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Whether or not Paleoindians were high-technology foragers, dependent on bifacial 
cores, is an issue that requires attention. Uncertainty regarding the role of bifaces in the 
Paleoindian toolkit is fueled by our inability to consistently and accurately distinguish the 
difference between bifacial cores and early stage preforms. I hypothesize that there are 
distinct and identifiable patterns among these two types of bifacial artifacts and that the 
amount a biface deviates from perfect bilateral symmetry may be indicative of its 
intended function. The concept of a "symmetry index" is introduced and used to quantify 
symmetry among sample groups of bifaces. Among these sample groups is a collection 
of artifacts from the Avon site (24PW340) in western Montana. The methods and 
techniques developed herein are applied to the Avon materials as a test of the hypothesis 
stated above. Through a symmetry index pilot study, a number of multivariate 
quantitative analyses, and an analysis of the Avon site debitage, it is determined that there 
are quantifiable differences between preforms and bifacial cores and that these may help 
us to better understand Paleoindian lithic technological organizations and systems of 
mobility.
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Chapter One 
Introduction

The objective of this thesis is to address the concept of differing biface production 

goals among Paleoindians. I hypothesize that there are real and statistically significant 

differences between bifaces produced for use as portable cores and bifaces produced for 

use ultimately as projectile points. Our ability to discern differences between these two 

types has profound implications for the manner in which we interpret Paleoindian 

technological organizations and systems of mobility. If a thorough réévaluation of 

bifacial artifacts recovered from Paleoindian sites reveals that these groups relied heavily 

on a bifacial core technology, our agenda regarding studies of Paleoindian behavior 

should continue unimpeded. However, if it is found that bifacial cores were not the 

"centerpieces of Paleoindian technology," (Bamforth 2001:55) we will be forced to 

reconsider our perception of Paleoindians as high-technology foragers. The methodology 

described herein is offered as a tool with which to address this issue.

The research question posited here is: are there real and statistically significant 

differences between bifaces produced for use as cores and those produced for use 

ultimately as projectile points, i.e. preforms? This thesis begins with a discussion of 

divergent biface production goals and the implications that particular technological foci 

have for interpreting systems of mobility. I have developed an index of bilateral 

symmetry for the purpose of assessing biface production goals, and to thereby directly 

address the research question. In the following chapters, the “symmetry index” is 

introduced and applied, in conjunction with several other methods, to the lithic materials



from the Avon site (24PW340) in order to assess the nature of the production and use of 

bifaces at that site. Multivariate quantitative analyses are described, which were 

performed in order to support or refute the conclusions drawn from the pilot study of the 

symmetry index. The Avon data are then incorporated into a discussion of whether 

Paleoindians were in fact bifacial core dependent and how similar studies can contribute 

to a better understanding of Paleoindian mobility.

In this initial chapter, a discussion of symmetry is followed by an introduction to 

the Avon site (24PW340), which serves as the test case for the theories and methods put 

forth in this thesis. In each of the following chapters, aspects of the Avon collection are 

discussed, beginning with a description of the methods used to analyze the lithic material 

from that site. The third chapter discusses the results of those analyses and the 

conclusions that were drawn. The final chapter of this thesis focuses on Avon’s 

contribution to the greater debate regarding Paleoindians as high-technology foragers.

The Biface Dilemma: The Nature of the Problem and the History of Past Research

Bifaces have long been considered a fimdamental component of the Paleoindian 

toolkit For the past several decades, their presence in—or absence from—Paleoindian 

sites has been interpreted as an indication of a particular technological organization and 

system of mobility. Specifically, the presence of bifaces as cores or long use-life tools 

within an assemblage has been interpreted as evidence of "high-technology" forager 

behavior. "High-technology" or "high-tech" foragers are those who employed a lithic 

technology that "was designed to economize raw material in the face of uncertain access 

to quarries by extending the use lives of tools and designing tools for multiple uses"



(Bamforth 2001:58). This was achieved through "reliance on easily flakeable stone, 

extension of tools' use lives by careful design and recycling, and reduction of the weight 

of the transported toolkit by producing tools in advance of use and relying on bifacial 

cores as sources of new tools for later reduction into finished tools" (Bamforth 2001:58).

Kelly (1988) highlighted the concept of alternative "roles" of bifaces in the 

archaeological record. Rather than viewing each biface in the archaeological record as 

representative of one stage in a stepwise progression towards a finished projectile point, 

Kelly considered the fact that bifaces could have been used in other capacities by 

Paleoindians. He suggests that

bifaces can be manufactured to play one or more of three difiFerent 
organizational roles:
(1) as cores, although this does not preclude the biface itself from 

being used as a tool;
(2) as long use-life tools, in which a tool's bifacialness is necessaiy to 

its anticipated role, which is to be resharpenable and usable for its 
frmction even if broken . . .

(3) as a by-product of the shaping process, in which a tool's 
bifacialness is not an explicit intention of the maker. . .  (Kelly 
1988:719).

The first organizational role presented by Kelly is of primary importance to this 

thesis. Bifacial cores are versatile in that they can be used to perform a number of tasks, 

they are easy to maintain, and they provide considerable potential for a large amount of 

cutting edge. On this last point Kelly notes that "more usable flake edge can be produced 

from a biface than from a percussion core of similar weight because each flake from a 

biface has a high edge-to-weight ratio" and, regarding long use-life tools, "a bifacially 

flaked edge can have a fair amount of cutting power . . .  yet the less acute angle of a 

biface's edge makes it more durable than an unretouched flake" (1988:718). These



assertions prompted a series of cost-benefit relationship, or optimality, studies (Elston 

and Raven 1990; Francis 1983; Kuhn 1994; Nelson 1987; Torrence 1989 and others), the 

outcome of which made a strong case for the efficiency of bifacial core use.

Efficiency, it has been argued (cf. Kelly and Todd 1988), would have been of 

utmost importance to highly mobile people who needed to restrict the overall weight of 

their toolkit, while being prepared for any possible contingency as they traversed huge 

and unfamiliar expanses. In this way the link between lithic technological organization 

and mobility strategy was made. Kelly and Todd (1988) explored this concept while 

considering the rapidly changing environment at the Pleistocene/Holocene transition. 

They argue that the Paleoindians who came to the "New World" at this time may have 

been the first human inhabitants of this continent. As such, they would not have had a 

"resident group" to consult regarding the acquisition of resources when they entered a 

new territory. Therefore, given the rapidly changing physical landscape, the choice to 

pursue game animals (which, Kelly and Todd argue [1988], are more readily identifiable 

and attainable than plant resources in an unfamiliar ecosystem), and the resultant frequent 

moves, Paleoindians had to develop what has come to be known as the high-tech forager 

strategy. Moving out of the theoretical realm and into the practical, Kelly (1988) argues 

that by looking at the proportions of bifacial cores and bifacial tools in archaeological 

contexts we might be able to discern the degree of residential and/or logistical mobility 

practiced by the group responsible for the archaeological record at a particular site.

Although Kelly states that there is "no direct correlation between mobility and the 

organization of technology" (1988; citing Bamforth 1986), many people have since 

discussed technological organization as reflective of a group’s system of mobility (Bleed



1986; Nash 1996; Pecora 2001 ; Roth and Dibble 1998; Shott 1986). Others have 

considered the idea that the organization of technology is governed by subsistence 

strategies and latitudinal global positions, in addition to mobility systems (Bamforth 

1986; Binford 1977,1979,1980; Bleed 1986; Boldurian 1991; Goodyear 1979; Hayden 

1997; Kelly 1988; Kelly and Todd 1988; Parry and Kelly 1987; Torrence 1983; and 

others). Finally, Bamforth (1986) and Pecora (2001) have discussed the dependence of 

technological organization on the availability of raw materials. Pecora notes that "stone- 

working people were capable of altering raw material availability. In fact, raw material 

availability is greatly affected by how the stone is prepared prior to transport. Cores, for 

example, provide more lithic material and manufacturing flexibility than do blanks or 

finished tools" (2001:176).

However, despite all of the purported benefits of bifacial core use, Bamforth 

(2002) has called for a réévaluation of the current model of Paleoindians as high-tech 

foragers. He argues that bifacial cores do not appear to have been the "centerpieces of 

Paleoindian technology" and that the archaeological record does not strongly support the 

high-tech forager model (Bamforth 2002:55). Bamforth suggests that the proportions of 

bifacial cores in Folsom and later Paleoindian sites are not consistent with the patterns 

that we would expect if these Paleoindians had been bifacial core-dependent. Other lines 

of evidence are incongruous with this theory as well. For example, predominant use of a 

bifacial core technology should result in a majority of tools made on biface-struck blanks, 

and a relative paucity of "nonbifacial cores and debris from the reduction of such cores" 

(Bamforth 2002:65). Furthermore, it seems that bifaces are often poorly defined in the 

literature regarding Paleoindian sites, and the actual fimction of many bifaces found in



these contexts is suspect. Bamforth notes that ”[o]ne particularly important aspect of any 

discussion of these issues is distinguishing between bifacial cores and unfinished blanks 

and preforms for bifacial knives. Standards for distinguishing between bifacial cores and 

bifacial tools are rarely made explicit..." (2002:65). While addressing each of the points 

mentioned above is fimdamental to a proper reassessment of Paleoindian technological 

organization, this final point—our ability to distinguish between bifacial cores and 

preforms—is central to the discussion that follows.

Given the debate regarding whether or not Paleoindians were indeed bifacial core 

dependent, it is imperative that we devise methods by which to recognize the differences 

between bifaces intended ultimately for use as projectile points and those intended for use 

as cores when that difference is not immediately apparent. Pecora (2001) suggests 

patterns that we might expect to see at sites representative of core-based lithic transport 

"junctures." Kelly (1988) offers "archaeological consequences" of the use of bifacial 

cores in residential sites (largely reflected in the debitage), and Boldyrian (1991) 

describes the surface flaking patterns and general characteristics of bifacial cores 

discovered at Blackwater Draw. Bamforth (2002) offers trends that we would expect to 

see among bifacial core-dependent groups. These and other practical discussions are 

helpful in assessing the "footprint" left by bifacial core use, which can then be applied to 

discussions of mobility strategies and other prehistoric lifeways. Yet, the continued 

presence of a class of artifacts associated with Paleoindian sites, generically termed 

"bifaces" and whose function is often ambiguous, leads me to believe that Bamforth’s 

reference to our inability to readily distinguish between preforms and bifacial cores is 

especially problematic.



The following explores the hypothesis that there are real and quantifiable 

differences between bifaces intended ultimately for use as projectile points and bifaces 

intended for use as portable cores, and that a recently derived measure, the symmetry 

index, is a useful tool in determining these differences. This method of distinguishing 

between preforms and cores functions under the assumption that the former will exhibit 

more perfect bilateral symmetry than the latter. This assumption is based on the assertion 

by Callahan (1979) and others (Muto 1971; Sharrock 1966; Whittacker 1994) that 

successful manufacture of projectile points depends upon successful completion of a 

number of stages, including the achievement of a high degree of symmetry. If Callahan is 

correct in asserting that completion of each of these stages is requisite for the completion 

of subsequent stages, then we can assume that the parameters outlined for each stage 

would have been held as the ideal for projectile point manufacture among prehistoric 

stone tool producers, however subconsciously. This would be characterized in the 

archaeological record by higher proportions of bifaces that fit the criteria for each çtage of 

production as defined by Callahan (1979; outlined below). Bamforth suggests that 

"production of a bifacial tool requires attention to plan-view and cross-sectional 

symmetry, regularity of edge angles, and carefully and regularly spaced flakes" (2002:65). 

Bifaces intended for use as cores and/or long use-life tools may have been manufactured 

under a less specific set of guidelines. This would likely be characterized in the 

archaeological record by higher proportions of bifaces with edge angle-width/thickness 

ratio combinations that do not comply with Callahan's definitions for each stage. They 

may also exhibit exaggerated thickness for their width, differential thinning, failure to 

edge the entire perimeter of an objective piece, and/or general asymmetry.



Additional support for the argument that finished projectile points of most 

temporal and cultural affiliations do exhibit a high degree of symmetry comes from 

studies of projectile point aerodynamics such as that performed by Christenson (1986). 

Christenson argues that "accuracy, flight stability, range, and killing power" are functions 

of stability and balance (1986). "Stability and balance are a function of symmetry and 

weight (Christenson 1986); that is, if a point is symmetrical in both form and weight, then 

the balance should be good" (Beck 1998). Thus, the more symmetrical a projectile point, 

the greater its ability to strike a target accurately and efficiently.

The difference between "late stage" preforms (nearly complete projectile points, 

often lacking only final edge retouch or hafting element) and bifacial cores is obvious and 

it is unlikely that the two would ever be confused. Early stage preforms, however, more 

closely resemble cores and these may be the source of confusion when the function of 

bifaces in the archaeological record is poorly defined. A measure of symmetry may be a 

remedy for this confusion.

Archaeologists often describe things as more or less symmetrical, but these are 

imprecise terms. "While it is true that an imprecise language helps in grasping complex 

situations and in identifying first-order trends, the danger of missing the ftill picture 

because of a vague description is always awaiting the user of the current symmetiy 

language" (Avnir et al. 1997). Yet there is very little reference to the quantification of 

symmetry as it pertains to artifacts. There is a team of chemists, namely Avnir and 

Zabrodsky (Avnir et al. 1997; Zabrodsky and Avnir 1995), who have explored symmetry 

and its practical application to a wide range of fields, including Anthropology.

Zabrodsky and Avnir (1995) first outlined their methods of assessing symmetry.



or "chirality" as it pertains to molecules (the structural property or characteristic of a 

molecule that makes it physically impossible to superimpose an image of that molecule 

onto a mirror image of itself). They propose that symmetry is a "continuous rather than 

descrete (sic) structural property" and offer "a working tool which allows one to evaluate 

quantitatively, on a continuous scale, how much of any symmetry element or symmetry 

group exists in any configuration in any dimension" (Zabrodsky and Avnir 1995:462), 

and which allows the relative chirality of completely different structures to be compared. 

The method is explained by Saragusti et al. in the following succinct and accessible

manner:

Our proposed answer (Zabrodsky and Avnir 1995) to the question 'How 
much of a given symmetry is there in a given structure?' has been; 'Find 
the minimal distances that the vertices of a sh ^ e  have to undergo, in 
order for the shape to attain the desired symmetiy.' In a formal way, 
given n vertices of the original configuration, located at P j, and given a 
symmetry point group G, the amount, S(G), of this symmetry in this 
configuration

S(G)=iM 2 IIP, - P.II*
“ i=l

where Pj are the corresponding points in the nearest G-symmetric 
configuration. Equation 1 [above] is general and allows one to evaluate 
the symmetry measure of any shape relative to any symmetric group or 
element. . .  .The nearest set of P; 's, i.e. the set of coordinates 
describing the nearest symmetrical shape,. .  obtained in terms of the 
normalized coordinates, is computed with an algorithm, described in 
detail in Zabrodsky and Avnir (1995) (1998:819).

Avnir et al. explain further:

Given an object to be symmetrized, it is converted to a necklace of an 
even number of boundary points, as dense as one wishes.. .  Its 
center of mass is then determined and placed at the origin, and the 
distance from this center to the farthest P, is scaled to 1. The aim is to 
find the nearest set of Pi's which is o-symmetric, namely, to find that 
reflection line which will cause the set of P/s to move minimally to the 
set of Pi's (1997:321).
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In a demonstration of the feasibility and versatility of symmetry studies in the 

field of archaeology, Saragusti et al. applied the Continuous Symmetry Measure (CSM) 

method, outlined above, to a collection of lower Paleolithic handaxes from Israel (1998). 

They argue that changes in the amount of symmetry present among bifaces representative 

of a number of sequential stages throughout the Acheulian Techno-complex may be 

reflexive of "the evolution of human cognitive, behavioural and technological capacities" 

(Saragusti et al. 1998:817). Though the handaxes are the immediate subject of the study, 

the authors themselves maintain that the "need for objective means for symmetry 

measurement is the main motivation for [their] study" (1998:818). In reference to this, 

they cite numerous occasions on which archaeologists have referred to artifacts which are 

more symmetrical, roughly symmetrical, or possessed offine symmetry. A quantitative 

measure of symmetry, however, would "allow one to answer questions such as 'how much 

symmetry is there in a given handaxe?'; by how much is one handaxe more symmetrical 

than another?"' (Saragusti et al. 1998:818). I wholeheartedly agree with this assessment 

and the conclusion that the quantification of symmetry has far-reaching implications for 

the discipline of archaeology. I also feel, however, that the methods proposed by Avnir 

and Zabrodsky (Zabrodsky and Avnir 1995, Avnir et al. 1997) and applied by Saragusti et 

al. (1998), while apparently very effective, are highly technical, potentially very time 

consuming, and do not lend themselves well to standard archaeological analyses. The 

methods proposed here are more accessible, particularly considering the fact that many 

archaeologists now make use of digital cameras in the documentation of artifacts. The 

steps that follow digital rendering are simple and require little additional work. The 

"symmetry index" is outlined and applied in the following chapters.
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The Avon Site: The Current Research Question and the History of Past Research

Bifaces from the Avon site (24PW340) are used to address the primary research 

question of this thesis: are there real and quantifiable differences between bifacial cores 

and projectile point preforms? The symmetry index, described in the following chapter, 

is applied to the Avon site bifaces and the results are used to address the larger theoretical 

questions regarding Paleoindian lithic technological organization and mobility strategies. 

This chapter provides a detailed description of the Avon site, in the context of both the 

Avon Valley and the greater regional interface of the Rocky Mountains and the Great 

Plains, and the archaeological collection recovered from the site. Subsequent chapters are 

devoted to the methods used to study that collection, the results of applying those 

methods, and the conclusions thus drawn regarding both the nature of the Avon site and 

its role in the discussion of whether late Paleoindians were in fact bifacial core 

dependent.

The Avon site is thought to have been used as a quarry workshop. Lithic 

materials suitable for the production of stone tools crop out in abundance less than two 

kilometers from the site, and basalts and non-local cherts are available in the gravels that 

have been down-cut by Strickland Creek, to which the site is adjacent. Quarry workshop 

sites offer considerable potential for insights into the lifeways of the prehistoric peoples 

who made use of them. At such sites we find evidence for the types of tools being 

produced: "[djebitage retains evidence of prior manufacturing steps, thus its variability 

must in some ways be related directly to the formal variability of intended products of 

manufacture” (Magne 1989:15). The lithic reduction strategies employed, the desired 

goals of production and the implied lithic technologies of the people who produced
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workshop assemblages offer insights into that group’s system of mobility. The Avon site 

was studied in light of these concepts.

The artifacts available for study during the production of this thesis were 

excavated over the course of two field seasons, in the late fall of 1966 and the spring of 

1967, under the direction of Professor Philip Hobler, then of The University of Montana. 

The official site report contains only minimal documentation of site location and basic 

site type, and the majority of the information pertaining to the site was gleaned from the 

student journals from the 66/67 field seasons. From these sources, it was determined that 

eight units were placed along the banks of Strickland Creek and that at least 5927 lithic 

artifacts', 5752 of which are debitage, were recovered over the course of these two field 

seasons. The condition and the nature of the documentation are such that the provenience 

of the artifacts—both vertical and horizontal—is dubious and very little in the way of 

spatial analysis can be performed.

Hobler and his crew, however, were not the only ones ever to have excavated at 

the Avon site. In fact, the excavations performed over the course of the two field schools 

probably represent only a small proportion of the total time invested in the site. Yet the 

extent, description and results of all other investigations at the Avon site are not 

available. One agenda of this thesis is to interpret the nature of the Avon site, both as a 

Paleoindian quarry workshop and in relation to the archaeology of the northern Great 

Plains/Rocky Mountain interface, given the scant data available at this time.

The Avon site is located in Powell County, Montana, approximately 30 miles west

' One hundred and seventy-five non-debitage artifacts were present in the collection as of early 2003. The site is known to have 
produced a number of projectile points, ^ i c h  w o t not included in the collection when I began to study it. More on this issue 
follows the discussion of the Avon site projectile points.
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of Helena, between the towns of Avon and Finn, along a second-order tributary of 

Nevada Creek. Nevada Creek, in turn, is a tributary of the Blackfoot River and is the 

namesake of a drainage system “located immediately west of the Continental Divide.. . It 

[the Nevada Creek drainage] is bordered on the southwest by the Garnet Range, and is 

part of the northeast-southwest trending valley [system] that make[s] up this region. 

Elevations range from 4300 feet on the valley floor to above 7000 feet in the adjacent 

Garnet Range.. . ” (Cameron 1984). The Avon Valley is located in the southern portion 

of the Nevada Creek drainage (Figure 1.1).

The Avon Valley lies within what Malouf has referred to as the "Montana 

Western Region." This is the geographic region "along the Continental Divide in 

Montana and southern British Columbia, [which] extend[s] for two or three hundred 

miles on each side of the crest" (Malouf 1956:9). During the terminal Pleistocene and 

into the early Holocene, which is the time period of particular interest to this thesis, the 

vegetation of the Montana Western Region is thought to have resembled that of a modem 

alpine tundra. Sagebmsh and grasses would have predominated and provided browse for 

mammoth, bison, horse, camel, mountain sheep, deer and wapiti among other, smaller 

game (Greiser 1984). In a personal communication with Catherine Cameron, John Taylor 

expressed his belief that the Nevada Creek drainage (which lies well within the Montana 

Western Region) would have offered a refugium from harsh winter conditions for animals 

such as bison, antelope and deer (Cameron 1984) and, potentially, the humans who 

pursued them. The Avon Valley may have been particularly enticing given its reliable 

source of water, most notably Halfway Creek and Stickland Creek (tributaries of 

NevadaCreek), and prominent outcrops of chert and silicified marl. Furthermore,
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Figure 1.1. The Nevada Creek Drainage (Cameron 1984:16)

Nevada Creek located fewer than 100 miles from the Plains and "[hjistorical accounts 

suggest that the Nevada Creek area may have been part of or close to several major routes 

of [native] travel. The Clark Fork River was one of the major east-west travel routes 

(Choquette and Holstine 1982), and a branch of this trail led up the Blackfoot River, past 

the mouth of Nevada Creek" (Cameron 1984).

A comprehensive study of the Nevada Creek drainage area was conducted in 1984 

that combined archaeological and geologic evidence to form a more complete picture of
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the prehistory of that drainage, which includes the Avon Valley. The presence of thirty- 

four archaeological sites in the area drained by Nevada Creek and its tributaries was 

confirmed by Cameron during the 1984 survey, though she was unable to relocate twenty- 

two additional sites reportedly located throughout the drainage area (Cameron 1984).

The hub of the handful of recorded sites located in the Avon Valley area appears 

to be Antelope Hill and, to a lesser degree, Rhine Point, where materials suitable for stone 

tool production crop out in abundance (Figure 1.2). Cameron reports that "much of the 

area around [Antelope Hill and Rhine Point], especially around [Antelope Hill], appears 

to be a continuous distribution of cultural material" (1984:4).

A n t  e l o p e / H H I

Rhine^^Hi l l

o

Figure 1.2. Detail of Antelope Hill and Rhine Point within Nevada Creek Drainage (Cameron 1984:16)

As part of the Nevada Creek Archaeological Project, of which Cameron's 

archaeological survey was a part. Fields performed a detailed geologic survey (1984) in 

the Nevada Creek drainage area. He found that there are two principal sources of lithic 

material in the Avon Valley, the Antelope Hill/Rhine Point quarries and the non-site-
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Specific pediment capping gravels that are being down-cut and thus exposed by the local 

drainages. The so-called Avon Cherts, outcrops of which are located both on Antelope 

Hill and Rhine Point, are actually silicified marls with cherty silica inclusions according 

to Fields (1984). The geologic term "marl" refers to "a mixture of clay and calcite in 

nearly equal parts" (Fields 1984:15). Very similar to marl is porcellanite, which is "a 

mixture of authogenic silica and allogenic clay, usually with some calcite as well[,] 

compacted into a hard rock having the luster of unglazed porcelain" (Fields 1984:15). 

Both lithic types are usually formed in lacustrine environments "where clay minerals 

and/or fine-grained volcanic material is brought into the environment of the water body" 

(Fields 1984:17). When aquatic organisms are present in the water body at the time of 

formation, they may be incorporated into the matrix. Fields goes on to note that "[i]t is 

difficult to distinguish a marl from a porcellanite without very detailed and sophisticated 

study. It is even more difficult where authogenic chert, chalcedony or opal has invaded 

the system via groundwater and altered the original stmcture. In the case of the Avon 

Chert' all of these features are present" (1984:17). The Avon Chert that crops out on 

Antelope Hill "is a mottled, white, gray, buff and yellow, highly altered mix of 

volcanically derived material (clay) and fossiliferous, calcareous, silicified marl or 

porcellanite in which fractures and pore space have been invaded by silica in the form of 

chalcedony. This has resulted in partial or complete replacement of the original material 

by chert (chalcedony)" (Fields 1984:18-19). This material weathers to a yellow-white or 

white, while a fresh break is darker tan to brown or dark brown to brownish black. "It has 

good to crude conchoidal fracture, luster is dull to almost earthy where the original matrix 

is preserved;" that is, where it has not been invaded by silica (Fields 1984:19). Where
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silica has invaded the original matrix, the luster is more vitric. Very similar materials 

also crop out on the southern end of Antelope Hill (the South Avon Quarry Site) and on 

Rhine Point. However, "[f]ield data is inconclusive as to whether the Avon Quarry, the 

South Quarry [northern and southern ends of Antelope Hill, respectively] and the Rhine 

Point Site are: 1) developed in the same stratigraphie unit or 2) developed in a 

stratigraphically superposed set" (Fields 1984:27).

Materials other than the so-called Avon Chert are available in the Avon Valley 

that could have been used by prehistoric stone tool users. Stratigraphically below the 

Avon chert, there is a level of vitric chert which ranges in color from white to greenish- 

or bluish-gray with inclusions of yellow or brown material. Its luster is pearly and its 

fracture is irregular to conchoidal (Fields 1984:21-22). Stratigraphically above the Avon 

Chert is a level of calcareous siltstone. It is not clear from Fields' description whether 

this material would have been suitable for stone tool production and use, though he does 

mention that it is quite siliceous. This material is mottled white with an earthy, dull 

texture. There are inclusions of calcite throughout the matrix (Fields 1984:20). At the 

top of the stratigrapic sequence, above the calcareous siltstone, is a level of calcite 

limestone. This is described as a white, 98% calcite limestone, banded with tan to pink 

grains.

Second to these quarry sites in importance as lithic resource procurement areas are 

a group of non-site-specific, secondary source gravels. Much of the valley floor is 

composed of a pediment surface formed during late Pliocene and early Pleistocene times, 

which slopes from the Garnet Range to Halfway Creek. At the Pleistocene-Holocene 

transition, when the Blackfoot lobe of the Flathead Glacier was in a state of flux.
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advancing and retreating, the pediment surface was capped with ”a significant but 

variable thickness of water-lain cobble and pebble gravels derived fi'om the surrounding 

mountains. These gravels contain clasts of Precambrian Belt rocks, andésite, basalt, 

rhyolite and chert" (Fields 1984:3-5). The pediment-capping gravels are

deeply dissected by Finn, Davis, Strickland and the upper reaches of 
Halfway creeks. Almost everywhere on the pediment and along the 
flanks of the drainages dissecting the pediment, gravel from the 
Quaternary pediment c ^  coat the surface. Clasts range from 0.5 to 20 
cm. Chert is present and abundant in the cap gravels. Color varies 
from cream-white to dark chocolate brown, orange, rust-red and gray- 
purple. Much of it has a white to cream weathered skin (rhine [sic]). 
Various types of volcanic rock (mostly rhyolitic) are mixed with the 
chert as well as minor amounts of sedimentary cobbles (1984:12-14).

Other lithic materials would have been available to prehistoric people, and 

especially highly mobile people, from the Garnet Range (south of the present study area) 

which contains abundant nodules of chert within the Madison formation limestone there. 

Also, south of the Garnet Range crest, there is a thick chert lens that may have been 

exploited as a source of lithic material (Fields 1984). .

After making a general geologic assessment of the Avon Valley materials. Fields 

visited what he referred to as the Napton Site (presumably 24PW340) and inspected the 

materials present on the surface there. Stream-transported cherts that range through 

shades of tan, red and purple are present at the site in both culturally-modified and non- 

culturally-modified forms. Pediment capping basalts and "andésite detritus" are also 

present as both artifacts and unmodified pebbles and cobbles. There is also North Avon 

Quarry, South Avon Quarry and Rhine Point material present, though Fields suggests "not 

in the abundance one might expect" (1984:25). Fields concludes that at 24PW340, the 

non-site-specific pediment capping gravels appear to be "the major source of workable
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chert” (1984:30). Fields’ reconnaissance was performed in 1984, however, after 

numerous known collection episodes were performed, to say nothing of looting activates 

that may have removed a significant proportion of this and other materials from the site.

Only a handful of sites have been documented in the immediate vicinity of the 

Antelope Hill/Rhine Point quarries: 24PW320,24PW340, 24PW346, and 24PW1043.

The following description of 24PW346 is based primarily on Cameron's work (1984), 

since the information provided in the official site report is limited. The "North Avon 

Quarry" site (24PW346; also the "Avon Quarry," the "Price Site," "Avon No. 1," and the 

"Antelope Hill Site" [Cameron 1984; official site form on file at Archaeological Records, 

The University of Montana]) is comprised of five distinct areas, covering approximately 

two square kilometers and centered around a number of quarry pits (N=76). These pits 

range in size from 4.25-30 meters in diameter and 1-3 meters in depth. In direct 

association with the pit features are a number of artifacts and a considerable amount of 

quarrying debris. Based on surficial examination, the pits themselves appear to have been 

the location of prehistoric quarrying activity, as there is no "evidence of tunneling or 

trenching" (Cameron 1984). Speculating as to the production goals at the North Avon 

Quarry site, Cameron notes that

. . . production at the quarry may have been geared to the manufacture of large 
bifaces, that could have been transported for use as cores. Several of these items 
were noted while examining the quarry area. A large (15 cm long) biface or 
preform was noted at the quarry area on [Rhine Point] and Napton (1981) 
mentions several of a similar size found in subsurface deposits in the Main 
section of 24PW340. Dr. Thomas Hester (1970 field notes) noted a group of 
large artifacts that he called 'cores' associated with quarry pits on a knoll at the 
southeast end of [Antelope Hill] (1984:6).

Other areas of the extensive 24PW346 quarry site include stone circles and lithic 

debris areas west of the quany pits, a rather extensive lithic scatter near a spring located
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on the northern slope of Antelope Hill, a lithic scatter west of the quarry pits, and another 

extensive lithic scatter along the ridge of Antelope Hill. The stone circle and lithic debris 

areas are of most interest here. These features are located on a relatively flat area west of 

the quarry pits. The circular features (N=l 7) range in size from 5-11.5 meters in diameter 

and there is little lithic debris associated with these. There are, however, concentrations 

of lithic debris southeast and northeast of the stone circle area. Cameron reports that 

these debris concentrations contain "debitage, shatter, quarry blanks, cores and unused 

chunks of Avon material. . .  retouched flakes and utilized flakes, two bifaces and four 

unifaces. .. Fire-cracked rock was present in these areas" (1984:7). Given this 

description of features and artifacts, this area appears to represent a campsite and 

workshop area. One Pelican Lake point (3000 B.P. - 1500 B.P. [Frison 1991]) was 

located during Cameron's survey, though without subsurface investigation a secure date 

or range of dates cannot be assigned to this campsite.

The official site report for 24PW346 was able to add only that the site was 

originally recorded by George Arthur in 1961, at which time he noted very large knives 

and scrapers, as well as "several" projectile points in the area of the quarry. The points 

were neither drawn nor described in the text. Finally, there is a date of "7000 B.C." on 

the site form, but no clarification as to whether a "̂̂ C date was obtained or whether some 

diagnostic point was found that led Arthur or some subsequent investigator to make this 

assertion.

A number of other quarry sites and lithic scatters are described by Cameron at the 

southeast end of Antelope Hill and on Rhine Point. The only other of these given a 

trinomial designation is 24PW1043, located approximately 1700 meters west-northwest
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of 24PW346 (Cameron 1984). This site consists of a ’’moderately dense lithic scatter... 

[that] may have been a processing area associated Avith the quarrys (sic) noted on these 

two hills [Antelope Hill and Rhine Point]" (Cameron 1984:10). The original site report, 

completed by Ann Johnson in 1971, contradicts the location provided by Cameron 

(1984), however. Johnson indicates that the site is located on a plateau "opposite" 

Antelope Hill, in Township 1 IN, Range 8W, Section 7, which is clearly east of Antelope 

Hill and 24PW346. Johnson goes on to describe the site as spanning approximately 39 

square yards and containing "hunks of tarnished chert." What accounts for this 

discrepancy is uncertain. The most likely explanation is that Cameron simply meant to 

say that 24PW1043 is located 1700 meters east-northeast of 24PW346, which would then 

correspond with Johnson's legal description. A second possibility is that one of the 

investigators is using the site number erroneously. They do, however, appear to be 

describing the same site.

Johnson also recorded 24PW1045, which she describes as being very similar to 

24PW1043. This site is located very close to 24PW1043 and contains large pieces of 

Avon Chert. No diagnostic artifacts were reported and a more specific site location could 

not be ascertained.

In addition to the "Avon Chert" procurement areas and associated sites mentioned 

above, the Nevada Creek drainage also contains a large amount of workable basalt. The 

basalt is generally found in the pediment-capping gravels that are being down-cut, and 

thus exposed, by Nevada Creek and its tributaries. It appears that prehistoric stone tool 

users/producers sought this basalt in addition to the local cherts/marls, as several of the 

above mentioned sites also contain basalt artifacts. Furthermore, north of 24PW346,
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"[t]wo sites, 24PW1033 and 24PW1038, which are only 150 meters apart, consist of 

extensive scatters of large basalt flakes. Several large basalt bifaces were present, similar 

to the bifaces found at the Avon chert procurement sites" (Cameron 1984).

The "Feed Lot" site (24PW1033), "Mannix 28" (24PW1035) and "Mannix 32" 

(24PW1038) all appear to be in the same general area: around Nevada Lake, north of 

Antelope Hill. Ann Johnson recorded all three of these sites in 1971. She describes 

24PW1033 as a temporary chipping station on a rise overlooking a small creek. She 

notes that the site is approximately 15 feet in diameter, appears to be a surface deposit 

only, and contains "Avon Chert debris." Of 24PW1035 she says that it, too, likely served 

as a temporary chipping station and perhaps a "lookout station." It is approximately 50 x 

75 feet in size and contains flakes of "agate (chert)" and basalt, and "arrowheads." No 

descriptions or drawings of individual artifacts were provided. All three of the site forms 

contain only minimal information and no further reference (aside from the reference to 

24PW1033 and 24PW1038 in Cameron [1984]) to any of the sites could be located.

Another site, 24PW1040, appears to be located in the general area of Nevada 

Lake. This site, also recorded by Johnson in 1971, extends for approximately 0.5 miles 

along a plateau that overlooks Finn Creek. This surface site includes agate, petrified 

wood, basalt and Avon Chert, presumably in the form of flakes; two projectile points 

(type unspecified); and "numerous" knives and scrapers. Despite the paucity of data 

included on the site forms for these four sites, they serve to illustrate the fact that the 

Avon Valley was indeed utilized by prehistoric peoples and that the so-called Avon Chert 

appears to have been a preferred material type.

Almost due north of Antelope Hill (approximately 3.0 kilometers) is 24PW1044.
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This site was initially recorded by Johnson in 1971 and reevaluated in 2000 by HRA of 

Missoula, Montana. The site is described as a prehistoric campsite/food processing site.

It is said to have a "fairly continuous" lithic scatter, as well as thermally affected rock and 

some culturally-modified trees. The site extends from the north bank of Halfway Creek 

approximately 500 meters north-northeast into the adjacent hills. There are three 

thermally altered rock concentrations, described in detail in the 2000 site report; eight 

projectile points, illustrated in the site report; and a number of culturally-modified trees. 

The HRA report suggests that the trees were scarred during cambium gathering or in 

order to mark a trail. The projectile point types represented seem to suggest a continuous 

occupation or a repeated occupation from the Paleoindian period (there is one fluted point 

base illustrated in the report) to the proto-historic or historic period.

In 1970, under the supervision of L. K. Napton, a field school from the University 

of California, Berkeley conducted a surface survey and sampling effort at 24PW320. 

Hester et al. (1977) describe the site as being located west of Antelope Hill. Though 

Hester et al. do not provide UTMs or a topographic map indicating the location of 

24PW320, the general area sketch map in the publication indicates that the site is located 

along a small tributary of Strickland Creek, on "low knolls to the west of [the] Creek" 

(1977:239). During their 1970 investigations, Hester et al. performed a controlled surface 

collection at two artifact concentrations within 24PW320. From their examination of the 

materials collected, the team concluded that roughing-out or initial shaping do not appear 

to have been production goals at Clusters A and B, as the two arti&ct concentrations were 

called. Hester et al. propose that such early stage work was performed at "some nearby 

quarry-workshop" while the focus at Clusters A and B appears to have been reduction "to



24

produce large interior flakes to be used in implement manufacture” (1977:244). They 

also mention that the "debitage from Clusters A and B suggest the presence of a flake 

industry in which both bifacial and simple prepared cores were worked" (1977:244). 

Though no date was obtained for the materials recovered from 24PW320 and all of the 

materials considered in the analysis by Hester et al. were collected from the surface, the 

assertion that bifacial cores were a component of the toolkit at 24PW320, located very 

close to 24PW340, is an important one, as the previous section on bifaces suggests. 

Finally, Hester et al. conclude that there are two possible site types represented by 

Clusters A and B: "1) the clusters represent chipping loci subsidiary to nearby base 

camps; or, 2) these discrete clusters of debris represent some form of temporary 

occupation, perhaps related to specialized activities by persons from a nearby base camp 

or possibly activities of a small group passing through the area” (1977:247). They also 

mention that Napton had located "extensive midden deposits" nearby and suggest that 

perhaps the activities represented by Clusters A and B may have been performed by 

people belonging to whatever nearby camp is associated with the middens. No site report 

for such middens is on file with Archaeological Records (The University of Montana, 

Missoula) and no publication mentioning their location or contents has been located.

Such information could provide invaluable insights into the prehistoric record of the 

Avon Valley.

The 1970 Hester et al. investigation (1977) focused on a portion of the site 

designated "Old Cabin Area" by Napton. Cameron, whose archaeological investigations 

were conducted in 1984, reports on a site in the Avon Valley (24PW340) that also has an 

area called the Old Cabin Area (Cameron 1984). Cameron’s information was based on an
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interim report provided to her by L. K. Napton, written in 1981 (Napton 1981). Though 

Hester et al. do not provide UTMs or a visual representation on a topographic map of the 

location of 24PW320, the general area sketch map in the publication indicates that it is 

located along a small tributary of Strickland Creek, on "low knolls to the west of [the] 

Creek" (1977:239). The Avon Site (24PW340), on the other hand, appears to be located 

northeast of 24PW320, directly on the banks of Strickland Creek (Figure 1.3). This is 

likely what Hester et al. are referring to when they mention that "[tjest excavations had 

earlier been conducted on the floodplain by Napton, primarily in the region to the north ..  

. The stream is cutting into buried archaeological deposits in that area; flakes and other 

lithic debris litter the bottom of the channel" (1977:239). It is unclear why both sites are 

reported as having subsections designated Old Cabin Area by Napton. Though the 

surface collections were performed by Hester et al. in 1970, the report of findings did not 

appear in Plains Anthropologist until 1977. Napton's interim report, given to Cameron, 

was written just four years later (1981). It seems that if the Old Cabin Area (O.C.A.) 

designation had been applied early-on to a portion of 24PW320 and later reapplied to a 

portion of 24PW340, or if the term O.C.A. refers to a period in prehistory recognized and 

described by Napton, that such information would have been explained in one or another 

of the reports. No official site form is on file at Archaeological Records (The University 

of Montana, Missoula) for 24PW320 and I was unable to locate a copy of Napton's 

interim report (1981). It does not appear, given the descriptions of each site's location, 

that the two reports (Hester et al. 1977; Cameron 1984) are describing the same site. The 

discrepancy regarding the location or nature of the O.C.A. remains unanswered.
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Figure 1.3. 24PW320, Old Cabin Area, in relation to Strickland Creek (Hester et al. 1977:241)

The remainder of this discussion of archaeological sites in the Avon Valley will 

be devoted to the Avon site (24PW340), which is the focus of this thesis and whose 

artifacts led to the formulation of the "symmetry index." The Avon site (24PW340) has 

been called by a number of names—whether as a matter of investigator whim or 

erroneous designation—including the Little Valley site, the Avon site. Hidden Valley and 

the Napton site. It will be referred to hereafter as either the Avon site or 24PW340.

The majority of the work done in the Avon Valley has been conducted by Lewis 

Napton and has focused on 24PW340. He is said to have begun work there in 1956 

(Malouf 1985). Napton has performed numerous surveys of the Avon Valley throughout
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the years, spent many summers excavating the region’s sites and invited many field 

schools from California to participate in their excavation. Unfortunately, Napton has not 

published any reports of his findings.

Although his work was ongoing, Napton (1981) provided an interim report of 

findings concerning 24PW340 to Cameron in order to facilitate her Nevada Creek 

drainage study (Cameron 1984). The following information is based on the data provided 

to Cameron by Napton. The Avon site is located west of Antelope Hill, on the west side 

of Strickland Creek. Napton distinguishes two areas within this site: the Main area and 

the O.C.A. ("Old Cabin Area"). Radiocarbon dates were obtained from organic material 

in the lowest levels of the Main area, establishing that the buried soil from which the 

material came is approximately 9400 years old. "Diagnostic projectile points [at 

24PW340] range from Agate Basin, Frederick and Lusk [late Paleoindian] to Bitterroot 

Side-notched, Oxbow [5,200 - 3,000 B.P ] and Besant [1900 B.P. and later] types 

(Napton 1981)" (Cameron 1984; parenthetical dates from Frison 1991). The majority of 

the Oxbow points, however, were obtained from the O.C.A., which led Napton to suggest 

in his interim report that this area may represent a separate, later occupation. "In general, 

Napton feels that this site may have been occupied during summer and autumn, as it 

receives heavy winter snowfall, and that functions relate to chipped stone material 

procurement and/or temporary occupation during journeys to the Plains" (Cameron 

1984:5).

Under the direction of Professor Philip Hobler and hosted by The University of 

Montana, two field schools (1966-1967) were held at 24PW340. The remainder of this 

report, as it pertains to that site, will be based on the information obtained during that
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time.

During the field seasons of 1966 and 1967, for which student field journals and 

limited supervisors’ notes exist, a number of “features” were excavated. Though a 

detailed description of the dimensions and locations of these “features” could not be 

found, it is believed that they were units excavated back from the bank of the creek and 

expanded parallel to the creek as dictated by the presence of artifacts. In a personal 

communication with Hobler (2003), he explained that he does not clearly recall his use of 

the term “feature” and, while he now reserves that term for “a man-made thing such as a 

hearth, house pit or tipi ring,” he admits that he “may have been mistakenly using the 

term ‘feature’ to refer to different excavation areas” at that “early point in [his] 

experience of plains archaeology.” He goes on to say that the “principal excavation 

consisted of broadside scraping of a long arroyo bank. [They] did not cut the bank back 

more than 30-40 cm in this process” (Philip Hobler, personal communication, 2003).

Three broad, culture-bearing strata were identified at 24PW340. As understood 

fi'om the student field journals and notes, these are as follows: "surface/topsoil" (Level A; 

surface to 45.72 cm [18"] below surface), white calcareous zone (Level B; 45.72 to 99.06 

cm [18" to 39"] below surface), and banded brown humic zones (Level C; 99.06 cm [39"] 

below surface to creek level). It appears that excavations followed these natural strata 

and that no vertical provenience aside from general stratum was recorded for the majority 

of the artifacts recovered, despite the recognition of numerous substrata evident in profile 

drawings (Figure 1.4).

Two samples from a “black, humic deposit [within stratigraphie Level C], 

containing decayed vegetal material, fi'om Hidden Valley site [one of the various names
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Figure 1.4. Feature 4 profile from Dean Wilson’s field notes, 1967

applied to the Avon site] (24PW340)” were submitted for radiocarbon assay in 1967 

(Malouf 1971). The dates obtained were 9620 ± 330 (M-1973) and 9200 ± 300 (M- 

1974). The depths below surface and horizontal proveniences of the dated materials were 

not listed in the reference from which these dates were acquired. Hobler recalls that 

“dark organic layers in the bank exposure [Level C] provided materials for 14-C dating’’ 

(personal communication, 2003). Doug Melton suggests, however, that a direct 

association between the dated organic materials and the cultural material retrieved from 

the Level C is questionable (personal communication, 2003).

Several projectile points were recovered during excavations at 24PW340. Their 

present location is unknown, however, and they cannot be observed directly. These 

points are discussed in correspondence between Dick Malouf and Milo McLeod in 1985.
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They are described as Lusk points, though their provenience is not disclosed. Given the 

dates of the "black humic" level the general date range for Lusk points (northwestern 

Plains typology, ca. 8400 B.P.-7500 B.P.), it is unlikely that the Lusk points came from 

Level C. In an earlier letter between Richard Malouf and Lewis Napton (Malouf 1971), 

Malouf says that he is uncertain whether the projectile point discussed by Napton in a 

presentation of the findings from 34PW340 were from the Agate Basin or Hell Gap 

Complexes. Either of these two types would be more compatible with the radiocarbon 

dates provided for the lowest levels at Avon. Hobler recalls that “there were six 

projectile points. [Carling] Malouf, [Dee] Taylor and [Hobler] went over them and then 

[Hobler] sent them to Marie Wormington at Colorado for typing. All of them were in the 

collection that [Hobler] sent back to Montana a few years ago. Type names were Lusk, 

Frederick and Agate Basin” (personal communication, 2003). All of the point types 

referred to by Hobler are considered late Paleoindian. The Agate Basin Complex is 

thought to have been prevalent between 10,500 and 10,000 B. P. (Prison 1991), which 

falls squarely within the dates obtained through radiocarbon dating. The other two, 

Frederick and Lusk, are slightly later point types, thought to have been prevalent between 

8400 and 8000 B.P (Frison 1991).

It is interesting to note that Hobler and his students conducted a refitting analysis 

of the Avon materials:

Surprisingly, a fair number of pieces from the lower levels could be 
fitted on to pieces from the upper levels. This verified that we were 
dealing with a single component rather than a long time span. How was 
it that rc-fittable pieces got deposited over so much of a vertical extent?
This is a good question for which I have never found a satisfactory 
answer. Deposition in the boggy creek side environment must have 
been rapid. Maybe a single flood undermined a surface site and it 
collapsed down the slope (Philip Hobler, personal communication,
2003).
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Given the types of projectile points found during Hobler’s excavations at Avon, 

their date ranges, and the refitting analysis discussed above, the cultural affiliation(s) of 

the makers of the Avon bifaces is unclear. I find it unlikely that all levels of the Avon 

site represent one temporal/cultural component and suggest bioturbation as the 

mechanism responsible for the ability to re-fit materials excavated fi’om different strata. 

The characteristics of the different strata, as described by the 1966/67 field school 

students, are such that they appear to be discrete and not admixed, except perhaps at their 

interfaces.

At least 5927 lithic artifacts were recovered during the 1966/67 field seasons. 

Fifty-three of these are bifaces that are considered complete enough to perform a detailed 

study of their symmetry. This study of symmetry was developed in order to address the 

question of whether archaeologists can discuss goals of biface production in meaningful 

and quantifiable ways. As explained above, I believe that this is tantamount to a 

discussion of Paleoindian lithic technological organization and mobility strategies. The 

Avon bifaces do not exist in isolation, however. Of the lithic material recovered fi’om 

Avon, 5752 specimens are debitage. Debitage can provide a considerable amount of 

information regarding the reduction strategies employed and, potentially, the goals of 

production at a site. A study of the Avon debitage is therefore performed in an attempt to 

elucidate the nature of the activities performed, perhaps the goals of biface production, at 

that site.
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Thesis Outline

The following chapters are devoted in part to the study of the artifacts excavated 

from the Avon site during the 1966-1967 field seasons. An extensive analysis of the 

debitage is performed using the Modified Sullivan and Rozen Typology (Prentiss 2001) 

and the results of a study of small-sized debitage by Baumler and Downum (1989). The 

non-debitage artifacts are also examined, including a detailed study of the bifaces, which 

attempts to discern whether the primary technological focus at the Avon site was the 

production of projectile points, portable bifacial cores or some combination of the two. 

Another focus of this thesis is an index of bilateral symmetry that was developed as a 

means for interpreting biface production goals. The symmetry index methodology is 

described in detail and applied to a number of study groups. All of the methods described 

herein were chosen and formulated to address the question of whether there are 

significant differences between early stage projectile point preforms and bifacial cores, 

which, in turn, facilitates the discussion of whether Paleoindian were indeed bifacial core 

dependent.



Chapter Two 
Methods

In this chapter, the methods used to address the question "are there real and 

quantifiable differences between bifaces intended for use as cores and those intended for 

use ultimately as projectile points?" and those use to evaluate the debitage and other non

bifacial artifacts recovered from the Avon site (24PW340) are established. A thorough 

treatment of the subject must include both a detailed description of the empirical methods 

of measurement that were used and a discussion of the theories and methodologies that 

justify use of those particular methods. This chapter is divided into three sections: biface 

analyses, multivariate quantitative analyses, and debitage analyses. Each of the sections 

begins with a discussion of the analytical tools used to interpret the data. This is followed 

by a description of the empirical methods of data collection employed to address the topic 

of that section. The first section describes a pilot study used to investigate the utility of 

an index of symmetry and includes a discussion of Callahan's stages of projectile point 

manufacture (1979). This is followed by a description of several study collections of 

bifaces used in the pilot study, and the section concludes with a description of the 

methods used to collect data from the Avon bifaces. The second section describes the 

multivariate quantitative analyses used to substantiate the claims made regarding the 

utility of the symmetry index, and includes a discussion of what the chosen analytical 

tools purport to address and the methods of data collection used to perform the analyses. 

The final section deals with the Avon site debitage and includes a discussion of the 

Modified Sullivan and Rozen Typology (Prentiss 2001), observations made by Baumler

33
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and Downum (1989) regarding small-sized debitage, and the manner in which data were 

collected from the Avon debitage.

Biface Analyses—Theoretical Justifications and Methods of Data Collection

The following explores the hypothesis that there are real and quantifiable 

differences between bifaces intended ultimately for use as projectile points and bifaces 

intended for use as cores, and that a recently derived measure—the symmetry index—is a 

useful tool in determining these differences. This method of distinguishing between what 

most archaeologists refer to as preforms and bifacial cores and/or long use-life tools 

functions under the assumption that the former will exhibit more perfect bilateral 

symmetry than the latter. This assumption is based on the assertion by Callahan (1979) 

and others (Muto 1971; Sharrock 1966; Whittacker 1994) that successful manufacture of 

projectile points depends upon successful completion of a number of stages, including the 

achievement of a high degree of symmetry. If Callahan is correct in asserting that 

completion of each stage of manufacture is requisite for the completion of the subsequent 

stages, then we can assume that the parameters outlined for each stage would have been 

held as the ideal for projectile point manufacture among prehistoric stone tool producers, 

however subconsciously. This would be characterized in the archaeological record by 

higher proportions of bifaces that fit the criteria for each stage of production as defined by 

Callahan (1979; outlined below). Bifaces intended for use as cores and/or long use-life 

tools may have been manufactured under a less specific set of guidelines. This would 

likely be characterized in the archaeological record by higher proportions of bifaces with 

edge angle-width/thickness ratio combinations that do not comply with Callahan's
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Attribute Stage 2 Stage 3 Stage 4
1. width/thickness 

ratio
core reduction; 2.00- 
3.00+/-; flake reduction 
may exceed 6.00

3.00-4.00+/- 4.00-5.00+/-

2. optimum edge angle 
(spine plane)

55”-75° 40"-6(y 25M5°

3. nature of cross section thick lenticular to 
hexagonal irregular

lenticular
(biconvex)

flattened
(thin lenticular to
hexagonal)

4. nature of flake scar 
interval

widely to variably spaced closely to semi- 
regularly spaced

closely to quite 
regularly spaced

5. nature of flake scars high degree of variability; 
extensively to moderately 
gouged; "hollow ground" 
scars

moderate degree 
of variability; 
moderately to min
imally gouged

low d%ree of var
iability; minimally 
gouged

6. nature o f opposing 
flake scar contact

less than 50% of biface 
width except at ends

50-70% of biface 
width; scars just 
contact at center

50-100% of biface 
width; scars undercut 
up to entire width

7. degree of regularity 
of outline (plan)

irregular outline semi-regular regular

8. nature of reduction 
emphasis

strong emphasis on lineal 
edge, weak to non-existent 
on surface and outline

strong emphasis 
on surface, weak 
on edge and outline

strong emphasis on 
surface, moderate on 
edge and outline

definitions for each stage. They may also exhibit exaggerated thickness for their width, 

differential thinning, failure to edge the entire perimeter of an objective piece, and/or 

general asymmetry. Table 2.1 highlights the stages as defined by Callahan^.

The most objective and empirically measurable attributes of each stage of biface 

production, as defined by Callahan, are width/thickness ratio and edge angle. Callahan 

describes his methods of measuring these attributes thus:

In his 1979 study, Callahan's objective was to delimit the stages of biface production from "blade flakes" to finished, fluted, Clovis- 
style projectile points. A principal assumption being made here is that, up to a certain point, the stages are ^plicable to the 
production of any finished projectile point. Justificatimi for this assumpticm is that Callahan's early stages (2-4) are general and 
successful complétiez of eadi deals primarily widi thinning, removing surface irregularities and aeAieving symmetry.
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Width/thickness ratios were obtained by dividing the width [width at 
widest point, taken at 90® to length] by the thickness (thickness at center 
of the widest point of the biface, at the juncture of the length and the 
width axes, not necessarily at the thickest point) (Callahan 1979:32).

Callahan's methods of deriving edge angles and width/thickness ratios were 

employed during assessment of the Avon bifaces, so as to justify comparison of the Avon 

data set to those of Callahan's experimental collections. The edge angles and 

width/thickness ratios of the Avon bifaces were then used to assign the bifaces to a 

particular production stage as defined by Callahan. The Avon site bifaces were 

distributed among Callahan's stages thus: two within the parameters for stage 2, six 

within stage 3, and one within stage 4 (Table 2.2). These assignments were based on 

combinations of edge angle and width/thickness ratio, which are the two objective, 

quantifiable criteria provided by Callahan. Other factors, however, such as facial flaking 

patterns, frequency of surface irregularities and "aligned and centered" edge angles 

(Callahan 1979) make some of the assignments questionable. That is, four of the bifaces 

assigned to Callahan's stage 3 on account of edge angles sufficiently low and 

width/thickness ratios sufficiently high for placement into this stage, are more 

appropriately considered stage 2 bifaces on account of surface irregularities and "sinuous" 

edges. Therefore, using the more subjective of Callahan's criteria for assignment of 

bifaces to a stage of production, the distribution of the Avon bifaces is as follows: six 

within stage 2, two within stage 3 and one within stage 4 (Table 2.2). It can be said that 

the objective criteria provided by Callahan for the assignment of bifaces to production 

stages are unreliable, while the subjective criteria, though perhaps a better indicator of 

production stage, are precisely that—subjective—and are, therefore, also unrehable.
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Table 2.2. Number of Avon bifaces assigned to Callahan’s stages based on objective (edge angle and 
width/thickness ratio) and subjective (surface characteristics and sinuosity of edges) 
characteristics.

Objective Criteria Subjective Criteria
Stage 2 2 6
Stage 3 6 2
Stage 4 1 1

Callahan's biface reduction stages provide a useful starting point for the 

recognition of goals of production among the makers of bifaces in that deviation from the 

guidelines for these stages may indicate production without a preconceived, desired 

finished product in mind. As illustrated by the Avon bifaces, however, assignment of 

bifaces to stages of production using both the objective and subjective criteria established 

by Callahan can be somewhat problematic. An assessment of bilateral symmetry among 

bifaces may help to clarify production stages and indicate goals of production. The 

following is a pilot study of the utility of an index of symmetry, which I propose may aid 

our understanding of the goals of biface production among Paleoindians.

Methods Fifty-three bifaces were recovered from the Avon site, exclusive of 

finished projectile points^ and biface fragments considered too small to assess accurately. 

Each of the Avon bifaces was examined for the following information: material type, 

width, thickness, width/thickness ratio, edge angle, weight, the presence of usewear, 

evidence of thermal alteration, break type (if any), and symmetry index value.

The three material types recognized among the bifaces are chert/marl, basalt and

 ̂The projectile points were not present in the collection %tcn I first acquired it in 2003. In correspondence with Philip Hobler, it 
was determined that the projectile points were with the rest of the collection when it was sent back to The University o f Montana 
fiom Simm Fraso* Univosity a few years prior to my inquiry. Hobler recalls that there were six projectile points recovered during 
the 1966/67 field seasons (Philip Hobler, persmal communication, 2003).
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’’other.” The marls and cherts were classified together and may actually include marls, 

porcellanites and cherts, given the formation processes described by Fields (1984). Fields 

notes that "[i]t is difficult to distinguish a marl from a porcellanite without very detailed 

and sophisticated study. It is even more difficult where authogenic chert, chalcedony or 

opal has invaded the system via groundwater and altered the original structure. In the 

case of the 'Avon Chert' all of these features are present” (1984:17). The "other” 

materials consist of those things not readily identifiable and materials whose 

characteristics do not match those described by Fields (1984) for locally-occurring 

materials. Width and thickness were measured in millimeters and recorded at the 

landmarks provided by Callahan (1979) in order to justify the initial comparison of the 

two data sets. The width/thickness ratio was then calculated. Edge angle was taken as a 

spine plane measure on one lateral margin of each biface at a point though to be 

representative of the mean edge angle of the specimen. The symmetry index was 

calculated as described below. Weight was measured in grams and hundredths of grams. 

The presence of usewear and evidence of thermal alteration were noted for each artifact.

The problem of assessing symmetry in a quantitative way is not often discussed, 

particularly in the archaeological literature. Montet-White has discussed aspects of 

symmetry, though with a goal wholly different from that intended here (1973). In a study 

of artifacts from Le Malpas rockshelter, she discusses her use of a polar coordinates grid:

From a central point on the graph paper radiates a series of lines, the 
polar axes, spaced at five degree intervals. One of these axes, usually 
the 0/360 degree lines, constitutes the arbitrary axis of origin of the 
polar coordinates system. Angles are read fi-om the axis of origin and 
distances are measured along the polar axis fî om the centroid. Data 
recording starts when a planar projection of the artifact to be studied is 
placed at the center of the polar grid. Then a series of points are 
marked at the intersection o f polar axes with the artifact perimeter.
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Descriptive points are defined by a linear and an angular measurement. 
. . Effectiveness of the analysis hinges on; (1) the consistent definition 
of the artifact centroid, (2) selection of the artifact orientation and (3) 
the number and placement of points (Montet-White 1973:61).

The final statement in the quote above, regarding the factors upon which 

effectiveness of the method is contingent, introduces a critical point in the use of a polar 

grid to assess symmetry: definition of the centroid and artifact orientation. This is 

illustrated as Montet-White describes the proper and consistent definition of the artifact 

centroid and the selection of artifact orientation for two artifact types: “blanks” 

(understood to mean flakes) and tools:

When dealing with blanks, the centroid is the midpoint of a line drawn 
between the butt and the tip of the artifact. . . The butt or platform is 
centered on the 0®-360® axis so that the tip normally coincides with the 
180 axis [Figure 2.1]. . .  In the case of marginally retouched tools, the 
centroid marks the junction of the working area with the tool haft. . . 
[Tools are] oriented according to working axis, with the tip or working 
extremity placed as if it were in contact with material to be worked. 
The centroid, then, is defined by drawing an arbitrary line between the 
lateral extremities of the line of retouch and by determining the center 
of that line (1973:64).

Figure 2.1. Correct positioning of arti&cts on a polar coordinates grid (Montet-White 1973:64)
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Neither of these orientations on the polar grid was appropriate for the Avon 

artifacts since no bulbar axis could be established in order to use the protocol designed to 

describe “blanks,” and none of the bifaces exhibit a haft area, necessary for the 

orientation of tools on the polar grid. Borchert experienced a similar problem when 

examining within-type and between-type variation among Angostura, Frederick, Lusk and 

James Allen points (1989). Borchert used illustrations of projectile points fi*om a variety 

of archaeological collections, upon which she superimposed a polar grid. She describes 

her methods thus;

Most of the points illustrated were incomplete. If a proximal (basal) or 
distal (tip) fragment were centered on the polar grid paper, then the 
primary variance [between points] would be in the lengths of the 
firagments. This would be the case even if proximal and distal 
fragments were isolated in the analysis. I chose to standardize the 
length of the fragment and approach comparison based on width and 
shape. This was accomplished by taking the shortest proximal and 
distal fragments and establishing a set point. The shortest proximal 
fragment was set below the 90/270 degree axis and the set point was 
marked at the base of the point. This was done based on an imaginary 
line from one edge of the base to the other. In that way, the incurvate 
base center would be above the set point and the excurvate base center 
would be below the set point. . . .All points measured were placed 
according to the appropriate set point and centered on the 0/360 degree 
axis (1989:26).

One problem with the application of Borchert’s method to the Avon artifacts is 

that it requires that all bifaces have either a proximal or distal end and offers no 

alternative method for medial fragments, as her collections did not contain any such 

fragments. Furthermore, she does not discuss what is meant by “centered” on a particular 

axis. Whether the centering of the artifacts on the 0/360 degree axis is intuitive or 

mathematically derived can have a profound effect on measurements of symmetiy. 

Finally, it was discovered that even complete, finely crafted projectile points fi*om various
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archaeological collections, used in the present study to highlight use of the symmetry 

index (discussed below), were not always compatible with Borchert’s methods. That is, 

the “imaginary line from one edge of the base to the other” is not always perpendicular to 

the longitudinal axis of the biface and thus an unsuitable axis for orientation of the 

bifaces on a polar grid as it would be used to assess bilateral symmetry.

The two studies discussed above were explored as potential methods for assessing 

symmetry on bifacial artifacts. It is understood that neither Montet-White nor Borchert 

was attempting to assess bilateral symmetry in the manner proposed here and that they 

were both, in essence, making comparisons between artifacts and artifact groups rather 

than between two sides of singular specimens. The discussion provided above is not 

intended as a criticism of their methods, but rather as an explanation of the reasons that 

they cannot be used to discuss intra-specimen bilateral symmetry in a reliable, 

quantitative manner.

An alternative to the methods described above sought to address certain 

shortcomings of those methods with respect to the Avon material. The following is a 

description of an early attempt to assess bilateral symmetry. This description is provided 

in order to show the evolution of the present method, thereby highlighting the benefits of 

the most recent version of the symmetry index.

The first step, and perhaps the most problematic, in both early and later versions 

of calculating symmetry is to establish the midline of a biface. Montet-White et al. 

discuss the proper procedures for establishing axes and measuring artifacts: 

"Measurements are taken by inscribing the artifact into a quadrangular figure. The 

striking platform is placed at the base and the axis of percussion is perpendicular to the
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base. The geometric description of an artifact is based on an analysis of the relation of 

the lateral and transverse edges to the longitudinal axis. The longitudinal axis is the 

median line drawn from the point of percussion of a flake tool, or medial point of the base 

of a bifacial tool..." (1963:10). While this method ensures consistent and accurate 

measurements for flakes, flake tools and bifacial tools, it requires that bifaces possess a 

distal tip and a complete base for accurate establishment of the longitudinal axis. Many 

artifacts, however, lack such landmarks and another method had to be devised to 

accommodate such specimens. The longitudinal axis is the focal point for this study of 

symmetry and thus its proper (or at very least replicable) establishment is imperative for a 

relevant discussion of bilateral symmetry.

During the initial attempt at quantifying symmetry, a line rendering of each biface 

was produced by placing the artifact on a piece of grid paper and tracing its outline very 

carefully and with a fine-tipped pencil. In order to "fix” the orientation of the bifaces and 

provide a reference by which to make axes parallel or perpendicular, each biface outline 

was inscribed into a quadrangular figure per Montet-White et al. (1963), clarified here to 

mean a four-sided figure with four right angles. Each biface was oriented within a 

quadrangular figure such that the farthest projection of each lateral margin touched the 

sides of the figure and its distal end touched the top of the figure. Thus, the dimensions 

of each figure were equal to the maximum dimensions of each biface (Figure 2.2).

Under normal circumstances, after the longitudinal axis is established, the axis of 

maximum width is drawn as a line perpendicular to the longitudinal axis through the 

widest part of the artifact. Given the fact that a number of the bifaces examined in this 

study lack proximal and/or distal ends, and given the perpendicular relationship of the
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Figurez.2. Biface oriented within quadrangular figure

Figure 2.3. Bifkce with axes of longitude and width established

axes, it was reasoned that the placement of the axes could be established "backwards." 

That is, the axis of maximum width is established first, and then the longitudinal axis is 

established as a line perpendicular to the axis of maximum width at the midpoint of the 

latter (Figure 2.3). Consistent use of this method of determining the midlines of bifaces
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regardless of whether their proximal and distal ends are intact allows for comparison of 

all data sets and allows for inter-observer replication. Furthermore, the validity of this 

method is supported by the fact that its application to 26 finished projectile points used as 

a comparative collection in this study resulted in a longitudinal axis identical to that 

which would have been drawn by more conventional methods 85% of the time. That is to 

say, by the method described above, 22 of 26 finished projectile points had longitudinal 

axes drawn from the distal tip to the midpoint of the base.

Finally, it is necessary to accommodate bifaces with breaks oblique to the midline. 

Not correcting for this would result in grossly elevated indices of symmetry where zero is 

the ideal. Broken portions of bifaces should be excluded from comparison by partitioning 

them with a line parallel to the base of the quadrangular figure just "above" the break 

(Figure 2.4). After correcting for breaks oblique to the midline, if the remaining portion 

of a particular biface is thought to be too small to accurately represent its symmetry, the 

specimen ought to be excluded from analysis. No minimum percent of total is suggested 

here, as the method is still in its infancy; such decisions are left to the discretion of the 

analyst.

After establishing the axes of maximum width and longitude and correcting for 

breaks oblique to the midline, the initial calculation of synunetry proceeded thus: The 

length of the longitudinal axis between proximal and distal ends (or between an extant 

proximal or distal end and the partition line for broken sections) was divided into ten 

equal portions. Then a straight line distance, parallel to the base of the quadrangular 

figure, between the midline (longitudinal axis) and the lateral margins of the biface at 

each of the ten points along the midline was calculated in millimeters for each side of
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Figure 2.4. Biface partitioned “above” break

Figure 2.5. Placement of measurements according to initial calculation of Symmetry Index

the biface (Figure 2.5). Each of these distances was converted to a percent of the total 

width of the biface at that point in order to correct for size biases that would result from 

calculation of raw data. That is, large points have the potential for much higher numbers 

overall and thus would appear less symmetrical than smaller bifaces regardless of actual
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symmetry. For each of the ten points along the midline, the percentage from one side was 

subtracted from the other and recorded as an absolute value. The sum of these absolute 

differences was then calculated and this figure represented the index of symmetry. An 

example of this method is provided in Table 2.3.

Table 2.3 An example of the initial method of calculating the symmetry index, using the data

"Left” Side "Right" Side %Left %Right Difference

8.5 18 32.1 67.9 7-35.8/
11.5 24 32.4 67.6 7-35.2/
22 24 47.8 52.2 7-4.47
25 25.5 49.5 50.5 7-17
28 27 50.9 49.1 71.87
27 28 49.1 50.9 7-1.87

29.5 27 52.2 47.8 74.47
30 25.5 54.1 45.9 78.2/
32 20 61.5 38.5 7237
33 19 63.5 36.5 7277

Symm. Index= 142.6

By this method, the number of points along the midline could be increased or 

decreased as the recorder saw fit. Ten was chosen since it provides a large enough 

number of points for comparison so as to increase accuracy, yet not so many as to exceed 

a reasonable "cost-benefit" relationship. I realized, however, after calculating symmetry 

indices for a number of bifaces, that this method of quantifying symmetry had the 

potential to overlook gross irregularities on bifaces and thus produce highly inaccurate 

assessments of symmetry as illustrated in the dramatization in Figure 2.6. Therefore, an 

alternative approach was devised.
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Figure 2.6. Dramatization of the potential for irregularities to cancel each other out when the index is 
calculated by the initial method. The symmetry of this specimen might approach 0 (perfect) 
despite the obvious irregularities

Symmetry in this revised version of the symmetry index is assessed according to 

the difference in surface area on either side of the midline of a given biface. A digital 

photo of each physical specimen was taken with a Canon Powershot 540, mounted on a 

tripod 78 cm from the floor. Each artifact was placed on a white background and lit by an 

overhead light source so as to diminish shadows that might skew the true outline of each 

biface. The photos were downloaded to a computer and each digital image was converted 

to a single-pixel-wide line rendering in Photoshop. The outline of each biface was 

inscribed into a quadrangular figure as described above, and the axes of longitude and 

width were established. Broken portions were excluded from analysis, also as described 

above. Having established the midline and corrected for breaks oblique to the midline, 

the next step is to fold the biface outlines along their midlines (Figure 2.7a). This is most 

easily achieved using a light table and a printed version of the line rendering, though a 

folded image can also be achieved using Photoshop or another graphics program at a
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slightly higher cost in time, and for a slightly higher benefit in accuracy. For the 

remainder of the procedure, a digital medium is highly recommended in order to 

minimize error and facilitate the calculation of surface area. Images of bifaces folded 

along their midlines should be scanned and entered into a graphics program such as 

Photoshop if the light table method is used to fold the bifaces, or opened into Photoshop 

if a digital method is used. Most image manipulation software packages, such as 

Photoshop or Illustrator, have a "histogram” function that will count the total number of 

colored pixels in a particular image. In order for the numbers produced using the 

histogram function to be relevant in the calculations that follow, it is necessary to convert 

each image to a black and white bitmap format; grayscale images confound the 

black/white juxtaposition necessary to calculate the symmetry index. The symmetry 

index can then be calculated as follows: 1) Tally the number of pixels that comprise the 

outline of the folded image and any other darkened pixels that may result from 

imperfections on the paper being scanned or dust on the scanner bed. This number 

should be recorded, as it is a factor in the symmetry index equation given below. Failure 

to account for the outline pixel contribution will skew the end result and guarantee an 

inaccurate measure of symmetry. 2) The investigator should then fill in all of the area 

that the two sides of a given biface do not have in common when folded along the 

midline (Figure 2.7b). Then, using the histogram function, the program can be made to 

tally the number of black pixels; this number should be recorded" .̂ 3) Next, all of the area 

that the two sides of the biface do have in common should be filled in. A histogram

 ̂ In the interest of time and ease of operation, shaded areas were not un shaded between steps 2 and 3, resulting in cumulative pixel 
counts. This point is a fundamental to the final equation given. The equation must be adjusted accordingly should the investigator 
choose to subtract the outline pixel contribution from all subsequent histogram tallies.
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Figure 2.7a. Outline of a bifece folded along its midline. 2.7b. Area that the two sides do not have in 
common are shaded. 2.7c. Area that the two sides do have in common are shaded.

function should be performed, and this number should be recorded (Figure 2.7c). 4) The 

symmetry index is then calculated as a ratio of area difference to total area, which can 

then be converted to a "percent difference." Therefore:

Symmetry Index = x/z 
Given that: rz - ri = x

rg -  X =  y  and 
2 y  +  X =  z  

Where: r% = outline contribution 
T2 = area difference 
rg = area in common

Example: Specimen 2 4 P W 3 4 0 - 1 12

ri (outline contributicm) =  1 1 6 0 2 2  

r% (area difference) ~  2 7 7 2 4 6  

r3 (area in common) = 2 1 4 0 6 7 4  

such that X = 1 6 1 2 2 4 ,  y = 1 9 7 9 4 5 0 ,  
z = 4 1 2 0 1 2 4  and 

symmetry index = 0 .0 3 9 1  (or 3.91% difference)

Calculation of the index as a ratio eliminates size effect. That is, larger bifaces have the 

potential for much higher numbers overall and thus would appear less symmetrical than 

smaller bifaces regardless of actual symmetry. As the index number approaches zero, the 

object is more symmetrical since the area difference makes a smaller contribution to the

equation.
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The Symmetry Index Pilot Study The symmetry index functions under the 

assumption that the makers of bifaces would not strive for perfect symmetry if the goal 

was to produce cores or long use-life tools, whereas bifaces produced according to a 

preconceived mental template and intended for use as finished projectile points would be 

more likely to reflect that ideal. In order to test this theory, illustrations of twenty-six 

finished projectile points from various sources and representative of a wide range of 

temporal and cultural affiliations; illustrations of ten bifaces representative of each of 

Callahan's stages (2, 3, and 4; taken directly fi-om Callahan 1979); illustrations of the 

fifty-three Avon site bifaces, divided by stratigraphie level; and thirty-two illustrations of 

generically termed "bifaces" from the literature were subjected to the protocol for 

assessing bifacial symmetry, described above. The collection of finished projectile points 

includes Clovis points from the Anzick site (Frison 1991:42), Clovis points from the 

Fenn Cache (Frison 1991:44), Goshen points from Carter/Kerr-McGee (Frison 1991:52), 

Agate Basin points from the Agate Basin type site (Frison 1991:60), Hell Gap points from 

the Casper site (Frison 1991:61), Alberta points from the Hudson-Meng site (Frison 

1991:63), Alberta-Cody points from the Homer site (Frison 1991:65), Besant points from 

the Muddy Creek site (Frison 1991.106), Dalton points from the central/southern Plains 

(Kay 1998:187), a Lecroy bifurcate point from Pennsylvania (Swope 1982:38), and a 

Dovetail point from Tennessee (Swope 1982:92). Ten illustrations of each of Callahan’s 

bifacial stages (2, 3, and 4) were taken directly from Callahan's work (1979). Digital 

renderings of fifty-three bifaces from the Avon site were used in this study. These were 

recorded and analyzed according to stratigraphie level, including Levels A, B, and C, and 

"surface" This last category includes bifaces that were surface collected before
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excavation of the units had begun as well as bifaces thought to have been surface 

collected from the greater Avon site area. Finally, illustrations of 32 "bifaces" were used 

for comparison in this pilot study. These include specimens from Vermilion Lakes, 

Alberta (Fedje et al. 1995); the Carter/Kerr-McGee site (Frison 1984); Frank's Folsom 

Campsite (Stanford and Broilo 1981); the Sims site, Tennessee (Adair 1976); 

Lindenmeier (Wilmsen and Roberts 1979); the Mount Jasper site (Gramly 1980); and the 

Homer site (Bradley and Frison 1980; Frison 1980).

The methods described above were used to calculate symmetry indices for all 141 

bifaces. The indices for each study group were then plotted on continua and analyzed 

relative to one another in order to recognize trends among different types of bifaces. It 

was hypothesized that if the symmetry index is able to detect small variances in symmetry 

among different stages of projectile point production, it will be illustrated by the 

distribution of the sample groups' symmetry indices on the continua. Then descriptive 

statistics, including mean, median, inter-quartile range and extreme scores, were 

calculated for each group and compared to one another. The results of this pilot study are 

presented in the next chapter.

Quantitative Analyses The quantitative analyses described below were selected 

for three reasons: 1) to discern whether there are statistically significant differences 

between bifaces as preforms and bifaces as cores, 2) to determine whether the symmetry 

index is a useful tool in assessing those differences, and 3) to compare the validity of 

visual assessments of bifaces to that of assessments using quantifiable variables.

Data from fifty three bifaces from four different culture-bearing strata of the Avon



52

site (24PW340) were used in the quantitative analyses. Unfortunately, the other data sets 

used in symmetry index pilot study (preforms produced by Callahan through replicative 

experimentation [1979], a group of generically termed “bifaces” from the literature, and 

illustrations of 26 finished projectile points) had to be excluded from the present analyses 

since other variables considered here, such as weight, width, width/thickness ratio and 

edge angle, were not consistently provided in the sources from which they were drawn.

The variables considered in these analyses and coded using the SPSS statistical 

package (version 11.0) included material, width, thickness, width/thickness ratio, edge 

angle, symmetry index, weight, the presence or absence of usewear, evidence of thermal 

alteration, break type, symmetry index value, and subjective value. Material type was 

coded using an ordinal scale, where 1 equals chert (cryptocrystalline), 2 equals marl (also 

cryptocrystalline but not an ideal knapping material), 3 equals a mix of chert and marl 

(the marl that crops out near the Avon site was invaded by silica in the geologic past and 

some archaeological specimens contain elements of both), 4 equals basalt, and 5 equals 

quartzite (Table 2.4). Width, thickness and width/thickness ratio were measured in 

millimeters and recorded at the landmarks provided by Callahan (1979) in order to justify 

the initial comparison of the two data sets. Edge angle was taken as a spine plane 

measure on one lateral margin of each biface at a point though to be representative of the 

mean edge angle of the specimen. The symmetry index was calculated as described 

above. Weight was measured in grams and hundredths of grams. The previous five 

measures were recorded as ratio scale variables (Table 2.5). Artifacts that bear evidence 

of utilization were coded with a 1 ; artifacts that were not utilized were coded with a 2; 

and when it could not be established whether and artifact had been utilized, the number 3
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Table 2.4. Ordinally scaled variables and the designations for each value
Value M aterial Type Use W ear Thermal Alteration "Symm. Index Val." "Subjective Val."

chert
marl

chert/marl
basalt
quartzite

present present >5.0 probable preform
not present not present 4.9 - 2.0 probable core
indeterminate indeterminate <1.9 indeterminate

Table 2.5. Ratio scaled variables and their units of measure

Variable Unit of Measure

Width millimeters
Thickness millimeters
Width/thickness ratio width (mm)/thick (mm)
Edge angle spine plane, degrees
Symmetry index area difference/total area (pixels)
Weight grams

was assigned. Artifacts that bear evidence of thermal alteration were coded with a 1 ; 

artifacts that were not thermally altered were coded with a 2; and when it could not be 

established whether an artifact had been thermally altered, the number 3 was assigned. 

Break type was recorded as a set of nominally scaled variables and includes perverse 

fracture, lateral snap, no break, and indeterminate (Table 2.6).

Table 2.6. Nominally scaled variables and their values

Break type Value 1 Value 2

Break present absent
Perverse fracture present absent
Lateral snap present absent
Indeterminate yes no
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Based on information derived from the symmetry index pilot study, I 

hypothesized that bifaces with symmetry indices above 5.0 are most likely to represent 

cores. Those with symmetry indices below 1.9 are almost certainly projectile points or 

late stage preforms, and those between 4.9 and 2.0 are indeterminate since many 

preforms—both early and late stage—and some probable cores fall within this range. 

Organizing the cases in this way permits analysis of whether these groups, specifically the 

probable cores versus the probable preforms, share other attributes in common.

Therefore "symmetry index value" was scaled ordinally (l=symmetry index >5.0, 

2=symmetry index between 4.9 and 2.0, 3=symmetry index < 1.9 (Table 2.4). Finally, 

the "subjective value" variable was derived by visually assessing the bifaces in the Avon 

collection. Those with surface features (such as flaking pattern, facial fineness, sinuosity 

of edges, and others) that appear to be probable projectile point preforms were assigned 

the number 1. Bifaces that appear to represent probable cores were assigned the number 

2 and those whose probable function is indeterminate were assigned the number 3.

A number of multivariate quantitative analyses were performed on the Avon 

biface data using the SPSS statistical package (Version 11.0). The methods discussed 

below have explanatory power regarding the research questions posited here: Are there 

significant and discernable differences between bifaces intended ultimately for use as 

projectile points (preforms) and those intended for use as cores, and is symmetry a useful 

variable in determining these differences?

Contingency tables were calculated for sets of variables in order to discern 

whether the makers of the bifaces from the Avon site expressed a preference for 

combinations of particular attributes. The ability to recognize statistical preferences for
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particular combinations of attributes potentially offers insights into knapper behavior. 

Understanding knapper behavior, then, allows further analyses of overall technological 

organization and mobility strategies. The results of the Chi-squared tests for 

independence are discussed in the next chapter.

A factor analysis was performed on the Avon biface data. Width, thickness, 

width/thickness ratio, edge angle, symmetry index and weight were entered as the 

variables under consideration. The extraction method used was Principal Components 

Analysis and the component matrix was rotated using the Varimax rotation method with 

Kaiser Normalization. After the factor analysis was interpreted, the factor scores were 

used to perform a Q-mode hierarchical clustering analysis, using an average linkage 

method. Q-mode analyses crate a numerical taxonomy of individual cases (bifaces).

That is, SPSS links the bifaces considered most similar based on the factor scores 

provided, and constructs a dendrogram illustrating the iterations in which bifaces and 

groups of bifaces were linked. Groups of linked bifaces can then be evaluated for other 

similarities and broad patterns of knapper behavior can be interpreted.

Discriminant function analysis is a powerful tool for assessing the effectiveness of 

particular variables selected in determining specimen membership in a particular group. 

The Avon data were subjected to two such analyses. In the first analysis, "symmetry 

index value" was selected as the grouping variable and the range was defined as 1 to 3 (1 

= >5.0, 2 = 4.9-2.0, 3 = <1.9). The independent variables used were material, thickness, 

width, width/thickness ratio, edge angle, symmetry index, presence/absence of use wear, 

break type, weight, and presence/absence of thermal alteration. Group statistics were 

produced and examined, as were the casewise statistics.
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Since the results provided by discriminant function analysis, which is a 

multivariate quantitative analysis, do not have any statistical significance as such, two- 

sample t-tests were performed. The means values of the >5.0 sample (probable cores) 

were compared to those of the <1.9 sample (probable preforms) for all of the ratio scaled 

variables (thickness, width, width/thickness ratio, edge angle, symmetry index, and 

weight) collected from the Avon bifaces. I performed these tests in order to discern 

whether, statistically speaking, the samples could have been drawn from the same 

population.

In the second discriminant function analysis, "subjective value" was selected as 

the grouping variable and the range was defined as 1 to 3 (1 = probable preform, 2 = 

probable core, 3 = indeterminate). The independent variables used were material, 

thickness, width, width/thickness ratio, edge angle, symmetry index, presence/absence of 

use wear, break type, weight, and the presence/absence of thermal alteration. Group 

statistics were produced and examined, as were the casewise statistics. Two-sample t- 

tests were performed, comparing the data from the subjectively identified probable cores 

to that from the probable preforms for all of the ratio scaled variables (thickness, width, 

width/thickness ratio, edge angle, symmetry index, and weight). The results of these 

analyses are presented in the following chapter.

The Avon Debitage—Theoretical Justification and Methods of Data Collection

Although the Avon biface analyses offer some valuable insights into the type of 

lithic technological organization employed by the producers of that collection, it is 

judicious to seek support of any hypothesis from multiple lines of evidence. The majority
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of the artifacts recovered from the Avon site are debitage. Debitage offers the potential to 

understand the types reduction techniques and, potentially, the goals of production at a 

site. Magne (1989:15) says.

[bjeing an immediate byproduct of manufacturing activity, debitage 
largely escapes curative efforts (Collins 1975, Magne 1985); it is also 
abundant, widespread and therefore suited to statistical manipulation 
(Collins 1975, Magne 1985). Debitage retains evidence of prior 
manufacturing steps, thus its variability must in some ways be related 
directly to the formal variability of intended products of manufacture.

Thus, I considered a debitage analysis a useful compliment to the biface analyses, in that 

it could offer another line of evidence of the goal or goals of production at the Avon site. 

The Avon site data, then, could be offered as supporting evidence for either the high-tech 

forager model (Kelly 1988; Kelly and Todd 1988) or the argument that the archaeological 

record does not support that model strongly (Bamforth 2002).

Given the volume of debitage from the Avon site (N=5752) and the dubious 

nature of its provenience (see below), an exhaustive analysis of each artifact was neither 

practical nor worthwhile in the greater scheme of interpreting knapper behavior at the 

Avon site. Rather, a distinctive aggregate approach was employed. Using the Modified 

Sullivan and Rozen Typology (Prentiss 2001), I was able to consider the debitage fix>m 

each stratigraphie level of the Avon site as a group in order to address broad patterns of 

behavior.

The Sullivan and Rozen Typology (1985; Sullivan 1987) and a modified version 

of that approach (the Modified Sullivan and Rozen Typology [MSRT]; Prentiss 2001) 

play a key role in the analysis of the Avon site debitage. Five flake-completeness 

categories are used in the following analyses: non-orientable pieces, medial-distal



58

fragments, split flakes, proximal fragments and complete flakes. Non-orientable pieces 

lack a single, identifiable interior surface. Medial-distal fragments exhibit a single 

ventral surface, but lack an identifiable point of applied force (initiation). Split flakes 

exhibit a single ventral surface and an identifiable initiation, but have a sheared axis of 

flaking (i.e. they are split perpendicular to the point of applied force). Proximal 

fragments have a single ventral surface and an identifiable point of applied force but lack 

an identifiable termination.

Sullivan and Rozen assert that hard hammer percussion, often associated with 

core reduction, will produce high percentages of complete flakes and non-orientable 

pieces relative to other flake types (1985). This assertion is based on the observation that 

hard hammer reduction tends to yield relatively thick flakes that remain complete, or else 

shatter under the force of the percussor, resulting in non-orientable pieces. Conversely, 

soft hammer percussion, often associated with biface thinning and tool production, tends 

to produce thinner flakes that are prone to snapping, thereby increasing the percentages of 

medial-distal and proximal fragments in an assemblage. Sullivan and Rozen state that 

“[t]he high proportion of broken flakes and flake fragments...  is related to the 

mechanical failure of very thin flakes which separate into several pieces during biface or 

tool manufacture” (1985:769). However, Prentiss and Romanski (1989:92) assert that 

among their experimental data,

tool production consistently results in far more numerous complete 
flakes than core reduction. Moreover, almost as many proximal 
fragments are found in core reduction assemblages as are found in tool 
production assemblages. This contradicts Sullivan and Rozen’s 
assumption that tool assemblages should contain exceptionally high 
numbers of proximal fragments and low numbers of complete flakes 
compared to core reduction assemblages.
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Furthermore, Prentiss (1998:647-648) has shown Üiat

though reliable, the SRT [Sullivan and Rozen Typology] does not 
appear to be a valid measuring instrument, at least for application to 
highly vitreous raw materials such as obsidian and perhaps other more 
brittle raw material types such as vitreous basalt or perhaps some fine
grained cherts.. .  While the SRT allows rapid data collection from large 
sized assemblages, it also collapses variability, which is typically 
partitioned along flake size dimensions. . . The resulting data are often 
homogenized to the point that "tool’ production takes on many of the 
characteristics of ‘core’ reduction and vice versa.

Prentiss went on to explore the combination of flake-completeness and flake size 

in debitage analyses in an attempt to remedy the collapse of variability under the SRT 

(2001). He established a series of size classes (“small: .64 to 4 sq cm; medium 4 to 16 sq 

cm; large: 16 to 64 sq cm; and extra large: >64 sq cm” [Prentiss 2001:148]) and then 

sorted debitage fi-om a number of experimental assemblages, produced by various 

reduction techniques, according to size class and Sullivan and Rozen flake completeness 

type. He found that “core and tool reduction resulted in distinctively different debitage 

distributions. Core reduction assemblages tended to produce more numerous larger, 

complete, proximal and split flakes, in addition to medium medial-distal and non- 

orientable fi-agments and small non-orientable fi-agments. Tool production assemblages 

resulted in more frequent small medial-distal and proximal fiagments and very few to no 

non-orientable fiagments” (2001:171). The MSRT was used to analyze the Avon site 

debitage, since it combines flake-completeness and flake size and is thus a more effective 

tool in distinguishing core reduction firom tool production.

The MSRT is indeed an effective tool in distinguishing core reduction from tool 

production. However, Prentiss' (1998,2001) experimental collections were produced on 

Glass Butte obsidian and his observations, therefore, reflect the results of reduction
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activities on a far more brittle material than that found at the Avon site. The Avon 

chert/marl is a tougher raw material than Glass Butte obsidian, and so we can expect 

slightly different proportions of flake completeness types among assemblages produced 

during Avon chert/marl reduction events. Logic dictates that this would be most evident 

in the proportion of complete flakes among the Avon debitage as compared to that of 

Prentiss' (1998, 2001) obsidian assemblages. The tougher Avon material is expected to 

produce higher proportions of complete flakes regardless of production goal than the 

more brittle obsidian in Prentiss' experiments. While the MSRT is still used as an 

analytical tool in this thesis, I found it necessary to augment that approach with another in 

order to assess the Avon debitage through multiple lines of evidence in an attempt to 

correct for any biases inherent in the Avon material type.

Small-sized debitage (following Baumler and Downum [1989:101], "arbitrarily 

defined as lithic manufacturing waste between 1 and 20mm in maximum dimension") 

offers a unique opportunity to study lithic reduction sequences and production goals. 

Baumler and Downum (1989:101) suggest that "different lithic reduction and assemblage 

formation processes result in variable proportions of large and small byproducts and that 

these differences can be useful in inferring the responsible processes." They go on to 

describe "an experimental study to investigate the morphological characteristics of small

sized debitage generated by two fundamental activities in lithic reduction:. . .  1 ) core 

reduction/flake production and 2) tool manufacture/retouch" (Baumler and Downum 

1989:101 -102). Through these experiments, they found that "core reduction consistently 

produced higher percentages of shatter and lower percentages of complete flakes than 

scraper manufacture [tool production]" (Baumler and Downum 1989:106). Although
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Baumler and Downum focus on the debitage group between 2 and 4 mm maximum 

dimension, I believe that their findings are also applicable to the small size class of 

debitage from the Avon site. The small size class at Avon, in accordance with Prentiss' 

(2001) definition of that size class is 0.64-4 squared centimeters, or 8-20 mm maximum 

dimension. Therefore, the Avon material was also analyzed in light of these conclusions.

Methods As part of her Master’s thesis research, Leslie Riley (2004) passed all of 

the Avon Site debitage through a series of nested screens and assigned size class labels of 

G1-G4 accordingly. Gl, the largest screen in the series, measures 2.54 cm  ̂(1”) per 

aperture. G2 measures 1.27 cm  ̂(0.5”) per aperture, G3 measures 0.635 cm  ̂(.25”) and 

G4 measures 0.318 cm  ̂(0.125”). Riley then sorted each size class by material type: 

marl/chert, basalt and "other." The marls and cherts were classified together and may 

actually include marls, porcellanites and cherts, given the formation processes described 

by Fields (1984). Fields goes on to note that "[i]t is difficult to distinguish a marl from a 

porcellanite without very detailed and sophisticated study. It is even more difficult where 

authogenic chert, chalcedony or opal has invaded the system via groundwater and altered 

the original structure. In the case of the Avon Chert' all of these features are present"

( 1984:17). Furthermore, it is likely that all of the cherts and silicified marls came from 

one of two places—the Antelope Hill/Rhine Point quarries or the pediment capping 

gravels along the Strickland Creek—thus making their differentiation superfluous; the 

source(s) of the lithic materials present at the Avon site is irrelevant to the goal of this 

paper. The "other" materials consist of those things not readily identifiable and materials 

whose characteristics do not match those described by Fields (1984) for locally-occurring 

materials.
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In an initial analysis of the Avon site. Level C debitage, I attempted to apply 

Prentiss’ (2001) findings to the debitage as it was size-classed by Riley (2004). During 

that analysis, each bag of debitage, as sorted by Riley according to stratigraphie level, size 

class and material type, was further sorted into five flake-completeness categories: non- 

orientable pieces, medial-distal fragments, split flakes, proximal fragments and complete 

flakes. Counts were made according to level, material type, size class and flake- 

completeness type. These counts were recorded, converted to percentages and graphed in 

bar charts. However, the size classes used by Prentiss (2001) and Riley (2004), 

respectively, do not correspond and the first analysis was laden with contingencies: for 

example, i f  size class Gl is comprised mostly of debitage that would fall into Prentiss' 

"large” size class, then and only then can it be assumed that core reduction was the 

primary reduction strategy at the Avon site during the Level C occupation. I was unable 

to draw any satisfactory conclusions regarding the technological foci of the three 

stratigraphie levels at Avon. Therefore, a reorganization of the Avon debitage was 

necessary.

In a more recent study of the Avon debitage, each stratigraphie level and material 

type was sorted according to the following size classes: extra large (>64 sq cm), large 

(16-64 sq cm), medium (4-16 sq cm) and small (0.64-4 sq cm), following Prentiss (2001). 

Squares of the appropriate dimensions for each size class were drawn on a piece of paper. 

Each piece of debitage was placed on the size class diagram with its dorsal face up and its 

proximal end touching the top of the square thought to best represent its size class. If any 

dimension of the piece exceeded the dimensions of the square, that piece was included in 

the next highest size class. Non-orientable and medial-distal fragments were admitted to
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the next highest size class if their maximum dimension exceeded the dimensions of a 

particular square, regardless of orientation within the square.

Each size class was then further sorted using the Sullivan and Rozen (1985; 

Sullivan 1987) flake-completeness typology. Counts were made according to 

stratigraphie level, material type, size class and flake-completeness type. These counts 

were recorded, converted to percentages and graphed in bar graphs. Finally, during the 

sorting and counting, notations were made regarding the presence of cortex, the frequency 

of blade-like flakes, and the amount of debitage that shows evidence of thermal alteration. 

The results and analysis of this study are presented and interpreted in the following 

chapter.

Summary

This thesis aims to address biface production goals among prehistoric knappers.

If there are real and quantifiable differences between bifaces produced for use as portable 

cores and bifaces produced as projectile point preforms, then by making detailed 

observations of these differences and applying them to archaeological contexts we might 

better understand Paleoindian lithic technological organization and môbility strategies. I 

hypothesize that symmetry plays a key role in our ability to determine these differences 

and I offer an index for quantifying bilateral symmetry on bifacial artifacts. Methods of 

employing the symmetry index were outlined in this chapter. A number of multivariate 

quantitative analyses were outlined as well, which are intended to substantiate the claim 

that the symmetry index is a useful tool. Finally, since hypotheses are strengthened by the 

use of multiple lines of evidence, 1 have also outlined the methods used to assess
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production goals at the Avon site through an aggregate analysis of the debitage from that 

site. In the following chapter, the results produced by the methods outlined here are 

presented.



Chapter Three 
Results

The symmetry index described in the previous chapter was designed to quantify 

bilateral symmetry on bifaces. I believe that symmetry plays a key role in our ability to 

determine the difference between bifacial cores and projectile point preforms, when the 

difference is not readily apparent by more traditional means. While the bifaces are of 

primary importance to this thesis, in that I believe their level of bilateral symmetry to be a 

key indicator of production goals, an analysis of the debitage offers a secondary line of 

evidence for knapper behavior. By assessing the Avon site bifaces in conjunction with 

the debitage, I hope to more fully understand the goals of production at that site. 

Understanding production goals among prehistoric knappers, and particularly 

Paleoindians, is crucial to our understanding of other patterns of behavior, such as overall 

technological organization and the mobility strategies that such organizations are thought 

to represent. The Avon site has been selected as the archaeological site with which to test 

the hypothesis that there are real and significant differences between bifaces produced for 

use a projectile points and bifaces produced for use as cores and that the degree of 

bilateral symmetry present among bifaces can be indicative of such differences.

The following is a presentation of the results produced when the theories and methods 

described in the previous chapter were applied to the Avon materials and the biface study 

collections.

As in previous chapters, in order to discuss each theme in as straightforward a 

way as possible, this chapter is divided into sections. The first section reports the results 

of the symmetry index pilot study. Descriptive statistics for each of the study groups are

65
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provided and their distributions relative to one another are discussed. The results of the 

multivariate quantitative analyses are presented in the second section. This includes a 

detailed report of the results of each analysis and an interpretation of the results. The 

final section contains a detailed report of the classification of the debitage using the 

Modified Sullivan and Rozen Typology (Prentiss 2001) and Baumler and Downum's 

(1989) observations. This is followed by an analysis and interpretation of the distribution 

of flake-completeness types among the different stratigraphie levels, size classes and 

material types. Insofar as they are relevant to an interpretation of the Avon site and the 

determination of production goals at Avon, this section also includes a description of 

other artifacts fi’om the site.

Biface Analyses 

The Symmetry Index Pilot Study

Symmetry indices were calculated for each of the bifaces from the various study 

groups: illustrations of 26 finished projectile points firom various sources and 

representative of a wide range of temporal and cultural affiliations; illustrations of ten 

bifaces representative of each of Callahan's stages (2,3, and 4; taken directly from 

Callahan 1979); illustrations of the 53 Avon site bifaces, organized by stratigraphie level; 

and a sample of 32 illustrations of generically termed "bifaces" fi’om the literature. The 

indices were then rendered graphically in order to interpret the results. The descriptive 

statistics for each group's symmetry indices show a well-defined progression through 

Callahan's stages and into finished projectile points (Figure 3.1). Callahan's stage 2 

bifaces produced a mean symmetry index of 6.13, with a standard deviation of 1.42 and
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Figure 3.1. Descriptive statistics regarding the symmetry indices of the various study groups

extreme scores of 3.65 and 8.06. Callahan's stage 3 bifaces produced a mean symmetry 

index of 3.97, with a standard deviation of 1.21 and extreme scores of 2.31 and 6.26. 

Callahan's stage 4 bifaces produced a mean symmetry index of 2.85, with a standard 

deviation of 1.38 and extreme scores of 1.33 and 5.92. The group of finished projectile 

points produced a mean symmetry index of 2.37, with a standard deviation of 1.42 and 

extreme scores of 0.53 and 5.41.

The archaeological collections show much less pronounced patterns. The group 

of generically-termed "bifaces" produced a mean of 3.65, with a standard deviation of
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2.26 and extreme scores of 0.98 and 11.13. The Avon site "surface" bifaces produced a 

mean symmetiy index of 4.31, with a standard deviation of 1.76 and extreme scores of 

1.39 and 10.48. The Avon site. Level A bifaces produced a mean symmetry index of 

3.72, with a standard deviation of 1.46 and extreme scores of 1.67 and 6.10. The Avon 

site. Level B bifaces produced a mean symmetry index of 4.52, with a standard deviation 

of 2.00 and extreme scores of 2.08 and 10.18. The Avon site. Level C bifaces produced a 

mean symmetry index of 4.62, with a standard deviation of 2.93 and extreme scores of 

1.44 and 11.88. The broad ranges present among the archaeological collections are 

harder to interpret than the progression from early stage to late stage preforms and 

projectile points described above. In an attempt to tease out patterns from among these 

data sets, the symmetry index numbers for each group were plotted singly and then 

compared.

The symmetry indices for each study group were plotted on continua and 

compared directly to one another (Figure 3.2). The distribution, where zero equals 

perfect symmetry, further illustrates the functional utility of the method and allows for a 

more informed analysis of the archaeological collections. As we would expect, the 

finished projectile points cluster closest to perfect symmetry, between zero and three 

percent difference, with a few outliers. Following these are Callahan's stage 4 bifaces, 

which are farthest along in the sequence of production of finished projectile points, often 

lacking only the fluting and finishing retouch on the lateral margins. These are grouped 

between 1.5 and 2.5 with some outliers. Next are the stage 3 preforms, which are slightly 

less finished than stage 4 preforms, and grouped between 3.0 and 4.0. And finally stage 

2, with the majority of the specimens falling between 6.0 and 8.0 percent difference.
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Figure 3.2. Symmetry indices for each study group plotted on continua

Given the distributions of the study collections (finished projectile points and Callahan's 

stages of projectile manufacture), and visual assessment of the surface characteristics of 

both illustrated and physical specimens, I hypothesize that bifaces with indices greater 

that 5.0 are most likely to represent bifacial cores, while those with indices below 2.0 

almost certainly represent projectile point preforms.

By comparing them with the sample groups whose goal of production is 

unambiguous (i.e. finished projectile points and Callahan's experimentally produced
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stages of projectile point manufacture) we can interpret the archaeological collections in a 

more informed way. The "surface" bifaces (N=13) seem to be most similar to Callahan's 

stage 2-3 preforms. Three of the surface bifaces have symmetry indices above 5.0, which 

may be indicative of bifacial core use in addition to the preform manufacture suggested 

by the majority of the bifaces from this level. The majority have indices between 3.0 and 

5.0—closely resembling Callahan's stage 2-3 preforms. Four of the bifaces with indices 

between 3.0 and 5.0 exhibit breaks that are consistent with failure during preform 

thinning. Three of the "surface" bifaces have indices near 2.0, which suggests late stage 

preform manufacture. Though the provenience of these "surface" artifacts is vague, it 

appears that projectile point manufacture was the chief focus among the producers of this 

collection.

The bifaces from Level A of the Avon site (N=9) fall into three categories: those 

with indices above 5.0 (N=2), those between 3.0 and 5.0 (N=3) and those with indices 

just above or below 2.0 (N=4). The majority of the bifaces from this level most closely 

resemble Callahan's stage 3-4 bifaces, and so it appears that Level A is also dominated by 

the production of projectile point preforms.

Of the Level B bifaces (N=22), eight have symmetry indices in excess of 5.0 and 

may represent bifacial cores. Three of the Level B bifaces have indices at or just above 

2.0, and these are very likely projectile point preforms. The remaining majority has 

indices between just under 3.0 and 5.0 and most closely resemble Callahan's stage 3.

Relatively speaking. Level B has the highest percentage (36.4%) of bifaces with 

high symmetry indices. Whether this level represents a period of incipient bifacial core 

use, or the activities of a culturally-distinct, bifacial core-using group cannot be
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determined from the evidence at hand. This level not only produced the most bifaces, but 

it also produced the least amount of debitage. Therefore, a strong argument could not be 

made for increased overall activity thereby increasing the likelihood that bifaces with 

high symmetry indices would be discarded.

The bifaces from Level C of the Avon site are grouped between 3.0 and 4.0 

percent difference, with three exceptions: one above 5.0 and two below 3.0. The majority 

(3 of 5) of the bifaces in the group between 3.0 and 4.0 exhibit breaks consistent with 

manufacturing errors during preform thinning. These correspond most closely to 

Callahan’s stage 3. However, the asymmetrical outlier may be representative of a biface 

intended for use as a core. Still, similar to the other stratigraphie levels, projectile point 

production appears to have been the central focus of production during the Level C 

occupation.

The sample of bifaces derived from the literature regarding Folsom and late 

Paleoindian sites (N=32) was analyzed in a similar manner in order to get a sense of the 

types of bifaces being found in the archaeological record. For the most part these are 

termed simply and ambiguously "bifaces” in the references from which they were drawn, 

and their function is often neither stated nor implied. When we consider the way they are 

distributed along the continuum, we see that there is a broad range, with a concentration 

between 2.0 and 4.0 (N=15), but with a number of specimens whose symmetry indices 

exceed 5.0 as well (N=7). This suggests that this group of generically termed "bifaces" 

may actually be representative of both preforms and bifacial cores.

These preliminary analyses support the functional utility of the symmetry index.

It appears that the symmetry index is able to detect slight differences in symmetry and
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that there are recognizable differences in average symmetiy indices between each of 

Callahan's stages and finished projectile points. In order to substantiate these claims, I 

performed a number of multivariate quantitative analyses using the Avon biface data.

The results of these are described below.

Quantitative Analyses

The results of the quantitative analyses make a strong case for the use of an index 

of symmetry in the assessment of bifacial artifacts and biface production goals. The 

following are the results of those analyses.

Chi-squared tests of independence were performed on attributes of the Avon 

bifaces in order to determine whether the makers of the bifaces expressed preferences for 

certain combinations of attributes. The ability to recognize statistical preferences for 

particular combinations of attributes potentially offers insights into knapper behavior. 

Understanding knapper behavior, then, allows further analyses of overall technological 

organization and mobility strategies. Among the attribute combinations examined for the 

Avon bifaces, there is a significant relationship between material type and "symmetry 

index value" (bifaces are grouped according to whether they are >5.0 symmetry index, 

between 4.9 and 2.0, or <1.9 symmetry index). The Chi-squared value for the table is 

significant at the 0.001 level with 8 degrees of freedom (Table 3.1). That is, the 

calculated Chi-squared value exceeds the Chi-squared tabled value at the 99.9% 

confidence interval. Therefore, 1 reject my null hypothesis of independence and conclude 

that there is a relationship between material type and symmetry index value. A bar chart
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Table 3.1. Chi-Squared value for material type and ‘‘symmetry index value’

Value df Asymp. 
Sig. (2- 
sided)

P earson 25.579 8 .001
Chi-Square
Likelihood 18.511 8 .018

Ratio
Linear-by- 8.783 1 .003

Linear
Association
N of Valid 53

C ases

of the data shows that bifaces with symmetry indices above 5.0 are made exclusively of 

chert and marl with the exception of one basalt biface with a high symmetry index 

(Figure 3.3). Furthermore, there are no bifaces with symmetry indices below 1.9 

produced on chert. The data suggest that the makers of these artifacts expressed a 

preference for large, asymmetrical bifaces made on chert and marl and fine, symmetrical 

bifaces of basalt and quartzite. It is possible, however, that the disparity is representative 

of incipient flaws in the chert and marl which caused breakage at earlier stages of 

projectile production resulting in a disproportionate representation of large, asymmetrical 

bifaces among these material types.

Other contingency tables showed significant correlations at or above the 90% 

confidence level. Close examination of these relationships revealed that their explanatory 

power was limited, however, and they were excluded from final analysis of the Avon site 

bifaces. For example, the correlation between symmetry index value and whether an 

artifact was thermally altered was significant at the 0.09 level (Table 3.2). Only a very 

small percent (3.8%) of the total sample (N=53) was thermally altered. Two thermally
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Figure 3.3. Symmetry index values among material types from Avon

Table 3.2. Chi-Squared value for thermally altered and “symmetry index value"

Value df Asymp. 
Sig. (2- 
sided)

P earson  Chi- 
S quare

4.806 2 .090

Likelihood
Ratio

4.975 2 .083

Linear-by-
Linear

Association

3.626 1 .057

N of Valid 
C a se s

53
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altered bifaces with symmetry indices >5.0 were observed when 0.6 were expected, 

resulting in a Chi-squared contribution of 3.27, which accounts for the majority of the 

calculated Chi-squared value. This figure seems to offer little by way of explanation of 

whether the makers of the Avon bifaees expressed a preference for thermal alteration of 

asymmetrical bifaces.

The factor analysis produced some very interesting results. When width, 

thickness, width/thickness ratio, edge angle, symmetry index and weight were entered as 

the variables under consideration, greater than 72.5% of the total variance was explained 

by the first two factors generated, with factor one contributing 53.57% of that figure 

(Table 3.3). Factor one was characterized by high positive loadings on width (0.956), 

thickness (0.867), edge angle (0.624) and weight (0.885). I determined this to be a 

general size factor. Factor two was characterized by a moderate positive loading on 

symmetry index (0.689) and a high negative loading on width/thickness ratio (-0.814). I 

determined this to be a factor dealing primarily with shape, expressing an inverse 

relationship between the two variables (Tables 3.4-3.5). That is, as width/thickness ratio 

increases, symmetry index decreases. This is to be expected, since high width/thickness 

ratios denote broad, thin bifaces, characteristic of projectile points and late stage 

preforms. As symmetry index decreases, the more symmetrical the biface, and the more 

likely it is to be a finished projectile point or a late stage preform. These factor scores 

were saved as variables and subjected to a Q-mode cluster analysis. Since size is not 

strongly relevant to the study at hand, the first factor was not considered.
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Table 3.3. Principal Component Analysis: initial statistics.
Initial

Eigenvalue
s

Extractio 
n Sum s 

of
Squared
Loadings

Rotation 
Sum s of 
Squared 
Loadings

Com ponen
t

Total % of 
Variance

Cumulative
%

Total % of 
Variance

Cumulative
%

Total % o f
Variance

Cumulativ
e %

1 3.214 53.568 53.568 3.214 53.568 53.568 2.857 47.622 47.622
2 1.143 19.054 72.623 1.143 19.054 72.623 1.500 25.000 72.623
3 .806 13.433 86.056
4 .537 8.948 95.004
5 .221 3.685 98.689
6 7.866E-02 1.311 100.000

Width Thickness W/T Ratio Edge
Angle

Symmetry
Index

W eight

Correlation Width 1.000 .807 -.031 .505 .108 .787
Thickness .807 1.000 -.453 .655 273 .746
W/T Ratio -.031 .453 1.000 -.320 -.216 -.203

Edge
Angle

.505 .655 -.320 1.000 .275 .453

Symmetry
Index

.108 .273 -.216 .275 1.000 .200

Weight .787 .746 -2 0 3 .453 .200 1.000
S ig .(1- 
tailed)

Width .000 .414 .000 .221 .000

Thickness .000 .000 .000 .024 .000
W/T Ratio 414 .000 .010 .060 .072

Edge
Angle

.000 .000 .010 .023 000

Symmetry
Index

.221 .024 .060 .023 .075

Weight .000 .000 .072 .000 .075

Table 3.5. Principal Component Analysis; rotated component matrix. Rotation Method: Varimax with

Com ponent
1 2

Width .956 -6.696E-02
Thickness .867 .385
W/T Ratio -9.998E-02 -.814

Edge
Angle

.624 .449

Symmetry
Index

9.226E-02 .689

Weight .885 9.877E-02
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Figure 3.4. Dendrogram produced through Q-mode hierarchical clustering analysis using factor scores and 
an average linkage method (between groups)
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Using an average linkage method, a dendrogram was generated which illustrates 

three general clusters of cases (Figure 3.4). Clustered in the first iteration were thirty five 

bifaces that share in common symmetry indices between 2.0 and 5.0, with three 

exceptions, and width/thickness ratios between 2.2 and 3.9. These represent the 

"symmetry index value" category 4.9-2.0 and likely contain both preforms and cores. 

Another ten bifaces were also clustered together in the first iteration based on high 

symmetry indices (>5.0, with one exception) and low width/thickness ratios. These 

represent the "symmetry index value" category >5.0, the probable cores. Six of the 

remaining seven bifaces were grouped together in three stages and share in common very 

low symmetry indices (<2.0, with one exception) and very high width/thickness ratios 

(>4.0). These represent the symmetry index value category <1.9, the probable preforms. 

This group makes up the third main cluster. A final biface, specimen 24PW340-52, was 

grouped last and seems to stand apart from the other bifaces in that it has an exceedingly 

high symmetry index (15.6).

The fact that the hierarchical clustering analysis produced groups of artifacts 

consistent with the "symmetry index value" groups is significant. Based on the "shape" 

factor produced during the factor analysis, which includes the amount of bilateral 

symmetry present in a given specimen, the program recognized a distinction betweeil 

bifaces that are likely representative of cores and those that are likely representative of 

projectile point preforms. This validates use of "symmetry index value" as a grouping 

variable in the discriminant function analysis.

The discriminant function analyses were perhaps the most useful method of 

addressing whether there are significant and identifiable differences between bifaces
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intended for use as projectile points and bifaces intended for use as cores. For the first 

analysis, “symmetry index value” was selected as the grouping variable and the range was 

defined as 1 to 3 (1 = >5.0, 2 = 4.9-2.0, 3 = <1.9). The independent variables used were 

material, thickness, width, width/thickness ratio, edge angle, symmetry index, utilized/not 

utilized, break type, weight, and presence/absence of thermal alteration. Regarding group 

statistics (Table3.6), bifaces with symmetry index values greater than 5.0 (N=16) share in 

common high mean width (47.81 mm), high mean thickness (16.69 mm), low mean 

width/thickness ratio (3.03), high mean edge angle (49.69°), and high mean weight (56.68 

g). That is, the less symmetrical a biface, the larger the overall dimensions. The middle 

class of bifaces (between 4.9 and 2.0; N=32) are difficult to interpret since that group is 

likely composed of different types of bifaces including both preforms (mostly late stage 

with a few early stage) and cores. The final class, (<1.9; N=5) is opposed to the first class 

(>5) in that it is characterized by high mean width (49.2 mm), low mean thickness (11.6 

mm), high mean width/thickness ratio (4.26), low mean edge angle (39.2°), and low mean 

weight (40.82 g). The opposition between the first (>5.0) and final (<1.9) "symmetry 

index value" classes is interesting since smaller overall dimensions do not necessarily 

dictate more perfect symmetry, nor are larger dimensions prerequisite for asymmetry. As 

suggested by the symmetry index pilot study outlined above and Christenson's studies of 

projectile point aerodynamics (1986), a high degree of symmetry, wide width and relative 

thinness, and low weight seem to have been held as the ideal during projectile point 

manufacture. This also underscores the usefulness of the >5.0/<l .9 categories in the 

determination of core versus preform.
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Table 3.6. Discriminant analysis using “symmetry index value” as the grouping variable: group statistics.

Mean Std. Deviation Valid N (listwise)
Symm Index Value Unweighted Weighted

>5.0 Material 1.7500 .77460 16 16.000
Width 47.8125 13.61112 16 16.000

Thickness 16.6875 6.27661 16 16.000
W/T Ratio 3.0344 .59639 16 16.000
Edge Angle 49.6875 11.82494 16 16.000

Symmetry
Index

7.6150 2.93191 16 16.000

Utilized 2.1875 .54391 16 16.000
Break Type 2.7500 1.23828 16 16.000

Weight 56.6750 40.91559 16 16.000
Thermally

Altered
1.8750 .34157 16 16.000

2.0-4.9 Material 2.0625 1.04534 32 32.000
Width 43.6328 12.32850 32 32.000

Thickness 13.8594 4.93708 32 32.000
W/T Ratio 3.3775 1.01149 32 32.000

Edge Angle 44.4375 7.58155 32 32.000

Symmetry
Index

3.4512 .79155 32 32.000

Utilized 1.8750 .65991 32 32.000
Break Type 1.9688 .64680 32 32.000

Weight 42.3184 36.28803 32 32.000
Thermally

Altered
2.0000 .00000 32 32.000

<1.9 Material 3.8000 1.30384 5 5.000
Width 49.2000 12.46295 5 5.000

Thickness 11.6000 1.55724 5 5.000
W/T Ratio 4.2600 .91701 5 5.000

Edge Angle 39.2000 5.49545 5 5.000

Symmetry
Index

1.5240 .31691 5 5.000

Utilized 2.0000 .70711 5 5.000
Break Type 2.2000 .44721 5 5.000

Weight 40.8160 25.34159 5 5.000
Thermally

Altered
2.0000 .00000 5 5.000

The casewise statistics show that the first discriminant function analysis only 

misclassified 5 of 53 cases, that is, 90.6% of the original grouped cases were correctly 

classified (Table 3.7). This suggests that the variables selected were very good predictors 

of which of the three pre-determined classes (>5.0,4.9-2.0, <1.9) each biface would be
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placed into. 1 am confident that using quantifiable size and shape variables to describe 

bifaces, archaeologists can accurately determine whether a particular bifaces was 

produced for use as a projectile point preform or for use as a core.

I then compared the mean values of all of the ratio scaled variables (thickness, 

width, width/thickness ratio, edge angle, symmetry index, and weight) of the probable 

cores (>5.0) to those of the probable preforms (<1.9) using Student's "t" for independent 

samples and 19 degrees of freedom (Table 3.8). Comparison of the mean width/thickness 

ratios of the two samples produced a calculated value of 6.32. Because the associated p is 

<0.001,1 conclude that there is a significant difference between the two samples.

Table 3.7. Discriminant analysis using “symmetry index value” as the grouping variables:

Predicted
Group

M embership

Total

Symm
Index
Value

>5.0 2.0-4.9 <1.9

Original Count >5.0 • 14 2 0 16
2.0-4.9 0 29 3 32

<1.9 0 0 5 5
% >5.0 87.5 12.5 .0 100.0

2.0-4.9 .0 90.6 9.4 100.0
<1.9 .0 .0 100.0 100.0

Table 3.8. Results of student’s t with 19 degrees freedom. All ratio scaled variable means for “symmetry

Variable Calculated t Associated p

Width/thickness ratio 6.32 <0.001
Symmetry index 3.41 <0.01
Thickness 1.77 <0.10
Edge angle 1.89 <0.10
Width 0.202 n/a
Weight 0.166 n/a



82

Comparison of the mean symmetry indices of the two samples produced a calculated 

value of 3.41. Therefore, I draw a similar conclusion since the associated p is < 0.01. 

Regarding thickness and edge angle the associated p is <0.10. For all of these values, 

therefore, I concluded that my samples were not likely drawn from the same population, 

and that there is a statistically significant difference between bifaces with symmetry 

indices >5.0 and those with indices <1.9 based on the attributes described here.

"Subjective value" was used as the grouping variable during the second 

discriminant function analysis in order to determine whether visual assessment was a 

useful method for distinguishing probable cores fi'om probable preforms. The 

independent variables used were material type, thickness, width, width/thickness ratio, 

edge angle, symmetry index, utilized/not utilized, break type, weight, and 

presence/absence of thermal alteration (Table 3.9). In this case, probable preforms 

(N=31) are characterized by a mean width of 40.36 mm, low mean thickness (11.71 mm), 

high mean width/thickness ratio (3.48), low mean edge angle (41.81°), low mean 

symmetry index (4.36), and relatively very low mean weight (33.65 g). On the other 

hand, the probable cores (N=7) are characterized by much higher mean width (56.64 

mm), high mean thickness (19.93 mm), lower mean width/thickness ratio (3.00), high 

mean edge angle (55.71°), and very high mean weight (89.16 g). The classification 

statistics indicate that 77.4% of the originally grouped cases were classified correctly (11 

misclassified cases; Table 3.10). This analysis shows that visually assessing bifaces and 

placing them into "probable preform" and "probable core" groups is not as effective a 

method of accurately classifying bifaces as quantifying symmetry and grouping bifaces 

according to their index numbers. Bifaces classified according to symmetry index
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Table 3.9. Discriminant analysis using “subjective value” as the grouping variable: group statistics

Mean Std.
Deviation

Valid N 
(listwise)

Subjective
Group

Unweighted W eighted

probable
preform

Material 2.2258 1.28348 31 31.000

Width 40.3629 12.52528 31 31.000
Thickness 11.7097 3.66691 31 31.000
W/T Ratio 3.4848 .49787 31 31.000

Edge Angle 41.8065 7.32766 31 31.000

Symmetry
Index

4.3610 2.61593 31 31.000

Utilized 1.9677 .75206 31 31.000
Break Type 2.2581 .81518 31 31.000

Weight 33.6494 31.40964 31 31.000
Thermally

Altered
1.9677 .17961 31 31.000

probable
core

Material 2.2857 .48795 7 7.000

Width 56.6429 11.27207 7 7.000
Thickness 19.9286 5.00357 7 7.000
W/T Ratio 3.0000 1.07784 7 7.000

Edge Angle 55.7143 10.64134 7 7.000

Symmetry
Index

5.5714 4.72760 7 7.000

Utilized 2.0000 .00000 7 7.000
Break Type 1.7143 .48795 7 7.000

W eight 89.1643 44.74492 7 7.000
Thermally

Altered
2.0000 .00000 7 7.000

T able 3.10. Discriminant analysis using “subjective value” as the grouping variable:

Predicte 
d Group 
Member 

ship

Total

Subjective
Group

probable
preform

probable
core

indetermin
a te

Original co u n t probable
preform

26 1 4 31

probable core 1 5 1 7
indeterminate 3 2 10 15

% probable
preform

83.9 3.2 12.9 100.0

probable core 14.3 71.4 14.3 100.0
indeterminate 20.0 13.3 66.7 100.0
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numbers share more attributes in common and are therefore more easily recognized as 

members of a particular group by this method.

I then compared the mean values of all of the ratio scaled variables (thickness, 

width, width/thickness ratio, edge angle, symmetry index, and weight) of the probable 

cores to those of the probable preforms using Student’s ”t” for independent samples and 

36 degrees of freedom (Table 3.11). Comparison of the mean thickness, edge angle, 

width and weight between the two samples produced calculated values of 5.01,4.16,

3.79, and 3.90 respectively. Because the associated p’s are <0.001,1 conclude that there 

is a significant difference between the two samples. Comparison of the mean 

width/thickness ratios of the two samples produced a calculated value of 1.31. Therefore, 

I draw a similar conclusion since the associated p is < 0.20. For all of these values, 

therefore, I concluded that my samples were not likely drawn from the same population; 

there appear to be significant differences between types of bifaces with respect to these 

characteristics when they are classified according to ’’subjective value.”

Table 3.11. Results of student’s t with 36 degrees freedom. All ratio scaled variable means for

Variable Calculated t Associated p

Thickness 5.01 <0.001
Edge angle 4.16 <0.001
Width 3.79 <0.001
Weight 3.90 <0.001
Width/thickness ratio 1.31 <0.20
Symmetry index 0.95 n/a
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The results of the multivariate quantitative analyses described above make a 

strong case for the use of an index of symmetry in the assessment of biface production 

goals. Both the symmetry index pilot study and the quantitative analyses suggest that the 

makers of the Avon collections were focusing primarily on the production of early- and 

middle- stage projectile point preforms. In order to strengthen this argument, an 

aggregate analysis of the Avon site debitage was performed, which was designed to 

determine the difference between core reduction and tool production.

The Debitage Analysis

When grouped according to stratigraphie level, material type, size class and 

Sullivan and Rozen flake-completeness type (Prentiss 2001; Sullivan and Rozen 1985; 

Sullivan 1987), the Avon debitage were distributed as follows:

Level A—Surface to 45.72 cm (18**1 below surface The debitage from Level A of 

the Avon site (N=2114) represents 36.8% of all of the debitage from the site (N=5752; 

Table 3.12). The debitage from this level can be separated into three general material 

types: chert/marl, basalt, and "other," which includes quartzite, obsidian, unidentifiable 

materials and cherts that do not fit the description bf Avon Chert provided by Fields 

(1984). Chert/marl accounts for 90.1% of the debitage (N=1904), basalt for 9.7%

(N=205) and 0.2% includes all "other" materials (N=5; Figure 3.5). Of the total 

chert/marl, 19.2% is non-orientable, 44.0% are medial-distal fragments, 3.5% are split 

flakes, 16.9% are proximal fragments and 16.4% are complete flakes. Of the basalt, 7.3% 

are non-orientable, 47.3% are medial-distal fragments, 10.7% are split flakes, 21.0% are 

proximal fragments and 13.7% are complete flakes. Of the "other" materials, 40.0% are
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Table 3.12. Debitage raw totals and percentages. Total Avon debitage N” 5752
Level Raw Data Percentage

Level A 2114 36.8
Level B 1534 26.7
Level C 2104 36.6
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Figure 3.5 Level A Debitage Material Types

non-orientable, 40.0% are medial- distal fragments, 0.0% are split flakes, 0.0% are 

proximal fragments and 20.0% are complete flakes (Figure 3.6). Of the total Level A 

flake count, 16.5% is thermally altered. Debitage bearing any sign of cortex represents 

7.5% of the total Level A debitage.
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All of the Level A debitage was sorted using Prentiss' (2001) size classes; extra 

large >64 sq cm, large -  16-64 sq cm, medium = 4-16 sq cm, and small = 0.64-4 sq cm. 

The extra large size class represents 0.2% of the total debitage from the level. The large 

size class represents 8.7%, medium equals 49.3%, and small accounts for 41.8% of the 

total debitage form Level A (Figure 3.7).

Each size class was then further broken down according to the Sullivan and Rozen 

flake-completeness typology (1985; Sullivan 1987). Extra large debitage (N=4) 

represents 0.2% of all debitage from Level A; 50.0% of that figure is chert/marl and 

50.0% is basalt. Of the chert/marl in this size class, 100.0% are non-orientable pieces.

Of the basalt in this size class, 100.0% are non-orientable pieces (Figure 3.8).

II
I
III

CherVmarl BasaH •Other

□  Nofverientable (BMedfal-dJshil QSplK O Proxim al O Com plele {

Figure 3.6 Level A Debitage Completeness Types by Material
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Large debitage (N=184) represents 8.7% of all debitage from Level A; 72.8% of 

that figure is chert/marl (N—134), 26.6% is basalt (N=49), and 0.5% of the large debitage 

is made up of "other" materials (N=l ; Figure 3.9). Of the chert/marl in this size class, 

8.2% are non-orientable pieces, 22.4% are medial-distal fragments, 8.2% are split flakes,

17.9% are proximal fragments and 43.3% are complete flakes (Figure 3.10). Of the 

basalt in this size class, 4.1% consists of non-orientable pieces, 20.4% are medial-distal 

fragments, 24.5% are split flakes, 30.6% are proximal fragments and 20.4% are complete 

flakes (Figure 3.10). Of the "other" materials in this size class, 100.0% are non-orientable 

pieces (Figure 3.10).

The medium size class (N==1043) represents 49.3% of all debitage from Level A; 

89.3% of that figure is chert/marl (N=931), 10.4% is basalt (N=108), and 0.4% of the

Q C herV rM fl Q B a sa tl  O 'O th e f '

Figure 3.9 Level A Large Debitage Material Types
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Figure 3.10 Level A Large Debitage Completeness Type Distribution by Material

medium debitage is made up of "other" materials (N=4; Figure 3.11). Of the chert/marl 

in this size class, 18.7% are non-orientable pieces, 38.8% are medial-distal fragments, 

4.3% are split flakes, 17.8% are proximal fragments and 20.4% are complete flakes 

(Figure 3.12). Of the basalt in this size class, 8.3% consists of non-orientable pieces, 

48.1% are medial-distal fragments, 8.3% are split flakes, 21.3% are proximal fragments 

and 13.9% are complete flakes (Figure 3.12). Of the "other" materials in this size class, 

25.0% are non-orientable pieces, 50.0% are medial-distal fragments, 0.0% are split flakes, 

0.0% are proximal fragments and 25.0% are complete flakes (Figure 3.12).

The small size class (N=883) accounts for 41.8% of the total debitage from Level 

A; 94.8% of that figure is chert/marl (N=837), 5.2% is basalt (N=46), and this size class
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Figure 3.12 Level A Medium Debitage Completeness Type Distribution by Material
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contains no "other" materials (Figure 3.13). Of the chert/marl in this size class, 21.5% are 

non-orientable pieces, 53.4% are medial-distal fragments, 1.8% are split flakes, 15.7% are 

proximal fragments and 7.6% are complete flakes (Figure 3.14). Of the basalt in this size 

class, 4.3% consists of non-orientable pieces, 76.1% are medial-distal fragments, 2.2% 

are split flakes, 10.9% are proximal fragments and 6.5% are complete flakes (Figure 

3.14).

Level B— 45.72 to 99.06 cm (18" to 39") below surface The debitage from Level 

B of the Avon site (N=1534) represents 26.7% of all of the debitage from the site 

(N=5752; Table 3.13). The debitage from this level can be separated into two main 

material types: chert/marl and basalt. Chert/marl accounts for 96.3% of the debitage, and 

basalt for 3.6% (Figure 3.15). Of the total chert/marl, 10.6% is non-orientable, 50.3% are 

medial-distal fragments, 4.9% are split flakes, 16.4% are proximal fragments and 17.9% 

are complete flakes. Of the basalt, 7.3% are non-orientable, 45.5% are medial-distal 

fragments, 3.6% are split flakes, 25.5% are proximal fragments and 18.2% are complete 

flakes (Figure 3.16). Of the total Level B flake count, 20.1% is thermally altered. 

Debitage bearing any sign of cortex represents 17.0% of the total Level B debitage.

Table 3.13. Debitage raw totals and percentages. Total Avon debitage N=5752
Level Raw Data Percentage

Level A 2114 36.8
Level B 1534 26.7
Level C 2104 36.6
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All of the Level B debitage was sorted using Prentiss’ (2001) size classes: extra 

large >64 sq cm, large = 16-64 sq cm, medium = 4-16 sq cm, and small = 0.64-4 sq cm. 

The extra large size class represents 0.1 % of the total debitage from the level. The large 

size class represents 7.3%, medium equals 56.2%, and small accounts for 35.4% of the 

total debitage form Level B (Figure 3.17).

Each size class was then further broken down according to the Sullivan and Rozen 

flake-completeness typology (1985; Sullivan 1987). Extra large debitage (N=l) 

represents 0.1% of all debitage from Level B; 100.0% of that figure is chert/marl. Of the 

chert/marl in this size class, 100.0% are complete flakes (Figure 3.18).

□  Extra L ars»  a  Laig* B k ^ u m  Q Sm aN l

Figure 3.17 Level B Size Classes
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Figure 3.18 Level B Extra Large Debitage Completeness Types by Material

The large size class (N=l 12) represents 7.3% of all debitage from Level B; 92.9% 

of that figure is chert/marl (N=104), 6.3% is basalt (N=7), and 0.09% is '̂other" (N=l; 

Figure 3.19). Of the chert/marl in this size class, 7.7% are non-orientable pieces, 17.3% 

are medial-distal fragments, 11.5% are split flakes, 18.3% are proximal fragments and 

45.2% are complete flakes (Figure 3.20). Of the basalt in this size class, 14.3% consists 

of non-orientable pieces, 14.3% are medial-distal fragments, 0.0% are split flakes, 14.3% 

are proximal fragments and 57.1% are complete flakes (Figure 3.20). Of the "other" 

materials in this size class, 100.0% are non-orientable pieces (Figure 3.20).

The medium size class (N^862) represents 56.2% of all debitage from Level B; 

97.3% of that figure is chert/marl (N=839) and 2.7% is basalt (N=23; Figure 3.21). Of 

the chert/marl in this size class, 10.8% are non-orientable pieces, 45.4% are medial-distal
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fragments, 4.9% are split flakes, 18.4% are proximal fragments and 20.5% are complete 

flakes (Figure 3.22). Of the basalt in this size class, 8.7% consists of non-orientable 

pieces, 43.5% are medial-distal fragments, 8.7% are split flakes, 21.7% are proximal 

fragments and 17.4% are complete flakes (Figure 3.22).

The small size class (N=559) represents 36.4% of all debitage from Level B; 

95.5% of that figure is chert/marl (N=534) and 4.5% is basalt (N=25; Figure 3.23). Of 

the chert/marl in this size class, 10.7% are non-orientable pieces, 64.4% are medial-distal 

fragments, 3.6% are split flakes, 13.1% are proximal fragments and 8.2% are complete 

flakes (Figure 3.24). Of the basalt in this size class, 4.0% consists of non-orientable 

pieces, 56.0% are medial-distal fragments, 0.0% are split flakes, 32.0% are proximal 

fragments and 8.0% are complete flakes (Figure 3.24).

Level C " 99.06 cm (39") to creek level The debitage from Level C of the Avon 

site (N=2104) represents 36.6% of all of the debitage from the site (N=5752; Table 3.14). 

The debitage from this level can be separated into two main material types: chert/marl 

and basalt. Chert/marl accounts for 84.9% of the debitage and basalt for 15.1% (Figure 

3.25). Of the total chert/marl within this size class, 6.9% is non-orientable, 42.6% are 

medial-distal fragments, 3.6% are split flakes, 19.9% are proximal fragments and 27.1% 

are complete flakes (Figure 3.26). Of the basalt 3.2% are non-orientable, 39.7% are 

medial-distal fragments, 8.2% are split flakes, 18.9% are proximal fragments and 30.0% 

are complete flakes (Figure 3.26). Of the total Level C debitage count, 11.7% is 

thermally altered. Debitage bearing any sign of cortex represents 17.1% of the total Level 

C debitage.
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Level Raw Data Percentage

Level A 2114 36.8
Level B 1534 26.7
Level C 2104 36.6

(ÔC^ertAnart tBBaaatt Ô 'C N her \

Figure 3.25 Level C Material Types
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All of the Level C debitage was sorted using Prentiss' (2001) size classes: extra 

large >64 sq cm, large = 16-64 sq cm, medium = 4-16 sq cm, and small — 0.64-4 sq cm. 

The extra large size class represents 0.8% of the total debitage from the level. The large 

size class represents 14.5%, medium equals 57.4%, and small accounts for 27.3% of the 

total debitage form Level C (Figure 3.27).

Each size class was then further broken down according to the Sullivan and Rozen 

flake-completeness typology (1985; Sullivan 1987). Extra large debitage (N=17) 

represents 0.8% of all debitage from Level C; 100.0% of that figure is basalt. Of the 

basalt in this size class, 0.0% are non-orientable, 23.5% are medial-distal fragments, 0.0% 

are split flakes, 11.8% are proximal fragments, and 64.7 are complete flakes (Figure 

3.28).
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Figure 3.28 Level C Extra Large Debitage Completeness Types by Material
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The large size class (N=306) represents 14.5% of the total debitage from Level C; 

62.7% of that figure is chert/marl (N=192) and 37.3% is basalt (N=l 14; Figure 3.29). Of 

the chert/marl in this size class, 4.7% are non-orientable pieces, 23.4% are medial-distal 

fragments, 2.1% are split flakes, 22.9% are proximal fragments and 46.9% are complete 

flakes (Figure 3.30). Of the basalt in this size class, 0.0% consists of non-orientable 

pieces, 33.3% are medial-distal fragments, 10.5% are split flakes, 18.4% are proximal 

fragments and 37.7% are complete flakes (Figure 3.30).

The medium size class (N=1207) represents 57.4% of the total debitage from 

Level C; 86.5% of that figure is chert/marl (N=1044) and 13.5% is basalt (N=163; Figure 

3.31). Of the chert/marl in this size class, 6.3% are non-orientable pieces, 41.5% are 

medial-distal fragments, 3.5% are split flakes, 20.5% are proximal fragments and 28.2% 

are complete flakes (Figure 3.32). Of the basalt in this size class, 4.3% consists of non- 

orientable pieces, 46.0% are medial-distal fragments, 8.6% are split flakes, 19.0% are 

proximal fragments and 22.1% are complete flakes (Figure 3.32).

The small size class (N=574) represents 27.3% of the total debitage from Level C; 

96.0% of this figure is chert/marl (N=551) and 4.0% of that figure is basalt (N=23; Figure 

3.33). Of the chert/marl in this size class, 8.7% are non-orientable pieces, 51.4% are 

medial-distal fragments, 4.2% are split flakes, 17.6% are proximal fragments and 18.1% 

are complete flakes (Figure 3.34). Of the basalt in this size class, 13.0% are non- 

orientable pieces, 39.1% are medial-distal fragments, 0.0% are split flakes, 26.1% are 

proximal fragments and 21.7% are complete flakes (Figure 3.34).
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Analysis of results Level A Initial analysis of the distribution of Level A 

chert/marl among size classes and flake-completeness types (MSRT; Prentiss 2001) 

suggests that the technological focus for that material type was core reduction. The Level 

A chert/marl is dominated by high proportions of large complete flakes (43.3% of that 

size class [osc]) and proximal flakes (17.9%osc); medium medial-distal fragments 

(38.8%osc) and non-orientable fragments (18.7%osc); and small non-orientable 

fragments (21.5%osc). This pattern is consistent with Prentiss' description of a size and 

flake-type distribution for a core reduction sequence (2001). However, the high 

proportion of complete flakes may actually be a factor of the toughness of the Avon 

chert/marl relative to the obsidian used in Prentiss' experiments (1998, 2001; Prentiss and 

Romanski 1989). Therefore, attention was focused on the small-sized debitage, which 

may actually be more representative of the production activities taking place at the Avon 

site.

The small size class represents a significant proportion of the Level A debitage 

(44.0% of chert/marl from Level A). This class is dominated by medial-distal fragments 

(53.4%osc) and has a relatively high proportion of proximal fragments (15.7%osc), which 

are traits more consistent with tool production according to Prentiss (2001). Though the 

larger debitage from the Level A assemblage appears to have been dominated by core 

reduction, given the predominance of complete flakes, it cannot be said that this was the 

sole technological focus at the Avon site. The small size class indicates that tool 

production using chert and marl was occurring during this occupation, and this size class 

may actually be a more accurate representation of the production activities taking place at 

the site.
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Analysis of the basalt from Level A using the MSRT also appears to indicate the 

predominance of core reduction. Among the large size class, complete flakes 

(20.4%osc), proximal fragments (30.6%osc), and split flakes (24.5%osc) are well- 

represented. The medium size class is strongly dominated by medial-distal fragments 

(48.1%osc). Dominance of these flake-completeness types among these two size classes 

suggest core reduction according to Prentiss (2001). However, Prentiss also says that 

core reduction should include high proportions of small non-orientable fragments. The 

small size class is 76.1%osc medial-distal fragments, followed by proximal fragments 

(10.9%osc). There are very few non-orientable fragments among this size class 

(4.3%osc). All three of these traits are more suggestive of tool production than of core 

reduction according to both Prentiss (2001) and Baumler and Downum (1989), who 

consider small non-orientable pieces ("shatter," by their terminology) to be the hallmark 

of core reduction. Small size debitage represents 22.4% of all of the basalt from Level A, 

and this size class indicates basalt tool production taking place during this occupation.

The "other" materials in Level A (N=5), all of which are quartzite, are too few to 

interpret in any meaningful way. Of further note regarding the debitage from this level is 

the presence of four core fragments among the large chert/marl (three of which appear to 

be Levellois-type), and five such fragments among the medium chert/marl. There are also 

four and three blade-like flakes among the large and medium chert/marl, respectively.

The presence of these core fragments and "blades" are discussed in the following chapter.

Level B Initial analysis of the distribution of Level B chert/marl among size 

classes and flake-completeness types using the MSRT suggests that core reduction was 

the primary technological focus for this material type. The large size class has high
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proportions of complete flakes (45.2%osc), proximal fragments (18.3%osc) and split 

flakes (11.5%osc), while the medium size class is dominated by medial-distal fragments 

(45.4%osc). All of these things are considered traits of core reduction (Prentiss 2001). 

However, the small size class, which constitutes 36,1% of the chert/marl from Level B, is 

strongly dominated by medial-distal fragments (64.4%osc), has a moderate proportion of 

proximal fragments (13.1%osc), and a relative paucity of non-orientable fragments 

(10.7%osc). The small size class, then, according to both Prentiss (2001) and Baumler 

and Downum (1989) more accurately reflects tool production. These distributions 

suggest that tool production was also a focus, if not the primary focus, of chert/marl 

reduction during this occupation.

The basalt from Level B shows a similar pattern: a high proportion of large 

complete flakes (57.1%osc) and proximal fragments (14.3%osc [there are, however, only 

7 specimens in this size class]), and medium medial-distal fragments (43.5%osc) indicate 

a focus on core reduction. However, the small size class suggests that tool production 

was also a focus. The small debitage is dominated by medial-distal fragments (56.0%osc) 

and proximal fragments (32.0%osc) with very few non-orientable pieces (4.0%osc). This 

distribution is representative of tool production according to both Prentiss (2001) and 

Baumler and Downum (1989) and, since the small size class accounts for 45.5% of the 

Level B basalt, it is likely that tool production was the primary technological focus for the 

basalt during this occupation.

The "other" materials of this level (N=l; quartzite) are too few to make a 

meaningful interpretation. Also of note among the debitage from this level is the 

presence of seven core fragments in the large size class, and five such fragments in the
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medium size class, all of which are chert/marl. The majority of these appear to be 

amorphous cores, discarded at the point of exhaustion. There are also seven blade-like 

flakes among the large size class and five blade-like flakes among the medium debitage. 

The presence of these cores and "blades" are discussed in the following chapter.

Level C Initial analysis of the chert/marl from Level C appears to indicate a focus 

on core reduction. This interpretation is based on the presence of many large complete 

flakes (46.9%osc) and proximal fragments (22.9%osc), and many medium medial-distal 

fragments (41.5%osc). As with the levels and materials discussed previously, the small 

size debitage appears to represent a focus on tool production. The small size class 

accounts for 30.87% of all of the chert/marl from Level C. The small debitage is 

dominated by medial-distal fi-agments (51.4%osc), with a significant proportion of 

proximal fi-agments (17.6%osc) and very few non-orientable pieces (8.7%osc), all of 

which are suggestive of tool production (Baumler and Downum 1989; Prentiss 2001).

The Level C basalt follows a similar pattern. The large debitage has high 

proportions of complete flakes (37.7%osc) and proximal fragments (18.4%osc), and some 

split flakes (10.5%osc). The majority of the medium size class is medial-distal fragments 

(46.0%osc). These traits are indicative of a core reduction strategy (Prentiss 2001). 

However, the small size class suggests that tool production on basalt was also taking 

place during this occupation, since there are high proportions of medial-distal fragments 

(39.1%osc) and proximal fi-agments (26.1%osc), and only a moderate amount of non- 

orientable pieces (13.0%osc). Unlike the other cases described above, the small size class 

of basalt debitage fi-om Level C account for only 7.3% of all of the basalt fi-om that level.

It is possible, therefore, that core reduction was the primary focus for basalt during this
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occupation and the presence of a tool-production-like distribution among the small size 

class is a byproduct of core reduction, since core reduction produces some amount of 

small medial-distal and proximal fragments each time it is performed.

No "other" materials were recovered from Level C of the Avon site. Also of note 

among this level's debitage is the presence of three core fragments within the large 

chert/marl category. There is also one blade-like flake in the large basalt, and three such 

flakes in the medium chert/marl debitage. The presence of these cores and "blades" is 

discussed in the following chapter.

Using a strict interpretation of the MSRT (Prentiss 2001), the debitage from all 

three levels of the Avon site appear to represent a primary focus on core reduction. 

However, the experimental collections that led to the formulation of the MSRT (Prentiss 

1998, 2001) were produced on Glass Butte obsidian. The Avon chert/marl is a tougher 

raw material than Glass Butte obsidian, and so we can expect different proportions of 

flake completeness types among assemblages produced during Avon chert/marl reduction 

events (Prentiss and Romanski 1989). Logic dictates that this would be most evident in 

the proportion of complete flakes among the Avon debitage as compared to that of 

Prentiss' (1998, 2001) obsidian assemblages. The tougher Avon material is expected to 

produce higher proportions of complete flakes regardless of production goal than the 

more brittle obsidian in Prentiss' experiments. Therefore, the small size class is 

considered the size class least susceptible to material-type biases and most sensitive to 

actual production goals. Among both the chert/marl and the basalt material types for all 

three stratigraphie levels, the small size class debitage is indicative of a primary focus on 

tool production. This is supported by the evidence provided by both Prentiss (2001) and



113

Baumler and Downum (1989). Given the high proportions of small size debitage among 

the total debitage counts for all three levels, and the sensitivity of small-sized debitage to 

actual production goals, tool production appears to have been the primary technological 

focus as the Avon site.

Tool Analyses

Insofar as they are useful in drawing conclusions regarding production goals at the 

Avon site, descriptions of others of the artifacts from the site are provided here. A total 

of 175 non-debitage artifacts were included in the collection as of 2003. Of these, 87 are 

bifaces and biface fragments. Eight of that number are made on basalt. Some of the 

fragments mend to make complete or nearly complete bifaces, which were used in the 

symmetry index pilot study. A total of 53 bifaces from the Avon collection, including 

those that were mended, were considered complete enough to be used in the symmetry 

study. The rest of these were catalogued and described in detail on the catalog sheet, now 

housed with the artifacts.

There are forty-two cores, core fragments and core reduction flakes, all but one of 

which are chert/marl. All of the cores appear to be amorphous, with three exceptions, 

which are tabular. There are three core-rejuvenation flakes (one basalt), which appear to 

be inconsistent with the predominance of amorphous cores. Three of the cores exhibit 

bipolar reduction.

There are forty flake tools in the Avon collection. Among these are a convergent 

scraper, scrapers with bifacial retouch, notches, denticulates, a concave/convex scraper 

with alternating retouch, an L-shaped tool, tools with both abrupt and invasive retouch, a
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graver and a comer-notched scraper. Eleven of these flake tools are basalt. All of the 

flake tools appear to have been made on flake-struck blanks. It is not believed that any of 

them were made on bifacial core-struck blanks.

When the non-debitage artifacts are considered as a whole, 88.0% are chert/marl 

and 12% are basalt. The implications of these notes on the non-debitage artifacts from 

Avon are discussed in the following chapter.



Chapter Four 
Discussions and Concluding Remarks

The methods and results described in the previous chapters indicate that the Avon 

site (24PW340) was used as a quarry workshop for the production of early- to middle- 

stage bifaces (preforms) and tools, and that an index of symmetry is a useful tool in 

addressing goals of biface production. Understanding the goal or goals of biface 

production among Paleoindian groups vastly improves our ability to understand their 

lithic technological organization. Particular technological organizations, in turn, are 

thought to be indicative of particular mobility strategies. In light of the recent debate 

regarding the previously unchallenged "high-technology" forager model (Kelly 1988; 

Kelly and Todd 1988) and Bamforth's (2002) call for a réévaluation of that model, a 

methodology was devised to address this issue directly. Quantifying the amount of 

bilateral symmetry present among bifaces from archaeological contexts and comparing 

these numbers to numbers produced by collections from known reduction trajectories (i.e. 

Callahan's stages of projectile point manufacture [1979] and finished projectile points) 

can be indicative of the intended production goals represented by archaeological 

specimens. This method was applied to the bifaces from the Avon site (ca. 9300 BP), and 

the results suggested that bifaces were being produced for use as projectile points at that 

site. This conclusion was supported by an aggregate analysis of the Avon debitage, 

which suggested that the primary technological focus at the site was tool and preform 

production. These results support Bamforth's argument that the high-tech forager model 

and the supposition that many, if not most, Paleoindian groups relied on a bifacial core 

technology is not strongly supported by the archaeological evidence.

115
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This chapter draws this thesis to a close by summarizing the results described in 

the previous chapter and offering some discussions and concluding remarks. The first 

part of this chapter is organized according to the three main themes that have run 

throughout the thesis: the symmetry index as a useful tool in discussing goals of biface 

production, and the application of that method to the bifaces from the Avon site; the 

multivariate quantitative analyses and their support of the symmetry index as a powerful 

and accessible tool in the assessment of biface production goals; and the Avon site 

debitage and its ability the shed light on the goals of production that site. All of this is 

then synthesized in a final discussion of the research questions posited here: 1) are there 

real and discernable differences between bifaces produced for use ultimately as projectile 

points (i.e. preforms) and those produced for use as cores or long use-life tools; 2) can 

these differences be used to address the debate regarding Paleoindians as bifacial core

dependent versus some alternative hypothesis; and 3) does the data from the Avon site 

support one or the other side of said debate? Finally, suggestions for future research are 

provided and some final concluding remarks are offered.

Summary and Discussions 

The Symmetry Index Pilot Study and the Multivariate Quantitative Analyses

The symmetry index pilot study and the multivariate quantitative analyses both 

indicate that the symmetry index is a usefiil tool in the quantification of symmetry among 

bifaces. The pilot study indicates that there is a pattern of increasing symmetry among 

preforms and finished projectile points: the more finished a biface intended ultimately for 

use as a projectile point, the more symmetrical that biface tends to be. The pilot study
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also suggests that the symmetry index is capable of identifying subtle differences in 

symmetry that an observer may be unable to detect with the eye. Admittedly, the 

continua displaying the symmetry index distributions for the different study groups 

(Figure 3.2) also shows that each group displays a range of indices and that there is 

overlap between stages of production. Nonetheless, I am confident that calculating 

indices on a larger number of specimens of each type and conducting a more 

comprehensive study of bilateral symmetry on bifaces will help to identify a more 

discrete range for each type. These ranges, then, and the bifaces that produce them could 

be held as the standard. Quantifiable attributes of bifaces from archaeological contexts 

could be compared to those of the "standard" collections in order to draw conclusions 

about intended goals of production, just as a zooarchaeologist might use a comparative 

collection of faunal remains.

The results of the multivariate quantitative analyses performed on the Avon biface 

data suggest that there are real and significant differences between bifaces intended 

ultimately for use as projectile points and bifaces intended for use as cores, and that the 

symmetry index is a useful measure in determining these differences. This conclusion is 

inferred from several lines of evidence. The factor analysis performed on the Avon data 

produced a "shape" factor, which was based on an inverse relationship between symmetry 

index and width/thickness ratio and which explained a significant portion of the total 

variance. When the factor scores were plugged into a hierarchical clustering analysis, 

they produced a dendrogram that separated the 53 Avon bifaces into groups consistent 

with the "symmetry index value" groups, i.e. probable cores and probable preforms. This 

indicates that thickness relative to width and symmetry index are important variables in
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the determination of whether a particular biface represents a preform or a core, and that 

the difference between the two types is knowable.

The two discriminant function analyses provide what is perhaps the most 

convincing evidence for the assertion that there are discernable differences between 

preforms and cores, and that the symmetry index is a useful tool in the placement of a 

given biface into one or the other of these categories. The group statistics produced when 

"symmetry index value" and then "subjective value" were entered as the grouping 

variable illustrated the differences between the mean dimensions, mean edge angles, and 

mean weights of probable preforms versus probable cores. In the first discriminant 

function analysis, where "symmetry index value" was used as the grouping variable, the 

casewise statistics show that only five of the fifty-three cases were misclassified. That is, 

90.6% of the original grouped cases were correctly classified. This suggests that the 

variables selected were very good predictors of which of the three pre-determined classes 

(symmetry indices >5.0,4.9-2.0, or <1.9) each biface would be placed into. Conversely, 

visually assessed group membership (“subjective value”) was only correctly classified 

77.4% of the time.

The Student's "t" tests performed on the data for the two grouping variables shows 

that there are statistically significant differences between preforms and cores. By 

comparing the mean values for a number of attributes between the "symmetry index 

value" of >5 (probable cores) and that of <1.9 (probable preforms), it was determined that 

there are significant differences in width/thickness, symmetry index, thickness and edge 

angle.

Having discussed the utility of the symmetry index and the strength of the
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arguments afforded by the quantitative analyses, it is necessary to point out some of the 

shortcomings of the materials and methods used here and to make suggestions for future 

research. Perhaps the greatest shortcoming of the present study is the limited number of 

specimens used. Given the success rate of the test sample (76%), the acceptable margin 

of error (5%), and the desired 95% confidence level, 290 bifaces would have to be tested 

in order to make the present assertions reliable. Furthermore, as was done during the 

initial pilot study for the utility of the symmetry index, parametric data should be 

collected from a number of known sample groups such as finished projectile points, 

bifacial cores, and preforms made through replicative experimentation, and similar 

multivariate quantitative analyses should be performed in order to strengthen the 

arguments made here. Finally, it is critical that a study collection of bifaces known to 

have been used as cores be obtained. In light of the current controversy regarding the true 

function of many bifaces in the archaeological record (Bamforth 2002), it may be 

necessary to reproduce such a collection from ethnographic accounts. Without a 

collection of bifacial cores, assertions regarding the attributes of core-like bifaces are 

merely informed conjecture. Nonetheless, the information provided above makes a 

strong case for the hypotheses that there are real and significant differences between 

bifaces intended ultimately for use as projectile points (preforms) and bifaces intended for 

use as cores, and that the symmetry index is a useful tool in determining these 

differences. 1 believe that additional studies can only strengthen this argument.

The Avon Debitage

Although the large and middle size classes of debitage from all three stratigraphie



120

levels of the Avon site appear to represent a primary technological focus on core 

reduction (Prentiss 2001), other lines of evidence suggest otherwise. That is, the small 

size class debitage from all three stratigraphie levels is consistent with tool and preform 

production (Baumler and Downum 1989; Prentiss 2001). When we consider the fact that 

Prentiss’ experiments were performed using Glass Butte obsidian, which is considerably 

more brittle than Avon chert/marl, the large numbers of complete flakes among the larger 

size classes is not surprising. Smaller debitage may actually be less susceptible to 

material type fracture biases, and so attention was focused on this size class for the 

purpose of determining production goals at the Avon site. Small debitage constitutes a 

considerable portion of most material types/stratigraphic levels at Avon, and the 

distributions of flake-completeness types among this size class are consistent with the 

pattern described by Prentiss (2001) for tool production. This includes high proportions 

of medial-distal and proximal fragments, and very few to no non-orientable pieces. The 

small debitage is also consistent with Baumlçr and Downum’s (1989) observations for 

core reduction versus tool production. That is, core reduction assemblages produce much 

higher percentages of shatter (non-orientable pieces) than tool production assemblages, 

and the small Avon debitage has relatively few non-orientable pieces in all material types 

and stratigraphie levels. Therefore, it is concluded that tool and preform production were 

the primary technological foci at the Avon site, based on the debitage distributions.

Another interesting point to consider regarding the Avon site debitage is the 

proportion of pieces that exhibit thermal alteration. Callahan devised a scale of lithic 

material workability and notes that exposure to heat "seems to raise most amenable 

materials .5 to 1.0 higher in the scale. A 1.5 raising may be possible under optimum
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conditions" (1979:16). Thermal alteration may have been used to increase the ease of 

workability of the cherts and marls at the Avon site. Of the Level A chert/marl, 16.5% 

exhibit thermal alteration. Of the Level B chert/marl, 20.1% is thermally altered, and of 

the Level C chert/marl, 11.7% of the debitage bears evidence of thermal alteration. When 

considered as a whole, 15.7% of the Avon site debitage has been affected by exposure to 

heat.

The counts for burned material among the Avon debitage were made according to 

incontrovertible signs of thermal alteration: reddening, textural changes, charring, 

potlidding and crazing. The counts, therefore, may actually be fairly conservative. It is 

also interesting to note that very few cortical flakes showed signs of heat treatment.

Many flakes exhibit potlidding on interior flake surfaces and could, therefore, only have 

been heated after having been removed from an objective piece. This latter phenomenon 

may actually be representative of lithic reduction activities taking place in front of a fire 

and the pieces being burned unintentionally, or some other incidental exposure to heat as 

opposed to deliberate thermal alteration. The fact that a significant proportion of the 

collection has been thermally altered, however, leads me to believe that at least some of 

the time the materials were being heat treated intentionally.

Also of note are the twenty-six blade-like flakes observed among the debitage 

(0.5% of total debitage). All of these flakes are of the large and medium size classes, and 

all but one are chert/marl. Hester et al. (1977) note the presence of a small number of 

blades at the nearby site 24PW320. However, they say that these do not suggest the 

"presence of a core blade technology" and that they probably represent unintentional 

"byproducts of a flake industry" (1977:245). This calls to the fore the question of what
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constitutes a significant percentage of blades in a debitage assemblage for the possibility 

of a blade technology and the implied mutual exclusion of flake-based and blade-based 

technologies. Is it not possible that one culture made supplemental use of a blade 

technology when a flake technology was the dominant method, for example? I am not 

suggesting that the occupants of Avon were using a blade technology, supplementally or 

otherwise, as less than one percent of the debitage resembles blades. This question is 

mentioned here merely as point for future consideration and as commentary on the 

discipline-wide tendency to view technologies in isolation.

The percentage of cortical pieces among the Avon site debitage (13.5%) was 

calculated as a point of interest. It has been suggested that the presence of cortex tells us 

little more than whether a piece was decorticated on site (Mauldin and Amick 1989). In 

the case of the Avon site, it is suspected that some of the materials being worked were 

taken from the secondary-source gravels exposed in Strickland Creek. These would have 

been decorticated in the process of reduction and thus would leave cortical flakes among 

the debitage. The percentage of cortical flakes may, therefore, offer insights into the 

degree to which the gravel deposits were utilized as sources of raw material. Future 

studies might benefit from such an inquiry.

Having made these observations and drawn conclusions regarding the Avon site 

debitage, it is necessary to point out some of the shortcomings and potentially 

insurmountable obstacles regarding use of the Avon debitage to interpret that site in a 

meaningful way. During the 1966/67 excavations, debitage was collected only according 

to vertical provenience, that is, without horizontal control. Any meaningful distribution 

of the debitage across the site cannot be assessed due to insufficient provenience. Nor
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was a precise method of collection described in the field notes from the 1966/67 field 

seasons. It seems that each unit was excavated according to natural stratigraphy, which 

diminished the control afforded by the introduction of smaller, arbitrary levels. 

Furthermore, the precise dimensions of each unit were not provided. References in 

student field journals indicate that some of the units became quite large over the course of 

the two field seasons, and so a reasonable reconstruction of even the general provenience 

of the debitage was not possible. Finally, the bags containing the debitage were labeled 

simply "Level A," "Level B," and "Level C." It appears that the debitage from all units’ 

Level A is included together, for example. Therefore, the levels are taken to represent a 

very broad stratigraphie sequence across the entire site.

The lack of horizontal provenience severely limits the potential to interpret the 

distribution of activity areas and the use of space within the site. Examination of all of 

the Level A debitage from across the site collapses the variability that may be present in 

the horizontal plane. It may have been the case, for example, that different tasks were 

being performed in different locales across the site. Add to this the dimension of time— 

the fact that different locales could have been used to perform different tasks during 

different seasons or separate visits to the site—and the lack of provenience is all the more 

confounding. That is, it is also quite possible that more than one, if not many, cultural 

levels of occupation were collapsed through the use of broad, natural strata to guide 

excavations.

It is unclear whether all of the debitage encountered during the excavations was 

collected or whether some sampling method was employed. Furthermore, essentially 

untrained field school students may not have recognized all of the lithic debitage as such.
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Non-orientable pieces, for example, may not have been recognized as having been 

culturally modified. And, finally, there are the phenomena of scavenging and culling by 

prehistoric peoples (Prentiss 1993) and "relic hunting" in the far more recent past which 

may have altered the debitage assemblage.

Post-excavation methods of handling the Avon material may also be partially 

responsible for a certain amount of skewness of the Avon debitage data. Some of the 

Avon debitage shows signs of "bag-wear." That is, many pieces have been chipped or 

broken over the course of nearly forty years of bag-in-box transport. No count was made 

of all such pieces with relatively recent chips or breaks and it is suspected that the number 

would not dramatically alter the outcome of the MSRT study. Complete flakes were the 

most prevalent type in the large size class regardless of the potential exclusion of flakes 

that were broken post-excavation. Such breakage may also have skewed the size 

classifications slightly. It is unclear how much of the debitage would have been included 

in a larger size class before the effects of bag-wear.

On a similar note, several of the pieces in the debitage collection exhibit 

"nibbling." These were examined under a 40x microscope and determined to be the 

products of bag-wear or trampling, prehistoric or otherwise. The chips and breaks are 

inconsistent with established patterns of wear produced by cutting or scraping (Flenniken 

and Haggerty 1979; McBrearty et al. 1998; Nielsen 1991; Pryor 1988).

The shortcomings mentioned above are in no way intended as criticisms of the 

work performed during the 1966-1967 field seasons. It is well understood that the goals 

of those investigations differ fi-om the goals of the present thesis. Hobler stated in no 

uncertain terms that "[t]he sole purpose of our work was to obtain a sample of early
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materials from an intact archaeological context which would permit assessment of 

association and direct dating, both of which we succeeded in doing" (personal 

communication, 2003). The points considered above are mentioned merely as a 

cautionary note for those seeking a better understanding of the Avon site through the 

debitage.

At the end of the last chapter, I introduced some of the other tools present in the 

Avon collection. These were mentioned because aspects of their nature and presence are 

relevant to the arguments being made here. It is of interest that only 12% of the non- 

debitage assemblage is basalt. This is concurrent with the fact that just 10.0% of all of 

the Avon site debitage is basalt. Thus, it is apparent that basalt was a less desirable lithic 

material than the locally available chert/marl.

The presence of forty flake tools, including scrapers, gravers and notches, suggest 

a few possible scenarios. It is possible that the tools found at the Avon site were 

discarded because they were exhausted and new tools were being made to replace them.

It may also be the case that the tools were made at the site, used in "gearing up" activities 

(shaft straightening and manipulation for projectile point fitting, etc.), and discarded on 

site. It is possible that domestic activities were being performed at the site in conjunction 

with lithic reduction activities, i.e. a temporary encampment at the resource site. It may 

also be that these tools are part of the toolkit of a more permanent encampment near the 

quarries. Hester et al. (1977) note that Napton had located extensive midden deposits in 

the general vicinity of 24PW320, which is also quite close to the Avon site, 24PW340. 

Unfortunately, no further reference to these middens has been located and their precise 

location is not known.
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Future work with the Avon debitage should include a distinctive artifact approach. 

Counting dorsal facets and platform scars, assessing fracture initiations and terminations 

might give a much more precise picture of the type or types of reduction taking place at 

the Avon site. Such a detailed analysis might also strive to distinguish differences in 

fracture mechanics inherent to the cherts, marls and porcellanites of the Avon Valley.

This might provide insights into preferences expressed in coupling particular material 

types with particular tool types. This same study might also seek to augment the MSRT 

by performing similar experiments using Avon chert.

Furthermore, I recommend a detailed records search for the presence of the Avon 

chert/marl in other sites throughout the region. Cameron states that "[a]rchaeological 

distribution of the Avon material also indicates that populations exploiting this material 

covered a wide area. Reeves (1972) reports large quantities of Avon chert in the 

Waterton Lakes area of Canada, approximately 300 miles north of Nevada Creek"

(1984:13). Other studies of this kind could be used to address the concern expressed by 

Bamforth (2002) that many of the assumptions that we have made about the Paleoindian 

lifestyle, including the transport of lithic raw materials over very large distances to reduce 

the risk of not having materials available in the next location, are not well-supported by 

the archaeological record.

The Avon Site (24PW340)

Analyses of both the Avon bifaces and the Avon site debitage suggest that the site 

was used as a quarry workshop for the production of early- to middle-stage bifaces 

(preforms) and tools. It appears that quarry blanks were being roughed out at the nearby
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Antelope Hill and Rhine Point Quarries and transported to the Avon site for further 

reduction into these types of tools. Avon is located on a relatively flat floodplain on the 

Avon Valley floor, adjacent to running water, which would have been a draw for both 

people and game animals. The area would have been ideal for a seasonal, repeated 

occupation base camp. Evidence for this hypothesis is drawn from the biface and 

debitage analyses, as well as the following supplemental data derived from various 

sources. The purpose the analyses applied to the Avon material was to determine whether 

the makers of the Avon collections employed a bifacial core technology and to infer from 

such a conclusion the nature of the Avon peoples' mobility strategies. Determining these 

traits contributes to the present discussion regarding the nature of Paleoindian 

technological organization and mobility strategies (cf. Bamforth 2002; Kelly 1988; Kelly 

and Todd 19688).

Given the limited nature of the excavations performed at the Avon site during the 

1966/67 field seasons, and given the fact that the materials and data from those two field 

seasons form the basis of this thesis, it could not be determined whether the site contains 

evidence of logistical or residential encampment. Hester et al. note that the debitage and 

tools from 24PW320, just south of the Avon site, suggest that the site was either a 

workshop near a base camp or a logistical camp for a small group procuring lithic 

materials. They state that, surficially, the site appears to be a logistical "chipping station" 

but that Napton's work in the greater Avon Valley revealed extensive middens nearby, 

which suggests a repeated occupation base camp (Hester et al. 1977). The contents and 

location of these middens remains unavailable to researchers, however. Still, it may be 

possible to infer the nature of occupation at Avon using other lines of evidence. Callahan



128

notes that:

if the workshop (that area where quarried rock was reduced to 
transportable form) were near the quarry and both areas were at a 
distance from the home base, it may have been that the chunks, nodules 
or cores were carried, as extracted, to the workshop area after 
preliminary testing. At the workshop, spalling and preliminary shaping, 
Stages 1 through 3 or 4 might have been performed prior to 
transportation to the home base. But if the workshop was also the base 
camp. . then it may have been that the blocked-out quarry cores were 
carried 'home' and the entire sequence of manufacture performed there 
(1979:40).

If Callahan's generalizations are correct, it appears that the latter is more likely the 

case at the Avon site. The debitage analysis indicates that the primary technological 

focus at the workshop was preform manufacture and tool production, which suggests that 

this workshop may have been close to—essentially an activity area within—the base 

camp. Hobler states that, during the 1966/67 field seasons, “principal excavation 

consisted of broadside scraping of a long arroyo bank. [They] did not cut the bank back 

more than 30-40 cm in this process” (Philip Hobler, personal communication, 2003). 

Field journals from the 1966/67 field seasons suggest that units were excavated back 

from the bank of the creek and expanded parallel to the creek as dictated by the presence 

of artifacts. These descriptions imply that excavations were not designed to locate 

specific activity areas on the living surface. However, the debitage analyses and the 

reported presence of extensive middens in the area suggest that the Avon site is located 

close to, or is indeed part of, a base camp.

The Avon site debitage analyses indicate that the primary technological focus at 

the site was tool production. Other lines of evidence presented in this thesis allow us to 

expand upon that inference in an attempt to form a more complete picture of the Avon 

site. Hester et al. (1977) note that at 24PW320, which is located just south of the Avon
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site, debitage patterns suggest that ”roughed-out” pieces were being brought from nearby 

Antelope Hill to the site and further "reduced to produce... flakes to be used in 

implement manufacture" (1977:244). Their conclusion was drawn from an analysis of 

cortical flake percentages and the presence of "interior and biface thinning flakes" 

(1977:244). High percentages of such flakes suggest a focus on tool production, as was 

the case at 24PW320. A more detailed analysis of 24PW320 would benefit from a 

debitage analysis incorporating Prentiss’ MSRT (2001) and Baumler and Downum's 

(1989) findings regarding small-sized debitage. Since 24PW320 is located just south of 

24PW340 (the Avon site), perhaps separated only by a few tens of meters, such an 

analysis would aid our interpretation of the prehistory of the Avon Valley.

Hester et al.’s (1977) broad conclusions regarding a core-and-flake industry at 

24PW320 is interesting nonetheless. Bamforth states that among bifacial core-dependent 

groups, "nonbifacial cores and debris from the reduction of such cores should be rare or 

absent" (2002:65). Hester et al. mention the presence of “chunks [that] were especially 

numerous in Section 2 and many of these probably represent core fragments" (1977:244). 

Though they do not describe these potential core fragments in detail, reference to them as 

"chunks" suggests that perhaps they were amorphous. Among the non-debitage artifacts 

at Avon, there are thirty-six cores and core fragments, the majority of which are 

amorphous. If Bamforth (2002) is correct in his assertion that groups dependent on a 

bifacial core technology would not have employed amorphous cores, then the presence of 

amorphous cores at 24PW320 and the Avon site suggest that the people responsible for 

these assemblages were not bifacial core dependent.

It is interesting to note that two bifaces with symmetry indices greater than 5.0
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showed signs of thermal alteration. Thermal alteration is generally considered a method 

employed in order to make an objective piece more easily workable (cf. Callahan 1979). 

While it is possible that heat treating such large pieces was intended to make the flakes 

generated from those pieces more easily workable into smaller tools, it is more likely that 

such heating was being performed in order to make the larger piece more workable in 

itself. This is further evidence for the production of projectile point preforms rather than 

for bifacial cores.

The intended production goals for the numerous bifaces found at the Avon site 

and surrounding areas has been the subject of some debate. Hobler, who conducted 

excavations at the Avon site between 1966 and 1967, believes that the Avon site

represents a secondary lithic reduction site. That is, there were lots of 
large bifaces resulting from the reduction of materials quarried 
elsewhere. These bifrces were probably on their way to becoming 
points. . . .  I have come to believe that the production of bifaces to 
serve as "blanks' for later reduction into points might have been an end 
in itself. Avon might have been a factory location for the manufacture 
of'blanks'. . . (personal communication, 2003).

While this scenario seems likely in light everything we know of the Avon site thus far, it 

is not unreasonable to conclude that different types of bifaces, or bifaces with different 

intended functions, were being manufactured at this quany workshop site. Speculating as 

to the production goals at the North Avon Quarry site, Cameron notes that

. . . production at the quarry may have been geared to the manufacture 
of large bifrces, that could have been transported for use as cores. 
Several of these items were noted while examining the quarry area. A 
large (15 cm long) biface or preform was noted at the quarry area on 
[Rhine Point] and Napton (1981) mentions several of a similar size 
found in subsurface deposits in the Main section of 24PW340. Dr. 
Thomas Hester (1970 field notes) noted a group of large artifrcts that 
he called 'cores' associated with quarry pits on a knoll at the southeast 
end of [Antelope Hill] (1984:6).
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Bamforth (2002:55) suggests that bifacial cores were not the "centerpieces of 

Paleoindian technology," as many prior reports had claimed them to be (cf. Kelly 1988; 

Boldurian and Hubinsky 1994). He goes on to suggest that "[u]se of bifaces first as cores 

and subsequently as blanks for tools also implies that many tools should be made on 

biface-struck blanks. In addition, nonbifacial cores and debris from the reduction of such 

cores should be rare or absent" (Bamforth 2002:65). The cores and debitage from the 

Avon site fail to meet these criteria. That is, there are a number of amorphous cores in 

the collection, the majority of the debitage appears to have been struck from such cores 

(though the method used to analyze the debitage was not a distinctive artifact approach), 

and none of the flake tools appear to have been produced on biface-struck blanks. While 

it may be the case that bifacial core use did not play the central role that it has been 

purported to have played, Bamforth himself admits that most Paleoindian sites on the 

Great Plains have not been examined in light of this hypothesis. His predictions as to 

what a bifacial core-based technology ought to look like in the archaeological record are 

based on informed logic and reexamination of a handful of Paleoindian assemblages. 

Furthermore, while Bamforth acknowledges the fact that Paleoindian technological 

organization was probably not uniform across time or space, he does not address the 

possibility that the two technologies could have coexisted.

The people responsible for the Avon assemblage were clearly making projectile 

point preforms. However, there is additional, quantitative evidence supporting prior 

claims that the makers of the Avon bifaces may have been producing bifacial cores as 

well. There are a number of bifaces with indices in excess of 5.0 (N=16). The
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multivariate quantitative analyses described in this thesis suggest that bifaces with 

elevated indices of symmetry share other quantifiable traits in common. Comparing the 

mean values of these traits among bifaces with elevated symmetry indices to the mean 

values of these traits among bifaces with lower indices indicates a very low probability 

that individual bifaces from either of these two categories could mistakenly be placed in 

to the opposite category. These lines of reasoning suggest that some of the large, 

asymmetrical bifaces, most especially those that do not exhibit breaks consistent with 

failure during thinning and whose indices exceed 5.0, may actually represent bifacial 

cores. Though the Avon material appears to have been dominated by the production of 

projectile point preforms and tools, and despite Bamforth's claim that bifacial core using 

groups would leave very little evidence of non-bifacial core use, there is no convincing 

evidence to date that these two technologies—core-and-flake-based and bifacial core

based—could not have coexisted.

Understanding the goals of biface production among Paleoindian groups vastly 

improves our ability to understand their lithic technological organization. Particular 

technological organizations, in turn, are thought to be indicative of particular mobility 

strategies. Given the recent debate regarding the integrity of the "high-tech" forager 

model (Kelly 1988; Kelly and Todd 1988) versus Bamforth's (2002) call for a 

réévaluation of that model, our ability to determine the difference between bifaces 

produced for use as cores and those produced for use as projectile points is vitally 

important.

Bamforth (2002:55) has argued that the archaeological record does not strongly 

support the notion that bifacial cores were the "centerpieces of Paleoindian technology."
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If it is determined that Paleoindians were not bifacial core-dependent, as we have come to 

believe that they were, we may be forced to reconsider everything that we have come to 

believe about Paleoindian lifeways. Faced with this debate, it was necessary to develop a 

means for interpreting a collection of bifaces from a late Paleoindian context (the Avon 

site) to enable direct observation of the presence or absence of bifacial core use at that 

site. Bifaces are often poorly defined in the literature regarding Paleoindian sites, and the 

actual function of many bifaces found in these contexts is suspect. Bamforth notes that 

*'[o]ne particularly important aspect of any discussion of these issues is distinguishing 

between bifacial cores and unfinished blanks and preforms for bifacial knives. Standards 

for distinguishing between bifacial cores and bifacial tools are rarely made explicit.. . ” 

(2002:65). In this thesis, 1 outlined a method for distinguishing the difference between 

these two types of bifacial artifacts. I then applied these methods to the bifaces from the 

Avon site and establish that, not only do the data from the Avon site support Bamforth’s 

(2002) argument that the archaeological record does not strongly support the “high-tech” 

forager model, but also that the symmetry index used to arrive at this conclusion could be 

applied to bifaces from other sites in order to address Bamforth’s concerns and, 

potentially, to reevaluate Paleoindian lithic technological organization and mobility 

strategies.

Concluding Remaries

The symmetry index described and applied herein was developed as a means for 

interpreting the Avon site bifaces in light of the present debate surrounding the lithic 

technological organizations and mobility strategies of Paleoindians. Specifically, the



134

procedures outlined in this thesis were designed to explore the use of bilateral symmetry 

in determining differences between bifacial cores and early stage projectile point 

preforms. It is well understood that there remains a rather ambiguous group of artifacts 

among the bifaces considered in these analyses and that so, too, would there be such a 

group if this method were to be applied to other archaeological collections without further 

refinement. The sample groups used were small. The evidence, however, does seem to 

be in favor of the functional utility of the method, and the quantitative analyses makes a 

strong case for the hypotheses that there are real and significant differences between 

bifaces intended ultimately for use as projectile points (preforms) and bifaces intended for 

use as cores, and that the symmetry index is a useful tool in determining these 

differences. This thesis provides basic, quantifiable guidelines for discerning the 

difference between preforms and bifacial cores when that difference is not readily 

apparent by traditional means. It also provides a common vocabulary through which we 

may begin to reduce the ambiguity inherent in the present literature regarding "bifaces." 

That is, if we include symmetry indices in our reports, we eliminate the imprecision of 

terms like "less symmetrical" and allow for alternative interpretations by our peers.

Finally, this method can only become more widely applicable and accurate through 

additional testing of larger and more diverse sample groups which 1 believe will result in 

more refined ranges of indices for particular control groups of bifaces.

Callahan and others assert that successful completion of each of a number of 

identified stages in projectile point manufacture is requisite for the successful completion 

of each subsequent stage. If this is correct, we can assume that the parameters outlined 

for each stage would have been held as the ideal during projectile point manufacture
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among prehistoric knappers, however subconsciously. The study of symmetry outlined 

here attempts to identify a range of indices among different types of bifaces, and to 

support the theory that symmetry does play a significant role in the determination of 

whether a particular bifaces was intended for use as a core or as a preform. Deviation 

from perfect symmetry may be an additional "footprint" left by bifacial core-using people 

and systematic inclusion of measures such as the symmetry index in our analyses may aid 

our understanding of Paleoindian lifeways. Those things intended ultimately for use as 

projectile points do show a trend towards more perfect bilateral symmetry with each 

sequential stage. Conversely, those things labeled "bifaces" in the literature likely 

represent a range of production goals—some resembling projectile point preforms and 

some more likely representative of bifacial cores, which are highly portable, highly 

flexible sources of raw material that could have been used as tools in their own right by 

highly mobile people. If we are to better understand Paleoindian lifeways, we need to 

identify the techno-functional role of individual bifaces in the archaeological record. The 

potential to clarify the use of bifaces in the archaeological record through the 

incorporation of a readily accessible study of symmetry into our routine analyses of 

bifaces from archaeological sites may prove to be a valuable tool in determining how a 

particular group organized their lithic technology and, potentially, their system of 

mobility.
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