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Animal identification based on DNA samples

and microsatellite genotypes is widely used for

capture–recapture studies (Woods et al. 1999,

Boulanger et al. 2003, Eggert et al. 2003). The

method shows promise in field protocols (Woods

et al. 1999) and potentially minimal error rates in

the DNA analysis (Paetkau 2003). Some studies

show much higher error rates in individual iden-

tification (Creel et al. 2003). There will be some

level of uncertainty, although in some situations

the uncertainty level is small, in the identification

of individuals from microsatellite genotypes.

Closed-population capture–recapture analysis

has received substantial attention over the past

century. More recently, it has been extended to

conditional likelihood parameterizations that

allow individual covariates to better estimate cap-

ture probability (Huggins 1989, 1991) and mix-

ture models to estimate population size in the

presence of individual heterogeneity in capture

probability (Norris and Pollock 1996, Pledger

2000). The major focus of research has been devel-

oping methods to handle varying capture proba-

bility. Any methods developed in the future will

also have to account for varying capture probabili-

ty to obtain robust estimates of population size.

While DNA-based capture–recapture studies

and standard tagging studies share several com-

mon characteristics, they differ in others. In a

standard tagging study, the researcher attaches a

unique tag to the animal and keeps a list of tags

that have been used. In a DNA-based study, the

genotype of the individual acts as the tag. There-

fore, all individuals are tagged prior to the begin-

ning of the study. Unfortunately, the researcher

does not know what genotypes exist in the popu-

lation and must obtain samples from the animals

to extract DNA. In a standard tagging study, if a

tag is read that does not match one known to be

in the population, the researcher knows that the

tag was incorrectly read and then either rereads

the tag or ignores the observation. In DNA-based

studies, the researcher does not have the luxury

of immediately knowing which genotypes may be

incorrect. Thus, a new form of sampling uncer-

tainty is introduced. For both standard tagging

and DNA-based studies, capture probability is

<1.0. This necessitates a way to infer what portion

of the population is not captured in order to

determine the total population size. For a DNA-

based study, capture probability is a combination

of the probability of encountering a sample (hair,

scat, feather, etc.) and the probability that the

sample yields a sufficient quantity and quality

DNA to amplify and genotype.

Current closed-population capture–recapture

analysis for estimating population size assumes

an animal’s mark is permanent and read correct-

ly when the animal is captured (Otis et al. 1978).

The use of genotype based identification can

meet these assumptions in some situations, but

the cost may be high. The cost comes in 2 pieces

that clearly interact: (1) the monetary cost of ana-

lyzing the DNA and (2) the information loss

when discarding samples that contain some

degree of uncertainty in their identification. For

example, the protocol described by Paetkau

(2003) places a high emphasis on certainty of the

genotype of the sample. In doing so, a large num-

ber of samples may have to be culled during the

analysis. It may be beneficial to allow a small

degree of uncertainty in the identification of a

sample, perhaps 1–5%, if such a tradeoff would1 E-mail: plukacs@cnr.colostate.edu
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allow enough additional samples to be used in

the estimation of population size to make up for

the addition of a parameter to the model.

When genotyping error exists, it has been shown

that population size estimates derived from cap-

ture–recapture assume no error was biased (Waits

and Leberg 2000, Mills et al. 2000, Creel et al.

2003). Creel et al. (2003) demonstrated that the

error level they have in their wolf (Canis lupus)

data could produce population size estimates that

were biased by 5.5 times the true population size.

Waits and Leberg (2000) also found large overes-

timation when genotyping errors were present.

In addition, the authors showed underestimation

in population size when multiple individuals

share the same genotype. Mills et al. (2000) show

in detail the underestimation effects of individu-

als sharing genotypes. All of these conclusions

are logical when one considers that the statistical

inference being made in a capture–recapture

study is to the number of genotypes in the popu-

lation. If errors are being made, there will be

more genotypes observed than individuals in the

population. If multiple individuals share the

same genotype, there will be more individuals in

the population than genotypes.

Currently, many studies collect far more hair,

feathers, or scat samples than they can afford to

have genotyped. Therefore, the limiting factor

for sample size often is funding rather than a lack

of sampled DNA. During the analysis, some sam-

ples are culled due to lack of confidence in geno-

typing results. It would be beneficial to be able to

cull fewer samples and therefore increase usable

sample size while taking into account the possi-

bility of errors in genotyping.

We present a class of models for estimating the

size of a demographically and geographically

closed population when there exists some proba-

bility of misidentifying individuals. The misidentifi-

cation occurs in such a way that it is unknown on a

case-by-case basis if the sample is correctly identi-

fied or not. The method extends the full likelihood

models of Otis et al. (1978) and the conditional

likelihood models of Huggins (1991). In addition,

mixture models similar to those of Pledger (2000)

can be built that estimate both heterogeneity in

capture probability and misidentification.

Methods

The notation presented here follows Otis et al.

(1978) and Pledger (2000) where applicable. The

model assumes there are t sampling occasions,

the population of interest is well defined, and the

population is demographically and geographical-

ly closed during sampling. The following nota-

tion is used to describe the models:

pia probability of initially observing a geno-

type at time i and from mixture component a.

The second subscript was omitted for models not

including mixtures.

cia probability of subsequently observing a

genotype at time i and from mixture component

a. The second subscript was omitted for models

not including mixtures.

πa probability of a genotype belonging to

an animal in mixture a

α probability that a genotype is identified

correctly given it is observed for the first time

f0 the number of genotypes in the popula-

tion that are never observed

N population size

h = {h1, h2, ..., ht } encounter history vector; hi =

1 if the genotype is observed, 0 otherwise

Mt + 1 number of distinct genotypes observed

n
h

a count of the number of times

encounter history h is observed

A the number of mixtures in a given

model, usually 1 or 2. A = 1 corresponds to the

case of no mixtures.

We assume a set of loci, currently microsatel-

lites, are being used that have enough loci and

enough alleles per locus to ensure with high prob-

ability that all individuals within the population

are unique if correctly genotyped. We further

assume that a genotyping error will lead to a geno-

type that is not identical to that of any member of

the population. In addition, 2 errors made at dif-

ferent trapping occasions are assumed to never

produce identical genotypes. These assumptions

were asserted as reasonable by Paetkau (2003)

and are further addressed in the Discussion. 

Given the above assumptions, we computed the

probability of each encounter history. If a geno-

type is first observed at time k and subsequently

observed in the future, the probability of the

encounter history is.

.

For a genotype that is only observed at occasion k

and never seen again, the probability of the

encounter history is:

.
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Heuristically, the probability expression states that

the genotype was not observed from occasions 1

to k −1 with probability (1 − pi). It is observed with

probability pk. Then it is either correctly geno-

typed with probability α and not seen again from

occasions k + 1 to k with probability (1 − ci), or it

was incorrectly genotyped with probability (1 − α)

and, by assumption, never seen again.

The full multinomial likelihood function can

be constructed given the probabilities of each

capture history. The likelihood is:

.

We obtained parameter estimates by numerically

optimizing the log–likelihood function. We used

a quasi-Newton optimization function in SAS PROC

IML (SAS Institute 2002). The variance–covari-

ance matrix can be obtained by numerically esti-

mating the information matrix, inverting and tak-

ing its negative.

Note that N is not in this likelihood. We esti-

mated N as a derived parameter. The closed cap-

ture–recapture models of Otis et al. (1978) were

written equivalently with N or f0 in the likelihood.

The f0 parameterization was chosen in modern

software to easily enforce the constraint that

abundance was greater than or equal to the total

number of individuals captured, such as is done

in program MARK (White and Burnham 1999).

This constraint was necessary if marks were

assumed to be correctly read, but it does not hold

if marks can be read incorrectly. It is possible to

observe more genotypes than are actually in the

population. Therefore, we estimate N as:

.

The variance of N̂ is estimated as:

.

Having M 2
t +1, a potentially large positive number,

in the variance was worrisome to us, but v̂ar[α̂] is

typically small because α̂ often is near 1 and the

multinomial variance is therefore small. In addi-

tion, the ĉov[ f̂0, α̂] is typically small and some-

times negative keeping v̂ar[N̂] on the same order

of magnitude as the closed capture–recapture

models not incorporating recaptures.

The parameters p, c, and α can be modeled as

functions of group covariates as is commonly

done in generalized linear models (McCullagh

and Nelder 1989) and in program MARK (White

and Burnham 1999). The α parameter should

almost always be modeled with a sine link

because it will be very near the boundary of 1.0 in

many studies. The sine link allows for better esti-

mation of the number of estimable parameters

and of the shape of the log–likelihood function

at its maximum, while constraining the parame-

ter to be within [0–1] than a logit function

(White and Burnham 1999).

We construct a conditional multinomial likeli-

hood function by conditioning on the probabili-

ty that an animal is never captured, similar to the

models of Huggins (1989, 1991). Therefore, we

remove f0 from the likelihood. The probability of

an encounter history is now:

.

The likelihood function is:

.

Again N is a derived parameter. It is estimated as:

.

The large sample estimated variance is: 

.

The variance can be computed numerically or

analytically.

The conditional likelihood models allow para-

meters to be modeled as functions of individual
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covariates. Given the observations generally are

collected through noninvasive methods, many

standard individual covariates that can affect cap-

ture probability will not be collected, for example,

length of fish captured with electrofishing equip-

ment. An interesting covariate for α may be a mea-

sure of the quality of the DNA sample collected.

The full likelihood models can be extended to

incorporate heterogeneity in capture probability

with a mixture distribution (Pledger 2000). The

full likelihood probability of an encounter history

with mixtures for a genotype that is encountered

more than 1 time is

.

For a genotype that is only observed once, the

probability of the encounter history is

.

The likelihood estimation of N and the variance

of N follow the full likelihood results presented

above. We used a trust region optimization in SAS

PROC IML (SAS Institute 2002) to fit the model.

We compared the genotype misidentification

models presented here with standard closed cap-

ture–recapture models for a simulated closed pop-

ulation experiencing genotyping error. We used

models representing several forms of variation in

detection probability including changes in behav-

ior due to previous encounter, changes across

time, and constant capture probability (Table 1).

The data were simulated in a factorial assignment

with 5 levels of α ranging from 0.95–0.99 and 5 lev-

els of constant capture probability ranging from

0.1–0.5. Five sampling occasions were used for

each population. Capture probabilities ranging

from 0.1–0.5 for each of 5 sampling occasions

cover a large part of the range of possible levels of

encounters from very few animals encountered to

nearly all animals encountered. Each design point

was replicated 200 times. SAS code used for simu-

lation and estimation is available from the authors.

We did not include a constant capture probabil-

ity form of the genotype misread model in the

analysis because it was not reasonable to expect

the initial capture probability to equal the recap-

ture probability when initial captures included

both correct and incorrect genotypes while recap-

tures were only correct genotypes. It is important

to note that p is the probability of observing a

genotype correctly or incorrectly, whereas c is the

probability of correctly observing a genotype that

has been seen at a previous observation. The time

varying capture probability model has the same

logical flaw as the constant capture probability

model for the genotype misread models, but it

was included. One could argue that the time vary-

ing capture probability model  allows enough flex-

ibility to be reasonable if true p is nearly equal to c.

Results

In most situations, the full likelihood misidentifi-

cation models had lower bias in estimating popula-

tion size than did the standard capture–recapture

models (Fig. 1). The percent bias in estimated

population size often was half as large for the

misidentification models as it was the standard

capture–recapture models. Bias was worst for the

genotyping error models when capture probabil-

ity was 0.1. This results from a lack of recaptures

due to the low capture probability. As capture

probability increased, bias quickly decreased.

Confidence interval coverage of estimated pop-

ulation size was near the nominal 95% level for the

misidentification models. Confidence interval cov-

erage was well below the nominal 95% when

misidentification was present but not estimated

(Fig. 2). Confidence interval coverage broke down

for both the standard capture–recapture models

and the misidentification capture–recapture

models when capture probability was very high

and misidentification was present. 

The estimation of genotyping error performed

poorly when capture probability was 0.1. This result

would also hold for capture probabilities less than

0.1 given 5 sampling occasions were used. When

Table 1. Models representing different forms of variation in cap-
ture probability and whether they are used in capture–recapture
models incorporating genotyping error. Sources of variation in-
clude changes in capture probability due to a behavioral
response to first encounter, changes across time, and con-
stant capture probability.

Including variation

Variation in capture attributable to genotype

Model probability Yes No

M0 Constant X

Mb behavior X X

Mt time X X

Mt+b time + behavior X
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capture probability was 0.1 an animal only had a

0.08 probability of being caught more than once.

Recaptures are required to estimate the probability

of correctly identifying a genotype. The low num-

ber of recaptures caused the genotyping error

model containing both time variation and a behav-

ioral response in capture probability to occasional-

ly fail to converge to a reasonable estimate of pop-

ulation size when capture probability was 0.1.

When capture probability was 0.5 and sampling

occurred on 5 occasions, approximately 97% of

animals were detected. Thus, nearly all individu-

als were expected to be captured at least once and

81% were expected to be caught more than once.

Therefore, there were few encounter histories

with only a single observation, so it was difficult to

estimate genotyping error rate effectively. This is

a minor issue because such a situation is rarely

Fig. 1. Percent bias in estimated abundance for closed capture–recapture models including an estimate of genotyping error (gray
squares) and not accounting for genotyping error (black diamonds) across 5 levels of capture probability (p) and 5 levels of the
probability of correctly genotyping a sample (alpha). Percent bias is averaged across models containing different forms of varia-
tion in capture probability. Each design point was replicated 200 times. The coefficient of variation for all bias estimates is <1%.
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feasible in the field, and when it occurs the con-

fidence interval width is very small, and bias is

trivial (1–4%). The estimate typically is only off of

the true value by a few animals.

Discussion

We make 3 assumptions beyond those needed

for a standard capture–recapture study to esti-

mate genotyping error rate from capture–recap-

ture data. The assumptions are relatively easily

met in real world problems. We assume that a set

of loci are used that contain enough genetic

information such that each individual is uniquely

identified if the genotype is correctly read. For a

wide range of species these systems exist, such as

bears (Ursus spp.; Paetkau 2003), elephants (Lox-

Fig. 2. Confidence interval coverage of estimated abundance for closed capture–recapture models including an estimate of geno-
typing error (gray squares) and not accounting for genotyping error (black diamonds) across 5 levels of capture probability (p)
and 5 levels of the probability of correctly genotyping a sample (alpha). Confidence interval coverage is averaged across mod-
els containing different forms of variation in capture probability. Each design point was replicated 200 times.
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odonta cyclotis; Eggert et al. 2003), Canada lynx

(Lynx canadensis; Schwartz et al. 2003), and sage-

grouse (Centrocercus urophasianus; Taylor et al.

2003), and more are being developed continu-

ously. Resolution power can be assessed prior to

beginning a study by computing the probability

of identity for the marker set (Waits et al. 2001).

Therefore, it is not difficult to obtain the power

necessary to discriminate among individuals

when no errors are present. 

We assume that any error in genotyping will

result in a genotype that does not match that of

another individual in the population of interest.

Far more genotypes are possible than individuals

that exist in many wildlife species. For example, a

set of 6 loci each with 3 alleles has 46,656 possible

genotypes. Therefore, the chance of an error

resulting in an existing genotype rather than

some other genotype is quite low. If this assump-

tion is violated and an error results in an existing

genotype, there is only a trivial effect on the esti-

mation of population size from a closed

capture–recapture model. If the error results in an

animal that has never been seen before, then that

animal is no longer at risk of capture and the ani-

mal that was truly caught remains at risk of cap-

ture. Thus, Mt +1 and p̂ are virtually unchanged,

hence N̂ is also nearly unchanged. For example,

consider the case of the simplest form of a cap-

ture–recapture model with time varying capture

probability, the Lincoln–Petersen estimator. Three

quantities are needed to estimate abundance from

this model: (1) the number caught in the first sam-

ple (n1), (2) the number caught in the second sam-

ple (n2), and (3) the number of marked animals

caught in the second sample (m2). If 50 animals are

caught at each sample and 25 of the animals

caught during the second sample are recaptures,

then the estimated abundance is 50 × 50/25 = 100.

Now if 1 of the animals caught on the first occa-

sion is misidentified as an animal that is not caught

on the first occasion, but the animal is caught on

the second occasion, then none of the statistics

change and the population estimate remains 100.

Thus, a violation of this assumption is trivial.

We assume that errors were never repeated in

exactly the same way to produce an identical,

incorrect genotype. This assumption can be vio-

lated in 2 ways. First, an individual can be sam-

pled twice and incorrectly genotyped in the same

way twice. Paetkau (2003) showed that occurred

in about 15% of his samples that were incorrectly

genotyped. For capture–recapture this is a minor

issue because the individual is still correctly

matched across samples even though the geno-

type is not correct. Second, 2 different individuals

could both be incorrectly genotyped and coinci-

dentally produce a matching incorrect genotype.

Many factors would all have to happen, each with

low probability to generate the same genotype

incorrectly twice from independent samples

(Paetkau 2003). Therefore, this assumption may

be the weakest of the 3 assumptions made here,

but the consequences of a violation of the

assumption is minor.

Estimation of the model parameters, and most

importantly N̂, is good when α is high (≥0.95). This

is reasonable performance for the estimator. Lab

protocols can easily keep error rates within that

range (Paetkau 2003). Yet, even with an error rate

of only 1% per sample, substantial bias in N̂ can

occur if it is not taken into account. The misiden-

tification models perform well when error rates

exceed 5%, but the variance on estimated popu-

lation size becomes large and quickly makes the

results relatively uninformative about population

size. Despite the large variance on population size,

one would learn about the high error rate. The

cutoff for an allowable level of genotyping error

depends on the precision required for the study.

The models presented here rely on recaptures

to estimate the probability of correctly genotyp-

ing a sample. Heuristically, this quantity is esti-

mated by the imbalance in the number of geno-

types observed only once to those observed more

than once. If error is present in genotyping,

there will be an excess of genotypes observed

only once. A portion of these (α) are truly seen

only once, and the remainder (1–α) are seen once

because the genotypes are mistakes. There are 2

ways to ensure obtaining recaptures: 1 is to sam-

ple intensively to get capture probability high,

and the other way is to sample on more occasions.

The capture–recapture models presented here

are based on the same likelihood function as the

standard capture–recapture models they general-

ize. Therefore, model selection criteria such as

AICc can be used to compare models (Burnham

and Anderson 2002). The researcher need not

worry whether they should or should not use a

model incorporating genotyping error. Estima-

tion can be performed with both standard cap-

ture–recapture models and the genotyping error

models presented here, and AICc will determine

which model is better supported by the data.

Resulting abundance estimates may be model

averaged to further reduce the effects of model

selection bias (Burnham and Anderson 2002).
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This class of models can help reduce the cost or

increase the sample size of a DNA-based cap-

ture–recapture study. Cost is reduced by having to

extract fewer samples to achieve enough samples

that meet a desired quality. Sample size is increased

for a set cost because fewer samples will be culled.

Although these models were developed in the con-

text of identification from microsatellite data, the

concept extends to other types of analyses as well.

Identification based on photographs is commonly

attempted in marine mammal studies (Jefferson

2000). These models also could be used for that

application. The models presented here do not

fit well with misidentification of physical tags because

the set of tags available for capture should be known.

Therefore, if a tag is read that does not match a

tag in the population, it is known to be incorrect.

The models presented here are most applicable

to smaller populations up to several thousand indi-

viduals. In theory, the method applies to any size

population. Populations that are very large are

quite expensive and time consuming to sample

with DNA-based methods due to the large number

of samples that would need to be processed and

large number of loci needed to resolve individuals. 

Management Implications.—Ignoring genotyping

error when it is in fact present will lead to over-

estimation of animal abundance. DNA-based cap-

ture–recapture typically is used on species with

small population sizes that are difficult to

observe. Overestimating the size of a small popu-

lation could lead to potentially detrimental con-

clusions for an endangered or exploited species.

The method we present allows genotyping error

rate to be directly estimated and abundance

appropriately corrected. Therefore, manage-

ment decisions can be made based on an accu-

rate assessment of the population size.
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