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Commentary/Lewis: Bridging emotion theory and neurobiology through dynamic systems modeling

facilitated CRH-gene expression versus testosterone-potentiated
amygdalar vasopressin gene-expression results in the expected re-
versed shift in the balance between the sensitivity for punishment
and reward (DeVries et al. 1995; Schulkin 2003). Concurring an-
tagonistic effects of cortisol and testosterone have been observed
in humans during implicit or unconscious measures of approach-
and withdrawal-related emotions that predominantly depend on
subcortical processing (Van Honk et al. 1998; 1999; 2003; 2004).
(2) Although the steroids primarily target subcortical affective re-
gions, there is evidence for a relationship between cortisol and
dominant right-sided cortical asymmetry in young children and
nonhuman primates, which accompanies punishment-sensitive
characteristics of behavioral inhibition (Buss et al. 2003; Kalin et
al. 1998). Contrariwise, recently we found that testosterone ad-
ministration induces reward-associated left prefrontal cortex acti-
vation during the display of erotic movies (unpublished observa-
tion). (3) Our subcortical-cortical evidence builds on a theory
wherein the phylogenetically different brain systems relate to the
subcortically generated delta (1-3 Hz) and cortically generated
beta (13-30 Hz) oscillations in the electroencephalogram (EEG).
Relative increases or decreases in subcortical-cortical cross-talk are
computed by correlating the change in power between these
bands, and it has repeatedly been demonstrated that elevated sub-
cortical-cortical cross-talk as indexed by EEG is accompanied by
elevated punishment sensitivity (Knyazev & Slobodskaya 2003;
Knyazev et al. 2004). On the endocrinological level, increased lev-
els of cortisol have been associated with enhanced punishment rel-
ative to reward sensitivity and are evidently accompanied by in-
creased subcortical-cortical cross-talk (Schutter & Van Honk
2005). In an opposite fashion, reductions in subcortical-cortical
cross-talk after administration of testosterone have been observed
in healthy volunteers (Schutter & Van Honk 2004). This decou-
pling of subcortical and cortical processing is argued to indicate a
shift in motivational balance from punishment towards reward sen-
sitivity (Schutter & Van Honk 2004).

In sum, an increasing body of evidence suggests that the steroid
hormones cortisol and testosterone are antagonistically involved
in the modulation of emotional homeostasis on the different phy-
logenetic levels of the brain. Importantly, this emotional home-
ostasis is not only subcortically controlled by bottom-up inter- and
intra-axes negative feedback mechanisms, but also cortically
through top-down psychological regulatory processes (Mazur &
Booth 1998). This dynamic steroid hormone regulation of social
emotional behavior provides a bridging principle between the psy-
chological and biological domains, and might well prove to be an
important neurobiological mechanism in motivation and emotion.
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Abstract: A dynamic systems (DS) approach uncovers important connec-
tions between emotion and neurophysiology. It is critical, however, to in-
clude a developmental perspective. Strides in the understanding of emo-
tional development, as well as the present use of DS in developmental
science, add significantly to the study of emotion. Examples include
stranger fear during infancy, intermodal perception of emotion, and de-
velopment of individual emotional systems.

Lewis presents a dynamic systems approach to emotion with an
emphasis on self-organization of small neurological units and

larger social wholes. As is typical of self-organizing systems, he
proposes that large complex emotion systems arise from oscillat-
ing interactions among smaller and often simpler forms that may
have emotional potential. We also have argued that the study of
emotion must not veer into a barren, reductionist landscape in
which a set of boxes fixed in a linearly organized fashion sit wait-
ing to be opened. We wish only to add some examples from our
work that expand Lewis’s call and also reintroduce the critical
need to include development in any study of emotion, and espe-
cially in a dynamic systems (DS) approach to emotion (see also
Lewis 2000b). Some of the most outstanding research on emotion
is developmental (Izard et al. 1995; Malatesta & Izard 1984;
Nwokah and Fogel 1993; Witherington et al. 2001), as is some of
the best work using DS principles (Magai & Haviland-Jones 2002;
Thelen & Smith 1994). This is no accident: During particular age
periods of rapid change (e.g., infancy), one can observe the coac-
tion of a number of systems in real time within a reasonable re-
search time frame. However, across a life span the DS principles
are applicable.

A decade ago, we proposed a multicomponent systems ap-
proach for understanding the origins and development of emotion
(Haviland & Walker-Andrews 1992). Our primary focus was on
the socialization of emotion, and our primary example was the
emergence of fear of strangers. We argued that stranger fear was
not an additive growth function built with “more” cognition, but,
in DS terminology, a phase. Further, stranger fear is expressed (or
not) due to a number of initial conditions, including the typical in-
fant-caregiver communication patterns that have emerged over
time. Since that first article we have added other examples that
could both benefit from a DS perspective and contribute support
to DS principles.

One example arises from research on infants and their self-or-
ganizing patterns of emotion perception. The environment is re-
plete with multimodal and co-occurring information for objects,
events, and personal experience. An observer moving through the
world sees occluding surfaces, hears transient sounds, may touch
rigid objects, and smell and taste various substances concurrently.
Information for emotion is available multimodally as well. An an-
gry person may scowl, raise his voice, gesture abruptly, and tense
his muscles. The perception of the emotional expression is not
merely the sum of each of these components. Rather, the observer
perceives a unified multimodal pattern that has unique commu-
nicative affordances. Moreover, the presence of multimodal in-
formation may facilitate the perception of an event (Bahrick &
Lickliter 2000; Walker-Andrews & Lennon 1991). The detection
of meaning in an expression develops as the observer’s perceptual
skills develop, as she gains experience, as she becomes more fa-
miliar with a particular person and eliciting situations. Conse-
quently, an adult may recognize that someone is angry by observ-
ing gestures alone or attending to the situation, but the young
infant appears to need the redundant, extended information. Sim-
ilarly, the experience of emotion is multifaceted, including kines-
thetic, somatosensory, and other modality-specific information.
According to Stern (1985), such experience may provide for in-
fants a feeling of deja vue that allows the infant to develop a sense
of self as an extended emotional agent. The perception of multi-
modal information for emotions of the self and of others is an ex-
ample of how “individual elements or groups of elements lose
their independence and become embedded in a larger regime”
(sect. 3.2.3 of the target article).

In a second example, fractal patterns have emerged in studies
of life-span emotional development (Magai & Haviland-Jones
2002). The social-cognitive emotion system at a point in time
shows features of fractal geometry or self-similarity of emotion
pattern replicated at lower and higher orders of magnification. In-
dividuals reproduce their unique emotion organizations psycho-
logically. Without examining long-term development of individual
change, as is required by DS, such fractal structures would not be-
come apparent. Once established, the fractal patterns tend to or-
ganize new sensory information to form a “growing” system that
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is subject to phase shifts. This newer work on individual develop-
ment of emotion systems is related to the model described above
(Haviland & Walker-Andrews 1992) and a more mathematical vi-
sualization of emotion patterns emerging from small and poten-
tially chaotic events — dependent also on initial neurological con-
ditions (Haviland-Jones et al. 2001).

Given our work and that of many others, Lewis may have over-
stated the case for social emotions systems to be linear rather than
self-organizing or dynamic. Itis certainly true that, historically, ap-
proaches to research on emotion are linear and normative, but de-
velopmental theory even in its own infancy dating from Vygotsky
or Piaget has been built upon the emerging principles of individ-
ual change and self-organization.
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Abstract: We present a dynamical model of interaction between recogni-
tion memory and affect, focusing on the phenomenon of “warm glow of
familiarity.” In our model, both familiarity and affect reflect quick moni-
toring of coherence in an attractor neural network. This model parsimo-
niously explains a variety of empirical phenomena, including mere-expo-
sure and beauty-in-averages effects, and the speed of familiarity and affect
judgments.

In the target article, Lewis argues for conceptualizing the inter-
play between cognition and emotion in dynamical terms. His pro-
posed framework highlights bidirectional links and multiple feed-
back loops between cognitive and emotional processes. The
framework’s focus on comprehensiveness and abstract principles
spanning different levels of analysis is valuable. However, as a re-
sult of this focus, the framework specifies few concrete mecha-
nisms that perform the postulated integration of cognition and
emotion. In our commentary, we illustrate the value of the dy-
namical systems approach by discussing specific mechanisms link-
ing recognition memory and affect.

Titchener (1910) noticed that familiar stimuli elicit a “warm
glow.” Nearly a century later, a host of studies show that variables
that enhance familiarity also enhance positive affect (Reber et al.
1998; Winkielman & Cacioppo 2001; Winkielman et al. 2002).
Thus, both familiarity and liking are enhanced by (1) repeated ex-
posure to a stimulus (mere-exposure effect), (2) exposure to cate-
gory exemplars that converge on a prototype (beauty-in-averages
effect), (3) presenting the target with higher clarity or at longer
durations, or (4) preceding the target with perceptual or semantic
primes. In addition to these commonalities, familiarity and affect
are both fast processes. Familiarity judgments are often faster
than recognition judgments (Mandler 1980) and liking judgments
are often faster than judgments about descriptive attributes (Za-
jonc 1980).

On the surface, there are no obvious reasons for these com-
monalities between familiarity and liking. However, things be-
come clearer when memory and affect are conceptualized in dy-
namical terms as processes occurring in a neural network. In such
a network, representations (learned patterns) correspond to at-
tractors, that is, states to which the network dynamics converges
(Hopfield 1982; O’Reilly & Munakata 2000). During the stimulus
recognition process, each neuron of the network adjusts to the sig-
nal coming from other neurons until the network gradually ap-
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proaches a stable state, an attractor. Typically, the behavior of a
network is characterized by a degree of match between the input
and output pattern. However, the network can also be character-
ized by its “volatility” — a number of neurons changing state and
the coherence of signals arriving at each neuron. Simulations show
that such volatility is different when the network is recognizing
known versus novel patterns. When the network is close to its at-
tractor, relatively few neurons change their state because most
neurons already match the attractor. When the incoming pattern
is novel, however, a large number of neurons change their state.
Based on this observation, Lewenstein and Nowak (1989) pro-
posed that the network uses its volatility signal to determine a
global familiarity of the incoming pattern. Remarkably, such esti-
mation of whether a pattern is generally “new” or “old” (i.e., prox-
imity to its closest attractor) can occur within the first moments of
processing, long before the pattern is actually recognized (some-
times in as little as 3% of the time needed for full recognition).
Now, what about affect? Note that the volatility signal also allows
the network to quickly estimate the potential valence of the pat-
tern. This is because novelty is a cue to a potential danger whereas
familiarity is a cue to positivity — after all, familiar objects have not
eaten us yet. It is also important that this rough valence estimate
is obtained fast, before the network fully knows what it is dealing
with, as it helps prepare immediate avoidance-approach actions.

The proposed conceptualization nicely accommodates the em-
pirical phenomena listed earlier. In the mere-exposure effect,
many prior encounters establish a strong memory for a pattern,
whereas few prior exposures establish a relatively weak memory.
Later, a test pattern with a relatively stronger memory (i.e.,
stronger attractor) elicits little volatility, and thus is more familiar
and liked (Drogosz & Nowak, in press). In the beauty-in-averages
effect, converging exemplars create a strong attractor for a proto-
type, which is recognized with less volatility. Patterns presented
with longer duration or with higher clarity are represented by
more extreme values of activation, and result in less volatility. Fi-
nally, priming pre-activates neurons that encode the pattern,
which add up to the activation from the actual target, resulting in
more extreme values of activation and less volatility. In sum, ac-
cording to the proposed computational model, repetition, proto-
typicality, duration, contrast, clarity, and priming enhance famil-
iarity and liking because all these manipulations reduce the
network’s volatility and increase its coherence. These changes in
volatility manifest early, long before the full completion of the
recognition process, thereby accounting for the fast nature of fa-
miliarity and affect.

In addition to quick feedback about the valence of the incom-
ing stimulus, the early pre-recognition of familiarity may be used
to control the recognition process, so that known stimuli are pro-
cessed differently than new ones. This may be achieved by linking
the outcome of pre-recognition based on monitoring the system
dynamics to a control parameter (e.g., network’s overall noise
level) that influences the later stages of the recognition process. A
number of specific models that involve a feedback loop between
pre-recognition and the noise level have been proposed. For ex-
ample, in the original model by Lewenstein and Nowak (1989),
unknown patterns raised the noise level, preventing false “recog-
nition” of unfamiliar patterns — a common problem for neural net-
works. In another example, by monitoring its own early dynamics
a network can switch between recognizing known patterns and
learning novel patterns (Zochowski et al. 1995). Yet another im-
plementation of this control mechanism allows a network to rec-
ognize the emotional quality of the stimulus in the pre-recogni-
tion process and use this emotional pre-recognition to facilitate
the recognition of stimuli that are relevant to this emotion (Zo-
chowski et al. 1993). This is a concrete exemplification of one of
the main feedback loops proposed in Lewis’s model: that the early
cognitive processes elicit emotion that control further cognitive
processing. For an extensive model of how such loops are used in
self-regulation, see Nowak and Vallacher (1998) and also Vallacher
and Nowak (1999).
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