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Morphological variability in tree root architecture indirectly affects
coexistence among competitors in the understory

ERIK T. ASCHEHOUG
1,3

AND RAGAN M. CALLAWAY
2

1Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695 USA
2Division of Biological Sciences and the Institute on Ecosystems, University of Montana, Missoula, Montana 59812 USA

Abstract. Interactions between plants can have strong effects on community structure and
function. Variability in the morphological, developmental, physiological, and biochemical
traits of plants can influence the outcome of plant interactions and thus have important
ecological consequences. However, the ecological ramifications of trait variability in plants are
poorly understood and have rarely been tested in the field. We experimentally tested the effects
of morphological variation in root architecture of Quercus douglasii trees in the field on
interactions between understory plants and community composition. Our results indicate that
variability among Q. douglasii tree root systems initiates a striking reversal in the competitive
effects of dominant understory grass species on a less common species. Trees with a deep-
rooted morphology facilitated exotic annual grasses and these annual grasses, in turn,
competitively excluded the native perennial bunchgrass, Stipa pulchra. In contrast, Q. douglasii
trees with shallow-rooted morphologies directly suppressed the growth of exotic annual
grasses and indirectly released S. pulchra individuals from competition with these annual
grasses. Morphological variation in the root architecture of Q. douglasii created substantial
conditionality in the outcomes of competition among species which enhanced the potential for
indirect interactions to sustain coexistence and increase community diversity.

Key words: blue oak; community assembly; competition; facilitation; Quercus douglasii; Stipa pulchra;
trait-mediated indirect interactions.

INTRODUCTION

Interactions among plant species can have powerful

effects on community composition, productivity, and

function (Connell 1983, Callaway et al. 1996, Verdú and

Valiente Banuet 2008). These interactions can be

affected by changes in plant root : shoot ratios, specific

leaf area, proportions of fine to coarse roots, biochem-

istry, and other traits in response to different ecological

contexts (Novoplansky 2002, de Kroon et al. 2005, Li et

al. 2007). When trait variation affects the way plants

interact directly with each other, these interactions can

be defined as trait-mediated interactions (Callaway et al.

2003). For example, when the California native shrubs

Haplopappus ericoides and H. venetus var. seloides grow

in the absence of competition, their root systems are

concentrated near the soil surface (D’Antonio and

Mahall 1991). However, when competing with the exotic

Carpobrotus edulis the root systems of Haplopappus shift

to a much deeper morphology, as they are displaced by

the mat-forming exotic (D’Antonio and Mahall 1991).

This change in rooting depth by Haplopappus suggests

that interacting species can exert strong control over the

morphology of their competitors; in this case, causing a

change that may result in a trade-off in access to

nutrients and water (Ho et al. 2005), but a change that

may also allow for continued coexistence between two
strongly competing species. Thus, the high degree of

trait variability expressed by plants may also have

important effects on the way communities assemble, yet
the ecological impact of trait variation has rarely been

tested in the field (Miner et al. 2005).
Morphological variation may also lead to important

trait-mediated indirect interactions with other species,

and thus, create cascading interactive effects on the
structure of communities (Werner and Peacor 2003,

Aschehoug and Callaway 2012, Ohgushi et al. 2012).

Empirical studies of trait-mediated indirect interactions
may yield insight into many different kinds of highly

complex ecological interactions, but to date have mostly
focused on tri-trophic interactions between plants,

consumers, and predators. For example, Schmitz

(2008) found that the presence of predators altered the
feeding behavior of herbivores in ways that affected the

long-term dynamics of the vegetation community and
ecosystem function. The change in behavioral response

of herbivores to the presence of predators had different

direct effects on the dominant plant Solidago rugosa and
indirectly affected the overall composition of the

vegetation community. Surprisingly, despite the high
degree of trait variability found in plants and an

increasing awareness that indirect interactions among

plants may structure communities in important ways
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(Samson and Werk 1986, Aschehoug and Callaway

2012, Metlen et al. 2013), we know of no studies

investigating the effects of trait variation on indirect

interactions among plants. Here, we explored trait-

mediated indirect interactions in the context of mor-

phological variation, plant–plant interactions, and plant

community structure.

Quercus douglasii Hook. and Arn. (blue oak) is a

winter deciduous oak endemic to California, USA, but

very widely distributed within the state (Griffin and

Critchfield 1976). Previous work on Q. douglasii has

shown that it demonstrates strong morphological

variation in rooting architecture, making it a model

system for investigating trait-mediated interactions in

the field. This variation in rooting architecture appears

to range between two phenotypic end points: shallow-

rooted trees with highly developed fine-root systems in

shallow soils (0–50 cm deep) and deep-rooted trees that

have few fine roots in shallow soils. Callaway et al.

(1991) found that some mature trees expressed very low

water potentials over the dry mediterranean climate

summers of three different growing seasons (e.g., they

did not access a permanent water source). Other trees

expressed much higher water potentials during the

rainless summers, indicating that they accessed deep

water sources. Importantly, the trees with low water

potentials developed approximately four to five times

more fine-root mass in shallow soils (0–50 cm deep)

beneath the canopy than trees with high water potentials

(Callaway et al. 1991). This measured variation in root

architecture in the field corresponded with controlled

experiments of Q. douglasii seedlings. In experiments,

Quercus douglasii seedlings with restricted access to deep

stores of water produced roughly twice as many fine

lateral roots and more than five times the lateral root

mass as seedlings with access to a deep water source

(Callaway 1990). Trees exhibiting different rooting

phenotypes and water potentials were intermixed on

the landscape at the scale of meters, suggesting that

these differences were not due entirely to gross microsite

differences (Callaway et al. 1991).

Additional experiments found that the two pheno-

types did not differ in canopy effects, such as light

exposure and temperature, and that soil moisture under

the two tree root phenotypes was not significantly

different during the understory growing season (Call-

away et al. 1991). Although there were differences in

understory soil nutrient concentrations between shal-

low-rooted and deep-rooted trees, these did not result in

significant differences in understory plant performance

in greenhouse trials (Callaway et al. 1991). However,

transplant experiments utilizing root exclosures found

that Bromus diandrus performance nearly doubled under

shallow-rooted trees when seedlings were protected from

Q. douglasii roots, while exclosures did not change B.

diandrus performance under deep-rooted trees (Callaway

et al. 1991). Further, total productivity under deep-

rooted trees was more than three times higher than

under shallow-rooted trees; a striking pattern that

remains today. Thus, the morphological variation in

root architecture shown by mature Q. douglasii in the

field appears to have strong, trait-mediated direct effects

on understory species (Callaway et al. 1991), which sets

the stage for tests of trait-mediated indirect interactions

within the understory vegetation community.

The variation in Q. douglasii root morphology also

correlated with different understory community compo-

sitions; the abundance of the native perennial bunch-

grass Stipa (nee Nassella) pulchra (Hitchc.) Barkworth

(purple needle grass) was higher under shallow-rooted

trees than deep-rooted trees, but the abundance of

European annuals (primarily Avena fatua and Bromus

diandrus), which can competitively exclude other species

(Rice and Nagy 2000), was lower (Callaway et al. 1991).

Because of this pattern, we hypothesized that morpho-

logical variation in Q. douglasii root architecture may

have strong indirect effects on the way these annual

exotic grasses compete with the native S. pulchra, thus

progressing from an interaction in which understory

plant performance is directly affected by tree root

morphology to an interaction in which variation in root

morphology both directly and indirectly affects under-

story plant performance.

Here, we build on previous work (Callaway 1990,

Callaway et al. 1991) by experimentally investigating

interactions in the field where morphological variation

in the root architecture of Q. douglasii may alter

important competitive interactions between exotic

annual grasses and S. pulchra. Specifically, we tested

the hypothesis that Q. douglasii trees with shallow-root

architectures strongly but indirectly shift competitive

outcomes between European annual grasses and S.

pulchra in favor of S. pulchra, while Q. douglasii with

deep-root architectures strongly facilitate exotic annu-

al grasses, which in turn, competitively exclude S.

pulchra.

MATERIALS AND METHODS

In January 2012, we transplanted Stipa pulchra

seedlings under mature Quercus douglasii trees at

Hastings Natural History Reserve in the Santa Lucia

Mountains of central California, USA. These seedlings

had been grown outdoors in Granite Bay, California,

in 125-mL cone-tainers (Stuewe and Sons, Corvallis,

Oregon, USA) filled with local soil for ;120 d prior to

transplanting. We returned to the original sites of

Callaway et al. (1991) and established plots under all

12 deep-rooted trees and six of the shallow-rooted trees

used in the original study. We selected six additional

shallow-rooted trees based on the distinct leaf mor-

phology described in Callaway and Mahall (1996) and

observations of very high fine-root densities in

excavations we made in the upper 20 cm of soil under

the canopies (Callaway et al. 1991). In addition, we

qualitatively assessed both the understory productivity

and fine-root mass under all sample trees to ensure

ERIK T. ASCHEHOUG AND RAGAN M. CALLAWAY1732 Ecology, Vol. 95, No. 7
R

ep
or

ts



they exhibited the same characteristics as described in

Callaway et al. (1991). Our total sample size of trees
was 12 deep-rooted trees and 12 shallow-rooted trees.

Under each tree, six S. pulchra seedlings were planted
either directly into the matrix of existing vegetation (n

¼ 3) or in the center of a 20 cm diameter removal
treatment in which all aboveground biomass of
neighbors was removed (n ¼ 3). Seedlings received

;500 mL of supplemental water only on day one and
two in order to aid establishment. ‘‘Uncle Ian’s Mole

and Gopher, Deer, Rabbit and Squirrel Repellant’’
(Ian Enterprises, Woodward, Oregon, USA) and

‘‘Deer Off II’’ (Woodstream Corporation, Lititz,
Pennsylvania, USA) were applied equally to all

transplanted S. pulchra plants to minimize damage
by herbivores (i.e., deer and feral pigs), and herbivore

damage to surviving plants was minimal. We counted
the total number of leaves on all plants after seven

weeks, and after 20 weeks of growth, we harvested,
dried, and weighed the aboveground biomass of all

remaining individuals. At the time of harvest, we also
counted the total number of seeds on each plant. To

explore whether variation in the root morphology of
Q. douglasii corresponded with differences in the
abundance of S. pulchra, we counted the number of

S. pulchra individuals in three randomly located 60 cm
diameter circular plots under each tree.

We used the average of all remaining samples under
each individual tree to avoid pseudoreplication and

tested for the direct effects of two Q. douglasii root
morphologies on S. pulchra performance and the

indirect interactions between Q. douglasii and S. pulchra
as mediated by European annual grasses by comparing

total biomass, total leaf number, and seed number of S.
pulchra plants from either competition or removal

treatments under either deep-rooted or shallow-rooted
trees and between tree type using a two-way ANOVA

with tree root morphology and understory competition
as fixed factors (SPSS 20; IBM 2011). Because SPSS

does not allow for post-hoc comparison of interaction
terms, we also used a one-way ANOVA with four

factors and Tukey HSD post-hoc comparisons to
determine individual treatment differences (SPSS 20;
IBM 2011).

RESULTS

Two-way ANOVA results

The fixed effect of tree morphology (deep-rooted or
shallow-rooted) was significant for the number of leaves

produced by individual Stipa pulchra plants (P¼ 0.016),
and was marginally significant for average biomass of

individual plants (P¼ 0.056), but not significant for the
average number of seeds each plant produced (P ¼
0.974). The fixed effect of competition treatment (S.
pulchra grown with or without neighbors) was signifi-
cant for average biomass, average number of leaves, and

average number of seeds per plant (P , 0.001, P ,

0.001, P , 0.001, respectively). The interaction term tree

root morphology 3 competition treatment was signifi-

cant for average individual biomass, the average number

of leaves individual plants produced, and the average

number of seeds on each plant at time of harvest (P ,

0.001, P , 0.001, P , 0.001, respectively; Appendix:

Table A1).

One-way ANOVA results

Relative effects of trees on Stipa pulchra perfor-

mance.—Stipa pulchra plants grown under shallow-

rooted trees without neighbors were significantly more

suppressed by competition with trees than S. pulchra

plants grown under deep-rooted trees without neigh-

bors. S. pulchra plants under shallow-rooted trees were

smaller, had fewer leaves, and produced less seeds than

S. pulchra plants grown under deep-rooted trees (P ,

0.001, P , 0.001, P , 0.01, respectively).

Effects of understory competition on Stipa pulchra

performance.—Stipa pulchra plants grown under deep-

rooted trees were significantly suppressed by understory

competition with other species (P , 0.001). The dry

biomass of plants grown alone was more than six times

greater (1.59 6 0.13 g; shown are all means 6 SE) than

plants grown with neighbors (0.22 6 0.04 g). In

addition, when the number of leaves on individual

plants were counted after seven weeks of growth, plants

without neighbors had significantly more leaves (30.40

6 2.39) than plants that were exposed to understory

competition (9.26 6 1.42, P , 0.001). At the time of

harvest, the average number of seeds per plant was 18

times greater for plants grown without neighbors (18.29

6 2.52) vs. plants with neighbors (1.01 6 0.91, P ,

0.001; Fig. 1).

In contrast, S. pulchra plants grown under shallow-

rooted trees were not affected by understory competi-

tion. We found no significant differences in dry weight

biomass (P ¼ 1.00), leaf number (P ¼ 0.947) or the

average number of seeds per plant at the time of harvest

(P ¼ 0.990; Fig. 1) between individuals that had all

neighbors removed and individuals in competition with

neighbors.

Interaction of tree morphology and understory compe-

tition on Stipa pulchra performance.—Stipa pulchra

plants grown under deep-rooted trees with neighbors

were significantly more suppressed by the combination

of competition with trees and other understory species.

Stipa pulchra plants were smaller, tended to have fewer

leaves, and produced fewer seeds than S. pulchra plants

grown under shallow-rooted trees with neighbors (P ,

0.005, P , 0.079, P , 0.011, respectively).

Abundance of Stipa pulchra under trees.—We ran-

domly sampled the existing vegetation under trees for

the abundance of Stipa pulchra individuals. The average

number of individual S. pulchra plants was roughly 10

times greater under shallow-rooted trees (1.00 6 0.22)

than under deep-rooted trees (0.08 6 0.06, P , 0.001;

Appendix: Fig. A1).
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DISCUSSION

We found that morphological variation in Quercus

douglasii root architecture had substantial direct and

indirect effects on the performance of the native

perennial bunchgrass Stipa pulchra in the understory

plant community. When growing without neighbors,

under deep-rooted trees, S. pulchra plants were more

than twice as big as when growing without neighbors

under shallow-rooted trees. This suggests that Q.

douglasii root morphology exerts powerful direct effects

on the performance of S. pulchra, a finding that is

consistent with other studies (Callaway et al. 1991).

Previous studies have shown that trees with a deep-

rooted morphology strongly facilitate exotic annual

grasses (Callaway et al. 1991), leading to understory

productivity being twice that of the surrounding

grasslands and more than three times the understory

productivity of shallow-rooted trees; a striking pattern

which remains today (R. M. Callaway, personal

observation). Here, we found that exotic annual grasses

growing under deep-rooted trees have strong, exclusion-

ary effects on S. pulchra, decreasing individual biomass

by .85% and reducing seed output by 95%. In contrast,

exotic annual grasses growing under shallow-rooted

trees had no effect on S. pulchra. Our experimental

results are also consistent with the patterns of abun-

dance for S. pulchra in the understory: Shallow-rooted

trees had far more individual S. pulchra plants in the

understory community than deep-rooted trees (Appen-

dix: Fig. A1). Importantly, our results reveal that Q.

douglasii had powerful indirect effects on both the

performance and persistence of S. pulchra in the

understory that appear to be driven by variation in Q.

douglasii root architecture (Fig. 2). To our knowledge,

this is the first experimental test of a trait-mediated

indirect interaction among plants, and our results

suggest that the indirect effects of morphological

variation in plants may be an important factor in

determining both plant community dynamics and long-

term community composition.

An important limitation of our study is that the

evaluation of the effects of morphological variation of

mature oak trees was in the field, and as a consequence,

we could not experimentally induce variation in the root

morphology of Q. douglasii. Instead, our study builds

on previously published studies suggesting that the

variation in root architecture is in response to water

availability in the environment (Callaway 1990, Call-

away et al. 1991, Callaway and Mahall 1996), although

we can’t rule out genetic differences. A second

limitation of our study is that we cannot eliminate the

possibility that the indirect interactions we hypothesize

to be caused by variation in root architecture are

instead caused by differences in microsites occupied by

deep-rooted vs. shallow-rooted trees. Further, we did

not replicate the studies performed by Callaway et al.

(1991), which established root-mediated competition

between Q. douglasii and understory plants as the

primary determinant of understory productivity. As a

consequence, we cannot rule out that the same site

factors that determine differences in Q. douglasii root

phenotype also cause differences in the way the annual

grasses interact with S. pulchra in our study. However,

since we utilized a large proportion of the same study

trees and the patterns of understory productivity

appeared similar to work presented in Callaway et al.

(1991), it is likely that root-mediated interactions are an

important aspect of our results. Further, the close

proximity of many individuals, spatial mixing of the

two root phenotypes at the scale of meters, and the very

FIG. 1. Biomass, leaf number, and seed number of Stipa
pulchra planted under Quercus douglasii trees with phenotypes
of either shallow roots or deep roots. Stipa pulchra were planted
with all neighbors removed in a 20 cm diameter centered on the
target plant or with neighbors left intact. Error bars represent
þSE, and different letters above the bars denote a significant
difference between the means (P , 0.05).
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strong correlation of understory effects with the edges

of the tree canopies (Callaway et al. 1991) suggests that

abiotic microsite differences are not likely to explain

our results.

The link between morphological variation in Q.

douglasii, the environment, and the effect of this

variation on both direct and indirect plant–plant

interactions helps to fill a gap in our understanding of

how plant communities assemble. There are two general,

but contrasting, theories for how plant species may

assemble into communities as a result of competition

among plants. The first proposes that plant communities

are competitively transitive in nature (Goldsmith 1978,

Mitchley and Grubb 1986, Keddy and Shipley 1989). In

other words, all species in a given pool, or community,

can be ranked in a linear competitive hierarchy, or

‘‘pecking order,’’ which provides a predictive tool for

community organization. An important limitation of

hierarchical assembly rules is that indirect interactions

are not included, and thus, there can be no trait-

mediated indirect interactions in the theory. Instead, the

crucial prediction of hierarchical assembly rules is that

communities will consistently move towards dominance

by the best competitor in the hierarchy unless interrupt-

ed by nonequilibrium forces such as disturbance or

herbivory. The second body of theory poses that plants

may exhibit non-transitive or nonhierarchical assembly

rules as they form communities (May and Leonard

1975, Buss and Jackson 1979, Petraitis 1979). Whereas

hierarchical organization is best described mathemati-

cally as A . B . C, nonhierarchical organization occurs

when loops form in the hierarchy such as A . B, B . C,

but C . A. This results in species C having an indirect

positive effect on species B through a direct negative

effect on species A. Given the right starting point, a

simple loop within a suite of competing species can

result in a perpetually shifting state in which species

coexist indefinitely in the absence of abiotic heterogene-

ity or nonequilibrium processes (Karlson and Jackson

1981, Bronstein et al. 2004, Laird and Schamp 2006,

Kaur et al. 2009). Importantly, in nonhierarchical

systems, indirect interactions are the central rule of the

predictive model that creates the opportunity for trait-

mediated indirect interactions to be included within the

existing conceptual framework. Here we show that the

indirect effects of Q. douglasii are important in

determining Stipa pulchra persistence in the understory

community, and as such, our results demonstrate the

importance of including indirect interactions in models

of community assembly.

Further, most theory for how plants interact is built

on the construct, or at least the implicit assumption, that

plants are ‘‘fixed’’ in their competitive abilities. Howev-

er, we found that morphological variation in Q.

douglasii created tremendous conditionality in the

outcomes of competition among species and greatly

enhanced the potential for indirect interactions to

sustain coexistence and increase community diversity.

As a consequence, theory for how plant communities

assemble that does not incorporate complex suites of

direct and indirect interactions and conditionality driven

by variation in traits rather than just a trait mean is

likely to be incomplete.

Conditionality in interactions between plants, con-

sumers, and predators has been shown to have

important effects on ecosystem processes (Schmitz

2008, Ohgushi et al. 2012). Here, we extend this to

suggest that morphological variation in plants can have

powerful effects on plant community dynamics and

structure. The emerging study of trait-mediated indirect

interactions among plants may provide insight into how

plants coexist and assemble into communities.
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SUPPLEMENTAL MATERIAL

Appendix

Detailed results of two-way ANOVA model and figure of reproductive output results (Ecological Archives E095-153-A1).
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