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VARIATION IN LEAF STRUCTURE AND FUNCTION IN QUERCUS DOUGLASII TREES
DIFFERING IN ROOT ARCHITECTURE AND DROUGHT HISTORY

RAGAN M. CALLAWAY' AND BRUCE E. MAHALL

Division of Biological Sciences, University of Montana, Missoula, Montana 59812; and Department of
Biological Sciences, University of California, Santa Barbara, California 93106

Scasonal changes in leaf specific mass, nitrogen, chlorophyll, and photosynthetic propertics were measured for two
groups of spatially intermixed Quercus douglasii trees with different drought histories and apparently different root
architectures. One group, referred to as *‘high-{§,,”” trees, included trees with low amounts of fine root biomass in the
upper 50 cm of soil and high predawn xylem pressure potentials ({r,,) during summer drought. These two characteristics
indicate that trees in this group have deep roots, which may reach the water table. The second group, referred to as
“low-ys, trees, had three to five times higher fine root biomass in the upper 50 cm of soil and low V,, during summer
drought. These two characteristics indicate that these trees may not have access to the water table and are dependent
on shallow soil moisture, which decreases rapidly during the rainless summers of central California. In the spring, after
the full expansion of new leaves, but prior to significant divergence in \y, between the groups, leaf area per leaf, leaf
specific mass, chlorophyll per leaf area, incident quantum yield, leaf respiration rate, and irradiance at light compen-
sation were lower for low-{s, trees than for trees with high .. Nitrogen per leaf area did not differ between the
groups. Net photosynthetic capacity at 2000 pmol m-2 s~' (A,,,,) per leaf arca was similar among all trees in the spring,
but A, /lcaf mass during the spring was higher for trees that eventually would develop low seasonal Y. Since
differences existed between new cohorts of leaves produced in the spring before summer drought, when Vs, was similar,
we suggest that some leaf characteristics of Q. douglasii trees are determined by the degree of drought exposure
experienced in previous years, or by genetic variation within the species. During the rainless summer and fall seasons,
Anfleaf area, A, /leaf mass, and total leaf chlorophyll/leaf mass decreased more rapidly in trees with low {,, than in
trees with high . so that from August to the beginning of leaf senescence in October, leaves of high-{, trees had
higher A, /leaf area, A,../leaf mass, and total leaf chlorophyll/leaf mass than those of low-{s,, trees. Overall, variations
in root architecture and summer {, for Q. douglasii were correlated with substantial differences in morphological and
physiological leaf characteristics. This apparent coordination of aboveground and belowground organs may explain, in
part, how Q. douglasii tolerates the exceptionally broad range of topography and soil moisture conditions in which it

occurs.

Introduction

Movement of water through plants requires integra-
tion of roots, stems, and leaves, and the structure and
function of these systems may vary with water stress
in a coordinated process (Grant et al. 1989; Monson
and Grant 1989; Nguyen and Lamant 1989; Ranney et
al. 1990; Callaway et al. 1994). Variable root archi-
tecture has been postulated to affect intra- and inter-
specific differences in whole-plant morphology and
physiology (Landsberg 1984; Becker and Castillo
1990) and ecological functions (Wieland and Bazzaz
1975; Park 1990; Callaway et al. 1991), but the rela-
tionship between variation in root architecture and the
morphology and physiology of aboveground plant
parts in naturally developing large woody plants in the
field is poorly understood.

A unique opportunity to study the relationship be-
tween root architecture and aboveground function is
available in stands of Quercus douglasii H. & A. (blue
oak). This winter-deciduous tree is abundant from
northern to central California and occurs on topogra-
phy that varies extensively in soil moisture, including
xeric slopes and ridges, mesic valleys, and alluvial
plains in the foothills of the western Sierra Nevada and
the coastal ranges of California (Griffin 1977). Pre-
dawn xylem pressure potentials ({s,,) of individual Q.
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douglasii vary widely among and within geographical
regions and even among trees a few meters away from
each other (Griffin 1973; Rundel 1980; Callaway et al.
1991), indicating that this species can exist at a wide
range of soil moisture conditions. Callaway et al.
(1991) reported that individual Q. douglasii within
stands varied in root architecture. They compared fine
root biomass in the upper 50 cm of soil and the {,, of
individual trees and found that some trees had low root
biomass in shallow soils and late summer {, rarely
less than —1.5 MPa, whereas other trees had high shal-
low root biomass (three to five times that of the former
trees) and late summer {,, of less than —3.5 MPa.
They concluded that the former trees tapped the water
table but that the latter trees were dependent on rela-
tively shallow lateral root systems that did not reach
the water table. Summer s, of trees with high shallow
root biomass was much lower over 3 yr of measure-
ments than those of trees with low shallow root bio-
mass (Callaway et al. 1991, and unpublished data),
indicating that the former individuals may consistently
experience greater drought stress as a consequence of
their root morphology. Wide variation in root archi-
tecture among Q. douglasii trees may occur elsewhere.
Griffin (1973), Rundel (1980), and Baker et al. (1981)
reported s, of —4.0 to —5.0 MPa for Q. douglasii at
several different sites. Lewis and Burghy (1964), how-
ever, reported that Q. douglasii in the Sierra Nevada
foothills were able to take up tritiated water placed in
the water table over 20 m below the soil surface.

Copyright © 1996. All rights reserved.
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In the current work we have compared leaf specific
mass, nitrogen, incident quantum yield, respiration,
chlorophyll, and photosynthesis of two subsets of the
Q. douglasii trees described by Callaway et al. (1991),
each with different drought histories and apparently
different root architectures.

Material and methods

STUDY SITE

The ficld site was located at the University of California
Hastings Natural History Reservation in the Santa Lucia
Mountains of central California (34°41’'N, 120°2'W). The
climate is Mediterranean, with 90% of the 540 mm of annual
precipitation occurring between November and April.
Monthly mean minimum temperatures range from 1.4°C in
January to 9.7°C in August, and monthly mean maximum
temperatures range from 8.5°C in January to 20.1°C in July.
Quercus douglasii trees are usually leafless between Novem-
ber and March. Trees were sampled in a savanna on a south-
facing slope, with Vaqueros sandstone as parent material,
and a total tree density of =100 individuals per hectare. The
open grassland and understory vegetation consisted primar-
ily of the European winter annual grasses Avena fatua L.
and Bromus diandrus Roth.

SAMPLING AND MEASUREMENTS

We measured {s,, monthly with a Scholander pressure
chamber (Waring and Cleary 1967) for four low-{,, and four
high-{s,, trees each month from February to November 1988.
Sampling dates were always in the last week of the month.
These trees were chosen to represent the extremes of s,
measurements taken the previous year (Callaway et al.
1991). Pressure-volume relations were measured following
Tyree and Hammel (1972) for three twigs on each of two
trees, each representing extremes of seasonal {s,,;, in May and
August. Transpiring portions were sealed in plastic bags and
fully hydrated by placing the cut stems in water before plac-
ing them in the pressure chamber.

In April and October, 15 fully expanded, south-facing sun
leaves from the lower portion of the canopy of each of the
eight trees were measured for leaf area and leaf specific mass
(LSM). Leaves were photocopied, and areas of images were
measured with a planimeter. Leaves were then dried at 60°C
and weighed. LSM was calculated as leaf dry mass (g) di-
vided by leaf area (cm?).

Total Kjeldahl nitrogen (TKN) was measured in April and
October in eight of the leaves per tree that were collected
for LSM analysis. Leaf disks were ionized in a Technicon
BD/20/40 block digester, and TKN was measured using a
modified indophenol method (Setaro and Jones 1989) and a
Perkins-Elmer atomic absorption spectrophotometer.

Total chlorophyll and leaf photosynthetic characteristics
were measured on fully expanded leaves monthly from April
through November of 1988 on the eight trees. Four leaves
that were fully exposed to the sun and on the south-facing
sides of the canopies were collected monthly from each tree
within an hour after sunrise. Leaves were kept cool and in
the dark immediately after collection, and total chlorophyll
and photosynthetic capacities were measured within 25 h.
Time-series measurements of leaves collected in April and
September indicated that chlorophyll concentration and pho-
tosynthetic capacity decreased less than 5% over 30 h for
leaves stored at 3°C and in the dark. By August, some leaves
on trees with low {;,, had begun to turn brown. In August,

September, and October we only sampled leaves that were
still green. In December all leaves had either abscised or
turned brown. Results for each of the eight trees were av-
eraged for the April-May, June—July, August-September
sampling periods.

Chlorophyll was extracted from leaf disks of known area
by grinding them in 90% acetone, 10% water, and a small
amount of magnesium carbonate for chlorophyll stabiliza-
tion. The homogenates were centrifuged at 15,000 rpm for
20 min in 2RB Sorvall centrifuge and absorbances of the
supernatants were measured at 647 and 664 nm in a Varian
634 spectrophotometer. Total chlorophyll per leaf area
(Chl,,.,) and total chlorophyll per leaf mass (Chl,,,) were
calculated from these absorbances using the formulas of
Jeffrey and Humphrey (1975).

Photosynthetic capacities at CO, saturation (ambient CO,
= 5 X 10* pmol/mol) at 25°C were estimated by measuring
O, exchange rates using a Hansatech leaf disk electrode sys-
tem (Decagon Devices, Pullman, Wash.; Delieu and Walker
1981, 1983) fitted with a quartz iodide light source (Walker
and Osmond 1986). In April, May, and October, O, ex-
change rates were measured for one leaf from each tree at
approximately 50, 90, 160, 300, 800, 1500, and 2500-3000
pmol m-2 s~' PPFD following the experimental procedure
of Bjorkman and Demmig (1987). These light levels varied
slightly because aging lamps were replaced between July
and August. Curves were fitted to the photosynthetic data
using a nonlinear, least squares fitting technique that em-
ployed the Marquardt algorithm discussed by Leverenz
(1987). Statistical comparisons of photosynthetic capacities
were conducted for responses at single irradiance levels. In
June, July, August, and September O, exchange rates were
measured for four to six leaves from each tree only at 1450-
1500 and 2500-3000 pmol m~2 s~! PPFD.

Incident quantum yields were calculated as the slopes of
the light-response curves for measurements taken at irradi-
ances of 50 and 90 pmol m~2 s~'. No corrections for leaf
absorbances were made. Light compensation points and dark
respiration rates were estimated by interpolation and extrap-
olation of incident quantum yield regressions. Maximum
photosynthetic capacities (A,,,,) at 2000 pmol m~? s=! PPFD
were estimated by interpolation between the measurements
of O, evolution at 1450-1500 and 2500-3000 pmol m=2 s~'
PPFD.

Results

Leaves began to emerge in late March and were
fully expanded by April 26, 1988, our first leaf sam-
pling date; however, Y, did not differ significantly be-
tween the low- and high-{,, groups until June (fig. 1).
After May, the extent to which {,, declined during
summer drought varied significantly between the two
groups of Quercus douglasii. Average {,, from April
(when leaves were fully expanded) to November
(leaves on low-{s,, trees were no longer functional)
ranged from —0.95 to —1.53 MPa (mean = 1 SE =
—1.24 = 0.24 MPa) for the high-{;,, group, and from
—-2.12 to —2.41 MPa (mean £ 1 SE = —2.23 + 0.14
MPa) for the low-{s,, group (n = 4, T}, = 7.23, P <
0.001).

In one high-{s, tree, ¥, decreased from —0.4 MPa
in May to —1.2 MPa in August, while full turgor os-
motic potential of its shoots changed from —1.3 MPa
in May to —1.4 MPa in August (fig. 24), suggesting

Copyright © 1996. All rights reserved.
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Fig. 1 Predawn xylem pressure potentials for two groups of Quer-
cus douglasii trees over the growing season of 1988. Error bars show
2 SEs on either side of the means. There were no leaves on the trees
in February; leaves were 8% of their final size in March and fully
expanded in April.

that minimal osmotic adjustment occurred. In compar-
ison, substantial osmotic adjustment appeared to occur
in a low-{,, tree in which {,, decreased from —0.8
MPa in May to —3.1 MPa in August, while full turgor
osmotic potential decreased from —1.2 MPa in May
to —2.7 MPa in August (fig. 2B).

The average LSM of low-{s,, trees was 23% less
than that of high-{, trees, and average LSM did not
change for either group during the spring and summer
(table 1). In May, leaf area averaged 76 = 2 (1 SE, n
= 4) cm?/leaf for high-{,, trees and 33 * 1 cm?¥leaf
for low-{,, trees (group X tree ANOVA, F,,, =
136.5, df = 1,3, P < 0.001). Leaf nitrogen per leaf
area was not different between the high- and low-{,
trees in May or October (table 1). Because of differ-
ences in LSM, leaf nitrogen per leaf mass was higher
for low-{s, trees in both the spring and October than
for high-{, trees.

During each sampling period, Chl,, was higher for
high-§, Q. douglasii than for low-{,, trees (fig. 3A).
Chl,., of low-{, trees decreased by 50% from 0.59 g/
m? in April-May to 0.30 g/m? in October, and by No-
vember all leaves on these trees had either abscised or
turned brown. Chl,, of high-{s, trees declined only by
29%, from 0.66 to 0.47 g/m?, during the same time,
and most leaves were still green in November. Chl_,,
however, was similar between the two groups through-

Relative Water Content (%)

Fig. 2 Pressurc-volume relations for two individual Quercus
douglasii trees in May and August. A, Mean seasonal s, = —0.95
MPa, May ¥, = —0.40 MPa, August MPa = —1.1. B, Mean sea-
sonal {,, = —2.41, May Y, = —0.8 MPa, August {,, = =3.1 MPa,
Error bars show 2 SEs (n = 3) on either side of the means. Extrap-
olation of straight line forming the lower part of the pressure-volume
relationship to the Y-axis estimates the negative inverse of full-turgor
osmotic potential at the Y-intercept.

high-{r, trees significantly exceeded those of low-y,
trees (fig. 3B).

Incident quantum yields, dark respiration rates, and
light compensation points were significantly higher for
leaves from high-{s, trees than for those from low-{,
trees throughout the sampling period (table 2). Be-
tween April-May and October incident quantum yield
decreased 34% for high-y, trces (date X group X tree
ANOVA, F,,. = 822, df = 1,3, P < 0.001) and 49%
for low-{, trees (date X group X tree ANOVA, F,,.
= 117.1, df = 1,3, P < 0.001). Estimated dark res-
piration rates of high-{s,, trees were consistently higher
than those of low-{,, trees throughout the spring and
fall. Between April-May and October respiration rates
decreased by only 28% for high-{s, Q. douglasii (date
X group X tree ANOVA, F . = 109,df = 1,3, P =
0.003), while in leaves from low-{s,, trees they de-
creased by 75% (date X group X tree ANOVA, F,,.
= 22.9, df = 1,3, P < 0.001). Irradiance at light com-
pensation for leaves from high-y,, trees increased
slightly between April-May and October (date X
group X tree ANOVA, F,,. = 250,df = 1,3, P <
0.001), but they decreased 43% during the same time
for low-{, trees (date X group X tree ANOVA, F,,.
= 7.7, df = 1,3, P = 0.010).

out the growing season until October, when Chl

Table 1

MEANS AND STANDARD ERRORS (7 = 4) FOR LEAF SPECIFIC MASS (LSM) AND LEAF NITROGEN FOR
TWO GROUPS OF QUERCUS DOUGLASIH THAT DIFFER IN SEASONAL W,

mass OF Net photosynthetic capacities calculated for 2000

LSM (g/m?) Leaf nitrogen (g/m?) Leaf nitrogen (mg/g)
April October May October May October
Low ¥,...... 164 = 8 148 = 8 24 = 0.2* 2101 14.5 = 0.8 140 * 0.7*
High ¥, ..... 191 £ 12° 192 = 15" 24 = 0.1° 2.1 £0.2» 124 = 1.1* 10.8 = 1.5*

Note. Shared letters denote no significant difference (ANOVA, post-ANOVA Tukey, P < 0.05).

Copyright © 1996. All rights reserved.
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fig. 3 Total leaf chlorophyll per leaf area (A) and leaf mass (B)
for Quercus douglasii with low or high seasonal i, (see fig. 1)
during the growing scason of 1988. Error bars represent 2 SEs (n =
4) on either side of the means, Asterisks indicate means that were
significantly different as determined by two-way ANOVA (group X
tree); P, < 0.0S.

group

pmol m~2 s~! PPFD (4,,,/leaf area) and photosynthetic
capacities at all irradiances above 90 pmol m=2 s-!
were similar between the two groups of trees in the
spring when monthly {’s were similar (fig. 44, B).
Between the April-May and June-July sampling pe-
riods, however, A,,/leaf area (2000 pmol m~2 s~!
PPFD) decreased significantly for low-{,,, trees, but
not for high-{, trees (fig. 44). Both high- and low-{,

fig. 4 Net photosynthetic capacities (A,,,) per unit leaf area (A)
or per unit leaf mass (B) for Quercus douglasii trees with low or
high seasonal {, (see fig. 1) during the growing season of 1988.
Error bars represent 2 SEs (n = 4) on either side of thc means.
Asterisks indicate means that werce significantly different as deter-
mined by two-way ANOVA (group X tree); P,,,, < 0.05.

group

trees decreased significantly in A, /leaf area between
June—July and October, and in November leaves ca-
pable of photosynthesis occurred only on high-{s,
trees. In October, light-response curves differed sub-
stantially between the groups, with the photosynthetic
capacities of high-{s, trees being lower at 50 and 90
pmol m~2 s~! PPFD, and higher at 900, 1450-1500,
and 2500-3000 pmol m~2 s~! than those of the low-
U, trees (fig. 5). A, /leaf mass was significantly higher

Table 2

MEANS AND STANDARD ERRORS (n = 4) FOR INCIDENT QUANTUM YIELD, ESTIMATED DARK RESPIRATION RATES, AND
LIGHT COMPENSATION POINTS FOR TWO GROUPS OF QUERCUS DOUGLASII THAT DIFFER IN SEASONAL W

Incident quantum yield
(moles O,/moles photons)

Irradiance at light compensation
(pmol m-%s~")

Respiration
(pmol O, m-2s~")

April-May October April-May October April-May October
Low ¥ .... 0.043 = 0.002¢ 0.022 * 0.001¢ =2.07 £ 0.14¢ —0.51 x 0.06* 474 = 4.2 27.0 = 1.8¢
High ¥, ... 0.053 * 0.002: 0.035 = 0.001* -4.20 = 0.16° -3.03 = 0.14* 80.5 = 5.5* 95.6 = 3.4

Note. Shared letters denote no significant difference (ANOVA, post-ANOVA Tukey, P < 0.05).
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Fig. 5 Light curves for Quercus douglasii trees with low or high
scasonal Y, (sec fig. 1) during the growing season of 1988. Error
bars represent 2 SEs (n = 4) on either side of the mecans. Asterisks
indicate means that were significantly different as determined by
one-way ANOVA at each date; P < 0.05.

in April-May for low-{,, Q. douglasii, but by October
it had declined to 61% of A, /leaf mass of high-{,,
trees (fig. 4B).

Discussion

Leaves on Quercus douglasii trees with apparently
shallow root systems (rapidly decreasing summer s,
and high root biomass near the surface) were smaller;
had lower LSMs, respiration rates, and compensation
points; appeared to undergo larger seasonal osmotic
adjustments; and decreased more rapidly in photosyn-
thetic capacity and chlorophyll content than leaves on
Q. douglasii trees with deep root systems (slowly de-
creasing summer {,, and much lower root biomass
near the surface). For Q. douglasii with shallow root
systems, smaller leaves, rapid osmotic adjustment, and
higher spring A, per leaf mass may function to con-
serve water and to maximize seasonal water-use effi-
ciency as surface soils dry during the rainless Califor-
nia summer. In comparison, large leaves that sustain
relatively high A,,, throughout the summer may func-
tion to maximize total seasonal carbon gain rather than
water-use efficiency on trees with deep root systems.

Although some leaf characteristics appeared to
change as a function of water potential similarly for
both groups of trees, perhaps the strongest evidence in
this study for coordination between root and shoot sys-
tems of mature Q. douglasii was the production of
morphologically and physiologically different leaves
on low-y, versus high-y,, trees in April and May, be-
fore the onset of significant differences in water po-
tential in June. Seasonal trends in {,, of individual

trees measured in 1988, the year of this study, were
very similar to {,’s measured in 1987 and in 1986 for
the same trees (Callaway 1990, and unpublished data).
Thus the differences we measured in leaf area, LSM,
quantum yield, respiration rate, and compensation
point in 1988 may have been the result of acclimati-
zation to long-term exposure to different soil water
potentials. Others have found that intraspecific changes
in LSM (Nobel 1980), quantum yield (Bjorkman and
Powles 1984; Ben et al. 1987), respiration rate (Gaff
1980; Dougherty and Hinckley 1981), and compen-
sation point (Tenhunen et al. 1984, 1985) occur con-
currently with water stress, as we also found for Q.
douglasii, but to our knowledge our results provide the
first evidence for physiological and morphological ac-
climation of leaves to drought prior to the onset of
drought. This apparent ‘“anticipation” of drought
might be influenced by some form of hysteresis via
such factors as water relations during the previous year
or carbohydrate reserves. Leaf development of other
winter-deciduous oaks has been shown to be depen-
dent on stored carbohydrate reserves (Dougherty et al.
1979).

Alternatively, it is possible that the morphological
and photosynthetic differences in leaves measured in
the spring represented genetic, ecotypic differences or
were related to differences in soil nutrients. Compar-
isons of selected isozymes for our two sample groups
were performed by the Pacific Southwest Experiment
Station (U.S. Forest Service), and no significant dif-
ferences were found (Callaway 1990). Although these
data do not compare the enzymes that regulate the spe-
cific morphological and physiological characteristics
studied here, they indicate that the sampled trees were
not hybrids. Total nitrogen, phosphorus, magnesium,
and calcium were higher in the surface soils under
high-{,, trees than under low-y,, trees (Callaway et al.
1991), but leaf nitrogen per leaf mass was higher for
low-{s,, trees than for high-{s, trees in both the spring
and October. The differences in fine root concentration
in shallow soil under high- and low-{, trees, however,
may have been affected by differences in soil nutrients.

There are several mechanisms that may be involved
in the loss of photosynthetic capacity (independent of
stomatal regulation) in the leaves of Q. douglasii dur-
ing ensuing summer drought. First, osmotic adjustment
in leaves may require nitrogen that otherwise might be
incorporated in chlorophyll and photosynthetic en-
zymes. In support of this, we found that osmotic ad-
Jjustment occurred in a low-{s,, tree, and leaf chloro-
phyll, A, and dark respiration rates declined during
the summer drought, but total leaf nitrogen did not
change. Other species of oaks have been reported to
adjust osmotically in response to water stress (Hinck-
ley et al. 1978; Bahari et al. 1985). Our data on os-
motic adjustment must be interpreted with caution be-
cause of our low sample size (n = 1), and because
estimates of full turgor osmotic potential using fully
hydrated rather than nonhydrated leaves are problem-
atic (Meinzer et al. 1986, 1988). Second, water stress

Copyright © 1996. All rights reserved.
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may have directly suppressed enzyme activity related
to photosynthesis (Hsiao 1973; Becker and Fock
1986). Third, water stress combined with exposure to
high light may have damaged photosynthetic compo-
nents or induced protective mechanisms (Long et al.
1994). Bjorkman and Powles (1984) reported that
slowly applied water stress reduced quantum yield in
Nerium oleander in laboratory experiments and was
associated with a light-dependent reduction in photo-
chemical activity and electron transport. Kaiser (1987)
reported that photosynthetic capacity in several plant
species was insensitive to cell dehydration down to
50%-70% relative water content and suggested that
photoinhibition, together with general senescence phe-
nomena, may interact with long-term water stress to
inhibit photosynthetic capacity under natural drought
conditions. Finally, water stress may have caused a
decrease in cell volume, concentrating cell metabo-
lites, and directly inhibiting photosynthetic capacity
(Kaiser 1982).

The association of leaf size and LSM with {, may
be related to temperature. Using the general equations
of Nobel (1983), we estimated average boundary lay-
ers at a wind speed of 5 m s~! to be 30% thicker for
leaves on high-{, trees (10.1 cm long) than for low-
Ve trees (6.0 cm long). Leaves with thin boundary
layers require less transpirational cooling to maintain
temperatures near ambient than leaves with thick
boundary layers (Taylor 1975).

Water stress typically reduces photosynthetic rates
by lowering stomatal conductances (Gollan et al. 1985;
Doley et al. 1987; Harley et al. 1987). However, the
reductions in photosynthetic capacity of mature Q.
douglasii, which we measured during ensuing summer
drought, were not the result of lower stomatal conduc-
tances since the O, electrode measurements were con-
ducted under very high, and probably saturating, CO,
partial pressures (5 kPa). We do not know the relative
proportions by which total carbon assimilation of Q.
douglasii is limited by the effects of water stress on
photosynthetic capacity versus stomatal conductances
in the field. Harley et al. (1987) reported that Cistus
salvifolius shrubs utilized about one-half of their pho-
tosynthetic capacities (capacitiecs were measured at
lower ambient CO, levels than in this study) when
experiencing water stress in the late summer. The dif-
ference between photosynthetic capacities and actual
rates in the field were attributed to stomatal closure.
Partial utilization of photosynthetic capacity at high

light irradiances while under water stress has also been
reported for Q. suber and Q. coccifera (Tenhunen et
al. 1984, 1985; Harley et al. 1986) and was also at-
tributed to stomatal limitation.

Species-specific differences in root architecture, and
thus access to soil water, have been cited as being im-
portant to the distributions of several California oak
species (Cooper 1926; Hellmers et al. 1955; Griffin
1973; Kummerow and Mangan 1981; Matsuda and
McBride 1986; Callaway 1991). Our results indicate
that the plasticity of root systems may also be impor-
tant. Coordination of root architecture and above-
ground structures and functions may contribute to the
ability of Q. douglasii to adapt to the exceptionally
broad range of geographical, topographical, and soil
moisture conditions in which it is found (Griffin 1977).
Other ecological consequences of root-shoot coordi-
nation in mature Q. douglasii also appear to be sub-
stantial. Trees with low |, grow slower, produce fewer
and smaller acorns, cycle smaller quantities of nutri-
ents to surface soils through canopy litterfall and
throughfall, and interact differently with understory
plants than do trees with high ¢, (Callaway et al.
1991, unpublished data).

Overall, our results indicate that leaf morphology
and physiology are correlated with variable root ar-
chitecture under natural field conditions, and such co-
ordination may contribute substantially to the unusu-
ally wide range of habitats in which this species oc-
curs. Understanding the coordinated responses of
leaves and roots may provide greater insight into the
factors that control the distributions of other plants
than studies of leaf and root characteristics in isolation
from each other. Our data provide strong circumstan-
tial evidence for root and shoot coordination of mature
trees under natural field conditions, but confirmation
of such coordination will require experimental manip-
ulations, quantitative measurements of leaf and root
characteristics at the whole-tree level, and diurnal and
seasonal measurements of in situ leaf performance.
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