 active site.  a) Molecular model of the pose 12 of MB-323 (CSCORE = 4) docked 

into the NQO1 active site.  Residues of the active site (lime), FAD (blue) and MB-323 

(magenta) are represented as stick models and the rest of the structure is represented as a 

secondary structure cartoon.  b) Depiction of the molecular surface of the NQO1 active 

site region.  The surface of the pocket is colored lime with FAD (blue) and the docked 

poses 11, 26 and 28 of MB-323  (magenta, yellow and cyan) (CSCORE = 4) represented 

as stick models.  c) Molecular model of the poses 11, 26 and 28 of MB-323 docked into 

the NQO1 active site.  Residues of the active site (lime), FAD (blue) and MB-323 

(magenta, yellow and cyan) are represented as stick models and the rest of the structure is 

represented as a secondary structure cartoon.  The atoms are colored:  red, oxygen atoms; 

blue, nitrogen atoms and white, hydrogen atoms. 
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Table 3.3.  Geometric post-docking analysis, measurements and calculations of the thirty 

possible poses of ligand MB-323 in the NQO1 active site. 

 

Pa Cb O5 

- 

Tyr126 

(Å) 

O5 

- 

Tyr128  

(Å) 

O8 

- 

Tyr126 

(Å) 

O8 

- 

Tyr128 

(Å) 

N5 

- 

O5 (Å) 

N5 

- 

O8 (Å) 

N5 

- 

C6 (Å) 

N5 

- 

C7 (Å) 

Anglec 

(º) 

12 4 9.319 6.115 4.323 2.240 7.734 4.353 5.656 4.654 14.40 

28 4 9.370 6.589 6.388 4.844 11.373 6.612 10.068 8.941 126.44 

11 4 9.370 6.589 6.388 4.844 11.373 6.612 10.068 8.941 126.44 

26 4 9.370 6.589 6.388 4.844 11.373 6.612 10.068 8.941 126.44 

6 1 10.425 6.678 12.527 8.753 12.363 12.173 11.541 11.479 60.59 

1 1 11.846 8.005 10.778 7.183 13.405 10.639 11.401 10.625 102.20 

7 1 11.071 7.388 11.834 8.090 13.141 11.655 11.761 11.346 74.51 

2 1 11.908 8.587 11.246 7.419 14.621 11.760 12.892 12.120 76.63 

8 1 11.923 8.076 10.816 7.209 13.458 10.666 11.461 10.680 14.40 

3 1 13.915 10.623 11.791 7.979 16.582 12.726 14.711 13.699 88.98 

4 1 11.170 7.359 10.354 6.787 12.889 10.205 10.834 10.072 100.03 

5 1 11.170 7.359 10.354 6.787 12.889 10.205 10.834 10.072 100.03 

14 0 11.447 7.608 10.606 7.033 13.048 10.448 11.055 10.320 100.79 

15 0 11.071 7.388 11.834 8.090 13.141 11.655 11.761 11.346 74.51 

9 0 10.165 6.251 13.341 9.635 11.525 12.845 11.364 11.705 52.13 

16 0 10.425 6.678 12.527 8.753 12.363 12.173 11.541 11.479 60.59 

30 0 11.337 7.502 10.537 6.955 12.963 10.324 10.955 10.209 99.90 

17 0 10.871 7.155 11.727 8.000 12.878 11.491 11.508 11.119 74.88 

18 0 11.173 7.319 10.679 7.120 12.740 10.390 10.811 10.143 98.05 

19 0 12.336 8.994 11.705 7.877 14.986 12.213 13.341 12.597 76.96 
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20 0 10.165 6.251 13.341 9.635 11.525 12.845 11.364 11.705 52.13 

21 0 13.563 10.281 11.495 7.696 16.260 12.419 14.341 13.329 87.30 

22 0 10.165 6.251 13.341 9.635 11.525 12.845 11.364 11.705 52.13 

23 0 11.071 7.388 11.834 8.090 13.141 11.655 11.761 11.346 74.51 

24 0 11.739 7.899 10.741 7.147 13.314 10.592 11.320 10.556 101.46 

25 0 10.165 6.251 13.341 9.635 11.525 12.845 11.364 11.705 52.13 

10 0 11.189 7.511 11.583 7.840 13.268 11.425 11.750 11.237 78.19 

27 0 10.988 7.331 11.648 7.940 13.110 11.514 11.640 11.193 76.02 

13 0 11.897 8.049 10.812 7.209 13.430 10.658 11.436 10.661 102.26 

29 0 12.218 8.847 11.761 7.939 14.825 12.200 13.213 12.507 76.35 

 

a P = Pose 

b C = CSCORE 

c Plane-to-plane angle between the isoaloxazine ring of FAD and the quinolinequinone 

moiety of ligand MB-323 
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3.5 Conclusions 

   

The developed in silico model served to gain insights into the details of molecular 

basis of lavendamycin binding events in the NQO1 active site.  The molecular modeling 

and docking studies demonstrated that ligand MB-353 possessed an increased number of 

possible poses with favorable binding orientations to promote hydrogen bonding 

interactions, hydride ion reception and quinone reduction compared to ligand MB-323.  

Ligand MB-353 due to the small hydrogen bond-forming substituents possessed 

structural characteristics for favorable positioning in the NQO1 active site for reduction.  

Conversely, the unfavorable structural characteristics of ligand MB-323 excluded it from 

proper positioning in the NQO1 active site for reduction.  These findings suggest that 

active site positioning contributes to the much greater substrate specificity observed for 

ligand MB-353 compared to ligand MB-323.  The docking studies greatly contributed to 

understanding of our structure-activity relationship (SAR) data and the observed different 

substrate specificity of the ligands.  The use of molecular modeling and docking 

techniques can contribute to future structure-based design of good NQO1 substrates for 

NQO1-directed lavendamycin antitumor agent development.  Therefore, the data 

obtained from the molecular docking in conjunction with the SAR studies will be utilized 

for the structure-based design of novel improved lavendamycin substrates for NQO1. 
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Chapter 4 

Lavendamycin Antitumor Agents:  Structure-based Design, Validation of In Silico 

Model of the NAD(P)H:Quinone Oxidoreductase 1 (NQO1) Active Site, and 

Molecular Docking and Biological Studies 

 

4.1 Abstract 

 

 A 1H69 crystal structure-based in silico model of the NAD(P)H:quinone 

oxidoreductase 1 (NQO1) active site has been developed in our laboratory to facilitate 

NQO1-directed lavendamycin antitumor agent development.  Lavendamycin analogues 

were designed as NQO1 substrates utilizing our structure-activity relationship (SAR) and 

molecular docking data as structure-based design criteria.  Docking studies of the 

designed analogues were performed using the in silico model to predict their NQO1 

substrate specificity.  The molecular docking was performed using the FlexX module of 

SYBYL 7.0 software suite.  Metabolism and cytotoxicity studies on the analogues with 

recombinant human NQO1 and human colon adenocarcinoma cells (NQO1-deficient BE 

and NQO1-rich BE-NQ) were also performed.  Docking and biological data were 

consistent suggesting that there was an excellent association between the docking and 

biological data.  Analogues MB-116, -340, -100, -137 and -73 with reduction rates of 143 

± 11, 60 ± 8, 7.0 ± 1.5, 4.9 ± 2.9 and 3.4 ± 1.7 µmol/min/mg NQO1 were categorized as 

good, good, poor, poor and poor NQO1 substrates, respectively, by docking and 

metabolism data.  Analogues MB-116, -340 and -100 exhibited selectivity ratios [IC50 

(BE) / IC50 (BE-NQ)] of 30, 7 and 1, respectively, while no measurable cytotoxicity for 
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MB-137 and -73 was found.  Overall, our results suggest practicality of the design criteria 

resulting in the discovery of two good NQO1 substrates with high selectivity ratios.  The 

observed consistency between the docking and biological data determines that the in 

silico model of the NQO1 active site possesses practical predictive power.  Therefore, 

this model can be utilized as a cost- and time-efficient tool to facilitate and accelerate 

NQO1-directed lavendamycin antitumor agent development.  The acquired docking data 

can further be used for future structure-based design of lavendamycins to result in 

discovery of optimized ligands as potential novel bioreductive drugs.  

 

4.2 Introduction 

 

Bioreductive enzyme-directed antitumor agent development depends on 

identification of chemotherapeutic agents with high substrate specificity for target 

reductases.1  Structure-based ligand design is an efficient approach in modern drug 

development for targets with resolved three-dimensional (3D) structures.2-4  This field 

was evolved more than two decades ago as an approach to take advantage of the 

increasing number of protein crystal structures being added to the database.5  Workman et 

al. suggested that the concept of enzyme-directed bioreductive drug development can be 

utilized in the structure-based design of improved bioreductive anticancer drugs.6,7  

In structure-based design the information obtained from the interactions and 

composite structure of the target protein-ligand is utilized to design improved ligands 

with high binding affinity for target proteins implicated in diseases.2-4,8  A profound 

understanding of ligand-protein interactions in the active site of the target greatly 
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contributes to the corresponding structure-activity relationship (SAR) studies, which in 

turn are the crucial components in the context of structure-based ligand design.9  

Computer-aided docking techniques serve as time- and cost-efficient tools for structure-

based design and decrease efforts of synthesis and biological testing of compounds.3,10  

These techniques greatly contribute to this field since they facilitate extraction of 

information on binding events and the molecular basis of ligand-protein interactions as 

well as prediction of binding orientations and affinities of candidate compounds.2-4,11  

This information then is utilized to design improvements to existing ligands.3  Another 

major element in computer-aided structure-based design is the ability to quickly screen 

designed ligands against a target protein via docking methods and accurately rank them 

for the binding affinity.3  At the end of the process, a small group of the most promising 

designed ligands is synthesized and considered for biological tests.3 

Suleman et al. rationally designed a series of benzimidazolediones and performed 

molecular modeling studies on the compounds with NQO1.8  Correlation of the modeling 

data with the substrate specificity of the compounds for NQO1 determined the structural 

features required for high affinity of the compounds for NQO1, the enzymatic 

mechanism of NQO1 and the role of amino acid residues in the active site.8  They 

performed docking studies via manual docking of each compound into the active site and 

considered each NQO1-compound complex as a separate model to gain insight to binding 

events of that specific compound.8  However, they did not develop a general model of the 

NQO1 active site that could be used in an automatic docking process.8  They suggested 

that the developed models will be used to develop novel NQO1-activated antitumor 

agents and to predict the substrate specificity of the compounds.8 
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This present study was conducted to design more optimal lavendamycin 

substrates for NQO1 with increased selective cytotoxicity towards NQO1-rich cells using 

our obtained SAR and docking data (See Chapters 2 and 3).  Furthermore, the objective 

was to determine whether our design criteria were fruitful and whether docking studies 

performed using our recently developed in silico model of the NQO1 active site were 

consistent with the biological results.  We also sought to investigate the predictive power 

of the model to correctly distinguish between good and poor NQO1 substrates.  This is 

the first study that attempts to perform structure-based lavendamycin design using SAR 

and docking data and to relate the developed model and docking studies of lavendamycin 

analogues with data from biological studies.   

   

4.3 Materials and Methods 

 

4.3.1  Chemistry.  Designed N-acyllavendamycin esters and amides were 

synthesized in Dr. Mohammad Behforouz’s laboratory at Ball State University. 

4.3.2  In Silico Model of the NQO1 Active Site.  The coordinates of the crystal 

structure of human NQO1 complex with bound FAD and the indolequinone ARH019, 

obtained from the Protein Data Bank (PDB ID code: 1H6912), were previously utilized as 

a reference structure to develop the in silico model of the NQO1 active site (See Chapter 

3).13  Briefly, the physiological dimer in the crystal unit was used for docking purposes.  

In order to develop the model, we previously superposed the energy-minimized 

compound MB-353 to the coordinates of the original reference ligand ARH019 such that 

overlap was optimal.  Ligand MB-353 was again energy minimized in the context of the 
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active site and therefore the position of the ligand within the pocket was considered 

optimized for the purpose of this study.  The active site was then defined as all the amino 

acid residues confined within 6.5 Å radius sphere centered on the superposed ligand MB-

353.  The coordinates were locally minimized and subjected to energy minimization with 

minimal iterations (100) by Powell minimization standard method using Minimize Subset 

option within SYBYL.  This option automatically selected 24 seed amino acid residues 

surrounding the superposed ligand MB-353 to perform the local minimization.  Default 

parameters and values within the minimization dialog were used except where otherwise 

mentioned.  This procedure yielded a weighted root-mean-square distance of 0.26 Å 

between the 24 corresponding non-minimized and minimized residues in the structures.  

The file of the composite structure containing ligand MB-353 and FAD was saved.  The 

composite structure without MB-353 utilized as the in silico model of the NQO1 active 

site for docking studies.  Ligand MB-353 served as the reference ligand for the docking 

studies.  Docking calculations were performed using one of the two identical active sites. 

4.3.3  Ligand Preparation.  The structures of ligands were sketched and 

prepared as MOL2 files employing the Sketch Molecule module of SYBYL 7.0 software 

suite14 (Tripos, Inc.; St. Louis, MO).  Initially sketched Ligands were subjected to energy 

minimization (10,000 iterations) by Powell minimization standard method.  Initial 

Optimization and Termination parameters were set to None and Energy Change options, 

respectively.  Default parameters and values within the minimization dialog (Minimize 

Details) were used except where otherwise noted.  The final ligand conformational 

coordinates were stored as MOL2 files within the database.  

4.3.4  Docking.  Flexible docking was performed using the FlexX module of 
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SYBYL 7.0 software suite.14  FlexX is an automatic docking program for 

conformationaly flexible ligands that employs the 3D structure of the target protein in 

PDB format, and is capable of determining 30 possible conformations for each docked 

ligand.  The final rank order of the conformations is based on the free binding energy.  

This program automatically selects the base fragment of a ligand (the ligand core).  The 

base fragment is then placed into the active site of the target protein using the algorithmic 

approach called pose clustering that is based upon a pattern recognition paradigm.  

Subsequent incremental reconstruction of the complete ligand molecule is then performed 

by linking the remaining components.15,16  For the in silico model, the active site was 

defined as all the amino acid residues confined within 6.5 Å radius sphere centered on the 

superposed ligand MB-353.  FAD was introduced to the active site as a heteroatom file in 

MOL2 format.    

4.3.5  Scoring Functions.  The docked conformations of ligands were evaluated 

and ranked using FlexX and four scoring functions implemented in the CSCORE module 

in SYBYL.  CSCORE is a consensus scoring program that integrates multiple well-

known scoring functions such as FlexX, ChemScore,17 D-Score,18 G-Score19 and PMF-

Score20 to evaluate docked conformations.  Individual scoring functions are used to 

predict the affinity of the ligand binding to a target protein.  CSCORE creates columns in 

a molecular spreadsheet that contain raw scores for each individual scoring function.  The 

consensus column contains integers that range from 0 to 5; where 5 is the best fit to the 

model.  Docked conformations whose scores exceed the threshold for a particular 

function contribute one to the value of the consensus, whereas those with scores below 

the threshold add a zero. 
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4.3.6  Molecular Graphics System.  The molecular graphics images and surface 

representations were prepared with PyMOL molecular graphics system version 

PyMOLX11Hybrid 0.9721 (Delano Scientific, San Carlos, CA, USA).  The data of the 

coordinates of the NQO1 complex with bound FAD and docked conformations of ligands 

were prepared in PDB format as PyMOL input files.  PyMOL session files of the NQO1 

active site with docked conformations of ligands and the superimposition of clustered 

conformations were created.  The images were then stored as graphic files. 

4.3.7  Cell Culture.  BE human colon adenocarcinoma cells and stably NQO1-

transfected BE-NQ cells22 were a gift from Dr. David Ross (University of Colorado 

Health Sciences Center, Denver, CO).  Cells were grown in a minimum essential medium 

(MEM) with Earle’s salts, non-essential amino acids, L-glutamine and 

penicillin/streptomycin, and supplemented with 10% fetal bovine serum (FBS), sodium 

bicarbonate and HEPES.  Cell culture medium and supplements were obtained from 

Gibco, Invitrogen Co., Grand Island, NY.  The cells were incubated at 37°C under a 

humidified atmosphere containing 5% CO2. 

4.3.8  Cytochrome c Assay.  Lavendamycin analogue reduction was monitored 

using a spectrophotometric assay in which the rate of reduction of cytochrome c was 

quantified at 550 nm.  Briefly, the assay mixture contained cytochrome c (70 µM), 

NADH (1 mM), human recombinant NQO1 (0.1-3 µg) (gift from Dr. David Ross, 

University of Colorado Health Sciences Center, Denver, CO) and lavendamycins (25 

µM) in a final volume of 1 mL Tris-HCl (25 mM, pH 7.4) containing 0.7 mg/mL BSA 

and 0.1% Tween-20.  Reactions were carried out at room temperature and started by the 

addition of NADH.  Rates of reduction were calculated from the initial linear part of the 
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reaction curve (0-30 s), and results were expressed in terms of µmol of cytochrome c 

reduced/min/mg of NQO1 using a molar extinction coefficient of 21.1 mM-1 cm-1 for 

cytochrome c.  All reactions were carried out at least in triplicate. 

 4.3.9  MTT Assay.  Growth inhibition was determined using the MTT 

colorimetric assay.  Cells were plated in 96-well plates at a density of 10,000 cells/mL 

and allowed to attach overnight (16 h).  Lavendamycin analogue solutions were applied 

in medium for 2 hours.  Lavendamycin analogue solutions were removed and replaced 

with fresh medium, and the plates were incubated at 37 °C under a humidified 

atmosphere containing 5% CO2 for 4-5 days.  MTT (50 µg) was added and the cells were 

incubated for another 4 hours.  Medium/MTT solutions were removed carefully by 

aspiration, the MTT formazan crystals were dissolved in 100 µL DMSO, and absorbance 

was determined on a plate reader at 560 nm.  IC50 values (concentration at which cell 

survival equals 50% of control) were determined from semi-log plots of percent of 

control vs. concentration.  Selectivity ratios were defined as the IC50 value for the BE cell 

line divided by the IC50 value for the BE-NQ cell line. 

 

4.4 Results and Discussion 

 

 4.4.1  Structure-based Design.  Lavendamycin analogues MB-116, -137, -100 

and -340 (Chart 4.1) were designed utilizing the criteria obtained from our SAR and 

docking study (See Chapters 2 and 3),13 and other recent NQO1-related literature.  The 

structure-based design criteria for substituent features at key positions are detailed in the 

following sections. 
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Quinolinedione-7-position (R1) (Chart 4.1):  (1) Small to medium size 

substituents, preferably NH2 or NHCOCH3 group13 that do not produce steric interactions 

with the key residues of the active site including the internal wall (Trp-105/Phe-106) 

(applied to MB-116, -137 and -340).8,23,24  The substituents should also be capable of 

hydrogen bond formation with the FAD cofactor and/or the key amino acid residues of 

the active site including Tyr-126, -128 and His-161.13  Faig et al. determined that 

positions of the aziridinylbenzoquinone RH1 that point to the inner part of the NQO1 

active site could accommodate only small substituents.12  (2) Substituents that can 

intercalate between and/or form van der Waals interactions with the Trp-105/Phe-106 

mini-pocket (applied to MB-100).8,23  A previous study demonstrated that an aziridinyl 

group at C5 position of EO9 can form favorable van der Waals interactions with Trp-

106.23  Another study determined that van der Waals interactions between the C5 

aziridine ring of CB1954, 5-aziridinyl-2,4-dinitrobenzamide,25 and Trp-105 is an 

important factor in the binding of this prodrug.25  Unsubstituted pyrrolo rings in 

dipyrroloimidazobenzimidazole and dipyridoimidazobenzimidazole compounds can 

sandwich between the Trp-105/Phe-106 residues and form van der Waals interactions to 

increase NQO1 substrate specificity.8  (3) No large substituents are allowed due to 

increased steric hindrance with the internal wall that can result in unfavorable positioning 

of the quinoline-5,8-dione moiety of lavendamycin analogues for hydride ion reception 

from FADH2 and quinone reduction (applied to MB-116, -137, -100 and -340).8,13  A 

study by Suleman et al. demonstrated that dipyrroloimidazobenzimidazole compounds 

with both pyrrolo rings bearing bulky substituents were excluded from the active site due 

to steric interactions.8 
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Chart 4.1.  Chemical structures of the lavendamycin analogues MB-73, -100, -116, -137, 

and -340 and with substituent positions indicated by R1, R2 and R3. 
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Quinolinedione-6-position (R2) (Chart 4.1):  Absence of substituents in this 

position is highly preferred.  Simultaneous placing of substituents at both R1 and R2 

increases steric interactions of lavendamycin ligands with the internal wall of the active 

site.13  It has been reported that 1,4-naphthoquinones with small substituents such as an 

aziridine ring or CH3 at C2 and no substituents at C3 (C2 and C3 positions point to the 

inside of the active side) are good substrates for NQO1.26  Increased bulkiness of 

substituents at the C5 position of indolequinones dramatically reduced rates of reduction 

by NQO1.12,23  Previous SAR studies have demonstrated that 7-aminoquinoline-5,8-dione 

is an essential moiety in determining the cytotoxic and antitumor activity of 

quinolinedione antibiotics.27,28  Therefore, substituent placement at the R1 position over 

R2 is highly desirable (applied to MB-116, -137, -100 and -340). 

Indolopyridine-2'-position (R3) (Chart 4.1):  (1) Substituents that are capable of 

hydrogen bond formation with the FAD cofactor and/or the key residues of the active site 

including Gly-149 and Gly-150 (applied to MB-100 and -340).13  The 3-hydroxymethyl 

group of ARH019 that points towards the outside of the active site forms a hydrogen 

bond with the Tyr-128 OH.12  (2) Substituents (including aliphatic chains) that are 

capable of formation of van der Waals interactions with the key residues of the NQO1 

active site (applied to MB-116 and -137).  Compound MB-83 (See Chapter 2), 

demethyllavendamycin n-octyl ester,29 possesses a large n-octyl ester substituent at the R3 

position and is a good NQO1 substrate with high selective toxicity towards NQO1-rich 

cancer cells.13 

Utilizing the design criteria we designed compounds MB-116, -137, -100 and -

340 with small or medium size substituents at R1, no substituent at R2 and small to large 



 126 

substituents at R3.  The substituents at R1 and R3 are expected to form hydrogen bond 

and/or van der Waals interactions with FAD and/or the amino acid residues of the active 

site such as Trp-105, Phe-106, Tyr-126, -128, -Gly-149, -150 and His-161.  The docking 

studies of the compounds using the in silico model were performed to predict the 

substrate specificity of the compounds for NQO1, to examine the predictive power of the 

model, to relate the model and docking studies with the metabolism and cytotoxicity 

results, and to gain further insight into the binding events and the molecular basis of 

lavendamycin agent-NQO1 interactions.  

4.4.2  Docking Studies.  Our laboratory recently developed a 1H69 crystal 

structure-based in silico model of the NQO1 active site (See Chapter 3).  In order to 

further determine the predictive power of the model and correlation of the docking data 

with biological results, we performed computational and comparative docking studies on 

the structure-based designed lavendamycin analogues and the previously synthesized 

compound MB-73.  A practical model should be able to correctly predict the substrate 

specificity of the docked compounds.  The molecular modeling studies were performed 

using SYBYL 7.0 software suite14 (Tripos, Inc.; St. Louis, MO).  Flexible docking was 

performed using the FlexX module of SYBYL that is capable of determining 30 possible 

poses for each docked ligand.15,16  The docked conformations of ligands MB-116, -137, -

73, -100 and -340 were evaluated and ranked using the CSCORE module in SYBYL, 

from 0 to 5; where 5 was the best fit to the model.  Table 4.1 displays the number of 

conformations of the ligands in each score group of CSCORE function.  

Ligands MB-116 and -340 possessed higher number of poses with optimal 

CSCORE values compared to MB-73, -100 and -137 (Table 4.1).  Visual screening of 
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binding orientations of the poses and geometric post-docking analyses were performed.  

The analyses included distance measurements and pose geometries that determined: (a) 

hydrogen-bonding and van der Waals interactions of ligand poses with FAD and the key 

residues of the NQO1 active site including Trp-105, Phe-106, Tyr-126, -128, -Gly-149, -

150, His-161 and Phe-232 and (b) hydride ion transfer from the N5 of the FAD 

isoalloxazine ring to the ligands at carbonyl oxygens (O5 or O8), ring carbon or 

substituent atoms.  Residue numbers in this report are those used in the Protein Data 

Bank coordinates, PDB ID code: 1H69.12 

The binding orientations of the ligands in the NQO1 active site were determined 

by the positioning of quinone carbonyl oxygens towards the isoalloxazine ring atoms of 

FAD and residues of the active site.  Quinone substrates can bind to the NQO1 active site 

in more than one orientation, and homologous compounds with different substituents may 

bind to the NQO1 active site in different orientations.12,30  Only poses of the ligands with 

CSCORE ≥ 4 were considered for further detailed post-docking analyses.   
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Table 4.1.  Number of poses of ligands MB-116, -137, -73, -100 and -340 in each score 

group of CSCORE function. 

 

MB 116 137 73 100 340 

CSCORE Number of Poses 

0 7 6 5 9 5 

1 4 9 10 9 3 

2 5 1 6 7 2 

3 5 11 4 3 5 

4 4 3 5 1 10 

5 5 0 0 1 5 
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Ligands MB-116 and -137 were designed to possess highly similar chemical 

structures with only a minor difference in the substituents at R3 (R3 substituents of MB-

116 and -137 are structural isomers).  The purpose was to examine the role that R3 

substituents play to impact the affinity of lavendamycin substrates for NQO1.  Nine poses 

of ligand MB-116 possessed CSCORE ≥ 4 compared to three poses of MB-137 (Table 

4.1).  None of the poses of MB-137 had a CSCORE = 5 (Table 4.1).  Poses 1, 2, 4, 5 and 

6 (CSCORE = 5) of MB-116 fell into one cluster in which the root mean square deviation 

(RMSD)  of the poses equaled zero for the quinolinedione and indolopyridine moieties 

atoms, and the difference was in the binding orientation of the CONH(CH2)3CH3 group in 

the NQO1 active site (Figure 4.1a).  All of the poses of MB-116 entered the active site by 

the 5,8-dione moiety where the carbonyl oxygen O8 compared to O5 was positioned 

closer to Tyr-126, -128 and FAD similar to the binding orientation of indolequinone EO9 

(Figure 4.1a and Table 4.2).12,23  The binding orientations of the MB-116 poses in the 

cluster are considered as preferred binding orientations of MB-116 since these are the 

binding orientations of the poses with high CSCORE of 5 (Figure 4.1a).      

One crucial determining factor of NQO1 substrate binding strength in the NQO1 

active site is the capability to form hydrogen-bonding and/or van der Waals interactions 

with FAD and/or residues of the active site.8,12,25,30  Good substrates for NQO1 such as 

RH1, EO9 and CB1954 are capable of hydrogen-bonding interactions with the key 

residues of the NQO1 active site.12,25  Duroquinone, a tetramethyl analogue of 

benzoquinone, binds to the NQO1 active site through interactions with FAD and several 

hydrophilic and hydrophobic residues.31   
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Figure 4.1.  Molecular models of the poses of ligand MB-116 docked into the NQO1 

active site.  
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Figure 4.1.  Molecular models of the poses of ligand MB-116 docked into the NQO1 

active site.  a) View of the superposition of the docked poses 1, 2, 4, 5 and 6 of MB-116   

(magenta, cyan, yellow, salmon and blue) (CSCORE = 5) in the NQO1 active site.  b) 

Molecular model of the pose 1 of MB-116 (magenta) (CSCORE = 5) docked into the 

NQO1 active site.  In (b) the Tyr-128 OH formed hydrogen bonds with the carbonyl 

oxygen O8, the NH of the indole ring of the indolopyridine moiety and the carbonyl 

oxygen of the quinolinedione-7-position substituent.  The carbonyl oxygen O5 formed a 

hydrogen bond with the NH of His 161.  The NH of the quinolinedione-7-position 

substituent also formed hydrogen bonds with the N1, N5 and N10 of FAD.  The 

CONH(CH2)3CH3 group of the indolopyridine moiety further stabilized the binding by 

forming van der Waals interactions with Phe-232.  In (a) and (b) residues of the active 

site (green), FAD (blue), and MB-116 are represented as stick models.  In (b) the rest of 

the structure is represented as a secondary structure cartoon.  The atoms are colored:  red, 

oxygen atoms; blue, nitrogen atoms; orange, phosphorus atoms and white, hydrogen 

atoms.  Hydrogen bonds are represented as black dashed lines.  
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Table 4.2.  Geometric post-docking analysis and measurements of five poses (CSCORE 

= 5) and four poses (CSCORE = 4) of ligand MB-116 in the NQO1 active site.  

 
Pa Cb O5 

- 

Tyr126 

(Å) 

O5 

- 

Tyr128 

(Å) 

O8 

- 

Tyr126 

(Å) 

O8 

- 

Tyr128 

(Å) 

N5 

- 

O5 

(Å) 

N5 

- 

O8 

(Å) 

N5 

- 

C6 

(Å) 

N5 

- 

C7 

(Å) 

1 5 9.174 6.143 4.862 2.077 7.786 5.006 5.515 4.622 

2 5 9.174 6.143 4.862 2.077 7.786 5.006 5.515 4.622 

4 5 9.174 6.143 4.862 2.077 7.786 5.006 5.515 4.622 

5 5 9.174 6.143 4.862 2.077 7.786 5.006 5.515 4.622 

6 

3 

7 

14 

25 

5 

4 

4 

4 

4 

9.174 

9.417 

9.260 

9.180 

9.167 

6.143 

6.196 

6.085 

6.242 

6.198 

4.862 

4.804 

4.774 

4.878 

4.882 

2.077 

1.802 

1.899 

2.123 

2.081 

7.786 

7.953 

7.772 

7.618 

7.692 

5.006 

5.281 

5.187 

4.960 

5.016 

5.515 

5.714 

5.532 

5.375 

5.427 

4.622 

4.863 

4.697 

4.515 

4.560 

 

a P = Pose 

b C = CSCORE  
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Among the poses of ligand MB-116, poses 1, 2, 4, 5 and 6 formed the highest 

number of hydrogen bonds and van der Waals interactions in the active site of the 

enzyme.  For pose 1 of MB-116, the Tyr-128 OH formed hydrogen bonds with the 

carbonyl oxygen O8, the NH of the indole ring of the indolopyridine moiety and the 

carbonyl oxygen of the quinolinedione-7-position substituent (Figure 4.1b).  The 

carbonyl oxygen O5 formed a hydrogen bond with the NH of His 161 (Figure 4.1b).  The 

NH of the quinolinedione-7-position substituent also formed hydrogen bonds with the 

N1, N5 and N10 of FAD (Figure 4.1b).  The CONH(CH2)3CH3 group of the 

indolopyridine moiety further stabilized the binding by forming van der Waals 

interactions with Phe-232 (Figure 4.1b).  Poses 2, 4, 5 and 6 displayed the same 

interactions as pose 1 (Table 4.2).  The model determined high number of poses of MB-

116 with optimum CSCORE (≥ 4) that are capable of hydrogen bond and van der Waals 

formation in the NQO1 active site suggesting that this compound is a good substrate for 

NQO1.   
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However, of thirty poses of MB-137 only poses 1, 2 and 4 merited further 

considerations (CSCORE = 4) and the rest possessed CSCORE ≤ 3.  None of the poses of 

MB-137 had a CSCORE = 5 (Table 4.1).  Poses 1, 2 and 4 of MB-137 entered the active 

site by the 5,8-dione moiety similar to the poses of MB-116 (Figure 4.2a and Table 4.3).  

Although these poses formed hydrogen bonds with FAD and the residues of the NQO1 

active site, the number of total hydrogen bonds was lower than that for the poses of MB-

116 (hydrogen bonds not shown).  Furthermore, none of poses 1, 2 and 4 of MB-137 

formed van der Waals interactions with Phe-232 compared to the poses of MB-116 

suggesting lower binding affinity of MB-137 compared to MB-116 in the NQO1 active 

site (Figures 4.2a and 4.2b).  These docking studies performed using the in silico model 

ranked MB-137 as a poor substrate for NQO1.    
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Figure 4.2.  Molecular models of the poses of ligand MB-137 docked into the NQO1 

active site.  
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Figure 4.2.  Molecular models of the poses of ligand MB-137 docked into the NQO1 

active site.  a) View of the superposition of the docked poses 1, 2 and 4 of MB-137 

(magenta, yellow and salmon) (CSCORE = 4) in the NQO1 active site.  b) Molecular 

model of the pose 1 of MB-137 (magenta) (CSCORE = 4) docked into the NQO1 active 

site.  In (a) and (b) residues of the active site (green), FAD (blue), and MB-137 are 

represented as stick models.  In (b) the rest of the structure is represented as a secondary 

structure cartoon.  The atoms are colored:  red, oxygen atoms; blue, nitrogen atoms; 

orange, phosphorus atoms and white, hydrogen atoms.  
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Table 4.3.  Geometric post-docking analysis and measurements of three poses of ligand 

MB-137 (CSCORE = 4) in the NQO1 active site.  

 
Pa Cb O5 

- 

Tyr126 

(Å) 

O5 

- 

Tyr128 

(Å) 

O8 

- 

Tyr126 

(Å) 

O8 

- 

Tyr128 

(Å) 

N5 

- 

O5 

(Å) 

N5 

- 

O8 

(Å) 

N5 

- 

C6 

(Å) 

N5 

- 

C7 

(Å) 

1 4 9.402 6.193 4.802 1.828 7.933 5.246 5.689 4.831 

2 4 9.402 6.193 4.802 1.828 7.933 5.246 5.689 4.831 

4 4 9.268 6.084 4.692 1.770 7.739 5.240 5.504 4.691 

 

a P = Pose 

b C = CSCORE  
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The important role that residue Phe-232 plays in contributing to the binding 

affinity of NQO1 substrates has been further emphasized in recent studies.32,33  One study 

indicated that the distance between Tyr-128 and Phe-232 residues in the NQO1 active 

site increases dramatically from 4 Å in apo human NQO1 (PDB ID code: 1D4A31) and 

NQO1-duroquinone complex (PDB ID code: 1DXO31) crystal structures to 12 Å in the 

NQO1 complex with dicoumarol (NQO1 inhibitor) crystal structure.32  Another study 

also determined that upon binding of the NQO1 inhibitor ES936, 5- methoxy-1,2-

dimethyl-3-(4-nitrophenoxymethyl)indole-4,7- dione,33 to the NQO1 active site, Tyr-128 

and Phe-232 exhibit the largest displacement.33  These studies suggest that proper 

positioning of phe-232 could contribute to binding affinity of NQO1 substrates which is 

disturbed upon binding of inhibitors.  Overall, a higher number of poses of ligand MB-

116 compared to MB-137 possessed optimum CSCORE, formed hydrogen bonding 

interactions (van der Waals interactions only in poses of MB-116) and had favorable 

binding orientation for hydride ion reception and quinone reduction (Tables 4.1, 4.2 and 

4.3).  The in silico model distinguished the two highly similar analogues MB-116 and 

MB-137 as the good and poor substrates, respectively. 

Compound MB-100 was designed to investigate whether an aromatic amide group 

at R1 is capable of intercalating between Trp-105 and Phe-106 residues and forming van 

der Waals interactions to increase NQO1 substrate specificity.  Docking studies of MB-

100 were performed to observe how the model would rank this compound as an NQO1 

substrate.  Only two poses 7 and 30 of ligand MB-100 possessed CSCORE ≥ 4 (Table 

4.1).  These poses entered the active site by the 5,8-dione moiety similar to the poses of 

MB-116 and MB-137 (Figure 4.3a and Table 4.4).   
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Figure 4.3.  Molecular models of the poses of ligand MB-100 docked into the NQO1 

active site.  
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Figure 4.3.  Molecular models of the poses of ligand MB-100 docked into the NQO1 

active site.  a) View of the superposition of the docked poses 7 and 30 of MB-100 

(orange and magenta) (CSCORE = 5 and 4) in the NQO1 active site.  b) Molecular model 

of the pose 2 of MB-100 (yellow) (CSCORE = 3) docked into the NQO1 active site.  In 

(a) and (b) residues of the active site (green), FAD (blue), and MB-100 are represented as 

stick models and the rest of the structure is represented as a secondary structure cartoon.  

The atoms are colored:  red, oxygen atoms; blue, nitrogen atoms; orange, phosphorus 

atoms and white, hydrogen atoms. 
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Table 4.4.  Geometric post-docking analysis and measurements of two poses of ligand 

MB-100 (CSCORE = 4 and 5) in the NQO1 active site.  

 

 

Pa Cb O5 

- 

Tyr126 

(Å) 

O5 

- 

Tyr128 

(Å) 

O8 

- 

Tyr126 

(Å) 

O8 

- 

Tyr128 

(Å) 

N5 

- 

O5 

(Å) 

N5 

- 

O8 

(Å) 

N5 

- 

C6 

(Å) 

N5 

- 

C7 

(Å) 

7 5 9.585 6.455 4.785 1.780 7.759 5.236 5.664 4.873 

30 4 9.454 6.273 4.610 1.639 7.669 5.247 5.562 4.793 

 

a P = Pose 

b C = CSCORE  
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The two poses of MB-100 (7 and 30) formed few hydrogen bonds with FAD and 

the residues of the NQO1 active site (hydrogen bonds not shown).  The other twenty-

eight poses with CSCORE ≤ 3 were excluded from the NQO1 active site including pose 2 

(CSCORE = 3) (Figure 4.3b).  The NHCO-2-furyl group of poses 7 and 30 did not 

intercalate between the Trp-105 and Phe-106 residues, suggesting the lack of Van der 

Waals interactions with the Trp-105/Phe-106 mini-pocket and presence of possible steric 

interactions with the residues Trp-105 and Phe-106 (Figure 4.3a).  Previous studies have 

indicated that the Trp-105/Phe-106 mini-pocket can play a crucial role in impacting the 

substrate specificity of NQO1 ligands.8,23,34  If the corresponding substituent is able to 

intercalate between Trp-105 and Phe-106 and form van der Waals interactions with these 

residues, the binding affinity of the quinone substrate in the NQO1 active site will 

increase.8,23  Our model ranked ligand MB-100 as a poor substrate for NQO1.  

Compound MB-340 was designed after MB-353, a good NQO1 lavendamycin 

substrate, to create another good substrate.  Fifteen poses of ligand MB-340 possessed 

CSCORE ≥ 4 (Table 4.1).  Poses 1, 2, 4 and 7 (CSCORE = 5) of MB-340 entered the 

active site by the 5,8-dione moiety where the carbonyl oxygen O8 compared to O5 was 

positioned closer to Tyr-126, -128 and FAD (Figure 4.4a and Table 4.5).  Among five 

poses of MB-340 with CSCORE = 5, pose 8 entered the active site in a different 

orientation compared to poses 1, 2, 4 and 7 where carbonyl oxygen O5 compared to O8 

was positioned closer to Tyr-126, -128 and FAD (Figure 4.4b and Table 4.5).  Different 

binding orientations of quinone substrates that can facilitate hydride ion reception from 

the FAD N5 to the substrates can be tolerated in the active site.12,30   
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Figure 4.4.  Molecular models of the poses of ligand MB-340 docked into the NQO1 

active site.  
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Figure 4.4.  Molecular models of the poses of ligand MB-340 docked into the NQO1 

active site.  a) View of the superposition of the docked poses 1, 2, 4 and 7 of MB-340 

(cyan, magenta, yellow and salmon) (CSCORE = 5) in the NQO1 active site.  b) 

Molecular model of the pose 8 of MB-340 (orange) (CSCORE = 5) docked into the 

NQO1 active site.  c) Molecular model of the pose 4 of MB-340 (yellow) (CSCORE = 5) 

docked into the NQO1 active site.  In (c) the Tyr-128 OH formed hydrogen bonds with 

the carbonyl oxygen O8 and the N1 of the quinoline ring of the pose 4 of MB-340.  One 

hydrogen atom of the NH2 substituent also formed hydrogen bonds with the N3 and O4 

of FAD.  The carbonyl oxygen O5 formed a hydrogen bond with the NH of His 161.  The 

OH of CO2(CH2)2OH at R3 further stabilized the binding by making a hydrogen bond to 

one oxygen atom of the adenine phosphate of FAD.  In (a), (b) and (c) residues of the 

active site (green), FAD (blue), and MB-340 are represented as stick models.  In (b) and 

(c) the rest of the structure is represented as a secondary structure cartoon.  The atoms are 

colored:  red, oxygen atoms; blue, nitrogen atoms; orange, phosphorus atoms and white, 

hydrogen atoms.  Hydrogen bonds are represented as black dashed lines.  
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Table 4.5.  Geometric post-docking analysis and measurements of five poses of ligand 

MB-340 (CSCORE = 5) in the NQO1 active site. 

  

Pa Cb O5 

- 

Tyr126 

(Å) 

O5 

- 

Tyr128 

(Å) 

O8 

- 

Tyr126 

(Å) 

O8 

- 

Tyr128 

(Å) 

N5 

- 

O5 

(Å) 

N5 

- 

O8 

(Å) 

N5 

- 

C6 

(Å) 

N5 

- 

C7 

(Å) 

1 5 9.662 6.593 4.421 2.243 7.925 4.627 5.978 5.027 

2 5 9.519 6.480 4.375 1.917 7.800 4.829 5.854 4.977 

4 5 9.631 6.564 4.374 2.281 7.774 4.533 5.705 4.738 

7 5 9.597 6.568 4.597 2.177 7.787 4.692 5.816 4.904 

8 5 3.767 1.862 8.938 5.903 4.596 7.253 4.557 5.355 

  

a P = Pose 

b C = CSCORE 
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Among the poses of ligand MB-340, poses 1, 2, 4 and 7 formed the highest 

number of hydrogen bonds in the active site of the enzyme.  The Tyr-128 OH formed 

hydrogen bonds with the carbonyl oxygen O8 and the N1 of the quinoline ring of pose 4 

of MB-340  (Figure 4.4c).  One hydrogen atom of the R1 NH2 substituent also formed 

hydrogen bonds with the N3 and O4 of FAD.  The carbonyl oxygen O5 formed a 

hydrogen bond with the NH of His 161 (Figure 4.4c).  The OH of CO2(CH2)2OH at R3 

further stabilized the binding by making a hydrogen bond to one oxygen atom of the 

adenine phosphate of FAD (Figure 4.4c).  However, pose 8 among poses of MB-340 with 

CSCORE = 5, formed the lowest number of hydrogen bonds.  This suggests that the 

binding orientations of poses 1, 2, 4 and 7 are the preferred binding orientations for 

ligand MB-340 over that for pose 8 (Figures 4.4a and 4.4b).  The in silico model 

recognized MB-340 as a good substrate for NQO1. 

Compound MB-73 was selected from previously synthesized lavendamycin 

analogues.  According to our SAR studies this compound should be a poor substrate for 

NQO1 due to the presence of the large NHCOC3H7-n group at the R1 position that could 

create steric interactions inside the NQO1 active site.  Therefore, this compound was 

selected for docking studies to observe how the model would rank it as an NQO1 

substrate.  None of the MB-73 conformations had a CSCORE = 5 (Table 4.1).  All of the 

poses of MB-73 including poses 2, 5, 6, 21 and 25 (CSCORE = 4) fell into one cluster 

that yielded an RMSD equal to 0 Å for the quinolinedione and indolopyridine moieties 

atoms (Figure 4.5a).  The difference was in the binding orientations of the NHCOC3H7-n 

and CO2C2H4CH(CH3)2 groups (Figure 4.5a).  All thirty poses of MB-73 including 2 

were excluded from the NQO1 active site (Only pose 2 is shown) (Figure 4.5b).  This 
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exclusion could be related to the steric hindrance produced by the large NHCOC3H7-n 

substituent against the Trp-105/Phe-106 wall that could be further enhanced by the 

contributing steric effect produced by the large CO2C2H4CH(CH3)2 group.  Ligand MB-

73 was ranked as a poor substrate for NQO1.  

The molecular docking studies demonstrated that Ligands MB-116 and MB-340 

possessed an increased number of possible poses with optimum CSCORE and favorable 

binding orientations to promote hydrogen bonding and van der Waals interactions, 

hydride ion reception and quinone reduction compared to ligands MB-137, -100 and -73.   
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Figure 4.5.  Molecular models of the poses of ligand MB-73 docked into the NQO1 

active site. 
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Figure 4.5.  Molecular models of the poses of ligand MB-73 docked into the NQO1 

active site.  a) View of the superposition of the docked poses 2, 5, 6, 21 and 25 of MB-73 

(magenta, cyan, blue, salmon and yellow) (CSCORE = 4) in the NQO1 active site.  b) 

Molecular model of the pose 2 of MB-73 (magenta) (CSCORE = 4) docked into the 

NQO1 active site.  In (a) and (b) residues of the active site (green), FAD (blue) and MB-

73 are represented as stick models.  In (b) the rest of the structure is represented as a 

secondary structure cartoon.  The atoms are colored:  red, oxygen atoms; blue, nitrogen 

atoms; orange, phosphorus atoms and white, hydrogen atoms.  
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4.4.3  Metabolism Studies.  Metabolism of the lavendamycin analogues by 

recombinant human NQO1 was examined.  Reduction rates by NQO1 were measured 

using a spectrophotometic assay that employs cytochrome c as the terminal electron 

acceptor23 and gives initial rates of lavendamycin analogue reduction (Table 4.6).  The 

initial reduction rates (µmol cytochrome c reduced/min/mg NQO1) were calculated from 

the linear portion (0-30 s) of the reaction graphs. 

Compound MB-116 with the NHCOCH3 and CONH(CH2)3CH3 groups at R1 and 

R3  positions, respectively, displayed the highest metabolism rate by NQO1 among the 

compounds (Table 4.6).  The NHCOCH3 group, a medium size substituent, did not 

produce steric hindrance with the internal wall of the NQO1 active site resulting in 

favorable positioning of MB-116 for hydride ion reception from FADH2 and quinone 

reduction.  Our docking studies determined that this group was also capable of hydrogen 

bonding with FAD and the key residues of the active site.  These studies also 

demonstrated that the CONH(CH2)3CH3 group at the R3 position (pointing towards the 

outside of the active site) was capable of forming van der Waals interactions with Phe-

232 residue of the NQO1 active site.  This could be a contributing factor to the substrate 

specificity of this compound.  Compound MB-83 (See Chapter 2), a studied 

lavendamycin analogue, with the straight chain n-octyl ester substituent at the R3 position 

(CO2C8H17-n) was determined to be a good substrate for the enzyme similar to MB-116.13   

The docking studies also indicated ligand MB-116 as a good substrate for NQO1.  
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Table 4.6.  Metabolism of lavendamycin analogues by recombinant human NQO1 

monitored by spectrophotometric cytochrome c assay. 

N
N

R2

R1
R3

O

O

HN

 

 
MB R1 R2 R3 Metabolism by NQO1 

(µmol/min/mg) 

(Cytochrome c 

Reduction) 

116 CH3CONH H CONH(CH2)3CH3 143 ± 11 

137 CH3CONH H CONHCH(CH3)C2H5 4.9 ± 2.9 

73 n-C3H7CONH H CO2C2H4CH(CH3)2 3.4 ± 1.7 

100 2-Furyl-CONH H CO2CH3 7.0 ± 1.5 

340 NH2 H CO2(CH2)2OH 60 ± 8 
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Although MB-137 possessed a similar chemical structure to MB-116 (the best 

substrate), it was a poor substrate for NQO1 (Table 4.6) that was in accordance with the 

docking data.  Compounds MB-116 and -137 are structural isomers.  The 

CONH(CH2)3CH3 group at the R3 position of MB-116 is a large, non-bulky and straight 

chain aliphatic group, whereas CONHCH(CH3)C2H5 at the R3 position of MB-137 is a 

large, bulky and branched structural isomer of the former.  According to our docking 

studies, the branched configuration at R3 of MB-137 was not capable of forming van der 

Waals interactions with the Phe-232 residue of the NQO1 active site due to active site 

constraints and steric effects. 

Compound MB-100 exhibited a low metabolism rate by NQO1 (Table 4.6) due to 

the possible failure of the NHCO-2-furyl group at the R1 position to intercalate between 

and form van der Waals interactions with the internal wall residues.  Docking studies 

demonstrated that the lack of R1-substituent intercalation capability led to the unfavorable 

positioning of MB-100 and loss of required hydrogen bonding and/or van der Waals 

interactions with the active site residues.  This compound was also ranked as a poor 

substrate for NQO1 by the docking studies. 

Compound MB-340 with a small NH2 group at R1 and CO2(CH2)2OH at R3 

displayed a good reduction rate by the enzyme (Table 4.6).  According to the docking 

studies, favorable positioning of MB-340 in the active site was facilitated by lack of 

steric interactions of the substituents with the residues of the active site and by hydrogen 

bond formation with FAD and the residues of the NQO1 active site.  Our docking studies 

also indicated high binding affinities for MB-340.  A previous study determined that 

good indolequinone substrates for NQO1 including EO9 possessed a hydroxymethyl 
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group at the analogous C3 position.23  Furthermore, RH1, which is a good substrate for 

NQO1, possesses a CH2OH group at C3 position.35,36  We also determined that 

compound MB-353 (See Chapter 2), decarboxy-2'-(hydroxymethyl)-

demethyllavendamycin,13 that possessed an NH2 group at R1 and CH2OH at R3 was a 

good substrate for NQO1.13 

Compound MB-73 with NHCOC3H7-n and isoamyl ester groups at the R1 and R3 

positions, respectively, exhibited the lowest metabolism rate by NQO1 and ranked as the 

poorest substrate (Table 4.6).  The recently studied lavendamycin analogue MB-50, 7-N-

acetyldemethyllavendamycin isoamyl ester,13 with an acetamide group at R1 position and 

isoamyl ester group at the R3 position displayed a reduction rate 12-fold higher than MB-

73 (See Chapter 2).  The decreased reduction rate of MB-73 compared to MB-50 can be 

explained by apparent steric hindrance between the quinolinedione moiety of MB-73 and 

the NQO1 active site caused by the large NHCOC3H7-n group at R1 compared to 

NHCOCH3 in MB-50.  This steric interaction could result in exclusion of MB-73 from 

the active site with subsequent poor hydride ion reception and quinone reduction 

capability.  MB-73 was also ranked as a poor substrate by our docking studies. 

Addition of NH2 or NHCOCH3 groups at R1
 and CO2(CH2)2OH or 

CONH(CH2)3CH3 at R3 had the greatest positive impact on substrate specificity 

compared to other substituents at these positions.  The best substrates were the 2'-

CONH(CH2)3CH3-7-NHCOCH3 (MB-116) and 2'-CO2(CH2)2OH-7-NH2 (MB-340) 

derivatives with reduction rates of 143 ± 11 and 60 ± 8 µmol/min/mg NQO1, respectively 

(Table 4.6).        
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4.4.4  In Vitro Cytotoxicity.  Cytotoxicity studies were also performed on the 

lavendamycin analogues with cell survival being determined by the colorimetric MTT 

assay.  We previously demonstrated an excellent positive linear correlation between the 

IC50 values (the chemosensitivity results) of the clonogenic and MTT assays for 

lavendamycin analogues (See Chapter 2).13  We utilized the BE human colon 

adenocarcinoma cells stably transfected with human NQO1 cDNA.36  The BE cells had 

no measurable NQO1 activity whereas activity in the transfected cells (BE-NQ) was 664 

nmol/min/mg total cell protein using dichlorophenolindophenol (DCPIP) as the standard 

electron acceptor.  In this study the cytotoxicity of the lavendamycin analogues (Table 

4.7) has been compared in these cell lines. 
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Table 4.7.  Cytotoxicity of lavendamycin analogues towards BE (NQO1-deficient) and 

BE-NQ (NQO1-rich) human colon adenocarcinoma cell lines. 

 

N
N

R2

R1
R3

O

O

HN

 

 

MB R1 R2 R3 Cytotoxicity IC50 (µM) 

 

BE-NQ                     BE 

Selectivity 

Ratio  

[IC50 (BE) / 

IC50 (BE-

NQ)] 

116 CH3CONH H CONH(CH2)3CH3 1.7 ± 0.1 50.3 ± 1.5 30 

137 CH3CONH H CONHCH(CH3)C2H5 >50 >50 - 

73 n-C3H7CONH H CO2C2H4CH(CH3)2 >50 >50 - 

100 2-Furyl-CONH H CO2CH3 47 ± 3 49.0 ± 6.5 1 

340 NH2 H CO2(CH2)2OH 0.5 ± 0.0 3.3 ± 0.2 7 
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Designed analogues such as MB-116 and MB-340 that were good substrates for 

NQO1 (Table 4.6) were also more toxic to the NQO1-rich BE-NQ cell line than the 

NQO1-deficient BE cell line (Table 4.7).  Compounds MB-116 and MB-340, the best 

substrates for NQO1 (Table 4.6), had the greatest differential toxicity with a selectivity 

ratio [IC50 (BE) / IC50 (BE-NQ)] of 30 and 7, respectively (Table 4.7).  Our previous 

study also determined that good lavendamycin substrates for NQO1 were selectively 

toxic towards BE-NQ versus BE cells (See Chapter 2).13  Compounds MB-83, -353, -97, 

demethyllavendamycin amide,29 and -22, lavendamycin methyl ester,37 exhibited high 

selective toxicity toward BE-NQ cells (selectivity ratios = 10, 11, 9 and 9, respectively) 

(See Chapter 2).13  Compound MB-97 was also reported to highly reduce the colony 

outgrowth of A549 human lung carcinoma cells,38 and it displayed promising cytotoxic 

and antitumor activities in the National Cancer Institute’s (NCI) 60-cell line panel and in 

vivo hollow fiber tumorigenesis assay.38 

Lavendamycin analogues, MB-137, -73 and -100 that were poor substrates for 

NQO1 (Table 4.6) demonstrated no selective toxicity toward BE-NQ cells or had no 

measurable cytotoxicity (IC50 > 50 µM) (Table 4.7).  Overall, our results suggested that 

the best lavendamycin substrates for NQO1 were also the most selectively toxic to the 

high-NQO1 BE-NQ cell line compared to NQO1-deficient BE cells, consistent with our 

previous study (See Chapter 2).13 

It has been reported that lavendamycin analogues possess low animal toxicity 

especially compared to streptonigrin (SN), a good substrate for NQO1 with high toxicity, 

and the parent lavendamycin compound.29,39  The NCI in vivo studies have reported that 

the maximum tolerated dose of three lavendamycin analogues MB-22, -76 and -97 in 
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mice is 400 mg/kg which is 31 and 1000 times higher than that for lavendamycin and SN, 

respectively.29,39  To obtain a preliminary assessment of the safety of lavendamycin 

analogues, the lavendamycin analogue MB-116 was studied along with SN for toxicity to 

normal cells using MMT assay.  Human aortic endothelial cells (HAEC) that were treated 

for 2 hours with either SN or MB-116 were used.  SN (IC50 = 0.47 µM) was 25 times 

more toxic to the endothelial cells than MB-116 (IC50 = 11.8 µM), suggesting that 

lavendamycins may have a greater safety margin than SN.  Further studies in future will 

be required to obtain a broad range of safety assessment data on lavendamycin analogues 

to consider these agents as promising chemotherapeutic candidates. 

 

4.5 Conclusions 

 

A number of novel lavendamycin anologues were designed and synthesized.  

Addition of NH2 or NHCOCH3 groups at R1
 and CO2(CH2)2OH or CONH(CH2)3CH3 at 

R3 had the greatest positive impact on substrate specificity compared to other substituents 

at these positions.  The best substrates were the 2'-CONH(CH2)3CH3-7-NHCOCH3 (MB-

116) and 2'-CO2(CH2)2OH-7-NH2 (MB-340) derivatives and were also the most 

selectively toxic to the NQO1-rich BE-NQ cell line compared to the NQO1-deficient BE 

cell line.  This study determined that the structure-based design criteria were productive, 

resulting in the design of two analogues with high substrate specificity and selective 

toxicity toward the NQO1-rich cells.  It also indicated that the in silico model of the 

NQO1 active site correctly distinguished good and poor NQO1 substrates suggesting the 

model possessed practical predictive power.  The docking data were in agreement with 
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the biological results.  Therefore, the in silico model of the NQO1 active site could be 

utilized as a predictive, time- and cost-efficient tool in NQO1-directed lavendamycin 

antitumor agent development.  
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Chapter 5 

Mechanisms of Lavendamycin Antitumor Agent Toxicity: NAD(P)H:Quinone 

Oxidoreductase 1 (NQO1)-mediated Induction of Oxidative Stress and Apoptosis  

 

5.1 Abstract 

 

Lavendamycin antitumor agents that are good substrates for NQO1 are selectively 

toxic to tumor cells with elevated NQO1 activity (See Chapter 2).  The purpose of this 

study was to investigate the mechanisms of NQO1-mediated selective cytotoxicity of 

good lavendamycin substrates towards human colon adenocarcinoma NQO1-rich BE-NQ 

cells compared to NQO1-deficient BE cells.  Lavendamycin analogues possess structural 

similarity to streptonigrin (SN), a good redox-cycling substrate for NQO1 that produces 

large quantities of reactive oxygen species (ROS) after reduction by NQO1.  Therefore, 

we examined whether good lavendamycin substrates for NQO1 could induce NQO1-

mediated oxidative stress and subsequent apoptosis in BE-NQ cells.  Biomarkers of 

oxidative stress including formation of 8-hydroxy-2'-deoxyguanosine (8-oxo-2dG), an 

indicator of oxidative DNA damage, and depletion of the reduced form of glutathione 

(GSH) in the cells were investigated.  BE and BE-NQ cells were treated with MB-353 

(NQO1 good substrate, reduction rate = 263 ± 30 µmol/min/mg NQO1) and MB-323 

(NQO1 poor substrate, reduction rate = 0.1 ± 0.1 µmol/min/mg NQO1).  An HPLC-based 

analysis was utilized to determine levels of 8-oxo-2dG and 2′-deoxyguanosine (2-dG) in 

the cells, and the molar ratio, 8-oxo-2dG (fmol)/2-dG (nmol).  Among MB-353 treated 

cells, a significant increase in the molar ratio of 8-oxo-2dG to 2-dG was observed only in 



 166 

BE-NQ cells demonstrating the importance of NQO1 in selective induction of oxidative 

DNA damage in BE-NQ cells by MB-353.  No significant increase in the corresponding 

molar ratio was observed in either cell line treated with MB-323 implying that NQO1-

mediated induction of oxidative DNA damage in BE-NQ cells was specific to MB-353.  

Since we observed the production of oxidative DNA damage in BE-NQ cells by MB-353, 

depletion of GSH as a biomarker of oxidative stress was also examined using a 

colorimetric assay.  MB-353 significantly decreased the levels of GSH in BE-NQ cells, 

whereas no reduction in GSH levels was observed in BE cells suggesting an NQO1-

mediated selective depletion of GSH in BE-NQ cells by MB-353.  No difference was 

observed in the GSH levels in either cell line treated with MB-323 indicating that GSH 

depletion in BE-NQ cells was specific to the good lavendamycin substrate, MB-353.  In 

addition, we hypothesized that the observed MB-353-induced oxidative stress in BE-NQ 

cells could result in induction of apoptosis in these cells.  Therefore, the role of NQO1 in 

lavendamycin-induced apoptosis was examined using a colorimetric assay.  MB-353 

selectively induced apoptosis only in the BE-NQ cell line, while apoptosis induction was 

not observed in either cell line treated with MB-323.  Overall, our results demonstrated 

that only the good lavendamycin substrate, MB-353, caused oxidative stress leading to 

oxidative DNA damage and apoptosis in NQO1-rich BE-NQ cells at nM concentrations 

via NQO1-mediated activation. 

 

5.2 Introduction 

 
 Oxidative stress is defined as a condition in which overwhelming production of 

reactive oxygen species (ROS) imposes an imbalance between ROS and antioxidant 



 167 

levels in excess of the former.1,2  Upon this challenge, inadequate levels of antioxidant 

defense elements cannot efficiently neutralize ROS resulting in persistence of oxidative 

stress and subsequent damage to cellular macromolecules.1,2  One crucial mechanism of 

action for many anticancer agents is the production of ROS.3  

 Redox-cycling quinones undergo enzymatic reduction and autoxidation, and 

subsequently generate ROS.4  Metabolism of redox-cycling quinones alters the 

intracellular oxidant-antioxidant balance.4  Watanabe et al. have demonstrated that 

NQO1-mediated autoxidation of the hydroquinone forms of menadione and 2,3-

dimethoxy-1,4-naphthoquinone (DMNQ) results in the generation of hydrogen peroxide 

(H2O2) in lung epithelial A549-S cells treated with these agents.5  The menadione- and 

DMNQ-induced production of H2O2 can be inhibited up to 90% and 100%, respectively, 

by the NQO1 inhibitor, dicoumarol.5  In this study catalase prevented H2O2 accumulation 

and protected A549-S cells from menadione- and DMNQ-induced cell death.5  Their 

findings suggest that the observed H2O2 generation and cytotoxicity in menadione- and 

DMNQ-treated A549-S cells were mainly due to NQO1-mediated autoxidation of the 

corresponding hydroquinones.5  ROS-mediated cytotoxicity of phenanthrenequinone, 2-

amino-1,4-naphthoquinone and naphthazarin towards NQO1-enriched L5178Y/HBM10 

lymphoblasts versus parental L5178Y cells has also been reported.6  Cytotoxic effects of 

these compounds toward L5178Y/HBM10 mouse lymphoma cells were reduced when 

treated by dicoumarol and catalase indicating NQO1-mediated redox cycling-related 

cytotoxicity of these compounds.6  Another group determined NQO1-mediated, 

autoxidation of variously substituted naphthoquinones in cell-free assays.7  In addition, 

Beall et al. demonstrated NQO1-mediated redox cycling, selective cytotoxicity and 
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induction of DNA strand breaks in NQO1-rich human colon carcinoma HT-29 cells 

versus NQO1-deficient BE cells by streptonigrin (SN).8   

Direct assessment of the levels of ROS to detect the presence of oxidative stress is 

an impractical and unreliable approach due to the fact that ROS are short-lived and highly 

reactive species.1,2  One alternative approach frequently used in some laboratories to 

determine the presence of oxidative stress is to take advantage of its biological markers.1,2  

Measurement of biological markers of oxidative DNA damage such as 8-hydroxy-2'-

deoxyguanosine (8-oxo-2dG) and the cellular glutathione (GSH) levels have been 

routinely used as indices of oxidative stress induction.1,2 

One method that can be utilized as an index of oxidative stress is the measurement 

of 8-oxo-2dG, a product of oxidative DNA damage.1  8-Oxo-2dG is the most frequently 

detected and studied oxidative DNA lesion.2,9  Due to the mutagenic activity, 8-oxo-2dG 

is capable of imposing deleterious effects on cells including apoptosis induction.9,10  Lin 

et al. investigated the generation of 8-oxo-2dG in calf thymus DNA after 2 hours of 

exposure to 1 and 10 µM tetrachloro-1,4-benzoquinone in the presence of NADPH and 

Cu(II).11  They observed significant production of 8-oxo-2dG in calf thymus DNA treated 

with the compound versus untreated calf thymus DNA suggesting that tetrachloro-1,4-

benzoquinone undergoes  redox cycling and produces ROS that are capable of oxidative 

DNA lesion induction.11   

 Assessment of cellular levels of GSH has been frequently used as a marker of 

oxidative stress.1  GSH is the most important cellular antioxidant defense nucleophile and 

is capable of the detoxification of ROS.12  Failure to maintain the levels of intracellular 

GSH upon an oxidative challenge can result in severe consequences for cells including 



 169 

loss of function and integrity.12,13  One key aspect of quinone-induced toxicity is the 

oxidation of critical intracellular thiols due to redox cycling and induction of oxidative 

stress.14,15  GSH depletion has been considered as a marker of oxidative damage induced 

by redox-cycling β-lapachone.16  GSH oxidation and depletion during NQO1-mediated 

redox cycling of 2-methylmethoxy-1,4-naphthoquinone17 and diaziquone (AZQ)18 in cell-

free assays have been reported.  

The ability of cells to maintain a proper oxidant/antioxidant balance is a crucial 

factor to determine the result of an apoptosis-inducing signal.4  Metabolism of redox- 

cycling quinones impacts the intracellular redox balance.4  Due to the fact that oxidative 

stress is a known trigger of apoptosis, and cytotoxicity of quinone compounds has been 

related to the production of free radicals and DNA damage, these compounds should be 

potent apoptosis inducers.4  

The ability of lavendamycin substrates to induce NQO1-mediated oxidative 

stress, oxidative DNA damage and subsequent apoptosis has not been previously 

investigated.  It is of great importance to examine cytotoxic mechanisms of lavendamycin 

analogues to be able to effectively utilize them in combination with other antitumor 

agents in cancer therapy.  This will facilitate selection of a proper set of antitumor agents 

in combination with lavendamycins in chemotherapy and can result in the desired 

synergistic antitumor effects of the agents with different mechanisms of action and 

toxicities.  In addition, combination cancer therapy with antitumor agents with known, 

different mechanisms of cytotoxicity could act on various regions of the tumor 

microenvironment.  This study was designed to investigate the selective induction of 

oxidative stress and apoptosis in NQO1-rich cells by good lavendamycin substrates for 
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NQO1 versus poor substrates.  To determine the induction of oxidative stress in NQO1-

rich and NQO1-deficient cells by lavendamycin analogues, we examined the generation 

of 8-oxo-2dG, an indicator of oxidative DNA damage, and depletion of GSH as relevant 

biomarkers of oxidative stress.  This is the first study to demonstrate that lavendamycin 

antitumor agents cause oxidative stress leading to oxidative DNA damage and apoptosis 

in NQO1-rich cancer cells at nM concentrations via NQO1-mediated activation. 

 

5.3 Materials and Methods 

 
5.3.1  8-Oxo-2dG Assay.  Oxidative DNA damage was determined by formation 

of 8-oxo-2dG according to the protocol developed by Bolin et al.9  Cultured cells (BE and 

BE-NQ cells) were harvested by trypsinization.  Cells were then transferred into 

microcentrifuge tubes (107 cells per tube).  Cells were treated with a concentration of 500 

nM of compound MB-353 (good substrate) and MB-323 (poor substrate).  Treated and 

untreated (negative control) cells were incubated at 37 °C under a humidified atmosphere 

containing 5% CO2 for 2 hours on a rotator.  Next, cells were centrifuged at 1500 rpm for 

5 min, supernatant was discarded and the cell pellet was washed twice with 1mL culture 

medium and once with 1mL PBS.  At this step 300 µL of extraction buffer (Tris-base, 

EDTA, DTT, Spermine, Spermidine, protease inhibitors, glycerol and ddH2O) was added 

to the cell pellet and cells were sonicated by exposure to five 4-s ultrasound pulses (sonic 

disruption on ice for 20 s in 4-s bursts).  30 µL KCl (2.5 M) was then added and rocked 

for 30 min in cold room.  Next, samples were centrifuged at 14000 x g for 30 min.  The 

cell pellet was used for the extraction of DNA and subsequent analysis of oxidative DNA 

damage.  Briefly, the cell pellet was washed with DNA extraction buffer and treated with 
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DNAase-free RNAase followed by digestion with proteinase K.  The protein fraction was 

separated from DNA by three consecutive organic extractions.  The DNA was then 

precipitated by adding two volumes of ethanol (with respect to the aqueous volume) and 

incubated overnight at -20 °C.  The DNA was prepared for HPLC analysis by resolving it 

into deoxynucleoside components.  The amount of 8-oxo-2dG and 2′-deoxyguanosine (2-

dG) was calculated by comparing the peak area of 8-oxo-2dG and 2-dG obtained from 

the enzymatic hydrolysate of the DNA sample to a calibration curve for both 

compounds.  Levels of 8-oxo-2dG in the samples were expressed relative to the content 

of 2-dG, e.g., the molar ratio of 8-oxo-2dG /2-dG (fmol 8-oxo-2dG/nmol of 2-dG).  

HPLC system: The mobile phase consisted of 100 mM sodium acetate, pH 5.2, with 5% 

methanol.  Flow rate was kept at 1 mL/min using a Model 582 Solvent Delivery Module 

(ESA, Chelmsford, MA).  DNA was analyzed using a reverse phase YMCbasic HPLC 

column (4.6 x 150 mm) with a 3-micron particle size (YMC Inc., Wilmington, NC, 

USA).  8-Oxo-2dG and 2-dG were detected by a Model 5600A CoulArray Detector 

(ESA, Chelmsford, MA) with three model 6210 four channel electrochemical cells.  

Potentials were set at 175, 200 and 250 V for 8-oxo-2dG and at 785, 850 and 890 V for 

2-dG.  Data were recorded, stored and analyzed on a PC Pentium computer using 

CoulArray for Windows 32Software (ESA, Chelmsford, MA).  Data were expressed as 

femtomoles of 8-oxo-2dG per nanomoles of 2-dG. 

5.3.2  Reduced Glutathione Assay.  The reduced form of glutathione was 

determined by a non-recycling system in sample solutions using the ApoGSHTM 

Glutathione Colorimetric Detection kit (BioVision, Inc., CA, USA).  Cultured cells (BE 

and BE-NQ cells) were harvested by trypsinization and diluted with culture medium to 
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obtain a cell concentration of 0.5-1 x 106 cells/mL.  Cells were then plated in 6-well 

plates at a density of 0.5-1 x 106 cells/well and allowed to attach overnight.  500 µL of 

culture medium was removed and replaced with 500 µL of medium containing MB-353 

(good substrate) and MB-323 (poor substrate) at a concentration of 500 nM.  Treated and 

untreated (negative control) cells were incubated at 37 °C under a humidified atmosphere 

containing 5% CO2 for 2 hours.  Next, cells were harvested by trypsinization, centrifuged 

at 700 x g for 5 min at 4 °C and supernatant was discarded.  The cell pellet was 

resuspended in 1 mL culture medium.  At this step, cells were incubated for 0, 6, 12 or 24 

hours at 37 °C.  Cells were then centrifuged at 700 x g for 5 min.  The cell pellet was 

resuspended in 500 µL ice-cold glutathione buffer, centrifuged at 700 x g for 5 min at 4 

°C and supernatant was discarded.  Cells were lysed in 80 µL ice-cold glutathione buffer 

and incubated on ice for 10 min.  20 µL of 5% sulfosalicylic acid (SSA) was added, 

vortexed and centrifuged at 8000 x g for 10 minutes.  Then, supernatant was carefully 

transferred to fresh microcentrifuge tubes.  Reduced form of glutathione was determined 

from the supernatant using 5,5'-dithionitrobenzoic acid (DTNB) in the presence of 

NADPH without recycling system according to the manufacturer’s instructions.  

 5.3.3  Detection of Apoptosis.  Apoptosis was detected by the enrichment of 

mono and oligonucleosomes in the cytoplasm of the apoptotic cells using the cell death 

detection ELISA kit (Roche Diagnostics GmbH, Roche Applied Science, Germany).  

Cultured cells (BE and BE-NQ cells) were harvested by trypsinization and diluted with 

culture medium to obtain a cell concentration of 1 x 105 cells/mL.  Cells were then 

transferred into microcentrifuge tubes (500 µL/tube = 5 x 104 cells/tube).  500 µL of 

culture medium containing compound MB-323 (poor substrate) and MB-353 (good 
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substrate) at a concentration of 500 nM were added to the tubes.  Treated cells were 

incubated at 37 °C under a humidified atmosphere containing 5% CO2 for 2 hours.  Next, 

cells were centrifuged at 200 x g for 5 min, supernatant was discarded and the cell pellet 

was resuspended in 1 mL culture medium.  At this step, cells were incubated for 0, 12 or 

24 hours at 37 °C.  Cells were then centrifuged at 1500 x g for 5 min.  The cell pellet was 

resuspended with 500 µL incubation buffer per tube (1 x 105 cells/mL).  The samples 

were incubated for 30 min at 15 to 25 °C to allow the cells to lyse.  The lysate was 

centrifuged at 20000 x g for 10 min.  400 µL of the supernatant (cytoplasmic fraction) 

was carefully removed.  The resulting supernatant was prediluted 1:10 with incubation 

buffer.  The enrichment of mono and oligonucleosomes in the cytoplasmic fraction of the 

apoptotic cells was detected by immunoassay according to the manufacturer’s 

instructions. 

 

5.4 Statistics 

 

For the 8-oxo-2dG assay, differences between lavendamycin analogue-treated and 

untreated cells (negative control) were assessed using single-factor analysis of variance 

(one-way ANOVA) and post hoc Tukey’s multiple comparison tests.  All results were 

reported as mean ± SEM and P ≤ 0.05 was considered significant.  

For the reduced glutathione assay, since results were reported as percentage of 

negative control (negative control = 100%), differences between lavendamycin analogue-

treated cells at different post-exposure incubation periods and untreated cells (negative 

control) were assessed using a one-sample t-test adjusted for the number of group means 
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tested and directionality of the hypothesis (Bonferroni correction).  Results were reported 

as mean ± SEM and P ≤ 0.05 (adjusted) was considered significant.  To evaluate 

differences between lavendamycin analogue-treated cells at different post-exposure 

incubation periods, a one-way ANOVA and post hoc Tukey’s multiple comparison test 

were used.  All results were reported as mean ± SEM and P ≤ 0.05 was considered 

significant. 

For the apoptosis assay, since the enrichment factor value of the negative control 

was considered 1, differences between lavendamycin analogue-treated cells at different 

post-exposure incubation periods and untreated cells (negative control) were assessed 

using a one-sample t-test adjusted for the number of group means tested and 

directionality of the hypothesis (Bonferroni correction).  Results were reported as mean ± 

SEM and P ≤ 0.05 (adjusted) was considered significant.  To evaluate differences 

between lavendamycin analogue-treated cells at different post-exposure incubation 

periods, a one-way ANOVA and post hoc Tukey’s multiple comparison test were used.  

All results were reported as mean ± SEM and P ≤ 0.05 was considered significant. 

 

5.5 Results and Discussion 

 

Many quinone-based antitumor agents including SN,8,19 mitomycin C (MMC),20 

β-lapachone,21 AZQ,22-24 EO925-27 and RH128-30 are bioactivated to ctotoxic species by 

NQO1.  The hydroquinone produced after the two-electron reduction of these agents is 

the biologically active form that can cause DNA alkylation and/or oxidative stress.4,21,31  

Production of ROS, induction of oxidative stress and DNA damage are important events 
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related to quinone reactions and DNA represents the primary biomolecular target for 

quinone-based anticancer agents.4,32   

5.5.1  Detection of 8-Oxo-2dG Production.  Cellular generation of ROS by 

redox-cycling quinones can overwhelm cellular antioxidant defense systems, cause 

severe oxidative stress and result in the formation of biological markers for oxidative 

DNA damage such as 8-oxo-2dG.32-34  The investigation of oxidative stress induction 

generally is performed via the measurement of indicators that reflect ROS-induced 

damage.2  We observed generation of the biological marker of oxidative DNA damage, 8-

oxo-2dG, and a significant increase in the molar ratio of 8-oxo-2dG to 2-dG in NQO1-

rich BE-NQ cells treated by 500 nM MB-353 (good substrate) for 2 hours versus 

untreated BE-NQ negative control (Figure 5.1).  8-Oxo-2dG analysis data from cellular 

DNA are usually expressed as the ratio of 8-oxo-2dG to the unmodified 2-dG base.2   

No significant increase in the corresponding molar ratio was observed in NQO1-

deficient BE cell line treated with MB-353 compared to untreated BE cells (Figure 5.2).  

This suggests that MB-353 as a good substrate for NQO1 can undergo NQO1-mediated 

activation in NQO1-rich BE-NQ cells with concomitant production of ROS that can 

cause mutagenic oxidative DNA lesions such as 8-oxo-2dG.  The cytotoxic mechanisms 

of quinones can be attributed to two primary events including redox cycling and 

electrophilic alkylation of cellular nucleophiles.4,31  Further studies will be required to 

investigate possible DNA strand break formation in BE-NQ cells by MB-353 and the 

ability of this compound to alkylate DNA.  

Lack of enzymatic activity of NQO1 in BE cells can be considered as the 

underlying reason that MB-353 is not activated by NQO1 and cannot induce oxidative 
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stress in these cells resulting in subsequent lack of oxidative DNA damage.  These 

findings suggest an NQO1-mediated selective induction of oxidative DNA damage in 

BE-NQ cells by the good substrate MB-353 possibly due to the redox cycling of this 

compound.  
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Figure 5.1.  Effect of MB-353 and MB-323 on the molar ratio of 8-oxo-2dG to 2-dG in 

BE-NQ cells after 2-h treatment with the compounds at a concentration of 500 nM.  
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Figure 5.1.  Effect of MB-353 and MB-323 on the molar ratio of 8-oxo-2dG to 2-dG in 

BE-NQ cells after 2-h treatment with the compounds at a concentration of 500 nM.  An 

HPLC-based analysis was utilized to determine levels of 8-oxo-2dG and 2-dG as 

described under Materials and Methods.  *Significantly different from negative control 

(untreated cells) (P ≤ 0.05).  #Significantly different from MB-323 (P ≤ 0.05).  Results 

are reported as means ± SEM for n = 6 experiments.  
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Figure 5.2.  Effect of MB-353 and MB-323 on the molar ratio of 8-oxo-2dG to 2-dG in 

BE cells after 2-h treatment with the compounds at a concentration of 500 nM. 
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Figure 5.2.  Effect of MB-353 and MB-323 on the molar ratio of 8-oxo-2dG to 2-dG in 

BE cells after 2-h treatment with the compounds at a concentration of 500 nM.  An 

HPLC-based analysis was utilized to determine levels of 8-oxo-2dG and 2-dG as 

described under Materials and Methods.  Results are reported as means ± SEM for n = 6 

experiments. 
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Generation of 8-oxo-2dG by quinone compounds has been reported.  Unpublished 

data of Gutierrez et al. determined production of 8-oxo-2dG lesions due to redox cycling 

of the benzoquinone AZQ.35  Another study demonstrated significant induction of 8-oxo-

2dG generation in sea urchin embryos exposed to the concentration of MMC as low as 1 

µM.36  This study also determined a direct association between MMC-induced toxicity in 

the embryos and the related 8-oxo-2dG levels.  It has been reported that DNA damage 

can induce apoptosis, which is of primary importance to DNA damage-based 

chemotherapeutic strategies.37  8-Oxo-2dG has been also considered as a biomarker of 

apoptosis.37,38  Although, generation of 8-oxo-2dG is an important biomarker for 

estimating oxidative DNA damage,9,10 to date it has never been examined in cancer cells 

following exposure to lavendamycin antitumor agents.   

No significant increase was observed in the molar ratio of 8-oxo-2dG to 2-dG in 

either BE or BE-NQ cells treated by MB-323 (poor substrate) for 2 hours, at the same 

concentration as MB-353, versus negative controls (Figures 5.1 and 5.2).  This finding 

suggests that MB-323 cannot be bioactivated by NQO1 to cytotoxic species capable of 

induction of oxidative stress as is indicated by the lack of oxidative DNA damage in 

NQO1-rich BE-NQ cells treated by this compound.  This is consistent with our 

metabolism data for MB-323 that determined this compound as a poor substrate for 

NQO1 (See Chapter 2). 

Since we observed the production of oxidative DNA damage in BE-NQ cells by 

MB-353, depletion of GSH as a biomarker of oxidative stress was also investigated.  

5.5.2  Glutathione Depletion.  ROS can easily oxidize thiols and deplete 

intracellular reduced form of glutathione due to oxidative stress.4  GSH oxidation by ROS 
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during redox cycling of quinones is considered a key element of quinone cytotoxicity.15  

Our data suggested that reductive bioactivation of MB-353 by NQO1 caused depletion of 

GSH in an NQO1-mediated manner in NQO1-rich BE-NQ cells possibly due to redox 

cycling of MB-353 (Figure 5.3).  Significant reductions in the levels of GSH in these 

cells were observed immediately after 2 hours of treatment (zero hour post-exposure time 

point) with 500 nM MB-353 implying that GSH depletion is an early event in the induced 

oxidative stress process.  The levels of GSH in the cells remained significantly low 

compared to untreated cells (negative controls) at 6, 12 and up to 24 hours post-exposure 

periods (Figure 5.3).  The greatest decrease in the GSH levels occurred at the 12 hour 

time point suggesting that MB-353 acted as a powerful redox-cycling agent that 

exhausted the intracellular GSH pool delaying the GSH replenishment process.  One 

equivalent of a redox-cycling quinone is capable of producing multiple equivalents of 

superoxide anion (O2
-.), therefore it can exert its toxicity by exhausting the antioxidant 

defense system.39  A trend toward the recovery of the GSH levels in BE-NQ cells was 

observed at the 24 hour post-exposure time point, although the level of GSH depletion 

was still significant at this time point compared to the negative control (Figure 5.3).  No 

significant differences between the MB-353-treated BE-NQ cells at different post-

exposure incubation periods were observed (Figure 5.3).  If the cells are not exposed to 

the compound in repetitive intervals, the cellular GSH content can recover due to possible 

reduction of oxidized form of GSH (GSSG) by glutathione reductase, uptake of intact 

glutathione or de novo synthesis of GSH by γ-glutamylcysteine and GSH synthetase.   

No GSH depletion was detected in BE cells treated by MB-353 at any of the post-

exposure time points implying that the reduction in the levels of GSH is an NQO1-related 
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selective event for BE-NQ cells compared to BE cells when treated by MB-353 (Figure 

5.4).  Although the reduction in the levels of GSH in BE cells after MB-353 treatment 

was not significant, a trend similar to that for BE-NQ cells was observed exhibiting the 

highest reduction in GSH levels at the 12 hour time point.  
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Figure 5.3.  Effect of MB-353 on the levels of reduced form of glutathione in BE-NQ 

cells after 2-h treatment with the compound at a concentration of 500 nM at 0, 6, 12 and 

24 h post-exposure incubation periods.  
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Figure 5.3.  Effect of MB-353 on the levels of reduced form of glutathione in BE-NQ 

cells after 2-h treatment with the compound at a concentration of 500 nM at 0, 6, 12 and 

24 h post-exposure incubation periods.  Reduced form of glutathione was determined by 

a non-recycling system in sample solutions using the glutathione colorimetric detection 

kit as described under Materials and Methods.  Reduced form of glutathione is expressed 

as percentage of negative control (untreated cells).  Dashed line represents negative 

control.  *Significantly different from negative control (P ≤ 0.05).  Results are reported 

as means ± SEM for n = 3 experiments.  
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Figure 5.4.  Effect of MB-353 on the levels of reduced form of glutathione in BE cells 

after 2-h treatment with the compound at a concentration of 500 nM at 0, 6, 12 and 24 h 

post-exposure incubation periods.  
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Figure 5.4.  Effect of MB-353 on the levels of reduced form of glutathione in BE cells 

after 2-h treatment with the compound at a concentration of 500 nM at 0, 6, 12 and 24 h 

post-exposure incubation periods.  Reduced form of glutathione was determined by a 

non-recycling system in sample solutions using the glutathione colorimetric detection kit 

as described under Materials and Methods.  Reduced form of glutathione is expressed as 

percentage of negative control (untreated cells).  Dashed line represents negative control. 

Results are reported as means ± SEM for n = 3 experiments. 
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Tissue GSH levels decrease in response to chemical compound-induced oxidative 

stress.14  The metabolism of redox-cycling quinones in cells and subsequent induction of 

oxidative stress cause oxidation of cellular thiol groups that is considered as one 

mechanism of quinone-induced toxicity.14  One study determined significant GSH 

depletion in primary cultured rat hepatocytes after exposure to 1,4-naphthoquinone.14  

This study demonstrated that aloe extract can protect the hepatocytes against 1,4-

naphthoquinone cytotoxicity via maintenance of cellular thiols.14  GSH oxidation during 

NQO1-catalysed redox cycling of AZQ has also been reported.18  

Another possible mechanism of GSH depletion after exposure to quinones is due 

to alkylation of thiols by these compounds.15,33  The fact that we did not observe 

significant GSH depletion in BE cells treated with MB-353 compared to the 

corresponding negative control suggested the importance of GSH oxidation rather than 

GSH alkylation as the primary mechanism of toxicity of MB-353.  Although our results 

indicate that MB-353 does not react with GSH significantly, the possibility of some 

degree of the alkylation reaction cannot be completely ruled out with our current data.  

There is the possibility of low levels of GSH alkylation by MB-353 that can impact the 

redox state of the cells.  Buffinton et al. determined that menadione-glutathionyl 

conjugates can act as NQO1 substrates and undergo redox-cycling reactions.7  Therefore, 

the potential generated MB-353-glutathionyl conjugates may act as substrates for NQO1, 

be bioactivated by NQO1 and undergo redox cycling with concomitant production of 

ROS contributing to the overall induction of oxidative stress in NQO1-rich cells.   

To determine whether GSH depletion in the cells was specific to the good 

substrate MB-353, we measured the levels of GSH in BE and BE-NQ cells after 
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treatment with MB-323.  No difference was observed in GSH levels in either cell line 

treated with MB-323 (Figures 5.5 and 5.6) suggesting that the observed GSH depletion in 

BE-NQ cells was specific to MB-353.  The absence of significant depletion of GSH in 

BE and BE-NQ cells treated with MB-323 in comparison with negative controls suggests 

the lack of GSH alkylation by MB-323 and lack of bioactivation of MB-323 by NQO1, 

respectively. 

The selective GSH depletion as well as production of 8-oxo-2dG in BE-NQ cells 

by MB-353 can result in apoptosis induction in these cells.  It has been reported that 

several classes of polycyclic aromatic hydrocarbon (PAH) o-quinones can cause cell 

death by altering the cellular redox state and causing GSH depletion.33  The effect of 

lavendamycin agents on the redox state of cancer cells and the possible involvement of 

redox state alteration in the cytotoxicity of these agents have not been previously 

examined. 

Additional experiments using ROS scavengers and antioxidants will be required 

to better determine redox-cycling ability of the lavendamycin analogue MB-353 and the 

underlying mechanism of GSH depletion in BE-NQ cells.    
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Figure 5.5.  Effect of MB-323 on the levels of reduced form of glutathione in BE-NQ 

cells after 2-h treatment with the compound at a concentration of 500 nM at 0, 6, 12 and 

24 h post-exposure incubation periods. 
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Figure 5.5.  Effect of MB-323 on the levels of reduced form of glutathione in BE-NQ 

cells after 2-h treatment with the compound at a concentration of 500 nM at 0, 6, 12 and 

24 h post-exposure incubation periods.  Reduced form of glutathione was determined by 

a non-recycling system in sample solutions using the glutathione colorimetric detection 

kit as described under Materials and Methods.  Reduced form of glutathione is expressed 

as percentage of negative control (untreated cells).  Dashed line represents negative 

control.  Results are reported as means ± SEM for n = 3 experiments. 
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Figure 5.6.  Effect of MB-323 on the levels of reduced form of glutathione in BE cells 

after 2-h treatment with the compound at a concentration of 500 nM at 0, 6, 12 and 24 h 

post-exposure incubation periods. 
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Figure 5.6.  Effect of MB-323 on the levels of reduced form of glutathione in BE cells 

after 2-h treatment with the compound at a concentration of 500 nM at 0, 6, 12 and 24 h 

post-exposure incubation periods.  Reduced form of glutathione was determined by a 

non-recycling system in sample solutions using the glutathione colorimetric detection kit 

as described under Materials and Methods.  Reduced form of glutathione is expressed as 

percentage of negative control (untreated cells).  Dashed line represents negative control.  

Results are reported as means ± SEM for n = 3 experiments. 
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5.5.3  Apoptosis Induction.  Oxidative stress has been considered an important 

mediator of apoptosis in cells.4  Internucleosomal DNA fragmentation has long been used 

as a biochemical index of apoptosis.37  We measured the enrichment of mono and 

oligonucleosomes in the cytoplasm of the apoptotic cells to detect apoptosis.  BE and BE-

NQ cells incubated with a hypertonic buffer for 2 hours were used as the corresponding 

positive controls.  Significant induction of apoptosis in positive controls of BE and BE-

NQ cell lines was observed (Figures 5.7 and 5.8).  Our data demonstrated that a 2-hour 

treatment with MB-353 at a concentration of 500 nM caused significant induction of 

apoptosis in BE-NQ cells at 12 and 24 hours post-exposure time points versus the 

untreated negative control (Figure 5.7).  The greatest induction of apoptosis occurred at 

the 12-hour time point (Figure 5.7), which is in accordance with the observed highest 

depletion of GSH in these cells at the same time point by MB-353 (Figure 5.3).  A trend 

toward reduction in apoptosis induction was observed at the 24-hour time point although 

it was still significantly higher than the negative control (Figure 5.7).  This trend toward 

reduced apoptosis induction at the 24-hour time point in the cells can be in part due to the 

observed recovery of GSH in the cells at this time point and possible activation of other 

repair mechanisms.  There was no apoptosis induction immediately after the 2-hour 

treatment by MB-353 in BE-NQ cells (Figure 5.7).  These findings suggest that induction 

of apoptosis in BE-NQ cells by MB-353 compared to the corresponding production of 8-

oxo-2dG and GSH depletion in these cells (which occur immediately after 2 hours of the 

treatment) is a late event that could be in turn the result of the observed oxidative DNA 

damage and GSH depletion.   
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No significant induction of apoptosis was detected in BE cells treated by MB-353 

at any of the post-exposure time points suggesting that bioactivation of MB-353 by 

NQO1 results in the induction of apoptosis in BE-NQ cells versus BE cells (Figure 5.8).  

Lack of apoptosis induction in the MB-353-treated BE cells is consistent with the lack of 

GSH depletion and oxidative DNA damage in these cells after treatment with MB-353.  

This suggests that there is a direct association between the presence of the observed 

oxidative stress biomarkers and the induction of apoptosis in the MB-353-treated BE-NQ 

cells.  
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Figure 5.7.  Detection of apoptosis in BE-NQ cells after 2-h treatment with MB-353 at a 

concentration of 500 nM at 0, 12 and 24 h post-exposure incubation periods.  
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Figure 5.7.  Detection of apoptosis in BE-NQ cells after 2-h treatment with MB-353 at a 

concentration of 500 nM at 0, 12 and 24 h post-exposure incubation periods.  The 

enrichment of mono and oligonucleosomes in the cytoplasm of the apoptotic cells was 

detected using the cell death detection ELISA kit as described under Materials and 

Methods.  The enrichment factor value of the negative control (untreated cells) is 

considered 1.  Dashed line represents negative control.  *Significantly different from 

negative control (P ≤ 0.05).  Results are reported as means ± SEM for n = 3 experiments.   
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Figure 5.8.  Detection of apoptosis in BE cells after 2-h treatment with MB-353 at a 

concentration of 500 nM at 0, 12 and 24 h post-exposure incubation periods.  
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Figure 5.8.  Detection of apoptosis in BE cells after 2-h treatment with MB-353 at a 

concentration of 500 nM at 0, 12 and 24 h post-exposure incubation periods.  The 

enrichment of mono and oligonucleosomes in the cytoplasm of the apoptotic cells was 

detected using the cell death detection ELISA kit as described under Materials and 

Methods.  The enrichment factor value of the negative control (untreated cells) is 

considered 1.  Dashed line represents negative control.  *Significantly different from 

negative control (P ≤ 0.05).  Results are reported as means ± SEM for n = 3 experiments.  
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Since two key elements of cytotoxicity of quinones are the production of ROS 

and DNA damage, these compounds should be potent inducers of apoptosis.4  The 

benzoquinone RH1 has been demonstrated to preferentially cause apoptosis in NQO1-

rich human breast cancer NQ16 cells compared to parental NQO1-deficient MDA468 

cells at lower concentrations.30  Sun et al. demonstrated that SN and MMC induced 

significant apoptosis in human colon adenocarcinoma NQO1-rich HT29 cells compared 

to NQO1-deficient BE cells implying that bioactivation of these compounds by NQO1 

led to apoptosis induction in HT29 cells.19  It has also been shown that NQO1 plays a key 

role in apoptosis induction in NQO1-expressing human prostate cancer cells by the 

naturally occurring o-naphthoquinone β-lapachone.40  ROS have been implicated in both 

death receptor-mediated (extrinsic pathway) and mitochondria-mediated (intrinsic 

pathway) apoptosis.41  Further research is required to investigate which apoptotic 

pathway is involved in ROS-induced lavendamycin-related cytotoxicity.  

MB-323 did not cause apoptosis in BE and BE-NQ cells in comparison with 

negative controls at the same concentration as MB-353 (Figures 5.9 and 5.10).  Lack of 

apoptosis in the BE-NQ cells after exposure to MB-323 is consistent with lack of 

detection of biomarkers of oxidative stress in these cells, which suggests that this 

compound cannot be bioactivated by NQO1.  No observation of an apoptosis event in BE 

cells after MB-323 treatment implies that this compound at this concentration cannot 

cause enough, direct alkylation of DNA or thiol groups that can result in apoptosis.  
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Figure 5.9.  Detection of apoptosis in BE-NQ cells after 2-h treatment with MB-323 at a 

concentration of 500 nM at 0, 12 and 24 h post-exposure incubation periods. 
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Figure 5.9.  Detection of apoptosis in BE-NQ cells after 2-h treatment with MB-323 at a 

concentration of 500 nM at 0, 12 and 24 h post-exposure incubation periods.  The 

enrichment of mono and oligonucleosomes in the cytoplasm of the apoptotic cells was 

detected using the cell death detection ELISA kit as described under Materials and 

Methods.  The enrichment factor value of the negative control (untreated cells) is 

considered 1.  Dashed line represents negative control.  *Significantly different from 

negative control (P ≤ 0.05).  Results are reported as means ± SEM for n = 3 experiments. 
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Figure 5.10.  Detection of apoptosis in BE cells after 2-h treatment with MB-323 at a 

concentration of 500 nM at 0, 12 and 24 h post-exposure incubation periods. 

 

 

 

 

                        

 

 

 

 

 

 

 

 

 



 204 

Figure 5.10.  Detection of apoptosis in BE cells after 2-h treatment with MB-323 at a 

concentration of 500 nM at 0, 12 and 24 h post-exposure incubation periods.  The 

enrichment of mono and oligonucleosomes in the cytoplasm of the apoptotic cells was 

detected using the cell death detection ELISA kit as described under Materials and 

Methods.  The enrichment factor value of the negative control (untreated cells) is 

considered 1.  Dashed line represents negative control.  *Significantly different from 

negative control (P ≤ 0.05).  Results are reported as means ± SEM for n = 3 experiments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 205 

5.6 Conclusions 

 

The good lavendamycin substrate for NQO1, MB-353, significantly increased the 

molar ratio of 8-oxo-2dG to 2-dG in NQO1-rich BE-NQ cells compared to NQO1-

deficient BE cells.  However, no significant increase in the corresponding molar ratio was 

observed in BE and BE-NQ cells treated with the poor substrate for NQO1, MB-323.  

The acquired data indicate the importance of the role for NQO1 in the bioactivation of 

MB-353 and selective induction of oxidative DNA damage in NQO1-rich cells by this 

compound.  Similarly, MB-353 significantly decreased the levels of GSH only in BE-NQ 

cells, while no GSH depletion was observed in either cell line treated with MB-323.  This 

suggests NQO1-mediated selective depletion of GSH in BE-NQ cells by MB-353 and 

that this event is specific to this compound versus MB-323.  Therefore, selective 

induction of oxidative stress in NOQ1-rich cells was due to NQO1-mediated activation of 

MB-353.  In addition, this bioactivation of MB-353 by NQO1 resulted in apoptosis 

induction in BE-NQ cells versus BE cells, whereas MB-323 did not induce apoptosis in 

either cell line.  These data are consistent with high and low substrate specificity of MB-

353 and MB-323 for NQO1, respectively.  Overall, our results demonstrated that only the 

good lavendamycin substrate, MB-353, caused oxidative stress resulting in oxidative 

DNA damage and subsequent apoptosis in NQO1-rich BE-NQ cells at nM concentrations 

via NQO1-mediated activation.  Future studies are required to further determine other 

possible underlying mechanisms of toxicity of lavendamycin analogues including DNA 

alkylation and strand break formation.  These findings enhance our understanding of the 

mechanisms of action of lavendamycin antitumor agents.  They can also contribute to the 
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development of these compounds as potential anticancer drugs to impact cancer therapy.  

A good knowledge of cytotoxic mechanisms of lavendamycin antitumor agents will place 

them in a proper combination cancer therapy.  Therefore, antitumor agents with known, 

various mechanisms of action could act upon different regions of the tumor 

microenvironment resulting in an effective antitumor therapy.  

  

 

 

 



 207 

5.7 References 

 

(1) Opara, E. C. Oxidative stress. Dis. Mon. 2006, 52, 183-198. 

(2) Peoples, M. C.; Karnes, H. T. Recent developments in analytical methodology for 

8-hydroxy-2'-deoxyguanosine and related compounds. J. Chromatogr. B Analyt. 

Technol. Biomed. Life Sci. 2005, 827, 5-15. 

(3) Engel, R. H.; Evens, A. M. Oxidative stress and apoptosis: a new treatment 

paradigm in cancer. Front. Biosci. 2006, 11, 300-312. 

(4) Ollinger, K.; Kagedal, K. Induction of apoptosis by redox-cycling quinones. 

Subcell. Biochem. 2002, 36, 151-170. 

(5) Watanabe, N.; Forman, H. J. Autoxidation of extracellular hydroquinones is a 

causative event for the cytotoxicity of menadione and DMNQ in A549-S cells. 

Arch. Biochem. Biophys. 2003, 411, 145-157. 

(6) Halinska, A.; Belej, T.; O'Brien, P. J. Cytotoxic mechanisms of anti-tumour 

quinones in parental and resistant lymphoblasts. Br. J. Cancer Suppl. 1996, 27, 

S23-27. 

(7) Buffinton, G. D.; Ollinger, K.; Brunmark, A.; Cadenas, E. DT-diaphorase-

catalysed reduction of 1,4-naphthoquinone derivatives and glutathionyl-quinone 

conjugates. Biochem. J. 1989, 257, 561-571. 

(8) Beall, H. D.; Liu, Y.; Siegel, D.; Bolton, E. M.; Gibson, N. W.; Ross, D. Role of 

NAD(P)H:quinone oxidoreductase (DT-diaphorase) in cytotoxicity and induction 

of DNA damage by streptonigrin. Biochem. Pharmacol. 1996, 51, 645-652. 



 208 

(9) Bolin, C.; Stedeford, T.; Cardozo-Pelaez, F. Single extraction protocol for the 

analysis of 8-hydroxy-2'-deoxyguanosine (oxo8dG) and the associated activity of 

8-oxoguanine DNA glycosylase. J. Neurosci. Methods 2004, 136, 69-76. 

(10) Shigenaga, M. K.; Ames, B. N. Assays for 8-hydroxy-2'-deoxyguanosine:  A 

biomarker of in vivo oxidative DNA damage. Free Radic. Biol. Med. 1991, 10, 

211-216. 

(11) Lin, P. H.; Nakamura, J.; Yamaguchi, S.; Upton, P. B.; La, D. K.; Swenberg, J. A. 

Oxidative damage and direct adducts in calf thymus DNA induced by the 

pentachlorophenol metabolites, tetrachlorohydroquinone and tetrachloro-1,4-

benzoquinone. Carcinogenesis. 2001, 22, 627-634. 

(12) Shi, M. M.; Kugelman, A.; Iwamoto, T.; Tian, L.; Forman, H. J. Quinone-induced 

oxidative stress elevates glutathione and induces gamma-glutamylcysteine 

synthetase activity in rat lung epithelial L2 cells. J. Biol. Chem. 1994, 269, 26512-

26517. 

(13) Coleman, M. D.; Rustioni, C. V. Resistance to glutathione depletion in diabetic 

and non-diabetic human erythrocytes in-vitro. J. Pharm. Pharmacol. 1999, 51, 

21-25. 

(14) Norikura, T.; Kennedy, D. O.; Nyarko, A. K.; Kojima, A.; Matsui-Yuasa, I. 

Protective effect of aloe extract against the cytotoxicity of 1,4-naphthoquinone in 

isolated rat hepatocytes involves modulations in cellular thiol levels. Pharmacol. 

Toxicol. 2002, 90, 278-284. 

(15) Cadenas, E. Antioxidant and prooxidant functions of DT-diaphorase in quinone 

metabolism. Biochem. Pharmacol. 1995, 49, 127-140. 



 209 

(16) Molina Portela, M. P.; Fernandez Villamil, S. H.; Perissinotti, L. J.; Stoppani, A. 

O. M. Redox cycling of o-naphthoquinones in trypanosomatids. Superoxide and 

hydrogen peroxide production. Biochem. Pharmacol. 1996, 52, 1875-1882. 

(17) Giulivi, C.; Cadenas, E. One- and two-electron reduction of 2-methyl-1,4-

naphthoquinone bioreductive alkylating agents:  Kinetic studies, free-radical 

production, thiol oxidation and DNA-strand-break formation. Biochem. J. 1994, 

301 ( Pt 1), 21-30. 

(18) Ordonez, I. D.; Cadenas, E. Thiol oxidation coupled to DT-diaphorase-catalysed 

reduction of diaziquone. Reductive and oxidative pathways of diaziquone 

semiquinone modulated by glutathione and superoxide dismutase. Biochem. J. 

1992, 286 ( Pt 2), 481-490. 

(19) Sun, X.; Ross, D. Quinone-induced apoptosis in human colon adenocarcinoma 

cells via DT-diaphorase mediated bioactivation. Chem. Biol. Interact. 1996, 100, 

267-276. 

(20) Siegel, D.; Gibson, N. W.; Preusch, P. C.; Ross, D. Metabolism of mitomycin C 

by DT-diaphorase:  Role in mitomycin C-induced DNA damage and cytotoxicity 

in human colon carcinoma cells. Cancer Res. 1990, 50, 7483-7489. 

(21) Pink, J. J.; Planchon, S. M.; Tagliarino, C.; Varnes, M. E.; Siegel, D.; Boothman, 

D. A. NAD(P)H:Quinone oxidoreductase activity is the principal determinant of 

beta-lapachone cytotoxicity. J. Biol. Chem. 2000, 275, 5416-5424. 

(22) Ngo, E. O.; Nutter, L. M.; Sura, T.; Gutierrez, P. L. Induction of p53 by the 

concerted actions of aziridine and quinone moieties of diaziquone. Chem. Res. 

Toxicol. 1998, 11, 360-368. 



 210 

(23) Siegel, D.; Gibson, N. W.; Preusch, P. C.; Ross, D. Metabolism of diaziquone by 

NAD(P)H:(quinone acceptor) oxidoreductase (DT-diaphorase):  Role in 

diaziquone-induced DNA damage and cytotoxicity in human colon carcinoma 

cells. Cancer Res. 1990, 50, 7293-7300. 

(24) Fisher, G. R.; Gutierrez, P. L. Free radical formation and DNA strand breakage 

during metabolism of diaziquone by NAD(P)H quinone-acceptor oxidoreductase 

(DT-diaphorase) and NADPH cytochrome c reductase. Free Radic. Biol. Med. 

1991, 11, 597-607. 

(25) Beall, H. D.; Winski, S.; Swann, E.; Hudnott, A. R.; Cotterill, A. S.; O'Sullivan, 

N.; Green, S. J.; Bien, R.; Siegel, D.; Ross, D.; Moody, C. J. Indolequinone 

antitumor agents:  Correlation between quinone structure, rate of metabolism by 

recombinant human NAD(P)H:quinone oxidoreductase, and in vitro cytotoxicity. 

J. Med. Chem. 1998, 41, 4755-4766. 

(26) Swann, E.; Barraja, P.; Oberlander, A. M.; Gardipee, W. T.; Hudnott, A. R.; 

Beall, H. D.; Moody, C. J. Indolequinone antitumor agents:  Correlation between 

quinone structure and rate of metabolism by recombinant human 

NAD(P)H:quinone oxidoreductase. Part 2. J. Med. Chem. 2001, 44, 3311-3319. 

(27) Walton, M. I.; Smith, P. J.; Workman, P. The role of NAD(P)H: quinone 

reductase (EC 1.6.99.2, DT-diaphorase) in the reductive bioactivation of the novel 

indoloquinone antitumor agent EO9. Cancer Commun. 1991, 3, 199-206. 

(28) Nemeikaite-Ceniene, A.; Dringeliene, A.; Sarlauskas, J.; Cenas, N. Role of 

NAD(P)H:quinone oxidoreductase (NQO1) in apoptosis induction by 



 211 

aziridinylbenzoquinones RH1 and MeDZQ. Acta Biochim. Pol. 2005, 52, 937-

941. 

(29) Dehn, D. L.; Winski, S. L.; Ross, D. Development of a new isogenic cell-

xenograft system for evaluation of NAD(P)H:quinone oxidoreductase-directed 

antitumor quinones: evaluation of the activity of RH1. Clin. Cancer Res. 2004, 

10, 3147-3155. 

(30) Dehn, D. L.; Inayat-Hussain, S. H.; Ross, D. RH1 induces cellular damage in an 

NAD(P)H:quinone oxidoreductase 1-dependent manner:  Relationship between 

DNA cross-linking, cell cycle perturbations, and apoptosis. J. Pharmacol. Exp. 

Ther. 2005, 313, 771-779. 

(31) Beall, H. D.; Winski, S. I. Mechanisms of action of quinone-containing alkylating 

agents. I:  NQO1-directed drug development. Front. Biosci. 2000, 5, 639-648. 

(32) Asche, C. Antitumour quinones. Mini-Rev. Med. Chem. 2005, 5, 449-467. 

(33) Bolton, J. L.; Trush, M. A.; Penning, T. M.; Dryhurst, G.; Monks, T. J. Role of 

quinones in toxicology. Chem. Res. Toxicol. 2000, 13, 135-160. 

(34) Gutierrez, P. L. The role of NAD(P)H oxidoreductase (DT-Diaphorase) in the 

bioactivation of quinone-containing antitumor agents:  A review. Free Radic. 

Biol. Med. 2000, 29, 263-275. 

(35) Li, B.; Blough, N. V.; Gutierrez, P. L. Trace detection of hydroxyl radicals during 

the redox cycling of low concentrations of diaziquone: a new approach. Free 

Radic. Biol. Med. 2000, 29, 548-556. 



 212 

(36) Pagano, G.; Degan, P.; De Biase, A.; Iaccarino, M.; Warnau, M. Diepoxybutane 

and mitomycin C toxicity is associated with the induction of oxidative DNA 

damage in sea urchin embryos. Hum. Exp. Toxicol. 2001, 20, 651-655. 

(37) Norbury, C. J.; Zhivotovsky, B. DNA damage-induced apoptosis. Oncogene 

2004, 23, 2797-2808. 

(38) Abu-Qare, A. W.; Abou-Donia, M. B. Biomarkers of apoptosis: release of 

cytochrome c, activation of caspase-3, induction of 8-hydroxy-2'-deoxyguanosine, 

increased 3-nitrotyrosine, and alteration of p53 gene. J. Toxicol. Environ. Health 

B Crit. Rev. 2001, 4, 313-332. 

(39) Rodriguez, C. E.; Shinyashiki, M.; Froines, J.; Yu, R. C.; Fukuto, J. M.; Cho, A. 

K. An examination of quinone toxicity using the yeast Saccharomyces cerevisiae 

model system. Toxicology. 2004, 201, 185-196. 

(40) Planchon, S. M.; Pink, J. J.; Tagliarino, C.; Bornmann, W. G.; Varnes, M. E.; 

Boothman, D. A. beta-Lapachone-induced apoptosis in human prostate cancer 

cells:  Involvement of NQO1/xip3. Exp. Cell Res. 2001, 267, 95-106. 

(41) Simon, H. U.; Haj-Yehia, A.; Levi-Schaffer, F. Role of reactive oxygen species 

(ROS) in apoptosis induction. Apoptosis. 2000, 5, 415-418. 

 

 

 

 


	NAD(P)H:QUINONE OXIDOREDUCTASE (NQO1)-DIRECTED LAVENDAMYCIN ANTITUMOR AGENTS: STRUCTURE-BASED DESIGN, MOLECULAR MODELING AND STRUCTURE-ACTIVITY STUDIES
	Let us know how access to this document benefits you.
	Recommended Citation

	Preface.pdf
	MH Chapter one.pdf
	MH Chapter two.pdf
	MH Chapter three.pdf
	MH Chapter four.pdf
	MH Chapter five.pdf

