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Abstract We consider complex systems that are composed of
many interacting elements, evolving under some dynamics. We are
interested in characterizing the ways in which these elements may
be grouped into higher-level, macroscopic states in a way that is
compatible with those dynamics. Such groupings may then be thought
of as naturally emergent properties of the system. We formalize this
idea and, in the case that the dynamics are linear, prove necessary and
sufficient conditions for this to happen. In cases where there is an
underlying symmetry among the components of the system, group
theory may be used to provide a strong sufficient condition. These
observations are illustrated with some artificial life examples.

1 State Aggregation and Dynamical Hierarchies

Many naturally occurring systems are composed of a large collection of components, which interact
with each other and possibly with some background environment. These components often cluster
into larger units: for example, DNA molecules in a cell nucleus, helium atoms in a balloon, people in
a crowd. These units may themselves be components of some larger system. When performing
simulations of such systems, rules are specified for the most basic components. It is hoped that, if
the rules are correctly specified, then the behavior of the higher-level units will emerge from these
low-level interactions. On the one hand, there are practical limitations to naive simulation based on
this approach; quoting from [7]:

The resulting high dimensionality of most biological systems should make . . . the state
dynamic . . . completely intractable.

On the other hand, that obstacle might be circumvented:

. . . the conceptual identification of ‘‘units’’ of biological structure and function . . . is [made
possible by] the fortunate fact that an exhaustive . . . state space is not necessary. . . .

An interesting question, which we begin to address in this article, is whether it is possible to
deduce ‘‘units’’ in terms of which the dynamics can be expressed exactly.1 As a first step, we would
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1 Approximate methods for aggregating states in, say, a Markov process have been considered by other authors (see, for example, [9]).



like to have necessary and sufficient conditions. We would also like to know under what circum-
stances such structures are nontrivial. For example, helium atoms in a floating balloon and grains
of sand in a pile [2] seem intuitively to have at most a highly trivial hierarchical structure. Can this
be formalized? We will show why these examples are trivial, and characterize conditions for
nontriviality.

We begin, in Section 2, by defining, in a formal way, what is meant by the term ‘‘higher-level unit.’’
We suggest that such units could comprise aggregations of the basic components. That is, the set
of underlying components will be partitioned into disjoint subsets, and each subset will then be
considered as a unit in its own right. If we are given equations specifying the dynamics of the
basic components, we want to be able to reconstruct the equations describing the dynamics of the
subsets, from the subsets alone. If that is possible, we will say the particular way of partitioning
components into higher-level units is compatible with the dynamics. Whereas approximating the
dynamics of higher-level units is both interesting and sometimes the best one can do, the ques-
tion this article is concerned with is whether one can do better than approximation, and if so, then by
which subsets.

We will be modeling the dynamics of our system through a map that takes a population (that is,
a collection of components in some configuration) at a given time step, and calculates the expected
state at the next time step. In this article, we will limit ourselves to the case where this map is linear
(Section 3). This case includes the description of systems forming a Markov process. The nonlinear
case will be investigated in a future article. Aggregation on systems has previously been considered in
[8]. However, that article assumes the set of state variables describing a system is decomposable as well
as aggregable. That is, the system is decomposed into a partition of subsets, in which there is little or
no interaction between the aggregated states (interaction takes place within the subsets—not
between them). We do not hypothesize this restriction, and allow interactions between aggregated
states to occur.

Before developing our theory, we present a simple example (Section 4), which should clarify the
issues. Section 5 explains how symmetries inherent in the system of underlying components can be
described mathematically using elementary group theory. This is one feature that distinguishes our
work from that of [7 ] (another is that our Theorem 2 provides a condition that is necessary as well
as sufficient). We then go on to show that the existence of such symmetries can be used to provide
strong sufficient conditions under which a given state aggregation will be compatible with the
underlying dynamics. This is the group orbit theorem, which is proved in Section 6.

We then present two examples that illustrate the application of our theorem. In Section 7 we
present a simplified model of molecules passing through a unidirectional membrane. In this example,
the equations describing the dynamics can be dramatically simplified by using an appropriate
hierarchy of state aggregation. Section 8 looks at the mutation of binary ‘‘DNA’’ strings (such as are
typically used in genetic algorithms, for example). In this case we characterize a range of higher-level
units that are compatible with the action of mutation. Section 9 presents a final example, which
speaks to the generality of our results.

NOTATION: We follow the convention that a logical expression in square brackets, [expr], evaluates to 1 if the

expression is true, and 0 otherwise.

2 Compatibility of Equivalence Relations

In this section we formalize our concept of aggregation, and define what it means for an aggrega-
tion to be compatible with the underlying dynamics of the system. To illustrate the definitions, we
will use the following simple example, based on modeling voters’ behavior. We suppose there are
three political parties: a center party (C), a left wing party (L), and a right wing party (R). Between
two elections, there is a chance that a voter will switch allegiance. A supporter of the center party will
stay loyal with probability 0.8, and switch to either of the other parties with probability 0.1 each. Left
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or right wing voters may vote for the center party in the next election with probability 0.4; otherwise,
they will stay loyal to their parties. The dynamics of the voters’ behavior from election to election is
therefore described by the following Markov transition matrix:

L C R

L 0:6 0:1 0

C 0:4 0:8 0:4
R 0 0:1 0:6

In general, we suppose that we have a set (or population) of N basic components in our system,
and that each component may be in one of a number of states. The notion of a state is quite general.
A state might be the position of a component in space, a disposition to react in a given way, an
indication of how a component might be perceived by others, and so on. In our voting model, a state
will be a voting choice (that is, one of {L, C, R}). We will assume that the set of possible states is
finite. To preserve generality, we will simply number the states and refer to the set of all states as 
 =
{0, 1, 2, . . . , nÿ1}. We will characterize a population of components by a population vector

p ¼ h p0; p1; . . . ; pnÿ1i

in which pk is the proportion of components in the population that have state k 2 
. We follow the
convention that a vector delimited by angle brackets denotes a column vector (thus matrices would
be multiplied on their right by population vectors). Notice that this vector is independent of the
population size N, so that

X

nÿ1

k¼0

pk ¼ 1

We define the population state space to be

K ¼ x 2 Rn :
X

k

xk ¼ 1 and xk � 0 for all k

( )

so that any population vector is an element of �. In the voting model, if an eighth of the voters
choose L, half choose C, and the remaining three-eighths choose R, then the population vector
is p = h0.125, 0.5, 0.375i.

We suppose that the equations describing the dynamics of the basic components of the system
are known. That is, we have a map G : � ! �, from which we can reconstruct the dynamics of
the system as follows:

1. If the system is deterministic, then, given a population p at a given time step, GðpÞ is the population
at the next time step.

2. If the system is stochastic, then, given a population p at a given time step, GðpÞ is a probability
distribution over the set of states 
. This distribution is sampled N times to give the population
at the next time step.
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This model is the random heuristic search model developed by Vose [11]. In the voting model, the
map G is given by the transition matrix shown above. In other words,

GðxÞL ¼ 0:6xL þ 0:1xC

GðxÞC ¼ 0:4xL þ 0:8xC þ 0:4xR

GðxÞR ¼ 0:1xC þ 0:6xR

We are interested in defining a partition of the components. We begin by assuming there is an
equivalence relation, u, defined on 
. That is, if a, b 2 
 are equivalent (a u b), then we consider these
two states to belong to the same higher-level unit. For example, we may consider that the two
extremist parties L and R are sufficiently similar that they can be lumped together into an extremist
set X. This is done by declaring that they are equivalent. Such an equivalence relation can be
extended to any x, y 2 Rn as follows:


 


x � y ()
X

j2

½ j � i�xj ¼
X

j2

½ j � i� yj for all i

It suffices that the summations (above) be equal for equivalence class representatives (i.e., for a
collection of elements i, one from each equivalence class). Consider the components of a vector x
2 Rn as assigning some weight to each element of 
 (that is, xk is the weight assigned to k). Then
this definition says that two vectors are equivalent if and only if they both assign the same total
weight to each of the equivalence classes of 
. In the voting model, we can say that two dis-
tributions of voters are equivalent if the same number of people vote for the extremist parties and
the same number of people vote for the center party in each distribution. That is, x u y if xC u yC
and xL + xR = yL + yR.

We are now in a position to relate the partitioning of 
 (in terms of the equivalence classes
determined by u) to the dynamics given by G.

DEFINITION 1: We say that a map G : Rn ! R
n is compatible with an equivalence relation u if

x � y ) GðxÞ � Gð yÞ

for all x, y 2 Rn.

Two populations are equivalent if they assign the same weight to each equivalence class. If
the map G is compatible, then we can follow the dynamics of just the equivalence classes (the
higher-level units) without worrying about their microscopic details. That is, for a compatible map, we
can follow the dynamics of the higher-level units as units in their own right. An interesting ques-
tion, therefore, is, given a map G that determines the microscopic level of dynamics, what are the
equivalence relations with which it is compatible? In other words, what are the naturally emergent
higher-level units associated with the dynamics of the microscopic level?

In the voting model, we can directly verify that the aggregation of the two extremist parties
is compatible with the dynamics. If x u y are two equivalent distributions, then G(x)C = 0.4(xL +
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xR) + 0.8xC = 0.4( yL + yR ) + 0.8yC = G( y)C. Similarly, G(x)L + G(x)R = 0.6xL + 0.2xC +
0.6xR = 0.6(xL + xR) + 0.2xC = 0.6( yL + yR) + 0.2yC = G( y)L + G( y)R.

3 Linearity and Markov Processes

In this article we will restrict our attention to the case when the map G is linear. Notice that we are
considering this map to be defined for the whole of Rn and not just on �. By linear it is meant that
for any vectors x, y 2 Rn and for any real numbers �, l 2 Rn,

Gð�x þ �yÞ ¼ �GðxÞ þ �Gð yÞ

While this is an obvious limitation, it does include, for example, the case when the system is
a Markov process and the map G is given by the transition matrix of the Markov chain. We will
give three examples of simple artificial life simulations. The general nonlinear case will be the sub-
ject of further work [6].

In the linear case, we can make some progress as follows.

DEFINITION 2: Given an equivalence relation � defined on 
, let k be the number of equivalence classes. We

define N to be the k � n matrix with i, j entry

Ni; j ¼ ½i � j �

(We take i to range over a set of equivalence class representatives.)

The purpose of this matrix is to map a population, considered as a distribution over the
underlying component states 
, to a corresponding distribution over the higher-level units, given by
equivalence classes.

For example, suppose 
 = {0, 1, 2, 3, 4, 5} and our equivalence relation induces a partition {0, 1,
2}, {3, 4}, {5}. We pick the elements 0, 3, 5 to be representatives of the three classes. Then the
matrix N is

N ¼
1 1 1 0 0 0

0 0 0 1 1 0

0 0 0 0 0 1

2

4

3

5

If we have a population vector p = h0.1, 0.2, 0.1, 0.3, 0.15, 0.15i, then Np = h0.4, 0.45, 0.15i,
which is the distribution over the equivalence classes.

Recall that the kernel of a linear operator is the subspace of vectors that are all mapped to 0 by the
operator. So the kernel of N is the subspace

Ker N ¼ fx 2 Rn : Nx ¼ 0g

(That this set forms a subspace of Rn can be easily checked.)
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We now have the following results:

LEMMA 1: Let x, y 2 Rn. Then x � y if and only if x ÿ y 2 Ker N.

Proof .


 


x � y ()
P

j2
½ j � i�xj ¼

P

j2
½ j � i� yj for all representatives i

() ðNxÞi ¼ ðNyÞi for all i

() Nx ¼ Ny

() Nðx ÿ yÞ ¼ 0

() x ÿ y 2 Ker N 5

THEOREM 2: If G : Rn ! R
n is a linear map, then it is compatible with u if and only if Ker N is an

invariant subspace of G. That is, GðKer NÞ � Ker N.

Proof .

1. Suppose G is compatible, and let v 2 Ker N. That is, v u 0. Therefore, by compatibility, GðvÞ �
Gð0Þ. But since G is linear, Gð0Þ ¼ 0. Therefore GðvÞ � 0, so by the previous lemma, G(v) 2
Ker N.

2. Conversely, suppose that Ker N is an invariant subspace of G. Let x � y, so that x ÿ y 2 Ker N.
By hypothesis, Gðx ÿ yÞmust also be in Ker N. But G is linear, so G(x)ÿ G( y) 2Ker N. Therefore
GðxÞ � Gð yÞ and so G is compatible with �. 5

It is helpful to notice that Ker N is the set of all vectors that assign zero total weight to each
equivalence class.

Returning once more to the voting example, in which the dynamics is given by a matrix (that is, a
linear operator), the matrix N takes the form

L C R

C 0 1 0

X 1 0 1

Ker N is the space of all vectors satisfying xC = 0 and xL + xR = 0. For any vector x 2 Ker N,
we have

GðxÞC ¼ 0:4ðxL þ xRÞ þ 0:8xC ¼ 0

and

GðxÞL þ GðxÞR ¼ 0:6xL þ 0:2xC þ 0:6xR þ 0:6ðxL þ xRÞ þ 0:2xC ¼ 0
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and so x 2 Ker N implies that G(x) 2 Ker N, which proves that the aggregation is compatible with
the dynamics.

4 Example: Migration

We take a very simple example to illustrate our definitions. Suppose we have a population of
birds that spend most of the year on certain lakes, each bird living at a particular lake. There
are some lakes in the north and some lakes in the south. Every winter, some of the birds from
the north fly south, while birds from the south fly north. There is a small chance a bird will not
migrate. The exact lake that a bird will end up at varies each trip. We might model this process
stochastically as follows. For each lake in the north, we assign a probability distribution over the
southern lakes. This gives the probability that a bird from that northern lake will end up at
any one of the southern likes. Similarly, for each southern lake, there is a probability distribu-
tion over the northern lakes. There is also a small probability of a bird remaining at the same
lake.

For example, suppose there are five northern lakes N1, N2, N3, N4, and N5 and three southern
lakes S1, S2, and S3 (see Figure 1). We associate the states of our system with these lakes through a
bijection with the set 
 = {0, 1, 2, 3, 4, 5, 6, 7} given by

0 1 2 3 4 5 6 7

N1 N2 N3 N4 N5 S1 S2 S3

Our population of birds can be described by a population vector over these eight lakes.
Given a lake in the north, N1 say, there is a probability distribution over S1, S2, and S3 describing

the chance that a bird migrating from N1 will arrive at each of these lakes. There is also a probability
� that the bird will remain at N1.

Figure 1. Birds migrate from northern to southern lakes and vice versa.
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We can therefore define a linear operator describing this process by

MNi ;Sj ¼ probability that bird will migrate from Sj to Ni

MSj ;Ni
¼ probability that bird will migrate from Ni to Sj

MNi ;Nj
¼ �½i ¼ j �

MSi ;Sj ¼ �½i ¼ j �

If p 2 � describes the population distribution over the lakes at a given time step, then Mp gives us a
distribution that, when sampled an appropriate number of times (one for each bird), simulates what
happens at the next time step.

It is clear that we can reduce this eight-state system to a much simpler two-state system, by
aggregating together the northern and southern lake birds, respectively. If a bird is in the north, there
is a probability of remaining in the north. Otherwise it will fly south. Similarly for a bird currently
in the south. We can define a linear operator for our two-state system by

N S

N � 1ÿ �
S 1ÿ � �

The reason this aggregation is compatible with the dynamics of the individual birds is as follows. The
projection matrix N for this aggregation is

N ¼
1 1 1 1 1 0 0 0

0 0 0 0 0 1 1 1

� �

So if we had a distribution of birds p = h0.1, 0.2, 0.1, 0.05, 0.15, 0.2, 0.0, 0.2i, then Np =
h0.6, 0.4i gives the proportions of birds in the north and south, respectively. The kernel of
this operator, Ker N, is the set of all vectors giving zero weight to both northern and southern
lakes, that is, the set of vectors x with the property Nx = h0,0i. Our theorem tells us that the
dynamics of the underlying system (given by the matrix M ) is compatible with this aggrega-
tion provided that if x is any given vector in the kernel of N, then calculating Mx would
give another vector, also in the kernel. We can check this by writing the matrix M in block
form:

M ¼
0 MN

MS 0

� �

þ �I

where MN is a 5 � 3 matrix giving the probability distributions for birds flying from north to south,
and MS is a 3 � 5 matrix giving the probability distributions for birds flying from south to north. I is
the 8 � 8 identity matrix. Let x 2 Ker N. We will write x = hxN, xSi, where xN is a vector giving the
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distribution of birds in the north, and xS for the south. The components of each of these sum to
zero, since Nx = h0, 0i. Now

Mx ¼
0 MN

MS 0

� �

xN
xS

� �

þ
�I 0

0 �I

� �

xN
xS

� �

¼
MNxS
MSxN

� �

þ
�xN
�xS

� �

Let us write NMx = hu, vi. Then

u ¼
P

i

ðMNxSÞi þ
P

i

�ðxNÞi

¼
P

i

P

j

ðMN Þi;jðxSÞj

¼
P

j

ðxSÞj
P

i

ðMNÞi;j

¼ ð1ÿ �Þ
P

j

ðxSÞj

¼ 0

Similarly, we can show v = 0. This confirms that Mx 2 Ker N, as required.

5 Symmetry and Group Theory

Suppose that, in the migration example, there were just one probability distribution over the
southern lakes. Then it wouldn’t matter which of the northern lakes a bird sets off from—
the probability of where it arrives is the same. There would then be a symmetry between the
northern lakes, meaning that we could interchange them freely and the dynamics of the system would
be unaffected. It is clear that all these lakes can be grouped together in that case. Obviously, this is a
much stronger condition than we need to achieve a compatible partitioning. But it gives us a clue as
to how we might prove some sufficient conditions for achieving compatibility.

Mathematically, symmetry is captured using group theory. One starts with an underlying set—in
our case the set is 
. One then considers permutations of this set (that is, bijections) which somehow
leave the ‘‘shape’’ of the set unchanged. In geometry, these permutations might be rotations and
reflections, for example. We establish a collection of permutations of 
, which we will call L(
 ) and
which has the following properties:

1. The identity map is in L(
 ).

2. If a 2 L(
 ) then aÿ1 2 L(
 ).

3. If a and b are in L(
 ), then so is a � b.

The collection L(
 ) of permutations forms a group, which is said to act on 
.
The permutations represent the natural ‘‘folds’’ of the underlying set. They define a set of

equivalence classes, called the orbits of the group action. For each i 2 
 we define its orbit to be


 
LðiÞ ¼ f j 2 : j ¼ aðiÞ for some a 2 Lð Þg
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Each orbit is an equivalence class of the equivalence relation

i � j () j 2 LðiÞ

In the following section, we will define a special group of permutations on 
 based on the
properties of the map G. This will lead to an equivalence relation, whose equivalence classes are
guaranteed to be compatible with G.

6 The Group Orbit Theorem

Let a be a permutation of 
. We associate with a the matrix ja with i, j entry [i = a( j )]. It is simple to
check that �T

a ¼ �ÿ1
a ¼ �aÿ1 and that �a�b ¼ �a � �b , for all permutations a, b.

Given that G : Rn ! R
n is a linear map, define HðGÞ to be the set of all permutations of 
 that

commute with G in the sense that

a 2 HðGÞ () �a
o G ¼ G o �a

Then we have the following:

LEMMA 3: HðGÞ is a group action on 
.

Proof . The identity is clearly in HðGÞ, since it commutes with any operator. If a 2 HðGÞ;
then, by definition, �a � G ¼ G � �a, so by rearranging we see �ÿ1

a � G ¼ G � �ÿ1
a and therefore

�aÿ1 � G ¼ G � �aÿ1 . Finally, if a; b 2 HðGÞ then

�a o b
o G ¼ �a

o �b
o G

¼ �a
o G o �b

¼ G o �a
o �b

¼ G o �a o b 5

Let G be a subgroup of HðGÞ, and define an equivalence relation on 
 by

i � j () 9a 2 G; i ¼ að jÞ

That is, the equivalence classes are the orbits of the elements of G. We write the orbit of element i as
G(i ). We extend this to an equivalence relation on Rn:

x � y () 8t ;
P

i

½i � t �xi ¼
P

i

½i � t � yi

() 8t ;
P

i

½i 2 GðtÞ�xi ¼
P

i

½i 2 GðtÞ� yi

() 8t ;
P

i

½i ¼ aðtÞ; some a 2 G�xi ¼
P

i

½i ¼ aðtÞ; some a 2 G� yi
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We want to count this sum over elements of G instead of over elements of 
. However, there
is the possibility of double counting. This occurs if there are two permutations a, b 2 G such that
a(t ) = b(t ) = i. So, given any i 2 
, we need to know how many permutations map t to i. Write

Gt ;i ¼ fa 2 G : aðtÞ ¼ ig

Suppose i 2 G(t ), and let g 2 Gt,i. Consider the function

� : Gt ;t ! Gt ;i

given by

�ðaÞ ¼ g o a

This map / is a bijection (since if /(a) = /(b) then g o a = g o b, which gives a = b; and if b 2 Gt,i

then gÿ1
o b 2 Gt,t and /( g

ÿ1
o b) = b). This means that the number of elements of Gt,i is the same as

the number of elements of Gt,t . That is, this number is independent of i. (This result is based on a
theorem in [1].)

Our condition for equivalence becomes:

x � y () 8t ;

P

a2G
xaðtÞ

jGt ;t j
¼

P

a2G
yaðtÞ

jGt ;t j

() 8t ;
P

a2G
xaðtÞ ¼

P

a2G
yaðtÞ

() 8t ;
P

a2G
ð�aÿ1xÞt ¼

P

a2G
ð�aÿ1 yÞt

() 8t ;ð
P

a2G
�axÞ

t

¼ ð
P

a2G
�a yÞ

t

()

P

a2G
�ax ¼

P

a2G
�a y

Now suppose x u y, and consider the effect of applying G:

P

a2G
�aGðxÞ ¼

P

a2G
Gð�axÞ

¼ G
P

a2G
�ax

� �

¼ G
P

a2G
�a y

� �

¼
P

a2G
Gð�a yÞ

¼
P

a2G
�aGð yÞ
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and so G(x) � G( y ). We have therefore proved

THEOREM 4: If G : R
n ! R

n is linear, and G is a subgroup of HðGÞ, then G is compatible with the

equivalence relation given by the orbits of G acting on 
.

If G commutes with G, then G �g ¼ �g G for all g 2 G. Let ei denote the ith column of the identity
matrix; then for all i and j,

Gi; j ¼ eTi Gej ¼ ð�g eiÞ
T�gGej ¼ ð�g eiÞ

TG�g ej ¼ eTg Gegð jÞ ¼ GgðiÞ; gð jÞ

It follows that if � and � are equivalence classes (orbits) and a 2 �, then the collection of
probabilities from a to (b in) � (as b varies over � ) is independent of a, since, for any h 2 G,

fGa; gðbÞ : g 2 Gg ¼ fGa;hÿ1 o gðbÞ : g 2 Gg ¼ fGhðaÞ; gðbÞ : g 2 Gg

This is described by saying ‘‘the outgoing probabilities are invariant.’’ Similarly, if � and � are equiv-
alence classes and b 2 �, then the collection of probabilities from (a in) � to b (as a varies over �) is
independent of b. This is described by saying ‘‘the incoming probabilities are invariant.’’

7 Example: Unidirectional Membranes

In this section we present a simplified model of molecular flow through a unidirectional
membrane. This phenomenon occurs, for example, in Golgi bodies [3]. Molecules move around
randomly within some confined space. The space is divided by a membrane, which allows the
molecules to pass through in one direction only. Obviously, we expect that eventually all molecules
will end up on one side of the membrane. We wish to study the dynamics of this process, using
our group orbit theorem to simplify the model.

The simulation setup is shown in Figure 2. There is a 10 � 10 grid on which the molecules
wander at random. At each time step, a molecule picks a neighboring square (north, south, east, or

Figure 2 . Molecules move around a tissue at random, but can only pass one way through the membrane.
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west ) to move to, uniformly at random. Molecules next to the left boundary cannot move further
left: they have a choice only of three neighbors. Similarly, molecules next to the right boundary
cannot move further right. It is assumed, though, that the top and bottom of the grid are connected
(so the topology is cylindrical). There is a membrane running from top to bottom, halfway across
the grid. Molecules to the left of the membrane can move freely across it. However, molecules to the
right are not allowed to pass back. Thus, molecules immediately to the right of the membrane also
have a choice of only three neighbors.

Our initial model of this system requires 100 states. We label the squares on the grid from 0 to
99, counting from left to right and from top to bottom. The distribution of molecules in the system
at any time step is given by a population vector p = h p0, p1, . . . , p99i where pk is the proportion of
molecules in square k. Each square k has a set of neighboring squares, denoted �(k), which are the
moves allowed for a molecule at k. For example, �(0) = {1, 10, 90}. We describe the evolution of the
system by a linear map A given by

Ai; j ¼
½i 2 �ð jÞ�

j�ð jÞj

which gives the probability that a molecule moves from square j to square i. The matrix A is 100 by
100. We seek to illustrate our theory by reducing this number of states by exploiting the symmetries
in the system.

For each m = 0, 1, . . . , 9 we define a bijection of 
 = {0, 1, . . . , 99} by

amðkÞ ¼

(

k if k mod 10 6¼ m

kþ 10 mod 100 otherwise

The idea is that the number m indexes a column of the grid. The application of am to square k is to
do nothing unless the square is in column m, in which case we shift down to the square beneath
(wrapping around to the top if k is on the bottom row).

The collection a0, a1, . . . , a9 does not itself form a group. We also need to include the effects
of repeatedly applying each map (a rm means apply am repeatedly r times) and of combining maps
together (am o am V means rotate both columns m and m V ). This gives us the group generated by a0,
a1, . . . , a9 (including the identity map). It is not hard to see that this group is commutative (that
is, it does not matter in what order the group elements are applied). Therefore if the map A

commutes with each of a0, a1, . . . , a9, then it commutes with the whole group. To ease notation
we will denote by jm the matrix with i, j entry [i = am( j )]. Now

ð�mAÞi; j ¼
X

k

½i ¼ amðkÞ�
½k 2 �ð jÞ�

j�ð jÞj

¼
X

k

½aÿ1

m ðiÞ ¼ k�
½k 2 �ð jÞ�

j�ð jÞj

¼
½aÿ1

m ðiÞ 2 �ð jÞ�

j�ð jÞj
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and

ðA�mÞi; j ¼
X

k

½i 2 �ðkÞ�

j�ðkÞj
½k ¼ amð jÞ�

¼
½i 2 �ðamð jÞÞ�

j�ðamð jÞÞj

It is clear from the rotational action of am that

j�ð jÞj ¼ j�ðamð jÞÞj

and that

amð�ð jÞÞ ¼ �ðamð jÞÞ

and therefore �m A = A�m .
We therefore know that A commutes with the whole group and so will be compatible with

its orbits. But what are the orbits of the group action? Applying group members to a particular
square either leaves it alone (if it is not in the appropriate column) or rotates it downwards. The
orbits are therefore the columns of the grid. Our theorem tells us, therefore, that we can
consider each column to be a high-level unit in its own right, and that we can write down the
dynamics of the system in terms of these units. Accordingly, we number the columns giving a
new set 
 = {0, 1, . . . , 9}. The dynamics of the system at this new level of description is given
by the linear operator

C ¼

2=3 1=4 0 0 0 0 0 0 0 0

1=3 1=2 1=4 0 0 0 0 0 0 0

0 1=4 1=2 1=4 0 0 0 0 0 0

0 0 1=4 1=2 1=4 0 0 0 0 0

0 0 0 1=4 1=2 0 0 0 0 0

0 0 0 0 1=4 2=3 1=4 0 0 0

0 0 0 0 0 1=3 1=2 1=4 0 0

0 0 0 0 0 0 1=4 1=2 1=4 0

0 0 0 0 0 0 0 1=4 1=2 1=3
0 0 0 0 0 0 0 0 1=4 2=3

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

We have successfully reduced the number of states of the system from 100 to 10, by aggregating
states into higher-level units. However, we can go further still. Note that an invariant subspace of
C is spanned by {e5, e6, e7, e8, e9}. Moreover, the orthogonal complement of h1, . . . , 1i is also an
invariant subspace, since C is column stochastic. It follows that the intersection S of these spaces is
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invariant. By Theorem 2, therefore, we could aggregate further by choosing N such that its kernel is
contained in S,

N ¼

1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 1 1 1 1

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

Hence we can aggregate together all of the columns to the right of the membrane, and remain
compatible with the dynamics. Our group orbit theorem does not apply here, however, as the
probability of moving from column 4 to column 5 (that is, 1/4) is not identical to the probability of
moving to column 6, say (which is zero). Remember that the group orbit theorem gives a sufficient
condition for compatibility, which is rather strong—it requires all the incoming and outgoing
probabilities to be invariant.

Aggregation according to N reduces the number of states to six. We number these 0, 1, 2, 3, 4,
and 5, where state 5 represents all the columns to the right of the membrane; the other states are the
corresponding left columns as before. The resulting dynamics is given by the matrix R = N CDÿ1NT,
where the diagonal matrix D has its ith diagonal entry equal to the cardinality of the equivalence class
containing i (the details of why the dynamics of the aggregation would take this form are laid out in
[11] and, using different language, in [7 ]). Therefore,

R ¼

2=3 1=4 0 0 0 0

1=3 1=2 1=4 0 0 0

0 1=4 1=2 1=4 0 0

0 0 1=4 1=2 1=4 0

0 0 0 1=4 1=2 0

0 0 0 0 1=4 1

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

We can then use standard Markov chain theory to predict the expected time for a molecule to cross
the membrane, depending on which column it is starting in:

Initial state 0 1 2 3 4

Time to cross 55 52 45 34 19

8 Example: Mutation of Binary DNA

Our next example relates to the mutation of ‘‘DNA,’’ which we represent as a fixed-length binary
string (for example, this is common in genetic algorithms). Each bit in a string will be mutated with
some fixed probability u. Our population comprises a pool of such strings, and we wish to track their
evolution under this mutation operator.

The set of all binary strings of length ‘ can be conveniently identified with the set of integers

 = {0, 1, . . . , 2‘ ÿ 1} by interpreting the strings as being integers written in base 2. The population
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at a given time step is therefore given by a vector p = h p0, p1, . . . , p2‘ÿ1i. The dynamics of this
system is given by a matrix U defined by

Ui; j ¼ uhði; jÞð1ÿ uÞ‘ÿhði; jÞ

where h(i, j ) is the Hamming distance between strings i and j (that is, the number of bits at which
they differ in value). Put another way, i P m is the result of mutating i, where P denotes bitwise
exclusive OR (of bit strings), m is chosen with probability

u#mð1ÿ uÞ‘ÿ#m

and #m denotes the number of bits in m that are equal to 1 (m is commonly referred to as a
mutation mask).

We wish to establish whether or not the set of all strings can be partitioned into higher-level
units which are compatible with these dynamics. We are therefore led to identify the structure of the
group H(U ).

THEOREM 5: Suppose 
 is identified with the set of binary strings of length ‘, and let U be the muta-

tion matrix corresponding to bitwise mutation with rate u. Then H(U) is the group of the automorphisms of the

hypercube.2

Proof . The hypercube is the graph that has elements of 
 as vertices, with edges between vertices
that differ in only one bit. Let a 2 H(U ). We can view a as a permutation of vertices of the
hypercube. Let i, j 2 
 be vertices that share an edge, so that i P j contains a single bit. We want to
show that a(i ) and a( j ) also share an edge.

Since U commutes with a, we have Ua(i ),a( j ) = Ui, j. Hence the probability of picking mask i P j is
the same as picking a(i ) P a( j ). But when mutation is by a rate, this probability depends only on the
number of ones in each mask. Thus if i and j differ in one bit, so do a(i ) and a( j ). This shows that
a 2 H(U ) is an automorphism of the hypercube.

Conversely, suppose p is an automorphism. Then the number of ones in i P j is the same as the
number of ones in p(i ) P p( j ), for every i, j 2 
.3 Therefore the probability of picking i P j as a
mask is the same as picking p(i ) P p( j ), and so Up(i ),p( j ) = Ui, j. It follows that U commutes with p
(using the matrix algebra following Theorem 4). 5

The automorphisms of the hypercube are generated by

1. masks (under exclusive-or),

2. permutations of bit positions.

For example, suppose S = 5, and consider the set of strings

f00000; 01000; 10000; 11000g

3 This follows by induction on the number of ones in question and using the fact that the automorphisms form a finite group under

composition.

2 An automorphism of a graph is a permutation of the vertex set such that edges are mapped to edges. See [1].
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If we let each of these strings act on 
 as a mutation mask, then we obtain a subgroup of the
automorphisms. This subgroup generates orbits whose members agree on the final three bits.
Such a collection is referred to as a schemata family in the genetic algorithm literature [5]. Another
subgroup is the set of permutations of bit positions that shuffle the order of the first four bits.
The orbits generated by this subgroup comprise sets whose strings contain the same number of
ones and zeros in the first four positions. Such collections are sometimes referred to as unitation
classes. The fact that mutation is compatible with unitation classes can be exploited to investigate
the evolution of asexual populations [4, 12]. Other equivalence relations that are compatible with
mutation include combinations of schemata and unitation classes. For example, we could collect
together strings that agree with each other on bits 2 and 4 and have the same number of ones in
bits 1, 3, 5. One such set is {01011, 01110, 11010}.

It should be noted that aggregation by schemata is also compatible with the dynamics of a variety
of standard crossover operators, although here the dynamics are nonlinear [11, 10]. Unitation classes
are not compatible with crossover, however.

9 Generality

This section collects some simple observations of a technical sort concerning the generality of
our framework (this framework is developed in [11]). There need not be anything special about
the coordinate system that determines the matrix of the linear operator G. A change of variable,
say y = Wx, transforms the system x V = Gx into the equivalent system y V = WGWÿ1y in
which Nx has become NWÿ1y. In this new system, the equivalence operator (or ‘‘aggregation
operator’’; call it what you will) is an arbitrary full rank matrix, namely NWÿ1 (it is arbitrary to the
extent W is).

This process can be reversed. For example, consider the system y V = Ay, where

A ¼
1 4 0

2 5 ÿ2

3 6 ÿ2

2

4

3

5

Simply imagine that N represents an equivalence relation u for some system x V = Gx from which
y V = Ay is obtained through some change-of-variables matrix W. Since the kernel of the matrix (with
imagined name NWÿ1)

NWÿ1 ¼
1 1 ÿ1

ÿ1 0 1

� �

is {hr, 0, ri : r 2 R}, which is invariant under A, Theorem 2 can be applied, and implies that the
imagined relation u is compatible with G ¼ Wÿ1AW . Expressed in our system y V = Ay, this means
the variables hu, vi = h y0 + y1 ÿ y2, y2 ÿ y0i are ‘‘higher-level units’’ which have dynamics in their
own right that are compatible with A. Choosing W to be any full rank matrix making N a partition
( let W map—by multiplying on its left—the displayed matrix above to a partition matrix), say

W ¼
1 0 ÿ1

1 1 1

1 1 0

2

4

3

5
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allows our previously imagined objects to be realized:

N ¼
1 1 ÿ1

ÿ1 0 1

� � 1 0 ÿ1

1 1 1

1 1 0

2

4

3

5 ¼
1 0 0

0 1 1

� �

D ¼
1 0 0

0 2 0

0 0 2

2

4

3

5

G ¼
1 1 ÿ1

ÿ1 ÿ1 2

0 1 ÿ1

2

4

3

5

1 4 0

2 5 ÿ2

3 6 ÿ2

2

4

3

5

1 0 ÿ1

1 1 1

1 1 0

2

4

3

5

The transformation matrix NGDÿ1NT for hu, vi is therefore (this will be explained below)

3 3

2 0

� �

This checks out (as it must ), since

3 3

2 0

� �

1 1 ÿ1

ÿ1 0 1

� �

¼
1 1 ÿ1

ÿ1 0 1

� � 1 4 0

2 5 ÿ2

ÿ3 6 ÿ2

2

4

3

5

This example illustrates how there is no loss of generality in N being a partition matrix. It
also provides an example where ‘‘higher-level units’’ (in the system y V = Ay) are not intui-
tively obvious, and are composed of overlapping basic units; v = y2 ÿ y0 is contained within u =
y1 ÿ ( y2 ÿ y0).

4

Three points deserve clarification. First, why can Theorem 2 be applied to A and the general
aggregation operator NWÿ1 to conclude something about the compatibility of u with G? The
justification is the general equivalence

A : KerðNWÿ1Þ ! KerðNWÿ1Þ () G : KerðNÞ ! KerðNÞ

which depends only on G = Wÿ1AW. Second, why is the matrix NGDÿ1NT for the reduced system
the same for both systems, y V = Ay and x V = Gx? The justification is the general equivalence

ðNGDÿ1NT ÞðNÞ ¼ ðNÞðGÞ () ðNGDÿ1NT ÞðNWÿ1Þ ¼ ðNWÿ1ÞðAÞ

4 We are speaking of the system y V = Ay (in the system x V = Gx there is no overlap).
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which depends only on A = WGWÿ1. Third, since Theorem 2 may be applied directly to A and the
general aggregation operator NWÿ1 (in the manner illustrated and justified above), why was equiv-
alence not more generally defined? We think it interesting that general aggregation is achieved via
partitioning underlying components in a system obtained by a simple change of variable. It is that fact
that we wanted to stress. It suggests that the initial coordinate system (or basic components) that
define y V = Ay might not be intrinsic; perhaps a different choice (one that admits equivalence by way
of partitioning) could be more natural.

10 Conclusions and Further Work

We have presented a formalization for one aspect of what might be meant by ‘‘dynamical hierarchy’’:
a hierarchy of system representations at different levels of granularity that are mutually compatible
with respect to their dynamics. We view this as the situation in which the microscopic elements of a
system can be clustered into higher-level units in such a way that the macroscopic dynamics is
compatible with the rules of microscopic behavior. Under these conditions, the higher-level units
might be said to be naturally emergent properties of the system. Of course this will not work for
arbitrary methods of clustering, and we have begun to investigate conditions under which this can be
achieved. In the case where the underlying dynamics can be described as a linear function of the
population state space, we have provided a necessary and sufficient condition for compatibility
(namely, that the kernel of the corresponding projection is an invariant subspace of the dynamics).
We have also proved a strong sufficient condition that exploits symmetries within the set of
underlying components, using the language of group theory. In the general case, the microscopic
dynamics may be described by a nonlinear map G. In this case, more work needs to be done to
provide a characterization of the compatible equivalence classes. The development of this theory will
be the subject of a future article.

If we return to the examples of the floating balloon and the sandpile, we can now see exactly why
their structures are trivial. In the case of the helium balloon, there are only two possible ways of
aggregating the atoms that are compatible with the dynamics. Either each individual helium atom is
in an equivalence class of its own, or we take the whole balloon to be a single aggregation. Of course,
these two aggregations are always possible, in any system. The helium balloon has only trivial struc-
ture, because only trivial aggregations are possible. The situation with the pile of sand is different,
however. As long as the sand does not move, the dynamics of the system are trivial (that is, G is simply
the identity map). This means that any aggregation of states will be compatible with the dynamics. We
can partition the grains of sand into any subsets we like, and the resulting states will be compatible
with the dynamics. This is the opposite extreme to the floating balloon example, but still renders the
example trivial. If all ways of aggregating are possible, then there is no reason to prefer one way of
doing it to another. We now see that the two examples are trivial, but for completely different
reasons. This observation enables us to characterize nontrivial dynamical hierarchies as being a
subset system (ordered by inclusion) of compatible partitions, that lies between these two extremes.
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