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Efficient Linkage Discovery by Limited Probing
Robert B. Heckendorn heckendo@uidaho.eduDepartment of Computer Science, University of Idaho, Moscow, ID 83844-1010, USA
Alden H. Wright wright@cs.umt.eduDepartment of Computer Science, University of Montana, Missoula, MT 59812, USA

AbstractThis paper addresses the problemof discovering the structure of a fitness function frombinary strings to the reals under the assumption of bounded epistasis. Two loci (stringpositions) are epistatically linked if the effect of changing the allele (value) at one locusdepends on the allele at the other locus. Similarly, a group of loci are epistaticallylinked if the effect of changing the allele at one locus depends on the alleles at allother loci of the group. Under the assumption that the size of such groups of loci arebounded, and assuming that the function is given only as a “black box function”, thispaper presents and analyzes a randomized algorithm that finds the complete epistaticstructure of the function in the form of the Walsh coefficients of the function.
Keywordsepistasis, linkage, probing, MAXSAT, Walsh analysis, embedded landscapes
1 Introduction
Function optimization algorithms can be viewed as a search through a domain space ofthe function for a value that yields a maximum value in the range space of the function.In a computer, the search is dictated by the representation of the domain and the searchoperators on that representation. In this paper, we assume a domain of fixed-length bi-nary strings. In this domain, search often proceeds by modifying the bits of previouslyevaluated points in the search space. Understanding how the bits in the representationinteract with each other in defining the value of the function is critical to understandingthe function to be optimized. This interaction is called epistatic linkage or epistasis1.This paper addresses the problem of determining the epistatic linkage of a func-tion from binary strings to the reals. There is a close relationship between the Walshcoefficients of the function and “probes” (or perturbations) of the function. This rela-tionship leads to two linkage detection algorithms that generalize earlier algorithmsof the same type. A rigorous complexity analysis is given of the first algorithm. Thesecond algorithm not only detects the epistatic linkage, but also computes all of theWalsh coefficients. This algorithm is much more efficient than previous algorithms forthe same purpose.
2 Background
In very simple fitness functions each bit in the domain independently contributes tothe total value of the function. In optimizing these simple fitness functions, each bitcan be tested independently against a fixed background of other bits to determine the

1For this paper we do not draw a distinction between epistasis and linkage.
c©2004 by the Massachusetts Institute of Technology Evolutionary Computation 12(4): 517-545



R.B. Heckendorn and A.H. Wright

contribution of that bit. Proceeding through all the bits the optimum can be found inlinear time with respect to the number of bits.Most practical functions are not nearly as simple. For many, the contribution of abit in the domain to the value of the function is non-linear in that it is dependent on thestate of one or more other bits in the domain. This linkage effect is called epistasis andcan be succinctly defined:
“...if the effect of one unit is not predictable unless the value of anotherunit is known, then the effects are epistatic. . . in other words, the effect of a unitis context dependent” (Brodie, 2000).

Applied to the case of evolutionary computation, the “units” in the quote above refersto the positions in the problem representationwhose values are selected from an alpha-bet. The more units, or positions, that simultaneously interact (the higher the epistasis)the greater the degree of freedom to “hide” the optimum anywhere in the subdomainformed by the interacting units (Heckendorn and Whitley, 1999). Sets of units thatepistatically interact are called epistatic blocks. For example consider the function fdefined over three bits b2b1b0 defined as f(b2b1b0) = b2 ∗ b1 + b0. The value of b2’s con-tribution to the function is unaffected by the value of b0 however, b2’s contribution isdependent on the value of b1. Therefore, {b2, b1} forms one epistatic block and b0 formsa second epistatic block. These blocks are separable because they do not share any bitsand form subproblems which can be solved separately much like the previous inde-pendent bit example. Now consider function g(b2b1b0) = b2 ∗ b1 + b1 ∗ b0. This time wehave two epistatic blocks each of two bit positions, but the blocks overlap. Even withthis overlap, the value of b2’s contribution to the function is unaffected by the value of
b0 and so there is no epistasis between b0 and b2. Overlapping blocks form an overlyingconstraint satisfaction problem, but not a fundamental problem of epistasis. The twoaspects of a problem: epistasis and pattern of overlapping epistatic blocks, define thestructure of a problem.A large number of bits of epistasis is no guarantee of a difficult problem. Nor is lowepistasis a guarantee of an easy problem. In fact, 3-MAXSAT problems are examplesof problems of low epistasis in which all epistatic interactions are known and theyare provably NP-complete (Papadimitriou, 1994; Heckendorn, 1999). This means thateven if one is given the complete epistatic structure of a function for free a problemmay be intractable. Still, knowing the location of epistatically interacting blocks of bitsmay be used to guide a search for the optimum or the formulation of a representation(Munetomo andGoldberg, 1999b;Munetomo andGoldberg, 1999a; Kargupta and Park,2001).If the function is separable, each component can be solved separately. If the func-tion is close to separable, this can guide the choice of crossover operators. In this case,Mühlenbein and Mahnig (1999) also suggest applying the UMDA algorithm whereeach component makes up a string position with a higher-order alphabet. Mühlenbein,Mahnig, and Rodriguez (1999) give a factorized distribution algorithm (FDA) that ap-plies to additively decomposed functions (that we call embedded landscapes in thispaper). This is an example of an estimation-of-distribution algorithm, and the infor-mation produced by the algorithms of this paper should be very useful in this type ofalgorithm.This paper uses the assumption that the order of epistatic interaction between lociis bounded. In the terminology of this paper, the fitness function is assumed to have k-bounded epistasis. This is equivalent to an assumption that theWalsh coefficients of or-
518 Evolutionary Computation Volume 12, Number 4



Efficient Linkage Discovery by Probing

der greater than k of the fitness function are zero. This assumption is satisfied by someimportant classes of real-world fitness functions and some commonly used classes oftest functions. These include the k-deceptive functions of (Goldberg et al., 1993), theNK-fitness landscape (Kauffman, 1993), the k-CNF MAXSAT problems (Hogg et al.,1996; Rana et al., 1998), and constraint-satisfaction problems (Braunstein et al., 2003).The general problem of discovering epistatic linkage has been addressed directlyand indirectly by many papers. Munetomo and Goldberg showed a simple direct per-turbational approach to generalized linkage discovery over a binary alphabet in Mune-tomo and Goldberg (1999a,1999b).This basic approach has been extended in Muno-tomo (2002a,2002b). These papers also summarize some other approaches to the prob-lem, and further references are given in Section 10.1. Kargupta et al. (Kargupta andPark, 2001) have shown that for epistatically bounded functions, f , where the epistasisis known to be bounded by k bits, all the Walsh coefficients, a direct measure of themagnitude of epistasis, can be computed in time O(Lk), where L is the length of therepresentation.In this paper we present a theoretical framework for the detection of epistatic link-age and the computation of Walsh coefficients for epistatically bounded functions. TheWalsh coefficients completely describe the function and so completely characterize theepistatic linkage. The algorithms we present in this paper are black box algorithms inthat they assume minimal prior knowledge of the function being analyzed. This pa-per deals with perturbation methods, or what we call probes. We give a randomizedalgorithm for linkage detection which is based on our theoretical framework, and wegive rigorous complexity bounds for this algorithm. We extend this to another ran-domized algorithm that both detects linkage and computes the Walsh coefficients. Thealgorithm is analyzed under the assumption that the subfunctions of the function areof maximum order k, the support for the subfunctions is chosen randomly, and thenumber of subfunctions grows linearly with the string length.
3 Our Notation
The space of all bit strings of length L is denoted by B. The binary operators on Binclude ∧ which denotes bitwise AND, and ⊕ which denotes bitwise EXCLUSIVE-OR.An overbar (e.g., m) denotes 1’s complement. A string of all ones is denoted ~1. Sincethe L-bit binary representations of the integers in the interval [0, 2L) coincide with theelements of B, a bit string may be denoted by the corresponding integer. For example,the integer 2k, 0 ≤ k < L corresponds to the bit string with a single one in position
k, where bit positions are labeled from the right starting at 0. Thus, 22 ≡ 0000100for L = 7. It is convenient to think of a bit string i as corresponding to the set of bitpositions indicated by the 1 bits in i. Thus, we write i ⊆ j (i is contained in j) whenthe set corresponding to i is contained in the set corresponding to j, i.e., when i∧ j = i.If i ⊆ j and i 6= j we write i ⊂ j. The unitation or bit count function bc(i) of string
i is the number of ones in i. Given a mask m ∈ B, let the set Bm = {i ∈ B : i ⊆ m}.Note |Bm| = 2bc(m). Brackets are used to denote an indicator function: if expr is anexpression that may be true or false, then

[expr] =

{

1 if expr is true
0 otherwise

Evolutionary Computation Volume 12, Number 4 519
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4 Walsh Analysis and Embedded Landscapes
Walsh analysis provides a powerful way of looking at the interaction between bits(Heckendorn and Whitley, 1999). In this section we introduce some of the major ideasin Walsh Analysis that we will be using.Any function f : B→R can be written as a linear combination of Walsh functions:

f(x) =
∑

i∈B

wiψi(x)

where the ith Walsh function is defined as:
ψi(x) = (−1)bc(i∧x)

and the wi are referred to asWalsh coefficients. TheWalsh transform is a linear trans-form of the Walsh coefficients represented as a vector w in R2L to the function space
f in R2L . This is a change of basis transformation corresponding to the matrix Ψ with
Ψi,j = ψi(j).

f = Ψw and w =
1

2L
Ψf (1)

It is not hard to show that Ψ is symmetric andΨΨ = 2LI where I is the identity matrix.
f depends on a bit position k, 0 ≤ k < L, if there exists a j ∈ B such that f(j) 6=

f(j⊕2k). In other words, f depends on bit position k if flipping bit k changes the valueassigned to some string j. The support of f is the set of loci that f depends on. Thesupport mask of f is a bitstring in B with 1 bits in exactly and only those positions thatsupport f . By the definition the support mask of ψi is i.An embedded landscape is a function f : B→R which can be written in the form
f =

∑

gj where each subfunction gj has a support mask mj . Normally, there will besome restriction on the support set masks mj . The function f : B→R has k-boundedepistasis if it can be written as the sum of subfunctions each of whose support is a setof at most k bits. It has been shown, perhaps most recently in (Heckendorn, 2002):
Theorem 1 (K-bounded Landscape Theorem) A function f : B→R has k-bounded epistasis ifand only if wj = 0 ∀ bc(j) > k

Thus, f has k-bounded epistasis if and only if all of its Walsh coefficients of ordergreater than k are zero. The function f is linear if it has 1-bounded epistasis. The func-tion f is additively separable if it can be written as a sum of at least two subfunctionswhere the supports of all subfunctions are pairwise disjoint.
5 Probes
A probe is a way of determining epistatic properties of a function f : B→R by per-forming a series of specific function evaluations. For example, in order to determineif the first and third bits of the domain of a 16 bit function are epistatically interacting,the function can be evaluated at these four points:

f(1x1xxxxxxxxxxxxx)

f(1x0xxxxxxxxxxxxx)

f(0x1xxxxxxxxxxxxx)

f(0x0xxxxxxxxxxxxx)

520 Evolutionary Computation Volume 12, Number 4



Efficient Linkage Discovery by Probing

The x’s represent a constant background bit pattern that does not vary from evaluationto evaluation. If the difference between the evaluations of the first two functions is dif-ferent from the difference between the evaluations of the second two function, then weknow the bits are interacting. This process of probing function values can be formalizedand generalized in the concept of a probe.More specifically, a probe is:
P (f, m, c) =

1

2bc(m)

∑

i∈Bm

(−1)bc(i)f(i ⊕ c)

wherem ∈ B and c ∈ Bm. m is a bit mask that identifies the bits to be tested for epistaticinteraction and c is the static background of bits for the probe. The order of the probeis the number of ones in the mask, or bc(m). The direct computation of the value ofa probe requires 2bc(m) function evaluations. The constant 1
2bc(m) may be ignored forsome purposes, but is required if Walsh coefficients are to be calculated.

Theorem 2 (Walsh Function Probing)For any j, m ∈ B and c ∈ Bm,
P (ψj , m, c) =

{

ψj(c) if m ⊆ j

0 otherwise
Proof:

P (ψj , m, c) =
1

2bc(m)

∑

i∈Bm

(−1)bc(i)ψj(i ⊕ c)

=
1

2bc(m)

∑

i∈Bm

ψ~1(i)ψj(i ⊕ c)

=
1

2bc(m)

∑

i∈Bm

ψ~1(i)ψj(i)ψj(c)

=
1

2bc(m)
ψj(c)

∑

i∈Bm

ψj(i)

By the Balanced Sum Theorem for Hyperplanes (Heckendorn and Whitley, 1999) thesum is 2bc(m) if j ⊆ m which is the same as m ⊆ j and is 0 otherwise.
2

A probe is really probing for nonzeroWalsh coefficients by adding and subtractingover a set of Walsh coefficients. If the result is nonzero then one of the componentWalsh coefficients is nonzero. If it is zero then we can say very little without furtherinformation. The following theorem identifies the set of Walsh coefficients.
Theorem 3 (Probe Subset)For any m ∈ B and c ∈ Bm,

P (f, m, c) =
∑

j∈B

[m ⊆ j]wjψj(c)

where wj is the jth Walsh coefficient of f .
Evolutionary Computation Volume 12, Number 4 521
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Proof:
f =

∑

j∈B

wjψj

P (f, m, c) = P (
∑

j∈B

wjψj , m, c)

=
∑

j∈B

wjP (ψj , m, c) since P (f, m, c) is a linear transformation of f

=
∑

j∈B

[m ⊆ j]wjψj(c) by the Walsh Function Probing Theorem
2

Amaximal nonzero Walsh coefficient is a Walsh coefficient wm such that wm 6= 0and wj = 0 ∀ j ⊃ m.
Corollary 4 (Maximal Probe)If wm is a maximal nonzero Walsh coefficient, then for any c ∈ Bm,

P (f, m, c) = wm

Proof: It follows from Theorem 3 that
P (f, m, c) = wmψm(c)

And from the definition of a Walsh function: ψm(c) = (−1)bc(m∧c) = (−1)0 = 1.
2

A probe can be written as a sum of lower-order probes.
Theorem 5 (Probe Recursion)For any function f : B → R, any masks m, n ∈ B with n ⊆ m, and any c ∈ Bm :

P (f, m, c) =
1

2bc(n)

∑

i∈Bn

(−1)bc(i)P (f, m ⊕ n, i ⊕ c)

Proof: Any j ∈ Bm can be written uniquely as j = i ⊕ u where i ∈ Bn and
u ∈ Bm⊕n. Thus:

P (f, m, c) =
1

2bc(m)

∑

j∈Bm

(−1)bc(j)f(j ⊕ c)

=
1

2bc(n)

∑

i∈Bn

(−1)bc(i) 1

2bc(m⊕n)

∑

u∈Bm⊕n

(−1)bc(u)f(u ⊕ i ⊕ c)

=
1

2bc(n)

∑

i∈Bn

(−1)bc(i)P (f, m ⊕ n, i ⊕ c)

2

522 Evolutionary Computation Volume 12, Number 4
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Theorem 6 (Nonzero Probe Existence) Given a maximal nonzero Walsh coefficient wm, forany a: a ⊆ m and any c : c ∈ Bm, there exists an i ∈ Bm⊕a such that
P (f, a, i ⊕ c) 6= 0 ∀c ∈ Bm

Proof: By the Maximal Probe Corollary, P (f, m, c) = wm 6= 0 for any c ∈ Bm. Bythe Probe Recursion Theorem applied with n = m ⊕ a,
P (f, m, c) =

1

2bc(n)

∑

i∈Bn

(−1)bc(i)P (f, m ⊕ n, i ⊕ c)

Thus, there must exist an i ∈ Bn such that P (f, m ⊕ n, i ⊕ c) = P (f, a, i ⊕ c) 6= 0.
2

6 The Linkage Hypergraph
A hypergraph is a convenient way to think of the interaction between bits. A hyper-graph is a collection of vertices V together with a family of nonempty subsets E of
V called hyperedges. The vertex of the hypergraph can be used to represent a set ofepistatically dependent bits. A linkage hypergraph is a hypergraph that represents allthe sets of epistatically linked bits. A set of vertices, each corresponding to maskm 6= 0,is a hyperedge if there is a c ∈ Bm such that P (f, m, c) 6= 0. Therefore a hyperedge canbe identified by the corresponding mask. The order of a hyperedge is the number ofones in the mask. Gao proposed a similar graph corresponding to the order-2 hyper-edges the interaction graph (Gao, 2003).In view of Theorem 6, the mask m is a hyperedge if and only if there is a j ⊇ msuch that wj 6= 0. Thus, we have the following corollary.
Corollary 7 If m is a hyperedge of the hypergraph, and if a ⊆ m, then a is also a hyperedge.

The Order-j Linkage Detection Algorithm in Figure 1 constructs the set of order-jhyperedges of the linkage hypergraph. The order-2 version of this algorithm is similarto the LINC algorithm of (Munetomo and Goldberg, 1999b). However, they start witha population of strings. Then each probe is done using one of the strings of the popula-tion to provide the background for the probe. In Figure 1 we use a random background.Later in this article we will compare this approach with using a population.For an arbitrary function f it is impossible to conclude anything conclusively fromevaluating f at a subset of points. For example, if f would be k-epistatically boundedexcept for the function value at one point, then the above algorithm for j > k willreturn 0 for any probe unless the probe happens to sample the one exceptional point.For a large string length, the probability that this one exceptional point is sampled canbe very small.Thus, assumptions on f are needed in order to use the Order-j Linkage DetectionAlgorithm to make conclusions. The natural assumption is that f is k-epistaticallybounded. The following theorems give a worst-case complexity analysis of the Order-
j Linkage Detection Algorithm in this case. This will give us an upperbound on theamount of work to guarantee that all order-j hyperedges are detected with at leastprobability δ.
Theorem 8 (Nonzero Probe Probability) Let f be k-epistatically bounded and let m be a maskcorresponding to an order-j hyperedge of the linkage hypergraph of f . If c is a randomly chosenstring in Bm, then the probability that P (f, m, c) 6= 0 is at least 2j−k.
Evolutionary Computation Volume 12, Number 4 523
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DETECT-LINKAGE(j,N )begin
V ← {0, 1, . . . , L − 1}
E ← ∅for each mask m with bc(m) = j doif m /∈ E thenfor i ← 1 to N do

c ← a random string in Bmif P (f, m, c) 6= 0 then
E ← E ∪ {m}breakend ifend forend ifend forreturn Eend DETECT-LINKAGE

Figure 1: The Order-j Linkage Detection Algorithm using a random background string.
Proof: Since m is a hyperedge by the Nonzero Probe Existence Theorem there is a

u such that m ⊆ u and wu 6= 0. Without loss of generality we can assume that u has theproperty that u ⊂ v ⇒ wv = 0. By assumption, bc(u) ≤ k. Theorem 6 shows that thereis at least one i ∈ Bu⊕m such that P (f, m, i⊕ b) 6= 0 for any b ∈ Bu. The probability thatthe randomly selected background c matches some such i on the positions masked by
u ⊕ m is at least 2−bc(u⊕m) = 2bc(m)−bc(u) ≥ 2j−k.

2

The lower bound of Theorem 8 cannot be improved for functions that are k-epistatically bounded. To see this, start with a (j − 1)-epistatically bounded functionwhose support ismwith bc(m) = k, and then perturb the value of one point. Any probethat does not include the perturbed point will return a value of zero. Since an order-jprobe includes 2j points, and since there are 2k probes, the probability of including theperturbed point is 2j−k.
Theorem 9 Let f be k-epistatically bounded and let J be the number of order-j hyperedges inthe linkage hypergraph of f . If the number of iterations N in the Order-j Linkage DetectionAlgorithm is chosen so that either

N ≥

{

ln(1−δ1/J )
ln(1−2j−k) if j < k

1 if j = k
(2)

or
N ≥

{

−2k−j ln(1 − δ1/J) if j < k

1 if j = k

then the probability that all order-j hyperedges are detected is at least δ.
Proof: In the following, a “success” is the detection of a nonzero probe. Theorem8 shows that the probability of failure for one probe on one trial is at most 1 − 2j−k.

524 Evolutionary Computation Volume 12, Number 4
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Thus, the probability of failure on N independent trials is at most (1 − 2j−k)N , and theprobability of success on N trials is at least 1 − (1 − 2j−k)N . The probability of successon all J hyperedges is at least
(

1 − (1 − 2j−k)N
)J

Thus, we want to choose N so that
(

(1 − (1 − 2j−k))N
)J

≥ δ

1 − δ1/J ≥ (1 − 2j−k)N

ln(1 − δ1/J) ≥ N ln(1 − 2j−k)

ln(1 − δ1/J)

ln(1 − 2j−k)
≤ N

To prove the second formula, we need to show that
−2k−j ln(1 − δ1/J ) ≥

ln(1 − δ1/J )

ln(1 − 2j−k)

⇐⇒ 2k−j ≥ −
1

ln(1 − 2j−k)
by dividing both sides by − ln(1 − δ1/J )

⇐⇒ 2j−k ≤ − ln(1 − 2j−k) by inverting both sides .

By the Taylor series for− ln(1− x), we see that − ln(1− x) ≥ x, or that− ln(1− 2j−k) ≥
2j−k.These formulas are defined when j < k, but fail when j = k. Fortunately we knowby Maximal Probe Corollary that if the function is indeed k-epistatically bounded asingle probe is all that is required.

2

Lemma 10
lim

J→∞

− ln(1 − δ1/J )

lnJ
= 1

Proof: First, we apply l’Hôpital’s rule:
lim

J→∞

− ln(1 − δ1/J )

lnJ
= lim

J→∞

−δ1/J ln δ

J(1 − δ1/J )

The limit of the numerator is clearly ln δ.To evaluate the limit of the denominator, make the variable change x = 1/J , andtake the limit as x → 0. Then apply l’Hôpital’s rule again.
lim
x→0

1 − δx

x
= lim

x→0

δx ln δ

1
= ln δ

2

We next consider how the number N of iterations increases as the string lengthincreases for a class of fitness functions.
Evolutionary Computation Volume 12, Number 4 525
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Corollary 11 Assume a class of k-epistatically bounded fitness functions where the numberof maximal Walsh coefficients is O(L). If δ is constant, the number of function evaluations
required by the DETECT-LINKAGE algorithm is O

(

2k
(

L
j

)

(

lnL + ln
(

k
j

)

)). If j is constant,
then the number of function evaluations is O

(

2kLj lnL
).

Proof: By Theorem 9 it is sufficient to chooseN to be−2k−j ln(1−δ1/J ). For each ofthe N iterations of the inner loop a probe is done that requires 2j function evaluations.The outer loop is executed (

L
j

) times, so the total number of function evaluations is:
−2k

(

L
j

)

ln(1 − δ1/J), and by Lemma 10, this is O
(

2k
(

L
j

)

lnJ
).The number of order-j hyperedges in a single maximal Walsh coefficient of or-der k is bounded by (

k
j

), and we have assumed that the number of maximal (order k)
hyperedges is O(L), so J is O

(

(

k
j

)

L
). Thus, lnJ is O

(

lnL + ln
(

k
j

)

).
Note that ln

(

k
j

)

≤ ln
(

kj
)

= j ln k. If j is constant, then j ln k is O(ln L) so thelast result of the corollary follows. 2

Strictly speaking, Corollary 11 does not apply when probe backgrounds are chosenfrom a population (as is the case for the LINC algorithm of (Munetomo and Goldberg,1999b)) since the above analysis assumes that the backgrounds of probes are chosenindependently. However, our empirical results show that these formulas are quite ac-curate when the backgrounds are chosen from a population. (See Section 11.)For j = 2, this result can be compared to the population sizing result of Munetomoand Goldberg (1999b). If r is the probability of successfully detecting a single subfunc-tion, they give the population size needed as approximately −2k ln(1 − r). This trans-lates into−2kL2 ln(1−r) function evaluations. Since they don’t address the question ofwhether the probabilities of detecting subfunctions are independent of the subfunction,this does not translate into a statement about the overall probability (analogous to our
δ) of detecting all subfunctions.
7 Computing the Walsh Coefficients Using the Kargupta-Park Top-downAlgorithm
Kargupta and Park (2001) give a “deterministic” algorithm to find the Walsh coeffi-cients of a function f with k-bounded epistasis. It is “top-down” since it does high-order probes before low-order probes. In this section we show how this algorithm canbe expressed in terms of probes.Let wm be a maximal nonzero Walsh coefficient. The Maximal Probe Corollaryshows that P (f, m, c) = wm for any c ∈ Bm. Thus, if f has k-bounded epistasis, andif we do the probe P (f, m, 0) where bc(m) = k, the result will be wm. Thus, all of theorder-k Walsh coefficients can be computed by doing (

L
k

) probes, each of which uses 2k

function evaluations.Let j be a mask with bc(j) = k − 1. Then Theorem 3 gives the equation
P (f, j, 0) = wj +

∑

j⊂u

wuψu(0) = wj +
∑

j⊂u

wu (3)
(Note that ψu(0) = 1.) The potentially nonzero Walsh coefficients in the summation areall of order k and have been computed. Thus, wj can be computed from P (f, j, 0) plusthese order-k Walsh coefficients. Let m be such that bc(m) = k and j ⊆ m. If the ProbeRecursion Theorem is applied to P (f, m, 0) with n = m ⊕ j, then the first term in the
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summation is P (f, j, 0). This shows that all function evaluations necessary to compute
P (f, j, 0) have already been done in the computation of P (f, m, 0). (This observation isours and is not included in (Kargupta and Park, 2001).)The same idea can be used to compute the lower-order Walsh coefficients. Thus,the Walsh coefficients are computed in order of decreasing bit count, starting with bitcount k.
8 Detecting linkage and computing the Walsh coefficients
Kargupta and Park (2001) give a “bottom up” randomized algorithm that finds thenonzero Walsh coefficients. They suggest that they can find the values of these nonzeroWalsh coefficients, but the method to do this is not included in their algorithm, and sopresumably one applies the algorithm referred to in Section 7.In this section, we give a well-specified algorithm that efficiently finds the nonzeroWalsh coefficients and computes their values. The algorithm consists of two passes.The first proceeds in a bottom-up fashion to find which Walsh coefficients are nonzero,and then it proceeds top-down to determine their values without doing any additionalfunction evaluations. (We assume that function evaluations are disproportionately ex-pensive to compute.)A key observation is that if probe backgrounds are determined by using a popula-tion, as in the Munetomo/Goldberg LINC algorithm, then higher order probes can becomputed relatively cheaply by using the function evaluations of previously computedlower order probes. This is justified by Theorem 13 below. In other words, comput-ing P (f, m, c) can be done with only one additional function evaluation as long as theprobes for all a, a ⊂ m, have been computed using the same background c.
Lemma 12 Let h(a, i) be any 2-argument function. Given a value x:

∑

a∈Bx

∑

i∈Bm

h(a, i) =
∑

i∈Bx

∑

z∈Bi⊕x

h(i ⊕ z, i)

Proof:The two sides of the equation are equal if for a given x they sum over the same setof arguments to h. Beginning with the set of argument tuples for the left hand side wetransform it into the set of argument tuples for the right hand side.
∑

a∈Bx

∑

i∈Bm

h(a, i) =
∑

a:a⊆x

∑

i:i⊆a

h(a, i)

=
∑

a:a⊆x

∑

i:i⊆a⊆x

h(a, i)

=
∑

i:i⊆x

∑

a:i⊆a⊆x

h(a, i)

=
∑

i:i⊆x

∑

z:i⊆i⊕z⊆x,i∧z=0

h(i ⊕ z, i)

=
∑

i:i⊆x

∑

z:z⊆i⊕x

h(i ⊕ z, i)

=
∑

i∈Bx

∑

z∈Bi⊕x

h(i ⊕ z, i)
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2

Theorem 13 For any m ∈ B , c ∈ Bm,
f(m ⊕ c) =

∑

a∈Bm

(−2)bc(a)P (f, a, c)

This can be restated as:
(−2)bc(m)P (f, m, c) = f(m ⊕ c) −

∑

a∈Bm\{m}

(−2)bc(a)P (f, a, c)

Proof:
P (f, a, c) =

1

2bc(a)

∑

i∈Ba

(−1)bc(i)f(i ⊕ c)

(−1)bc(a)2bc(a)P (f, a, c) = (−1)bc(a)
∑

i∈Ba

(−1)bc(i)f(i ⊕ c)

∑

a∈Bm

(−2)bc(a)P (f, a, c) =
∑

a∈Bm

ψ~1(a)
∑

i∈Ba

ψ~1(i)f(i ⊕ c)

=
∑

a∈Bm

∑

i∈Ba

ψ~1(a)ψ~1(i)f(i ⊕ c)

Using Lemma 12 with
h(a, i) = ψ~1(a)ψ~1(i)f(i ⊕ c) : =

∑

i∈Bm

∑

z∈Bm⊕i

ψ~1(z ⊕ i)ψ~1(i)f(i ⊕ c)

=
∑

i∈Bm

∑

z∈Bm⊕i

ψ~1(z ⊕ i ⊕ i)f(i ⊕ c)

=
∑

i∈Bm

f(i ⊕ c)
∑

z∈Bm⊕i

ψ~1(z)

By the Balanced Sum Theorem for Hyperplanes the inner sum is nonzero only if
~1 ⊆ m ⊕ i which can only happen if i = m. Therefore:

∑

a∈Bm

(−2)bc(a)P (f, a, c) = f(m ⊕ c)
∑

z∈B0

ψ~1(z) = f(m ⊕ c)

2

The algorithm takes advantage of previously computed function evaluations bycaching all function evaluations in a hash table. When the function f is applied to a bitstring, this hash table is checked before doing the actual function evaluation. A secondfeature of the algorithm is that regions of the bit representation can be shown not tocontain any higher order epistasis and hence are not reexamined in later portions ofthe algorithm.The basic idea of the bottom-up part of the algorithm (TRAVERSE-HYPERGRAPH)(See Figure 2) is to do a breadth-first traversal of the lattice of masks, starting with
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the empty mask, then looking at the order-1 masks, order-2 masks, etc. When a newmask m is considered for inclusion in the linkage hypergraph, all submasks of order
bc(m) − 1 are checked for membership in the hypergraph. If any of these submasks isnot in the hypergraph, then m cannot be in the hypergraph. If these tests succeed, thena sequence of probes is done to determine if the mask is in the hypergraph.Note that the maximum order k of epistasis is not an input to the algorithm. Thealgorithm determines k. However, the algorithm may not be computationally tractableif there are many high order subfunctions.The backgrounds of the probes can be determined either by using a populationor by randomly choosing background strings. The first element of the population orthe first background is the all-zeros string since this simplifies the computation of theWalsh coefficients in the top-down part of the algorithm. If a population is used, theremainder of the population is chosen randomly. The value returned by the probe usingthe all-zeros background is saved in the hash-table hypergraph which is also used todetermine whether a mask has been added to the hypergraph.In addition to the queue used for the breadth-first traversal, the masks added tothe hypergraph are stored in a linked list hypergraphList which is traversed in thetop-down part of the algorithm.TESTBYPROBES(a, N) does up to N probes using the mask a. (This is similar to theDetect-Linkage linkage algorithm of Figure 1 and so is not provided.) If one of theseprobes is nonzero (or greater than a tolerance in practice), then it returns the probevalue corresponding to the all-zeros string. If all probes are zero, then it returns null.The value ofN can depend on the bit-count of the mask a and can be based on Equation2 of Theorem 9. Thus, some prior knowledge about k and the number of hyperedgeswould be useful in order to apply Equation 2. The complexity analysis done in section8.1 might be useful in this regard.One way to do this would be to apportion parts of the error probability δ to masksof different order. For example, if k = 5, and assuming that one wants the overallprobability of error to be less than δ, then one would use δ/4 in Equation 2 for j =
1, 2, 3, 4 respectively.In a practical implementation, one might want to add all masks of up to somecardinality to hypergraphList even if TESTBYPROBES returns null. This would be es-pecially true of the empty mask of order 0 since Equation 2 does not apply.SUPERSET-LIST(m) is a list of masks a such that bc(a) = bc(m) + 1 and so that a isobtained by adding a 1 to m to the right of the rightmost 1 of m. Note that if a is a maskin the hypergraph, then it will have a subset m so that a ∈SUPERSET-LIST(m).The top-down part of the algorithm (COMPUTE-WALSH-COEFS) (See Figure 3) tra-verses the hyperedges of hypergraph using the list hypergraphList from higher ordermasks to lower order, that is in the reverse order from which they were added to thehypergraph. The Walsh coefficients are computed using only the function evaluationsdone in the bottom-up part of the algorithm.As an example, suppose that L = 4 and the fitness function is a sum of a functionthat depends on positions {0, 1, 2} and a function that depends on positions {1, 2, 3}.Themasks corresponding to the sets { }, {0}, {1}, {2}, {3}, {0, 1}, {0, 2}will be added tohypergraph and to hypergraphList. TESTPROBESwill return null for the mask correspond-ing to {0, 3}. The masks corresponding to {1, 2}, {1, 3}, {2, 3}, {0, 1, 2}will be added tohypergraph and to hypergraphList. The masks corresponding to {0, 1, 3} and {0, 2, 3}willfail the subset test.The algorithm is based on Equation 3. This equation would suggest that to com-
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TRAVERSE-HYPERGRAPH()
population.initialize()
hypergraphList.initialize()
queue.initialize()
m ← { } // Empty mask
ProbeV alue ←TESTBYPROBES(m, N(bc(m)))if ProbeV alue 6= null then

queue.add(m)
hypergraph[m] ← ProbeV alueend ifwhile queue.notEmpty() do
m ← queue.remove()
probeV alue ← hypergraph[m]for a ∈ SUPERSET-LIST(m) doif all subsets of a of cardinality bc(m) are in the hypergraphList then

ProbeV alue ←TESTBYPROBES(a, N(bc(a)))if ProbeV alue 6= null then
queue.add(a)
hypergraph[a] ← ProbeV alue
hypergraphList.addF irst(a)end ifend ifend forend while

Figure 2: The Traverse-Hypergraph algorithm, which is the linkage detection portionof the linkage detection/Walsh coefficient computation algorithm.
pute wa, one would want to traverse those supersets of a that correspond to hyper-edges. However, in the top-down algorithm we are already traversing these supersethyperedges, and it is more efficient to add the Walsh coefficient of each of these super-set hyperedges to its subsets, and this is what the algorithm does. In other words, asthe supersets of a are traversed in the algorithm, their Walsh coefficients are added to
wCoef [a].
8.1 Complexity Analysis
In this section we give an analysis of the time-complexity of the TRAVERSE-HYPERGRAPH algorithm in the case where the fitness function is an embedded land-scape with randomly chosen components of a fixed order k. We suppose that the num-ber s of such components grows linearly with the string length L.This covers a large and important practical category of problems but is by nomeans complete. We assume that k is fixed, and so our analysis is only in terms of thestring length L. A random fitness function is chosen by choosing ML order-k maskswith replacement from the set of (

L
k

) possible masks. All nonzero Walsh coefficientsof the fitness function must be contained within these masks. Otherwise, the fitnessfunction is arbitrary within this constraint.This is almost the class of functions described by Gao (2003) as the pure random
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COMPUTE-WALSH-COEFS(hypergraphList)for m ∈ hypergraphList do //traverse in reverse order from order added
probeV alue ← hypergraph[m]if wCoef [m] 6= null then wCoef [m] ← wCoef [m] + probeV alueelse wCoef [m] ← probeV alue end iffor each a ⊂ m doif wCoef [a] 6= null then wCoef [m] ← wCoef [a] − wCoef [m]else wCoef [a] ← −wCoef [m] end ifend forend for

Figure 3: Compute-Walsh-Coefs which is the top-down part of the linkage detec-tion/Walsh coefficient computation algorithm used to calculate the Walsh coefficients.
model F(L, s, k), except that he assumes that the supports for subfunctions are chosenrandomly without replacement from the (

L
k

) possible sets of size k, and we assumerandom choice with replacement.Strictly speaking, the analysis of this section applies to the version of theTRAVERSE-HYPERGRAPH algorithm that uses random backgrounds for all probes andthat uses no function caching. Under the assumption that the epistasis order k is fixed,this only changes the number of function evaluations by at most the constant factor of
2k, and thus does not change the asymptotic complexity.Given a specific fitness function and given a mask a of order r, there are three pos-sibilities for the mask. First, the mask may be a subset of a nonzero Walsh coefficient.We will call this a type-1 mask. Second, it may not be a subset of a nonzero Walsh coef-ficient, but it may have an order r − 1 submask which is a subset of a nonzero Walshcoefficient. We will call this a type-2 mask. Note that TEST-BY-PROBES must alwaysreturn null when called on a type-2 mask. And third, it may neither be a subset ofa nonzero Walsh coefficient nor have any order r − 1 submasks which are subsets ofnonzero Walsh coefficients. We will call this a type-3 mask. Note that a type-3 mask willnever be tested in the TRAVERSE-HYPERGRAPH algorithm.The number of probes done in a call to TEST-BY-PROBES is determined by Equation2 of Theorem 9, and the number of function evaluations per probe is bounded by 2r

where r is the order of the mask. Corollary 11 shows that the number of probes is
O(log L).The number of type-1 masks contained in one maximal Walsh coefficient of thefitness function is bounded by 2k. Thus, under the assumption that k is fixed, the totalnumber of type-1 masks is O(L), and the number of function evaluations done in testsof type-1 masks is O(L log L).Given that a mask is of type-2 or type-3, we want to find the probability (overfitness functions satisfying our assumptions) that it is of type-2.
Lemma 14 Let m be a randomly chosen mask with bc(m) = k. Let a be a mask with bc(a) = rsuch that a * m. Let b ⊂ a where bc(b) = bc(a) − 1. The probability that b ⊆ m is given by:

P (b ⊆ m) =
|m : b ⊆ m| − |m : a ⊆ m|

|m : bc(m) = k| − |m : a ⊆ m|
=

(

L−r+1
k−r+1

)

−
(

L−r
k−r

)

(

L
k

)

−
(

L−r
k−r

)
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Proof: There are (

L
k

) possibilities for mask m with bc(m) = k. Of these, (

L−r
k−r

)

contain a, and (

L−r+1
k−r+1

) contain b. Thus, the number of masks m that contain b but donot contain a is (

L−r+1
k−r+1

)

−
(

L−r
k−r

). The formula of the lemma follows. 2

Lemma 15 Let m be a randomly chosen mask with bc(m) = k. Let a be a mask with bc(a) = rsuch that a * m. Let b1, b2, . . . , bw be distinct masks with bc(bj) = bc(a)− 1 and b ⊂ a for all
j = 1, 2, . . . , w. Then the probability that bj ⊆ m for some j is wQ where Q =

(L−r+1
k−r+1)−(L−r

k−r)
(L

k)−(L−r
k−r)

.
Proof: Note that bj ⊆ m implies bv * m for all v 6= j. Lemma 14 shows that P (bj ⊆

m) = Q for each j = 1, 2, . . . , w, and since these are disjoint events, the probability oftheir union is the sum of their probabilities. Thus, P (∃j . bj ⊆ m) = wQ. 2

The Inclusion/Exclusion Principle (Niven, 1965) from combinatorics is providedfor reference for the following lemma without proof:
Lemma 16 Let Bi, i ∈ I, be a finite collection of sets. Then

P

(

⋃

i∈I

Bi

)

=

|I|
∑

w=1

(−1)w+1
∑

J⊆I

|J |=w

⋂

j∈J

P (Bj)

Note that if |I| = 3, then the above lemma says that
P (B1 ∪ B2 ∪ B3)

= P (B1) + P (B2) + P (B3) − P (B1∩B2) − P (B1∩B3) − P (B2∩B3) + P (B1∩B2∩B3)

Theorem 17 Let a be a mask with bc(a) = r. Let m1, m2, . . . , ms be masks with bc(mi) = krandomly and independently chosen such that a * mi for any i = 1, 2, . . . , s. (Since the miare chosen with replacement, it is possible that mi = mj for some i 6= j.) The probability that
a is a type-2 mask is given by

U(L, k, r, s) =

r
∑

j=0

(−1)j

(

r

j

)

(1 − jQ)s (4)
where

Q =

(

L−r+1
k−r+1

)

−
(

L−r
k−r

)

(

L
k

)

−
(

L−r
k−r

) (5)
Proof: Let the order r−1 subsets of a be b1, b2, . . . , br. In other words, b1, b2, . . . , brare distinct masks such that bc(bj) = bc(a) − 1 and bi ⊂ a for all j.Let Bj be the event that bj * mi for all i = 1, 2, . . . , s. If any Bj happens, then

a cannot be a type-2 mask. Thus, if A is the event that a is a type-2 mask, then thecomplement A of A is the union of the Bj . Thus, we have:
P (A) = 1 − P





r
⋃

j=1

Bj
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We want to apply the formula of Lemma 16, so we want to compute the probability ofthe intersection of an arbitrary collection of Bjs.Given a subset J ⊆ {1, 2, . . . , r} with |J | = w, and given a fixed i, Lemma 15shows that the probability that bj * mi for all j ∈ J is 1 − wQ. Since the masks mi arechosen independently, the probability that for all i = 1, 2, . . . , s, bj * mi for all j ∈ J is
(1 − wQ)s. In other words,

P





⋂

j∈J

Bj



 = (1 − wQ)s

Note that there are (

r
w

) cardinality w subsets of {1, 2, . . . , r}. Thus, applying theformula of Lemma 16, we get that
P (A) = 1 −

r
∑

w=1

(−1)w+1

(

r

w

)

(1 − wQ)s

=
∑

w=0

(−1)w

(

r

w

)

(1 − wQ)s

2

A small example: Let L = 4, k = 3, s = 3. In this example, we will write masks asbinary strings. Let a = 0111 so that r = 3. Let b1 = 0011, b2 = 0101, b3 = 0110. Then the
mi are chosen from 3 possible order-3 masks that do not contain a, namely c1 = 1011,
c2 = 1101, and c3 = 1110. There are 27 ways to choose the mi, namely all sequences ofthree choices from {c1, c2, c3} (with replacement). It is not hard to see that a is a type-2mask if and only if each of c1, c2, and c3 is chosen once. There are 6 out of the 27 waysof choosing the mis that satisfy this condition, so the probability that a is a type-2 maskis 6/27 = 2/9.Applying the formula of Theorem 17 gives

Q =

(

L−r+1
k−r+1

)

−
(

L−r
k−r

)

(

L
k

)

−
(

L−r
k−r

) =

(

2
1

)

−
(

1
0

)

(

4
3

)

−
(

1
0

) =
1

3

and
P (a is a type-2 mask )

= 1 − 3(1 − Q)3 + 3(1 − 2Q)3 − (1 − 3Q)3 = 1 − 3 ·

(

2

3

)3

+ 3 ·

(

1

3

)3

− 0 =
2

9

Another small example: Let L = 4,k = 2, r = 2, s = 2. Without loss of generality,we can choose a particular mask a, and ask what is the probability that it is a type-1mask, a type-2 mask, or a type-3 mask. Thus, let us choose a = 0011. There are 6possible order-k masks, and thus there are 6s = 62 = 36 possible fitness functions.Thus, we are interested in the type of mask a for each of these 36 fitness functions. Thisis given in the following table:
Evolutionary Computation Volume 12, Number 4 533



R.B. Heckendorn and A.H. Wright

0011 0101 0110 1001 1010 11000011 1 1 1 1 1 10101 1 3 2 3 2 30110 1 2 3 2 3 31001 1 3 2 3 2 31010 1 2 3 2 3 31100 1 3 3 3 3 3
From the table, we see that the probabilities that a is a type-1, type-2, and type-3mask are 11/36, 17/36, and 8/36. The probability that a is a type-2 mask given thatit is of type-2 or type-3 is 8/25. This corresponds to Theorem 17 where Q = 2/5 and

U(L, k, r, s) = 8/25.A larger example: Let k = 3 and s = 4 ∗ L. For the sequence L =
〈20, 40, 80, 160, 320, 640〉 and r = 2, the values of U(L, k, r, s) given by Equation 4 are

〈.999984, .999986, .999987, .999987, .999987, .999988〉

For the same L sequence and r = 3, the probabilities are:
〈.339127, .091055, .017298, .002692, .000376, .000050〉

Note that there are (

L
r

) possible order r probes. Thus, the expected number of order
r probes should not exceed (

L
r

)

U(L, k, r, s), where U(L, k, r, s) is given by Equation 4.For the above L sequence, for r = 2, these values are
〈190.00, 779.99, 3159.96, 12719.84, 51039.36, 204477.46〉

and for r = 3 these values are
〈386.61, 899.62, 1421.17, 1803.42, 2036.64, 2165.73〉

These values are confirmed by experiment.
Lemma 18

r
∑

j=0

(−1)j

(

r

j

)

ji = 0 for i = 0, 1, . . . , r − 1

r
∑

j=0

(−1)j

(

r

j

)

ji = (−1)rr! for i = r

Proof: Start with the polynomial
(x + 1)r =

r
∑

j=0

(

r

j

)

xj (6)
Let Φ denote the operator x · d

dx . (In other words, the operator Φ takes the derivativewith respect to x, and then multiplies by x.) After one application of Φ, we get
Φ((x + 1)r) = xr(x + 1)r−1 =

r
∑

j=0

(

r

j

)

jxj
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After i < r applications of the operator to the left side of 6, we see that every termincludes an (x + 1) factor. After i < r applications of the operator to the right side ofEquation 6, we get
r

∑

j=0

(

r

j

)

jixj

Substituting x = −1 gives the first equation of the lemma.After r applications of the operator to the left side, we see that there is one term
r!xr that does not include an (x + 1) factor. After r applications of the operator to theright side, we get

r
∑

j=0

(

r

j

)

jrxj

and again substituting x = −1 gives the second equation of the lemma. 2

Next we collect some facts that will be useful in the proof of the next theorem.
Lemma 19

(

L

r

)

≤
Lr

r!
= O(Lr) (7)

(

ML

i

)

≤
(ML)i

i!
= O(Li) (8)

Q =
L−r+1
k−r+1 − 1

∏r−1
i=0

L−i
k−i − 1

= O(L1−r) (9)
∣

∣

∣

∣

∣

∣

r
∑

j=0

(−1)j

(

r

j

)

ji

∣

∣

∣

∣

∣

∣

≤
r

∑

j=0

(

r

j

)

ji = O(ri) (10)

Proof:
(

L

r

)

=

∏r−1
i=0 L − i

r!
≤

Lr

r!

The proof of Equation 8 is similar.Equation 9 follows by factoring and canceling (

L−r
k−r

) from the numerator and de-nominator of Q.
r

∑

j=0

(

r

j

)

ji ≤ ri
r

∑

j=0

(

r

j

)

= ri2r = O(ri)

2

Theorem 20 Let k and M be constant.For r = 1:
U(L, k, r, ML) = 1

and thus the expected number of order-1 type-2 masks is O(L).For r = 2:
lim

L→∞
U(L, k, r, ML) = 1 − 2e−kM + e−2kM
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and thus the expected number of order-2 type-2 masks is O(L2).For r = 3:
lim

L→∞

(

L

r

)

U(L, k, r, ML) =
1

6
M3k3(k − 1)3

and thus the expected number of order-3 type-2 masks is O(1).For r > 3:
lim

L→∞

(

L

r

)

U(L, k, r, ML) = 0

and thus the expected number of order-r type-2 masks is o(1).
Proof: For r = 1 it is easy to see that Q = 1, and substituting into Equation 4 gives

U(L, k, 1, ML) = 1. There are (

L
r

)

= O(L) possible order-1 masks, so the expectednumber of type-2 order-1 masks is Θ(L).For r = 2, Equation 9 shows that for large L, Q is approximately k/L. Substituting
k/L for Q in Equation 4, we have

U(L, k, 2, ML) ≈ 1 − 2

(

1 −
k

L

)ML

+

(

1 −
2k

L

)ML

It is well known that limn→∞

(

1 − 1
n

)nx
= e−x. A change of variable gives the limitresult. Since there are (

L
r

)

= O(L2) possible order-2 masks, the expected number oftype-2 order-2 masks is Θ(L2).For r ≥ 3, we have
(

L

r

)

U(L, k, r, ML) =
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Given ε > 0, we claim the existence of a u such that for any L with u ≤ ML,
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536 Evolutionary Computation Volume 12, Number 4



Efficient Linkage Discovery by Probing

Use Lemma 19, we see that:
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) ∞
∑
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)
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∑
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)
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∞
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This quantity can be made arbitrarily small by choosing L sufficiently large. Thus, if uis chosen to be sufficiently large, then the above can be made to be less than ε/2. Thisproves the claim.For r = 3, the i = r = 3 term of the summation on line 11 is:
L3

6

ML(ML − 1)(ML − 2)

6
(−1)

(

k(k − 1)

L2

)3

(−1)3! + O(L−1)

=
M3k3(k − 1)3

6
+ O(L−1)

We can choose L to be sufficiently large so that the O(L−1) term above is less than ε
2u .For r ≥ 3 and 3 < i < u, the absolute value of the ith term of the summation inEquation 11 is easily seen to be O(L−1). Thus, we can choose L to be sufficiently largethat this absolute value is less than ε

2u .We have shown that for r ≥ 3, the summation of line 11 is less than ε from theclaimed limit. 2

Corollary 21 For randomly chosen fitness functions whose maximal Walsh coefficients areof order k, and where the number of maximal Walsh coefficients is O(L), the expectednumber of function evaluations of the TRAVERSE-HYPERGRAPH and COMPUTE-WALSH-COEFFICIENTS algorithms is O(L2 log L). (This assumes that k and the algorithm error prob-ability δ are constant as L increases.)
Thus, under the fitness function model where themaximalWalsh coefficients are atmost order k, and where the number of maximal Walsh coefficients grows linearly with

L, the TRAVERSE-HYPERGRAPH and COMPUTE-WALSH-COEFFICIENTS algorithms canfind the complete structure of fitness function with a probability of error for the entirealgorithm of at most δ using O(L2 log L) function evaluations.Note that the hypothesis of linear growth of the number of maximal Walsh coef-ficients is satisfied by all fitness functions which are sums of nonoverlapping subfunc-tions of fixed order and by the NK fitness functions when K is fixed. It is also satisfiedby k-MAXSAT problems where the ratio of clauses to variables is fixed.
9 Using the Walsh coefficients to define the function
Once the Walsh coefficients are known, the function f is completely known. This sec-tion describes how f could be computed in this case.The basic idea is to represent f as an embedded landscape. This could be donewith one subfunction per nonzero Walsh coefficient, but in many cases, it can be doneso that evaluation of f is more efficient.
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Theorem 22 The function f can be written as an embedded landscape where there is a sub-function for each maximal Walsh coefficient. The support of a subfunction is the index of thecorresponding maximal Walsh coefficient.
Proof: For each index j such that wj 6= 0, let a(j) be the index of some maximalnonzero Walsh coefficient so that j ⊆ a(j). For each index m of a maximal Walshcoefficient, let

gm =
∑

j

[a(j) = m]wjψj

Then clearly f =
∑

m gm.LetN be the set of maximal nonzeroWalsh coefficients,Ni. It is clear that the set ofall nonzero Walsh coefficients can be partitioned into subsets Si, one for each Ni suchthatNi is in Si. ∀wj ∈ Si, wj ⊆ Si. Note that this partitioning is not unique. Each subset
Si defines a subfunction whose support is Ni. The subfunction fi can be enumeratedby performing the inverse Walsh transform on the vector of Walsh coefficients whoseindices are contained in the index of Ni.

2

The fastWalsh transform can be used to compute a function table for each subfunc-tion of the embedded landscape. If the subfunction has a support mask of bit count k,then the fast Walsh transform can be computed in time Θ(k log k). Then the function fcan be computed by summing the values of the subfunctions.
10 How the algorithms of this paper can be applied in practice
The section describes in somewhat imprecise terms how the algorithms of this papermight be used in the more general situation where the assumption of k-bounded epis-tasis is not true, or is only approximately true.
10.1 Finding the linkage groups
The traditional genetic algorithm motivation for linkage detection algorithms has beenthe preservation of building blocks (Munetomo and Goldberg, 1999b). Goldberg (1989)defines a building block as a “highly-fit, short-defining-length schema”. While the mean-ing of “highly-fit” is not completely clear, a building block could be defined as a config-uration of a small number of loci which is part of a highly fit solution to the problem.Two loci are tightly linked if one or more of the Walsh coefficients of some of the maskswhich contain both loci are relatively large, or equivalently if there is some backgroundso that a probe of the corresponding two-bit mask has relatively large magnitude. Acollection of loci is called a linkage group if they are pairwise tightly linked.If a collection of loci form a linkage group, then a configuration of these loci mightbe a building block. One theory is that genetic algorithms work by assembling build-ing blocks into a high-fitness solution. (This theory is certainly true for some fitnessfunctions. It remains to be seen how widely applicable the theory is.) According to thistheory, it is important that the crossover operation not be too disruptive of the build-ing blocks, and this suggests that the crossover operation should be designed so thatlinkage groups (groups of highly linked loci) are not overly disrupted by the crossoveroperator.We suggest the following method to find the linkage groups. Use the order-2DETECT-LINKAGE algorithm to find the linkage graph, except that we also want touse probes to measure the strength or weight of edges. For each mask of a nonzeroprobe do a total of N probes. Then some measure of the overall magnitude of these
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probes will be used to weight the edges of the linkage graph. For example, this couldbe the maximum absolute value of a probe, or the mean of the absolute values of theprobes.Now consider the sequence of edge weights, sorted in decreasing order. If thefitness function is approximately additively separable, and if there is not “hidden epis-tasis” which is not detected by the algorithm, then there should be a transition fromrelatively large edge weights to relatively small edge weights. (Those edges connect-ing loci which are in different separability components will have relatively small edgeweights.) Consider the subgraph of the linkage graph whose edges are the edges withrelatively large edge weights. If this graph has multiple components, then the verticesof these components should be the linkage groups. If there is no “natural” transitionfrom relatively large weight edges to small weight edges, then the fitness function isnot approximately additively separable. This approach is similar to that proposed byMunetomo (2002).There has been extensive previous work on the “linkage learning problem”. Pro-posed methods to solve the “linkage learning” problem include the perturbationalmethods (Munetomo and Goldberg, 1999a) and this paper, the linkage learning ge-netic algorithm (LLGA) (Harik and Goldberg, 2000; Chen and Goldberg, 2003), the fastmessy GA (Kargupta, 1996), and the ECGA (Extended Compact Genetic Algorithm, anestimation of distribution algorithm) (Harik, 1999). Other estimation of distribution al-gorithms such as the MIMIC algorithm (de Bonet et al., 1997) and the BOA algorithm(Pelikan et al., 1999) can also solve linkage problems. All of these methods except theperturbational method of Munetomo and Goldberg (1999) address the linkage problemas part of trying to solve an optimization problem and thus have a somewhat differentfocus from that of this paper and Munetomo and Goldberg (1999). The test functionsused in the LLGA and the ECGA approach are predominantly embedded landscapeswith nonoverlapping subfunctions where each subfunction is a trap function (Deb andGoldberg, 1992). In these papers, sometimes a relatively small number of trap sub-functions are embedded in a long genome with many other nonfunctional (constant)subfunctions, and sometimes the trap functions are nonuniformly scaled. The LLGAapproach seems to be limited to learning the linkage for a small (less than 10) numberof nontrivial subfunctions if the subfunctions are uniformly scaled.
10.2 An estimation of distribution approach
Another approach is inspired by “estimation of distribution” algorithms (Mühlenbeinand Mahnig, 1999; Pelikan et al., 1999). The idea is to build a directed acyclic graphmodel of the fitness function. The linkage graph described above which contains thehigh-probe-weight edges is the underlying undirected graph. Note that if one doesmultiple order-1 probes on the loci, then one also can get probeweights on the loci. Thisgives a natural way to add directions to the edges of the graph—namely the directionof an edge is from the locus of higher probe weight to the locus of lower probe weight.The idea of an estimation-of-distribution algorithm is to use the graphical model ofthe fitness function to choose the next generation population. Then selection is appliedto this population, and a new graphical model is computed to complete one genera-tional cycle of the algorithm.If results of the probes for a mask are consistent in sign, then the settings of all butone of the loci for that mask will determine the setting of the remaining locus that willincrease the fitness function. For example, if all of the results of an order-1 probe for a1-bit mask are of one sign, this says that there is one way to set the allele for that locus
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to increase the value of the fitness function which is consistent over the entire sampleused in doing the probes. If all of the results of an order-2 probe over a 2-bit mask areof one sign, this says that the setting of one of the two bits will determine the other bit.
11 Empirical results
In this section, we first give empirical results on the Order-2 Linkage Detection Al-gorithm of Section 6 to the “linkage learning” problem as it is defined in Harik andGoldberg (2000). We give empirical evidence that the formulas of Theorem 9 applywhen probe backgrounds are chosen from a population (rather than randomly as inthe theorem), and to the algorithm of Section 8. Finally, we give some results that showthe size of problems that can be done on commonly available hardware at the time thatthis paper was written.The class of subfunctions that requires the largest numberN of probes for the algo-rithms of this paper are “needle-in-the-haystack” functions which are constant exceptat a single point. For these functions, an order-1 probe will return zero unless one ofthe two points evaluated in doing the probe is the needle point. MAXSAT and one-maxare problems whose subfunctions are of this type.The class of subfunctions requiring the next largest number of probes are the sub-functions that are linear except at a single point. For these functions, an order-2 probewill return zero unless one of the four points evaluated in doing the probe is the ex-ceptional point. The concatenated trap functions (Deb and Goldberg, 1992) and thedeceptive functions (Goldberg et al., 1993) can be of this type.One of test functions used in this section is an embedded landscape where thesubfunctions are linear with a randomly placed “needle”. The coefficients of the linearfunction are chosen randomly from the interval [0, 1]. The needle is a single point with avalue of 0.1 greater than the corresponding value given by the linear function. The sup-port of each subfunction is randomly chosen when the subfunctions are overlapping,and randomly chosen subject to the nonoverlapping constraint when the functions arenonoverlapping. These functions are the same difficulty as trap functions for the algo-rithms of this paper. (A trap function is a linear function with a systematically placedneedle.)The algorithms of this paper were coded in Java and run on PC hard-ware. Sean Luke’s “Mersenne twister” Java random number generator was used(http://www.cs.umd.edu/users/seanl/gp/) since the random number gener-ator supplied with Java was found to have dependencies which affected the results.
11.1 The Order-2 algorithm applied to nonoverlapping subfunctions
Our Order-2 Linkage Detection Algorithm, with sufficient CPU time as described bythe formulas of Theorem 9, can resolve the epistatic structure of a function with anynumber of subfunctions2. To illustrate this, we ran the Order-2 Linkage Detection al-gorithm with randomly generated background strings on 800-bit functions with 160order-5 nonoverlapping subfunctions. Each subfunction was a linear function with arandomly placed needle. The linkage graph of each subfunction is a complete graphon 5 vertices, and so the linkage graph for the whole fitness function consists of 160components, each of which is a complete graph on 5 vertices.The first formula of Theorem 9 says that 95 probes per potential linkage graph edgeare needed to achieve a 0.99 probability of detecting all edges of the linkage graph, and

2As stated earlier even if the epistatic structure of a problem is completely determined the problem may,of course, remain NP-complete and hence intractable.
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112 probes per edge are required to achieve 0.999 overall success probability.However, the algorithm can solve the linkage learning problem (for nonoverlap-ping subfunctions) with considerably less probes per potential edge since all edges donot need to be detected to identify the components of the true linkage graph. This canbe done by finding enough edges so that the components of the discovered linkagegraph are the same as the components of the true linkage graph. This is illustratedby the results given below for the Order-2 Linkage Detection Algorithm. The stringlength was 800, and a value less than 10−10 was considered to be zero, and the 160subfunctions were identically scaled. A run was considered successful only if all 160components of the linkage graph were successfully identified.
Number of Number of functionprobes per edge Runs Successes evaluations per run15 200 164 19,176,00020 200 197 25,568,00030 200 200 38,352,000

The CPU time per run for 15 probes per edge was about 35 minutes on a 2 GHz.Pentium c© 4, and double that for 30 probes/edge. The amount of memory used wasabout 36 megabytes in either case (some of this was due to data structures relating tochecking whether the results were correct).
11.2 Overlapping subfunctions with backgrounds from a population
In this subsection we give empirical evidence that drawing background strings from apopulation does not change the complexity results of Section 8.1.The test function used in this subsection is an embedded landscape with 50 5-bitsubfunctions and a string length of 50. Each subfunction is linear with a randomlyplaced “needle”. A value is considered to be zero if it is less than 10−7.The algorithm used is that given in Section 8. The algorithm is considered to besuccessful only if it correctly finds all hyperedges of the hypergraph. On smaller exam-ples, when the algorithm finds all hyperedges, it correctly computes all Walsh coeffi-cients. When the algorithm fails (on this class of functions), it is most likely to fail whendoing the order-2 probes. Thus, the formula of Theorem 9 should be applied with j = 2and k = 5. The number of order-2 hyperedges is at most 50

(

5
2

)

= 500 since there are (

5
2

)

order-2 hyperedges per subfunction. However, some of these overlap, and the actualnumber is about 420.The algorithm of Section 8 was run for 1000 trials for each of N = 40, 50, 60, 70,
80, 90, where N is the number of probes per potential hyperedge. (i.e., N is the pop-ulation size.) The algorithm was also run with the same parameters using randomlychosen backgrounds instead of backgrounds from a population. In addition, the firstequation of Theorem 9was solved for the success rate for the same values ofN andwith
j = 2, k = 5, and J = 420. These are shown in the table on the left below. The table onthe right shows the average number of function evaluations for these experiments.These results suggest that when f is an embedded landscape with the number ofsubfunctions being O(L), then the complexity is given by the formula of Theorem 9even though populations were taken from a population rather than being randomlygenerated. Further theory and/or experiments are needed to confirm this hypothesis.
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AccuracyN Theory Population Random40 0.1331 0.222 0.16850 0.5889 0.658 0.64860 0.8700 0.891 0.88870 0.9640 0.963 0.96780 0.9904 0.992 0.99290 0.9975 1.00 0.995

Function EvaluationsN Population Random40 69008 27952650 85889 34557760 102547 41138170 119241 49087680 135907 54042790 152501 604383
11.3 Solving some large problems
When the algorithm of Section 8 is run with function evaluation caching, memory sizecan be a limiting factor. To conserve memory, it is important that a bitstring encodingbe used for background strings. On Intel 32-bit hardware, the maximum amount ofmemory that we could get from the Java virtual machine was about 1900 megabytes.Under these limitations, the algorithm of Section 8 was able to find the structureof randomly generated 1000 bit 3-MAXSAT problems with 4300 clauses 8 times out of10 using 24 trials per order-1 probe, 13 trials for order-2 probes, and 7 trials for higherorder probes. The run time was about 2.4 hours per instance on a 2 GHz. machine, andthe number of function evaluations 6,420,000± 2000.Functions with randomly generated subfunctions are much easier. The algorithmof Section 8 was able to find the structure of 1200 bit problems with 150 randomlygenerated nonoverlapping subfunctions 100 times out of 100. The number of trials perprobe was 12, 8, 6, 4, 3, 2, 2, 2 for order 1, 2, 3, . . . , 8 probes respectively. The numberof function evaluations per instance was 5,768,258, and the time was about an hour perinstance on a 3 GHz. Pentium c© 4.
12 Conclusions
The strength of the perturbational approach used in this paper is that a probe givesunambiguous information about the interaction of the variables involved in the probethat is not contaminated by noise from the interaction of other variables. Thus, probescan detect weak interactions between variables even when there are strong interactionsbetween other variables. On the other hand, a probe only gives information on the rela-tionship between those variables involved in the probe, and if there are many potentialvariable relationships to be tested, this means that many probes must be done.This can be contrasted tomethods that use either a randompopulation or a popula-tion that results from executing some stages of an evolutionary computation algorithm.These methods are essentially using random or semirandom sampling to estimate theinteraction effects of variables. Now the interaction effect of a specific collection of vari-ables (the signal) is mixed up with the interaction effects of other variables (the noise),and a large population may be needed to pick up the needed signal from the noise.Furthermore, when there are overlapping blocks, it may be very difficult to character-ize this noise, and this makes it very difficult to give rigorous complexity bounds forthis approach. However, these methods fit naturally into a population-based frame-work for optimization, and thus it is more evident how to combine a sampling-basedlinkage discovery with a sampling-based optimization.This paper uses a very strict definition of what it means to successfully solve thelinkage discovery problem. We say that the problem is solved only if all of the rel-evant hyperedges of the linkage hypergraph are successfully detected. Many paperson linkage (Pelikan et al., 2000; Harik et al., 1999; Munetomo and Goldberg, 1999b)
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use a weaker definition of a successful solution: A successful solution finds some fixedpercentage of the blocks. Thus, as the problem size grows, there will be an increas-ing number of blocks that are not successfully detected. Further, in order to find ablock where blocks are nonoverlapping, the algorithms in this paper only need to findenough edges in the linkage hypergraph to connect all of the vertices corresponding tothat block.There are two contributions of this paper. First, the paper gives a rigorous mathe-matical foundation for perturbational methods for determining the epistatic structureof a function from binary strings to the real numbers. These methods are closely relatedto the Walsh basis representation of the function.Second, the paper gives two new randomized algorithms to solve the problem ofdetecting linkage (finding the components of nonlinearity) of a fitness function fromfixed length binary strings to the reals. Both algorithms work as well on fitness func-tions with overlapping subfunctions (blocks) as they do on nonoverlapping subfunc-tions. The first algorithm generalizes the LINC algorithm (Munetomo and Goldberg,1999b; Munetomo and Goldberg, 1999a) to finding epistasis of arbitrary order. Theprimary parameter in the algorithm is the number of probes. If the function has
k-bounded epistasis (is k-delineable in the terminology of Munetomo and Goldberg(1999b), then rigorous bounds can be given for the number of probes that are needed,and this leads to a complexity analysis of the algorithm. The second algorithm gen-eralizes the algorithms of Kargupta and Park (2001). This algorithm both determinesthe epistatic structure and finds the Walsh coefficients of a k-epistatic function. It ismore practical when most of the Walsh coefficients of order less than k are zero. Thisalgorithm is more efficient than the methods of Kargupta and Park (2001). A rigorouscomplexity analysis is given when the number of subfunctions grows linearly with thestring length.More research is needed in applying this class of algorithms to functions where theassumptions of k-bounded epistasis and sparseness of the Walsh basis representationare only approximately satisfied. Further research is also needed in understandinghow these results can be used by genetic algorithms and estimation of distributionalgorithms to take advantage of the epistatic structure of functions.
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