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Abstract

It is supposed that the finite search space Ω has certain symmetries that can be de-
scribed in terms of a group of permutations acting upon it. If crossover and mutation
respect these symmetries, then these operators can be described in terms of a mixing
matrix and a group of permutation matrices. Conditions under which certain subsets
of Ω are invariant under crossover are investigated, leading to a generalization of the
term schema. Finally, it is sometimes possible for the group acting on Ω to induce a
group structure on Ω itself.

Keywords

Genetic algorithms, mixing matrix, group, schema, group action, isotropy group, order
crossover, pure crossover, permutation group.

1 Introduction

This is the first of a series of papers that sets out to investigate the relationship be-
tween the choice of representation used for a search problem and the genetic operators
(crossover and mutation) that act upon such representations. The main insight is that
there are often certain structural symmetries within combinatorial search spaces, and it
is possible to construct genetic operators that have interesting properties with respect
to those symmetries. The mathematics of group theory is used throughout to describe
these properties. Recall that a group is a set L together with a binary operation ◦ de-
fined on elements of L such that:

1. a ◦ b ∈ L for all a, b ∈ L.

2. a ◦ (b ◦ c) = (a ◦ b) ◦ c for all a, b, c ∈ L.

3. There exists an element 0 ∈ L, called the identity, such that a ◦ 0 = 0 ◦ a = a for all
a ∈ L.

4. For each element a ∈ L, there exists an inverse element a−1 ∈ L such that a◦a−1 =
a−1 ◦ a = 0.

If the group operator is commutative, so that a ◦ b = b ◦a for all a, b ∈ L, then the group
is said to be Abelian.

c©2002 by the Massachusetts Institute of Technology Evolutionary Computation 10(2): 151-184
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The paper is organized as follows. Section 2 formally defines the simple genetic
algorithm, which will be the focus of this work. Section 3 looks at some general im-
plications of having a group acting on the search space. That is, we have a set of per-
mutations of the search space that forms a group under function composition. This
leads to conditions under which the genetic operators (crossover and mutation) com-
mute with the natural group action on the space of populations. This in turn leads
to a general definition of the mixing scheme in terms of a mixing matrix. Section 4 in-
corporates Radcliffe’s concepts of pure and respectful crossover, by studying invariant
sets. We then present a generalization of the term schema and look for conditions under
which schemata are respected by crossover.

It is possible that the group action on the search space Ω can induce a group struc-
ture on Ω itself. That is, we can turn the search space into a group in its own right. This
possibility is studied in Section 5. One way in which such symmetries might arise is
through considering the neighborhood structure of a search landscape and the auto-
morphisms that act upon it. This will be the theme of a future paper.

The sequel to this paper (Rowe et al., 2001) will concentrate on the case where Ω
is itself a group and will introduce the class of structural operators for which important
invariance results can be proved. The special case when Ω is Abelian will be examined
(as in the case of fixed-length binary strings, for example) and results concerning the
effects of the Fourier transform presented.

To summarize, the main goals of these papers are:

• To study the interplay between search space structure and the genetic operators.

• To show how such relationships affect the genetic algorithm at the population
level.

• To give conditions under which crossover is invariant on certain subsets of the
search space.

• To provide methods by which genetic operators with certain desirable properties
can be constructed.

Notation

Angle brackets 〈· · ·〉 denote a tuple that is to be regarded as a column vector. Indexing
of vectors and matrices begins with 0. Transpose is indicated with superscript T . The
column vector of all 1s is denoted by 1. The n × n identity matrix is I , and the jth
column of the identity matrix is the vector ej . For vector x, diag(x) denotes the square
diagonal matrix with i, ith entry xi. The number of nonzero components of x is #x.

Composition of functions f and g is f ◦ g(x) = f(g(x)). Square brackets [· · ·]
are, besides their standard use as specifying a closed interval of real numbers, used to
denote an indicator function: if expr is an expression that may be true or false, then

[expr ] =

{

1 if expr is true
0 otherwise

2 The Simple Genetic Algorithm

This section introduces the Simple Genetic Algorithm as a specific instance of random
heuristic search (Vose, 1999).
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Let Ω be a finite set of cardinality n, referred to as the search space. To simplify
notation, Ω is identified with the set of integers {0, 1, . . . , n − 1}. A fitness function f
satisfies

f : Ω → <+

where <+ is the set of positive reals. A population P is a collection (multiset) of elements
from Ω of size r, the population size.

The particular type of genetic algorithm (GA) considered in this paper produces
the next generation from the current population as follows:

1. Obtain two parents by a selection method that can be modeled by random heuristic
search (such as proportional, ranking, or tournament selection).

2. Mutate the parents.

3. Crossover the two mutated parents to form an offspring.

4. Put the offspring into the next generation.

5. If the next generation is not full, go to step 1.

In particular, there are few constraints placed on mutation and crossover.1 For more
details on modeling selection by random heuristic search, see Vose (1999).

The behavior of the GA is modeled using the following state space, which is said
to correspond to the search space,

Λ =
{

p ∈ <n : pk ≥ 0,
∑

pk = 1
}

A population P corresponds to the point p ∈ Λ defined by

pk = the proportion of P occupied by k ∈ Ω

The progression from one generation to the next is stochastic due to the randomness
inherent in selection (and also, perhaps, inherent in mutation and crossover). This is
represented by the operator

G : Λ → Λ

where, given p ∈ Λ, the vector G(p) has kth component equal to the probability that
k ∈ Ω will appear in the next generation. This operator is usually divided into two
components,

G = M◦F

where the selection scheme F represents the effect of selection, and the mixing scheme M
represents the combined effects of crossover and mutation. For proportional selection,
F is defined by

F(p) =
diag(f) p

fT p

where f is the fitness vector fk = f(k), and diag(f) is the diagonal matrix

diag(f)k,k = fk

1Mutation is a stochastic unary operator, crossover is a stochastic binary operator.
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Other methods of selection such as ranking or tournament selection could also be used.
See Vose (1999) for more details.

This paper and its sequel are concerned mostly with properties of the mixing
scheme M. In particular, properties of M with respect to any group structure that
may exist on Ω will be studied; if the search space has some structural symmetries
(which in practice, it often does), it is of interest to consider the effects that crossover
and mutation have on those symmetries and, moreover, how genetic operators can be
designed that respect such properties.

By placing the analysis of genetic operators into such a general setting, theorems
will be proved at an abstract level. General results will be obtained for: representing
crossover and mutation via a mixing matrix, studying sets for which crossover is in-
variant, and defining genetic operators in terms of landscape structure. In the sequel,
further results will be given for: implementing genetic operators via probability distri-
butions over binary masks, properties of the Fourier transform, and implicit parallelism
(which may be thought of as a schema theorem). Whereas similar results have already
been obtained in particular cases (for example, when the search space comprises fixed-
length binary strings), this paper establishes results in a more general context, which
will therefore be more widely applicable.

3 Group Action and Quadratic Operators

3.1 Symmetries in the Search Space

Suppose (L, ◦) is a finite group that acts on Ω. That is, there is a mapping L × Ω → Ω,
such that, denoting the image of (k, w) by k(w),

(a ◦ b)(w) = a(b(w))

for all a, b ∈ L, w ∈ Ω, and

(a−1 ◦ a)(w) = (a ◦ a−1)(w) = w

where a inverse is denoted by a−1. In particular, each element of L corresponds to
a permutation (bijection) of the set Ω, and the identity element of L corresponds to
the identity function. In so far as notation is concerned, the group operation behaves
like function composition (which, for convenience, is why the group operation of L is
denoted by ◦) and, like composition, it is not necessarily Abelian (a ◦ b need not equal
b ◦ a).

The group action of L on Ω is denoted by L(Ω), and it is assumed to be transitive,
i.e., for every u, v ∈ Ω, there exists a ∈ L such that a(u) = v. By abuse of notation, L will
be called transitive when L(Ω) is. The isotropy group ΩL of L(Ω) is the normal subgroup
(of L)

ΩL = {k ∈ L : ∀w . k(w) = w}

The quotient group L/ΩL acts naturally on Ω by

(a ◦ ΩL)(w) = a(w)

A transitive group action L(Ω) is called reduced if ΩL contains only the identity. It is
assumed throughout that L(Ω) is reduced—if not, simply replace L by L/ΩL.
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3.2 Examples

Throughout this paper, we will illustrate our results with a number of examples. Some
of these examples will be familiar to readers, but others will be new. We hope that this
variety will illustrate the generality and power of our work.

Binary Strings An important special case of a group action on a search space is when
Ω itself has a group structure. The action of Ω on itself is defined by

u(v) = u ◦ v

for all u, v ∈ Ω. The group action is naturally transitive. This situation arises, for
example, when the search space comprises the set of fixed-length binary strings of
length `. The group operator is bitwise addition modulo 2. For example, if ` = 5
and u = 01101, v = 11110, then

u(v) = 01101(11110) = 01101 ⊕ 11110 = 10011

The identity element is 00000.

Traveling Salesman Another example of where Ω is a group acting on itself is when
it is the set of all permutations of a set of points, as is the case for the traveling
salesman problem. The group operation is simply the composition of permuta-
tions. For example, if there are five cities {A,B,C, D,E}, we can denote a tour by
a vector τ = 〈τ(1), τ(2), τ(3), τ(4), τ(5)〉, where τ(k) is the kth city visited in the
tour. Given two tours τ1 and τ2, we combine them as if they were functions:

(τ1 ◦ τ2)(k) = τ1(τ2(k))

Thus τ1 = 〈B, C,E, D, A〉 and τ2 = 〈E, D, C, B, A〉 combine to give the tour τ1 ◦
τ2 = 〈A, D, E,C, B〉. The group of all possible permutations of m objects is known
as the symmetric group (denoted Sm), and it contains m! elements.

Assigning Jobs to Processors Suppose we have four processors connected in a ring: A
is connected to B that is connected to C that is connected to D that is connected
to A (see Figure 1). The connections have different bandwidths. We have four
jobs numbered 1, 2, 3 and 4 that we need to assign to the processors (one job per
processor), subject to the following constraints:

1 and 2 must be directly connected
2 and 3 must be directly connected
3 and 4 must be directly connected
4 and 1 must be directly connected

The aim is to find an assignment of jobs to processors that minimizes overall com-
munication time. Because of the constraints, not all assignments are valid. The set
of all valid assignments forms our search space Ω.

Now consider the set of permutations of the processors. This set forms a group.
Any permutation can be interpreted as a way of specifying a method for re-
assigning jobs. For example, the permutation 〈D, A,B,C〉 specifies that the job
on processor A should be moved to D; the job on B should be moved to A; the
job on C to B; and that on D to C. This corresponds to rotating the jobs through
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AAA

C

B

D

Figure 1: A network of processors.

90◦. Applying this permutation to the assignment 〈1 → A, 2 → B, 3 → C, 4 → D〉
produces another assignment 〈1 → D, 2 → A, 3 → B, 4 → C〉.

Not all permutations will give rise to valid assignments, however. We will there-
fore restrict our attention to the set of permutations that always transforms valid
assignments into valid assignments. Such a permutation is called an automorphism
and the set of automorphisms forms a subgroup of the group of permutations,
called the automorphism group. This will be our group action L(Ω).

There are three possible rotations of the network. Other automorphisms come
from swapping certain jobs, by reflections of the network. If we include the iden-
tity (don’t move anything!), this gives a total of eight possible re-arrangments that
preserve the constraints in our network.

A B C D group element action
A B C D the identity
D A B C 90◦ rotation
C D A B 180◦ rotation
B C D A 270◦ rotation
C B A D reflection through B-D diagonal
A D C B reflection through A-C diagonal
B A D C reflection through vertical
D C B A reflection through horizontal

This set forms a group (known as the dihedral group D4) that acts on our search
space of possible assignments. Given one valid assignment of jobs, we can apply
any of our automorphisms to get another. It can be checked that the group action
is transitive.

3.3 Symmetries in Population Space

We now look at how symmetries in the search space Ω give rise to corresponding sym-
metries in the space of possible populations. We will then be able to describe the rela-
tionship between the group action on Ω and the genetic operators.

Since the population state space Λ is comprised of vectors whose components are
in one-to-one correspondence with elements of the search space, Ω may be identified
with those components, and, under this identification, each a ∈ L corresponds to a
permutation matrix σa, where σa : Λ −→ Λ by

σa〈v0, . . . , vn−1〉 = 〈va−1(0), . . . , va−1(n−1)〉

Alternatively—and equivalently—define for each a ∈ L the permutation matrix σa by

(σa)i,j = [i = a(j)]

156 Evolutionary Computation Volume 10, Number 2



Group Properties

It is easily checked that σa−1 = σ−1
a = σT

a and σa σb = σa◦b. It follows that these per-
mutations form a group (under matrix multiplication), which because L(Ω) is reduced,
is isomorphic to L. Note that

σaei = ea(i)

and for any matrix M (of suitable dimension),

(σT
a M σa)i,j = Ma(i), a(j)

The effects of crossover and mutation on a population can be described in terms
of operators that map points in the population state space Λ to other such points. To
characterize their relationship with the group action, we first define two classes of op-
erator: quadratic and linear. It will turn out that crossover and mutation, defined quite
generally, belong to these classes.

An operator A : <n −→ <n is quadratic if there exist matrices M0, . . . , Mn−1 (de-
pending on A) such that

A(x) = 〈xT M0 x, . . . , xT Mn−1 x〉

In the notation above, a quadratic operator A does not uniquely determine the associ-
ated matrices M0, . . . , Mn−1. However, they are uniquely determined if they are sym-
metric. Because replacing Mk by (Mk + MT

k )/2 does not alter the quadratic operator,
both symmetry and uniqueness of the associated matrices will, without loss of gener-
ality, be assumed.

An operator B : <n −→ <n is linear if there exists a matrix B such that

B(x) = Bx

The following theorem also appears in Rowe (2001).

THEOREM 1: If A is quadratic and B is linear, then A ◦ B and B ◦ A are quadratic.

PROOF: Suppose A has associated matrices Mk. Then B ◦A has associated matrices M ′
k

defined by

(B ◦ A(x))k =
∑

j

Bk,j xT Mjx

= xT (
∑

j

Bk,jMj)x

= xT M ′
kx

Similarly A ◦ B has associated matrices M ′′
k defined by

(A ◦ B(x))k = (Bx)T Mk(Bx)

= xT (BT MkB)x

= xT M ′′
k x

2
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Note that the identity function I : Λ −→ Λ is an example of a quadratic operator
with associated matrices (Mk)i,j = ([i = k] + [j = k])/2. By the preceding theorem,
every linear operator B : Λ −→ <n is quadratic since

B = B ◦ I

This means that the class of linear operators on Λ is a subset of the class of quadratic
operators.

The important relationship between quadratic operators and the group action on
Ω can now be given. A quadratic operator C is said to commute with L(Ω) if, for all a,

C ◦ σa = σa ◦ C

In the following theorem, we give necessary and sufficient conditions for a
quadratic operator to commute with the group action. In it, we identify a particular
element of Ω as a reference point. This choice is arbitrary, and for convenience we call
the chosen element 0.

THEOREM 2: A quadratic operator C commutes with L(Ω) if and only if its associated matrices
M0, . . . , Mn−1 satisfy Ma(0) = σaM0 σT

a for all a ∈ L.

PROOF: Suppose that C commutes with L(Ω). That is, C(σax) = σa(C(x)) for all a ∈
L(Ω) and for all x ∈ Λ. Now

(C(σax))k = (σax)T Mk(σax) = xT σT
a Mkσax

and
(σa(C(x)))k = xT Ma−1(k)x

So choosing k such that a(0) = k we get

σT
a Ma(0)σa = M0

and so
Mk = σaM0σ

T
a

for all a ∈ L(Ω).
Suppose that Ma(0) = σaM0σ

T
a for all a ∈ L. Let b(0) = i. Then

C(σa x)i = (σa x)T Mi (σa x)

= xT σT
a (σbM0 σT

b )σax

= xT (σ−1
a σb)M0(σ

−1
a σb)

T x

= xT M(a−1◦b)(0) x

= xT Ma−1(i) x

= (σa C(x))i

2

Given any element k ∈ Ω, an important subgroup of L(Ω) is the set of all elements
of the group that leave k unchanged. That is, we define

Fix(k) = {a ∈ L(Ω) : a(k) = k}

158 Evolutionary Computation Volume 10, Number 2
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As a corollary to the theorem we have:

COROLLARY 3: If a quadratic operator C with associated matrices M0, . . . ,Mn−1 commutes
with L(Ω), then M0 commutes with Fix(0), for all k ∈ L.

PROOF: Let a ∈ Fix(0). Then

M0 = Ma(0) = σaM0σ
T
a

and so M0σa = σaM0. 2

Notice that if Ω is itself a group, then Fix(0) only contains the identity, and so
naturally any matrix commutes with it. However, if this is not the case, then the above
theorem says, among other things, that not all matrices are suitable for constructing
quadratic operators that commute with L. For example, suppose that Ω = {0, 1, 2} and
L(Ω) is the group of all possible permutations on Ω. Then

Fix(0) = {(), (12)}

(where we are writing permutations in cycle form). For a matrix M to commute with
this subgroup requires

Mi,j = M(12)(i),(12)(j)

for all i, j. Since, moreover, we require our matrices to be symmetric, suitable matrices
must have the form





A B B
B D E
B E D





The theorem further points out that if C commutes with L(Ω), then all its matrices are
permutations of one another, the permutations being given by the group action.

The following theorem shows that all reduced Abelian groups have Fix(0)
containing only the identity, and so again all matrices commute with this subgroup. A
much stronger implication will be discussed in Section 5.

THEOREM 4: If L(Ω) is a reduced Abelian group action on Ω, then Fix(k) = {0} for all k ∈ Ω.

PROOF: Let a ∈ Fix(k), and let g ∈ L. If L is Abelian, then g ◦ a = a ◦ g. For any i ∈ Ω,
we can pick g so that g(k) = i, since L(Ω) is transitive. Then

a(i) = a ◦ g(k) = g ◦ a(k) = g(k) = i

and therefore a fixes all elements of Ω. But L is reduced and so a must be the identity.2

3.4 Crossover and Mutation

In this section, we show that any crossover and mutation operators, defined quite gen-
erally, are quadratic and linear operators, respectively.

Given any crossover operator χ, let r(i, j, k) be the probability that parents i and j
have child k,

r(i, j, k) = Prob{χ(i, j) = k} (1)

The crossover scheme C : Λ → Λ is defined by

C(x)k = Prob{χ(i, j) = k | i and j are chosen uniformly from x}
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where the choice of i and j is independent and with replacement. This definition is
symmetric with respect to i and j, suggesting that the natural quantities associated
with C are

s(i, j, k) = (r(i, j, k) + r(j, i, k))/2 (2)

THEOREM 5: C is a quadratic operator with associated matrices

(Mk)i,j = s(i, j, k)

Moreover, C commutes with L(Ω) if and only if

s(a(i), a(j), a(k)) = s(i, j, k)

for all a ∈ L.

PROOF: By definition,

C(x)k =
∑

i,j

xixjr(i, j, k) = xT Mk x

Assume s(a(i), a(j), a(k)) = s(i, j, k) for all i, j, k ∈ Ω, and a ∈ L. Let k = a(0), then

(Mk)i,j = s(i, j, k) = s(a−1(i), a−1(j), 0) = (M0)a−1(i),a−1(j)

and therefore
Ma(0) = Mk = σT

a−1M0 σa−1 = σaM0 σT
a

so that Theorem 2 applies. Conversely, if

Ma(0) = σaM0 σT
a

for all a ∈ L, then the preceding equalities show

s(i, j, k) = s(a(i), a(j), a(k))

2

Given any mutation operator µ, let Ui,j be the probability that j mutates to i,

Ui,j = Prob{µ(j) = i}

The mutation scheme U : Λ → Λ is defined by

U(x)k = Prob{µ(i) = k | i is chosen uniformly from x}

THEOREM 6: U is a linear operator. Moreover, it commutes with L(Ω) if and only if

Ua(i),a(j) = Ui,j

PROOF: By definition, U(x)i =
∑

j xj Ui,j , hence U is linear. Note that
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σaU = Uσa

⇐⇒ U = σT
a Uσa

⇐⇒ Ui,j = Ua(i), a(j)

2

The mixing scheme M is the composition

M = C ◦ U

By Theorems 1, 5, and 6, the mixing scheme is quadratic; let its associated matrices be
M0, . . . , Mn−1. The mixing matrix is M0. By Theorem 2, the mixing matrix determines
the mixing scheme if crossover and mutation commute with L(Ω), since in that case

M◦ σk = C ◦ U ◦ σk = C ◦ σk ◦ U = σk ◦ C ◦ U = σk ◦M

Each matrix in the mixing scheme is defined by the mixing matrix and the group action
by

Ma(0) = σaM0σ
T
a

for all a ∈ L(Ω).
As has already been observed, the identity function I : Λ −→ Λ is quadratic. It is

also linear. Because the concept of crossover allows C = I, and the concept of mutation
allows U = I, crossover and mutation are special cases of mixing and therefore have
corresponding mixing matrices.

The matrix that has r(i, j, 0) as its i, jth entry will be referred to as the crossover
matrix. The mixing matrix has s(i, j, 0) as its i, jth entry and is a symmetrized version
of the crossover matrix. Two different crossover operators may have different crossover
matrices but the same mixing matrix. This means that although they may be defined to
act differently on individuals, the net effect on the population is the same.

3.5 Examples

Binary Strings An early example of mixing commuting with a group action on Ω was
given by Vose (1990) for the case of 1-point crossover (with crossover rate), muta-
tion corresponding to a mutation rate, and fixed-length binary strings. In this situ-
ation, Ω is itself a group under bitwise addition modulo 2. More generally, all the
standard crossovers (one-point, n-point, uniform) defined on fixed-length strings
of cardinality c commute with L(Ω) (where the group operator is component-wise
addition modulo 2) as do mutation operators defined by way of masks (Vose,
1999). More specific examples of these types of crossover and mutation are given
later in the paper.

Traveling Salesman A paper by Vose and Whitley (1999) gives general conditions un-
der which crossover defined on the search space Ω of permutations (such as for
the traveling salesman problem) commute with L(Ω), where L = Ω considered
as a group under composition. As a specific example of the crossovers they con-
sidered (which commute with L(Ω)), consider order crossover 1, as defined by
Davis (1985) and described in Whitley and Yoo (1995) and Vose and Whitley (1999).
Given parents P1 and P2, pick a contiguous “crossover section” from P1. (The
crossover section does not consist of the whole string and does not wrap around.)
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The crossover section is copied to the offspring in the same absolute position that
it occupied in P1. The remaining elements are copied from P2 based on their rel-
ative order in P2. We refer to the filler block as the ordered set of elements from
P2 with elements also found in the crossover section deleted. The order of the
filler block is determined starting at the beginning of P2. Elements are added to
the offspring from the filler block starting at the end of the crossover section. The
following example illustrates.

Parent P1: A B C D E F G H I crossover-section: _ _ C D E F _ _ _
Parent P2: d i f g b e c h a filler-block: i g b h a
Offspring: h a C D E F i g b

If S = {A, B, C}, and the permutations of S are ordered as

〈A, B, C〉, 〈B, A, C〉, 〈B, C, A〉, 〈A, C, B〉, 〈C, A, B〉, 〈C, B, A〉

in function notation or as

(), (AB), (ABC), (BC), (ACB), (AC)

in cycle notation, then the crossover matrix for order crossover 1 is:



























4/5 3/5 4/5 3/5 4/5 3/5

1/5 0 0 1/5 1/5 0

0 0 0 0 0 0

1/5 1/5 1/5 0 0 0

0 0 0 0 0 0

0 0 1/5 0 1/5 1/5



























The i, j entry of this matrix corresponds to r(i, j, 0) of Equation (1). The matrix can
be made symmetric by using Equation (2). The resulting symmetric matrix is



























4/5 2/5 2/5 2/5 2/5 3/10

2/5 0 0 1/5 1/10 0

2/5 0 0 1/10 0 1/10

2/5 1/5 1/10 0 0 0

2/5 1/10 0 0 0 1/10

3/10 0 1/10 0 1/10 1/5



























This matrix is the mixing matrix for the crossover scheme defined by order
crossover 1, and for no mutation.

Assigning Jobs to Processors Consider again the problem of placing four jobs onto
four processors A, B, C, and D arranged in a ring (subject to the same constraints
as before). A possible mutation that preserves the constraints is to swap the jobs
on A and C and simultaneously swap B and D. This corresponds to performing a
180◦ rotation. One could assign a certain probability µ of doing this. The resulting
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mutation then commutes with the group action. The reason for this is that this
automorphism commutes with all the other automorphisms. That is, if we denote
the 180◦ rotation as ρ then ρ ◦ a = a ◦ ρ for all automorphisms a ∈ L(Ω). Then we
set

Ui,j = µ[ρ(j) = i]

and so for any automorphism a

Ua(i),a(j) = µ[ρ(a(j)) = a(i)] = µ[a(ρ(j)) = a(i)] = µ[ρ(j) = i] = Ui,j

More generally, for any group L, we define its center Z(L) to be the set containing
those elements that commute with every element in the group:

Z(L) = {a ∈ L : a ◦ b = b ◦ a, for all b ∈ L}

The center of a group forms a normal subgroup. We can place a probability distri-
bution µ over the center and define mutation to be:

Ui,j =
∑

a∈Z(L)

µ(a)[a(j) = i]

and again we get a mutation operator that commutes with L(Ω). Notice that this
always includes the identity, so we can have a given probability that no mutation
will take place.

Defining a crossover operator that commutes with the group action (and preserves
the constraints) is a much trickier job. In fact, one of the main goals of this paper
and its sequel is to develop a systematic approach to this problem in general. The
next subsection will characterize all the possible mixing matrices that are allow-
able. Conversely, if we have already defined a crossover operator, then we can
characterize the natural group actions that commute with it.

3.6 Symmetries of Genetic Operators

We now characterize all possible mixing schemes (crossovers and mutations) that will
commute with the group action L(Ω) in terms of their mixing matrices. We start, how-
ever, with the converse problem: Given a particular crossover and mutation operator,
what are the groups with which it commutes?

Given a particular definition of crossover and mutation, the reduced group actions
L(Ω) that commute with the corresponding mixing scheme can be characterized. First,
note that the mixing scheme is quadratic. Second, note that by what has already been
observed, any given reduced group action L(Ω) induces a group action L(Λ) of permu-
tation matrices acting on Λ. Moreover, by identifying Ω with the vertices of Λ through
the correspondence

i ∈ Ω ←→ ei ∈ Λ

a group action L(Ω) is recovered from a group action L(Λ). Third, in view of the equiv-
alence of L(Ω) and L(Λ) as described above, L is therefore without loss of generality
a group of permutation matrices that can be thought of as acting on both Λ and Ω.
For j ∈ Ω and permutation matrix σ, therefore, σ(j) is that element k ∈ Ω satisfying
σ(ej) = ek. In particular, σa(j) = a(j).

Given a quadratic operator C with associated matrices Mk, let H(C) be the set of all
permutation matrices σ acting on Λ (and therefore acting on Ω as described above)—
where σ need not be an element of L—such that for all k

Mσ(k) = σMk σT
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THEOREM 7: The set H(C) is a group, and L(Ω) is a reduced group action that commutes
with C if and only if L is a transitive subgroup of H(C).

PROOF: Suppose Mσ(k) = σMk σT and Mσ′(k) = σ′Mk σ′T for all k.

Mσ◦σ′(k) = σMσ′(k) σT

= σσ′Mk σ′T σT

= σσ′Mk (σσ′)T

= (σ ◦ σ′)Mk (σ ◦ σ′)T

Since H is a collection of permutations of a finite set and is closed under composition,
it follows that (H, ◦) is a group. By definition, a reduced group action is transitive.
Given σ and k, let σ′ ∈ L be such that σ′(0) = σ(k). If L(Ω) commutes with C, then by
Theorem 2

Mσ(k) = Mσ′(0)

= σ′M0 σ′T

= σ′(σ′T σσT σ′)M0 (σ′T σσT σ′)σ′T

= σ(σT ◦ σ′)M0 (σT ◦ σ′)T σT

= σMσ−1◦σ′(0)σ
T

= σMσ−1◦σ(k)σ
T

= σMkσT

Hence L is a subgroup of H .
Conversely, if L is a subgroup of H then Theorem 2 now applies. 2

Conversely, we now suppose that a reduced group action L(Ω) is given. We seek
to characterize those mixing schemes that commute with it. The term mixing matrix was
previously defined with reference to a mixing scheme. It should not be confused with
the following definition of mixing matrix with respect to:

A matrix M is a mixing matrix with respect to L(Ω) if the following conditions hold

1. M commutes with Fix(0).

2. Mi,j = Mj,i for all i, j.

3. Mi,j ≥ 0 for all i, j.

4. |L|
n

=
∑

σ∈L Mσ(i),σ(j).

If M is a mixing matrix with respect to L(Ω), then its corresponding quadratic operator
is defined to have associated matrices {Mσ(0) = σMσT : σ ∈ L}. Note that these
associated matrices are well defined because

σ(0) = σ′(0) =⇒ σT σ′(0) = 0

=⇒ σT σ′M = MσT σ′

=⇒ σ′Mσ′T = σMσT

Note also that the mixing matrix of the quadratic operator corresponding to M is
M . The technical definition of mixing matrix requires that the quadratic operator be a
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mixing scheme; that, however, is the case, as the following theorem shows.

THEOREM 8: If M is a mixing matrix with respect to L(Ω), then its corresponding quadratic
operator is a mixing scheme that commutes with L(Ω).

PROOF: Let C be the corresponding quadratic operator. The proof of Theorem 7 shows
that L is a subgroup of H(C). Since L is transitive, Theorem 7 applies, and so C com-
mutes with L(Ω). It remains to show that C is a mixing scheme. This will be done by
constructing a crossover operator χ with mixing matrix M .

Define χ by χ(i, j) = k with probability (Mk)i,j , where C has associated matrices
Mk. It follows that C is the crossover scheme for χ if (Mk)i,j are indeed probabilities.
Given k and j, let σ′ be such that σ′(k) = j. Note that

∑

σ

[σ(0) = k] =
∑

σ

[σ′−1
σ(0) = k]

=
∑

σ

[σ(0) = σ′(k)]

=
∑

σ

[σ(0) = j]

Hence each element of Ω is repeated the same number of times by σ(0) as σ ranges over
L, and that number is |L | / |Ω |. Therefore,

∑

k

(Mk)i,j =
n

|L |

∑

σ

(Mσ(0))i,j

=
n

|L |

∑

σ

(σMσT )i,j

=
n

|L |

∑

σ

Mσ−1(i),σ−1(j)

=
n

|L |

∑

σ

Mσ(i),σ(j)

= 1

Moreover, since Mi,j ≥ 0 for all i, j, then these quantities are, in fact, probabilities. 2

The next theorem shows that every mixing scheme that commutes with L(Ω) arises
as the quadratic operator corresponding to a mixing matrix with respect to L(Ω).

THEOREM 9: If M is a mixing scheme that commutes with L(Ω), then its mixing matrix is a
mixing matrix with respect to L(Ω).

PROOF: Let M have mixing matrix M . By Theorem 2,

σ−1σ′(0) = 0 =⇒ σ(0) = σ′(0)

=⇒ Mσ(0) = Mσ′(0)

=⇒ σ′Mσ′T = σMσT

=⇒ σ−1σ′M = Mσ−1σ′
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Since M is a mixing scheme, then M is symmetric and contains only non-negative
entries. Moreover,

1 =
∑

k

(Mk)i,j

=
n

|L |

∑

σ

(Mσ(0))i,j

=
n

|L |

∑

σ

(σMσT )i,j

=
n

|L |

∑

σ

Mσ−1(i),σ−1(j)

=
n

|L |

∑

σ

Mσ(i),σ(j)

2

3.7 Example

Assigning Jobs to Processors The theorems in the previous subsection have shown
that every mixing scheme that commutes with the group action arises as a
quadratic operator corresponding to a mixing matrix (with respect to L(Ω)). Con-
tinuing our example of four jobs on four processors, we will use this result to
construct every possible crossover operator (that commutes with the group). The
search space has eight elements in it, as does the group action. We therefore seek to
construct an 8 by 8 matrix M that is a mixing matrix with respect to the automor-
phism group. First, note that in this example, Fix(0) = {0}, and so every matrix
commutes with it. The third condition tells us that we can only use non-negative
entries for our matrix. The final condition is

∑

σ∈L

Mσ(i),σ(j) = 1

since |L| = n = 8. This suggests that we start by picking a pair i, j and a proba-
bility distribution and then fill the entries of the matrix corresponding to each pair
(σ(i), σ(j)) with the corresponding probability from that distribution. The correct
way to do this will be explored in detail in Section 5. We then finish by symmetriz-
ing the resulting matrix by replacing Mi,j with (Mi,j + Mj,i)/2.

4 Invariant Subsets and Schemata

This section deals with subsets of Ω. To simplify exposition, the notation

x ⊂ A

where x ∈ Λ and A ⊂ Ω, will be used to indicate

xi > 0 =⇒ i ∈ A

This means that we will say that a population is a subset of A if it only contains indi-
viduals that are members of A.
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4.1 Pure Crossover

In Radcliffe’s (1992) work on crossover, he introduces the concepts of purity and respect,
which are restated to fit the framework of this paper.

DEFINITION 1: A crossover operator C is said to be pure if for all i

C(ei) = ei

It is easy to see that a crossover operator is pure if and only if the result of crossing
any i ∈ Ω with itself is always i.

4.2 Examples

Binary Strings In the case of fixed-length binary strings, a crossover operator is pure
if crossing a string with itself always produces the original string. It is easy to see
that the usual crossovers (one-point, two-point, uniform) are all pure.

Traveling Salesman In the traveling salesman problem, the order crossover 1 de-
scribed at the end of the previous section is not pure. For example, the result
of crossing 〈A, B, C〉 with itself using crossover section B is 〈C, B, A〉. A variant de-
scribed in Whitley and Yoo (1995) and Vose and Whitley (1999) is pure. This vari-
ant of order crossover 1 selects the elements from parent P2 for the filler block
starting at the position where the crossover section ends in parent P1, whereas the
previously defined order crossover 1 started at the beginning of the string. The
following example illustrates.

Parent P1: A B C D E F G H I crossover-section: _ _ C D E F _ _ _
Parent P2: d i f g b e c h a filler-block: h a i g b
Offspring: g b C D E F h a i

If S = {A, B, C}, and if the permutations are listed in the same order as before, the
crossover matrix for this variant of order crossover 1 is:



























1 3/5 2/5 3/5 1 3/5

1/5 0 0 1/5 1/5 0

0 0 0 0 0 0

1/5 0 0 0 1/5 1/5

0 0 0 0 0 0

1/5 1/5 0 0 1/5 0



























Note that the upper left entry is a 1, and all of the remaining diagonal entries are
0. This matrix can be made into a symmetric mixing matrix as was done with the
previous example of a crossover matrix.

4.3 Respectful Crossover

DEFINITION 2: A crossover operator C is said to respect A ⊂ Ω if

x ⊂ A =⇒ C(x) ⊂ A

In other words, A is invariant under crossover.
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The idea here is that respectful crossovers preserve genetic information in the pop-
ulation. If all members of a population have a certain property, then it is guaranteed
that all the offspring will also have that property.

4.4 Examples

Binary Strings For fixed-length binary strings, the usual crossovers all respect
schemata. For example, consider the two parents 00111 and 10110. They both
share the schema *011*. Using any of the usual crossovers, the offspring that these
parents can produce will also have this schema. This example shows that the no-
tion of a schema is connected with that of respect. This concept will be generalized
to any search space.

Traveling Salesman For the traveling salesman problem, let Ω be the group of permu-
tations on the finite set S. For each subset b of S, let Ωb be the subgroup

Ωb = {k ∈ Ω : k(b) = b}

Let N = {Ωb : b ⊂ S}. (Using notation introduced in the sequel paper, the set
b would be specified by a binary mask that serves as an indicator function for b.
This binary mask will also be denoted by b.) The previously described variant of
order crossover 1 does not respect these subgroups. This is shown by the previous
example, where the crossover illustrated does not respect the subgroup of permu-
tations that are fixed on the set {A} ⊂ S. We can define yet another variant of order
crossover 1 that does respect these subgroups. Under this variant, for any positions
where the parents are equal, the offspring is equal to the parents. When selecting
the elements from parent P2 for the filler block, these positions are skipped.

Parent P1: A B C D E F G H I crossover-section: _ _ C D E F _ _ _
Parent P2: d i f g b e c h a filler-block: a i g b
Offspring: g b C D E F a h i

The crossover matrix for this variant of order crossover 1 is:


























1 4/5 2/5 4/5 1 4/5

1/5 0 0 1/5 0 0

0 0 0 0 0 0

1/5 0 0 0 0 1/5

0 0 0 0 0 0

1/5 1/5 0 0 0 0



























4.5 Conditions for Respectfulness and Purity

We start our analysis of respect and purity by showing how properties of a population
are affected by the group action. That is, if a population x has property A, then we
show that the population σ(x) has the property σ(A).

THEOREM 10: Let x ∈ Λ, σ ∈ L, and A ⊂ Ω. Then

x ⊂ A ⇐⇒ σ(x) ⊂ σ(A)

168 Evolutionary Computation Volume 10, Number 2



Group Properties

PROOF: Let σ = σa. Note that

x ⊂ A ⇐⇒ xi > 0 ⇒ i ∈ A

⇐⇒ xi > 0 ⇒ a(i) ∈ a(A)

⇐⇒ (σax)a(i) > 0 ⇒ a(i) ∈ a(A)

⇐⇒ σax ⊂ a(A)

⇐⇒ σ(x) ⊂ σ(A)

2

The following theorem shows that once a subset A is respected, then respect for
all sets of the form σ(A) is automatic.

THEOREM 11: Let crossover commute with L(Ω). If A is a subset of Ω, which crossover
respects, then crossover also respects σ(A) for all σ ∈ L.

PROOF: Suppose x ⊂ σ(A). By Theorem 10, σ−1x ⊂ A. Since C respects A and com-
mutes with L(Ω),

σ−1x ⊂ A =⇒ C(σ−1x) ⊂ A =⇒ σ−1 C(x) ⊂ A =⇒ C(x) ⊂ σ(A)

2

The relationship between respectfulness and purity can now be given.

THEOREM 12: A crossover operator that commutes with L(Ω) is pure if and only if it respects
the set {0} ⊂ Ω.

PROOF: Assume C is pure. Then

x ⊂ {0} =⇒ x = e0 =⇒ C(x) = e0 ⊂ {0}

Conversely, assume the set {0} is respected, i.e., assume C(e0) = e0. Let a ∈ L be such
that a(0) = i. Then

C(ei) = C(σae0) = σaC(e0) = σae0 = ei

2

4.6 Examples

Binary Strings For binary strings, this result shows that crossover is pure if and only
if it respects the string containing all zeros. That is, as long as we already know
that crossover commutes with the group, we only need to check what happens
when crossing 00 . . . 0 with itself to find out if it is pure. For example, we know
that one-point crossover commutes with the group action. Now we check that
crossing 00 . . . 0 with itself again produces 00 . . . 0. It clearly does, and therefore
we conclude that one-point crossover is pure.

Traveling Salesman The previous two variants of order crossover 1 were pure. It can
be checked that crossing the identity permutation 〈A,B, C,D, E, F, G,H, I〉 with
itself again produces the identity. This is the only case we need to check to guar-
antee that the crossover is pure.
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4.7 Generalized Schemata

We have seen in the example of binary strings that schemata are important because all
the usual forms of crossover respect them. This leads us to generalize the concept to
all search spaces that have a group action.

DEFINITION 3: Let N be a set of subgroups of L. For each A ∈ N and each b ∈ L, the set

b ◦ A(0) = {i ∈ Ω | i = (b ◦ a)(0) for some a ∈ A}

is called a N -schema. When the context is not ambiguous, N -schemata are referred to simply
as schemata. In particular, if i, j are contained in a schema, then i and j are said to share that
schema.

Note that if A is a normal subgroup of L, then the schemata b◦A(0) is A◦b(0) = A(b(0)).
Hence in that case, N -schema are simply orbits of A.

4.8 Examples

Binary Strings An early example of N -schemata are the M -schemata introduced by
Battle and Vose (1993) for the case of length ` binary strings under component-
wise addition modulo 2. He took N to be the set of subgroups generated by rows
of an invertible ` × ` matrix M . If M is the identity matrix, “schemata” in the
traditional sense result as follows.

Suppose our string length is five. Subgroups (under bitwise addition modulo 2)
correspond to sets of strings that contain a zero in certain fixed positions. Thus the
set

{00000, 00001, 00010, 00011, 00100, 00101, 00110, 00111}

is a subgroup. Because Ω is itself the group, then A(0) = A for any set A ⊆ Ω. If
we take A to be the subgroup just described, and we add the string b = 11001 to
each element, we get the set

{11001, 11000, 11011, 11010, 11101, 11100, 11111, 11110}

which is a coset of the subgroup. You can see that it corresponds to the schema
11*** in the traditional sense. All traditional schemata arise in this way as cosets of
subgroups. The subgroup itself corresponds to 00***.

Traveling Salesman For another example of N -schemata, let Ω be the group of permu-
tations of S, assume 0 ∈ Ω is the identity permutation, and let N be the collection
{Ωb : b ⊂ S} defined previously. Two permutations are in the same left coset of
Ωb if they agree on b, and the N -schemata are the left cosets (of the Ωb). So, for
example, one such subgroup is the set of tours for a traveling salesman in which
the fourth, fifth, and sixth cities visited are cities D, E, and F . We can compose
this set with an appropriate permutation to get the set of tours in which the fourth,
fifth, and sixth cities visited are A, B, and C (or indeed any other three cities). Our
schemata here are thus tours in which certain cities always appear at certain points
on the tour.

Assigning Jobs to Processors In the example of placing jobs on processors, one sub-
group is the following set:

{〈A,B,C, D〉, 〈A,D, C,B〉}
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Choosing the assignment 1 → A, 2 → B, 3 → C, 4 → D to be the element 0, this
subgroup gives us the schema

{〈1 → A, 2 → B, 3 → C, 4 → D〉, 〈1 → A, 4 → B, 3 → C, 2 → D〉}

which is the schema containing all permissible assignments with job 1 on processor
A and job 3 on processor C. If we act on this set with the group element 〈D, A,B, C〉
that rotates the jobs through 90◦ we get the schema

{〈4 → A, 1 → B, 2 → C, 3 → D〉, 〈2 → A, 1 → B, 4 → C, 3 → D〉}

which is now the schema containing all assignments with job 1 on B and job 3 on
D.

4.9 When Does Crossover Respect Schemata?

Given a collection of subgroups N of L, the conditions under which N -schemata are
respected are of interest. Toward that end, the following concept will be useful:

DEFINITION 4: Given a collection of subgroups N of L, elements i, j ∈ Ω are said to be
compatible (with respect to N ) if whenever they share a N -schema, it is also shared by the
element 0 ∈ Ω.

In Vose (1999), the concept of a separative matrix is defined with respect to the space of
binary strings. This concept can now be generalized:

DEFINITION 5: Given a collection of subgroups N of L, a matrix A is separative with respect
to N if Ai,j 6= 0 implies that i and j are compatible.

We can now provide necessary and sufficient conditions for a crossover operative to
respect all schemata.

THEOREM 13: Suppose crossover commutes with L(Ω) and has mixing matrix M . Let N
be a collection of subgroups of L. Then crossover respects all N -schemata if and only if M is
separative with respect to N .

PROOF: Assume that C commutes with L(Ω) and respects all N -schemata. Assume
Mi,j > 0. It needs to be shown that i and j are compatible. Suppose they share the
schema b ◦ A(0), that is,

i = b ◦ a(0)

j = b ◦ a′(0)

for some a, a′ ∈ A. Using Theorem 5,

0 < Mi,j

= s(b ◦ a(0), b ◦ a′(0), 0)

= s(a(0), a′(0), b−1(0))

Thus b−1(0) ∈ A(0) since C respects A(0), and therefore 0 ∈ b ◦ A(0), which means that
i and j are compatible.
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Conversely, suppose that Mi,j > 0 =⇒ i, j compatible. Let A ∈ N and suppose
s(i, j, k) > 0, where i, j ∈ A(0). Let b ∈ L be such that b(0) = k. Then

0 < s(i, j, b(0))

= s(b−1(i), b−1(j), 0)

= Mb−1(i),b−1(j)

and therefore, b−1(i) and b−1(j) are compatible. Since they share the schemata b−1A(0)
(because i and j share A(0)), it follows that 0 ∈ b−1A(0), and therefore k = b(0) ∈ A(0).
What has been shown is that crossover respects A(0). By Theorem 11, it respects all
N -schemata. 2

4.10 Examples

Binary Strings As an example of Theorem 13, consider the group Ω = {0, 1}` under
componentwise addition modulo 2. For each subset b of string positions, let Ωb be
the subgroup of Ω consisting of strings that have zeros in the positions of b. Let
N = {Ωb : b is a set of string positions}. Then, as shown in the sequel paper, any
crossover based on masks will respect N . Two strings are compatible if whenever
they agree in a string position, they are both zero in that position.

Traveling Salesman For another example, let Ω the group of permutations of a set S,
and let N be as defined in the previous permutation example. Two permutations
are compatible if whenever they agree on an element of S, they are the identity on
that element of S. For example, if M is the mixing matrix of the traveling salesman
example in Section 4.3, then M3,2 is forced to be zero because the corresponding
permutations 〈B,C, A〉 and 〈B,A, C〉 are incompatible.

4.11 Purity and Compatibility

The following observations can be made concerning the examples given above. The
previous two examples have the following in common: an element i is compatible
with itself precisely when i is the identity element. The first two example crossover
matrices have an analogous pattern: their i, i th entry is nonzero precisely when i is the
identity element. These observations are explained by the following results.

THEOREM 14: Suppose crossover C commutes with L(Ω) and has mixing matrix M . The
following are equivalent,

• M0,0 = 1

• Mi,i = [i = 0]

• Crossover is pure

PROOF: A simple computation from the definitions shows that

C(e0)k = Ma−1(0),a−1(0)

where a(0) = k. Hence if Mi,i = [i = 0], then choosing a to be the identity yields

C(e0)0 = M0,0 = [0 = 0] = 1

Therefore,
x ⊂ {0} =⇒ x = e0 =⇒ C(x) = e0 ⊂ {0}
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so by Theorem 12, crossover is pure. Conversely, if crossover is pure, then

x = e0 =⇒ x ⊂ {0} =⇒ C(x) ⊂ {0} =⇒ C(x) = e0

Thus M0,0 = C(e0)0 = (e0)0 = 1. As shown in the proof of Theorem 8, each element of
Ω is repeated |L | / |Ω | times by σ(0) as σ ranges over L. Therefore,

1 =
|Ω |

|L |

∑

σ

s(0, 0, σ(0)) =
|Ω |

|L |

∑

σ−1

s(σ(0), σ(0), 0) =
∑

k

Mk,k

If M0,0 = 1, the other diagonal entries must be zero. 2

DEFINITION 6: A collection of N -schemata is called separating if and only if

⋂

A∈N

A(0) = {0}

and for every A ∈ N and b, b′ ∈ L

b ◦ A(0) ∩ b′ ◦ A(0) 6= ∅ =⇒ b ◦ A(0) = b′ ◦ A(0).

When N is a set of normal subgroups, the second condition is automatic, as the follow-
ing argument shows. Suppose

z ∈ b ◦ A(0) ∩ b′ ◦ A(0)

Assuming A is normal, b ◦ A = A ◦ b, and b′ ◦ A = A ◦ b′, so that

z = a ◦ b(0) = a′ ◦ b′(0)

for some a, a′ ∈ A. Thus
b(0) = a−1 ◦ a′ ◦ b′(0)

and
b ◦ A(0) = A(b(0)) = A(a−1 ◦ a′ ◦ b′(0)) = A(b′(0)) = b′ ◦ A(0)

DEFINITION 7: N -schemata U and V are called complementary iff they can be written as

U = b ◦ A(0)

V = b ◦ A′(0)

where A, A′ ∈ N , and the {A,A′}-schemata are separating.

THEOREM 15: If there exists a pair of complementary N -schemata, then

i is compatible with i ⇐⇒ i = 0

Moreover, if crossover respects a pair of complementary schemata and commutes with L(Ω),
then crossover is pure.

PROOF: Let U = b ◦A(0) and V = b ◦A′(0) be complementary schemata, where A,A′ ∈
N and the {A,A′}-schemata are separating. Given i 6= 0, therefore, i /∈ A(0) ∩ A′(0).
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Without loss of generality, suppose i /∈ A(0). Since L(Ω) is transitive, choose b such
that i ∈ b ◦ A(0). If i were compatible with i, then 0 ∈ b ◦ A(0). But since the {A,A′}-
schemata are separating and 0 ∈ A(0), it would follow that i ∈ b ◦ A(0) = A(0), which
is a contradiction.

Note that if crossover C respects U , V and commutes with L(Ω), then crossover
respects all {A,A′}-schemata: Given x, c ∈ Ω, choose σ such that σ(c) = b. For any
C ∈ {A, A′},

x ⊂ c ◦ C(0) =⇒ σ(x) ⊂ σ(c) ◦ C(0)

=⇒ σ(x) ⊂ b ◦ C(0)

=⇒ C(σ(x)) ⊂ b ◦ C(0)

=⇒ σ ◦ C(x) ⊂ σ(c) ◦ C(0)

=⇒ C(x) ⊂ c ◦ C(0)

In particular, crossover respects A(0) ∩ A′(0) = {0}. 2

5 Inducing a Group Structure on the Search Space

5.1 The Search Space as a Group

A special case of a group action L(Ω) is when Ω = L and the action is given by k(w) =
k ◦ w. Given a group L acting on Ω, one might wonder whether this special case could
be recovered. Perhaps a group operation could be induced on Ω such that L(Ω) and
Ω(Ω) were equivalent.

If L is a group of permutations acting on Ω, then Ω is said to have a group structure
compatible with L(Ω) if there exists a binary operation ◦ with identity element defined
on Ω, and a function φ : L −→ Ω such that for all k ∈ L, w ∈ Ω,

k(w) = φ(k) ◦ w

In that case, for notational convenience, denote the identity elements of L and Ω by 0.

THEOREM 16: If L(Ω) is reduced and Ω has a group structure compatible with it, then (Ω, ◦)
is a group isomorphic to L by φ.

PROOF: Suppose φ were not surjective. Then there exists w ∈ Ω such that for all k ∈ L,

w 6= φ(k) = φ(k) ◦ 0 = k(0)

contradicting that L is transitive. Note that, for all w ∈ Ω,

φ(k) = φ(k′) =⇒ k(w) = φ(k) ◦ w = φ(k′) ◦ w = k′(w)

Thus k = k′ so φ is also injective. Moreover,

φ(k ◦ k′) = φ(k ◦ k′) ◦ 0

= (k ◦ k′)(0)

= k(k′(0))

= φ(k) ◦ k′(0)

= φ(k) ◦ (φ(k′) ◦ 0)

= φ(k) ◦ φ(k′)
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Therefore φ is a group isomorphism. 2

Note that the only possibility for φ is φ(k) = φ(k) ◦ 0 = k(0). Moreover, when L(Ω) is
reduced, the group operation on Ω is completely determined by k(w) = φ(k)◦w. There-
fore, Theorem 16 speaks to a situation wherein both the isomorphism φ and the group
operation on Ω are completely determined by what L(Ω) and the identity element of Ω
are.

5.2 Example

Assigning Jobs to Processors Consider again the example of placing jobs on proces-
sors. We write out the complete search space of valid assignments:

A B C D
1 2 3 4
4 1 2 3
3 4 1 2
2 3 4 1
3 2 1 4
1 4 3 2
2 1 4 3
4 3 2 1

Now we write out the group that acts on this set:

A B C D
A B C D
D A B C
C D A B
B C D A
C B A D
A D C B
B A D C
D C B A

By examining the two tables it is clear that we can define a bijection φ : L → Ω by

A 7→ 1, B 7→ 2, C 7→ 3, D 7→ 4

Notice that this gives us φ(k) = k(0), where we choose 0 to be the assignment
1 → A, 2 → B, 3 → C, 4 → D. We can then define a group operator on Ω by setting
i◦ j = φ−1(i)(j). We can easily see that, in accordance with Theorem 16, this group
is isomorphic to L.

It would be nice if we could have done this without having to draw up complete
tables for the two sets. Theorem 17, which follows, tells us exactly when this can
be done.

5.3 Left and Right Group Actions

Define the set R of permutations of Ω—where a permutation of Ω need not be an ele-
ment of L—by the condition that, for all k ∈ L,

g ∈ R ⇐⇒ g ◦ k = k ◦ g

It follows that R is a group acting on Ω by function application, and ΩR = {0}.
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5.4 Examples

Binary Strings The group of fixed-length binary strings under addition is Abelian.
Clearly, in this case, L ⊆ R. In fact, the following theorem will show that L = R.

Traveling Salesman Consider the traveling salesman problem on three cities, A, B and
C. There are six possible routes that we can label 0 to 5 as follows:

0 A B C
1 B A C
2 B C A
3 A C B
4 C A B
5 C B A

We now consider the group action to simply specify functions from the set
{0, 1, 2, 3, 4, 5} to itself. For example,

〈C, B, A〉(1) = 〈C, B, A〉 ◦ 〈B,A, C〉 = 〈B, C, A〉 = 2

The definition of R(Ω) invites us to consider the set of all permutations of the set
{0, 1, 2, 3, 4, 5}. There are 6! of these. The ones that are in R are those that commute
with L. That is, g ∈ R if, for all k ∈ L,

g ◦ k(x) = k ◦ g(x)

The following theorem will show that these permutations can be found as follows:
for each i = 0, 1, . . . 5, define

gi(x) = x ◦ i

in which on the right hand side we interpret x and i as again being permutations.

Assigning Jobs to Processors The jobs on processors problem will illustrate the full
power of the next theorem, and so it will be treated below.

5.5 Conditions for Group Compatibility

The next theorem tells us exactly when the search space Ω can be given a group
structure compatible to L. There are three equivalent conditions. One of these relates
to the group action R(Ω) just defined and asks that R be reduced. In fact, R just has to
be transitive, since ΩR = {0} by construction. That R might not be transitive is shown
in the following example. Let Ω = {0, 1, 2} and suppose our group action L(Ω) is the
set of all permutations of Ω. Then it can be checked that R contains just the identity
and so is not transitive. The other conditions relate directly to L. One states that
Fix(x) = {0} for all x ∈ Ω. That is, for any x, the only element that has k(x) = x is the
case when k is the identity. The last condition states that there is at least one element
of Ω on which different elements of L produce different results. These conditions are
easy to check for a particular group. The corollary to the theorem states that these
conditions are met if the group L is Abelian.

THEOREM 17: If L(Ω) is reduced, then the following are equivalent:

1. Ω has a group structure compatible with L(Ω).
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2. There exists an element 0 ∈ Ω such that, for all k, k′ ∈ L,

k(0) = k′(0) =⇒ k = k′

3. Fix(w) = {0}, for all w ∈ Ω

4. R(Ω) is reduced.

Moreover, in that case (i.e., everything above holds), then L is anti-isomorphic to R, and the
group operation induced by R (on Ω) may be chosen to be the reverse of the group operation
induced by L.

PROOF: (1 ⇔ 2): If Ω has a group structure compatible with L(Ω), then φ is injective.
Hence,

k(0) = k′(0) =⇒ φ(k) = φ(k′) =⇒ k = k′

Conversely, let 0 ∈ Ω be such that for all k, k′ ∈ L,

k(0) = k′(0) =⇒ k = k′

Define ◦ on Ω so that 0 is an identity element, and define φ : L → Ω by

φ(k) = k(0)

Since L acts transitively, φ is surjective. Complete the definition of ◦ on Ω by

φ(k) ◦ w = k(w)

The operation ◦ is well-defined since

φ(k) = φ(k′) =⇒ k(0) = k′(0) =⇒ k = k′

(2 ⇔ 3): By hypothesis,

k ◦ h(0) = k′ ◦ h(0) =⇒ k ◦ h = k′ ◦ h =⇒ k = k′

By transitivity, h(0) is an arbitrary element of Ω. Thus, for all w,

k(w) = k′(w) =⇒ k = k′

which is equivalent to
k−1k′(w) = w =⇒ k−1k′ = 0

which is equivalent to
k−1k′ 6= 0 =⇒ k−1k′(w) 6= w

(4 ⇒ 3): Since R is a permutation group on Ω, it is reduced if and only if it is transitive.
Suppose R is transitive, and that k(w) = w. Then for all g ∈ R,

k(g(w)) = g(k(w)) = g(w)

Since R is transitive, g(w) is an arbitrary element of Ω. Hence k = 0.

(1 ⇒ 4): By hypotheses and Theorem 16, (Ω, ◦) is a group. Given x ∈ Ω, define the
permutation gx by

gx(z) = z ◦ x
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Now gx ∈ R since for all k ∈ L,

gx(k(w)) = gx(φ(k) ◦ w)

= φ(k) ◦ w ◦ x

= k(w ◦ x)

= k(gx(w))

Given any u, v ∈ Ω, let x = u−1 ◦ v and then gx(u) = u ◦ u−1 ◦ v = v. Hence R(Ω) is
transitive and therefore reduced.

If L(Ω) is reduced and conditions 1 through 4 hold, then condition 2 holds with R
in place of L since, for all k ∈ R,

g(0) = g′(0) =⇒ k ◦ g(0) = k ◦ g′(0) =⇒ g(k(0)) = g′(k(0)) =⇒ g = g′

Hence there is a group operation ◦′ induced on Ω and an isomorphism φ′ : R −→ Ω
such that, for all g ∈ R, w ∈ Ω,

g(w) = φ′(g) ◦′ w

The argument of (1 ⇒ 4) shows that for every w ∈ Ω, the permutation gw defined by

gw(z) = z ◦ w

is an element of R. Thus φ′(gw) = gw(0) = 0 ◦ w = w, provided that the identity
elements of (Ω, ◦) and (Ω, ◦′) are the same. That can be arranged, however, since the
arguments of (1 ⇔ 2) and (2 ⇔ 3) show that the choice of identity is arbitrary. It
follows that

w ◦′ z = φ′(φ′−1
(w)) ◦′ z

= (φ′−1
(w))(z)

= (φ′−1
(φ′(gw)))(z)

= (gw)(z)

= z ◦ w

Finally, the map k 7→ gk is an anti-isomorphism,

gk◦k′(z) = z ◦ k ◦ k′ = (gk(z)) ◦ k′ = gk′(gk(z)) = gk′ ◦ gk(z)

2

Notice that under the conditions of Theorem 17, we can explicitly write down the group
R(Ω). Each element of the group corresponds to an element x ∈ Ω with group action
z 7→ z ◦ x. The action of R on Ω therefore corresponds to a permutation acting from the
right (R), whereas the original group acts from the left (L).

Note also that L = R whenever L is Abelian, because in that case multiplication
on the left (L) and multiplication on the right (R) coincide. Moreover, we have the
following:

COROLLARY 18: If L(Ω) is a reduced Abelian group action on Ω, then Ω has a group structure
compatible with L.

PROOF: Since L = R in this case, R must be reduced and the theorem applies. 2
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5.6 Example

Assigning Jobs to Processors We can now apply our theorem to the jobs on processors
example. The simplest condition to check is number 2. If we look at the arrange-
ment of jobs 〈1 → A, 2 → B, 3 → C, 4 → D〉 and consider the effect of each group
member on it, it is clear that each automorphism maps it to a different assignment.
Condition 2 is satisfied, and we therefore know that we can give Ω a group struc-
ture compatible with L. This group is given by the bijection φ : L → Ω defined by
φ(k) = k(0) and then carrying over group operator in a natural way. Moreover, the
group R is anti-isomorphic to L and can be used as an alternative (but equivalent)
group action.

5.7 Characterizing Crossover and Mutation

For the remainder of this section, we assume that the conditions in Theorem 17 hold.
In this case, consider the action of L on the set of pairs of elements Ω2, defined in the
natural way. Define an equivalence relation between pairs as follows:

(i, j) ∼ (x, y) ⇐⇒ x = a(i) and y = a(j) for some a ∈ L(Ω)

From Theorem 17 it follows that there are n equivalence classes, each containing n pairs.
Theorems 8 and 9 show that all mixing matrices have the property

∑

a∈L

Ma(i),a(j) = 1

for each pair (i, j) ∈ Ω2. We can therefore determine all possible mixing matrices with
respect to L.

THEOREM 19: Assuming the conditions of Theorem 17 hold, we can determine all mixing
matrices with respect to L by choosing n probability distributions wk ∈ Λ (where k ∈ Ω) and
assigning

Mi,j = (wi−1◦j)i

and then symmetrizing (replace Mi,j with (Mi,j + Mj,i)/2).

PROOF: The preceding discussion shows that the values Ma(i),a(j) must form a prob-
ability distribution as a ranges over L, for fixed i, j within each equivalence class. To
construct a mixing matrix, we can therefore take any n probability distributions wk ∈ Λ
(where k ∈ Ω) and set

Mi,j = (wk)i

where (i, j) ∼ (0, k). That is, k = a(j), where a(i) = 0. Because of the isomorphism
between the group action and (Ω, ◦), we have

k = a(j) = a(0) ◦ j

and
0 = a(i) = a(0) ◦ i

which means that k = i−1 ◦ j. 2

We can also determine all the possible mutation operators (that commute with L) as
follows:
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THEOREM 20: Assuming the conditions of Theorem 17 hold, a mutation matrix U commutes
with L(Ω) if and only if there exists α ∈ Λ such that

U =
∑

k∈Ω

αkπk

where the πk are permutation matrices representing group R.

PROOF: That the condition is sufficient is clear from the definition of R(Ω). To show
that it is necessary, assume that U commutes with L(Ω). That is, for all a ∈ L,

Ui,j = Ua(i),a(j)

Define the matrix πk to have i, jth component

[(i, j) ∼ (0, k)]

for each k ∈ Ω, and let
αk = U0,k

Then
U =

∑

k∈Ω

αkπk

We now need to show that the set {πk : k ∈ Ω} is a representation of R. Let a ∈ L, and
let σa be the permutation matrix representing a. Then for any k ∈ Ω,

(σaπk)i,j = (πk)a−1(i),j

= [(a−1(i), j) ∼ (0, k)]

= [(i, a(j)) ∼ (0, k)]

= (πk)i,a(j)

= (πkσa)i,j

So each πk represents an element of R(Ω), and since there are n of each, then the set
{πk : k ∈ Ω} represents the group R(Ω) as required. 2

Since in this case R is anti-isomorphic to L and therefore to the group structure on
Ω, then this is equivalent to specifying a probability distribution over the elements of
Ω, choosing an element using this distribution and applying it to the individual to be
mutated from the right. We therefore have this corollary:

COROLLARY 21: Assuming the conditions of Theorem 17 hold, a mutation matrix U commutes
with L(Ω) if and only if there exists α ∈ Λ such that

Ui,j =
∑

k∈Ω

αk[j ◦ k = i] = αj−1◦i

5.8 Example

Assigning Jobs to Processors We are now in a position to determine all possible
crossover and mutation operators that commute with the group action for the jobs
and processors example. Let χ

0, . . . χ7 be probability distributions over Ω, and let
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X be the matrix containing these distributions as rows. Then we can construct a
mixing matrix by applying Theorem 19 to X . To proceed we need to index the
group members (and equivalently the search space).

A B C D
0 A B C D
1 D A B C
2 C D A B
3 B C D A
4 C B A D
5 A D C B
6 B A D C
7 D C B A

We then set Mi,j = Xi−1◦j,i = χ
i−1◦j(i). Following this rule, we get a matrix of the

form

























χ
0(0) χ

1(0) χ
2(0) χ

3(0) χ
4(0) χ

5(0) χ
6(0) χ

7(0)
χ

3(1) χ
0(1) χ

1(1) χ
2(1) χ

7(1) χ
6(1) χ

4(1) χ
5(1)

χ
2(2) χ

3(2) χ
0(2) χ

1(2) χ
5(2) χ

4(2) χ
7(2) χ

6(2)
χ

1(3) χ
2(3) χ

3(3) χ
0(3) χ

6(3) χ
7(3) χ

5(3) χ
4(3)

χ
4(4) χ

7(4) χ
5(4) χ

6(4) χ
0(4) χ

2(4) χ
3(4) χ

1(4)
χ

5(5) χ
6(5) χ

4(5) χ
7(5) χ

2(5) χ
0(5) χ

1(5) χ
3(5)

χ
6(6) χ

4(6) χ
7(6) χ

5(6) χ
1(6) χ

3(6) χ
0(6) χ

2(6)
χ

7(7) χ
5(7) χ

6(7) χ
4(7) χ

3(7) χ
1(7) χ

2(7) χ
0(7)

























One should then symmetrize this matrix to get the unique mixing matrix. Of
course, while this tells us exactly what our mixing matrix must look like, it doesn’t
tell us how to implement a corresponding crossover operator in a natural way.
This will be the subject of the sequel paper.

If one wanted a crossover operator that respects a family of schemata, then the
those entries of the mixing matrix that are incompatible relative to this family of
schemata should be set to zero.

The search space group corresponds to the symmetries of the square (the dihedral
group D4). This group has five order 2 subgroups: the groups generated by the
horizontal reflection (of the square), the vertical reflection, each of the two diagonal
reflections, and the 180◦ rotation. This collection of subgroups defines a family of
schemata. If one sets the incompatible entries of the above mixing matrix to zero,
then the crossover matrix becomes:

























χ
0(0) χ

1(0) χ
2(0) χ

3(0) χ
4(0) χ

5(0) χ
6(0) χ

7(0)
χ

3(1) 0 χ
1(1) 0 0 0 0 0

χ
2(2) χ

3(2) 0 χ
1(2) 0 0 0 0

χ
1(3) 0 χ

3(3) 0 0 0 0 0
χ

4(4) 0 0 0 0 0 χ
3(4) χ

1(4)
χ

5(5) 0 0 0 0 0 χ
1(5) χ

3(5)
χ

6(6) 0 0 0 χ
1(6) χ

3(6) 0 0
χ

7(7) 0 0 0 χ
3(7) χ

1(7) 0 0
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The corresponding row stochastic matrix X is:

























χ
0(0) 0 0 0 0 0 0 0

χ
1(0) χ

1(1) χ
1(2) χ

1(3) χ
1(4) χ

1(5) χ
1(6) χ

1(7)
χ

2(0) 0 χ
2(2) 0 0 0 0 0

χ
3(0) χ

3(1) χ
3(2) χ

3(3) χ
3(4) χ

3(5) χ
3(6) χ

3(7)
χ

4(0) 0 0 0 χ
4(4) 0 0 0

χ
5(0) 0 0 0 0 χ

5(5) 0 0
χ

6(0) 0 0 0 0 0 χ
6(6) 0

χ
7(0) 0 0 0 0 0 0 χ

7(7)

























When there are only two non-zero entries in a row of the X matrix, these corre-
spond to symmetric entries in the mixing matrix. They must therefore have equal
values by symmetry. Because they also form a probability distribution, they must
in fact take the value 1/2. The original choice of 8 probability distributions has
therefore been reduced to 2, namely χ

1 and χ
3.

If one wanted a mutation operator, then we have already seen that we can use a
probability distribution over the center of the group Z(L). More generally, we now
see that we can use any probability distribution µ over Ω (which is now isomorphic
to L) and apply the chosen element on the right. The mutation matrix constructed
by the formula of Corollary 21 can be combined with a crossover matrix to give a
single mixing matrix by using Theorem 1.

6 Conclusion

This paper investigates the situation where there is a group of symmetries, or permu-
tations, acting on the search space Ω of a genetic algorithm. If crossover and mutation
commute with these symmetries, then these operators can be described by a mixing
matrix and the group of permutation matrices that correspond to the group of symme-
tries. These considerations lead to a natural generalization of the concept of schemata
and to conditions under which crossover and mutation respect schemata.

We have considered the possibility that the group action might induce a group
structure on the search space itself. Necessary and sufficient conditions for this to
happen have been given. Some of the implications of having a group structure on
Ω are worked out in the sequel paper. This will lead to a general method for designing
crossover and mutation operators in this case.

To summarize the key points of this paper:

1. Symmetries in a search space can be captured by defining a group action.

2. If crossover and mutation commute with the group action, then their effect on the
population can be described by a single mixing matrix.

3. Necessary and sufficient conditions for this to happen have been given.

4. The structure of all possible mixing matrices has been characterized.

5. Crossover is pure if it fixes uniform populations.

6. Crossover is respectful if it is invariant on a given collection of subsets.

7. Crossover is pure if and only if the set {0} is respected.
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8. If crossover respects a subset A, then it also respects σ(A), where σ is a group
element.

9. The concept of schemata is generalized to capture the subgroup structure of the
group action.

10. Necessary and sufficient conditions are given for crossover to respect all schemata.
This is related back to the notion of purity.

11. The question of when a group action on the search space can induce a group struc-
ture on the search space was addressed. Necessary and sufficient conditions are
found.

12. These conditions are always met when the group action is commutative.

13. When these conditions hold, it is possible to characterize all possible crossover and
mutation operators.

The sequel paper will address the following issues:

1. Implications of the search space itself having a group structure.

2. The concept of a structural search space.

3. The definition of natural crossover and mutation operators for structural search
spaces.

4. Proof that such genetic operators respect all schemata.

5. The existence of a Walsh Transform for Abelian groups (and only for Abelian
groups).

6. Crossover, mutation, and proportional selection are analyzed with respect to the
Walsh Transform in the Abelian case.

A third paper will discuss the relationship between landscape graphs and search
space symmetries by studying groups of automorphisms of such graphs. This will lead
to a generic method for designing crossover and mutation operators in relation to the
neighborhood structure embodied in the landscape graph. A fourth paper will relate
the construction of crossovers to the twist operator on matrices.
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