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Abstract. Prolonged dormancy is a life-history stage in which mature plants fail to 

resprout for one or more growing seasons and instead remain alive belowground. Prolonged 
dormancy is relatively common, but the proximate causes and consequences of this intriguing 
strategy have remained elusive. In this study we tested whether stored resources are associated 
with remaining belowground, and investigated the resource costs of remaining belowground 
during the growing season. We measured stored resources at the beginning and end of the 

growing season in Astragalus scaphoides, an herbaceous perennial in southwest Montana, 
USA. At the beginning of the growing season, dormant plants had lower concentrations of 
stored mobile carbon (nonstructural carbohydrates, NSC) than did emergent plants. 
Surprisingly, during the growing season, dormant plants gained as much NSC as 

photosynthetically active plants, an increase most likely due to remobilization of structural 
carbon. Thus, low levels of stored NSC were associated with remaining belowground, and 
remobilization of structural carbon may allow for dormant plants to emerge in later seasons. 
The dynamics of NSC in relation to dormancy highlights the ability of plants to change their 
own resource status somewhat independently of resource assimilation, as well as the 

importance of considering stored resources in understanding plant responses to the 
environment. 

Key words: Astragalus scaphoides; carbon metabolism; life history; nonstructural carbohydrates; 

prolonged dormancy; stored resources; vegetative dormancy. 

Introduction 

Prolonged dormancy is a relatively common stage in 
herbaceous perennial plants in which mature plants 
remain belowground during one or more entire growing 
seasons instead of emerging to grow and acquire 

resources (Lesica and Steele 1994). Interestingly, pro 

longed dormancy occurs in many unrelated species, 

suggesting that it is a strategy that has evolved many 
times (Lesica and Steele 1994). Prolonged dormancy has 
been most frequently observed in the Orchid family, but 
it has been reported in over 10 plant families and 52 

species of plants (Lesica and Steele 1994, Shefferson 

2009). Despite the fact that it is relatively common, the 
causes and consequences for this behavior remain 

unclear. Why do some plants forego the opportunity 
to grow and reproduce, while others resume seasonal 

activity? Here we investigate the proximate causes and 

Manuscript received 9 October 2009; revised 8 March 2010; 

accepted 10 March 2010. Corresponding Editor: N. 
Underwood. 

3 
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consequences of prolonged dormancy in a long-lived 
native perennial, Astragalus scaphoides. 

Prolonged dormancy (also known as "vegetative 
dormancy"; see Lesica and Steele 1994, Shefferson 

2009) is different from other, more extensively studied 

types of plant dormancy. The metabolic costs of 

maintaining mature plant parts belowground during 
prolonged dormancy are likely higher than costs of seed 

dormancy. Further, in contrast to seasonal dormancy, 

where all individuals go dormant, prolonged dormancy 
often involves only a fraction of individuals in any given 
year. The lack of photosynthesis and reproduction by 
individuals undergoing prolonged dormancy could have 

large negative fitness impacts. However, the prevalence 

of this strategy suggests either neutral or even positive 
effects. For instance, prolonged dormancy may allow 
individuals to avoid large resource demands or risks 

(e.g., biotic or abiotic stress) associated with growing 
aboveground tissues (Shefferson 2009). To date, little is 
known about what causes certain individuals to remain 

belowground while others are able to grow and 
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reproduce aboveground, or about the costs and benefits 

of doing so. 
Two leading hypotheses have been proposed to 

explain prolonged dormancy: (1) it occurs in response 
to external cues, such as herbivory or drought (Morrow 
and Olfelt 2003, Shefferson et al. 2003, 2005?, Miller et 
al. 2004, Lesica and Crone 2007), and (2) plants remain 

belowground because they lack resources to build leaves 

(Shefferson et al. 2005a, Shefferson et al. 2006). If 

prolonged dormancy occurs in response to some critical 

limiting resource, then plants must gain this resource 
while dormant so they can emerge in later years. 
However, plants typically lose stored resources during 
the non-growing season due to metabolic demands and 

lack of photosynthesis (Wyka 1999). Prolonged dor 

mancy could incur a similar or even greater resource 

cost. Plants that are dormant during the summer miss a 
season of carbon gain through photosynthesis, and 

likely lose even more carbon to respiration in summer 
than in winter due to higher soil temperatures (Amthor 
2000). If so, prolonged dormancy would be a costly life 

stage because plants need remaining stored resources to 

survive another winter, as well as to initiate seasonal 

growth and reproduction. Such resource costs could 
have significant impacts on future performance and, 
ultimately, on fitness. It is possible that metabolism 

during prolonged dormancy may fundamentally differ 
from dormancy during winter and drought, or that 
individuals that remain dormant during the growing 
season may gain resources through belowground pro 
cesses. To date, no one has tested these alternatives by 

directly measuring the dynamics of stored resources in 
dormant plants. 
We investigated the causes and consequences of 

prolonged dormancy by measuring stored resources of 

plants at different life history stages in a long-lived 
perennial wildflower, Astragalus scaphoides. We em 

phasized stored resources not only because they are a 

component of one of the leading hypotheses for 

prolonged dormancy but also because they reflect 
current condition as well as integrate past performance 
such as resource capture and allocation to various life 

history functions (Chap?n et al. 1990, Crone et al. 

2009). Stored resources are critical for numerous plant 
functions, including plant growth following winter 

dormancy, reproduction, recovery from herbivory, 

and survival (Mooney and Hays 1973, Ho and Rees 

1976, Chap?n et al. 1990, Boyce and Volenec 1992, 
Zimmerman and Whigham 1992, Van der Heyden and 
Stock 1996, Kobe 1997, Wyka 1999). Furthermore, 
stored resources play critical roles in signaling path 

ways that control plant growth and development 

(Halford and Paul 2003, Rolland et al. 2006, Lee et 
al. 2007). Here, we asked: (1) Are stored resources 
associated with the entry into prolonged dormancy? (2) 

What are the resource consequences of remaining 

belowground during otherwise favorable conditions? 
If prolonged dormancy is associated with stored 
resources, we expect that dormant plants will be 

lacking in one or more stored resources at the 

beginning of the growing season. If prolonged dor 

mancy is similar to other types of dormancy, such as 
winter dormancy, we expect dormant plants to deplete 
stored resources over the growing season. However, if 

prolonged dormancy differs fundamentally from other 

types of dormancy, dormant plants may be able to 
conserve or acquire stored resources during the 

growing season. 

Methods 

Study species 

Astragalus scaphoides (Fabaceae) is an iteroparous 
legume with a long, narrow taproot, found on south 

facing slopes in high-elevation sagebrush steppe com 
munities (Lesica 1995). It has an estimated life span of 
21 years (Ehrlen and Lehtila 2002), and does not 

reproduce vegetatively (Lesica 1995). On average, 20% 
of the individuals in our population are dormant in any 
given year (Crone and Lesica 2004) and dormancy 
events typically last one year. Dormancy is weakly 
correlated (0.2 < r < 0.3) with warm, dry weather in the 

spring (J. Gremer, unpublished analyses). However, even 
in years of high dormancy, only a portion of individuals 
remain dormant while the rest emerge as vegetative or 

reproductive plants. Plants flower approximately in 
alternate years (Lesica 1995, Crone et al. 2005), and 
this strategy is driven by fluctuations in stored resources 
rather than changes in climate (Crone et al. 2005, 2009). 
Plants that do not flower may produce leaves and be 

vegetative, or remain dormant during the growing 
season. 

If plants emerge aboveground, they initiate growth in 

April, and biomass senesces back to perennating roots in 

early July. Mature dormant plants can be located by 
dried flowering stalks that persist aboveground for 2-3 

years. Evidence of previous flowering events can be seen 

on root crowns, because the flowering stalks leave scars 

that are apparent even after several years. 

Harvests 

Sampling took place during 2006-2008 at Sheep 
Corral Ridge, located in Beaverhead County in south 
western Montana, USA (45?06'55" N, 113?02'58" W). 
The climate is semiarid; mean annual precipitation is 250 

mm, with peak rainfall in May (Crone and Lesica 2006). 
The 10 upper cm of taproot (closest to the soil surface) 
from randomly selected dormant, vegetative, and 

reproductive plants (n = between 5 and 7 plants per life 

stage) were destructively harvested in early May each 

year, as soon as the three stages could be clearly 

distinguished. In 2007 and 2008 roots were also 
harvested at the end of the growing season in July, after 
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aboveground biomass of emergent plants had senesced. 

While we could not control for the age of dormant 

plants, we harvested only reproductively mature indi 
viduals (as evidenced on root crown, see Study species, 

above). Because it is not possible to sample these narrow 

tap roots nondestructively, the fate of harvested plants 
could not be followed through time. 

Astragalus scaphoides plants emerge over several 

weeks in April. Dormant, vegetative, and reproductive 

plants can be clearly distinguished from each other in 

early May, when any plants that have not initiated 

growth will remain dormant. Since stored-resource 

dynamics may not only vary in dormant plants, but are 
also expected to vary depending on whether plants are 

reproductive or vegetative, we conducted harvests in 

early May to compare stored resources among the three 
life stages. However, by early May, plants have already 
grown a bit and may have assimilated carbohydrates 
through photosynthesis. To account for potential 
changes in stored carbon from the time of early 
emergence to the time when reproductive plants start 
to develop flower buds, we conducted a "pre-season" 
harvest of plants starting to emerge in April of 2007 

(hereafter, "?mergents"). All samples were stored on ice 

for transport to the laboratory. Roots were analyzed 
for nonstructural carbohydrates (NSC), nitrogen (N), 
and phosphorus (P). In 2007 and 2008 dormant roots 
were analyzed for total carbon, which includes both 
structural and mobile carbon compounds. All root 
tissue was analyzed for total carbon in 2008. 

Immediately upon arrival in the laboratory, samples 
were heated in a microwave oven at 600 W for 60 sec to 
denature enzymes. Samples were then oven dried to 
constant mass at 75?C, ground to a fine powder, and 

stored at 4?C. Total nonstructural carbohydrates (NSC) 
analyses were performed, following methods described 
in Hoch et al. (2002). In brief, a subsample of extract 
from boiled and centrifuged ground material is treated 
with isomerase and invertase to convert sucrose and 

fructose into glucose. The total amount of glucose (total 
free sugars) is then determined photometrically in a 96 
well plate reader, after enzymatic conversion to gluco 
nate-6-P. The remainder extract is incubated with a 

dialysed crude fungal amylase to break down starch to 

glucose. Glucose is then determined as above. Starch is 

the difference of NSC minus free sugars. Ground, dried 
roots were sent to the Stable Isotope Laboratory, 
University of California, Davis, California, USA for 

analyses of concentrations. There, samples were 

combusted at 1020?C in a reactor and and carbon 
were determined by a continuous-flow isotope ratio 

mass spectrometer (IRMS; model ELx800; BioTek, 
Winooski, Vermont, USA). The 2007 samples were sent 
to the Colorado State University Soil Plant and Water 

Testing Laboratory (Fort Colllins, Colorado, USA), 
where a nitric acid-perchloric acid digest was conducted 

to analyze concentrations (Miller and Kotuby 
Amacher 1996). Because did not appear to have any 
major role (see Results, below) samples from 2008 were 
not sent for analysis. 

Since A. scaphoides has long narrow taproots (<lcm 
in diameter and >1 m deep), sampling the entire root 

system is excessively destructive, so we harvested only 
the top 10 cm of root. We tested whether this sample 
was a good indicator of stored resources in the entire 
root system by conducting a limited number of full 
root harvests. In 2007, we conducted two harvests (n = 

5 roots, each) and excavated all root tissue. These 

samples were analyzed for NSC, N, and P. Total 
resource pools and concentration values for the top 10 

cm of the root were highly correlated with those for the 
rest of the root tissue (R2 

= 0.98 or higher). Further, 
root diameter was highly correlated with total biomass 

(R2 
= 0.982, = 0.003) and we saw no significant 

differences among life stages in size at the beginning 
(ANOVA; F2,23 

= 1-195, = 0.32), or the end 

(ANOVA; FX30 
= 2.08, P = 0.14) of the season. 

Therefore, our harvests were representative of stored 

resources throughout the root, and not biased by plant 
size. These relationships allowed us to calculate total 
resource pools. Total resource-pool data followed the 

same trends as concentration data and, for simplicity, 
are not presented here. 

Statistical analyses 

All statistical analyses were conducted using R 
statistical software (R Development Core Team 2008). 

We used ANOVAs, with year and stage as factors and 
their interaction, to compare stored resources among life 

stages at the beginning of the season. We conducted the 
same analysis to compare stored resources at the end of 

the season. Tukey's honest significant difference (hsd) 
test was used as a post hoc comparison of mean 

resources among life stages at a given time. We then 
used general linear models with stage and time as 

independent variables to estimate the change in resource 

concentrations throughout the growing season for each 

life stage (normal distribution with identity link). 
Inspection of residuals confirmed that assumptions of 

general linear models were met. 

Results 

Nonstructural carbohydrates (NSC) 

Dormant plants began the season with lower concen 

trations of NSC, but ended the season with NSC levels 

comparable to emergent plants. At the beginning of the 
season (in May) dormant plants had significantly lower 
concentrations of NSC, relative to vegetative and 

reproductive plants (Fig. 1A; ANOVA; stage F2,\e 
= 

22.78, < 0.001). NSC concentrations did not differ 

among years (ANOVA; year F2A6 
= 1.49, = 0.24). 

Lower NSC in dormant plants was not attributable to 

This content downloaded from 150.131.192.151 on Wed, 30 Oct 2013 18:29:29 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


^ 
NOTES Ecology, Vol. 91, NoTll^^^^^J 

1.5H-1-1 

April May July 

Fig. 1. Concentration dynamics of stored nonstructural 

carbohydrates (NSC) and nitrogen (N) concentrations over all 
life stages (emergent, reproductive, dormant, and vegetative) 
for Astragalus scaphoides, an herbaceous perennial in southwest 

Montana, USA. Data are means ? SE, averaged over 2006 
2008. (A) Dynamics of NSC. Dormant plants began the season 
with low NSC concentrations and increased concentrations 
over the growing season. (B) Nitrogen dynamics. Dormant 

plants had higher concentrations at the beginning of the 
season but did not gain through the season. 

photosynthetic carbon gain by reproductive and vege 
tative plants from early emergence to May; NSC 
concentrations in emergent plants in April were not 

significantly different from those of reproductive or 

vegetative plants in May (Tukey's hsd, = 0.84 and P = 

0.18, respectively). However, they were significantly 

higher than those of dormant plants in May (Tukey's 
hsd, = 

0.001). 
Over the growing season, NSC concentrations in 

creased for all life stages (reproductive, vegetative, and 

dormant) (Fig. 1A). Dormant plants gained an average 
8.0% (95% CI [5.48-10.52]), an increase that was greater 
than vegetative and reproductive plants, although 
differences were not statistically significant (vegetative 

= 0.08, reproductive = 0.42). The increase of NSC in 
dormant plants was not associated with an increase in 

total carbon concentration (Fig. 2A), which did not 

significantly change over the season for any life stages 

(dormant, 95% CI [-0.92-2.73]; vegetative, 95% CI 

[-3.91-0.95]; reproductive, 95% CI [-1.65-2.94]). There 

were no differences in total carbon concentrations 

among life stages (ANOVA; for stage: F2?6 
= 1.933, 

= 
0.17; for time Fh27 

= 
2.616, 

= 
0.12; for time X stage 

^2,26 
= 

2.374, P = 0.12). Increases in NSC were driven by 
sucrose concentrations, the main transport sugar in 

plants (Fig. 2B, average gain = 6.9%, 95% CI [4.13 
9.66]). At the end of the season, NSC concentrations did 
not differ among life stages (ANOVA; stage F2?5 = 2.54, 

= 
0.10). 

Nitrogen and phosphorus 

Dormant plants were not depleted in either or at 
the beginning of the season, and they did not gain 

mineral nutrients during the growing season. Dormant 

plants had higher content than both reproductive and 

vegetative plants at the beginning of the season (Fig. IB, 
ANOVA; stage F2A6 = 7.72, < 0.001). However, they 
did not gain during the season (95% CI [-0.301, 
0.300]) while reproductive and vegetative plants did 

(reproductive 95% CI [0.27, 0.82], vegetative 95% CI 

[0.43, 0.98]). These patterns were not affected by year 
(ANOVA; year FU6 = 0.005, = 0.94). There were no 
differences in content among life stages at the 

beginning of the season (ANOVA; stage F2^= 1.011, 

50 

Total C 
NSC 

12? 

c 
o 

c 4? 
O 

O 

m Glucose 

Sucrose 

Starch 

Fig. 2. (A) Change in nonstructural carbohydrate (NSC) 
concentrations in relation to total carbon concentrations for 
dormant plants. Data are averages of 2007 and 2008 seasons 
and are means and SE. Total carbon concentrations remained 

relatively constant as the proportion of carbon as soluble sugars 
(NSC) increased. (B) NSC dynamics by fraction for dormant 

plants. Data are^ averages of 2007 and 2008 seasons. Sucrose, 
the major transport sugar throughout plants, is the only 
fraction that significantly increased. 
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= 0.37), and plants did not significantly gain over the 

growing season (ANOVA; stage FU55 
= 1.364, = 0.25). 

No significant differences were detected among stages at 
the end of the growing season for either or ( 
ANOVA; stage F2,34= 1.923, = 0.18, year ?^34= 1.99, 

= 0.17; ANOVA; stage F2,?S 
= 0.016, = 0.98). 

Discussion 

Our results indicate that stored nonstructural carbo 

hydrates are associated with prolonged dormancy of 
mature plants. Although plants that remain dormant 

during the growing season do not have lower stored 
mineral resources (N and P) relative to plants that 

emerge aboveground, they do have lower nonstructural 

carbohydrates (NSC). Further, dormant plants do not 

gain or lose or while belowground. Surprisingly, 
despite being entirely belowground, dormant plants 
increase NSC concentrations during the growing season, 

and end with concentrations comparable to plants that 
had emerged. Our results are consistent with the 

hypothesis that plants enter prolonged dormancy due 
to a lack of stored resources (Shefferson et al. 2005??, 
2006) . In this case, dormant plants may remain 

belowground because they simply lack sufficient mobile 
carbon (C) to construct leaves. Alternatively, low sugar 
concentrations may interrupt developmental pathways 
for aboveground growth. Recent work with model 

systems amenable to laboratory and greenhouse study 
has highlighted the pivotal role of C compounds in 

signaling pathways for growth and development (Half 
ord and Paul 2003, Rolland et al. 2006, Lee et al. 2007). 
Thus, the shortage of NSC in dormant plants may reflect 
a shortage of the raw material to build tissue, or an 

interruption in signaling pathways that allow plants to 

emerge aboveground. 
In the past the hypothesis that plants entered 

prolonged dormancy due to low resource stores seemed 

puzzling. If a plant lacks the resources to emerge 
aboveground, how would it gain those necessary 
resources by merely staying belowground? In Astragalus 
scaphoides total C concentrations remained constant, 

while the proportion of available C increased. We 

speculate that dormant plants remobilized cell-wall 

compounds (e.g., hemicelluloses) into available forms, 
as suggested by Hoch (2007). In other systems, C 
starvation in tissues has been demonstrated to stimulate 

the degradation of cell-wall compounds (Lee et al. 

2007) . Dormant plants begin the season with low NSC 

values, do not photosynthesize, and likely incur meta 
bolic costs during the summer due to higher tempera 
tures. These conditions are likely to lead to C starvation, 
which could then trigger cell-wall degradation, and the 

subsequent release of sugars from cell-wall materials. 

Further research in this area could provide more insight 
into the role of C metabolism, and not just assimilation, 
in the life-history strategies of wild plants in the field. 

We suspect that plants may enter dormancy because 

they lack key resources that they gain through remobi 
lization. An alternative would be that plants gain 
resources from symbionts. In mycotrophic species such 
as orchids, plants may gain resources from mycorrhizal 
partners or other symbionts while they remain below 

ground (Gill 1989, Shefferson et al. 20056, 2007). A. 

scaphoides does not have strong associations with 

mycorrhizal or rhizobial partners (E. Crone, H. Addy, 
and M. Rillig, unpublished data), so it is not likely to be 

gaining C from belowground symbionts. However, the 

potential for resource transfer in other species increases 

the plausibility of the idea that plants gain resources 

during prolonged dormancy. In mycorrhizal species, 
soluble C may be transferred either to mycorrhizae or 
from them (Gill 1989, Lesica and Steele 1994, Lesica and 
Crone 20?7, Shefferson 2009). Orchids have particular 
mycorrhizal associations that usually result in a net gain 
of C for the plant, even while dormant (Gill 1989, 
Shefferson et al. 20056, 2007, Shefferson 2009). Howev 

er, species with arbuscular mycorrhizal (AM) associa 
tions (such as Sil?ne spaldingii, see Lesica and Crone 

2007), typically allocate C to mycorrhizae in return for 
mineral nutrients. Such allocation could lead to low 
NSC and dormancy, if low NSC causes prolonged 
dormancy. Alternatively, if mineral nutrients, rather 
than NSC, limit emergence for AM plants, they may be 
able to gain those resources through mycorrhizal 
symbionts while dormant. The resource dynamics 
associated with dormancy for species with these 

symbiotic relationships deserve additional research. 
Our results strongly point to a causal link between 

NSC and prolonged dormancy. However, ?s with any 
observational study, the link between NSC and dor 

mancy could be due to a spurious correlation with other 

driving factors. For example, both NSC and the 

tendency to remain dormant could be associated with 

plant age; however, dormancy in A. scaphoides declines 
very weakly with age (r 

= 
?0.048), whereas younger 

plants tend to have higher NSC concentrations (J. R. 

Gremer, unpublished data). Alternatively, local low 
resource availability around sampled plants could 
reduce NSC and also stimulate dormancy. However, 

dormancy in A. scaphoides is not strongly associated 

with environmental resource availability. We attempted 
to alter plant performance by adding supplemental 
water over three years (Crone and Lesica 2006) and 

supplemental and in 2007 (E. E. Crone unpublished 
data); neither affected the probability of prolonged 
dormancy (J. R. Gremer, unpublished analysis). As a 
third possibility, Morrow and Olfelt (2003) showed that 

Solidago missouriensis plants were most likely to be 
dormant after years of high herbivory, and it is plausible 
that herbivory would also affect NSC stores. At our field 
site ~ 1 % of plants are defoliated in any given year (J. R. 

Gremer, personal observation) and other consumers are 
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rare, but ?20% of plants go dormant in any given year. 

Therefore, we doubt that herbivory alone is the primary 
cause of prolonged dormancy in this species. Finally, we 
have no reason to suspect that some individual plants 
are inherently more likely to remain dormant than 

others; most bouts of dormancy last only one year in this 

species (Lesica 1995), and most plants in our 25-year 
monitoring study have gone dormant at least once (E. E. 
Crone and J. R. Gremer, unpublished data). Further 

more, we harvested dormant plants with visible flower 

ing stalks from previous years, indicating that these 

plants had flowered in the recent past. Overall, our 
results do not appear to be confounded by specific 
environmental factors or plant age. However, stored 

carbon resources reflect the integrated effect of plant 
performance over time, including NSC depletion after 

flowering (Crone et al. 2009) and combined responses to 
environmental factors (Chapin et al. 1990, Wyka 1999, 
Crone et al. 2009). Our results suggest that low NSC 
reflects this integrated effect rather than the effect of any 
single external environmental factor. Further research is 

needed to investigate the link between environmental 

factors, NSC stores, and prolonged dormancy. 

Overall, we did not detect a large cost of dormancy in 
terms of stored resources; we suspect dormant plants 
remobilize existing resources. However, this remobiliza 

tion of structural carbon could carry a long-term cost. 

Studies that have investigated the demographic costs 
and benefits of prolonged dormancy have sometimes, 
but not always, reported long-term costs. For some 

species, prolonged dormancy decreased survival proba 
bility compared to plants that did not remain below 

ground (Hutchings 1987, Shefferson et al. 2003; but see 

counterexamples in Shefferson et al. [2005a], Shefferson 

[2006], and Lesica and Crone [2007]). Similarly, Shef 
ferson et al. (2003) found that dormant Cypripedium 
calceolus plants were less likely to reproduce in the year 
following dormancy, while Lesica and Crone (2007) 
showed dormant Silene spaldingii were more likely than 

vegetative or flowering plants to reproduce the following 
year. It may be that, in some cases, remobilization of 

resources during dormancy carries a long-term cost in 

terms of future survival or reproduction, even if this 
remobilization is better than death. Alternatively, 
prolonged dormancy may have different metabolic 

consequences in different plant species. 
Our results suggest that C storage may help explain 

why some individuals disappear belowground for one or 
more years, and provide the mechanism for their return. 

Low levels of mobile C are associated with remaining 
belowground, while remobilization of structural C 

during dormancy could be a mechanism that allows 

plants to come back up again. This suggests that 

prolonged dormancy may not be exclusively under 
environmental control but it is also under strong 
internal control. Further work, such as experiments 

that include manipulation of carbon stores, is necessary 

to fully understand the relationship between stored C 
and dormancy. It may be that individual variation in C 

gain, allocation, and metabolism can explain why some 

plants go dormant while others do not. Because the 

availability of mobile carbon compounds depends on 
environmental effects on C acquisition (e.g., drought or 

herbivory) as well as on internal C metabolism and 

subsequent effects on developmental pathways, our 
results can reconcile the two leading hypotheses for 

prolonged dormancy because carbon resources below 

ground may be under both external and internal control. 
To our knowledge, we document for the first time that 
carbon metabolism may be associated with life history 
strategies in a long-lived perennial plant in the wild. 
Because these strategies have important implications for 

population dynamics, our results may open exciting lines 
of research spanning from plant molecular biology to 

population ecology and evolution. 
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