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Finding All Solutions to a System 
of Polynomial Equations 

By Alden H. Wright 

Abstract. Given a polynomial equation of degree d over the complex domain, the Fundamen- 
tal Theorem of Algebra tells us that there are d solutions, assuming that the solutions are 
counted by multiplicity. These solutions can be approximated by deforming a standard n th 
degree equation into the given equation, and following the solutions through the deformation. 
This is called the homotopy method. The Fundamental Theorem of Algebra can be proved by 
the same technique. 

In this paper we extend these results and methods to a system of n polynomial equations in 
n complex variables. We show that the number of solutions to such a system is the product of 
the degrees of the equations (assuming that infinite solutions are included and solutions are 
counted by multiplicity)*. The proof is based on a homotopy, or deformation, from a 
standard system of equations with the same degrees and known solutions. This homotopy 
provides a computational method of approximating all solutions. Computational results 
demonstrating the feasibility of this method are also presented. 

1. Introduction. For k = 1, 2,... ,n, letfk(zl, Z2, ... ,zn) be a complex polynomial 
in the complex variables zl, Z2, ... ,Zn - We are concerned with finding all solutions to 
the system { fk, = 0). If a term of fk is of the form: 

al ZrjZ 2r2 ..*. Z rn, 

we define the degree of this term to be r, + r2 + + rn, and we define the degree 
dk of fk to be the maximum of the degrees of its terms. In this paper we show how all 
solutions to the system fk= 0, k = 1, 2,...,n, can be computed numerically 
assuming that the solutions are discrete. We show that the system must have exactly 
H n =1 dk solutions, if solutions are counted by multiplicity and infinite solutions are 
counted. (Infinite solutions are defined more precisely later in the paper.) 

While in practice one usually wants all solutions to a system of equations that 
satisfy some conditions (such as finite real solutions), by finding all solutions with 
their multiplicities, one can be sure that all solutions with the desired properties have 
been found. 

Received June 21, 1982; revised February 10, 1984. 
1980 Mathematics Subject Classification. Primary 65H10, 14A04, 14A25; Secondary 12D10, 30G15. 
Key words and phrases. Systems of nonlinear equations, homotopy methods, systems of polynomial 

equations. 
*This result can also be proved using the techniques of algebraic geometry. See, for instance, the 

sequence of papers of B. L. van der Waerden in Mathematische Annalen, Volumes 97 to 115 (1927-1938) 
or [10]. 
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126 ALDEN H. WRIGHT 

The method of solution used in this paper is the homotopy method. Another 
system of polynomial equations 

Qk(Zl, Z2, *.* Zn) = 0, k = 1,2,... 

where Qk has degree dk, and the solutions to the system {Qk = 0) are known, is 
chosen. Then a homotopy H: Cn X [0, 11 - Cn is defined by 

Hk(zl,.. ,zn~, t) = tfk(zl,. . 
,z-n) +(1 - t)Qk(zl,.. 

.I 
J 

For each t e [0,1], Hk(zl,.. .,Zn, t) = 0, k = 1,.. .,n, is a system of polynomial 
equations. Thus, the homotopy continuously deforms the system { Qk = 0) into the 
system { fk = 0). We show that if the Qk are chosen correctly, then the { Hk = 0) 
system has Hn=1 dk distinct finite solutions for all t E [0, 1]. 

This means that the components of H-1(0) can be characterized topologically as 
follows: First, a component may be a closed arc which intersects each slice of 
Cn X { t ) once. These components correspond to single roots of the system { fk = 0) 
Second, a component may consist of j arcs which meet in a single point of Cn X {X1. 
This point of Cn X {1) is a multiplicityj root of the system { fk = 0). Each slice of 
Cn X {t), 0 < t < 1, will intersect such a component in j points. Thirdly, a 
component may be a half-open arc which intersects each slice of Cn X { t), 0 < t < 1, 
in a single point which tends to infinity as t -b 1. Such a component corresponds to 
an infinite root. Infinite solutions can be described explicitly as points in complex 
projective space. 

Each component of H-1(0) n (Cn X [0,1)) (which may be assumed to be a 
half-open arc), can be set up as the solution to a differential equation with a given 
initial value (the known solution of the system {Qk = 0)). These differential 
equations can be solved numerically to find the solutions to the system { fk = 0)? 

Previous papers using the homotopy method for system of polynomial equations 
include [2], [4], [5], [6], [7], [9], and [10]. This paper differs from earlier papers in its 
treatment of infinite roots. In [7], the equations Qk = 0 were taken to have degree 
one higher than the equations fk = 0 so as to prevent paths of H -(0) from going to 
infinity for finite roots. In [2], extra terms were added to the homotopy for the same 
reason; In this paper we view the problem over complex projective space, a 
compactification of Cn which allows an explicit representation of infinite roots. This 
paper shows that a relatively simple homotopy will give paths that do not go to 
infinity except for paths that go to infinite roots. 

2. Complex Projective Space. Define an equivalence relation on Cn+l _ {0) by 
letting x - y if x = Xy for some complex scalar X = 0. Then complex projective 
space CPn is Cn+l 1- {0) modulo this equivalence relation. We denote an element of 
CP n by [z] where z = (zo, Z1, z) E Cn+1 - {0). Note that Cn is embedded in 
CP n as the set of [z] = (Zo z1,. . Zn) such that zo # 0. Also, the set of [z] such that 
zo = 0 corresponds to the set of "points at infinity". 

Given fk(Zl, Z2, ... ,Z), a complex polynomial of degree dk, let 
Pk(zo, Z1, Z2 ... Izn) be defined as follows: each term of Pk is obtained from the 
corresponding term of fk by multiplying it by the power of zo to bring the degree of 
the term up to dk. Thus, a term of fk of degree d is multiplied by zdk-d, and each 
term of Pk has degree dk. Thus, Pk(XZ)= Xdkp_(z), and Pk takes all points of an 
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SOLUTIONS TO A SYSTEM OF POLYNOMIAL EQUATIONS 127 

equivalence class of Cn - {O} to the same point. Then, Pk can be thought of as a 
map from CP n to C, and P (all n components Pk taken together) can be thought of 
as a map from CPn to Cn. The map Pk is called the homogenization of the map fk. 

The system 

(1) Pk(Zo, z , . . Zn) = 0, k = 1, 2,... n, 
reduces to the system { fk = 0) under the substitution zo = 1. Thus, the two systems 
can be considered to have the same set of roots in Cn. 

3. Defining the Homotopy. In this section we define a system { Qk = 0) of 
polynomial equations where each equation has the same degree as the corresponding 
equation of (1), and where the solutions are easily computable. Then, we define a 
homotopy which connects the new system to the given system { Pk = 0). 

Fork=1,2,...,n,let 

Qk(Z, a) = a dzk - a k2zk 

where z = (zO, z1,... .Zn) E Cnl, dk iS the degree of Pk, and a is an n by 2 complex 
matrix with all ajk # 0. Consider the system 

(2) Qk(z,a) = O fork = 1,2,...,n. 

For fixed a, this system has d1d2 ... dn distinct solution classes in Cp n of the form 

[(1, Z1 Z2 ... Zn)]. These are obtained by letting each Zk be some dkth root of 
ak2/akl. 

Let P: Cn'll _ Cn be the function whose kth component is Pk(z), and let Q: 
Cn+1 X C2n -_* Cn be defined similarly. Define H: Cn+1 X R X C2n -_ Cn by 

H(z, t,a) = tP(z) +(1 - t)Q(z,a). 

When we consider a as being fixed, we will let Ha(Z, t) = H(z, t, a). 

Forj = 0, 1,...,n,defineq'j: Cn Cpn by 

OZP ( ..o - , n) [(Zo, **ZJ-1, 1, Zj+1, - *zn 

where (z0, ,Zj,* . Zn) = (zo, . . , Zj -1, Zj+ *1, . Z). Then T i is a natural chart 
homeomorphism for the complex manifold CP n. Similarly, define Hi: C n x R X 
C2" -* Cn by 

Hi(zo.,Z,..n t, a) = H(zo,... ,zj-i, 1, Zj+11.. SZnl t, a). 

Let 

ya = {([z], t) ECpn x [0, 1): H(z, t, a) = O, 

and, forj = 0, 1,... ,n, let 

Yaj= {(zo,*..,, z t): H'(zo,..., **zn t,a) = 0). 

Clearly, qJj(Ya') = Ya n {([z], t) E Cpn X [0, 1): Zj # 0). 
The idea of the proof is to show that if a is chosen randomly, then Ya consists of 

d1d2 ... dn disjoint half-open arcs in CPn X [0,1), where the endpoint of each arc 
is a known root of (2) in CP n x {0}, and where the limit of the other end of the arc 
is a root of (1). These arcs can be followed numerically to approximate the roots. 
The major theoretical tool is the transversality theorem which is stated in the next 
section. 
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128 ALDEN H. WRIGHT 

4. Transversality. In this section we state the special case of the topological 
transversality theorem that we will use. In applying transversality, we consider 
complex vector spaces as real vector spaces of twice the complex dimension. 

Let U c R' and let f: U -- RP be a C1 map. (C1 means once continuously 
differentiable.) We say that y E R P is a regular value for f if 

Range Df(x) = RP 

for all x E f -1(y), where Df(x) denotes the p by m Jacobian matrix of partial 
derivatives of f evaluated at x. Note that if m < p, and if y is a regular value of f, 
then y ? f(U). 

TRANSVERSALITY THEOREM. Let V C RKq U C Rm be open, and let F: V x U - RP 
be C r where r > max{O, m -p }. If O E RP is a regular value of F, then, for almost all 
(in the sense of Lebesgue measure) a E V, 0 is a regular value of Fa: U -b RP, where 
Fa(x) = F(x, a). 

An outline of a proof of the above theorem from the implicit function theorem 
and Sard's theorem is given in [3]. For a more complete treatment of transversality 
theorems see [1] or [8]. 

COROLLARY. If m = p + 1, then, for almost all a E V, Fa-j(0) is a collection of C1 
curves (one-dimensional manifolds). Furthermore, Fa-1(0) is a closed subset of U. 

Proof. This follows easily from the implicit function theorem. (See pages 9 and 10 
of [8].) 

5. The Relation Between a Complex Linear Transformation and Its Real Counter- 
part. Recall that C' = {(Z1, Z2, Zn): z E C ). If zi = xi + iyi, then there is a 
bijection a from C' into R2n given by (zl1, Z2,.. . Zn) ' (xl, Yl' X2, Y2'* .. , Xn, Yn) 

If A is an m by n complex matrix representing a linear transformation from Cn into 
Cm, there is a 2m by 2n real matrix which we will denote by a(A) such that 
a(Az) = a(A)a(z). The matrix a(A) is obtained by replacing the jk-entry ajk = (jk 

+ ilTjkof A by the 2 by 2 block 

~irjk -7jkl 

[t1jk (jik] 

LEMMA 5.1. Let A be an m by n complex matrix. Then the (real) rank of a(A) is 
twice the (complex) rank of A. 

Proof. Let E be a nonsingular m by m complex matrix such that EA is in 
row-reduced echelon form. Then, the rank of A is the number of nonzero rows in 
EA, and each nonzero row of EA has a leading entry of 1. Then a(E)a(A) = a(EA) 
is also in row-reduced echelon form, and has two nonzero rows for each nonzero row 
of A. 

6. The Main Theorem and Its Proof. 

MAIN THEOREM. For almost all a E C2n (in the sense of Lebesgue measure), 
(1) 0 E C' is a regular value of Hi: Cn X [0, 1) -_ Cnforj = 0, 1,...,n; 
(2) (a) Yaj _ {(z t) CP Cn X [0 1): zo 0 O} forj = 1, 2 0... n, 

(b) Y. _ ?q(Cn) X [0, 1) = f{([z]1, t) E- Cp n X [0n 1): Z" 0 ?}; 
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SOLUTIONS TO A SYSTEM OF POLYNOMIAL EQUATIONS 129 

(3) (a) Each component of Ya is a half-open arc that can be parametrized by a 

function r: [0,1) - CPn X [0,1) such that r(t) E CPn X {t}, 
(b) Ya has n dk components; 

(4) (a) If ([z*], 1) is in the closure of Ya c CPn X [0, 1], then P(z*) = 0, 
(b) If [z*] is an isolated solution class of P, then there is a component of Ya with 

a parametrization r(t) as in (3a) such that lim,1 r(t) = [z*]. 

Proof. The transversality theorem can be applied to H? I Cn x (-xc, 1) x C2n 

Cn to show that 0 is a regular value of H2 for almost all a E C2n . Now let 
j E {1, 2,... ,n} be fixed. Let N = {(zo,...,,I ... zn) E Cn: zO0 0). The transver- 
sality theorem can be applied to Hi I N x (-x, 1) x C2 n E C n to show that 0 is a 
regular value of HJ I N x (-oo, 1) for almost all a E C2n. Next, we will show that 
YJ C N x (-oo, 1) for almost all a E C2- . For each s = (si,.. .,sI,. ..,s) E 

{o, 1} n-1 I define 

E (S) = 0 zl{ (O .1 IZj I.Zn): Sk =?<- Zk ?} - 

If m(s) is the number of components of s which are equal to one, then E(s) is an 
open subset of a coordinate subspace of Cn of complex dimension mi(s). Define 

G: F(S) X(-_ ,1) X C2n -Cm(s)l 

by 

Gk (0 zl ...- I * n,z* t, a) 

= Hi(0, zl,.... I ... 
,z+, t,a) 

for k =j and k such thatSk = 1. 

The transversality theorem can be applied to G to show that 0 is a regular value of 
Ga for almost all a E C2 n. But since E(s) X (-Xo, 1) has real dimension 2m(s) + 1 
and Cm(s)+l has real dimension 2m(s) + 2, this implies that Ga-1(0) = 0. But 

YJa n (E(s) x [0,1)) c Ga-1(0). Since 

Cn-N= U{E(s): SE {0,1}n 1} 

YJ c N x [0,1) . This proves assertions (1) and (2a) of the theorem. To prove 
assertion (2b), note that Ya = UJ0 = J(Y') 

For the remainder of the proof we suppose that an a E C2n has been chosen so 
that assertions (1) and (2) hold. For simplicity of notation, we denote HO by H0 and 

Yao by Y?. 
The Jacobian of H0 is the 2n by 2n + 1 real matrix 

Ia ? aH0o 

az at j 
When evaluated at a point (z, t) such that H?(z, t) = 0, this matrix must have rank 
2n by the assumption that 0 is a regular value of H0. By Lemma 5.1, aH0/az must 
have even rank. This implies that aH0/az has rank 2n and is nonsingular. 

Now let (z(X), t(X)) be a local parametrization of a curve of Y? with respect to a 
real parameter X. We can assume that dz/dX and dt/dX are not both zero at any X 
for which (z(X), t(X)) is defined. Then H0(z(X), t(X)) = 0, so 

aH0 dz aH0 dt O 
az dX at dx 
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130 ALDEN H. WRIGHT 

Since aH0/az is nonsingular, dt/dX = 0 implies that dz/dX = 0. Thus, dt/dX is 
always nonzero. This means that z can be parametrized by t so that z(t) E Cn X { t }. 
This proves assertion (3a). 

Since each component of Y = Ya is closed in CPn X [ 0,1), it must intersect 
CP n X {0}. But Y n (CPn X {0}) is the set of solution classes of the equation 
Q(z) = 0. This set consists of the d1d2 ... dn points described earlier. Thus, Y has 
dld2 ... dn components, and assertion (3b) is proved. 

Assertion (4a) follows from the continuity of Ha. To prove (4b), choosej so that 

zj s 0. In [2] it is shown that Hi I Cn X {1} has positive degree at qJ-7l([z*]). Let V 
be a ball neighborhood of qgml([z*]) in C' which contains no other root of HJ Cn X 
{1}. Choose E > 0 sufficiently small that 0 i Hj(Bd(V) X [1 - E, 1]). Then, by the 
homotopy invariance of degree, Hi I V X {1 - E} has positive degree, and so Y' fn 
(V x {1 - e}) # 0. Thus, qmyl([z*]) is a limit point of Y', and [z*] is a limit point of 
Y. 

7. Following the Solution Curves Numerically. As before, we assume that a E C2n 

is chosen so that the conclusions of the main theorem hold. To solve the vector 
equation P(z) = 0, the arcs of Y are followed from the known solutions of Q(z) = 0 
in pC n X {0} to the solutions of P(z) = 0 in pC n X {1}. We can start by following 
the curves of Y0 in Cn x [0, 1]. If the modulus of some component zj of z becomes 
large as the curve is followed, we can switch to the corresponding point 
(1/z, z1/z1,. , ~Zj/zj.. nZn/Z) of Yi. In this way, numerical difficulties of follow- 
ing curves that go to infinite roots can be avoided, and infinite roots can be 
computed explicitly. 

One way to follow the solution curves is to use an initial value differential 
equation solver. Let z(t) be a parametrization of a solution curve. Then H(z(t), t) = 0. 
Taking the derivative of both sides by the chain rule, we obtain the differential 
equation 

aH dz aH 
(3) 8z7 ~-v 

= 
(3) ~~~~~~~~az dt at 

or 

dz a (H -1 aH 
dt az at 

Thus, each function evaluation for the differential equation solver involves solving 
the linear system of equations (3) for dz/dt. This method of following the solution 
curves was implemented and is reported on in Section 8. 

The above method does not utilize all of the available information. In contrast to 
the usual situation in solving an initial value problem, we can use Newton's method 
to get closer to the solution curve. If we are at a point (z, t), one step of Newton's 
method would be: 

Solve s a (z, t) = -H(z, t) for s E Cn. 

Let z = z + s (and let t remain unchanged). 
Notice that the coefficient matrix of the system of linear equations to be solved is 
the same as for a function evaluation of the differential equation solution. In both 
cases the computation of a decomposition (such as the LU decomposition) of this 
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SOLUTIONS TO A SYSTEM OF POLYNOMIAL EQUATIONS 131 

Jacobian matrix will be the major part of the computation of a step. Thus, it should 
be possible to combine these steps in some way. 

In addition, one does not need to follow the solution curves closely at the 
beginning. All that is required is that one remain within the domain of convergence 
for Newton's method for the solution curve one is trying to follow. 

Clearly, more research is needed on techniques for following the solution curves. 

8. An Implementation. This method was implemented using the initial value 
differential equations package LSODE, available from the Lawrence Livermore 
Laboratory, Livermore, California 94550, to follow the curves of Y. (LSODE is a 
package based on the GEAR and GEARB packages and on the Oct. 23, 1978 
version of the tentative ODEPACK user interface standard, with minor modifica- 
tions.) As mentioned in the last section, there should be much more efficient 
methods for following these curves, so the computation times reported here should 
not be used to judge the eventual efficiency of the algorithm. However, the results 
presented here do show that all roots of small systems of polynomials can be 
computed. 

The following systems of equations were solved. 

(A) (2z -Z2 -z)2 = 0, z 2- z2 = o. 

Solutions: 

(ZO, Zl, Z2) ={ (1,41,1) (multiplicity 2), 
(Z0izlZ2)- (3 _3 11) (multiplicity 2)- 

(B) (Z1 - Z- z0)2 = 0, z2 -z22 = o. 

Solutions: 

(z0, z1, Z2) = (0, 1,1) (multiplicity 2), 
\(2,1,-1) (multiplicity 2). 

5 
(C) z2 + zoz-2zozk -10z = 0 fork = 1, 2, ...,5. 

i=l 

Note that this system is invariant under permutation of the coordinates zl, Z2'... , Z5 

In the following list of solutions, the coordinates z1, Z2, .. , Z5 should be permuted to 
obtain the remaining solutions. All solutions have multiplicity 1. This system comes 
from [10]. 

Solutions: 

(zo, Z1, Z2, Z3, Z4, Z5) 

(1,2,2,2,2,2) (1 solution), 

(1, -5, -5, -5, -5, -5) (1 solution), 

(1,-a,2 + a,2 + a,2 + a,2 + a,2 + a) (5 solutions), 

(1,5 + a,-3-a, -3-a,-3-a, -3-a) (5 solutions), 
(1, -1, -1,3, 3,3) (10 solutions), 

(1, -2, -2,4,4,4) (10 solutions), 

where a = (-5 + vl3)/2. 
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132 ALDEN H. WRIGHT 

5 
(D) z2 + Ezozi -2zzk -4z0 = 0 fork = 1,2,...,5. 

i=l 

Again, this system is invariant under permutation of the coordinates zl, Z2,... ,Z5- 

Solutions: 

((1, 1, 1, 1, 1, 1) (1 solution of multiplicity 16), 
= (1,2,2,0,0,0) (10 solutions of multiplicity 1), 

(zO, 1, 2, 3, 4, S) 1(-1,--4,2,2,2,2) (5 solutions of multiplicity 1), 

(-1,4,4,4,4,4) (1 solution of multiplicity 1). 

These problems were solved on a Digital Equipment PDP-10 computer with dual 
KL-10 processors. A FORTRAN program was written which: 

(1) Computed the parameters akj, k = 1, 2,. . .,n; j = 1, 2 with -2 < Re(akj)< 2 
and -2 < Im(akj) < 2 using the random number generator supplied with the 
FORTRAN system. 

(2) Computed the H%n 1 dk starting points. 
(3) For each starting point, called LSODE to follow the solution curves. 
The relative tolerance for the LSODE package was set at 10-10 and the absolute 

tolerance was set at 10-12. All computations were done in DOUBLE PRECISION 
(machine epsilon = 2 x 10-19). 

The computation times and approximate maximum absolute errors are given in 
Table 1. It appears that going from a single root to a multiple root approximately 
quadruples the number of function evaluations, and approximately halves the 
number of accurate significant digits. Increasing the dimension did not seem to 
affect the number of function evaluations required. 

When problem B was run without the recoordinatizing featu.1k, the Jacobian 
matrix became somewhat ill-conditioned (condition number greater than 1010). After 
about 1300 steps (1400 function evaluations) the norms of the points were approxi- 
mately 106 and t = 1 - 10-12. This contrasts with an average of 431 steps (526 
function evaluations) to compute the infinite root using recoordinatizing. 

TABLE 1 

Approximate Approximate Average Average 
maximum maximum number of number of 
absolute absolute function eval. function eval. 

Sum of CPU time error error per single per multiple 
Problem n degrees (seconds) (single roots) (multiple roots) root root 

A 2 4 26 1.5 X 10-5 631 

B 2 4 32 2.5 X 10-5 589 

C 5 32 151 5 x 10-10 136 

D 5 32 449 1.6 x 10-9 2 X 10-5 158 631 

Department of Computer Science 
University of Montana 
Missoula, Montana 59812 
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