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Articles

Adefining pursuit in ecology is to understand the factors
that determine and contribute to variation in the dis-

tribution and abundance of organisms. Classic ecological
theory predicts, for example, that abundance may be limited
primarily by abiotic factors at one extreme of a species’ dis-
tribution, whereas at the other extreme, abundance may be
limited primarily by biotic factors (MacArthur 1972). Under-
standing the role of abiotic factors (such as climate) in pop-
ulation dynamics has grown in urgency and importance in
recent decades with increasing documentation of the effects
of climate change on patterns of abundance, population dy-
namics, and species interactions (Fagan et al. 2001, Parme-
san and Yohe 2003, Thomas et al. 2004). Furthermore,
increasing climatic variation due to climate change may even
contribute to greater extinction risk (Boyce et al. 2006) and
lead to the reorganization of ecological communities (Araujo
and Luoto 2007).Yet spatially comprehensive analyses focusing
on single species have illustrated the difficulty inherent in mak-
ing general assessments of species-level responses to climate
change (Post 2005, Anders and Post 2006). As climate change
threatens to reshuffle Earth’s biota, the challenge to ecologists

is to predict how the distribution and abundance of various
species will change as a result of variation among populations
of those species in the extent to which, and the direction in
which, the populations respond to changes in climate. Meet-
ing this challenge, we contend, requires distribution-wide
analyses, wherein data on the dynamics of numerous popu-
lations throughout the distribution of a species of interest
are analyzed retrospectively to quantify species’ response to
climate change.

The science of understanding the role of climate in species-
level patterns of distribution and abundance, and of pre-
dicting species’ responses to climate change, relies mainly
on bioclimatic envelope modeling. Bioclimatic envelope
models, which predict shifts in species’ geographic ranges
with concomitant shifts in underlying climatic conditions, have
provided the broadest perspective so far on the issue of
species’ responses to past and future climate change (Pearson
and Dawson 2003, Peterson AT et al. 2004, Hijmans and
Graham 2006). But the approach embodied by bioclimatic en-
velope modeling considers only shifts in species’ ranges, not
their abundance, and assumes that species’ distributions and
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range limits are determined primarily by interactions be-
tween a single organism and the abiotic environment (Peterson
AT et al. 2002, Pearson and Dawson 2003). This approach may
be applicable in single-species systems, but not where distri-
bution or abundance can be influenced by species interactions
or anthropogenic forces (Case and Taper 2000,Araujo and Lu-
oto 2007, Heikkinen et al. 2007). In fact, species are often lim-
ited by biotic factors such as the presence or absence of other
species and spatial variation in population regulation. For ex-
ample, Case and Taper (2000) concluded that in temperate
environments, the southern limit of species’ distributions
should be determined by the inability of organisms to adapt
to changes in abiotic conditions, because interactions with
competitors lead to low population density and, thus, re-
duced gene flow.

Recently, several studies have emphasized the importance
of including species interactions in bioclimatic envelope
models. Important examples of this include multispecies
bioclimatic envelope models for boreal owls and butterflies
in Scandanavia (Araujo and Luoto 2007, Heikkinen et al.
2007), which clearly show that inclusion of more complex
species interactions improves ecologists’ ability to predict
the effects of climate change. Such analyses confirm that the
factors influencing the population dynamics of any species
most likely vary across the distribution of that species (Fagan
et al. 2001, Parmesan and Yohe 2003, Thomas et al. 2004). New
approaches that make use of knowledge of both the abiotic
and biotic factors limiting species are needed to predict pop-
ulation and community response to climate change.

Bioclimatic envelope models (also known as environ-
mental niche models) are best thought of as null models for
species response to climate change, in which the set of species
interactions influencing distribution and abundance remains
fixed when a species shifts its range in accordance with
changes in underlying abiotic conditions. Here, we suggest a
new approach that complements and builds upon the insights
gleaned from bioclimatic envelope models. Our approach is
based on recent developments in the analysis of population
dynamics at the scale of species’ distributions. These ad-
vances highlight the utility of addressing distribution-wide
population dynamics in a quantitative framework that is
amenable to inclusion of the effects of species interactions
(Forchhammer et al. 1998, Forcada et al. 2006, Grotan et al.
2008, Sandvik et al. 2008).

Building on traditional time-series analyses of single-
species population dynamics, we outline an approach to
identify local hot spots of species’ responses to large-scale cli-
matic variation and change, including warming. This ap-
proach moves beyond bioclimatic envelope modeling in that
different populations will be allowed to respond differently
to climate, and local areas where climate impacts may be felt
more strongly can be identified.Yet the extent to which biotic
factors influence spatial variation in population response to
climate change is still mostly unknown in this first step, al-
though statistical properties emerging from the time-series
analyses demonstrated here can be used to infer—grossly—

the roles of interacting species on patterns of response to
climate change. In a second step, where population dynam-
ics of multiple interacting species are known, we extend these
time-series approaches to include dynamic interactions that
provide an approach to identify the species interactions
behind climate hot spots. The insights arising from use of
these approaches will be of considerable value in inform-
ing a mechanistic understanding of patterns generated by
bioclimatic envelope models. Hence, we do not advocate our
approach as a replacement for bioclimatic envelope model-
ing, but rather as a complement to it.

Spatial variation in population dynamics identifies hot
spots of population response to global climate change
In this section we review two recently published examples, and
present a third example developed in this article, to reveal the
utility of distribution-wide analyses for identifying large-
scale spatial variability in the magnitude of population re-
sponse to climate change. Importantly, these examples
highlight the tremendous variation across species’ distribu-
tions in the response of local populations to climate change,
and identify hot spots of population response to climatic
warming. The existence of such hot spots, and the fact that
they are readily identifiable through analyses such as those pre-
sented here, has obvious implications for the focusing of
conservation and management efforts.

In the first example (Anders and Post 2006), long-term data
from the Breeding Bird Survey were used to analyze the dy-
namics of yellow-billed cuckoos (Coccyzus americanus) in
relation to intraspecific competition (i.e., density depen-
dence) and climatic dynamics throughout the birds’ breed-
ing distribution in North America. This analysis revealed
considerable spatial variation throughout the distribution
of this species in the extent to which populations responded
to both the North Atlantic Oscillation (NAO) and El Niño
Southern Oscillation (ENSO) (figure 1). Most of this varia-
tion was explained by the magnitude of the correlation be-
tween those climate indices and local temperatures. In other
words, wherever the signal of large-scale warming was clear-
est in local temperature trends, as indicated by the strongest
correlations between local temperature and the NAO or
ENSO indices, cuckoo populations showed the strongest re-
sponse to large-scale warming. More revealing, however, was
that across populations, the magnitude of population de-
cline related directly to the strength of the population’s re-
sponse to warming.

This pattern suggests that continued warming will hasten
the declines of cuckoo populations sensitive to climatic vari-
ation because of their elevated extinction risk in populations
with increasing climate-induced demographic stochasticity
(Boyce et al. 2006). The high spatial resolution of the data,
which derive from closely spaced transects distributed
throughout the cuckoo’s range in North America (see Anders
and Post 2006), also allows inferences regarding which pop-
ulations of yellow-billed cuckoo are most likely at risk of de-
clining with future warming. These appear to be located in
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the east Texas prairies, southern New England, Ohio hills, and
dissected till plains ecoregions (see figure 1). But how does this
example differ from projections of species response to climate
change based on bioclimatic envelope models? Inferences
about the demise or persistence of cuckoo populations might
also have been drawn on the basis of patterns of population
trends and their associations with abiotic conditions. The
cuckoo analysis, however, also accounted statistically for the
potentially confounding influences of intraspecific competi-
tion and spatial variation in density by including coefficients
of direct density dependence and estimates of the mean size
of each population in a subsequent meta-analysis of the
magnitude of population response to climate change (see
Anders and Post 2006); both of these influences might play
a role in the susceptibility of populations to abiotic variation.

In the second example (Forchhammer et al. 2002, Post
2005, Post and Forchhammer 2006), analyses of caribou and
wild reindeer (both Rangifer tarandus) dynamics throughout
their present distribution revealed considerable spatial vari-
ation in population response to climate along latitudinal and
longitudinal gradients that coincided spatially with gradients
of influence of the NAO on local temperature variation
throughout the Northern Hemisphere. These analyses also
revealed a general trade-off across the distribution of this
species between the strength of density-dependent self-
regulation and abiotic limitation. The populations that were
apparently most responsive or vulnerable to climatic warm-
ing were those at the northern limit of the species’ circum-
polar distribution. Also, time-series analyses of the data
revealed the effects of density in previous years on current den-
sity, suggesting that large-scale spatial heterogeneity influences
the importance of species interactions in local population dy-
namics (Forchhammer et al. 2002, Post 2005, Post and Forch-
hammer 2006); such lagged effects are often attributable to
species interactions involving competitors or natural ene-
mies (Framstad et al. 1997, Forchhammer and Asferg 2000,
Bjørnstad et al. 2001). Again, populations at the northern ex-
tent of the species’distribution were more likely to display sim-
ple dynamics with primarily abiotic limitation, whereas those
at or near the southern limit of the distribution displayed more
complex dynamics with direct and delayed density depen-
dence; the latter finding suggests that species interactions, such
as predation, act together with climate in the dynamics of pop-
ulations at the southern limit of the distribution of this
species. Such findings, based on analysis of individual pop-
ulations distributed throughout a species’ range, can pro-
vide insights into projections from bioclimatic envelope
models that predict expansion at the northern limits of
species’ distributions but contractions at the southern limits
in response to future warming.

We now expand upon previous analyses of the distribution-
wide data on caribou and reindeer populations using self-
exciting threshold autoregressive (SETAR) analysis (Tong
1990, Ellis and Post 2004) with climate covariates, testing
for nonlinearity in the dynamics of these populations and for
improved fit over previous linear analyses. A brief back-

ground on the form of the statistical models used in this
retrospective time series analysis is warranted. As a starting
point, we adhere to the simplifying assumption of nonlinear
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Figure 1. North American population dynamics analysis
of yellow-billed cuckoos (Coccyzus americanus) showing
the strength of one-year lagged relationships between the
North Atlantic Oscillation (NAO) (a) and El Niño South-
ern Oscillation (ENSO) (b) and annual cuckoo popula-
tion densities from 1966 to 2002. The magnitude of the
NAO and ENSO coefficients are shown in color from red
(negative, indicating a decline in abundance following
an increase in the ENSO or NAO indices) to light blue
(positive, indicating an increase in abundance following
an increase in the ENSO or NAO indices). Ecoregion
abbreviations: DTP, dissected till plains; ETP, east
Texas prairies; OH, Ohio hills; and SNE, southern
New England.
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population growth approximated by the Gompertz equa-
tion (Bjørnstad et al. 1995, Gompertz 1825), in which the pop-
ulation growth rate changes log-linearly with abundance. As
in previous applications of the Gompertz growth equation in
the analysis of population dynamics of mammalian herbivores
(Bjørnstad et al. 1995, Post and Stenseth 1999, Forchhammer
et al. 2002), we began with a density-dependent model of pop-
ulation growth incorporating weather as a covariate:

Nt = Nt–1exp(β0 + β1Xt–1 + Σωt–d CLIMt–d + σt). (1)

In this equation, Nt denotes abundance at time t, Xt the
natural log of abundance at time t, β0 the intrinsic rate of
population increase, β1 the strength of direct density depen-
dence, and CLIM some climate term such as the NAO or
ENSO index, for which ωt–d quantifies the strength of the
climate effect on changes in abundance at lags up to d years.

By taking the log of both sides of equation 1, we arrive at
a first-order autoregressive (AR[1]) model of population
dynamics that is amenable to statistical analysis (Bjørnstad et
al. 1995):

Xt = β0 + (1 + β1)Xt–1 + Σωt–dCLIMt–d + εt. (2)

Equation 2 can be extended to account for delayed density
dependence by including the term β2Xt–2 (Stenseth et al.
1996a, 1996b, Forchhammer et al. 1998, 2002). In the SETAR,
nonlinear form of equation 2, we relaxed the assumption
that the coefficients of direct and delayed density depen-
dence (β1 and β2), or of the influence of climate on dynam-
ics (ωt–d), are constant regardless of whether the population
is increasing or declining, and allowed the strength of density
dependence and climatic influence to vary depending on the
phase of population growth (i.e., increase or decline; Gren-
fell et al. 1998, Stenseth et al. 1998a, Forchhammer and
Asferg 2000, Post et al. 2002, Ellis and Post 2004).

Following methods described elsewhere (Forchhammer et
al. 1998, Stenseth et al. 1999), we analyzed each time series by
determining the most parsimonious dimension or order
(number of significant lags) of density dependence (either one
or two) of each time series, thereby accounting for density
dependence first, and then tested for significance of terms
quantifying the contribution of Northern Hemisphere tem-
perature anomalies (NHTA) at lags of one to three years;
parsimony was determined on the basis of the lowest Akaike
information criterion score, corrected for the number of co-
variates in the model (Sakamoto et al. 1986).

This analysis revealed not only spatial variation in the
strength of Rangifer population responses to warming
(NHTA) but also considerable spatial variation in the types
of intrinsic dynamics they displayed (figure 2): approxi-
mately 15% of the populations displayed nonlinear responses
to warming. Moreover, the populations most negatively
affected by warming appear to be those in West Greenland,
eastern Russia, and southern Alaska, whereas populations in
other regions of the species’ distribution are affected only

weakly by warming, or are positively affected by it (figure 2).
The importance of identifying nonlinearity in population
dynamics lies in the fact that the susceptibility to climatic vari-
ation of populations with such dynamics can vary, depend-
ing on whether the population is in a low- or high-density
regime, or on whether the population is increasing or declining
(Grenfell et al. 1998, Bjørnstad and Grenfell 2001). Moreover,
recent evidence from nonlinear modeling of population dy-
namics of Svalbard reindeer (Rangifer tarandus platyrhynchus)
indicates that thresholds may simultaneously operate in both
density and climatic conditions (Tyler et al. 2008), further
complicating predictions of species-level response to climate
change. Bioclimatic envelope models would not identify such
nuances.

Using the same approach employed in analyzing the time-
series data on Rangifer in the example described above, we
obtained and analyzed time-series data for the Cervus elaphus/
Cervus canadensis species complex (elk and red deer; hereafter
Cervus) from across the global distribution of Cervus from the
published literature (e.g., Jedrzejewska et al. 1997, Clutton-
Brock and Coulson 2002, Nikol’skii and Likhatskii 2002,
Hebblewhite 2005, Vucetich et al. 2005). We analyzed these
data using the same autoregressive linear and SETAR mod-
eling approach described above, using time series for 34
Cervus populations from throughout the species’ range in
the Northern Hemisphere. This allowed us to quantify the
influence of climate (here again, NHTA) on population
dynamics after accounting statistically for contributions of
direct- and delayed-density dependence. As in the Rangifer
example, the Cervus population response to warming varied
widely throughout the distribution of this species complex
(figure 2). In the case of Cervus, however, there is strong
spatial variation in the direction of response to warming
even at relatively local scales, such as within the Rocky Moun-
tains region, where dynamics of some populations responded
positively and others negatively to warming (figure 2),
perhaps because of the complicating influences of species
interactions in some regions (sensu Wilmers et al. 2007).

Comparing Rangifer and Cervus in the strength of the
correlation between the warming and population growth
rate coefficients and the influence of NAO on local temper-
atures, we find further interesting and opposing patterns
(figure 3). In areas where local temperatures are negatively re-
lated to the NAO, the population growth rate of Rangifer is
negatively affected by large-scale warming (r = 0.44, p = 0.01,
n = 38). In contrast, Cervus populations show a negative re-
sponse to warming in areas where there is a positive correla-
tion between the NAO and temperature (r = –0.39, p = 0.02,
n = 34) (figure 3). This comparative analysis suggests that cli-
mate change will influence these two species in opposition,
potentially reflecting different mechanisms of climate impacts.
For example, recent modeling shows that elk populations in
Rocky Mountain National Park are expanding because of
climatic amelioration (Wang et al. 2006), whereas Wood-
land caribou populations in North America are retreating
northward, perhaps reflecting their adaptation to a colder
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bioclimatic envelope (Grayson
and Delpech 2005). Despite such
broad differences between these
two species, much unexplained
variation remains at the popu-
lation level.We propose that this
unexplained variance is most
likely due to species interactions
and differences between popu-
lations, as in the cuckoo exam-
ple. Even simple knowledge of
the presence or absence of key
interacting species for each pop-
ulation—for example, whether
wolves are present or absent
(e.g., absent in Scotland, south-
ern Greenland; present in
Canada, Russia)—will enable
subsequent analyses to examine
species interactions in more
detail.

A growing number of studies
have employed similar ideas to
regional or near distribution-
wide analyses of the effects of
climate change on other species,
including penguins, seabirds,
and ungulate populations, but
none has yet focused on popu-
lation dynamics at the scale of
species distributions. Nonethe-
less, these large-scale analyses
are informative and encourage
further large-scale analyses of
species-level population dy-
namics. Using 33 time series for
13 different species of seabirds
across the entire North Atlantic, for example, Sandvik and col-
leagues (2008) showed a strong latitudinal gradient in the con-
nection between the NAO and breeding success. Northern
populations were more likely than southern populations to
suffer negative effects from severe winters, and the stronger
the connection between local sea-surface temperature and the
NAO, the stronger the impact on breeding success. Taxo-
nomic grouping and foraging strategies, however, strongly
affected seabird responses to climate. The species-specific
responses to climate strongly support the role of species
interactions in mediating climate impacts on populations in
North Atlantic seabirds.

In the southern Antarctic Ocean, Forcada and colleagues
(2006) demonstrated similar variable responses of three
species of penguins breeding at the same colony using time-
series analysis of population dynamics. Despite spatial
co-occurrence, the three species of penguins responded dra-
matically differently to climate dynamics, leading Forcada
and colleagues (2006) to conclude that species interactions

were driving climate-population dynamics. Grotan and col-
leagues (2008) analyzed 26 populations of ibex (Capra ibex)
populations in the Swiss Alps and found strong spatial vari-
ation in the effects of climate on local population responses,
as did Wang and colleagues (2006) for six populations of
ungulates in North America. Some populations responded to
winter severity and others to spring precipitation, and pop-
ulations showed weak to no spatial synchrony in response to
climate. A common aspect of all global population dynam-
ics analyses is the recurrent theme of pronounced variation
in local populations’ responses to climate, which suggests a
strong role for species interactions in buffering responses to
climate.

Role of species interactions in buffering populations
against climate change or in exacerbating populations’
responses to climate change
Analysis of the long-term observations of the abundance of
moose and wolves on Isle Royale (Peterson RO et al. 1998,
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Figure 2. Global population dynamics analysis of hot spots of response to climate for
Cervus (elk and red deer, triangles) and Rangifer (caribou and reindeer, circles) showing
the strength of the correlation with Northern Hemisphere temperature anomalies (NHTA)
and population growth rate (accounting for linear or nonlinear density dependence). The
magnitude of the coefficients is shown in color from green (negative) to red (positive).
The strength of the relationship between local temperature and a +1 standard deviation
(SD) change in the North Atlantic Oscillation (NAO) is shown in the contour bands; a +10
correlation indicates a 1 degree Celsius change in local temperature with a +1 SD change
in NAO. Results clearly indicate that not all populations will respond similarly to changing
climate even over small spatial scales.
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Vucetich and Peterson 2004) illustrates an important exam-
ple of nonstationary effects of climate change on population
dynamics and, perhaps more interestingly, the role of species
interactions in buffering a population from climatic fluctu-
ations. In this example, an outbreak of canine parvovirus
represented a pulse perturbation that altered the dynamics
of the community and the role of large-scale climate in those
dynamics (Wilmers et al. 2006). Before the outbreak, moose
dynamics on the island were governed mainly by wolf pre-
dation and self-limitation, with a very minor, statistically
insignificant climate influence (figure 4). After wolf densities
were reduced dramatically by canine parvovirus, however,
moose dynamics became strongly limited by the NAO.

Of course, this example does not illustrate patterns of
distribution-wide dynamics—we mention it only because
of the clarity with which it illustrates important features of
population response to climate change that are likely to be
important in distribution-wide variation in population dy-
namics. First, it corroborates predictions by Schmitz and
colleagues (2003) arising from simulation modeling of moose
response to future climate change across North America by
demonstrating that species interactions may influence
population response to climate. Second, it illustrates that
predation may buffer populations from climate change
(Wilmers et al. 2007). Third, it shows that climatic influ-
ences on population dynamics may not be stationary through
time; that is, their importance may vary with the addition or

removal of the limiting influences of species at adjacent
trophic levels (Forchhammer and Asferg 2000).

Advantages and limitations of time series analysis
The approach we have described is traditional time series
analysis (Royama 1992, Bjørnstad et al. 1995, Turchin 2003)
of the relationships between population growth rate and cli-
mate and density for each population throughout a species’
distribution. Using this approach, statistical coefficients quan-
tifying the strengths of the influences of climate and density
dependence on the dynamics of individual populations (equa-
tion 2) can be spatially examined for correlations with large-
scale spatial variation in climatic conditions, relations between
climate systems and local weather, latitudinal gradients in
primary productivity, or spatial variation in land-use patterns
or other anthropogenic forces. This basic approach was
used in the cuckoo (figure 1) and Cervus/Rangifer (figure 2)
examples discussed above.

Traditional approaches to analyzing population dynamics
through time-series analysis present both advantages and
disadvantages compared with bioclimatic envelope modeling.
First, time-series analysis can be used to decompose the con-
tributions of intrinsic versus extrinsic processes to observed
dynamics. Conventionally, this decomposition is based on
inferences drawn from the autoregressive structure of time-
series data at a single trophic level. For instance, delayed
autoregressive dynamics imply lagged life history effects on
dynamics or interactions with species at adjacent trophic
levels (Royama 1992, Stenseth et al. 1998a, 1998b, 1999), or
both. Whether the processes underlying lagged dynamics
relate to demography or species interactions is difficult to
determine in the absence of age-structure data or overlapping
time series at adjacent trophic levels. However, in a two-
species system, lagged autoregressive dynamics strongly im-
ply demographic processes, whereas simple dynamics in a
multitrophic-level system imply a lack of complex regulation
due to interactions between demography and species inter-
actions. In cases in which data at adjacent trophic levels are
available, inferences about species interactions in dynamics
at a single trophic level have been supported by analyses
incorporating data on multiple species (Forchhammer and
Asferg 2000, Bjørnstad and Grenfell 2001, Post and Forch-
hammer 2001, Schmidt et al. 2008). Additionally, experi-
mental manipulation of predator-prey dynamics, combined
with analyses of long-term data on prey abundance, con-
firms the role of species interactions in generating delayed
dynamics in density time series (Bjørnstad et al. 2001).

A second advantage of time-series analysis in a global-
population dynamics framework is its ability to identify vari-
ation throughout species’ distributions in the strengths of
intrinsic versus extrinsic influences on population dynamics.
For instance, Case and Taper (2000) emphasized that the
importance of biological and abiotic influences on dynam-
ics should not be expected to be constant throughout the dis-
tribution of a given species, and that spatial variation in the
strengths of these processes explains the distribution of species
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Figure 3. Correlation between population growth rate for
Cervus and Rangifer populations and Northern Hemi-
sphere temperature anomalies versus the strength of the
local correlation between surface temperature and the
North Atlantic Oscillation (NAO) from figure 3. The
stronger the NAO-temperature correlation, the more
local temperatures are affected by the NAO. This figure
shows opposing relationships for Rangifer and Cervus,
suggesting that the two genera will generally be affected
in opposite directions by future warming.
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and variation in their abundance throughout their
distributions. Time-series analysis at the scale of en-
tire species’ distributions is ideally suited to iden-
tifying the limiting influences of both types of
factors and distribution-wide variation in their
importance.

The major drawback of time-series analyses is
the additional data required. Compared with bio-
climatic envelope modeling, which requires merely
location data, acquiring time-series data requires
long-term counts or indices of a species (> 25
years, ideally) across a wide portion of the geo-
graphic range of a species. Critics may point out
that these additional data requirements make the
idea of global population dynamics problematic,
but numerous recent studies (reviewed above)
show that more and more, the availability of long-
term and large-scale time series will enable these
approaches. The Global Population Dynamics
Database (NERC CPB 1999), for example, has
more than 2000 published time series from more
than 700 species and locations (Fagan et al. 2001,
Boyce et al. 2006, Morris et al. 2008), and long-
term, high-quality bird survey data from North America and
data from global plant phenological monitoring and popu-
lation counts are available; thus, this approach is the next log-
ical step in expanding ecologists’ ability to predict the effects
of climate change on species.

A second major drawback in traditional time-series analy-
ses concerns data quality, as many published data sets of
species counts have unknown bias and various methods of ac-
counting for detectability (or even none at all). Fortunately,
recent advances in state-space modeling approaches provide
tractable solutions to dealing with messy data in time-series
analysis (De Valpine and Hastings 2002, Clark and Bjørnstad
2004). By treating time-series analysis as a two-step process
to identify the most likely underlying error structure that
generated the counts, and then separating out the likely true
observations from the error model, ecologists are now start-
ing to explore the factors that generate variation in time-
series analyses linked to climate change (Forchhammer and
Post 2004, Wang et al. 2006).

Choice of climate driver
One of the first steps in scaling up to global population dy-
namics to understand the impacts of climate change is the
choice of a global climatic variable, and an approach to de-
termining which are the most important climatic drivers.
The past decade has seen an explosion in the use of the NAO
large-scale climatic index (Forchhammer and Post 2004,
Hurrell 1995, Walther et al. 2002), especially in western Eu-
rope and eastern North America, to explain terrestrial and ma-
rine ecosystem dynamics. In the Pacific region, climate will
generally be dominated by the ENSO or the Pacific Decadal
Oscillation (Trenberth and Hurrell 1994), and in the Arctic,
by the Arctic Oscillation (Thompson and Wallace 1998).

The choice of which regional climatic index to use is an im-
portant question, however, and especially for continental-
scale analyses, as species may transcend the spatial domain of
a particular climatic index. For example, Canada lynx (Lynx
lynx) show different population dynamical responses to win-
ter snowfall in eastern versus western North America, medi-
ated by the different climatic effects of the NAO and the
ENSO, respectively (Stenseth et al. 1999). Stenseth and col-
leagues (1999) showed that lynx population dynamics vary
across subcontinental ecological regions that match regions
defined by the relationship between the global indices and lo-
cal weather, suggesting a strong link between local weather-
climate interactions and population dynamics. The approach
of Stenseth and colleagues (1999) is one among many for de-
termining which climatic variables to apply, including model
selection (Sandvik et al. 2008), correlation analyses with lo-
cal weather variables (Grotan et al. 2008), or ordination
methods that integrate different indices into similar orthog-
onal axes (Wang et al. 2006). Most important, within a climatic
region there will be climate-change hot spots where the global
climate index has a stronger influence on local weather vari-
ables such as precipitation and temperature (e.g., figure 2). The
degree to which these in turn influence population dynam-
ics can be determined with a cross-correlation analysis between
climate and population dynamics using time series analyses.

Future steps for understanding impacts of
climate on global population dynamics
Although the use of bioclimatic envelope models has been
fruitful for many years, we still need supplemental approaches
that can identify distribution-scale variation in intrinsic ver-
sus extrinsic processes in species’ response to climate change
(Schmitz et al. 2003), and the future for more detailed analy-
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Figure 4. Percentage of the variance explained in moose population
growth rate before and after the outbreak of canine parvovirus in 1980,
which decimated the wolf population. When wolves no longer regulate
the moose population, the North Atlantic Oscillation becomes a strong
driver of moose population dynamics.
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ses of population dynamics looks promising. The rise of
widely available, long-term population data online (such as
the Global Population Dynamics Database) will facilitate
analyses such as those promoted here. Moreover, to date,
most global analyses have been conducted on only one species.
The availability of extensive data sets with overlapping species
suggests that ecologists will develop approaches for under-
standing community responses to climate change, a devel-
opment that could not be more timely.
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