University of Montana

ScholarWorks at University of Montana

Computer Science Faculty Publications Computer Science

2004

Efficient Linkage Discovery by Limited Probing

Robert B. Heckendorn

Alden H. Wright
University of Montana - Missoula, alden.wright@umontana.edu

Follow this and additional works at: https://scholarworks.umt.edu/cs_pubs

Cf Part of the Computer Sciences Commons

Let us know how access to this document benefits you.

Recommended Citation

Heckendorn, Robert B. and Wright, Alden H., "Efficient Linkage Discovery by Limited Probing" (2004).
Computer Science Faculty Publications. 12.

https://scholarworks.umt.edu/cs_pubs/12

This Article is brought to you for free and open access by the Computer Science at ScholarWorks at University of
Montana. It has been accepted for inclusion in Computer Science Faculty Publications by an authorized administrator
of ScholarWorks at University of Montana. For more information, please contact scholarworks@mso.umt.edu.

https://scholarworks.umt.edu/
https://scholarworks.umt.edu/cs_pubs
https://scholarworks.umt.edu/computer_science
https://scholarworks.umt.edu/cs_pubs?utm_source=scholarworks.umt.edu%2Fcs_pubs%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.umt.edu%2Fcs_pubs%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://goo.gl/forms/s2rGfXOLzz71qgsB2
https://scholarworks.umt.edu/cs_pubs/12?utm_source=scholarworks.umt.edu%2Fcs_pubs%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@mso.umt.edu

Efficient Linkage Discovery by Limited Probing

Robert B. Heckendorn heckendo@uidaho.edu
Department of Computer Science, University of Idaho, Moscow, ID 838441010, USA
Alden H. Wright wright@cs.umt.edu

Department of Computer Science, University of Montana, Missoula, MT 59812, USA

Abstract

This paper addresses the problem of discovering the structure of a fitness function from
binary strings to the reals under the assumption of bounded epistasis. Two loci (string
positions) are epistatically linked if the effect of changing the allele (value) at one locus
depends on the allele at the other locus. Similarly, a group of loci are epistatically
linked if the effect of changing the allele at one locus depends on the alleles at all
other loci of the group. Under the assumption that the size of such groups of loci are
bounded, and assuming that the function is given only as a “ black box function”, this
paper presents and analyzes a randomized algorithm that finds the complete epistatic
structure of the function in the form of the Walsh coefficients of the function.

Keywords
epistasis, linkage, probing, MA XSAT, Walsh analysis, embedded landscapes

1 Introduction

Function optimization algorithms can be viewed as a search through a domain space of
the function for a value that yields a maximum value in the range space of the function.
In a computer, the search is dictated by the representation of the domain and the search
operators on that representation. In this paper, we assume a domain of fixed-length bi-
nary strings. In this domain, search often proceeds by modifying the bits of previously
evaluated points in the search space. Understanding how the bits in the representation
interact with each other in defining the value of the function is critical to understanding
the function to be optimized. This interaction is called epistatic linkage or epistasis'.

This paper addresses the problem of determining the epistatic linkage of a func-
tion from binary strings to the reals. There is a close relationship between the Walsh
coefficients of the function and “probes” (or perturbations) of the function. This rela-
tionship leads to two linkage detection algorithms that generalize earlier algorithms
of the same type. A rigorous complexity analysis is given of the first algorithm. The
second algorithm not only detects the epistatic linkage, but also computes all of the
Walsh coefficients. This algorithm is much more efficient than previous algorithms for
the same purpose.

2 Background

In very simple fitness functions each bit in the domain independently contributes to
the total value of the function. In optimizing these simple fitness functions, each bit
can be tested independently against a fixed background of other bits to determine the

IFor this paper we do not draw a distinction between epistasis and linkage.

(©2004 by the Massachusetts Institute of Technology Evolutionary Computation 12(4): 517-545

R.B. Heckendorn and A.H. Wright

contribution of that bit. Proceeding through all the bits the optimum can be found in
linear time with respect to the number of bits.

Most practical functions are not nearly as simple. For many, the contribution of a
bit in the domain to the value of the function is non-linear in that it is dependent on the
state of one or more other bits in the domain. This linkage effect is called epistasis and
can be succinctly defined:

“...if the effect of one unit is not predictable unless the value of another
unit is known, then the effects are epistatic. .. in other words, the effect of a unit
is context dependent” (Brodie, 2000).

Applied to the case of evolutionary computation, the “units” in the quote above refers
to the positions in the problem representation whose values are selected from an alpha-
bet. The more units, or positions, that simultaneously interact (the higher the epistasis)
the greater the degree of freedom to “hide” the optimum anywhere in the subdomain
formed by the interacting units (Heckendorn and Whitley, 1999). Sets of units that
epistatically interact are called epistatic blocks. For example consider the function f
defined over three bits b2b1 by defined as f(bab1bg) = b2 * by + by. The value of ba’s con-
tribution to the function is unaffected by the value of by however, bs's contribution is
dependent on the value of b;. Therefore, {b2, b1 } forms one epistatic block and b, forms
a second epistatic block. These blocks are separable because they do not share any bits
and form subproblems which can be solved separately much like the previous inde-
pendent bit example. Now consider function g(bab1bg) = b2 * by + by * by. This time we
have two epistatic blocks each of two bit positions, but the blocks overlap. Even with
this overlap, the value of bs’'s contribution to the function is unaffected by the value of
by and so there is no epistasis between by and b2. Overlapping blocks form an overlying
constraint satisfaction problem, but not a fundamental problem of epistasis. The two
aspects of a problem: epistasis and pattern of overlapping epistatic blocks, define the
structure of a problem.

A large number of bits of epistasis is no guarantee of a difficult problem. Nor is low
epistasis a guarantee of an easy problem. In fact, 3MAXSAT problems are examples
of problems of low epistasis in which all epistatic interactions are known and they
are provably NP-complete (Papadimitriou, 1994 Heckendorn, 1999). This means that
even if one is given the complete epistatic structure of a function for free a problem
may be intractable. Still, knowing the location of epistatically interacting blocks of bits
may be used to guide a search for the optimum or the formulation of a representation
(Munetomo and Goldberg, 1999b; Munetomo and G oldberg, 1999; Kargupta and Park,
2001).

If the function is separable, each component can be solved separately. If the func-
tion is close to separable, this can guide the choice of crossover operators. In this case,
Muthlenbein and Mahnig (1999) also suggest applying the UMDA algorithm where
each component makes up a string position with a higher-order alphabet. Mtihlenbein,
Mahnig, and Rodriguez (1999 give a factorized distribution algorithm (FDA) that ap-
plies to additively decomposed functions (that we call embedded landscapes in this
paper). This is an example of an estimation-of-distribution algorithm, and the infor-
mation produced by the algorithms of this paper should be very useful in this type of
algorithm.

This paper uses the assumption that the order of epistatic interaction between loci
is bounded. In the terminology of this paper, the fitness function is assumed to have k-
bounded epistasis. This is equivalent to an assumption that the Walsh coefficients of or-

518 Evolutionary Computation Volume 12 Number 4

Efficient Linkage Discovery by Probing

der greater than k of the fitness function are zero. This assumption is satisfied by some
important classes of real-world fitness functions and some commonly used classes of
test functions. These include the k-deceptive functions of (Goldberg et al., 1993, the
NK-fitness landscape (Kauffman, 1993), the k~-CNF MAXSAT problems (Hogg et al.,
1996, Rana et al., 1998), and constraint-satisfaction problems (Braunstein et al., 2003).

The general problem of discovering epistatic linkage has been addressed directly
and indirectly by many papers. Munetomo and Goldberg showed a simple direct per-
turbational approach to generalized linkage discovery over a binary alphabet in Mune-
tomo and Goldberg (1999a,1999b).This basic approach has been extended in Muno-
tomo (2002a,2002b). These papers also summarize some other approaches to the prob-
lem, and further references are given in Section 10.1. Kargupta et al. (Kargupta and
Park, 2001) have shown that for epistatically bounded functions, f, where the epistasis
is known to be bounded by k bits, all the Walsh coefficients, a direct measure of the
magnitude of epistasis, can be computed in time O(L¥), where L is the length of the
representation.

In this paper we present a theoretical framework for the detection of epistatic link-
age and the computation of Walsh coefficients for epistatically bounded functions. The
Walsh coefficients completely describe the function and so completely characterize the
epistatic linkage. The algorithms we present in this paper are black box algorithms in
that they assume minimal prior knowledge of the function being analyzed. This pa-
per deals with perturbation methods, or what we call probes. We give a randomized
algorithm for linkage detection which is based on our theoretical framework, and we
give rigorous complexity bounds for this algorithm. We extend this to another ran-
domized algorithm that both detects linkage and computes the Walsh coefficients. The
algorithm is analyzed under the assumption that the subfunctions of the function are
of maximum order k, the support for the subfunctions is chosen randomly, and the
number of subfunctions grows linearly with the string length.

3 OurNotation

The space of all bit strings of length L is denoted by B. The binary operators on B
include A which denotes bitwise AND, and @ which denotes bitwise EXCLUSIVE-OR.
An overbar (e.g., m) denotes 1’s complement. A string of all ones is denoted 1. Since
the L-bit binary representations of the integers in the interval [0, 2%) coincide with the
elements of B, a bit string may be denoted by the corresponding integer. For example,
the integer 2%, 0 < k < L corresponds to the bit string with a single one in position
k, where bit positions are labeled from the right starting at 0. Thus, 22 = 0000100
for L = 7. It is convenient to think of a bit string 7 as corresponding to the set of bit
positions indicated by the 1 bits in 7. Thus, we write ¢ C j (i is contained in j) when
the set corresponding to i is contained in the set corresponding to j, i.e., when i A j = 1.
Ifi C jand i # j we write ¢ C j. The unitation or bit count function bc(7) of string
i is the number of ones in 7. Given a mask m € B, let the set B,, = {i € B : i C m}.
Note |B,,| = 2™, Brackets are used to denote an indicator function: if expr is an
expression that may be true or false, then

1 ifexpristrue
lexpr] = .
0 otherwise

Evolutionary Computation Volume 12 Number 4 519

R.B. Heckendorn and A.H. Wright

4 Walsh Analysis and Embedded Landscapes

Walsh analysis provides a powerful way of looking at the interaction between bits
(Heckendorn and Whitley, 1999). In this section we introduce some of the major ideas
in Walsh Analysis that we will be using.

Any function f : B— R can be written as a linear combination of Walsh functions:

fla) = Zwiwi(fﬂ)

icB
where the i™ Walsh function is defined as:
wz(x) _ (_1)bc(i/\x)

and the w; are referred to as Walsh coefficients. The Walsh traanform is a linear trans-
form of the Walsh coefficients represented as a vector w in R?" to the function space

finR%". Thisisa change of basis transformation corresponding to the matrix ¥ with
;5 =i(g). .
f=%w and w = 2—L\I/f (1)

Itis not hard to show that ¥ is symmetric and YW = 2L where I is the identity matrix.

f depends on a bit position k, 0 < k < L, if there exists a j € B such that f(j) #
f(j@2%). In other words, f depends on bit position if flipping bit k£ changes the value
assigned to some string j. The support of f is the set of loci that f depends on. The
support mask of f is a bitstring in 3 with 1 bits in exactly and only those positions that
support f. By the definition the support mask of ¢; is 1.

An embedded landscape is a function f : B— R which can be written in the form
f =" g; where each subfunction g; has a support mask m;. Normally, there will be
some restriction on the support set masks m;. The function f : B— R has k-bounded
epistasis if it can be written as the sum of subfunctions each of whose support is a set
of at most £ bits. It has been shown, perhaps most recently in (Heckendorn, 2002):

Theorem 1 (K-bounded Landscape Theorem) A function f : B— R has k-bounded epistasis if
and only ifw; = 0V be(j) > k

Thus, f has k-bounded epistasis if and only if all of its Walsh coefficients of order
greater than k are zero. The function f is linearif it has 1-bounded epistasis. The func-

tion f is additively separable if it can be written as a sum of at least two subfunctions
where the supports of all subfunctions are pairwise disjoint.

5 Probes

A probe is a way of determining epistatic properties of a function f : B— R by per-
forming a series of specific function evaluations. For example, in order to determine
if the first and third bits of the domain of a 16 bit function are epistatically interacting,
the function can be evaluated at these four points:

f(lzxlzxrxrrrrrrxrre
Q0130304 4 4 3 4 3 4 3 1 4
A 30304 1 4 0 4 3 4 4 1 4

f(Ox0zxxrrrrerrrre

()
()
()
()

520 Evolutionary Computation Volume 12 Number 4

Efficient Linkage Discovery by Probing

The x's represent a constant background bit pattern that does not vary from evaluation
to evaluation. If the difference between the evaluations of the first two functions is dif-
ferent from the difference between the evaluations of the second two function, then we
know the bits are interacting. This process of probing function values can be formalized
and generalized in the concept of a probe.

More specifically, a probe is:

bc(
(f’ m, C 2bc(m) Z C)

i€Bm

wherem € Band ¢ € By m is a bit mask that identifies the bits to be tested for epistatic
interaction and c is the static background of bits for the probe. The order of the probe
is the number of ones in the mask, or be(m). The direct computation of the value of
a probe requires 2°“(™) function evaluations. The constant QM,”) may be ignored for
some purposes, but is required if Walsh coefficients are to be calculated.

Theorem 2 (Walsh Function Probing)
For any j,m € B andc € B,

0 otherwise

P(yj,m,c) = {
Proof:

1 .
P(wj,m,c) = W Z (—1)bc(z)w3(l @ C)

1€EBm

1
= Sbe(m) Z V7()Y;(i @)

1€Bm

= ﬁ S el ()

1€Bm

2bc(m) wj Z w

1€Bm,

By the Balanced Sum Theorem for Hyperplanes (Heckendorn and Whitley, 1999 the
sum is 2°(™) if j C 77 which is the same as m C j and is 0 otherwise.
O

A probe is really probing for nonzero Walsh coefficients by adding and subtracting
over a set of Walsh coefficients. If the result is nonzero then one of the component
Walsh coefficients is nonzero. If it is zero then we can say very little without further
information. The following theorem identifies the set of Walsh coefficients.

Theorem 3 (Probe Subset)
Foranym € B andc € B,

jeB
wherew; is the j*" Walsh coefficient of f.

Evolutionary Computation Volume 12, Number 4 521

R.B. Heckendorn and A.H. Wright

Proof:
f=Y wiy;
jEB
P(f,m,c) Zw]w],m c)
JEB

= Z w; P(;, m, c) since P(f,m, c) is a linear transformation of f
jEB
= Z[m C jlw;v;(c) by the Walsh Function Probing Theorem
jEB
O

A maximal nonzero Walsh coefficient is a Walsh coefficient w,, such that w,, # 0
and w; =0V j D m.

Corollary 4 (Maximal Probe)
Ifw,, is a maximal nonzero Walsh coefficient, then for any ¢ € By,

P(fam7c) = Wm

Proof: It follows from Theorem 3 that

P(f,m,c) = wmibm(c)

And from the definition of a Walsh function: 9, (c) = (—1)%¢(m/¢) = (-1)0 = 1.

A probe can be written as a sum of lower-order probes.

Theorem 5 (Probe Recursion)
For any function f : B — R, any masks m,n € B withn C m, and any ¢ € By;:

Pl = g SO PG mEni
€8,

Proof: Any j € B, can be written uniquely as j = ¢ & u where ¢ € B,, and
U € Bmgn. Thus:

(f; m C 2bc 'm) Z C)
JEBm
_ L be(i) L be(u) .
- 2bC(n) Z (_1) o 2bc(m@n) Z (_1) el f(u D1D C)
i€By UEBman

S U ORm e
€8y,

O

522 Evolutionary Computation Volume 12, Number 4

Efficient Linkage Discovery by Probing

Theorem 6 (Nonzero Probe Existence) Given a maximal nonzero Walsh coefficient w,,,, for
anya:a Cmandanyc: ¢ € By, thereexists ani € B,,q, such that

P(f,a,i®c)#0 Ve € B

Proof: By the Maximal Probe Corollary, P(f,m,c) = w,, # 0 for any ¢ € Bm. By
the Probe Recursion Theorem applied with n = m & a,

1

P(f,m,c) = Shetm) S (=)"OP(f,men,ioc)
i€B.,

Thus, there must exist an i € B,, such that P(f,m @ n,i ®c) = P(f,a,i® c) # 0.

6 The Linkage Hypergraph

A hypergraph is a convenient way to think of the interaction between bits. A hyper-
graph is a collection of vertices V' together with a family of nonempty subsets E of
V called hyperedges. The vertex of the hypergraph can be used to represent a set of
epistatically dependent bits. A linkage hypergraph is a hypergraph that represents all
the sets of epistatically linked bits. A set of vertices, each corresponding to mask m # 0,
is a hyperedge if there is a ¢ € By; such that P(f,m, c) # 0. Therefore a hyperedge can
be identified by the corresponding mask. The order of a hyperedge is the number of
ones in the mask. Gao proposed a similar graph corresponding to the order-2 hyper-
edges the interaction graph (Gao, 2003).

In view of Theorem 6, the mask m is a hyperedge if and only if thereisa j O m
such that w; # 0. Thus, we have the following corollary.

Corollary 7 Ifm is a hyperedge of the hypergraph, and ifa C m, then a is also a hyperedge

The Order-j Linkage Detection Algorithm in Figure 1 constructs the set of order-j
hyperedges of the linkage hypergraph. The order-2 version of this algorithm is similar
to the LINC algorithm of (Munetomo and Goldberg, 1999%). However, they start with
a population of strings. Then each probe is done using one of the strings of the popula-
tion to provide the background for the probe. In Figure 1 we use a random background.
Later in this article we will compare this approach with using a population.

For an arbitrary function f it is impossible to conclude anything conclusively from
evaluating f at a subset of points. For example, if f would be k-epistatically bounded
except for the function value at one point, then the above algorithm for j > k will
return 0 for any probe unless the probe happens to sample the one exceptional point.
For a large string length, the probability that this one exceptional point is sampled can
be very small.

Thus, assumptions on f are needed in order to use the Order-j Linkage Detection
Algorithm to make conclusions. The natural assumption is that f is k-epistatically
bounded. The following theorems give a worst-case complexity analysis of the Order-
j Linkage Detection Algorithm in this case. This will give us an upperbound on the
amount of work to guarantee that all order-j hyperedges are detected with at least
probability 4.

Theorem 8 (Nonzero Probe Probability) Let f be k-epistatically bounded and let m be a mask
corresponding to an order-j hyperedge of the linkage hypergraph of f. If ¢ is a randomly chosen
string in By, then the probability that P(f, m,c) # 0 is at least 297,

Evolutionary Computation Volume 12 Number 4 523

R.B. Heckendorn and A.H. Wright

DETECT-LINKAGE(j,N)
begin
V—{0,1,...,L -1}
E—0
for each mask m with be(m) = j do
if m ¢ E then
for i — 1to N do
¢ «— arandom string in B
if P(f,m,c) # 0 then
E — Fu{m}
break
end if
end for
end if
end for
return F
end DETECT-LINKAGE

Figure 1: The Order-j Linkage Detection Algorithm using a random background string.

Proof: Since m is a hyperedge by the Nonzero Probe Existence Theorem there is a
u such that m C v and w,, # 0. Without loss of generality we can assume that « has the
property that v C v = w, = 0. By assumption, bc(u) < k. Theorem 6 shows that there
is atleast one i € Bygm such that P(f,m,i@®b) # 0 for any b € By. The probability that
the randomly selected background ¢ matches some such ¢ on the positions masked by
u @ m is at least 2~ 0c(u®m) — gbe(m)=be(u) > 9j—k
O

The lower bound of Theorem 8 cannot be improved for functions that are k-
epistatically bounded. To see this, start with a (j — 1)-epistatically bounded function
whose support is m with be(m) = k, and then perturb the value of one point. Any probe
that does not include the perturbed point will return a value of zero. Since an order-j
probe includes 27 points, and since there are 2* probes, the probability of including the
perturbed point is 27~*.

Theorem 9 Let f be k-epistatically bounded and let .J be the number of order-j hyperedges in
the linkage hypergraph of f. If the number of iterations N in the Order-j Linkage Detection
Algorithm is chosen so that either

(=67 e
N > In(1—27—F) If] <k (2)
1 ifi =k

or

9k—j — s if 7
N> 287 1In(1 - oY) ifj <k
“ 1 ifj =k

then the probability that all order-j hyperedges are detected is at least .

Proof: In the following, a “success” is the detection of a nonzero probe. Theorem
8 shows that the probability of failure for one probe on one trial is at most 1 — 277,

524 Evolutionary Computation Volume 12, Number 4

Efficient Linkage Discovery by Probing

Thus, the probability of failure on N independent trials is at most (1 — 2/=%)¥ and the
probability of success on N trials is at least 1 — (1 — 2/~%)¥_ The probability of success
on all J hyperedges is at least

(1—(1—2-kN)’

Thus, we want to choose N so that
(-1 27N =5
1 _ 51/] 2 (1 _ 2j7k)N
In(1 —6%7) > Nln(1 — 277F)

sl
In(1 54) <N
In(1 —29-F) —

To prove the second formula, we need to show that

, 5
—2k=in(1 — 7)) > In(1-0 ")

Z (12 F)
. 1
k— R . 1/J
= 2877 > TS by dividing both sides by — In(1 — §*/7)
— 207k < —In(1 —297F) by inverting both sides .

By the Taylor series for — In(1 —), we see that — In(1 — x) > =, or that — In(1 — 277%) >
21—k,

These formulas are defined when j < k, but fail when j = k. Fortunately we know
by Maximal Probe Corollary that if the function is indeed k-epistatically bounded a
single probe is all that is required.

O
Lemma 10 (1 — 1)
Y
Proof: First, we apply I'Hopital's rule:
i —In(1 —§'7) i —6Y71n ¢
J oo InJ J=oo J(1 = 61/7)

The limit of the numerator is clearly In 6.
To evaluate the limit of the denominator, make the variable change = = 1/.J, and
take the limit as + — 0. Then apply I'Hopital’s rule again.

.1 =07 . 0"Ind
lim = lim =
x—0 x x—0

Ind

O

We next consider how the number N of iterations increases as the string length
increases for a class of fitness functions.

Evolutionary Computation Volume 12 Number 4 525

R.B. Heckendorn and A.H. Wright

Corollary 11 Assume a class of k-epistatically bounded fitness functions where the number
of maximal Walsh coefficients is O(L). If¢§ is constant, the number of function evaluations

required by the DETECT-LINKAGE algorithm is O (2’C (?) <ln L+In (’;))) Ifj is constant,
then the number of function evaluations is O (2% L7 In L).

Proof: By Theorem 9it is sufficient to choose N to be —2¢~7 In(1—§'/7). For each of
the N iterations of the inner loop a probe is done that requires 2’ function evaluations.
The outer loop is executed (?) times, so the total number of function evaluations is:

—2’“(?) In(1 — 6'/7), and by Lemma 10, this is O (2’“(?) In J).
The number of order-j hyperedges in a single maximal Walsh coefficient of or-
der k is bounded by (’;) and we have assumed that the number of maximal (order &)

hyperedges is O(L), so J is O ((’;)L) Thus, InJ is O (hlL +1In (';))

Note that In (’;) < In(k’) = jlnk. If j is constant, then jlnk is O(InL) so the
last result of the corollary follows. O

Strictly speaking, Corollary 11 does not apply when probe backgrounds are chosen
from a population (as is the case for the LINC algorithm of (Munetomo and Goldberg,
1999%b)) since the above analysis assumes that the backgrounds of probes are chosen
independently. However, our empirical results show that these formulas are quite ac-
curate when the backgrounds are chosen from a population. (See Section 11.)

For j = 2, this result can be compared to the population sizing result of Munetomo
and Goldberg (199%b). If r is the probability of successfully detecting a single subfunc-
tion, they give the population size needed as approximately —2” In(1 — r). This trans-
lates into —2* L2 In(1 —r) function evaluations. Since they don’t address the question of
whether the probabilities of detecting subfunctions are independent of the subfunction,
this does not translate into a statement about the overall probability (analogous to our
5) of detecting all subfunctions.

7 Computing the Walsh Coefficients Using the Kargupta-Park Top-down
Algorithm

Kargupta and Park (2001) give a “deterministic’ algorithm to find the Walsh coeffi-
cients of a function f with k-bounded epistasis. It is “top-down” since it does high-
order probes before low-order probes. In this section we show how this algorithm can
be expressed in terms of probes.

Let w,, be a maximal nonzero Walsh coefficient. The Maximal Probe Corollary
shows that P(f,m,c) = wy, for any ¢ € Bm. Thus, if f has k-bounded epistasis, and
if we do the probe P(f, m,0) where bc(m) = k, the result will be w,,. Thus, all of the
order-k Walsh coefficients can be computed by doing (f) probes, each of which uses 2%
function evaluations.

Let j be a mask with bc(j) = k — 1. Then Theorem 3 gives the equation

P(f,j, 0) =w; + Zwuwu(o) =w; + Zwu (3)
jCu JjCu

(Note that ,,(0) = 1.) The potentially nonzero Walsh coefficients in the summation are
all of order k£ and have been computed. Thus, w; can be computed from P(f, j,0) plus
these order-k Walsh coefficients. Let m be such that be(m) = k and j C m. If the Probe
Recursion Theorem is applied to P(f,m,0) with n = m @ j, then the first term in the

526 Evolutionary Computation Volume 12 Number 4

Efficient Linkage Discovery by Probing

summation is P(f, j,0). This shows that all function evaluations necessary to compute
P(f,7,0) have already been done in the computation of P(f,m,0). (This observation is
ours and is not included in (Kargupta and Park, 2001).)

The same idea can be used to compute the lower-order Walsh coefficients. Thus,
the Walsh coefficients are computed in order of decreasing bit count, starting with bit
count k.

8 Detecting linkage and computing the Walsh coefficients

Kargupta and Park (2001) give a “bottom up” randomized algorithm that finds the
nonzero Walsh coefficients. They suggest that they can find the values of these nonzero
Walsh coefficients, but the method to do this is not included in their algorithm, and so
presumably one applies the algorithm referred to in Section 7.

In this section, we give a well-specified algorithm that efficiently finds the nonzero
Walsh coefficients and computes their values. The algorithm consists of two passes.
The first proceeds in a bottom-up fashion to find which Walsh coefficients are nonzero,
and then it proceeds top-down to determine their values without doing any additional
function evaluations. (We assume that function evaluations are disproportionately ex-
pensive to compute.)

A key observation is that if probe backgrounds are determined by using a popula-
tion, as in the Munetomo/ Goldberg LINC algorithm, then higher order probes can be
computed relatively cheaply by using the function evaluations of previously computed
lower order probes. This is justified by Theorem 13 below. In other words, comput-
ing P(f, m,c) can be done with only one additional function evaluation as long as the
probes for all a, a C m, have been computed using the same background c.

Lemma 12 Let h(a,) be any 2-argument function. Given a value x:

S hlaiy=> Y hi®zi)

a€ By i€ By, 1€ By 2€ Biga

Proof:

The two sides of the equation are equal if for a given = they sum over the same set
of arguments to h. Beginning with the set of argument tuples for the left hand side we
transform it into the set of argument tuples for the right hand side.

Z Z h(a,i) = Z Z h(a,i)

a€ B, i€ B,, a:aCzx 1:1Ca

= > > h(ai)

a:aCzx i:1CaCx

Z Z h(a,17)

iCx a:tCaCx

=Y > h(i @ z,1)

:iCx z:iCiPzCx,iNz=0

=Y > hi®azi)

1:iCx z:zCidBx

=> Y hi®zi)

i€ Br 2€Biga

Evolutionary Computation Volume 12 Number 4 527

R.B. Heckendorn and A.H. Wright

Theorem 13 For any m € B, ¢ € B,

fmao = 3 (=2)*@P(f,a,0)

a€Bm,

This can be restated as:

(_2)bc(m)P(f7 m,c) = f(mac) — Z (_2)bc(a)P(f7 a,c)

a€B, \{m}

Proof:

P(f,a,c) ch(a) Z D@ fi @ c)

1€ By
()bc(a)ZbC(a)P(f a, C bc(a) Z bc(z)f @ C)
i€ By
Z (_2)bC(a)P(f7 (Z,C) T Z 1/11
a€ By i€ Ba

i®c)

Using Lemma 1Z2with

h(a, i) = ¢r(a)ir () fE @ c) : - r(z @)Pr() i@)

o
%3

MmMmM M

= Vi(z @i ® i) f(i D)
i€ By 2€ B

= > vr(2)
i€ Bm 2€ Bmai

By the Balanced Sum Theorem for Hyperplanes the inner sum is nonzero only if
1 € 'm @ i which can only happen if i = m. Therefore:

Z(NP (f a,c) = f(m @ c) Zwl f(m®c)

a€ B, z€ Bo

O

The algorithm takes advantage of previously computed function evaluations by
caching all function evaluations in a hash table. When the function f is applied to a bit
string, this hash table is checked before doing the actual function evaluation. A second
feature of the algorithm is that regions of the bit representation can be shown not to
contain any higher order epistasis and hence are not reexamined in later portions of
the algorithm.

The basic idea of the bottom-up part of the algorithm (TRAVERSE-HYPERGRAPH)
(See Figure 2) is to do a breadth-first traversal of the lattice of masks, starting with

528 Evolutionary Computation Volume 12 Number 4

Efficient Linkage Discovery by Probing

the empty mask, then looking at the order-1 masks, order-2 masks, etc. When a new
mask m is considered for inclusion in the linkage hypergraph, all submasks of order
be(m) — 1 are checked for membership in the hypergraph. If any of these submasks is
not in the hypergraph, then m cannot be in the hypergraph. If these tests succeed, then
a sequence of probes is done to determine if the mask is in the hypergraph.

Note that the maximum order & of epistasis is not an input to the algorithm. The
algorithm determines k. However, the algorithm may not be computationally tractable
if there are many high order subfunctions.

The backgrounds of the probes can be determined either by using a population
or by randomly choosing background strings. The first element of the population or
the first background is the all-zeros string since this simplifies the computation of the
Walsh coefficients in the top-down part of the algorithm. If a population is used, the
remainder of the population is chosen randomly. The value returned by the probe using
the all-zeros background is saved in the hash-table hypergraph which is also used to
determine whether a mask has been added to the hypergraph.

In addition to the queue used for the breadth-first traversal, the masks added to
the hypergraph are stored in a linked list hypergraphList which is traversed in the
top-down part of the algorithm.

TESTBYPROBES(a, N) does up to N probes using the mask a. (This is similar to the
Detect-Linkage linkage algorithm of Figure 1 and so is not provided.) If one of these
probes is nonzero (or greater than a tolerance in practice), then it returns the probe
value corresponding to the all-zeros string. If all probes are zero, then it returns null.
The value of N can depend on the bit-count of the mask a and can be based on Equation
2 of Theorem 9. Thus, some prior knowledge about k£ and the number of hyperedges
would be useful in order to apply Equation 2 The complexity analysis done in section
81 might be useful in this regard.

One way to do this would be to apportion parts of the error probability ¢ to masks
of different order. For example, if k& = 5, and assuming that one wants the overall
probability of error to be less than ¢, then one would use §/4 in Equation 2 for j =
1,2, 3,4 respectively.

In a practical implementation, one might want to add all masks of up to some
cardinality to hypergraphList even if TESTBYPROBES returns null. This would be es-
pecially true of the empty mask of order 0 since Equation Z2does not apply.

SUPERSET-LIST(m) is a list of masks a such that be(a) = be(m) + 1 and so that a is
obtained by adding a 1 to m to the right of the rightmost 1 of m. Note that if a is a mask
in the hypergraph, then it will have a subset m so that a €SUPERSET-LIST(m).

The top-down part of the algorithm (COMPUTE-WALSH-COEFS) (See Figure J) tra-
verses the hyperedges of hypergraph using the list hypergraphList from higher order
masks to lower order, that is in the reverse order from which they were added to the
hypergraph. The Walsh coefficients are computed using only the function evaluations
done in the bottom-up part of the algorithm.

A's an example, suppose that L = 4 and the fitness function is a sum of a function
that depends on positions {0, 1,2} and a function that depends on positions {1, 2, 3}.
The masks corresponding to the sets { }, {0}, {1}, {2}, {3}, {0, 1}, {0, 2} will be added to
hypergraphand to hypergraphList. TESTPROBES will return null for the mask correspond-
ing to {0, 3}. The masks corresponding to {1, 2}, {1, 3}, {2, 3}, {0, 1,2} will be added to
hypergraphand to hypergraphList. The masks corresponding to {0, 1,3} and {0, 2, 3} will
fail the subset test.

The algorithm is based on Equation 3 This equation would suggest that to com-

Evolutionary Computation Volume 12 Number 4 529

R.B. Heckendorn and A.H. Wright

TRAVERSE-HYPERGRA PH ()
population.initialize()
hypergraphList.initialize()
queue.initialize()

m«—{} // Empty mask
ProbeValue < TESTBYPROBES(m, N (be(m)))
if ProbeValue # null then
queue.add(m)
hypergraph[m] « ProbeValue
end if
while queue.not Empty() do
m «— queue.removel)
probeV alue «— hypergraph|m)|
for a € SUPERSET-LIST(m) do
if all subsets of a of cardinality be(m) are in the hypergraphList then
ProbeValue —TESTBYPROBES(a, N (bc(a)))
if ProbeValue # null then
queue.add(a)
hypergraphla] < ProbeV alue
hypergraphList.addFirst(a)
end if
end if
end for
end while

Figure 2 The Traverse-Hypergraph algorithm, which is the linkage detection portion
of the linkage detection/ Walsh coefficient computation algorithm.

pute w,, one would want to traverse those supersets of a that correspond to hyper-
edges. However, in the top-down algorithm we are already traversing these superset
hyperedges, and it is more efficient to add the Walsh coefficient of each of these super-
set hyperedges to its subsets, and this is what the algorithm does. In other words, as
the supersets of @ are traversed in the algorithm, their Walsh coefficients are added to
wCoe flal.

81 Complexity Analysis

In this section we give an analysis of the time-complexity of the TRAVERSE-
HYPERGRAPH algorithm in the case where the fitness function is an embedded land-
scape with randomly chosen components of a fixed order k. We suppose that the num-
ber s of such components grows linearly with the string length L.

This covers a large and important practical category of problems but is by no
means complete. We assume that k is fixed, and so our analysis is only in terms of the
string length L. A random fitness function is chosen by choosing M L order-k masks
with replacement from the set of (i) possible masks. All nonzero Walsh coefficients
of the fitness function must be contained within these masks. Otherwise, the fitness
function is arbitrary within this constraint.

This is almost the class of functions described by Gao (2003) as the pure random

530 Evolutionary Computation Volume 12 Number 4

Efficient Linkage Discovery by Probing

COMPUTE-WALSH-COEFS(hypergraphList)
for m € hypergraphList do //traverse in reverse order from order added
probeV alue «— hypergraph|m)|
if wCoef[m] # null then wCoef[m] — wCoef[m] + probeValue
else wCoef[m] — probeValue end if
foreach a C m do
if wCoefla] # null then wCoef[m] « wCoefla] — wCoefm)]
else wCoefla] «— —wCoefm] end if
end for
end for

Figure 3 Compute-Walsh-Coefs which is the top-down part of the linkage detec-
tion/ Walsh coefficient computation algorithm used to calculate the Walsh coefficients.

model F(L, s, k), except that he assumes that the supports for subfunctions are chosen
randomly without replacement from the (i) possible sets of size k, and we assume
random choice with replacement.

Strictly speaking, the analysis of this section applies to the version of the
TRAVERSE-HYPERGRAPH algorithm that uses random backgrounds for all probes and
that uses no function caching. Under the assumption that the epistasis order k is fixed,
this only changes the number of function evaluations by at most the constant factor of
2%, and thus does not change the asymptotic complexity.

Given a specific fitness function and given a mask a of order r, there are three pos-
sibilities for the mask. First, the mask may be a subset of a nonzero Walsh coefficient.
We will call this a type-1 mask Second, it may not be a subset of a nonzero Walsh coef-
ficient, but it may have an order — 1 submask which is a subset of a nonzero Walsh
coefficient. We will call this a type-2 mask Note that TEST-BY-PROBES must always
return null when called on a type-Z2 mask. And third, it may neither be a subset of
a nonzero Walsh coefficient nor have any order r» — 1 submasks which are subsets of
nonzero Walsh coefficients. We will call this a type-3mask N ote that a type-3mask will
never be tested in the TRAVERSE-H YPERGRAPH algorithm.

The number of probes done in a call to TEST-BY-PROBES is determined by Equation
2 of Theorem 9, and the number of function evaluations per probe is bounded by 2"
where r is the order of the mask. Corollary 11 shows that the number of probes is
O(log L).

The number of type-1 masks contained in one maximal Walsh coefficient of the
fitness function is bounded by 2*. Thus, under the assumption that k is fixed, the total
number of type-1 masks is O(L), and the number of function evaluations done in tests
of type-1masks is O(Llog L).

Given that a mask is of type-2 or type-3, we want to find the probability (over
fitness functions satisfying our assumptions) that it is of type-2

Lemma 14 Let m be a randomly chosen mask withbe(m) = k. Let a bea mask withbe(a) = r
suchthata ¢ m. Letb C a wherebce(b) = be(a) — 1. The probability that b C m is given by:

P(bCm)= m:bCm|—|m:aCm :(Q::jr_ll)_(i::)
=") = - msa Sl () (2)

Evolutionary Computation Volume 12 Number 4 331

R.B. Heckendorn and A.H. Wright

Proof: There are () possibilities for mask m with be(m) = k. Of these, (

k—r
’;::ﬂ) contain b. Thus, the number of masks m that contain b but do

-

L—r)

contain a, and (

not contain a is (). The formula of the lemma follows. O

Lemma 15 Let m be a randomly chosen mask withbe(m) = k. Let a bea mask withbe(a) = r
suchthata ¢ m. Let by, bs, ..., b, bedistinct masks withbe(b;) = be(a) — 1 andb C a for all

L—r+1_ (L—r
j=1,2,...,w. Then the probability that b; C m for somej is w(Q) where(@ = %

(k)_(k—r)

Proof: Note thatb; C m impliesb, ¢ m forall v # j. Lemma 14shows that P(b; C
m) = @ for each j = 1,2,...,w, and since these are disjoint events, the probability of
their union is the sum of their probabilities. Thus, P(3j . b; C m) = wQ. O

The Inclusion/ Exclusion Principle (Niven, 1965 from combinatorics is provided
for reference for the following lemma without proof:

Lemma 16 Let B;, i € Z, be a finite collection of sets. Then

" (U Bi) S Y () e

i€T w=1 gcT jeg
| T |=w

Note that if | Z| = 3, then the above lemma says that

P(Bl UByU Bg)
= P(Bl) + P(Bg) + P(Bg) - P(Bl ﬂBg) - P(Bl ﬂBg) - P(BgﬂBg) + P(Bl ﬂBQﬁBg)

Theorem 17 Let a be a mask withbc(a) = r. Let mq, ma, ..., ms be masks withbe(m;) = k
randomly and independently chosen such that a ¢ m; for any i = 1,2,...,s. (Since them;
are chosen with replacement, it is possible that m; = m; for somei # j.) The probability that
a is a type-2mask is given by

U(Lokrs) = 3 (1) (J) 1 - Q) v

j=0
where S L
(k’—r-{—l) - (k’—r)
L L—r
(k) - (kfr)
Proof: Let the order r — 1 subsets of a be by, bo, . .., b,.. In other words, by, bs, ..., b,
are distinct masks such that be(b;) = be(a) — 1 and b; C a for all 5.
Let B; be the event that b; ¢ m; foralli = 1,2,...,s. If any B; happens, then

a cannot be a type-2 mask. Thus, if A is the event that a is a type-2 mask, then the
complement A of A is the union of the B;. Thus, we have:

P(A)=1-"P (U Bj)

532 Evolutionary Computation Volume 12 Number 4

Q= ©)

Efficient Linkage Discovery by Probing

We want to apply the formula of Lemma 16, so we want to compute the probability of
the intersection of an arbitrary collection of Bjs.

Given a subset 7 C {1,2,...,r} with |J| = w, and given a fixed i, Lemma 15
shows that the probability that b; ¢ m, forall j € J is 1 — w@Q. Since the masks m; are
chosen independently, the probability that foralli = 1,2,...,s, b; € m; forall j € J is
(1 —w@)®. In other words,

JjeT

P(ﬂ Bj) = (1 —wQ)*

Note that there are (!) cardinality w subsets of {1,2,...,r}. Thus, applying the
formula of Lemma 16, we get that

=S () a - wer

w=0
O

A small example: Let L = 4, k = 3, s = 3. In this example, we will write masks as
binary strings. Let a = 0111 so thatr = 3. Let by = 0011, by = 0101, b3 = 0110. Then the
m,; are chosen from 3 possible order-3masks that do not contain a, namely ¢; = 1011,
co = 1101, and c3 = 1110. There are 27 ways to choose the m;, namely all sequences of
three choices from {cy, c2, c3} (with replacement). It is not hard to see that a is a type-2
mask if and only if each of ¢, c2, and c3 is chosen once. There are 6 out of the 27 ways
of choosing the m;s that satisfy this condition, so the probability that a is a type-2mask
is 6/27 = 2/9.

Applying the formula of Theorem 17 gives

G- 0-0)

1
CTH-n TO-0 3

and

P(ais atype-2mask)

:1—3(1—Q)3+3(1—2Q)3—(1—3Q)3:1—3-(§>3+3-(%>3—0:g

Another small example: Let L = 4,k = 2, = 2, s = 2. Without loss of generality,
we can choose a particular mask a, and ask what is the probability that it is a type-1
mask, a type-2 mask, or a type-3 mask. Thus, let us choose a = 0011. There are 6
possible order-k masks, and thus there are 6° = 6> = 36 possible fitness functions.
Thus, we are interested in the type of mask a for each of these 36 fitness functions. This
is given in the following table:

Evolutionary Computation Volume 12 Number 4 533

R.B. Heckendorn and A.H. Wright

0011 | 0101 | 0110 | 1001 | 1010 | 1100
0011 1 1 1 1 1 1
0101 1 3 2 3 2 3
0110 1 2 3 2 3 3
1001 1 3 2 3 2 3
1010 1 2 3 2 3 3
1100 1 3 3 3 3 3

From the table, we see that the probabilities that a is a type-1, type-2, and type-3
mask are 11/36, 17/36, and 8/36. The probability that a is a type-2 mask given that
it is of type-2 or type-3is 8/25. This corresponds to Theorem 17 where) = 2/5 and
U(L,k,r, s)=8/25.

A larger example: Let k¥ = 3 and s = 4 % L. For the sequence L =
(20,40, 80, 160, 320, 640) and r = 2, the values of U(L, k, r, s) given by Equation 4 are

(1999984, .999986, .999987, .999987, .999987, .999988)

For the same L sequence and r = 3, the probabilities are:
(.339127,.091055,.017298, .002692, .000376, .000050)

Note that there are (f) possible order r probes. Thus, the expected number of order
r probes should not exceed (f)U(L, k,r,s), where U(L, k,r, s) is given by Equation 4
For the above L sequence, for r = 2, these values are

(190.00, 779.99, 3159.96, 12719.84, 51039.36, 204477.46)
and for r = 3 these values are
(386.61,899.62,1421.17, 1803.42, 2036.64, 2165.73)

These values are confirmed by experiment.

Lemma 18

T

Z(—l)j(:)ji =0 fori=0,1,...,r—1
Z:(_l)j (r)f =(=1)"r! for i=r

Proof: Start with the polynomial
(z+1)" = Z <r) ! ©

J=0

Let ® denote the operator x - %. (In other words, the operator ® takes the derivative

with respect to z, and then multiplies by z.) After one application of ®, we get

O((z + 1)) = ar(z + 1)} = Z (T)jxj

i=o M

534 Evolutionary Computation Volume 12 Number 4

Efficient Linkage Discovery by Probing

After i < r applications of the operator to the left side of 6 we see that every term
includes an (z + 1) factor. After i < r applications of the operator to the right side of

Equation 6, we get
> ;)i
J

5=0
Substituting « = —1 gives the first equation of the lemma.

After r applications of the operator to the left side, we see that there is one term
rlz” that does not include an (z + 1) factor. After r applications of the operator to the

right side, we get
T
r .
> ()j’“:cf
=0
and again substituting = = —1 gives the second equation of the lemma. |

Next we collect some facts that will be useful in the proof of the next theorem.

Lemma 19)
SEES ™
(M) <& L~ o) ®
P = PR ©
I = -1

Sy ULE r (})i =06 (10

g j =\

Proof:

(L)_H§=§L—Z’<U

r r! - !

The proof of Equation 8is similar.

Equation 9 follows by factoring and canceling (f::) from the numerator and de-
nominator of Q.

Theorem 20 Let k and M be constant.
Forr = 1:
U(L,k,r,ML) =1

and thus the expected number of order- 1 type-2masks is O(L).
Forr = 2:
lim U(L,k,r, ML) =1 — 2e "M 4 ¢=2M

L—oo

Evolutionary Computation Volume 12 Number 4 535

R.B. Heckendorn and A.H. Wright

and thus the expected number of order-2 type-2masks is O(L?).
Forr = 3:

L—o00

lim <L>U(L,k,r, ML) = éM%% —1)3
T

and thus the expected number of order-3 type-2 masks is O(1).
Forr > 3:

L—o00

lim <L> U(L,k,r, ML) =0
T

and thus the expected number of order-r type-2masks is o(1).

Proof: Forr = 1itis easy to see that () = 1, and substituting into Equation 4 gives
U(L,k,1,ML) = 1. There are (¥) = O(L) possible order-1 masks, so the expected
number of type-2order-1 masks is O(L).

For r = 2, Equation 9shows that for large L, @ is approximately k/L. Substituting
k/L for @ in Equation 4, we have

ML ML
2
U(L,k,2,ML)z1—2(1—%> +(1_fk)

It is well known that lim, .o (1 —)™ = e, A change of variable gives the limit

result. Since there are (f) = O(L?) possible order-2 masks, the expected number of
type-2order-2masks is O(L?).
Forr > 3, we have

-()Zer ()2 (M) ey fhebinemia
ORI reg ()
= jii (f) (MZL) (-1)'Q’ ;(—1)7()j’ by Lemma 18 (11)

Given € > 0, we claim the existence of a u such that for any L with u < ML,

ECHeE()reen

1=u

536 Evolutionary Computation Volume 12 Number 4

Efficient Linkage Discovery by Probing

Use Lemma 19, we see that:

L ML , S ,
%) " L} Lz(l—r) 4 f
(7’) Z () Q E (]) c E r or some constant C'

i=u i=u

IN

= CL Z (rL>r)’
= CL" (rL>7")"> (rL*™)
=0
1
1—rL2-r
This quantity can be made arbitrarily small by choosing L sufficiently large. Thus, if u
is chosen to be sufficiently large, then the above can be made to be less than €/2. This
proves the claim.
For r = 3, the i = r = 3 term of the summation on line 11 is:

3 _ - . 3
%ML(ML 61)(ML 2)(_1)(16(122 1)) (—1)3! + O(L~Y)

313 3
_ Mk 17 (gf D +O(L™h)
We can choose L to be sufficiently large so that the O(L~') term above is less than 5.
For » > 3 and 3 < ¢ < u, the absolute value of the ith term of the summation in
Equation 11 is easily seen to be O(L~1). Thus, we can choose L to be sufficiently large
that this absolute value is less than .
We have shown that for r > 3, the summation of line 11 is less than e from the
claimed limit. a

- Ort Lr+u(2—r)

Corollary 21 For randomly chosen fitness functions whose maximal Walsh coefficients are
of order k, and where the number of maximal Walsh coefficients is O(L), the expected
number of function evaluations of the TRAVERSE-HYPERGRAPH and COMPUTE-WALSH-
COEFFICIENTS algorithms is O(L? log L). (This assumes that k and the algorithm error prob-
ability ¢ are constant as L increases.)

Thus, under the fitness function model where the maximal Walsh coefficients are at
most order £, and where the number of maximal Walsh coefficients grows linearly with
L, the TRAVERSE-HYPERGRAPH and COMPUTE-WALSH-COEFFICIENTS algorithms can
find the complete structure of fitness function with a probability of error for the entire
algorithm of at most ¢ using O(L? log L) function evaluations.

Note that the hypothesis of linear growth of the number of maximal Walsh coef-
ficients is satisfied by all fitness functions which are sums of nonoverlapping subfunc-
tions of fixed order and by the NK fitness functions when K is fixed. It is also satisfied
by k-MAXSAT problems where the ratio of clauses to variables is fixed.

9 Using the Walsh coefficients to define the function

Once the Walsh coefficients are known, the function f is completely known. This sec-
tion describes how f could be computed in this case.

The basic idea is to represent f as an embedded landscape. This could be done
with one subfunction per nonzero Walsh coefficient, but in many cases, it can be done
so that evaluation of f is more efficient.

Evolutionary Computation Volume 12 Number 4 337

R.B. Heckendorn and A.H. Wright

Theorem 22 The function f can be written as an embedded landscape where there is a sub-
function for each maximal Walsh coefficient. The support of a subfunction is the index of the
corresponding maximal Walsh coefficient.

Proof: For each index j such that w; # 0, let a(j) be the index of some maximal
nonzero Walsh coefficient so that j C a(j). For each index m of a maximal Walsh
coefficient, let

Im = Z[G(J) = m]ijj
J
Then clearly f =3 gm.

Let N be the set of maximal nonzero Walsh coefficients, NN;. Itis clear that the set of
all nonzero Walsh coefficients can be partitioned into subsets S;, one for each N; such
that V; isin S;. Yw; € S;, w; C ;. Note that this partitioning is not unique. Each subset
S; defines a subfunction whose support is ;. The subfunction f; can be enumerated
by performing the inverse Walsh transform on the vector of Walsh coefficients whose
indices are contained in the index of NN;.

O

The fast Walsh transform can be used to compute a function table for each subfunc-
tion of the embedded landscape. If the subfunction has a support mask of bit count £,
then the fast Walsh transform can be computed in time ©(k log k). Then the function f
can be computed by summing the values of the subfunctions.

10 How the algorithms of this paper can be applied in practice

The section describes in somewhat imprecise terms how the algorithms of this paper
might be used in the more general situation where the assumption of k-bounded epis-
tasis is not true, or is only approximately true.

101 Finding the linkage groups

The traditional genetic algorithm motivation for linkage detection algorithms has been
the preservation of building blocks (Munetomo and Goldberg, 1999b). Goldberg (1989)
defines a building blockas a “ highly-fit, short-defining-length schema”. While the mean-
ing of “ highly-fit” is not completely clear, a building block could be defined as a config-
uration of a small number of loci which is part of a highly fit solution to the problem.
Two loci are tightly linked if one or more of the Walsh coefficients of some of the masks
which contain both loci are relatively large, or equivalently if there is some background
so that a probe of the corresponding two-bit mask has relatively large magnitude. A
collection of loci is called a linkage group if they are pairwise tightly linked.

If a collection of loci form a linkage group, then a configuration of these loci might
be a building block. One theory is that genetic algorithms work by assembling build-
ing blocks into a high-fitness solution. (This theory is certainly true for some fitness
functions. It remains to be seen how widely applicable the theory is.) A ccording to this
theory, it is important that the crossover operation not be too disruptive of the build-
ing blocks, and this suggests that the crossover operation should be designed so that
linkage groups (groups of highly linked loci) are not overly disrupted by the crossover
operator.

We suggest the following method to find the linkage groups. Use the order-2
DETECT-LINKAGE algorithm to find the linkage graph, except that we also want to
use probes to measure the strength or weight of edges. For each mask of a nonzero
probe do a total of N probes. Then some measure of the overall magnitude of these

538 Evolutionary Computation Volume 12 Number 4

Efficient Linkage Discovery by Probing

probes will be used to weight the edges of the linkage graph. For example, this could
be the maximum absolute value of a probe, or the mean of the absolute values of the
probes.

Now consider the sequence of edge weights, sorted in decreasing order. If the
fitness function is approximately additively separable, and if there is not “ hidden epis-
tasis” which is not detected by the algorithm, then there should be a transition from
relatively large edge weights to relatively small edge weights. (Those edges connect-
ing loci which are in different separability components will have relatively small edge
weights.) Consider the subgraph of the linkage graph whose edges are the edges with
relatively large edge weights. If this graph has multiple components, then the vertices
of these components should be the linkage groups. If there is no “natural” transition
from relatively large weight edges to small weight edges, then the fitness function is
not approximately additively separable. This approach is similar to that proposed by
Munetomo (2002).

There has been extensive previous work on the “linkage learning problem”. Pro-
posed methods to solve the “linkage learning” problem include the perturbational
methods (Munetomo and Goldberg, 1999a) and this paper, the linkage learning ge-
netic algorithm (LLGA) (Harik and Goldberg, 2000, Chen and Goldberg, 2003), the fast
messy GA (Kargupta, 1996), and the ECGA (Extended Compact Genetic Algorithm, an
estimation of distribution algorithm) (Harik, 1999). Other estimation of distribution al-
gorithms such as the MIMIC algorithm (de Bonet et al., 1997) and the BOA algorithm
(Pelikan et al., 1999 can also solve linkage problems. All of these methods except the
perturbational method of Munetomo and Goldberg (1999) address the linkage problem
as part of trying to solve an optimization problem and thus have a somewhat different
focus from that of this paper and Munetomo and Goldberg (1999). The test functions
used in the LLGA and the ECGA approach are predominantly embedded landscapes
with nonoverlapping subfunctions where each subfunction is a trap function (Deb and
Goldberg, 1992). In these papers, sometimes a relatively small number of trap sub-
functions are embedded in a long genome with many other nonfunctional (constant)
subfunctions, and sometimes the trap functions are nonuniformly scaled. The LLGA
approach seems to be limited to learning the linkage for a small (less than 10) number
of nontrivial subfunctions if the subfunctions are uniformly scaled.

102 An estimation of distribution approach

Another approach is inspired by “ estimation of distribution” algorithms (Mtihlenbein
and Mahnig, 1999, Pelikan et al., 1999). The idea is to build a directed acyclic graph
model of the fitness function. The linkage graph described above which contains the
high-probe-weight edges is the underlying undirected graph. Note that if one does
multiple order-1 probes on the loci, then one also can get probe weights on the loci. This
gives a natural way to add directions to the edges of the graph—namely the direction
of an edge is from the locus of higher probe weight to the locus of lower probe weight.

The idea of an estimation-of-distribution algorithm is to use the graphical model of
the fitness function to choose the next generation population. Then selection is applied
to this population, and a new graphical model is computed to complete one genera-
tional cycle of the algorithm.

If results of the probes for a mask are consistent in sign, then the settings of all but
one of the loci for that mask will determine the setting of the remaining locus that will
increase the fitness function. For example, if all of the results of an order-1 probe for a
1-bit mask are of one sign, this says that there is one way to set the allele for that locus

Evolutionary Computation Volume 12 Number 4 539

R.B. Heckendorn and A.H. Wright

to increase the value of the fitness function which is consistent over the entire sample
used in doing the probes. If all of the results of an order-2 probe over a 2-bit mask are
of one sign, this says that the setting of one of the two bits will determine the other bit.

11 Empirical results

In this section, we first give empirical results on the Order-2 Linkage Detection Al-
gorithm of Section 6 to the “linkage learning” problem as it is defined in Harik and
Goldberg (2000). We give empirical evidence that the formulas of Theorem 9 apply
when probe backgrounds are chosen from a population (rather than randomly as in
the theorem), and to the algorithm of Section 8 Finally, we give some results that show
the size of problems that can be done on commonly available hardware at the time that
this paper was written.

The class of subfunctions that requires the largest number N of probes for the algo-
rithms of this paper are “ needle-in-the-haystack” functions which are constant except
at a single point. For these functions, an order-1 probe will return zero unless one of
the two points evaluated in doing the probe is the needle point. MAXSAT and one-max
are problems whose subfunctions are of this type.

The class of subfunctions requiring the next largest number of probes are the sub-
functions that are linear except at a single point. For these functions, an order-2 probe
will return zero unless one of the four points evaluated in doing the probe is the ex-
ceptional point. The concatenated trap functions (Deb and Goldberg, 1992) and the
deceptive functions (Goldberg et al., 1993 can be of this type.

One of test functions used in this section is an embedded landscape where the
subfunctions are linear with a randomly placed “ needle”. The coefficients of the linear
function are chosen randomly from the interval [0, 1]. The needle is a single point with a
value of 0.1 greater than the corresponding value given by the linear function. The sup-
port of each subfunction is randomly chosen when the subfunctions are overlapping,
and randomly chosen subject to the nonoverlapping constraint when the functions are
nonoverlapping. These functions are the same difficulty as trap functions for the algo-
rithms of this paper. (A trap function is a linear function with a systematically placed
needle.)

The algorithms of this paper were coded in Java and run on PC hard-
ware. Sean Luke's “Mersenne twister” Java random number generator was used
(http://www.cs.umd.edu/users/seanl/gp/) since the random number gener-
ator supplied with Java was found to have dependencies which affected the results.

11.1 The Order-2algorithm applied to nonoverlapping subfunctions

Our Order-2 Linkage Detection Algorithm, with sufficient CPU time as described by
the formulas of Theorem 9, can resolve the epistatic structure of a function with any
number of subfunctions?. To illustrate this, we ran the Order-2 Linkage Detection al-
gorithm with randomly generated background strings on 800-bit functions with 160
order-5 nonoverlapping subfunctions. Each subfunction was a linear function with a
randomly placed needle. The linkage graph of each subfunction is a complete graph
on 5vertices, and so the linkage graph for the whole fitness function consists of 160
components, each of which is a complete graph on 5vertices.

The first formula of Theorem 9says that 95 probes per potential linkage graph edge
are needed to achieve a 0.99 probability of detecting all edges of the linkage graph, and

2A's stated earlier even if the epistatic structure of a problem is completely determined the problem may,
of course, remain N P-complete and hence intractable.

540 Evolutionary Computation Volume 12 Number 4

Efficient Linkage Discovery by Probing

112 probes per edge are required to achieve 0.999 overall success probability.

However, the algorithm can solve the linkage learning problem (for nonoverlap-
ping subfunctions) with considerably less probes per potential edge since all edges do
not need to be detected to identify the components of the true linkage graph. This can
be done by finding enough edges so that the components of the discovered linkage
graph are the same as the components of the true linkage graph. This is illustrated
by the results given below for the Order-2 Linkage Detection Algorithm. The string
length was 800, and a value less than 10~!° was considered to be zero, and the 160
subfunctions were identically scaled. A run was considered successful only if all 160
components of the linkage graph were successfully identified.

Number of Number of function
probes per edge | Runs | Successes | evaluations per run
15| 200 164 19,176,000
20 | 200 197 25,568,000
30| 200 | 200 38,352,000

The CPU time per run for 15 probes per edge was about 35 minutes on a 2 GHz.
Pentium(© 4, and double that for 30 probes/ edge. The amount of memory used was
about 36 megabytes in either case (some of this was due to data structures relating to
checking whether the results were correct).

11.2 Overlapping subfunctions with backgrounds from a population

In this subsection we give empirical evidence that drawing background strings from a
population does not change the complexity results of Section 8 1.

The test function used in this subsection is an embedded landscape with 50 5-bit
subfunctions and a string length of 50. Each subfunction is linear with a randomly
placed “needle”. A value is considered to be zero if it is less than 10",

The algorithm used is that given in Section 8 The algorithm is considered to be
successful only if it correctly finds all hyperedges of the hypergraph. On smaller exam-
ples, when the algorithm finds all hyperedges, it correctly computes all Walsh coeffi-
cients. When the algorithm fails (on this class of functions), it is most likely to fail when
doing the order-Zprobes. Thus, the formula of Theorem 9should be applied with j = 2
and k = 5. The number of order-2 hyperedges is at most 50(;) = 500 since there are (3)
order-2 hyperedges per subfunction. However, some of these overlap, and the actual
number is about 420.

The algorithm of Section 8 was run for 1000 trials for each of N = 40, 50, 60, 70,
80,90, where N is the number of probes per potential hyperedge. (i.e., N is the pop-
ulation size.) The algorithm was also run with the same parameters using randomly
chosen backgrounds instead of backgrounds from a population. In addition, the first
equation of Theorem 9was solved for the success rate for the same values of N and with
j=2,k=25,and J = 420. These are shown in the table on the left below. The table on
the right shows the average number of function evaluations for these experiments.

These results suggest that when f is an embedded landscape with the number of
subfunctions being O(L), then the complexity is given by the formula of Theorem 9
even though populations were taken from a population rather than being randomly
generated. Further theory and/ or experiments are needed to confirm this hypothesis.

Evolutionary Computation Volume 12, Number 4 41

R.B. Heckendorn and A.H. Wright

A ccuracy Function Evaluations
N Theory Population Random N Population Random
40 01331 0222 0168 40 69008 279526
50 05839 0658 0648 50 85889 345577
60 08700 0891 0.888 60 102547 411381
70 09640 0963 0.967 70 119241 490876
80 09904 0992 0992 80 135907 540427
0O 09975 100 0995 0] 152501 604383

11.3 Solving some large problems

When the algorithm of Section 8is run with function evaluation caching, memory size
can be a limiting factor. To conserve memory, it is important that a bitstring encoding
be used for background strings. On Intel 32-bit hardware, the maximum amount of
memory that we could get from the Java virtual machine was about 1900 megabytes.

Under these limitations, the algorithm of Section 8 was able to find the structure
of randomly generated 1000 bit 3MAXSAT problems with 4300 clauses 8 times out of
10 using 24 trials per order-1 probe, 13 trials for order-2 probes, and 7 trials for higher
order probes. The run time was about 2.4 hours per instance on a 2GHz. machine, and
the number of function evaluations 6,420,000+ 2000

Functions with randomly generated subfunctions are much easier. The algorithm
of Section 8 was able to find the structure of 1200 bit problems with 150 randomly
generated nonoverlapping subfunctions 100times out of 100, The number of trials per
probe was 12,8,6,4,3,2,2,2 for order 1,2,3,...,8 probes respectively. The number
of function evaluations per instance was 5,768 258 and the time was about an hour per
instance on a 3GHz. Pentium(©) 4.

12 Conclusions

The strength of the perturbational approach used in this paper is that a probe gives
unambiguous information about the interaction of the variables involved in the probe
that is not contaminated by noise from the interaction of other variables. Thus, probes
can detect weak interactions between variables even when there are strong interactions
between other variables. On the other hand, a probe only gives information on the rela-
tionship between those variables involved in the probe, and if there are many potential
variable relationships to be tested, this means that many probes must be done.

This can be contrasted to methods that use either a random population or a popula-
tion that results from executing some stages of an evolutionary computation algorithm.
These methods are essentially using random or semirandom sampling to estimate the
interaction effects of variables. N ow the interaction effect of a specific collection of vari-
ables (the signal) is mixed up with the interaction effects of other variables (the noise),
and a large population may be needed to pick up the needed signal from the noise.
Furthermore, when there are overlapping blocks, it may be very difficult to character-
ize this noise, and this makes it very difficult to give rigorous complexity bounds for
this approach. However, these methods fit naturally into a population-based frame-
work for optimization, and thus it is more evident how to combine a sampling-based
linkage discovery with a sampling-based optimization.

This paper uses a very strict definition of what it means to successfully solve the
linkage discovery problem. We say that the problem is solved only if all of the rel-
evant hyperedges of the linkage hypergraph are successfully detected. Many papers
on linkage (Pelikan et al., 2000, Harik et al., 1999, Munetomo and Goldberg, 1999b)

542 Evolutionary Computation Volume 12, Number 4

Efficient Linkage Discovery by Probing

use a weaker definition of a successful solution: A successful solution finds some fixed
percentage of the blocks. Thus, as the problem size grows, there will be an increas-
ing number of blocks that are not successfully detected. Further, in order to find a
block where blocks are nonoverlapping, the algorithms in this paper only need to find
enough edges in the linkage hypergraph to connect all of the vertices corresponding to
that block.

There are two contributions of this paper. First, the paper gives a rigorous mathe-
matical foundation for perturbational methods for determining the epistatic structure
of a function from binary strings to the real numbers. These methods are closely related
to the Walsh basis representation of the function.

Second, the paper gives two new randomized algorithms to solve the problem of
detecting linkage (finding the components of nonlinearity) of a fitness function from
fixed length binary strings to the reals. Both algorithms work as well on fitness func-
tions with overlapping subfunctions (blocks) as they do on nonoverlapping subfunc-
tions. The first algorithm generalizes the LINC algorithm (Munetomo and Goldberg,
1999%; Munetomo and Goldberg, 1999a) to finding epistasis of arbitrary order. The
primary parameter in the algorithm is the number of probes. If the function has
k-bounded epistasis (is k-delineable in the terminology of Munetomo and Goldberg
(1999b), then rigorous bounds can be given for the number of probes that are needed,
and this leads to a complexity analysis of the algorithm. The second algorithm gen-
eralizes the algorithms of Kargupta and Park (2001). This algorithm both determines
the epistatic structure and finds the Walsh coefficients of a k-epistatic function. It is
more practical when most of the Walsh coefficients of order less than & are zero. This
algorithm is more efficient than the methods of Kargupta and Park (2001). A rigorous
complexity analysis is given when the number of subfunctions grows linearly with the
string length.

More research is needed in applying this class of algorithms to functions where the
assumptions of k-bounded epistasis and sparseness of the Walsh basis representation
are only approximately satisfied. Further research is also needed in understanding
how these results can be used by genetic algorithms and estimation of distribution
algorithms to take advantage of the epistatic structure of functions.

A cknowledgements

The authors would like to thank Michael Vose, Bill Derrick, and Mark Kayll for help
with mathematical questions. In particular, the proof of Lemma 181is due to Michael
Vose.

References

Braunstein, A., Mezard, M., Weigt, M., and Zecchina, R. (2003. Constraint
satisfaction by survey propagation. arXiv.org:Condensed Matter Abstracts
http:/ / arxiv.org/ abs/ cond-mat/ 0212451.

Brodie, E. D. (2000. Why Evolutionary Genetics Doesn’'t Always Add Up, pages 3-19.
Oxford University Press, Oxford, England.

Chen, Y. P. and Goldberg, D. E. (2003. Tightness time for the linkage learning genetic
algorithm. In et. al., E. C.-P, editor, Genetic and Evolutionary Computation - GECCO
2003 pages 837-849. Springer.

de Bonet, J. S., Isbell, Jr, C. L., and Viola, P. (1997). MIMIC: Finding optima by estimat-

Evolutionary Computation Volume 12 Number 4 543

R.B. Heckendorn and A.H. Wright

ing probability densities. In et. al., M. C. M., editor, Advances in Neural Information
Processing Systems, volume 9, page 424. MIT Press.

Deb, K. and Goldberg, D. E. (1992). Analyzing deception in trap functions. In FOGAZ2
pages 93-108 Palo Alto, CA. Morgan Kaufmann Publishers, Inc.

Gao, Y. (2003). Space complexity of estimation of distribution algorithms. Technical
report, University of Alberta.

Goldberg, D. (1989. Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley Publishing, Co., Reading, MA.

Goldberg, D. E., Deb, K., Kargupta, H., and Harik, G. (1993). Rapid, accurate opti-
mization of difficult optimization problems using fast messy genetic algorithms.
In Forrest, S., editor, Proceedings of the Fifth International Conference on Genetic Algo-
rithms, pages 56-64, San Mateo, California. Morgan Kaufman.

Harik, G. R. (1999). Linkage learning via probabilistic modeling in the ECGA. Technical
report, University of Illinois. IlliGAL technical report 99010,

Harik, G. R., Canti-Paz, E., Goldberg, D. E., and Miller, B. L. (1999). The gambler’s ruin
problem, genetic algorithms, and the sizing of populations. Evolutionary Computa-
tion, 7(3):231-253.

Harik, G. R. and Goldberg, D. E. (2000). Learning linkage through probabilistic expres-
sion. Computer Methods in A pplied Mechanics and Engineering, 186:295-310.

Heckendorn, R. B. (1999). Walsh Analysis, Epistasis, and Optimization Problem Difficulty
for Evolutionary Algorithms. PhD thesis, Colorado State University, Department of
Computer Science, Fort Collins, Colorado.

Heckendorn, R. B. (2002). Embedded landscapes. Evolutionary Computation, 10(4):345-
376.

Heckendorn, R. B. and Whitley, D. (1999). Predicting epistasis from mathematical mod-
els. Evolutionary Computation, 7(1):69-101.

Hogg, T., Huberman, B. A., and Williams, C. P. (1996). Special issue SAT problems.
Artificial Intelligence 81(1-2).

Kargupta, H. (1996). The gene expression messy genetic algorithm. In International
Conference on Evolutionary Computation, pages 814-819,

Kargupta, H. and Park, B. (2001). Gene expression and fast construction of distributed
evolutionary representation. Evolutionary Computation, 9(1):43-69.

Kauffman, S. A. (1993). The Origins of Order. Oxford University Press, Oxford, England.

Muhlenbein, H. and Mahnig, T. (1999). Convergence theory and application of the
factorized distribution algorithm. Journal of Computing and Information Technology,
7(1):19-32

Muhlenbein, H., Mahnig, T., and Rodriguez, A. O. (1999). Schemata, distributions and
graphical models in evolutionary optimization. J of Heuristics, 5:215-247.

544 Evolutionary Computation Volume 12, Number 4

Efficient Linkage Discovery by Probing

Munetomo, M. (2002a). Linkage identification based on epistasis measures to realize ef-
ficient genetic algorithms. In Proceedings of the Congress on Evolutionary Computation
(CEC) 2002 pages 1332-1337. IEEE Press.

Munetomo, M. (2002b). Linkage identification with epistasis measures considering
monotonicity conditions. In Proceedings of the 4th Asia-Pacific conference on simu-
lated annealing and learning (SEAL-02), pages 550-554.

Munetomo, M. and Goldberg, D. E. (1999a). Identifying linkage groups by non-linearity
/ non-monotonicity detection. In et. al., W. B., editor, Proc. of the Genetic and Evo-
lutionary Computation Conference volume 1, pages 433-440, Palo Alto, CA. Morgan
Kaufmann Publishers, Inc.

Munetomo, M. and Goldberg, D. E. (1999b). Linkage identification by non-
monotonicity detection for overlapping functions. Evolutionary Computation,
7(4):377-398.

Niven, I. (1965). Mathematics of Choice Mathematical A ssociation of A merica.

Papadimitriou, C. H. (1994). Computational Complexity. A ddison-Wesley Publishing,
Co.

Pelikan, M., Goldberg, D. E., and Cantu-Paz, E. (1999). BOA: The Bayesian optimiza-
tion algorithm. In Banzhaf, W., Daida, J, Eiben, A. E., Garzon, M. H., Honavar,
V., iela, M. J, and Smith, R. E., editors, Proceedings of the Genetic and Evolutionary
Computation Conference GECCO-99 volume I, pages 525-532, Orlando, FL. Morgan
Kaufmann Publishers, San Francisco, CA.

Pelikan, M., Goldberg, D. E., and Canti-Paz, E. (2000). Bayesian optimization
algorithm, population sizing, and time to convergence. IlliGAL Report No.
2000001, Illinois Genetic Algorithms Laboratory, University of Illinois at Urbana-
Champaign, Urbana, IL.

Rana, S., Heckendorn, R. B., and Whitley, D. (1999). A tractable Walsh analysis of SAT
and its implications for genetic algorithms. In Proceedings of the Fifteenth National
Conference on Artificial Intelligence, pages 392-397, Menlo Park, CA. AAAT Press.

Evolutionary Computation Volume 12 Number 4 545

	Efficient Linkage Discovery by Limited Probing
	Let us know how access to this document benefits you.
	Recommended Citation

	Efficient Linkage Discovery by Limited Probing.pdf

