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INTRODUCTION
Actions of glucocorticoids present a cost–benefit tradeoff for

vertebrate young. Glucocorticoids are essential during development;

for example, they play critical roles in fetal organ maturation

(reviewed by Liggins, 1994) and many life history stage transitions

such as metamorphosis and fledging (Krug et al., 1983; de Jesus et

al., 1990; Galton, 1990; Brown and Kim, 1995; Heath, 1997;

Schwabl, 1999; Kern et al., 2001; Sockman and Schwabl, 2001;

Seabury Sprague and Breuner, 2005). Yet at the same time,

glucocorticoids can be detrimental for development. Prolonged

exposure to glucocorticoids can cause increased mortality (Mashaly,

1991; Saino et al., 2005; Eriksen et al., 2006; Janczak et al., 2006)

(but see Meylan and Clobert, 2005), reduced growth and/or body

condition (Hayward and Wingfield, 2004; Meylan and Clobert,

2005; Eriksen et al., 2006), and may result in a hypersensitive

hypothalamic-pituitary-adrenal (HPA) axis as adults (Hayward and

Wingfield, 2004). Recent studies also suggest corticosterone

(CORT) hinders feather growth in adult European starlings (Sturnus
vulgaris) (Romero et al., 2005) and barn swallow nestling (Hirundo
rustica) (Saino et al., 2005) which can delay fledging. Thus, the

duration, timing, and intensity of CORT exposure may be key factors

determining the balance of cost–benefit tradeoffs during

development.

Studies to date have utilized numerous methods for glucocorticoid

administration during pre- and postnatal development. Researchers

have used injections of CORT into eggs or mothers for transient,

‘acute’ CORT elevation (Dean and Matthews, 1999; Rubolini et

al., 2005; Saino et al., 2005; Freire et al., 2006; Janczak et al., 2006;

Uller and Olsson, 2006). This prenatal exposure presumably mimics

a maternal transfer of CORT to her offspring, especially when

performed very early in development (Rubolini et al., 2005; Saino

et al., 2005; Janczak et al., 2006). More prolonged, ‘chronic’

elevation of CORT is traditionally achieved by using subcutaneous

implants; these often elevate the hormone for weeks, and sometimes

months (Morici et al., 1997; Catalani et al., 2000; Glennemeier and

Denver, 2002; Spencer et al., 2003). Although some species may

naturally elevate CORT for such extended periods of time, it is

probably not biologically relevant for most. Thus it will be valuable

to investigate the effect of short, moderate exposure to CORT,

especially in species with shorter developmental periods (i.e. short-

lived organisms). It is important to note that many studies investigate

classical actions of glucocorticoids; however rapid actions are often

overlooked, especially in young.

During the early postnatal development in birds, a possible

conflict exists between diverse effects of CORT; it can retard growth

(Spencer et al., 2003; Saino et al., 2005) but can also facilitate

begging (Kitaysky et al., 2001b; Kitaysky et al., 2003) (but see

Rubolini et al., 2005). To investigate potential tradeoffs resulting

from brief, moderate (physiologically relevant) elevations of CORT,

we evaluated the effects of CORT on growth and begging through

the nestling phase in Nuttall’s white-crowned sparrows (Zonotrichia
leucophrys nuttalli Forster 1722). In the first experiment, we tested

the effects of an acute CORT elevation (25·min) on begging

behavior, by feeding nestlings CORT- or oil-containing wax moth

(Achroia grisella) worms. In the second experiment, we artificially

elevated CORT between 24 and 48·h using a non-invasive dermal

patch, and observed changes in growth.

MATERIALS AND METHODS
Animals

Nuttall’s white-crowned sparrow Zonotrichia leucophrys nuttalli
Forster 1772 nestlings were captured from a free-living population

on Bodega Marine Reserve, University of California, Davis, CA,

USA. Nestlings in this species develop from a body mass of ~3·g

to over 20·g and fledge within ~10 days (Banks, 1959). For the

purpose of the study, the ~10-day nestling period was divided into
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three age groups: days·1–3, 4–6 and 7–9 post-hatching (D1–3, 4–6,

7–9, respectively). In D1–3 nestlings, eyes are closed or have just

opened. During this period, nestlings gain mass in near-logarithmic

fashion and pin feather break occurs in 2.5·days (Banks, 1959). Eyes

are fully open by D4–6. Nestlings of this age switch from ectothermy

to endothermy, complete body mass gain and increase alertness and

coordination of movements (Morton and Carey, 1971; Morton,

2002). D7–9 nestlings switch from gaining mass to developing

feathers. They are alert, show a fear reaction to an observer, and

may fledge if disturbed. Ages of the nestlings are estimated in two

ways: (1) by monitoring hatch date or (2) by comparing growth

characteristics of nestlings with known ages. Experiment 1 (acute

elevation of CORT) was conducted in the spring of 2005 and

experiment 2 (extended elevation of CORT) was conducted in the

spring of 2006. Experimental protocols were approved by the

Institutional Animal Care and Use Committees (the University of

Texas at Austin, #06022301; University of California, Davis,

#12200).

Corticosterone manipulation in nestlings
Each nest was randomly assigned to one of the three age groups

for the experiment. On the day of the experiment, two nestlings

(non-runt) from each nest were randomly selected for two treatments,

control and experimental groups. Each nest and each individual was

treated and observed only for one age group.

Experiment 1: acute elevation and begging behavior
To deliver a transient increase of CORT non-invasively, we fed

nestlings wax moth worms containing either CORT dissolved in

peanut oil or peanut oil alone. This method was modified after

Breuner et al. (Breuner et al., 1998). The sample size for this

experiment was 10, 13, 6 for the control and 12, 13, 9 for the CORT

in D1–3, 4–6 and 7–9, respectively.

The concentration used in this study was 0.4·mg

CORT·ml–1·peanut oil (Sigma, St Louis, MO, USA). Peanut oil with

or without CORT was injected into the worm using a 30-gauge

needle mounted on a Hamilton syringe. The amount of solution

injected into the moth worm was determined depending on the

average mass of the two nestlings (Table·1A).

Nestlings were captured from nests one at a time. Immediately

after capture, the body mass was recorded (Fig.·1A). The nestling

was then transported to the laboratory in a transportable nest box

(a natural nest in a small cardboard box)

covered by an opaque cloth and moved into

the observation box upon arrival. The

observation box consisted of a nest in a

small box taped onto a larger box (Fig.·1B).

The outer box had a ~3·cm slit where the

experimenter could tap the small nest box

inside with a finger without being seen by

the nestling. A video camera was placed

on a tripod just outside of the observation

box and aimed at the nest. The observation

box plus the video camera were covered,

for the entire duration of the behavioral

observation, by a black plastic cover with

an eye hole.

The room was kept dark except for

inside the observation box. An electric

body warmer was placed underneath the

observation box to keep nestlings warm.

Upon transfer, nestlings were fed wax moth

worms, the amount supplied was dependent on the nestlings body

mass in order to bring all the nestlings to a similar fed state (17%

of nestlings refused this first worm; we assumed those nestlings were

fed and continued without the first feeding). The nest box within the

observation box was then covered with an opaque cloth and nestlings

were left undisturbed for approximately 35·min. After the quiescence

period, the nest box was uncovered to feed the nestling with a CORT-

or oil-containing wax moth worm. The nestling’s behavior was

observed for 25·min (see below) immediately following the worm

ingestion. Blood sample was collected after the behavioral

observation to ensure the hormone manipulation was successful.

Nestlings were then returned to their nest.

Begging behaviors of the nestlings were videotaped for 25·min.

During the observation, the nest box was tapped for 3·sec every

5·min after an initial 5·min acclimation period. Tapping mimics a

signal of parents’ return from their feeding trips and reliably elicited

nestlings’ begging behavior in a preliminary study (H.W.,

unpublished). Videotapes were later analyzed for four parameters

of begging behavior: latency to beg [time (s) for nestlings to beg

after the start of each tapping], duration of begging (s), number of

head lifts regardless of whether they resulted in actual begging, and

number of peeping noises. The experimenter did not observe the

behavior of the nestlings during the recording and the experimenter

and the scorer did not know the treatment group of the subjects

during the experiment.

Experiment 2: extended elevation and growth parameters
In the second experiment, CORT levels were artificially elevated

for 24 to 48·h using a dermal patch containing either CORT

dissolved in peanut oil or peanut oil alone. This method was modified

after Knapp and Moore (Knapp and Moore, 1997). The sample size

in this experiment was 9, 10, 10 for both treatment groups in D1–3,

4–6 and 7–9, respectively.

The concentration used in the dermal patches was

12.5·mg·CORT·ml–1·peanut oil (Sigma). The amount of oil and the

size of a patch were adjusted according to the nestlings’ mass (see

Table·1B). The patch consisted of Johnson & Johnson clear Band-

Aid, black vinyl electrical tape and 3M Nexcare transparent dressing.

Patches were assembled the night before or the morning of the

application to avoid drying up. The peanut oil with or without CORT

was loaded on the band-aid portion of the patch in the morning of

the application using 20-gauge needles.

Table·1. (A) Volume of peanut oil ± corticosterone injected into moth worms in experiment 1
and (B) size of dermal patch used in experiment 2

(A) Mass of chick (g) Volume (�l)

6–8 10.5
8–10 13.5
10–12 16.5
12–14 19.5
14–16 22.5
16–18 25.5
18–20 28.5
20–22 31.5
22–24 34.5

(B) Mass of chick (g) Volume (�l) Band–Aid (mm) Electrical tape (mm) Dressing (mm)

0–10 5 2�4 6.5�8 11.5�25
10–15 10 4�4 7.5�8 13.5�25
15–20 15 6�4 7.5�9 13�30
>20 20 8�4 7.5�10 13�30
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At the beginning of the experiment, an initial blood sample was

drawn and growth parameters were measured as a baseline for the

individual. After the growth measurement (see below), patches

were applied between two ventral sternal/abdominal tracts. The

skin was first cleaned using 70% ethanol. Patches were applied

to the skin after dabbing peanut oil on the skin area to aid the

transfer of oil from patch to skin. Nestlings were then returned to

their nest. The subsequent blood and growth samples were

collected approximately 1, 3, 6 and 24·h (30 and 48·h when

possible) after the patch application. New patches were applied

after the 24·h sample was taken.

In this experiment, five growth parameters were measured: body

mass (g), tarsus (mm), first primary (P1; mm) and wing (mm)

length, and developmental scores. The wing length measurement

here is slightly different from that used for adults, which is

traditionally the length between the wrist joint and the tip of the

longest primaries. Since bones are not yet defined in young birds,

wing length was measured from the leading edge of the wing to

the longest part of the primaries and secondaries. The

developmental scores are the systematic scores of feather

development on five parts of the body (wing, head, back, abdomen,

and tail) on the scale of 0–5 (0=no pin, 2=pin and 4=sheath). As

in experiment 1, nestling treatment was concealed from the

experimenter for the duration of the study.

Blood sampling
All blood samples in experiment 1 and 2 were obtained within 4·min

of capture, by puncturing the alar vein with a 26-gauge needle to

measure baseline levels of CORT (Wada et al., 2007). The blood

samples were kept on ice until they were spun for 8·min in the

centrifuge at 13·460·g (11·500·r.p.m.) at the end of the day. Plasma

and red blood cell samples were stored at –20°C or below, until

assay.

Corticosterone assays
Plasma CORT levels were determined using Enzyme Immunoassay

(EIA) kits (cat # 901-097, Assay Designs). Plasma dilution and

steroid displacement buffer (SDB) values were optimized previously

H. Wada and C. W. Breuner

for this species (Wada et al., 2007). Samples were run in duplicate,

and standard curves and standards were run in triplicate.

In 0.5·ml Eppendorf tubes, 7·�l 1% SDB was added to the equal

volume of raw plasma. After a 5·min incubation, 266·�l of assay

buffer was added to the plasma (1:40 dilution). All plasma samples,

standard curve, total binding, non-specific binding, and 500·pg·ml–1

standards were placed into a 96-well plate; conjugated CORT and

secondary antibody were added to each well, except for non-specific

binding wells, which received only antibody. The plate was

incubated for 2·h on a shaker at 26°C. After the first incubation,

the wells were rinsed three times with wash buffer. The plate was

then incubated with substrate solution for 1·h at 26°C (without

shaking). After the second incubation, stop solution was added to

each well and the plate was read at 405·nm, with correction at

595·nm (Multiskan Ascent microplate reader).

Samples from experiment 1 and 2 were run in two separate EIA

assays. Samples from experiment 1 were completely randomized

within the assay, whereas samples from the same nest were analyzed

on the same plate for experiment 2. All the nests were, however,

randomized within the assay. Detection limits for the first and the

second experiment were 0.64·ng·ml–1 and 0.87·ng·ml–1, respectively

(detectability=% bound of total binding – 2 standard deviations, i.e.

CORT values that were significantly different from blank wells).

The detection limit of the plate was used when the levels of a sample

fell under the limit. Inter-plate and intra-plate variations for the first

and the second experiment were 3.6%, 6.6%, 5.4% and 6.6%,

respectively.

Corticosteroid binding globulin assays
Plasma corticosteroid binding globulin (CBG) levels were

determined using a ligand-binding assay with tritiated CORT

[described in Breuner et al. (Breuner et al., 2003)]. Optimal assay

parameters in white-crowned sparrows (WCS) have been

characterized previously (Lynn et al., 2003) and were validated for

WCS nestlings (Wada et al., 2007). CBG levels of individual

samples were measured in a point sample assay with 50·�l 1:300

diluted plasma, 50·�l [3H]CORT, and either 50·�l 1·�mol·l–1

unlabelled CORT (non-specific binding) or 50·mmol·l–1 (pH·7.40)

A

Nest 
 

Lab

Acclimation period Behavioral observation 
35 min 25 min  

 
 
Body 
mass 

Blood 
sample 

B

Fig.·1. Timeline (A) and diagram (B) for behavioral
observations in experiment 1. (A) Immediately after
nestlings were captured from their nest was body mass
recorded. Upon arrival at the lab, nestlings were fed
wax moth worms (total worm weight scaled to chick
body mass) and left undisturbed for ~35·min. After the
quiescence period, nestlings were fed with a worm
injected with peanut oil with or without corticosterone.
Behavior was observed for the following 25·min. After
collecting a blood sample and taking measurements of
growth, nestlings were returned to their nest.
(B) Nestlings were placed in a natural nest within a
small box taped onto a larger observation box. A small
slit in the observation box allowed the experimenter to
tap the nest box in place without being seen by the
subjects. A video camera placed next to the observation
box was aimed at the nest box. An electric body warmer
was placed underneath the observation box to keep the
nestlings warm.
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Tris assay buffer (total binding); tubes were then incubated for 2·h

at 4°C. After the incubation period, bound hormones were separated

from free hormones by running through a rapid vacuum filtration,

followed by three 3·ml rinse with 25·mmol·l–1 Tris buffer (pH·7.40).

The glass fiber filters were soaked with 25·mmol·l–1 Tris buffer with

3% polyethylenimine for 1·h before harvesting. Intra-assay variation

for the point sample assay was 22.1%.

Free hormone levels were estimated using an equation by Barsano

and Baumann (Barsano and Baumann, 1989):

Hfree = 

0.5[Htotal – Bmax – 1/Ka ± 

where Ka is 1/Kd (nmol·l–1), Kd is affinity of CORT for CBG, Bmax

is total CBG capacity, and Htotal is total plasma hormone

concentration. Kd values were previously determined in equilibrium

binding analyses using pooled plasma: day 2–3, 4–6 and 7–9

nestlings had Kd values of 3.13±0.60·nmol·l–1, 3.12±0.33·nmol·l–1

and 4.19±0.67·nmol·l–1, respectively (Wada et al., 2007).

Sex determination
The extraction and PCR procedure were modified after Freeman-

Gallant et al. (Freeman-Gallant et al., 2001). Red blood cells

(10·�l), 150·�l Tris-EDTA (TE) buffer, 3·�l 20% SDS, and 2·�l

proteinase K were incubated at 65°C for 2·h on a shaker. DNA

was extracted in three steps: with phenol, phenol–chloroform

mixture, then with chloroform, all in 1:1 ratio with samples. At

each step of the extraction, a reagent–red blood cell mixture was

spun down in a centrifuge for 10·min at 16·060 g. At the end of

the extraction, 20·�l ammonium acetate and 0.5·ml 100% ethanol

were added to the supernatant. After purifying the DNA using

0.5·ml 70% ethanol, 50·�l TE buffer was added to re-suspend DNA.

DNA samples (1·�l each) were then run in PCR machine with

1·�l forward (gagaaactgtgcaaaacag) and 1·�l reverse primers

(tccagaatatcttctgctcc) (Integrated DNA Technologies, Coralville,

IA, USA). Post-PCR samples (10·�l) were run in an agarose gel

stained with ethidium bromide and read with a UV light. Adult

samples with known sex were run together to confirm the sexing

results.

Data analysis
All data analyses were performed using SPSS 15.0. For experiment

1, the effects of treatment and age on CORT levels were determined

using two-way ANOVA. The four parameters of begging behavior

were reduced to three after principle axis factoring. Duration and

number of head lift had factor loadings higher than 0.6; therefore

they were combined by taking an average. The effects of treatment

and age on three parameters of begging behavior were determined

using MANOVA.

For the second experiment, the effect of treatment on CORT and

CBG levels was analyzed using repeated measures ANOVA. The

CORT levels and growth parameters were regressed using

hierarchical multiple regression analysis. Five growth parameters

were regressed separately to determine the effects of CORT on

different types of growth. Prior to analyses, areas under the curve

for both variables were calculated for each individual. Since CORT

and growth parameters did not always increase with time, this

approach allowed us to incorporate both rates and direction of the

change into one variable. In the multiple regression analysis, age

was coded as the following: Age1 denotes for D1–3 nestlings

(D1–3=1, D4–6 and 7–9=0), Age2 codes for D4–6 nestlings (D1–3

and 7–9=0, D4–6=1), and the oldest age group was a reference.

Since sex and treatment did not have a significant effect on the

max total totala a 2(B     –H     +1/K )  +4(H     /K )] ,

CORT–growth regression in experiment 2, they were excluded from

the further analyses.

Homogeneity of variance was tested using Levene’s test. When

results were P�0.05, the data were log transformed (begging

behavior). Data were considered to be significant when P�0.05 after

Bonferroni corrections when appropriate. Data are presented as mean

± s.e.m.

RESULTS
Experiment 1: acute elevation

CORT levels in nestlings
There was no significant effect of age (F=0.418, P=0.66) but a

significant effect of treatment (F=26.54, P<0.001) on nestlings’

CORT levels at the end of the behavioral observation (Fig.·2).

CORT-treated nestlings had a significantly higher CORT than

control nestlings. No significant interaction was observed between

age and treatment (F=0.329, P=0.721).
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Fig.·2. Total (unbound and bound to corticosteroid binding globulin)
corticosterone (CORT) levels at the end of the behavioral observation in
control and CORT-treated nestlings in experiment 1. There was no effect of
age but there was a significant effect of treatment on the hormone levels
(P<0.001). N=9, 13, 8 for the controls and 10, 14, 13 for the CORT-treated
groups D1–3, 4–6 and 7–9, respectively (D, days post-hatching).

Fig.·3. Latency to beg in the three age groups. Latency was measured as
the time it took for nestlings to beg after the start of tapping. N=10, 13, 6
for the control and 12, 13, 9 for the corticosterone (CORT)-treated groups
D1–3, 4–6, and 7–9, respectively (D, days post-hatching). *P<0.05.
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Effects on begging behavior
There was no direct effect of treatment on any of the behaviors

observed (P>0.05). Significant effects of age were observed for all

parameters: latency (F=15.88, P<0.001), duration–head lifts

(F=8.169, P=0.001), and peeping (F=3.55, P=0.035). No significant

interactions were observed between age and treatment in

duration–head lift or peeping (P>0.05), however, significant

interaction was detected in latency to beg (F=4.27, P=0.019;

H. Wada and C. W. Breuner

Fig.·3). A pairwise comparison showed that in D4-6 nestlings,

CORT-treated nestlings had longer latency to beg than controls.

Experiment 2: extended elevation
CORT and CBG levels in nestlings

Repeated measures ANOVA showed that there was a marginal effect

of treatment on CORT levels (F=2.91, P=0.094; Fig.·4) and no effect

of treatment on CBG levels (F=0.001, P=0.976; Fig.·5).
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Fig.·4. Changes in total corticosterone (CORT) levels over 48·h of
treatment with dermal patches containing CORT and patches with vehicle
only (control; experiment 2). Minimum blood samples were collected prior
to and 1, 3, 6 and 24·h (30 and 48·h when possible) after the patch
application. After the 24·h sample, a new patch was applied. There was a
marginal effect of treatment (P=0.094) on CORT levels.
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Table·2. Hierarchical multiple regression analysis outputs for corticosterone and five developmental measures in experiment 2

Model summary Coefficients

Developmental measures Predictors Adjusted R2 R2 change F change Predictors Std Beta P value

Mass CORT –0.006 0.012 0.418 CORT –0.013 0.841
Age 0.881 0.875 <0.001† Age1 –0.916 <0.001†

Age2 –0.307 0.015*
Age�CORT 0.89 0.013 0.044* Age1�CORT –0.194 0.047*

Age2�CORT –0.239 0.038*

Tarsus CORT 0.001 0.018 0.311 CORT 0.001 0.982
Age 0.922 0.908 <0.001† Age1 –0.924 <0.001†

Age2 –0.396 <0.001†

Age�CORT 0.931 0.011 0.014* Age1�CORT –0.211 0.007*
Age2�CORT –0.179 0.05*

P1 length CORT 0.048 0.065 0.054 CORT 0.048 0.295
Age 0.939 0.878 <0.001† Age1 –0.994 <0.001†

Age2 –0.614 <0.001†

Age�CORT 0.943 0.006 0.068 Age1�CORT –0.07 0.314
Age2�CORT –0.191 0.022*

Wing length CORT 0.031 0.048 0.1 CORT 0.032 0.468
Age 0.941 0.897 <0.001† Age1 –0.983 <0.001†

Age2 –0.554 <0.001†

Age�CORT 0.947 0.007 0.025* Age1�CORT –0.111 0.099
Age2�CORT –0.209 0.01*

Developmental scores CORT 0.05 0.066 0.051 CORT 0.068 0.126
Age 0.946 0.883 <0.001† Age1 –0.98 <0.001†

Age2 –0.579 <0.001†

Age�CORT 0.949 0.004 0.114 Age1�CORT –0.124 0.064
Age2�CORT –0.115 0.142

CORT, corticosterone. Age1 denotes day 1–3 (D1–3) nestlings (D1–3=1, D4–6 and 7–9=0); Age2 denotes D4–6 nestlings (D1–3 and 7–9=0, D4–6=1), and the
oldest age group was a reference. The relationship was considered significant when *P�0.05, †P�0.001.

Fig.·5. Changes in corticosteroid binding globulin (CBG) levels over 48·h of
treatment with dermal patches containing CORT and patches with vehicle
only (control; experiment 2). Treatment had no effect on plasma CBG
levels (P=0.976).
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Effects on growth
In the hierarchical multiple regression analyses, independent

variables were added to the regression model in the following order:

CORT, age, and interaction between age and CORT. Developmental

measures were not explained by CORT levels alone (P>0.05,

Table·2), although some developmental measures showed a marginal

correlation with CORT (P1 length and developmental scores,

P=0.054, 0.051, respectively). When age (Age1 and Age2) was

added to the regression model, R2 increased significantly for all five

developmental measures (P<0.001). When age�CORT interaction

was added to the regression model, R2 again increased significantly

for mass, tarsus and wing length (P<0.05; Figs·6–8). This significant

and negative correlation between growth parameters and CORT was

observed after 24·h of CORT treatment in D1–6 nestlings.

DISCUSSION
Our study demonstrated that moderate, transient CORT elevation

can alter behavior and growth of white-crowned sparrow nestlings.

In the first experiment, a stress-response-like elevation in CORT

over 25·min increased latency to beg in the middle-staged nestlings.

This contrasts the previous findings where CORT promotes begging

behavior in nestlings (Kitaysky et al., 2001b; Kitaysky et al., 2003).

In the second experiment, mass, tarsus length, and wing length were

negatively correlated with CORT levels of the nestlings. The effect

of CORT was apparent as early as 24·h after the treatment. These

results suggest that even a moderate increase in CORT is detrimental

for early postnatal development in white-crowned sparrows.

Moreover, within the observed measures, CORT appears more costly

for nestlings.

Glucocorticoids and behavior
Both adult and developmental studies suggest that the effect of

CORT on behaviors is condition or context dependent. In rodents,

postnatal handling (brief separation) and maternal separation (three

hours or more) have opposite effects on young’s HPA reactivity in

adulthood (for a review, see Anisman et al., 1998). Similarly, acute

vs chronic elevation of CORT may have opposite effects on begging

behavior in avian young. Our study showed that transient increases

in CORT suppress subsequent begging in middle-staged nestlings.

Acute prenatal elevation of CORT levels also have a similar effect

in yellow-legged gulls (Rubolini et al., 2005), where begging rate

is reduced in freshly hatched nestlings. By contrast, chronically

elevated CORT (for 1–3 days) increases begging behavior in black-

legged kittiwakes (Kitaysky et al., 2001b). When conditions are

unfavorable for a brief period of time, it may be beneficial for the

young to conserve energy by reducing body movements. However,

it may be more beneficial for young to increase begging when the

body goes into a negative energy balance. Distinct effects of CORT

for acute and chronic elevation may be a mechanism for avian young

to adjust energy balance during diverse types of challenges. It is

also plausible that the receptor types may be responsible for the

difference in effects of CORT; the suppression of begging seen in

this study may be mediated through membrane receptors (‘rapid’
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Fig.·6. Integrated mass vs integrated total corticosterone (CORT) for the
first 24·h of treatment with dermal patches containing CORT and patches
with vehicle only. Integrated measures were used to incorporate both rate
and direction of changes. Individuals from both treatment and control
groups are plotted together. N=18, 20, 20 for D1–3, 4–6 and 7–9,
respectively (D, days post-hatching). Trend lines were added for
visualization.
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Fig.·7. Integrated tarsus vs integrated total corticosterone (CORT) for the
first 24·h of treatment with dermal patches containing CORT and patches
with vehicle only. Integrated measures were used to incorporate both rate
and direction of changes. Individuals from both treatment and control
groups are plotted together. N=18, 20, 20 for D1–3, 4–6 and 7–9,
respectively (D, days post-hatching). Trend lines were added for
visualization.

Fig.·8. Integrated wing length vs integrated total corticosterone (CORT) for
the first 24·h of treatment with dermal patches containing CORT and
patches with vehicle only. Integrated measures were used to incorporate
both rate and direction of changes. Individuals from both treatment and
control groups are plotted together. N=18, 20, 20 for D1–3, 4–6 and 7–9,
respectively (D, days post-hatching). Trend lines were added for
visualization.
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actions), while the enhancement of begging in kittiwakes is likely

mediated by classical actions of CORT through intracellular

receptors.

Context dependency may also reflect nestling age. In our study,

acute CORT elevations had an effect only on the middle-staged

nestlings; this may reflect the physical and physiological stage of

development. A similar phenomenon is seen in young domestic

chickens. CORT has an effect on anti-predatory and anxiety

behaviors only when administered prenatally (day 18 of incubation)

and not postnatally (day 1 post-hatch) (Freire et al., 2006). Across

vertebrates, CORT is known to act in a highly context-dependent

manner (Orchinik, 1998), and developmental stages may be one of

those determinants for actions of CORT. It is also possible that

nestlings are highly sensitive to dose. CORT levels in the

experimental group reached between 9 and 12·ng·ml–1 in experiment

1 which are well within the physiological range and equivalent to

or less than those reached after a handling stress during a nestling

period in the species (Wada et al., 2007). However, effects of CORT

are highly dose dependent (Diamond et al., 1992; Breuner and

Wingfield, 2000), and the ‘effective dose’ may change with age.

(Early-staged nestlings have peak levels of ~11.5·ng·ml–1 after

capture and handling stress, whereas late-staged nestlings reach

~37·ng·ml–1.) Hence, it is possible that the current dose was

relatively low for the late-staged nestlings, and a higher dose of

CORT would be necessary to stimulate changes in begging behavior.

Many developmental studies acutely elevate CORT by giving a

single injection into eggs or mothers (Dean and Matthews, 1999;

Rubolini et al., 2005; Saino et al., 2005; Freire et al., 2006; Janczak

et al., 2006; Uller and Olsson, 2006). It is important to note that

this acute, prenatal exposure of CORT differs from our study in

terms of timing of the treatment. In the former case, behaviors are

observed days after the administration. This may reveal an

organizational effect rather than an activational action of CORT.

Glucocorticoids and growth
It is generally accepted that chronically elevated CORT retards

growth of young (Morici et al., 1997; Glennemeier and Denver,

2002; Spencer et al., 2003; Hayward and Wingfield, 2004).

However, CORT may alter growth rates more rapidly than previous

studies have suggested. In studies demonstrating deleterious effects

of CORT on growth, young are often exposed to CORT for

extended period of time, ranging from 7·days to three months (Morici

et al., 1997; Leonhardt et al., 2002). In others, embryos are exposed

to CORT by a prenatal injection into eggs or mothers. Results from

latter studies are mixed; some show significantly slower growth

(Saino et al., 2005; Janczak et al., 2006), whereas others indicate

no effect of CORT (Preest et al., 2005; Rubolini et al., 2005; Uller

and Olsson, 2006). The current study showed that negative

relationships between CORT and mass, tarsus, and wing length were

apparent after 24·h of patch application. The greatest effects were

seen in D1–3 and D4–6 nestlings. This is the time when nestlings

of this species grow rapidly both in terms of body mass and structural

size (i.e. skeleton) (Banks, 1959). During days·7–10, as they reach

fledging, the development switches from mass gain to feather

growth. When the length of the first primary was regressed against

CORT levels, we only observed a marginal interaction between age

and CORT. This suggests that CORT may have a stronger effect

on mass and structural development than feather growth in this

species.

However, feather growth is also important for young birds,

especially for the transitions between nestling, fledgling and

independence. In adult European starlings, CORT is shown to

H. Wada and C. W. Breuner

inhibit feather growth (Romero et al., 2005). In young barn

swallows, an acute prenatal exposure to CORT (single injection

within two days of laying) slows the wing feather and rectrix growth

(Saino et al., 2005). In our study, we observed a negative

relationship between wing length and CORT but not between P1

and CORT. Wing length in our study included carpometacarpus,

patagium and flight feathers. Hence, the significant effect of CORT

on wing length may be a result of reduction in development rate

for both bones and feathers.

CORT may serve as a mechanism to adjust to current body

condition, as suggested above and by other researchers (Breuner

and Hahn, 2003; McEwen and Wingfield, 2003). Food restriction

is known to elevate CORT (Kitaysky et al., 2001a). When nestlings

respond to CORT by slowing growth, there may be a shift in energy

allocation from growth to maintenance, until conditions improve.

If they do, the energy allocation may shift back to growth and there

may be no permanent alteration in body size, cognition or HPA

reactivity. However if conditions do not improve, there may be

irreversible changes, such as reduced body size/condition or song

quality (e.g. Spencer et al., 2003). Such consequences of CORT

elevation in this species are still not well understood.

CORT levels observed in response to the patch application were

moderate in experiment 2. The highest level observed was 19·ng·ml–1

of a middle-staged nestling. Virtually all individuals had CORT

levels below the age-specific stress-induced levels for the whole

duration of the study. We observed higher variation around the mean

in experimental plasma CORT levels than expected. In addition,

preliminary studies using adult white-crowned sparrows showed an

extensive effect of CORT patches on plasma hormone levels (data

not shown), whereas levels in nestlings changed little. We do not

know the exact cause of this variation or the disparity between adults

and young, however, it may be due to a greater leakage, a differential

skin diffusion rate, clearance rate, or magnitude of negative

feedback, and physical interactions between siblings and parents in

the field.

Conclusion
The current study demonstrated that brief and moderate increases

of CORT can affect begging and growth in white-crowned sparrow

nestlings. To our knowledge this is the first study to demonstrate

(1) the rapid and negative effects of CORT on begging behavior

and (2) the negative relationship between CORT and growth as

early as 24·h after treatment. These results together indicate that

both transient and extended CORT elevations are costly in this

species. Then again, effects of CORT appear to be highly context

dependent. Future studies are needed to determine the effects of

more prolonged CORT elevations as well as effects on begging

behaviors when a nestling’s energy balance falls negative. These

studies will help us understand whether CORT is more costly or

poses more balanced cost–benefit tradeoffs to sparrow nestlings

during development.
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