
University of Montana University of Montana 

ScholarWorks at University of Montana ScholarWorks at University of Montana 

Computer Science Faculty Publications Computer Science 

2009 

Reinterpreting No Free Lunch Reinterpreting No Free Lunch 

Jonathan E. Rowe 

Michael D. Vose 

Alden H. Wright 
University of Montana - Missoula, alden.wright@umontana.edu 

Follow this and additional works at: https://scholarworks.umt.edu/cs_pubs 

 Part of the Computer Sciences Commons 

Let us know how access to this document benefits you. 

Recommended Citation Recommended Citation 
Rowe, Jonathan E.; Vose, Michael D.; and Wright, Alden H., "Reinterpreting No Free Lunch" (2009). 
Computer Science Faculty Publications. 13. 
https://scholarworks.umt.edu/cs_pubs/13 

This Article is brought to you for free and open access by the Computer Science at ScholarWorks at University of 
Montana. It has been accepted for inclusion in Computer Science Faculty Publications by an authorized administrator 
of ScholarWorks at University of Montana. For more information, please contact scholarworks@mso.umt.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Montana

https://core.ac.uk/display/267570835?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.umt.edu/
https://scholarworks.umt.edu/cs_pubs
https://scholarworks.umt.edu/computer_science
https://scholarworks.umt.edu/cs_pubs?utm_source=scholarworks.umt.edu%2Fcs_pubs%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.umt.edu%2Fcs_pubs%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
https://goo.gl/forms/s2rGfXOLzz71qgsB2
https://scholarworks.umt.edu/cs_pubs/13?utm_source=scholarworks.umt.edu%2Fcs_pubs%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@mso.umt.edu
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Abstract
Since it’s inception, the “No Free Lunch theorem” has concerned the application of
symmetry results rather than the symmetries themselves. In our view, the conflation of
result and application obscures the simplicity, generality, and power of the symmetries
involved. This paper separates result from application, focusing on and clarifying the
nature of underlying symmetries. The result is a general set-theoretic version of NFL
which speaks to symmetries when arbitrary domains and co-domains are involved.
Although our framework is deterministic, we note situations where our deterministic
set-theoretic results speak nevertheless to stochastic algorithms.

Keywords
Black Box Search, No Free Lunch

1 Introduction

We reinterpret the “No Free Lunch” theorem (NFL) to be a statement which is most
naturally expressed in set-theoretic terms and which concerns symmetries inherent in
Black Box search without regard to any purpose to which those symmetries may be
put. This interpretation conflicts with the historical fact that NFL was first expressed
using the language of probability by Wolpert and Macready (1995) and was very much
concerned with exploiting symmetry. Although probability may provide a a means by
which underlying symmetries shed light on inherent limitations of Black Box Search,
probabilistic language nevertheless complicates both the statement and proof of NFL
results – as is clear upon comparing Wolpert and Macready (1997), Köppen (2000),
Köppen et al. (2001) with the set-theoretic treatment of Schumacher (2000).

If the goal is to understand underlying symmetries – which has not historically
been the case – then continued use of probabilistic language drags probability into a
situation where it does not belong. Rather than clarifying the nature of symmetries,
probability provides a straw-man, as Droste et al. (1999) point out: “...taking randomly
a function...we have with large probability not enough time to evaluate...at only one
sample point”. Probability leads one to conclude, as Auger and Teytaud (2007) do, that
NFL fails for continuous domains. Whereas that is a valid conclusion regarding the
classical probabilistic NFL, it can be argued that the conclusion speaks more to a failure
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Rowe, Vose, Wright

of the probabilistic framework than to the absence of NFL symmetries in the general
case.

Because our goal is limited to NFL symmetries, we do not have much to say about
classical probabilistic NFL results; they are directed at applications, which is orthogonal
to our purpose of clarifying the nature of symmetries involved. We do demonstrate in
a concluding section, however, that our abstract results have sufficient power to imply
the classical probabilistic NFL theorem (involving finite domains and co-domains).

Because our goal is also ambitious – to make sense of NFL for arbitrary domains
and co-domains – the treatment is necessarily technical. In particular, it uses concepts
like cardinality, ordinality, and transfinite induction. We assume the reader knows
about such things, but mention Hewitt and Stromberg (1965), and Devlin (1994) as
references.

Given that we consider algorithms which search uncountable domains, it might
be natural to wonder: what is the algorithmic content of such algorithms? For the
purposes of this paper, suffice it to say that an algorithm is a mathematical abstraction;
the value Aα

f (∅) of applying search algorithm A to function f for α steps beginning
from the empty sequence ∅ of points sampled is well defined (with respect to Zermelo-
Fraenkel set theory) for every ordinal α. Moreover, the knowable properties of the
result are those properties which can be proved concerning the result, and proofs do
not necessarily require the result to be Turing computable. It should be appreciated
that a general NFL theorem which holds even for search algorithms that need not be
Turing computable will necessarily specialize to a NFL theorem which holds for search
algorithms that are Turing computable.

The next section presents definitions and notation and defines Deterministic Non-
Repeating Black Box Search Algorithms in set-theoretic terms. We mention here that
a search algorithm’s definition involves a search operator which is described as being
defined at points in its domain that it will never be called upon to evaluate (the search
operator could be arbitrarily defined at such points). While that may seem odd, it is of
no consequence (and it is not acknowledged where it occurs). Search operators are so
defined as a simple matter of convenience (just as, for instance, it may be convenient
to define a crossover operator to act on any pair of chromosomes, even though some
particular pair of chromosomes might not actually occur during an optimization run for
a given initial population and random number seed). Although general stochasticity
is not investigated (the issues involved are beyond the scope of this paper), we do
mention in the concluding section situations where our deterministic results speak to
non-deterministic algorithms.

Section 3 presents preliminary results which generalize the approach to NFL taken
by Schumacher (2000) from finite to arbitrary ordinals. It should be mentioned that
Schumacher’s account was inspired by and is an extension, not a revision, of results
contained in Radcliffe and Surry (1995). The Uniqueness, Completeness, and Duality
Theorems proved in section 3 are the cornerstones of NFL. Interestingly, it is only the
Completeness Theorem that takes on a different character when the search space X is
infinite. The NFL theorem must also take on a different character, since the smallest
ordinal α such that Aα

f (∅) exhaustively explores the space can depend both on A and
on f , which is not the case when X is finite.

Section 4 presents set-theoretic NFL in the form of three theorems concerning the
behavior of Deterministic Non-Repeating Black Box Search Algorithms. The first is
local in the sense that it focuses on two given search algorithms, and, roughly speaking,
says that for any function f there exists a function f ′ such that the behavior of the first
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algorithm applied to f matches the behavior of the second algorithm applied to f ′.
The second theorem corresponds to what is most commonly thought of as NFL, and,
roughly speaking, says that all algorithms perform equally well on a set F of functions
if and only if F is closed (with respect to permutation). The third NFL theorem speaks
to performance measures that evaluate the behavior of algorithms for some number
of steps having cardinality less than the cardinality of X . The reader is cautioned that
the description of NFL given in this introduction is very rough indeed. As mentioned
in the previous paragraph, NFL results have a different character when X is infinite,
and that character is reflected in technical conditions which qualify the oversimplified
description given in this paragraph.

As already mentioned, the final section briefly mentions applications and touches
upon the issue of stochasticity. It also suggests potential directions for extending this
work.

2 Basic Definitions and Notation

Let D(r) denote the domain of r (for arbitrary relation r), and let I(α) denote the set of
ordinal numbers less than α (for arbitrary ordinal α). A sequence S is a function whose
domain is I(α). Let S∗ denote the range of S, and let πβ(S) denote the restriction of
sequence S to domain I(β). Let |S | denote the cardinality of S (for arbitrary set S), and
define the cardinality α of ordinal α to be |I(α) |. Let bSc denote the smallest ordinal α
such that α = | S |.

Let f : X → Y be a function between arbitrary sets, and let yi denote f(xi). The
domain X and co-domain Y are fixed for the following discussion, but f may vary.

Definition: A trace T corresponding to f is a sequence 〈(x0, y0), . . .〉 of pairs from X × Y
where the x components are unique (in particular, a trace is an injective function); T is
a trace if it is a trace corresponding to some f . The following notation will be used,

T ∗ = {(x0, y0), . . .} set of components
Tx = 〈x0, . . .〉 sequence of x components
Ty = 〈y0, . . .〉 sequence of y components

In particular, T ∗ ⊂ f . A performance sequence is a sequence of values from Y . The
performance sequence associated with trace T is Ty.

Definition: Trace T corresponding to f is total if T ∗ = f . A partial trace is one which
is not total. The set of all partial traces corresponding to function f is denoted by T (f),
and T is defined by

T =
⋃

f

T (f)

Definition: A search operator is a function g : T → X which maps a partial trace T to
some element not occurring in Tx.

Definition: A deterministic non-repeating Black Box search algorithm A corresponds to a
search operator g, and will be referred to simply as a search algorithm. Algorithm A
applied to function f is denoted by Af , and maps traces to traces

Af (T ) =

{

T ‖ (g(T ), f ◦ g(T )) if T ∈ T (f)

T otherwise
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where ‖ is the concatenation operator (D(T ) = I(α) =⇒ T ‖z = T ∪ {(α, z)}). For any
ordinal n,

An
f (∅) =











∅ if n = 0
⋃

m<n Am
f (∅) if n is a limit ordinal

Af (
⋃

m<n Am
f (∅)) otherwise

The trace generated by search algorithm A applied to function f is

A(f) =
⋃

0<n

An
f (∅)

where ∅ is the empty trace. Search algorithms A and A′ are considered identical if and
only if they generate the same trace for all f . A performance table is a matrix whose rows
are labeled by the search algorithms and whose columns are labeled by the functions;
the element in row A and column f is A(f)y .

3 Preliminary Results

We begin with a theorem providing technical results which, among other things, give
legitimacy to definitions in the previous section.

Theorem (Recursion). For any function f ∈ YX , search algorithm A, and ordinal n,

⋃

m≤n

Am
f (∅) = An

f (∅) is a trace corresponding to f

An
f (∅) = Af (An−1

f (∅)) if n is not a limit ordinal

n ≤ bXc =⇒ D(An
f (∅)) = I(n)

A(f)∗ = f

Proof: First note that T ⊂ Af (T ) for every trace T , since if D(T ) = I(α), then

T ‖ (g(T ), f ◦ g(T )) = T ∪ {(α, (g(T ), f ◦ g(T )))}

The first assertion of the theorem is proved by transfinite induction. Note that it is
trivially true when n = 0. Suppose it is true for all n < α.
Case 1: α is a limit ordinal. Then

⋃

m≤α

Am
f (∅) = Aα

f (∅) ∪
⋃

m<α

Am
f (∅) =

⋃

m<α

Am
f (∅) = Aα

f (∅)

Therefore,

Aα
f (∅)∗ =

⋃

m<α

Am
f (∅)∗ ⊂ f

D(Aα
f (∅)) =

⋃

m<α

D(Am
f (∅))

The right hand side above is I(β), where β is the smallest ordinal not contained in
the right hand side above. To complete case 1 we show, via contradiction, that Aα

f (∅)
is an injective function. If {(k, (x, y)), (k, (x′, y′))} ⊂ Aα

f (∅), then, for some n < α,
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Reinterpreting No Free Lunch

{(k, (x, y)), (k, (x′, y′))} ⊂ An
f (∅), which contradicts that An

f (∅) is a trace. Likewise, if
Aα

f (∅)(k) = Aα
f (∅)(k′) = (x, y) for k 6= k′, then An

f (∅)(k) = An
f (∅)(k′) = (x, y) for some

n < α, which contradicts that An
f (∅) is a trace.

Case 2: α > 0 is not a limit ordinal. Then, since T ⊂ Af (T ) for every trace T ,

⋃

m≤α

Am
f (∅) = Aα

f (∅) ∪
⋃

m<α

Am
f (∅) = Af (T ) ∪ T = Af (T ) = Aα

f (∅)

where
T =

⋃

m≤α−1

Am
f (∅) = Aα−1

f (∅) is a trace corresponding to f

It follows, by the definition of Af , that Aα
f (∅) is a trace corresponding to f .

The second assertion of the theorem follows from Case 2 above.
The third assertion of the theorem is proved by transfinite induction. Note that it is
trivially true when n = 0. Suppose it is true for all n < α ≤ bXc. If α is a limit ordinal,
D(Aα

f (∅)) = I(α) follows by definition (and the inductive hypothesis). If α > 0 is not a
limit ordinal, then (via the second assertion of the theorem and the definition of Af ),

D(Aα
f (∅)) = D(Af (Aα−1

f (∅))) = I(α− 1) ∪ {α− 1} = I(α)

providedAα−1

f (∅)∗ 6= f . That is true because their cardinalities differ; since α−1 < bXc,

|Aα−1

f (∅)∗ | ≤ α− 1 < |X | = |f |

The fourth assertion follows from the existence of β for which Aβ
f (∅) = Aβ+1

f (∅); that
yields, via the second assertion of the theorem,

Aβ
f (∅) = Aβ+1

f (∅) = Af (Aβ
f (∅))

In view of the definition of Af , the trace Aβ
f (∅) cannot be partial, and therefore

f = Aβ
f (∅)∗ ⊂ A(f)∗ ⊂ f

Ordinal β can be obtained as follows. Since a trace is an injective function from some
I(α) to f ,

α ≤ |f | ≤ |X |

If γ is any ordinal having cardinality greater than | X |, then the domain of every trace
is contained in I(γ), and the (cardinal) number of traces is bounded by

2
γ |X|

Hence the function α 7→ Aα
f (∅) cannot be injective over the domain I(α′) where α′ has

cardinality greater than that displayed above. Therefore, let β < β′ be such that

Aβ
f (∅) = Aβ′

f (∅)

Using the first assertion of the theorem,

Aβ
f (∅) ⊂ Aβ+1

f (∅) ⊂ Aβ′

f (∅)

2
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Lemma 1. If f , f ′ ∈ YX are functions and T is a trace such that T ∗ ⊂ f ∩ f ′, then

T ∗ = f ⇐⇒ T ∗ = f ′

Proof: The theorem is symmetric in f and f ′, so it suffices to show
T ∗ = f ′ =⇒ T ∗ = f . If T ∗ = f ′ but T ∗ 6= f , then let (x, y) ∈ f \ T ∗. Since
X = D(f ′) = D(T ∗), there exists z 6= y for which (x, z) ∈ T ∗ ⊂ f . Hence
{(x, y), (x, z)} ⊂ f , contradicting that f is a function. 2

Theorem (Uniqueness). No row of a performance table contains any element more than once.

Proof by contradiction: show A(f)y = A(f ′)y implies An
f (∅) = An

f ′(∅) via transfinite
induction (for n ≥ 0; note it is trivially true when n = 0). Therefore A(f) = A(f ′) and
f = A(f)∗ = A(f ′)∗ = f ′ (via the recursion theorem), which contradicts f 6= f ′.
Assume An

f (∅) = An
f ′(∅) for all n < α. If α is a limit ordinal, Aα

f (∅) = Aα
f ′(∅) follows by

definition. If α > 0 is not a limit ordinal, then (via the recursion theorem),

Aα
f (∅) = Af (T )

Aα
f ′(∅) = Af ′(T )

where T = Aα−1

f (∅) = Aα−1

f ′ (∅) and thus T ∗ ⊂ f ∩ f ′. It follows (via Lemma 1) that
either T ∗ = f = f ′ or else T ⊂ T (f) ∩ T (f ′). In the former case, Aα

f (∅) = T = Aα
f ′(∅).

In the latter case,
Aα

f (∅) = T ‖ (x, f(x))

Aα
f ′(∅) = T ‖ (x, f ′(x))

where x = g(T ) and A corresponds to search operator g. Moreover, f(x) = f ′(x) since
A(f)y = A(f ′)y by assumption. Hence Aα

f (∅) = Aα
f ′(∅). 2

Theorem (Completeness). Given any search algorithm A, and any performance sequence S
with domain I(bXc), there exists f ∈ YX such that

πbXc(A(f)y) = S

Proof: Let A correspond to search operator g, and let f be any function satisfying
⋃

n≤bXc

T ∗
n ⊂ f

where

Tn =











∅ if n = 0
⋃

m<n Tm if n is a limit ordinal

Tn−1‖ (g(Tn−1), S(n− 1)) otherwise

Use transfinite induction to show

n ≤ bXc =⇒ An
f (∅) = Tn

Note that it is trivially true when n = 0. Suppose it is true for all n < α ≤ bXc. If α is a
limit ordinal, then Aα

f (∅) = Tα is true by definition. If α > 0 is not a limit ordinal, then
(via the recursion theorem and definition of f ),

Aα
f (∅) = Af (Aα−1

f (∅)) = Af (Tα−1) = Tα−1‖ (g(Tα−1), S(α− 1)) = Tα

6 Evolutionary Computation Volume x, Number x



Reinterpreting No Free Lunch

It follows (via the recursion theorem) that,

πbXc(A(f)y) = A
bXc
f (∅)y = (TbXc)y = S

2

Definition: A permutation σ is a bijection from X to X . Corresponding to σ is the
permutation σf of f defined by σf(x) = f(σ−1(x)). To say f ′ is a permutation of f is to
assert f ′ = σf for some permutation σ. A set F ⊂ YX is closed if for every permutation
σ,

f ∈ F =⇒ σf ∈ F

The permutation σA of search algorithm A is the search algorithm corresponding to search
operator σg defined by σg(T ) = σ−1(g(σx(T ))) where A corresponds to search operator
g, and where σx maps traces to traces according to

σx(∅) = ∅

T (n) = (x, y) =⇒ σx(T )(n) = (σ(x), y)

(i.e., σx applies σ to the x values of a trace and leaves the y values alone).

Theorem (Duality). For every search algorithm A, and f ∈ YX ,

σx((σA)(f)) = A(σf)

In particular, (σA)(f)y = A(σf)y .

Proof: Use transfinite induction to show σx((σA)n
f (∅)) = An

σf (∅) (note that it is
trivially true when n = 0). It follows that σx((σA)(f)) = A(σf) which proves the
theorem (σx does not change the y values in a trace). Suppose it is true for all n < α.
If α is a limit ordinal, then σx((σA)α

f (∅)) = Aα
σf (∅) follows by definition (using the

inductive hypothesis). If α > 0 is not a limit ordinal, then (via the recursion theorem
and the inductive hypothesis),

σg((σA)α−1

f (∅)) = σ−1◦g(σx((σA)α−1

f (∅)))

= σ−1◦g(Aα−1

σf (∅))

f◦σg((σA)α−1

f (∅)) = f(σ−1◦g(Aα−1

σf (∅)))

= σf(g(Aα−1

σf (∅)))

Therefore

(σA)α
f (∅) = (σA)α−1

f (∅) || (σg((σA)α−1

f (∅)), f◦σg((σA)α−1

f (∅)))

= (σA)α−1

f (∅) || (σ−1◦g(Aα−1

σf (∅)), σf(g(Aα−1

σf (∅))))

σx((σA)α
f (∅)) = σx((σA)α−1

f (∅)) || (g(Aα−1

σf (∅)), σf(g(Aα−1

σf (∅))))

= Aα−1

σf (∅) || (g(Aα−1

σf (∅)), σf◦g(Aα−1

σf (∅)))

= Aα
σf (∅)

(using the inductive hypothesis again). 2
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Definition: Search algorithm A is efficient if D(A(f)) = I(bXc) for all f ∈ YX .

Note that efficient search algorithms clearly exist, since the cardinality of bXc
matches the cardinality of X . For any fixed bijection b : I(bXc) → X , a trivial example
corresponds to enumeration; let g(T ) = b(n) where D(T ) = I(n). Moreover, efficient
search algorithms are not limited to enumeration.

Lemma 2. If A is efficient, then σA is efficient for every permutation σ. If traces T , T ′ are
total, then Ty = T ′

y =⇒ T ∗ is a permutation of T ′∗.

Proof: The first assertion of the theorem is a consequence of the Duality Theorem.
Since A is efficient, it follows that

I(X ) = D(A(σf)) = D(σx((σA)(f))) = D((σA)(f))

To establish the second assertion of the theorem, let the image of k = Tx(i) under σ be
j = T ′

x(i). Then σ−1(j) = k, and

(σT ∗)(j) = T ∗(k) = Ty(i) = T ′
y(i) = T ′∗(j)

2

4 No Free Lunch

The No Free Lunch theorem must necessarily take on a different character when the
domain X is infinite, since the smallest ordinal α such that

Aα
f (∅)∗ = f

can depend both on A and on f , which is not the case when X is finite.1 The smallest
ordinal for which the above could possibly be true is α = bXc, since for every smaller
ordinal the cardinalities of the left hand side and right hand side above would differ.

Theorem (Weak NFL). Given search algorithms A, A′ and function f ∈ YX , there exists a
function f ′ ∈ YX such that πbXc(A(f)y) = πbXc(A

′(f ′)y).

Proof: The proof is a straightforward application of the Completeness Theorem 2

Definition: A performance measure with respect to a set F ⊂ YX is any function µF

defined over the collection of all search algorithms such that µF (A) is a function of
the multiset {{A(f)y : f ∈ F}}. Search algorithms perform equally well on F if they are
evaluated identically by every performance measure with respect to F .

Theorem (NFL). Every efficient search algorithm performs equally well on F if and only if F
is closed.

1Consider the following non-efficient algorithm: let X be the positive integers and consider A which
explores 1, 3, 5,... before moving on to 2, 4, 6,... unless f(1) = 1 in which case A enumerates 1, 2, 3,....

8 Evolutionary Computation Volume x, Number x



Reinterpreting No Free Lunch

Proof: Appealing to the Completeness Theorem, every row in a performance table
corresponding to an efficient search algorithm contains every performance sequence
with domain I(bXc). Appealing to the Uniqueness Theorem, each element in such
a row is a performance sequence with domain I(bXc) and the elements in a row are
unique. Therefore, the row corresponding to an efficient search algorithm is actually a
set (as opposed to a multiset).
Let F be closed. If for efficient search algorithms A and A′ the sets S = {A(f)y : f ∈ F}
and S′ = {A′(h)y : h ∈ F} are equal, then the search algorithms must perform equally
well on F . By the Weak NFL Theorem, given f there exists h such that A(f)y = A′(h)y .
It follows that h is a permutation of f (Lemma 2). Therefore f ∈ F =⇒ h ∈ F . Hence
S ⊂ S′. The reverse containment follows by symmetry.
Conversely, assume by way of contradiction that all efficient search algorithms perform
equally well on F which is not closed; let σ and f be such that f ∈ F and σf /∈ F . Fix
an efficient search algorithm A, and consider the performance measure

µF (A) = [A(f)y ∈ {A(h)y : h ∈ F}]

where [expression] is 1 if expression is true, and 0 otherwise. Since µF (A) = 1, it must
happen that µF (A) = 1 for the particular choice A = σ−1A (by Lemma 2,A is efficient).
Therefore,

A(f)y ∈ {(σ−1A)(h)y : h ∈ F}

which leads to a contradiction as follows. Appealing to the duality theorem,

{(σ−1A)(h)y : h ∈ F} = {A(σ−1h)y : h ∈ F} = {A(h)y : σh ∈ F}

Appealing to the uniqueness theorem, A(f)y ∈ {A(h)y : σh ∈ F} =⇒ σf ∈ F. 2

Definition: Performance measure µF is dominated (by ordinal β) if there exists β < bXc
and function µ such that for all search algorithms A,

µF (A) = µ({{ πβ(A(f))y : f ∈ F}})

Theorem (Dominated NFL). If a performance measure with respect to a closed set F is dom-
inated, then it evaluates every search algorithm the same.

Proof: Given any search algorithm A and ordinal β < bXc, it suffices to show an
efficient search algorithm B exists such that πβ(A(f)) = πβ(B(f)) for all f . In that
case search algorithms can be regarded as efficient without loss of generality (B is a
surrogate for A), and the NFL Theorem may be applied.
Let A correspond to search operator g, and let function b : I(bXc) → X be bijective.
Let B correspond to search operator h defined by

h(T ) =

{

g(T ) if D(T ) ⊂ I(β)

b(min{ γ : b(γ) /∈ D(T ∗)}) otherwise

Note that πβ(A(f)) = πβ(B(f)) since A and B have search operators which agree on all
traces whose domains are contained in I(β). Moreover, B is efficient if X is finite. If X
is infinite, use transfinite induction to show that for all 0 ≤ n ≤ bXc,

b(I(n)) ⊂ D(Bβ+n
f (∅)∗)

Evolutionary Computation Volume x, Number x 9
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Note that it is trivially true when n = 0. Suppose it is true for all n < α. If α is a

limit ordinal, then so too is β + α and therefore b(I(α)) ⊂ D(Bβ+α
f (∅)∗) follows by

definition. If α > 0 is not a limit ordinal, then (via the Recursion Theorem and the
definition of Bf ),

D(Bβ+α
f (∅)∗) = D(Bβ+α−1

f (∅)∗) ∪ {b(min{ γ : b(γ) /∈ D(Bβ+α−1

f (∅)∗)})}

By hypothesis, b(I(α− 1)) ⊂ D(Bβ+α−1

f (∅)∗) is contained in the right hand side above.

If b(α− 1) ∈ D(Bβ+α−1

f (∅)∗), then the inductive argument is complete. Otherwise, the

ordinal γ = α − 1 is smallest such that b(γ) /∈ D(Bβ+α−1

f (∅)∗), in which case b(α − 1)
is contained in the right hand side displayed above (which completes the inductive
argument).
Finally (keeping in mind that X is infinite),

X ⊂ b(I(bXc)) ⊂ D(B
β+bXc
f (∅)∗)

and β + bXc = bXc follows from n < bXc ⇐⇒ n < |X | (for every ordinal n). 2

5 Discussion

We have presented a general set-theoretic version of NFL which speaks to underlying
symmetries of Black Box search without regard to any particular purpose to which
those symmetries may be put. Although applications are not our main concern, we
indicate how the classical “Non-Uniform NFL-theorem” of Igel and Toussaint (2004) is
implied by our results.

Assume domains and co-domains are finite (therefore all search algorithms are
efficient). According to our NFL Theorem, if F is closed, then the left hand side below
is independent of A for every function µ; the following chain of equalities results from
making special choices for the arbitrary functions µ, ξ, φ

µ({{A(f)y : f ∈ F}}) =
∑

f∈F

ξ(A(f)y)

=
∑

f∈F

φ(A(f)y)ψ(A(f)y)

=
∑

f∈F

w({{A(f)y(n) : n < bXc}})ψ(A(f)y)

=
∑

f∈F

w({{f(x) : x ∈ X}})ψ(A(f)y)

The last equality above follows from the fact that A(f) : bXc −→ f is a bijection, which
implies the arguments to w are the same multiset. Assuming F is closed, the fact that
the last displayed summation above is independent of A, for every choice of w and ψ,
can be phrased as: all algorithms have identical expected performance as measured by
arbitrary (but fixed) ψ with respect to an arbitrary (but fixed) probability distribution
over any closed set F of functions, provided the probability of f as given by w depends
only on {{f(x) : x ∈ X}}.2

2This direction of the “Non-Uniform NFL-theorem” – i.e., F closed implies the last displayed summation
above is independent of A, for every choice of w and ψ – is a consequence of results found in both Radcliffe
and Surry (1995) and in Schumacher (2000), but neither point it out and both make comments suggesting
they may be unaware of the result. For the converse, see Schumacher (2000) page 54.
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Our version of set-theoretic NFL assumes deterministic algorithms. In practice,
that can sometimes be an annoyance rather than a limitation. Oftentimes randomness
is a fiction – a deterministic pseudo random number generator is used – and sometimes
making a random choice from a collection of deterministic algorithms suffices to model
stochastic behavior. As noted by Schumacher (2000), if the probability that a given
stochastic algorithm is equivalent to a deterministic algorithm A is described by dλ(A),
then the expected overall performance of the randomized algorithm is

∫

µ({{A(f)y : f ∈ F}}) dλ(A) = c

∫

dλ(A) = c

where performance c = µ({{A(f)y : f ∈ F}}) is algorithm-independent as guaranteed
by NFL, assuming algorithms are efficient or the performance measure is dominated,
and F is closed (subject to measurability conditions, to make sense of integration). It
is certainly possible – as already demonstrated by this and the previous paragraph –
for deterministic set-theoretic results to admit probabilistic interpretations. Our point
is not that stochasticity should be swept under the rug, but the symmetry results we
have presented need not speak only to situations which are devoid of probability.

In closing, we note how the Dominated NFL theorem might potentially obviate
concerns regarding the algorithmic content of search algorithms. For example, if the
performance measures involved are serendipitously dominated by some ordinal β that

makes algorithmic concerns regarding Aβ
f (∅) irrelevant, then whether or not one feels

good about A(f) is a non-issue. In particular, if β were a finite ordinal, then search
algorithms need only operate for a finite number of steps, and their search operators
therefore need only be defined on traces of finite length. If X and Y are countable, then
every finite trace is finitely representable. Moreover, it could be natural to assume f is

an oracle. This is obviously not sufficient to guarantee Turing computability of Aβ
f (∅)

for every A relative to every f , but it may provide initial context in which to begin the
investigation of computability questions.
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