
University of Montana University of Montana 

ScholarWorks at University of Montana ScholarWorks at University of Montana 

Biological Sciences Faculty Publications Biological Sciences 

10-2010 

Explaining Long-Distance Dispersal: Effects of Dispersal Distance Explaining Long-Distance Dispersal: Effects of Dispersal Distance 

on Survival and Growth in a Stream Salamander on Survival and Growth in a Stream Salamander 

Winsor H. Lowe 
University of Montana - Missoula, winsor.lowe@umontana.edu 

Follow this and additional works at: https://scholarworks.umt.edu/biosci_pubs 

 Part of the Biology Commons 

Let us know how access to this document benefits you. 

Recommended Citation Recommended Citation 
Lowe, Winsor H., "Explaining Long-Distance Dispersal: Effects of Dispersal Distance on Survival and 
Growth in a Stream Salamander" (2010). Biological Sciences Faculty Publications. 277. 
https://scholarworks.umt.edu/biosci_pubs/277 

This Article is brought to you for free and open access by the Biological Sciences at ScholarWorks at University of 
Montana. It has been accepted for inclusion in Biological Sciences Faculty Publications by an authorized 
administrator of ScholarWorks at University of Montana. For more information, please contact 
scholarworks@mso.umt.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Montana

https://core.ac.uk/display/267570741?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.umt.edu/
https://scholarworks.umt.edu/biosci_pubs
https://scholarworks.umt.edu/biosci
https://scholarworks.umt.edu/biosci_pubs?utm_source=scholarworks.umt.edu%2Fbiosci_pubs%2F277&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/41?utm_source=scholarworks.umt.edu%2Fbiosci_pubs%2F277&utm_medium=PDF&utm_campaign=PDFCoverPages
https://goo.gl/forms/s2rGfXOLzz71qgsB2
https://scholarworks.umt.edu/biosci_pubs/277?utm_source=scholarworks.umt.edu%2Fbiosci_pubs%2F277&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@mso.umt.edu


Ecology, 91(10), 2010, pp. 3008–3015
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Explaining long-distance dispersal: effects of dispersal distance
on survival and growth in a stream salamander

WINSOR H. LOWE
1

Division of Biological Sciences, University of Montana, Missoula, Montana 59812 USA

Abstract. Long-distance dispersal (LDD) may contribute disproportionately to range
expansions, the creation of new evolutionary lineages, and species persistence in human-
dominated landscapes. However, because data on the individual consequences of dispersal
distance are extremely limited, we have little insight on how LDD is maintained in natural
populations. I used six years of spatially explicit capture–mark–recapture (CMR) data to test
the prediction that individual performance increases with dispersal distance in the stream
salamander Gyrinophilus porphyriticus. Dispersal distance was total distance moved along the
1-km study stream, ranging from 0 to 565 m. To quantify individual performance, I used
CMR estimates of survival and individual growth rates based on change in body length.
Survival and growth rates increased significantly with dispersal distance. These relationships
were not confounded by pre-dispersal body condition or by ecological gradients along the
stream. Individual benefits of LDD were likely caused by an increase in the upper limit of
settlement site quality with dispersal distance. My results do not support the view that the
fitness consequences of LDD are unpredictable and instead suggest that consistent
evolutionary mechanisms may explain the prevalence of LDD in nature. They also highlight
the value of direct CMR data for understanding the individual consequences of variation in
dispersal distance and how that variation is maintained in natural populations.

Key words: dispersal distance; fitness; Gyrinophilus porphyriticus; habitat selection; individual
consequences; leptokurtic; long-distance dispersal; movement ecology; New Hampshire, USA; population
ecology; salamanders; spatial dynamics.

INTRODUCTION

Dispersal is a fundamental demographic, evolution-

ary, and ecological process (Wright 1951, Clobert et al.

2001, Holyoak et al. 2005). In most species, dispersal

patterns are characterized by many individuals that

remain close to their origin and few individuals that

move far from that location (Endler 1977, Johnson and

Gaines 1990). Models and theory suggest that long-

distance dispersal events can contribute disproportion-

ately to range expansions and the creation of new

evolutionary lineages (Darwin 1859, Dytham 2009),

species persistence in fragmented landscapes (Trakhten-

brot et al. 2005), and nonnative invasions (Caswell et al.

2003). However, empirical understanding of the causes

and consequences of continuous variation in dispersal

distance, including long-distance dispersal (LDD), is

very limited.

At the population level, the combination of non-

dispersers and dispersers results in movement distribu-

tions that are leptokurtic, or ‘‘thick-tailed’’ (kurtosis [c2]
. 0). Leptokurtic movement distributions have high

concentrations of observations around a distance of 0

and tails encompassing variation in dispersal distance

(e.g., Fig. 1). Studies have elucidated the proximal

drivers of leptokurtosis, including variation among

individuals in movement-related behavioral and mor-

phological traits (e.g., Fraser et al. 2001) and variation

in extrinsic habitat structure (e.g., Morales 2002). There

is also evidence of fitness trade-offs associated with

discrete differences in dispersal distance (e.g., Hansson

et al. 2004). But because we lack information on the

individual consequences of continuous variation in

dispersal distance, we have little insight on how LDD

is maintained in populations (Trakhtenbrot et al. 2005,

Nathan 2006, Holyoak et al. 2008).

As an individual’s dispersal range increases, so does

the number of potential settlement sites. Assuming that

most dispersers move beyond the scale at which site

conditions are strongly autocorrelated, then as the

number of potential settlement sites increases, so will

the diversity of site conditions (Pulliam and Danielson

1991, Koenig 1999). In active dispersers that make

settlement decisions based on these conditions, the

upper limit of settlement site quality should, therefore,

also increase with dispersal range, leading to an increase

in post-dispersal performance with dispersal distance

(Futuyma and Moreno 1988, Stamps et al. 2005). This

mechanism is independent of the determinants of site

quality and may explain how variation in dispersal

distance is maintained in diverse species. However, if
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individuals do not benefit from increasing dispersal

distance, it would suggest that the similarity of

movement distributions across species is spurious,

resulting from stochastic or system-specific mechanisms

(Carlquist 1981, Muller-Landau et al. 2003). Until now,

low detectability of LDD and small post-dispersal

sample sizes have precluded testing these relationships

(Koenig et al. 1996, Nathan 2005).

In this study I used six years of spatially explicit

capture–mark–recapture (CMR) data to test the predic-

tion that individual performance increases with dispersal

distance in the stream salamander Gyrinophilus porphy-

riticus (see Plate 1). The study system has two properties

that are critical to overcoming detection-related obsta-

cles to research on LDD. First, vagility of G. porphy-

riticus is low, so surveys can detect dispersal events that

are long-distance and rare relative to the majority of

movements (Fig. 1; Lowe 2003, 2009). Second, G.

porphyriticus is constrained to linear stream corridors;

larvae are restricted to the stream channel, and although

adults can move short distances into riparian forests at

night (,3 m from the stream, on average), they return to

the stream during the day (Greene et al. 2008). The

probability of detecting marked animals declines with

movement distance in two-dimensional landscapes

(Koenig et al. 1996), but when movement is along

linear habitats such as stream corridors and sampling is

consistent throughout the available habitat (e.g., from

bank to bank), detection probability is not affected by

movement distance (Pollock et al. 2002).

To quantify individual performance, I used CMR

estimates of relative survival and individual growth rates

based on change in body length (snout–vent length,

SVL). Reproductive output increases significantly with

SVL in G. porphyriticus (Bruce 1978). However, G.

porphyriticus is long-lived (maximum age from skeleto-

chronology is 14 years; W. H. Lowe, unpublished data)

and both annual recruitment and the proportion of

larvae in populations are low (Lowe 2003), suggesting

that survival is the major determinant of lifetime fitness

(Roff 2002). My results show that individual survival

and growth increase with dispersal distance in G.

porphyriticus and thus do not support the view that

LDD is stochastic, with unpredictable fitness conse-

quences. Instead, they suggest that consistent evolution-

ary mechanisms may explain the prevalence of LDD in

natural populations.

METHODS

Study species and site

Gyrinophilus porphyriticus belongs to the family

Plethodontidae, the lungless salamanders. This species

is found in small, cool, well-oxygenated streams along

the Appalachian uplift, from central Alabama to

southern Quebec (Petranka 1998). The larval period is

estimated to be 3–5 years (Bruce 1980). During the day,

larvae and adults are found in interstitial spaces among

the larger substrate particles of the streambed. In the

northern Appalachians, larval size range is 26–80 mm

SVL, adults can reach 120 mm SVL, and both stages

feed primarily on invertebrates (Greene et al. 2008).

The study site was Merrill Brook, a fishless, first-

order stream in Dartmouth College’s Second College

Grant, located in northern New Hampshire, USA.

Merrill Brook flows into the fourth-order Dead

Diamond River; a wetland at the confluence serves as

a barrier to brook trout (Salvelinus fontinalis) that

might enter Merrill Brook from the larger river.

FIG. 1. Movement distribution of the stream salamander Gyrinophilus porphyriticus in Merrill Brook, a first-order stream in
northern New Hampshire, USA. Data are from individuals recaptured between 1999 and 2004 (n¼ 221) in surveys conducted each
June, July, and August and are pooled over all recapture intervals.
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Sampling occurred throughout a 1 km long section of

Merrill Brook that started at the confluence with the

outflow wetland and ended 1000 m upstream of that

point, encompassing the perennial portion of the

stream. Undisturbed headwater streams in New Hamp-

shire display low conductivity (12.0–15.0 lS/cm), slight

acidity (pH of 5.0–6.0), high dissolved oxygen content

(80–90% saturation), and moderate midday tempera-

tures in the summer (13.0–17.08C) (Likens and

Bormann 1995). Sampling throughout Merrill Brook

matched these data. Other salamanders encountered in

Merrill Brook were Eurycea bislineata and Desmogna-

thus fuscus (both Plethodontidae).

Survey methods

I conducted surveys of Merrill Brook during three-

day periods in mid-June, mid-July, and mid-August of

1999–2004, resulting in a total of 18 surveys. A cover-

controlled, active search sampling method was used

(Heyer et al. 1994). Moving upstream, I turned rocks

within the channel and along the edge measuring

between 64 and 256 mm in diameter (cobble); surveys

continued until 1200 rocks had been turned. The even

distribution of cobble allowed for a constant effort of

just over one rock per meter of stream length, so surveys

provided spatially explicit information on individual

salamanders encountered throughout the stream. An

aquarium dip-net was used to capture salamanders,

including those flushed by the current.

All unmarked G. porphyriticus larvae and adults

encountered were individually marked by subcutaneous

injection of fluorescent elastomer (Northwest Marine

Technologies, Shaw Island, Washington, USA). Reten-

tion of these marks is high throughout the life of the

animals (Grant 2008). The longitudinal position (dis-

tance from the confluence, in meters), length (SVL, in

millimeters), and mass (in milligrams) of all individuals

encountered were recorded. Salamanders were distrib-

uted randomly along Merrill Brook (Morisita dispersion

index ; 1.0), not aggregated into a subset of 10-m

reaches (Lowe 2009).

Quantifying dispersal distance

I used data from recaptured animals to quantify

individual variation in dispersal distance. Dispersal

distance was the total distance moved (in meters along

the stream, with 1-m accuracy) over the six-year study

period. In Merrill Brook and 15 streams where shorter

mark–recapture studies were conducted (1–2 years),

there were no differences in movement distributions

related to size (SVL), life history stage (larva vs. adult),

or sex. Further, there was no within-year variation in

movement distributions associated with stream flow

(Lowe 2003, Lowe et al. 2006). These findings allowed

me to pool movement data across sizes, life history

stages, sexes, and time. Relative to the major ecological

and morphological differences between life history

stages in other amphibians, larvae and adults of G.

porphyriticus are very similar (Petranka 1998), which

may explain the similarity of movement patterns and

demographic parameters in the two stages (Lowe 2003).

Of the animals recaptured more than once over the six

years (n¼ 109), only one moved from a capture location

and subsequently returned to that location (Lowe 2009).

None of the other animals moved and then returned to a

previous location, whether movement was 1 m or more

than 100 m, indicating that the majority of movements

were unidirectional dispersal events, as opposed to

temporary movements. This justified combining move-

ment data from individuals recaptured once with data

from individuals recaptured multiple times. To deter-

mine whether variation in the number of times an

individual was recaptured affected dispersal distance

estimates, I tested for a correlation between number of

recaptures and dispersal distance using Spearman rank

correlation analysis (rS).

Testing the effect of dispersal distance on survival

I used Cormack-Jolly-Seber (CJS) CMR models in

Program MARK (White and Burnham 1999) to model

monthly apparent survival (/) and capture probability

( p) of recaptured animals. Apparent survival probability

represents the probability that an animal alive at time t

will be alive at time t þ 1. Capture probability is the

probability that a marked animal at risk of capture at

time t is captured at t. Estimates of / from CJS models

confound mortality with permanent emigration from the

population. However, no G. porphyriticus individuals

were found in yearly sampling of the outflow wetland

and upper ephemeral portion of Merrill Brook (Lowe

2003), indicating that the study section encompassed all

available habitat and that the population was largely

closed with regard to emigration. Because the nearest

occupied stream was 3 km away, I assumed that

immigration did not occur at a demographically

significant rate.

Individuals that were never recaptured were removed

from the data set so that both non-dispersers (dispersal

distance¼ 0 m) and dispersers (dispersal distance � 1 m)

were recaptured at least once. This allowed me to

compare relative apparent survival of both nondispers-

ers and dispersers, but consistently biased absolute

estimates of apparent survival. Because all individuals

were recaptured at least once, this analysis does not

provide information on survival during the first recap-

ture interval.

I first modeled survival and capture probabilities as

constant or variable over time (survey date). Previous

CMR analyses showed no difference in survival

probabilities of larvae and adults (Lowe 2003), so I

did not include life history stage in these models. I used

Akaike’s information criterion (AIC; Akaike 1973) to

identify the model that represented the data adequately

with as few parameters as possible. Models were ranked

by second-order AIC (AICc) differences (DAICc; Burn-

ham and Anderson 2002). Relative likelihood of each

WINSOR H. LOWE3010 Ecology, Vol. 91, No. 10



model in the candidate set was then estimated with AICc

weights (Buckland et al. 1997).

Dispersal distance ([in meters] þ 1, log-transformed)

was added as an individual covariate to the best model

from this initial analysis. By using dispersal distance as

an individual covariate, I was able to test whether model

likelihood increased when monthly survival and capture

probabilities were functions of dispersal distance (Pol-

lock 2002). When models with individual covariates are

supported, Program MARK reconstitutes parameter

estimates and associated confidence intervals across the

observed range of the covariate, allowing visualization

of the functional relationship. I used a logit link to

ensure that / and p ranged from 0 to 1.

Testing the effect of dispersal distance

on individual growth

I calculated proportional daily growth rates of body

length (SVL, in millimeters) over the cumulative

recapture interval. I used Pearson product-moment

correlation analysis to test the assumption that growth

rate was unrelated to the initial SVL of recaptured

animals (Schoener and Schoener 1978, Kaufmann 1981).

I used linear regression analysis to test the prediction

that dispersal distance was positively related to growth

rate. Proportional daily growth rates were arcsine

square-root transformed.

Before testing for an effect of dispersal distance on

individual growth rate, I assessed potential correlates of

dispersal distance and growth rate that might confound

this test or the CMR analyses. I first tested for

correlation between dispersal distance and the initial

body condition of recaptured animals. Log-transformed

SVL and mass measurements were used to calculate

initial size-corrected mass (following recommendations

in Green [2001]), an index of body condition in G.

porphyriticus that, in previous studies, was found to be

positively correlated with survival (Lowe 2003) and

individual growth rate (Lowe et al. 2006). If initial body

condition was correlated with dispersal distance, it

would be impossible to isolate effects of dispersal

distance on survival and growth from factors that

affected individuals prior to dispersal (Stamps and

Davis 2006, Benard and McCauley 2008).

I also tested for correlation between growth rate and

the final location (in meters along the stream) of

recaptured animals. A correlation between growth rate

and final location would signal a gradient in local

conditions along the stream (e.g., conspecific density,

water temperature, pH) and confound any relationship

between dispersal distance and individual performance

with that gradient. A lack of correlation between these

variables would indicate that individual performance

was not mediated by large-scale gradients along the

stream, but instead by patchy, fine-scale variation in

local conditions typical of a wide array of both

terrestrial and aquatic systems.

RESULTS

Over the six-year study period, I marked 972 G.

porphyriticus and recaptured 221 individuals. Of the

recaptured individuals, 84 were first captured as larvae

and 137 were first captured as adults. Of those

individuals that were first captured as larvae, 32 were

PLATE 1. The spring salamander, Gyrinophilus porphyriticus (Green), a headwater specialist found along the Appalachian uplift
of eastern North America. Photo credit: Bradley J. Cosentino.
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recaptured as adults. Dispersal distances ranged from 0

to 565 m (Fig. 1) and 25% of recaptured individuals
moved �1 m from their initial locations. There was no

correlation between number of captures and dispersal

distance (rS ¼ 0.11, n ¼ 221, P . 0.10), indicating that
the majority of movements were discrete dispersal-and-

settlement events.

The effect of dispersal distance on survival

The initial CMR analysis estimating monthly appar-

ent survival (/) and capture probability ( p) indicated
that the saturated model (time-variant / and p) fit the

data very well. Based on 1000 bootstrap iterations, the

probability of observing model deviance as large as the
saturated model was 0.99. Therefore, no adjustment to

the AICc scores for over-dispersion (ĉ) was necessary

(Burnham and Anderson 2002). The best model had
time-invariant / and time-variant p and fit the data

more than 10 times as well as the second-best-fitting

model (Table 1A).

Dispersal distance was subsequently added as an
individual covariate in this best-fitting model. Because /
was time invariant in the best-fitting initial model, the
functional relationship between dispersal distance and /
was modeled with time-invariant slope and intercept.

Because p was time variant in the best-fitting initial
model, the functional relationship between dispersal

distance and p was modeled with time-variant slope and

both time-variant and time-invariant intercept.

The most parsimonious model that included dispersal
distance as an individual covariate fit the data more than

99 times as well as the best model without dispersal

distance as a covariate (Table 1B). It also fit the data 99
times as well as the second-best-fitting model that

included dispersal distance as an individual covariate.

In the most supported model, relative apparent survival
increased with dispersal distance (Fig. 2A). This analysis

controlled for the relationship between capture proba-

bility and dispersal distance, and the lack of correlation

between number of captures and dispersal distance

indicates that this relationship was weak.

The effect of dispersal distance on individual growth

Proportional daily growth rate increased with dis-

persal distance (F1, 219¼ 10.98, r2¼ 0.05, P¼ 0.001; Fig.

2B). Growth rate was unrelated to the initial SVL of

FIG. 2. The effects of dispersal distance ([in meters]þ1, log-
transformed) on (A) relative yearly apparent survival (estimate
and 95% confidence interval) and (B) proportional daily growth
rate for snout–vent length (mm; arcsine square-root trans-
formed) of Gyrinophilus porphyriticus individuals in Merrill
Brook. Apparent yearly survival estimates were calculated
using estimates of apparent monthly survival (/) from
Cormack-Jolly-Seber models implemented in Program MARK
(Table 1).

TABLE 1. Cormack-Jolly-Seber (CJS) models of monthly apparent survival (/) and capture ( p)
probabilities of the stream salamander Gyrinophilus porphyriticus in Merrill Brook, New
Hampshire, USA: (A) without dispersal distance as an individual covariate and (B) with
dispersal distance as an individual covariate, and the best model without dispersal distance.

Model AICc DAICc AIC weight K

A) Without dispersal distance covariate

/(�), p(time) 1757.82 0.00 0.91 18
/(�), p(�) 1762.33 4.51 0.09 2
/(time), p(time) 1779.54 21.72 0.00 34
/(time), p(�) 1781.86 24.05 0.00 18

B) With dispersal distance covariate

/(�, distance), p(time, distancetime-invariant intercept) 1726.76 0.00 0.99 20
/(�, distance), p(time, distancetime-variant intercept) 1735.53 8.77 0.01 36
/(�), p(time) 1757.82 31.05 0.00 18

Notes: Second-order corrected Akaike information criterion values (AICc), AICc differences
(DAICc), AICc weights, and numbers of estimable parameters (K ) are provided for all models.
Parameterization for / and p is in parentheses: ‘‘�’’ indicates constant by time (survey date); ‘‘time’’
indicates variation by time; ‘‘distance’’ indicates variation by dispersal distance ([in meters]þ1, log-
transformed). Subscripts indicate whether the functional relationship between dispersal distance
and p was modeled with a time-invariant or a time-variant intercept.
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recaptured animals (r , 0.01, n ¼ 221, P . 0.50), and

this result did not change when I analyzed animals that

were initially marked as larvae separately from those

that were initially marked as adults. Also, dispersal

distance was not correlated with the initial body

condition of recaptured animals (r ¼�0.03, n ¼ 221, P

¼ 0.70), and growth rate was unrelated to the final

location of recaptured animals (r ¼�0.05, n ¼ 221, P ¼
0.43).

DISCUSSION

This study provides novel insight into the individual

consequences of continuous variation in dispersal

distance. Survival and growth rate of G. porphyriticus

individuals increased with dispersal distance (Fig. 2),

supporting the prediction that individual performance

increases with dispersal distance. Dispersal distance had

a strong effect on relative apparent survival (Fig. 2A),

which life history and field data suggest is the major

determinant of lifetime fitness. Much of the variance in

individual growth rates was unexplained by dispersal

distance, but the positive relationship with dispersal

distance was highly significant (Fig. 2B), corresponding

to a threefold increase in proportional daily growth rate

across the range of dispersal distances.

Dispersal distance was unrelated to initial body

condition of recaptured animals, indicating that move-

ment behavior was independent of factors affecting

individuals prior to initial capture (Stamps and Davis

2006, Benard and McCauley 2008). Because body

condition is known to be correlated with survival and

growth in G. porphyriticus (Lowe 2003, Lowe et al.

2006), this also supports the interpretation that survival

and growth were affected by dispersal distance (Fig. 2)

and not determined by pre-dispersal performance.

Individual growth rates were unrelated to the final

locations of recaptured animals along the stream. This

indicates that effects of dispersal distance on survival

and growth were not confounded by ecological gradients

along the study stream and suggests that spatial

variation in site quality along Merrill Brook is random.

If dispersers were more likely to emigrate, then apparent

survival would decrease with dispersal distance. How-

ever, apparent survival showed the opposite pattern

(Fig. 2A), supporting the assumption that emigration

did not affect these estimates.

These results show that individuals that were able to

disperse relatively long distances settled in sites where

survival and growth were highest (Fig. 2). In contrast,

individuals that did not disperse or dispersed short

distances were more likely to be in suboptimal sites

where performance was compromised. Because I did not

find evidence of an overarching performance gradient in

the study stream, it is likely the benefits of LDD were

related to an increase in the number of potential

settlement sites with dispersal distance. Assuming that

the determinants of site quality exhibit only fine-scale

spatial autocorrelation within the stream and are

otherwise randomly distributed, then as the number of

potential settlement sites increases, so should the range

of overall site quality (Koenig 1999). A capacity for

LDD should therefore increase the upper limit of

settlement site quality and resulting post-dispersal

performance, especially in species that can detect and

avoid low-quality sites. However, if site quality is

randomly distributed, there is a low probability that

an individual will find a high-quality site without

moving far, which may account for some of the residual

variance in Fig. 2B.

In light of the benefits of increasing dispersal distance

(Fig. 2), the observation that all individuals do not

disperse long distances (Fig. 1) suggests that individuals

differ in their ability to withstand costs incurred during

dispersal or assess site quality (Johnson and Gaines

1990, Stamps et al. 2005). Specifically, individual

differences in the ability to withstand dispersal costs or

accurately determine site quality (either of sites that are

currently occupied or those encountered during dispers-

al) may cause long-distance dispersal to remain rare

even when there are predictable benefits of increasing

dispersal distance. In headwater streams throughout the

Appalachians, brook trout prey on small size classes of

G. porphyriticus and reduce growth rates of larger size

classes through interference competition (Resetarits

1991, 1995, Lowe et al. 2004). Gyrinophilus porphyriticus

individuals reduce their activity in the presence of brook

trout to avoid these negative interactions, strongly

suggesting that the active movement required for

dispersal has energetic and survival costs in streams

with trout (e.g., Gaines and McClenaghan 1980, Lima

and Zollner 1996). Because exposure time increases with

dispersal distance, these costs are likely to be distance

dependent. Although Merrill Brook is fishless, variation

among individuals in the ability to avoid other predators

during dispersal, resulting from crypsis, sensory acuity,

or other traits, may reduce the frequency of LDD.

Variation in traits mediating site selectivity would have a

similar effect, underscoring the complex fitness trade-

offs that underlie cumulative distributions of dispersal

distance (e.g., Fig. 1).

Conspecific density can play an important role in

driving dispersal and determining its outcome (Travis et

al. 1999, Matthysen 2005). However, G. porphyriticus

occurs at low densities throughout Merrill Brook (,1

individual/2 m2), and previous analyses showed no

relationship between density and movement behavior

(Lowe 2009). This suggests that conspecific density is

not an important determinant of settlement site quality

and associated survival and growth responses (Fig. 2). If

abiotic conditions that exhibit longitudinal gradients in

streams were important determinants of site quality

(e.g., temperature, pH, and conductivity), then growth

rate should have been correlated with the final location

of recaptured individuals, which was not the case.

Settlement site quality may be a function of invertebrate

prey availability or flow microhabitats, both of which
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vary at fine spatial scales in streams (e.g., 1–5 m; Allan

and Castillo 2007). Determinants of site quality may be

different in streams with fish, where subsurface refuges

and foraging sites are likely to be important (Sih et al.

1992). Most G. porphyriticus individuals move very little

(Fig. 1), and shorter movements (�10 m) show no

temporal pulses that might indicate inbreeding avoid-

ance (Lowe 2003, Lowe et al. 2006). Therefore, any

fitness costs of inbreeding would likely add to the

benefits of LDD in this system.

Intrapopulation variation in behavioral phenotypes

can lead to leptokurtic movement distributions, where

the large tails result from a subpopulation of bold

‘‘movers’’ and the high peaks are comprised of less-bold

‘‘stayers’’ (Fraser et al. 2001). Variation in dispersal

distance may also be caused by other phenotypic

polymorphisms (e.g., Harrison 1980) or by habitat

structure and quality (e.g., Morales 2002). In G.

porphyriticus, spatial and temporal variation in habitat

quality influences the frequency of LDD (Lowe 2009),

and a movement-related polymorphism may explain the

consistent leptokurtosis of movement distributions

(Lowe 2003, Lowe et al. 2006). However, independent

of the causes of variation in dispersal distance, this study

shows that continuous variation in dispersal distance is

associated with continuous variation in individual

performance (Fig. 2). It therefore also shows the

importance of understanding how discrete dispersal

polymorphisms evolve and how the causes and conse-

quences of variation in dispersal distance are evolution-

arily linked.

The positive effects of dispersal distance on G.

porphyriticus survival and growth suggest that the

prevalence of leptokurtic movement distributions in

diverse species may be explained by consistent mecha-

nisms (Endler 1977, Johnson and Gaines 1990). Specif-

ically, my results show that there are predictable benefits

of LDD in this study system, suggesting that there may

be selection for phenotypic traits that allow for LDD.

These results offer an alternative to the view that LDD is

primarily mediated by stochastic mechanisms and thus

highly unpredictable in occurrence and outcome (Carl-

quist 1981). Although the evolution of dispersal as a

categorical response (i.e., stay vs. move) has been

addressed in theoretical and empirical studies (e.g.,

McPeek and Holt 1992, Friedenberg 2003), to my

knowledge this is the first empirical study to show the

effects of continuous variation in dispersal distance on

individual survival and growth.

Efforts to understand the causes and consequences of

dispersal have produced a large body of theory.

However, the difficulty of observing dispersal directly

and the wide range of dispersal mechanisms and

population distributions that exist make it difficult to

test this theory, resulting in a gap between theory and

empirical data on dispersal. Theory should outpace and

inspire empirical research, but as emphasized in reviews

(e.g., Johnson and Gaines 1990, Clobert et al. 2001,

Nathan 2006), the persistence of this gap risks creating

two largely independent bodies of work on this

important topic. I hope my results bridge this gap,

showing that direct data on animal movement can help

us understand the individual consequences of variation

in dispersal distance and how that variation is main-

tained in natural populations.
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