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Hunt, Peter D., M.A., August 1989 Zoology

The Relationships Among Vegetation Structure, Western 
Spruce Budworm Density, and Avian Community Composition

Director: Richard L Hutto

I studied the relationship between local density of western spruce budworm 
{Choristoneura occidentalis) and the composition and diversity of western 
Montana bird communities. Fourteen study sites were chosen to include 
known variation in budworm outbreak intensity. I sampled bird and 
budworm populations during the summers of 1987 and 1988. All sites were 
predominantly Douglas-fir, and vegetation characteristics were measured at 
all sites Vegetation characteristics were strongly influenced by elevation 
and slope, with ponderosa pine being replaced by spruce and fir at higher 
elevations: Douglas-fir was present throughout. Budworm density was not 
strongly influenced by any vegetative or topographic variables. Regressions 
on three measures of bird community diversity indicated that vegetation 
was a far better predictor of species richness than was budworm density.
In particular, numbers of bird species per site increased with increasing 
densities of spruce/fir, larch/lodgepole, and shrubs, and decreased with 
increasing densities of ponderosa pine. Vegetation showed similar 
explanatory power when species were grouped into taxonomic/foraging 
guilds. Abundances of the more common bird species were also strongly 
influenced by the elevation/vegetation gradient, as well as by shrub density. 
Some species showed significant responses to budworm density, but many 
of these responses were negative, suggesting potentially spurious 
correlations. As a result, positive responses are viewed with a certain 
degree of skepticism, since they were both fewer and restricted to species 
whose habitat preferences may have confounded the analysis. Only one 
species, the Pine Siskin, showed evidence of responding numerically to 
budworm outbreaks, and further research into this species' actual use of 
budworm infested stands would be required befored such a response could 
be reliably concluded. In addition, it was determined that budworm 
populations may not have been high enough to elicit avian population 
responses. On a broad, regional scale, vegetative variation was therefore 
more important than variation In food supply, with respect to the 
composition of bird communities.
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INTRODUCTION

The question of whether food supply is an Important factor in determining 

avian community composition has received considerable debate in recent years. 

One side of the argument holds that because bird populations consume only a 

very small proportion of the food available to them (Lack 1954), food must be 

superabundant with respect to the needs of breeding birds. Thus, only under 

conditions of ecological stress, or "crunches", when food supplies are severely 

depressed, would one expect populations to be limited by their food supplies 

(Wiens 1977). The effect of "food crunches" has been confirmed in studies of 

wintering sparrow communities (Dunning and Brown 1982, Pulliam and Dunning 

1987), In these studies, bird population sizes and species diversity were not 

influenced by changes in food supply unless food was severely limited (i.e., in 

years of very low summer rainfall). Thus, most studies of factors that determine 

avian community composition have down-played the importance of food supply 

and have emphasized the importance of the structure and species composition of 

the vegetation (MacArthur and MacArthur 1961, James 1971, Holmes and Robinson 

1981, Rice et al 1984, Swift et al 1984, and many more). Such studies have found 

that vegetation characteristics can be important in predicting what bird species are 

present in area.
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There is also evidence that food supplies can be limiting at the population 

level. In a study of Galapagos finches, drastically reduced food supplies due to 

drought resulted in population declines from deaths, emigration, and reproductive 

failure (Grant and Grant 1980). In addition, most species converged in foraging 

behaviors when food was limiting.

However, food can still be an important limiting factor when at high levels if 

a species has specialized food requirements or feeding behaviors. In such cases, 

species have been shown to respond numerically to increases or decreases in their 

food supply. Most numerical responses apply to birds feeding upon highly variable 

and unpredictable food sources. For instance, irruptive bird species have long 

been known to occur in areas of relatively high food density, given that food 

supplies in their normal geographic range are very low (Bock and Lepthien 1976, 

Widrlecher and Dragula 1984). Some irruptive species, notably crossbills {Loxia 

spp.), frequently breed after or during food irruptions, even when they are often far 

outside their normal breeding ranges (Catley and Hursthouse 1985). Such breeding 

is facilitated by high cone production within the breeding sites; and without a 

good cone crop the crossbills would presumably not be present in the community. 

In Europe, superabundant birch seed crops have been shown to be important to 

Redpolls {CarduUs flammeœ  Enemar et al. 1984), and Brambiings {Fringilla  

montifringilla: Jenni 1987), with both species showing dramatic population 

increases in high mast years.

In addition to seed crops, other major food sources that can show high 

variability are insect populations, especially forest "pests" that have a tendency to 

occur in outbreaks. Since the majority of birds feed primarily on insects, and
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virtually all feed insects to their young, one would expect some bird species to 

respond numerically to insect population fluctuations. Such a numerical response 

has been shown in the Brambling, which was able to double its population during 

a mass outbreak of the moth, Epirrita autumnata (Enemar et al 1984).

In North America, various species of budworm (Choristoneura) are important 

defoliators in northern coniferous forests, and like other such insects, can show 

considerable variation in population densities, among both sites and years.

Because of their tendency to form outbreaks, these species are considered serious 

pests throughout their range. Consequently, a great deal of primarily descriptive 

literature exists pertaining to bird predation on various species of budworm (Gage 

et al. 1970, Torgersen and Campbell 1982, Takekawa and Carton 1984). The 

intensity of predation is variable, but birds have been reported to consume up to 

87% of the budworm population (Crawford et al 1983). However, it is frequently 

noted that bird predation is largely ineffective at very high budworm densities 

(Crawford and Jennings 1989).

Some insectivorous birds appear to be more important In budworm control 

than others, notably the Evening Grosbeak (Coccothraustes vespertinus) and 

several species of wood warblers (Morris et al 1958, Blais and Parks 1964, Morse 

1978). The association of these birds with budworm may be so high that their 

local populations are greatly affected by changes in budworm density. Evening 

Grosbeaks were observed to increase in numbers during an outbreak in Quebec, 

and to decrease to pre-budworm levels after the outbreak died down (Blais and 

Parks 1964). An occurrence of polygyny in this species (Fee and Bekoff 1986) was 

also apparently tied to heavy infestation of budworm, suggesting that abundant
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food supplies facilitated a greater than normal reproductive output. Similarly, 

populations of the Bay-breasted Warbler (Dendroica castanea) have been shown to 

track budworm populations closely (Morris et al 1958, Morse 1978). Both the Bay­

breasted Warbler and its close relative the Cape May Warbler (D. tigrina) are often 

stated as being more common in areas with than in areas without budworm 

outbreaks (MacArthur 1958). Finally, Zach and Falls (1975) found that Ovenbirds 

(Seiurus aurocapillus) reduced territory sizes and increased territory packing when 

budworm was abundant, suggesting that a greater population size was supported. 

There was also some evidence that Ovenbird clutch size increased under 

conditions of high budworm density.

In addition, birds may respond functionally, rather than numerically, to 

changes in food supply This has been shown for migrant warblers, which 

increased their foraging rates and had a greater food intake in areas with greater 

food abundance (Graber and Graber 1983). Ovenbirds were observed to forage 

higher in the foliage than normal when budworm populations were high (Zach and 

Falls 1975). Such functional responses also have been observed at the community 

level, with several species apparently responding in similar ways. After spraying to 

reduce arthropod abundance. Hunter and Witham (1985) found that birds shifted 

their foraging to unsprayed trees and became more generalized in foraging 

location. However, this pattern was not observed when spraying was more 

extensive and patches of unsprayed forest did not exist, suggesting that when 

birds are unable to escape in space, they do not modify their behaviors to any 

great extent.
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Functional responses to budworm can also be detected at the community 

level, and are the result of several species' populations responding in the same 

fashion. Aimost all species studied by Crawford and Jennings (1989) responded to 

higher budworm densities by consuming greater numbers of budworm larvae, as 

evidenced by stomach analyses. As a result, the insectivorous component of the 

avian community could be said to have shifted its foraging tactics.

Finally, whole communities may respond numerically to variations in food 

supply. This possibility is supported by work done by Brush and Stiles (1986) in 

the New Jersey pine barrens. They found that insect abundance was a better 

predictor of bird abundance than were vegetation characteristics. Hutto (1985a, 

1985b) also found total bird abundance to be correlated with insect abundance, 

both overall and with respect to foraging height, and in different seasons and 

geographical locations. Outbreaks of the moth Heterocampa g u ttiv itta  resulted in 

population increases in several species of vireos and warblers in New Hampshire 

(Holmes et al. 1986), suggesting that such community-level responses may be 

limited to those species that actually forage on the food supply in question. Other 

than the studies cited above, little has been done relating avian community 

structure (as opposed to behavior) to food supply, but examples do exist in the 

literature for other groups of terrestrial vertebrates. Abramsky (1988) found that 

desert rodent communities became more speciose as productivity (itself a measure 

of the food available) increased, although there were limits imposed by the amount 

of cover. Abram sky's study further demonstrates that both food and vegetation 

may exert important influences on community structure.
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Therefore, it would appear that evidence exists to support the hypothesis 

that food variability can be important in most years, and that populations can 

respond to increases as well as decreases in their food supplies. In particular, 

birds are able to respond to prey bases that are highly variable in space and time, 

such as forest defoliators, and such responses can be both numerical and 

functional.

With particular reference to the spruce budworm, some species (e.g.. Evening 

Grosbeak and some wood warblers) may, to a certain extent, be budworm 

specialists. It is unclear to what extent such species might influence the 

composition and diversity of the avian community as a whole. Numeric responses 

to budworm may be less frequent than functional ones, since Crawford and 

Jennings (1989) found population increases in only two species, but increased 

budworm consumption in several. Thus, although budworm may be important, if 

not limiting to some species, on a community-wide level the effects of high prey 

densities may not be reflected in numeric terms.

The presence of functional and numerical responses to budworm outbreaks 

by birds may prove important in the field of forest management. Birds have long 

been recognized as important in controlling budworm (Gage et al. 1970, Torgersen 

and Campbell 1982, Crawford et al. 1983), but little research has been directed 

toward the question of how critical budworm is to birds. If, in fact, some species 

are highly dependent upon budworm outbreaks, they could be considered highly 

vulnerable to changes in budworm populations. In particular, budworm control 

measures, such as pesticide spraying, could have negative effects on these 

species. In compliance with the National Forest Management Act (1976), the Forest
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Service is responsible for maintaining viable population sizes of all vertebrate 

species. Thus, information on the relationship between budworm and birds may 

prove useful to forest managers. In fact, it has been suggested (Crawford and 

Jennings 1989) that current management systems need to be modified to allow for 

the maintenance of bird diversity, which in the long run could result in reduced 

expenditures for budworm control.

The purpose of this study was to investigate the relationship between 

western spruce budworm (C. occidentalis) and the bird community within the 

coniferous forests of western Montana. Specifically, I addressed the following: (1) 

do any species respond numerically to variation in budworm density among sites, 

and (2) if any species shows a relationship, to what extent does that relationship 

influence the overall bird community composition?
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METHODS

Due to time considerations, budworm densities varied primarily in space 

rather than in time, thus still allowing for comparisons between high and low 

levels of infestation. Despite its shortcomings, this approach, if adequately 

controlled, can yield conclusive and meaningful results, and is the same 

methodology used by Crawford and Jennings (1989).

Selection of Study Sites

Study sites were selected using maps of budworm occurrence prepared by 

the U.S. Forest Service. These maps were based on defoliation that was visible 

from the air, and indicated budworm infestation level as either non-detectable, 

light, moderate, or heavy. Using maps of the Garnet and Sapphire Mountains in 

western Montana, I selected a number of potential study sites in early 1987 and 

visited them to determine their suitability for study. Suitable sites were those that 

were predominately Douglas-fir, had enough area to set up a 1-km long transect, 

were relatively accessible, and appeared vegetatively similar to one another.

Twelve sites were eventually found during the 1987 field season, and 

selection was often hampered by inaccurate maps and inappropriate vegetation. 

Thus each site was only visited once for bird censusing in 1987. Two additional 

sites were chosen in 1988, and again other potential sites were found unsuitable

8
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for various reasons. However, since most of the sites were already selected, I was 

able to visit each four times in 1988. The sites were located roughly in an east- 

west line stretching from near Avon, to Blue Mountain in Missoula (Figure 1). All 

satisfied my initial criteria for selection, and encompassed the complete range of 

budworm densities indicated on the maps.

Bird Censusing

Bird communities were censused using a transect count method. During the 

period from early June to early July, 1 km long transects were walked at each site 

and all birds seen or heard were identified and counted. In addition, any species 

found on the site during the census period, but not actually recorded on the 

transect, was given a on the data sheet. Censusing was limited to the time 

period between 0600 and 1200 hr, and when possible several sites were visited 

each morning. One transect was completed per site in 1987, and four in 1988.

The 1987 counts, and the mean of the 1988 counts, were used as an index of 

abundance for a given bird species when sites were to be compared.

Budworm Sampling

Budworm density in each stand was estimated by clipping three 30 cm 

branch tips from the mid-crowns of a number of trees at each study site. The 

number of trees sampled in 1987 was 10 per site, whereas 20 trees were sampled 

in heavily invested areas in 1988 in an effort to reduce variance in the budworm 

density estimate. These clippings were then shaken into a bag, and the budworm

9
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Figure 1. Location o f study s ite s . Numbering: 1 -  Blue Mountain High,

2 -  Blue Mountain Low, 3 - Snowbowl, 4 - M i l le r  Creek, 5 - Pattee 

Canyon, 6 -  West Schwartz Creek High, 7 - West Schwartz Creek Low,

8 - Lower Schwartz Creek, 9 - Wallace Creek, 10 -  Welch Gulch,

11 - Tenmile Creek, 12 -  Mulkey Gulch, 13 - R a tt le r  Gulch, 14 - Luke 

Mountain.

iO
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larvae and pupae collected and counted. In 1988, I also counted other lepidopteran 

larvae, considering them a second category labeled "other". This method of 

estimating budworm density is well established (Carotin and Coulter 1972, 

Srivastava et al. 1984, Foltz and Torgersen 1985), and has been found to be as 

accurate as more tedious methods that involve transporting whole branch samples 

back to the laboratory for counting (Foltz and Torgersen 1985). Although the 

number of budworm per branch and the number per branch mass are well 

correlated (Hutto 1987), the branch samples from each tree were weighed so that a 

measure of budworm density per unit branch mass could be calculated for each 

stand. In order to retain comparability among sites, it was necessary to sample all 

the stands at the same time. Thus, all sampling was done in a three to four day 

period in early July, when all bird censusing had been completed.

In order to compare budworm densities between this and other studies, it 

was necessary to make crude conversions of densities per kilogram to densities 

per hectare and acre. To do so, I first converted numbers per kilogram to numbers 

per square meter of foliage using the data of Hutto (1987). These values were 

then converted to numbers per square foot of foliage. Morris (1955) estimated 

that 80 and 105 year old stands of spruce and fir contain 200,000 and 120,000 

square feet of foliage per acre, respectively. Thus, since most trees on my study 

sites are in the 80 to 100 year age range, I used both of Morris' values to obtain 

budworm densities per acre for all sites. These values could then be converted to 

numbers per hectare for later comparisons.

11
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Vegetation Measurement

Vegetation characteristics were recorded using a point-centered quarter 

method (Cottam and Curtis 1956). Sampling was done along the same transects 

used for bird censusing, with 10 points spaced roughly 100 m apart. Since many 

transect routes were along roads, points used for vegetation sampling were 

located at least 20 m to the side of the actual transect. This procedure allowed 

for a more accurate representation of the vegetation characteristics of each stand 

as a whole, rather than giving disproportionate weight to characteristics of the 

roadside edge. Similarly, since the main objective of the vegetation sampling was 

to characterize the coniferous habitat, points that fell in riparian areas were 

relocated. When present at a site, riparian habitat was limited in distribution, and 

thus not a major component of the stand.

At each of the 10 points, the following data were recorded: distance from 

center, diameter at breast height, and species of the nearest tree in each of four 

quarters around the sampling point; distance to and species of the nearest sapling 

or shrub in each quarter; and canopy cover. The latter was estimated by looking 

straight up through a 4 cm diameter tube at the canopy and estimating the 

percentage of the field of view occupied by vegetation. Other site characteristics 

such as elevation, slope, and aspect were recorded at every other sampling point. 

The distances and tree sizes recorded at each point were then used to calculate 

tree densities, dominance values, and importance values for each tree species at 

each site.

12
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Statistical Analysis

Three criteria were used to select bird species for analysis. Initially, a 

number of species that were recorded from two or fewer sites, or that were 

recorded irregularly (mean number < 1 ) at all sites, were discarded. Of the 

remaining species, any that were still recorded at less than 50% of the sites were 

discarded if (1) they were more typical of riparian habitat at the edges of sites, or 

(2) they showed no apparent pattern in abundance. The species discarded in this 

manner were judged to be too rare or irregular to be used in the multivariate 

analyses which were to follow. The species remaining were thus those recorded 

in at least 50% of the sites. All further references to "mean abundance" refer to 

the mean abundances of these widespread species. Data on bird abundances and 

budworm densities were first tested with an ANOVA to determine if the study sites 

did indeed differ in these parameters. Vegetation data could not be tested in this 

way because the point-centered quarter method does not yield several values 

from which a mean can be calculated. In addition, the densities of a given tree 

species were transformed into relative densities by dividing them by the total tree 

density. In this way I hoped to get a more accurate picture of any effects of tree 

species composition. Both measures of tree density were used in analysis.

Given that the sites differed in their bird populations, further analysis was 

undertaken to determine which factors were most important in contributing to 

differences among stands. Initially, correlation coefficients were calculated 

between all possible pairs of variables. High values in the correlation matrix were 

then tested for significance using linear regression. This phase of the analysis 

also served to determine which of the several site characteristics were most

13
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important, thus allowing reduction of the number of variables Involved in analysis. 

The next step involved calculating partial regression coefficients for use in path 

analysis (Sotcal and Rohlf 1981). Partial regression is a multiple regression carried 

out after all dependent and independent variables have been standardized. This 

analysis yields standard partial regression coefficients (SPRCs), representing the 

relative strengths of the effects of the individual independent variables on a given 

dependent variable. SPRCs can then be used in path analysis, in which causal 

relationships are implied through a model of interrelationships among variables. 

This model is developed beforehand for the system involved, and the SPRCs are 

used to assess the strengths and significances of the several variables.

Part of the initial analysis involved categorizing bird abundances as common 

(2), uncommon (1), or rare (0), and placing these values in a species by site table. 

The rows and columns of this table were then rearranged until a pattern became 

apparent, a procedure known as the Braun-Blanquet approach (Gauch 1982). Once 

a pattern was discovered, I was able to determine what site characteristics, if any, 

were responsible for large-scale changes in bird abundances, and then use this 

information in the more rigid statistical procedures.

Other avenues of investigation involved grouping species into foraging 

guilds, on the assumption that some guilds would be more responsive to budworm 

density than others. Guild abundances were calculated by simply adding up the 

abundances of all the species in a guild. Correlation and partial regression 

coefficients were calculated for the guild abundances in the same way as for 

species abundances. Finally, I used clustering to group species and guilds based 

on similarities in their partial regression coefficients, under the assumption that

14
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species which responded to habitat variables in similar ways would cluster 

together and possibly shed light on the factors that were most important in 

community organization.

15
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RESULTS

Bird Abundance

Fifty-six species of birds were recorded over both field seasons and all study 

sites (Appendix 1). Of these, 34 occurred on fewer than 7 (=50%) of the sites in 

either year and were not considered in any further analysis. In addition, three 

species [Common Raven (Corvus corax). Northern Flicker (Colaptes auratus), and 

Red Crossbill (Loxia curvirostra)] were recorded at 9 or 10 sites in 1988. However, 

since these species were somewhat sporadic and because they are not known to 

consume budworm, they were eliminated from the analysis as well. Thus 19 

species were recorded on at least 11 sites (75%) each. All of these species are 

primarily insectivorous during the breeding season. This collection of species 

represents a regularly occurring component of the overall avian community that 

can be tested for its responses to environmental variables. Mean abundances of 

these 19 species varied among sites (Table 1), and with the exception of the 

American Robin, the differences among sites were significant (ANOVA: all P-values 

<.018, American Robin: P=.067). Average numbers of species and individuals 

recorded per site also differed (Table 1) and were highly significant (ANOVA P=.002 

(species), P=.001 (individuals)).

16
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Site Characteristics

Vegetation at all sites was characterized by relative densities of Douglas-fir 

of 47% or greater. In addition, Douglas-fir dominated other tree species at all sites, 

thus qualifying them as "Douglas-fir forests" in my view. From one to five other 

species of trees and tall shrubs occurred at each site, predominantly ponderosa 

pine and western larch, but also including lodgepole pine, Englemann spruce, 

subalpine fir, grand fir, western red-cedar, mountain maple, and serviceberry (Table 

2). The latter three species were too rare to be included in the analysis. Several 

species of shrubs and young trees were recorded, but these were eventually all 

lumped together as a single variable to represent shrub density. Further 

manipulation of the data set involved lumping some tree species together. 

Specifically, Englemann spruce and the two true firs were combined to form the 

variable "spruce-fir density", and western larch and lodgepole pine were combined 

into "density of other conifiers". To further reduce the variable list, and thus make 

later analysis more meaningful, canopy cover and total tree density were also 

removed from the data set, since both were highly correlated with Douglas-fir 

density (canopy: r^=.206, P=.038; trees: r^=.76, P=.001). Of the topographic 

variables, only elevation and slope were used in analysis (Table 2).

Spruce budworm densities ranged from 0 to 30.84 per kilogram in 1987 and 

0 to 21.5 in 1988 (Table 3). Densities on any given tree were as high as 54.5 and 

81.5, respectively. Although variances were high, there were significant differences 

among sites (ANOVA: F=16.2, P=0 (1987); F=10.6, P=0 (1988)). Densities of other 

lepidopteran larvae did not differ significantly among sites (ANOVA: F=1.6, P=.08), 

and were generally much lower than budworm densities when they were present.
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Table 2. Vegetative and topographic features of a l l  study sites. Tree species densities in 
trees/hectare. Site numbers as in Figure 1.

VARIABLE study SITE
______________________ 1 I 3 4 5 6 7 8 9 10 11 12 13 14

Douglas-fir density 1233 309 601 935 530 651 685 850 253 485 867 638 948 333

Ponderosa pine density 342 100 24 255 59 36

Western Larch Density 73 250 23 83 108 44

Englemann spruce density 18 70 62 122

Abies density 200 120

Lodgepole pine density 128 186 153 272

Deciduous tree density 36 50 23

Shrub density (/rô ) 0.81 0.92 1.00 2.37 4.53 7.30 1.69 0.80 1.43 1.73 1.18 0.98 0.49 0.05

Slope (degrees) 30.0 9.6 22.0 23.0 7.0 24.8 29.6 21.8 16.0 23.8 26.8 23.6 28.8 12.4

Elevation (feet) 5630 3740 4170 4140 4100 4820 4300 4000 4480 4470 4480 4860 5270 5670

Longitude (degrees U) 114.2 114.1 114.0 113.9 113.9 113.8 113.8 113.8 113.7 113.6 113.4 113.3 113.2 112.:
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Table 3. Measures of insect abundance at a l l  sites in 1987 and 1988. Site numbers as in Figure 1.

VARIABLE STUDY SITE
CD 1 2 3 4 5 6 7 8 9 10 11 12 13 14
-n
c
7X

1987 - budworm/kg 0.00 0.00 0.00 0.00 30.84 10.26 5.35 0.94 1.53 16.35 28.65 10.59
3 "
CD

N 5 5 6 5 10 10 10 5 5 10 10 10
CD

■ o
1988 - budworm/kg 0 . 0 0 0.00 0.00 0.00 0.00 21.50 4.54 7.09 0.65 1.91 8.22 7.17 17.83 6.89

1
variance 271.93 20.25 5.76 2.27 5.39 61.88 32.52 247.18 38.80

C
a budworm/haj {noh .1 .1 .1 .1 .1 2100 450 700 63 192 826 720 1800 692
3

" O
budworm/ha2 (non .06 .06 .06 .06 .06 1300 280 428 39 115 496 432 1080 415

O
3 ;
3

other leps/kg 0.00 0.40 0.00 0.00 0.00 0.82 0.68 0.35 0.33 0.31 0,85 1.19 0.00 0.00

1 N 10 10 10 10 10 20 20 10 10 10 20 20 20 10

o

s  s
CD

C/i

o'
3

1: budworm/ha calculated assuming stand age of 80 years. 
2: budworm/ha calculated assuming stand age of 105 years



Budworm densities at any given site were generally less in 1988 than 1987 and 

were highly correlated between years (r^=.94, P<.001)

Relationships Among Site Variables

Pairs and groups of variables were analyzed with single and partial (multiple) 

regression. Some significant correlations between variables allowed for reduction 

of the variable list, but it is important to note that variables were only removed 

when I did not expect them to have influenced bird populations, and they were 

shown to be poorly correlated with bird populations.

In applying path analysis to my investigation of avian community structure, I 

first set up a model of the interrelationships among the eight site (^independent) 

variables. In this model, topographic features influence vegetation characteristics, 

and both topography and vegetation influence budworm densities (Figure 2). In 

addition, elevation and slope are not independent of one another, and the five 

vegetation variables are similarly interdependent. Such two-way correlations are 

traditionally represented by a double arrow in path diagrams, but are not shown in 

Figure 2 to maintain its clarity. Even in this form the path diagram is somewhat 

confusing and does not indicate the strengths or significances of any of the causal 

relationships.

Of the possible relationships shown in Figure 2, only two were found to be 

significant: the effect of slope on the density of Douglas-fir and the effect of slope 

on the the density of ponderosa pine (Table 4). In addition, a strong relationship 

was found between elevation and the combined densities of larch and lodgepole 

pine. Noting that SPRCs between tree densities were always lower than those

21
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Figure 2. Path diagram depicting a l l  potential causal relationships

among s i te  variables. Bid irectional arrows between variables on the 

same level ( i . e .  tree densit ies ,  topographic variables) have been 

omitted for  c l a r i t y .
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Table 4. Standardized p a r t ia l  regression coeff ic ients  among s i te  
variables; a) assuming interdependence among tree species' 
densit ies ,  b) assuming independence of t ree  species' densities

"INDEPENDENT"
VARIABLE

"DEPENDENT" VARIABLE 
Douglas- ponderosa spruce/ 

slope f i r ______ pine f  i r
larch/

1odcepole shrub

a)

b)

elevation .11 .23 - .42 .40 .59 - .37
slope .78 * - .7 8  * .28 .13 - .16
Douglas-f ir .20 .22 - .3 5 .09
ponderosa pine .22 .22 - .0 1 - .06
s p ru c e / f i r .16 .14 .19 .10
larch/lodgepole - .2 7 - .0 1 .20 .20
shrub .04 - .02 .06 .10

elevation .11 .05 - .3 5  * .47 * .67 * - .1 5
slope .71 * - .6 0  * .29 - .0 7 - .0 9

*  = s ig n i f ic a n t  a t  alpha = .05
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between topographic and vegetation variables, I recalculated the SPRCs as if all 

tree species' densities were Independent of each other by only including the two 

topographic variables in the model. In addition to reproducing the results of the 

first analysis, this analysis indicated that elevation was important in determining 

densities of ponderosa pine, spruce-fir, and other conifers. Neither model 

produced significant relationships for shrub or budworm densities. Although the 

independence assumptions of the second model are certainly invalid, I feel that the 

elevational relationships found make biological sense, and in any event simply 

accentuate trends already present in the first model. Thus I based the composite 

path diagram on the second model (Figure 3).

It is noteworthy that budworm density was not significantly affected by any 

of the other independent variables (Table 5), especially if one considers the insects' 

host preferences of Douglas-fir and true firs (USDA 1987). Thus, to get a better 

idea of what factors were affecting budworm populations on my sites, I turned to 

my original matrix of correlation coefficients. Simple regression of budworm 

densities against the other site variables revealed significant effects of three 

vegetation measures and longitude, and strong trends for elevation and slope. 

(Table 5). A closer look at this set of variables indicates that they are all 

interrelated along an elevational gradient; Englemann spruce and lodgepole pine 

increase with elevation and ponderosa pine decreases. Longitude and elevation 

were also highly correlated, due to the location of sites from west to east along a 

line approaching the continental divide. Looking at the SPRCs (Table 5), note that 

the highest coefficient is that of elevation, and although this relationship is not 

significant, it would appear to be more important than any of the others except

24
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Figure 3. Path diagram depicting relationships among s i te  variables  

Numbers represent standardized par t ia l  regression coeff ic ien ts .  

Sign i f ican t  coeff ic ien ts  (P < .05) are indicated by
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Table 5. Standardized p a r t ia l  regression coeff ic ients  and simple
co rre la t ion  coeff ic ien ts  fo r  effects of vegetation and topography 
on western spruce budworm density.

VARIABLE SPRC see

elevation .52 .38
slope .48 .38
Douglas-f ir - . 1 7 .19
ponderosa pine - . 0 4 - . 4 2  *
sp ru c e / f i r - . 2 7 .14
larch/lodgepole - . 0 4 .27
shrub .49 .37
lodgepole pine .55 *
Englemann spruce .74  *

*  = s ig n i f ic a n t at  alpha = .05
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shrub density. With regard to the latter, it is strongly, but not significantly, 

correlated with budworm density in both analyses, but I can think of no 

explanation for such a trend.

Avian Communities

Three measures of community composition were subjected to multiple 

regression as described above: mean number of individuals per transect, mean 

number of species per transect (species richness), and total number of species per 

site. Based on results from partial regression (Table 6), it would appear that 

vegetation characteristics have a major effect on species richness, but not on 

numbers of individuals or the total species pool. In most cases, however, note the 

similarity in trends for each community measure, if not the similarity of 

significance levels. The pattern between species richness and the independent 

variables is remarkably similar to that between budworm density and the same 

variables, with negative effects of ponderosa pine and positive effects of spruce- 

fir, other conifers, and shrub density. This time however, elevation had a negative 

effect, despite the vegetation's known response to elevation. This information on 

community structure can be incorporated into the path diagram presented earlier, 

resulting in the relationships shown in Figure 4.

The avian community was also analyzed by calculating SPRCs for the 19 

most common species (Appendix 2), and using these values to cluster bird species 

based on their habitat affinities. Clustering was performed using Euclidean least- 

squares distances and an average linkage algorithm. This was done under the 

assumption that species which responded similarly to a given variable or set of
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Table 6. Standardized p a r t ia l  regression co e ff ic ien ts  for  effects of  
s i te  variables on measures of community d iv e rs i ty .

VARIABLE mean number mean number to ta l  number
________________ of individuals of species of species

budworm density - .0 6 - .3 9 - .2 8
Douglas-fi r - .1 2 .40 .19
ponderosa pine - .6 2 - .6 2  * - .91
s p ru c e / f i r .51 .50 * . 66
larch/lodgepole .29 .46 * .26
shrub .29 .49 * .21
elevation - .9 2 - .2 4 - .7 4
slope - .  09 - .57 - .4 7

*  = s ig n i f ic a n t a t  alpha = .05
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Figure 4. Path diagram depicting relationships between s i te  variables  

and species richness. Numbers represent standardized part ia l  

regression c o e f f ic ie n ts .  S ign if ican t  coeff ic ien ts  (P <  .05) are 

indicated by
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variables would be more similar to each other than to other species, and thus 

group together in the analysis. The clustering resulted in three primary groupings 

of species (Figure 5). Species in each of the clusters were compared to determine 

whether their SPRCs were of similar sign and magnitude, which would enable me 

to generalize about the group's response to habitat. Group A contains only 

Townsend's Warbler, which is characterized by strong positive responses to shrubs 

and spruce/fir and strong negative responses to elevation. Group B contains 

several species which show strong positive responses to ponderosa pine and 

negative responses to Douglas-fir, with the exceptions of Western Tanager and 

Chipping Sparrow. Group C contained those species that showed negative 

responses to ponderosa pine, exceptions being Ruby-crowned Kinglet, Solitary 

Vireo, and Brown-headed Cowbird. To make these clusters more meaningful, 

species that were "misclassified" were rearranged between groups B and C (Table 

7). Partial regressions were then run on the summed abundances of the species in 

each group, the results of which supported the habitat relationships inferred from 

the original clusters (Figure 6).

Avian Guilds

To determine how various subsets of the community responded to habitat 

variables, avian communities were subdivided into 17 taxonomic/foraging guilds 

containing one to six species (Table 8). When used in analysis, a guild variable 

was assigned a value equal to the sum of the mean abundances of the species it 

contained. Multiple regressions were performed on the guild data, and several 

significant relationships were discovered (Table 9 -  due to space considerations,
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Figure 5. Clustering of  bird species based on standardized part ia l  

regression co e ff ic ie n ts  fo r  s i te  variables.
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Table 7. Revised groupings of bird species based on comparisons of  
standardized part ia l  regression coeff ic ients  within the groups 
defined in Figure 5.

GROUP A (Moist/dense, sp ru c e / f i r )

Townsend's Warbler

GROUP B (Dry/open, ponderosa pine)

Chipping Sparrow 
Mountain Chickadee 
Red-breasted Nuthatch 
Orange-crowned Warbler 
Dark-eyed Junco 
Yellow-rumped Warbler 
Evening Grosbeak 
Soli ta ry  Vireo 
Brown-headed Cowbird

GROUP C (Moist/dense, Douglas-f ir )

Western Tanager 
Ruby-crowned Kinglet  
Warbling Vireo 
Hammond's Flycatcher 
Pine Siskin  
Swainson's Thrush 
American Robin 
Golden-crowned Kinglet  
MacGil1i v r a y ' s Warbler
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Figure 6. Path diagram depicting relationships between s i te  variables  

and the three habitat  groups shown in Table 7, Numbers are 

s ig n i f ic a n t  (P <  .05) standardized p ar t ia l  regression coeff ic ients
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Table 8. Species composing the guilds and subguilds used in analysis, 
with id e n tify in g  codes. Species codes as in Table 1.

FlYC = Flycatchers: HAFL

BARK = Bark foragers: MOCH
RBNU

ABIN = Arboreal Insectivores

KING = Kinglets: GCKI
RCKI

VIREO = Vireos: SOVI
WAV I

WARB = Warblers and Tanager: YRWA
TOWA
WETA

SMIN = Small Insectivores: MOCH
KING

GLEAN = Gleaners: KING
VIREO
WARB

SEED = Seed-eaters: BHCO
PISI
EVGR

GROU = Ground foragers

THRU = Thrushes: SWTH
AMRO

SPAR = Sparrows: CHSP
DEJU

GRWA = Ground Warblers: OCWA
MGWA

SMGR = Small ground foragers: SPAR
GRWA
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Table 9. S ig n if ic a n t  (P < .05) standardized p a r t ia l  regression
c o e ff ic ie n ts  between s i te  variables and guild abundances. Guild 
abbreviations as in Table 8.

VARIABLE
_________________ bark ABIN VIREO WARB GLEAN GROU SPAR GRWA SMGR

D ou glas -fir  _  -1 .21
ponderosa pine 1*31 
s p ru c e /f ir  
larch/lodgepole  
shrub
elevation  *65
slope -76 1,46

- .5 6 - .7 1 - .7 9
.61 .62 .65

.94 - .6 9 - .5 9
.53 .57 .43
.63 -1 .2 7 - .6 1 - .7 5
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only SPRCs significant at .05 are presented. All guild results can be found In 

Appendix 3). As in the community analysis, budworm density did not prove to be 

an important variable, whereas vegetation and topography were often important 

"determinants" of a guild's abundance. Guilds that showed several significant 

relationships included bark foragers, arboreal gleaning insectivores, and ground 

foragers. One guild, the nomadic seed-eaters, proved to be a poor combination, in 

that the two species in it showed opposite trends in all variables. On average, 

however, the species in a guild showed at least a 50% similarity in their population 

trends, lending support to the use of guilds in the analysis. No path diagrams are 

presented for guilds, simply because of the number that would be involved, and 

because combining all the guilds into one diagram would make its interpretation 

difficult.

Individual Species

Of the 19 species used in the analysis, 13 showed at least one significant 

response to a site characteristic (Table 10). Of these, 11 responded to vegetation, 

4 to topography, and 5 to budworm density. Most species responded to a given 

variable in the same manner as the guild to which they were assigned. Of the 

vegetation variables, densities of ponderosa pine and "other conifers" were 

important to the most species. Interestingly enough, most species that responded 

to budworm density did so in a negative fashion, although I suspect that the 

confounding effects of vegetation were not totally separated out.

Species abundances were also analyzed using simple regression in an 

attempt to sort out the more obvious effects of the site variables, regardless of
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Table 10. Significant (P < .05) standardized partial regression coefficients between s ite  variables 
and twelve common bird species. Species codes as in Table 1.

VARIABLE MOCH RBNU RCKI SOVI WAV I OCWA TOWA MGWA WETA CHSP DEJU BHCO

I  budworm -0.37 -0.60 -0.41 0.67 -0.62

Douglas-fir 0.46 -1.20

ponderosa pine 1.20 1.22 0.60 -1.08 -0.89

spruce/fir 1.53 0.73 -0.61

larch/lodgepole 0.32 0.66 1.04 -0.59 1.07

w shrub 0.84 0.58

elevation 0.45 -1.00 -1.65

slope 0.60 1.49



any relationships among the latter. This analysis revealed numerous significant 

effects of ponderosa pine density and budworm density (Table 11). As has been 

indicated earlier several species respond negatively to high densities of ponderosa 

pine, and these species are probably responsible for several of the broader trends 

in guilds and communities described above. More interesting for the purposes of 

this study are the species that responded to budworm density. This list can be 

reduced by eliminating those species that responded negatively to ponderosa pine 

density, since the negative correlation between budworm and pine could have 

caused a spurious correlation between budworm and those species' abundances. 

When those species are removed, one species remains -  the Pine Siskin. Siskins 

showed a positive response to increasing levels of budworm infestation (r^=.15, 

P=.066). This relationship is supported to some extent by the multiple regression 

for this species, in which the coefficient for budworm is among the highest, and 

its significance is the highest of all eight variables (t=1.5,P=.09).

One species, the Townsend's Warbler, was not analyzed in the same way as 

the others because of complications arising from its geographic range. According 

to Skaar (1985), Townsend's Warblers reach their eastern limits within the 

longitudinal range of my study sites. When the abundances of Townsend's 

Warblers are examined in Table 1, it would appear that the limit is reached 

between sites 10 and 12. due to my experience with the species at these sites 

over the two years, I chose to draw the line between sites 10 and 11. Once the 

confounding effects of longitude were removed, analysis of Townsend's Warbler 

abundance proceeded as for the other species, but using only the 10 westernmost 

sites. All subsequent results reported for Townsend's Warbler were obtained using 

this methodology. 3q
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8 Table 11. Correlation coefficients between bird abundances and ponderosa pine and spruce budworm
 ̂ densities. Species codes as in Table 1.

CO

3
CD VARIABLE budworm MOCH RBNU GCKI SOVI WAVI TOWA MGWA PISI EVGR
-n   — ■ ----------- ---------------- ---------------------------------------------------------------------------------------------------------

I  ponderosa pine -.42 .49 .78* - .53* .47* -.64* - .40  - .72* -.24 .40

budworm .07 - .45 *  .02 -.46 .52* -.03 .36 .39 -.30
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significant at alpha = .05
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Partial regression revealed strong relationships between Townsend's Warbler 

and spruce-fir (t=13.44, P=.024), shrub density (t=*6.37, P=.05), and elevation (t=11.54, 

P=.027). Interestingly enough, the relationship with elevation is negative. Simple 

regression produced no significant results, although a strong negative trend 

existed for ponderosa pine, and strong positive trends were found for budworm 

and elevation.
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DISCUSSION

The Site Variables

Vegetation on the sites used in this study was typically Douglas- 

fir/ponderosa pine or Douglas-fir/alpine conifers, with ponderosa pine dropping out 

as elevation increased. As the dominant tree species at all sites, Douglas-fir 

showed few significant responses to physiographic variables, and its density varied 

very little when compared with other tree species. Higher elevation sites were 

characterized by higher densities of spruce, fir, larch, and lodgepole pine, and 

tended to have a slightly higher overall tree density. Lower elevation sites tended 

to be flatter and have higher densities of ponderosa pine. Lodgepole pine, 

Englemann spruce, and subalpine fir never occurred on the lower sites. Understory 

composition was predominantly low deciduous shrubs, although young conifers 

were usually present in low densities. Shrub densities were not strongly 

influenced by any other vegetative or topographic variables. Although spruce 

budworm densities were expected to respond to densities of their host trees, 

particularly Douglas-fir and true firs, this was not observed. In fact, there were no 

significant interactions between budworm density and the other site variables. 

However, there is an indication that elevation may be important, and if so, then 

vegetation effects are probably closely tied in as well.
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Community composition

Food supply, measured in terms of spruce budworm density, had no effects 

on the numbers of species or individuals at a given site. Rather, vegetation 

characteristics proved to be relatively important, particularly with respect to 

species richness. In particular, tree and shrub densities affected the mean number 

of species per transect at a given site, but not the total number found at that site 

over two summers. The principal difference between the mean and total number 

of species is the absence of rare or hard to find species on most transects. Thus, 

the mean reflects the number of common species present at a site, which can 

include species that are considered rare at a different site. In this sense, the mean 

species richness can be interpretable in terms of changes in species' abundances, 

with a speciose site possessing species that are considered rare at less speciose 

sites. Therefore, the results of my analysis indicate that richness increases with 

increasing densities of shrubs, spruce-fir, and larch/lodgepole, and decreases with 

increasing density of ponderosa pine. If rare species are becoming more common 

under the above conditions, there must be an explanation for the lack of strong 

correlations between number of individuals and site variables. I suspect that some 

species, particularly those that show a positive response to ponderosa pine, must 

be decreasing in abundance at the more speciose sites, but not declining to the 

extent that they become rare.

The importance of ponderosa pine and spruce/fir in determining species 

richness is reiterated by analyses at the other levels of organization investigated: 

guilds and individual species. In particular, the species clusters based upon SPRCs 

indicate that there are groups of species, at a level "above" the foraging guild,
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which respond similarly to habitat parameters. The existence of a spruce/fir group 

and a ponderosa pine group supports my earlier contention that changes in 

species richness, but not in total bird abundance, result from declines in the 

populations of one group and increases in another.

That different bird species "prefer" different tree species has been well 

documented (Baida 1969, Franzreb 1974, Holmes and Robinson 1981, Rice et al 

1984). Many of these studies have been conducted in deciduous habitats, and 

their results are thus not directly applicable to the system under investigation. 

However, Franzreb (1974, 1981) reports that several species preferentially avoid 

ponderosa pine and key in on Douglas-fir, spruce, and fir. Interestingly, one such 

species is the Mountain Chickadee, which this study found to be strongly 

associated with ponderosa pine. On the other hand, Baida (1969) failed to note 

avoidance of ponderosa pine by birds, suggesting that habitat selection is strongly 

influenced by multiple factors operating in concert. In addition, it is quite likely 

that communities in different geographic regions will have different sets of habitat 

requirements, thus explaining the differing results of Franzreb and Baida (both 

working in Arizona) and those of this study in Montana.

Guilds

Results on the guild level were generally similar to those for the community 

as a whole, as redefined by the three habitat groups. The most speciose and 

abundant guild, canopy gleaners (in whole or in part), responded to vegetation in 

much the same way as did species richness. Other guilds were likewise 

comparable to one of the three habitat groups, although some (i.e. flycatchers,
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finches) showed no significant responses to any habitat characteristics. No doubt 

some of these results can be explained through the foraging strategy of the birds 

within a given guild. For example, the proportional lack of foliage on ponderosa 

pine (when compared with spruce and fir; Franzreb 1974) may explain why gleaning 

insectivores are less abundant in areas dominated by this species. There is simply 

not enough substrate to support as high a population. Similarly, ground foragers, 

such as sparrows and juncos, may be responding in exactly the opposite fashion, 

that is preferring ponderosa pine, because of the relative openness of the habitat. 

Thus vegetation composition and structure, both known to be Important to birds, 

are in a sense highly correlated.

Although vegetation was of primary importance in determining guild 

abundances, there is some evidence that budworm has some influence at this 

level. However, most of the significant SPRCs involving budworm are negative, as 

are many of those SPRCs that merely suggest a relationship. Such a result is in 

strong disagreement with any previously known relationships between insects and 

birds, and I can see no logical explanation for such findings, it is highly unlikely 

that a species or group of species would decrease in abundance as its food supply 

increases. I thus suspect that the negative correlations involving budworm are 

spurious, somehow being maintained through the partial regression analysis. 

Similarly, if one assumes the negative effects to be spurious, the even fewer 

positive relationships should be viewed with the same or greater skepticism. 

Skepticism conceivably could be applied to any vegetationaJ effects as well, but I 

believe that since these are of higher significance, and are far more prevalent and 

consistent, they accurately reflect the role of habitat at all levels.
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Individual species

Much of what has been said about communities and guilds can be equally 

valid for the many species under study. All have habitat preferences and respond 

in different ways to varying habitat parameters. Suffice it to say that the nineteen 

common bird species fall into the three habitat groups discussed earlier: spruce/fir, 

Douglas-fir, and ponderosa pine. The more important subject of this section is the 

role of spruce budworm.

That budworm is important to some species in eastern North America has 

already been mentioned, and it would not be unexpected to find similar 

relationships in the West. Strong relationships were found between budworm and 

a number of bird species, but the problems inherent in concluding that budworm 

has an effect have already been discussed. Of the species showing strong positive 

responses to budworm, only two will be considered in any greater detail: the 

Warbling Vireo and the Pine Siskin.

The Warbling Vireo was the only species to respond positively and 

significantly to budworm densities after partial regression. If, for the moment, one 

assumed this correlation to be meaningful, it would be necessary to explain it. 

Warbling Vireos are primarily a riparian or edge species in western Montana, hence 

their negative relationship with ponderosa pine. Thus they would not normally 

encounter spruce budworm on a regular basis, and may not even forage 

extensively in the budworm's host species (pers. obs.). Thus I am fairly confident 

that this species' response to budworm is spurious, perhaps driven by the absence
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of budworm in ponderosa pine dominated stands. A similar scenario could be 

concocted for the MacGllllvrav's Warbler, another species showing strong budworm

affinity.

The Pine Siskin is another matter entirely. Although Its trends are never 

significant, they are consistent between years and analyses, and were maintained 

throughout the series of variable list reductions preceding the final regression 

model. I would not be surprised, therefore, if siskins do in fact respond 

numerically to budworm infestation. The nomadic flocking behavior of this species 

would make it more able to discover infestations than other species, particularly 

those showing strong philopatry. In this sense, siskins are similar to eastern 

populations of the Evening Grosbeak, which show much stronger nomadism and 

population fluctuation than their western counterparts (pers. obs., Christmas Bird 

Count data). In addition, siskins have been shown to concentrate in areas of 

higher than normal food supply (Rolad et al. 1986). In the latter case, siskins were 

locally abundant in areas with high winter moth densities, and appeared to key in 

on areas of heavy defoliation.

The response of siskins to moths necessitates the introduction of the 

problem of scale. Rolad's study was done at the level of individual trees, and not 

between larger areas with varying infestation levels. Since budworm is patchily 

distributed within a stand, the community/population approach may not be 

appropriate to test for budworm effects. Instead, more detailed information about 

the distribution of a population within the habitat would potentially show the 

effects of patchiness, in this case of budworm. In the present study, budworm 

levels were relatively low, in that extensive defoliation was not observed. For

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



budworm effects to be observable at this level, infestations would have to be 

larger and broader in geographical coverage.
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Summary

Regarding the relative importances of food and vegetation to avian 

community composition, the results presented herein must be viewed in terms of 

the actual scope of the study. Due to more extensive variation in vegetation than 

was expected, birds' responses to vegetation may have obscured any similar 

responses to budworm densities. Thus, it is important to note that, according to 

this analysis, vegetation is more important than budworm given that sites are as 

vegetatively dissimilar as the series that I considered. Perhaps if a similar study 

were conducted in a more narrowly defined range of habitat types, effects of food 

density, should they exist, would be detectable.

The problem of habitat variability can be considered another example of the 

scale problem discussed above. If sites vary in vegetative characteristics, any 

comparisons among them are done on a broad, regional scale (i.e. western 

Montana), and any conclusions cannot be localized to any smaller subset of the 

regional habitat type. If, however, sites are similar, conclusions refer directly to a 

much more specific set of habitat parameters, and cannot necessarily be applied 

on a regional basis (Wiens 1981, Wiens et al. 1987). Since both applications 

cannot be undertaken simultaneously without requiring prohibitive sample sizes, 

one must choose which scale is to be concentrated upon. Wiens et al (1987) 

suggest that, if one wishes to correlate bird abundance with habitat characteristics.
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the "best" approach involves having several sites on a regional scale, but with 

replication within each site. Thus, this study should be interpreted in terms of a 

primarily regional scale, if not a broader, biogeographlcal one (i.e. Townsend's 

Warbler).

On this regional scale, budworm densities were not found to be important to 

bird species which occurred over a relatively wide range of habitat types. Given 

that the common species under study tended to show some preferences for 

certain components of the regional habitat mosaic, response to budworm may 

have been obscured by vegetative "noise". However, because these same bird 

species were found regularly on most sites, one could reasonably conclude that 

they are not so highly tied to habitat variables as to be specialized on a more 

narrowly defined habitat type. In such a case it is perhaps more reasonable to 

examine community structure on a regional scale, since vegetative variation is 

greater than variation in food supply, and is thus more likely to have effects on 

bird populations.

A second consideration that is important when considering the conclusions 

of this study is the comparability between this and the other budworm studies 

referrred to. in most eastern studies, where avian responses to budworm are well 

documented, budworm densities are reported per unit area (either land or foliage), 

whereas I calculated them per unit foliage mass. Although I have already indicated 

that these two measures yield comparable estimates, it is difficult to directly 

compare my data with those of other researchers. Examination of the data of 

various studies reveals densities ranging from 240,000 to 14,000,000 per hectare 

(Crawford and Jennings 1989), 1000 to 8,000,000 per acre (Morris et al. 1958), and 

30 to 500 per 15 inch twig (Dowden et aj^gl 953).
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However, after converting budworm per kilogram to budworm per hectare 

(Table 3), one can directly compare my results with those reported above. It is 

important to note, however, that the conversions are not highly accurate, but at 

least give an idea of the magnitude of the range in budworm densities. Assuming 

either an 80 or 105 year old forest, minimum densities ranged from 1000 to 600 

per hectare (respectively) and maximum densities in 1988 ranged from 2,100,000 to

1.300.000. Maximum densities in 1987 were between 3,000,000 and 2,500,000.

These values for maximum density are comparable to the 1,700,000 per hectare 

reported for transitional levels of infestation by Crawford and Jennings (1989).

Thus, the possibility exists that the budworm densities obtained during this study 

were not of the magnitude necessary to elicit responses in bird populations.

Further evidence toward this conclusion can be obtained by comparing my data 

with that of Morris et al. (1958). In that study. Bay-breasted Warblers did not show 

a response until budworm numbers jumped from below 500 per acre to over

2.000.000 per acre within a year. My converted data indicate a range of roughly 30 

to 700,000 per acre (intermediate between values for 80 and 105 year old stands), 

certainly not of the magnitude reported by Morris et al. (1958). Therefore, given 

relatively low levels of budworm infestation, and little overall variation in budworm 

densities among sites, the existing variation in other habitat characteristics 

becomes more important to avian communities and populations in western 

Montana. However, the possibility still exists that future outbreaks could be of 

sufficient magnitude to result in population increases in some species.
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Appendix 1. Mean abundances (N=4) of a ll bird species recorded during 1988. Site numbers as in Figure 1.

SPECIES 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Sharp-shinned Hawk 0,25
Cooper's Hawk 0.25 +
Northern Goshawk 0,25 +
Red-tailed Hawk + 0.25 0.25 0.25
Ruffed Grouse 0.25 + 0.50 0.25 + 0.25
Mourning Dove 0.25 0.25
Barred Owl 0.75
Calliope Hummingbird 0.75 1.25 + 0.25
Red-naped Sapsucker + 0.25 +
Hairy Woodpecker 0.25 0.50 0.25 0.25
Northern Flicker 1.00 0.25 0.25 0.50 0.50 0.25 0.75 0.50 0.25 1.50
Pileated Woodpecker 0.50 0.25
Olive-sided Flycatcher + 0.25
Western Wood-Pewee 1.00
Hammond's Flycatcher 1.50 5.00 3.25 4.00 2.00 3.00 2.75 4.00 3.75 0.25 3.25 4.25 2.50 2.50
Willow Flycatcher 0.25 +
S te lla r 's  Jay + +
Gray Jay 0.25 0.25 0.25 0.75 0.75 0.25
Clark's Nutcracker 0.25 0.25 0.50
Common Raven + + 1.25 0.50 0.75 + 0.25 0.25 0.50
Black-capped Chickadee 1.75 0.50 0.75 + 0.25
Mountain Chickadee 1.75 2.50 2.00 0.75’ 2.75 2.25 1.25 0.75 0.50 3.50 1.25 1.25 2.25 2.00
Red-breasted Nuthatch 2.25 4.25 3.00 1.50 3.25 1.25 2.00 1.25 2.75 1.00 1.25 1.75 2.50
Brown Creeper 0.25
Winter Wren 1.00 0.25 0.25 0.50
Golden-crowned Kinglet 1.75 0.25 3.75 0.75 1.25 0.75 1.50 1.00 1.25 1.50 2,25 0.75
Ruby-crowned Kinglet 4.25 2.00 4.00 3.00 3.50 2.25 0.75 3.25 1.75 1.00 0.50 2.25 3.00
Townsend's Solitaire 0.25 0.75 + + +
Swainson's Thrush 2.25 0.75 2.00 4.50 2.75 2.00 4.00 3.50 3.25 1.25 4.00 3.50 3.25 3.75
Hermit Thrush 0.25 0.25 0.50 1.25 2.25 0.50
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Appendix 1 (continued)

STUDY SITE
SPECIES 1 2 3 4 5 6 7 8 9 10 11 12 13 14

American Robin 1.00 1.75 0.50 3.75 2.25 2.25 1.75 2.75 1.75 2.25 1.25 1.00 2.50 1.50
Varied Thrush 1.00
Solitary Vireo 1.50 1.50 2.75 0.75 1.00 0.50 0.75 0.25 0.75 0.25 0.75
Warbling Vireo 1.50 0.25 2.75 1.25 1.25 3.50 2.50 4.25 4.00 1.25 2.75 2.25 3.25 3.50
Orange-crowned Warbler 0.75 0.25 0.75 0.50 1.00 1.75 0.25 0.25 1.50 1.50 1.25 1.00
Nashville Warbler 0.25 0.25 1.00 2.50
Yellow Warbler 0.25 0.50
Yellow-rumped Warbler 2.00 2.75 3.00 4.75 4.00 3.00 3.75 1.25 3.00 5.00 3.75 4,25 3.75 2.25
Townsend's Warbler 6.50 2.75 4.75 1.00 6.25 7.50 4.50 5.75 0.25 0.25
American Redstart 0.25 0.50 2.00
MacGillivray's Warbler 1.50 1,75 3.50 1.50 2.50 2.75 3.25 3.25 2.75 3.75 3.75 3.50 1.50
Western Tanager 2.25 3.00 2.75 2.50 3.75 4.00 4.00 3.75 4.50 4.00 3.00 3.25 4.25 1.75
Black-headed Grosbeak +
Lazuli Bunting + 0.25 0.50
Rufous-sided Towhee + 0.75
Chipping Sparrow 3.50 5.00 5.25 3.00 5.75 5.50 5.75 4.25 7.00 6.50 5.50 5.50 5.75 4.25
Dark-eyed Junco 2.75 1.00 3.00 2.00 0.25 1.25 2.25 0.25 1.75 2.25 2.50 3.00 1.75 1.00
Lincoln's Sparrow +
Song Sparrow

0.50
0.25

Brown-headed Cowbird 1.25 3.00 1.00 1.75 0.25 1.00 0.25 1.50 0.75 0.25 1.25 1.25
Cassin's Finch 0.25 0.25 + 0.25 0.50
Red Crossbill 0.75 5.50 1.25 2.00 2.00 0.50 0.50 0.75 +
Pine Siskin 4.50 7.00 5.50 10.00 3.75 8.50 4.25 7.00 8.00 4.75 7.00 2.50 9.75 8.25
Evening Grosbeak 1.75 0.50 3.00 1.25 0.50 0.75 4.50 0.50 0.50 0.50 2.50
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+ = Species recorded at site but never on o ffic ia l transect count.
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Appendix 2. Standardized partial regression coefficients between site  variables and mean abundances 
of common bird species. Species codes as in Table 1.

PECIES Budworm
Douglas-
fir

Ponderosa
pine

Spruce/
fir

Larch/
lodgepole Shrub Elevation SI one

p
overall r F value (df 8,

HAFL .56 .19 -.24 .18 .01 -.47 .83 -.61 .41 .445

MOCH -.05 -.33 1.20 -.38 .12 .31 .78 .81 .67 1.278

RBNU -.37 -.31 1.22 -.15 .32 .07 .45 .60 .94 9.409

GCKI -.20 .30 -.55 .10 -.38 -.03 .13 -.06 .53 .710

RCKI -.36 .34 .12 .22 .66 .31 .86 -.41 .83 3.011

SWTH .25 .42 -.70 .10 -.46 -.34 -.41 -.63 .54 .733

AMRO .28 .47 -.60 .12 -.34 .15 -.41 -.78 .46 .537

SOVI -.41 .47 .60 -.22 1.04 -.03 -.37 .05 .91 6.686

WAV! .67 .06 -1.08 .44 .24 -.29 -1.00 -.66 .85 3.652

OCWA -.44 -.65 -.15 .08 -.35 .84 .32 .58 .62 1.022

YRWA -.44 -.65 .45 -.46 -.61 .51 .78 1.17 .58 .873

TOWA -.13 .30 -.45 1.53 .13 .58 -1.65 .46 .99 69.810 (df 8.1)

MGWA .18 -.07 -.89 -.05 -.55 -.14 -.11 .05 .86 3.797

WETA .51 -.67 -.18 .73 -.44 .07 -.60 .24 .76 2.007

CHSP .21 -1.20 .16 .39 -.34 .06 -.04 .71 .67 1.262

DEJU -.62 -.50 .41 -.27 .04 .07 ,51 1.49 .78 2.187

BHCO .25 .14 .33 -.61 1.07 -.11 -.60 .27 .83 3.084

PISI .70 .43 -.62 .27 ,34 -.33 -.76 -.98 .45 .519

EVGR -.39 -.64 .41 -.38 -.29 .20 .75 .42 .54 .738
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Appendix 3. Standardized partial regression coefficients between site variables and guild 
abundances. Guild abbreviations as in Table 8.

■D cn
o

CD
Q .

GUILD Budworm fir Dine fir lodqepole Shrub Elevation Slope overall r̂ F vail

FLYC .56 .19 -.24 .18 .01 -.47 -.83 -.61 .41 .445

BARK -.25 -.35 1.31 -.27 .25 .19 .65 .76 .86 3.946

ABIN -.39 -.02 -.49 .61 .40 .53 -.63 .12 .89 5.269

KING -.56 .44 -.23 .23 .30 .23 .15 -.36 .55 .760

VIREO .42 .37 -.70 .31 .94 -.31 -1.27 -.64 .76 2.030

WARB -.32 -.30 -.56 .62 -.04 .57 -.61 .35 .90 5.904

SMIN -.55 .26 .35 .03 .34 .36 .50 .05 .55 .765

GLEAN -.36 .05 -.71 .65 .35 .43 -.75 -.60 .91 6.095

FINCH .48 .06 -.40 .05 .17 -.22 -.33 -.75 .30 .270

GROW .24 -.54 -.61 .14 -.69 .16 -.08 .49 .76 2.016

THRU .32 .55 -.80 .14 -.50 -.13 -.51 -.87 .64 1.101

SPAR -.23 -1.21 .38 .12 -.23 .10 .29 1.46 .68 1.329

GRWA -.04 -.33 -.79 -.01 -.59 .35 .05 .29 .78 2.259

SHGR -.16 -.91 -.21 .07 -.47 .25 .20 1.05 .66 1.191

SEED .49 .10 -.24 -.14 .47 -.22 -.46 -.56 .37 .373



LITERATURE CITED

Abram sky, Z. 1988. The role of habitat and productivity in structuring desert 
rodent communities. Oikos 52: 107-114.

Baida, R.B. 1969. Foliage use by birds of the oak-juniper woodland and ponderosa 
pine forest in southwestern Arizona. Condor 71: 399-412.

Blais, J.R. and G.H.Parks. 1964. Interaction of Evening Grosbeak {Hesperiphona 
vespertina) and spruce budworm (Choristoneura fum ifera  (Clem.)) in a 
localized budworm outbreak in Quebec. Can. J. Zool. 42: 1017-1024.

Bock, C E. and LW. Lepthien. 1976 Synchronous eruptions of seed-eating birds.
Am. Nat. 110; 559-571.

Brush, T. and E.W. Stiles. 1986. Using food abundance to predict habitat use by 
birds. Pp. 57-63 in J. Verner, M.L Morrison, C.J. Ralph (eds.) Habitat 2000: 
Modeling Habitat Relationships of Terrestrial Vertebrates Madison. University 
of Wisconsin Press.

Carolin, V.M. and W.K. Coulter. 1972. Sampling populations of western spruce
budworm and predicting defoliation on Douglas-fir in eastern Oregon. USDA 
For. Ser. Res. Paper PNW-149, 38 pp.

Catley, G.P. and D. Hursthouse. 1985. Parrot Crossbills in Britain. British Birds 78: 
482-505.

Cottam, G. and J.T. Curtis. 1956. The use of distance measures in 
phytosocioiogical sampling. Ecology 37: 451-460.

Crawford, M.S., R.W. Titterington, and D.T. Jennings. 1983. Bird predation and 
spruce budworm populations. J. Forestry 81: 433-435, 478.

Crawford, M.S., and D.T. Jennings. 1989. Predation by birds on spruce budworm 
Choristoneura fumiferana: functional, numerical, and total responses.
Ecology 70: 152-163.

Dowden, P.B., H.A. Jaynes, and V.M. Carolin. 1953. The role of birds in a spruce 
budworm outbreak in Maine. J. Econ. Entomol. 46: 307-312.

Dunning, J.B. and J.H. Brown. 1982. Summer rainfall and winter sparrow densities: 
a test of the food limitation hypothesis. Auk 99: 123-129.

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Enemar, A., L Nilsson, and 8. Sjostrand. 1984. The composition and dynamics of 
the passerine bird community in a subalpine birch forest, Swedish Lapland. A 
20-year study. Ann. Zool. Fennici 21: 321-338.

Fee, B.A. and M. Bekoff. 1986. Polygyny in the Evening Grosbeak. Wilson Bull. 98; 
308.

Franzreb, K.E. 1978. Tree species used by birds in logged and unlogged mixed- 
coniferous forest. Wilson Bull 90: 221-238.

-------------------------  1984. Foraging habits of Ruby-crowned and Golden-crowned
Kinglets in an Arizona montane forest. Condor 86; 139-145.

Foltz, J.L. and T.R. Torgersen. 1985. Accuracy of direct visual counts of western
spruce budworm larvae (Lepidoptera: Tortricidae) on Douglas-fir and grand fir 
branches. J. Econ. Entomol. 78: 1056-1058.

Gage, S.H., C.A. Miller, S.J. Mook. 1970. The feeding response of some forest birds 
to the black-headed budworm. Can. J. of Zool. 48: 359-366.

Gauch, H.G. Jr. 1982. Multivariate Analysis in Community Ecology. Cambridge. 
Cambridge University Press. 298 pp.

Graber, J.W and R.R. Graber. 1983. Feeding rates of warblers in spring. Condor 
85: 139-150.

Grant, P R. and B.R. Grant. 1980. Annual variation in finch numbers, foraging, and 
food supply on Isla Daphne Major, Galapagos. Oecologlca 46: 55-62.

Greig-Smith, P. 1983. Quantitative Plant Ecology. Berkely. University of California 
Press.

Holmes, R.T. and S.K. Robinson. 1981. Tree species preferences of foraging
insectivorous birds in a northern hardwoods forest. Oecologica 48: 31-35.

Holmes, R.T., T.W. Sherry, and F.W. Sturges. 1986. Bird community dynamics in a 
temperate deciduous forest: long-term trends at Hubbard Brook. Ecological 
Monographs 56: 201-220.

Hunter, M.L. Jr. and J.W. Witham. 1985. Effects of a carbaryl-induced depression 
of arthropod abundance on the behavior of Parulinae warbers. Can. J. Zool. 
63: 2612-2616.

Hutto, R.L 1985a. Seasonal changes in the habitat distributions of transient
insectivorous birds in southeastern Arizona: competition mediated? Auk 102: 
120-132.

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Hutto, R.L. 1985b. Habitat selection by nonbreeding migratory land birds. Pp. 
455-476 in M.L. Cody (ed.). Habitat Selection in Birds. Harcourt Brace 
Jovanovich. Orlando.

-------------------. 1987. Effect of systemic pesticide implants on the level of western
spruce budworm infestation: treatment and post-treatment years. Forest 
Ecology and Manag. 20: 1-5.

James, F.C. 1971. Ordination of habitat relationships among breeding birds. 
Wilson Bull. 83: 215-236.

 and H.H. Shugart, Jr. 1970. A quantitative method of habitat description.
Aud. Field Notes 24: 727-736.

Jenni, L. 1987. Mass concentrations of Bramblings Fringilla m ontifringilla  in 
Europe 1900-1983: their dependence upon beech mast and the effect of 
snow cover. Omis Scandinavica 18: 84-94.

Lack, D. 1954. The Natural Regulation of Animal Numbers. London. Clarendon 
Press.

MacArthur, R.H. 1958. Population ecology of some warblers of northeastern 
coniferous forests. Ecology 39: 599-619.

MacArthur, R.H., and J.W. MacArthur. 1961. On bird species diversity. Ecology 42: 
594-598.

McLeod, B.B. and R.G. Lidstone. 1978. A survey of bird fauna inhabiting budworm 
infested stands in the Anderson Valley of British Columbia. A preliminary 
report to the Protection Division, British Columbia Forest Service.

Morris, R.F. 1955. The development of sampling techniques for forest defoliators, 
with particular reference to the spruce budworm. Can. J. Zool. 33: 225-294.

-----------, W.F. Cheshire, C.A. Miller, and D.G. Mott. 1958. The numerical response of
avian and mammalian predators during a gradation of the spruce budworm. 
Ecology 39: 487-494.

Morse, D.H. 1978, Populations of Bay-breasted and Cape May Warblers during an 
outbreak of the spruce budworm. Wilson Bull. 90: 404-413.

Pulliam, H R. and J.B. Dunning. 1987 The influence of food supply on local density 
and diversity of sparrows. Ecology 68: 1009-1014.

Rice, J., B.W. Anderson, and R.D. Ohmart. 1984. Comparison of the importance of 
different habitat attributes to avian community organization. J. Wildl.
Manage. 48: 895-911.

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Rolad, J , S.J. Hannon, and M.A. Smith. 1986. Foraging pattern of Pine Siskins and 
its influence on winter moth survival. Oecologica 69: 47-52.

Rotenberry, J.T. and J.A, Wiens. 1980. Temporal variation in habitat structure and 
shrubsteppe bird dynamics. Oecologica 47: 1-9.

Skaar, P.O. 1985. Montana Bird Distribution. Monograph no. 3. Montana Academy 
of Sciences. Supplement to the Proceedings.

Sokal, R.R. and F.J. Rohlf. 1981. Biometry. W.H. Freeman and Co. New York. 859 
PP

Srivastava, N., R.W. Campbell, T.R. Torgersen, and R C Beckwith. 1984. Sampling 
the western spruce budworm. Forest Science 30: 883-892.

Swift, B.L., J.S. Larson, and R.M. DeGraaf. 1984. Relationship of breeding bird
density and diversity to habitat variables in forested wetlands. Wilson Bull. 
96: 48-59.

Takekawa, J.Y. and E.O. Carton. 1984. How much is an Evening Grosbeak worth?
J. Forestry 82: 426-428.

Torgersen, T.R., and R.W. Campbell. 1982. Some effects of avian predators on the 
western spruce budworm in north central Washington. Env. Entomol. 11: 
429-431.

United States Department of Agriculture, Forest Service. 1987. Western Spruce 
Budworm. Technical Bulletin No. 1694.

Widriechner, M.P., and S.K. Dragula. 1984. Relation of cone-crop size to irruptions 
of four seed-eating birds in California. Am. Birds 38: 840-846.

Wiens, J.A. 1977. On competition and variable environments. Am. Scientist 65; 
590-597.

 . 1981. Scale problems in avian censusing. Pp. 513-521 in C.J. Ralph
and J.M. Scott (eds.). Estimating numbers of terrestrial birds. Studies in 
Avian Biology 6.

------------------ , J.T. Rotenberry, and B. Van Horne. 1987. Habitat occupancy patterns
of North American shrubsteppe birds: the effects of spatial scale. Oikos 48: 
132-147.

Willson, M.F. 1974. Avian community organization and habitat structure. Ecology 
55; 1017-1027.

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Zach, R. and J.B. Falls. 1975. Response of the Ovenbird {Aves: Parulidae) to an 
outbreak of the spruce budworm. Can. J. Zool. 53; 1669-1672.

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


	The relationships among vegetation structure western spruce budworm density and avian community composition
	Let us know how access to this document benefits you.
	Recommended Citation

	tmp.1459884606.pdf.x2QhV

