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Evidence for the evolution of reduced mycorrhizal dependence
during plant invasion

ELIZABETH K. SEIFERT,1,3 JAMES D. BEVER,1,4 AND JOHN L. MARON
2

1Department of Biology, Indiana University, Bloomington, Indiana 47405 USA
2Division of Biological Sciences, University of Montana, Missoula, Montana 59812 USA

Abstract. Introduced species inevitably experience novel selection pressures in their new
environments as a result of changes in mutualist and antagonist relationships. While most
previous work has examined how escape from specialist enemies has influenced herbivore or
pathogen resistance of exotic species, post-introduction shifts in exotic dependence on
mutualists have not been considered. In a common environment, we compared dependence on
AM fungi of North American and European populations of Hypericum perforatum (St. John’s
Wort), a forb native to Europe. Introduced North American populations responded less to
inoculation with AM fungi than did European populations. Root architecture was strongly
correlated with mycorrhizal response, and introduced populations had finer root architecture
than native populations. Finally, introduced populations exhibited decreased root and
increased reproductive allocation relative to European populations, consistent with a
transition to a weedier life history; however, biomass allocation patterns were uncorrelated
with mycorrhizal response. These findings are the first demonstration of a genetically based
reduction of mycorrhizal dependence and shift in root architecture in an introduced species.

Key words: Arbuscular mycorrhizae; biological invasions; exotic plants; Hypericum perforatum;
mutualism; mycorrhizal dependence; rapid evolution; root architecture; St. John’s Wort.

INTRODUCTION

Introduced organisms inevitably encounter a novel

suite of competitors, predators, pathogens, and mutual-

ists in their new ranges. The interaction of exotic species

with antagonists and mutualists in recipient communi-

ties is important in understanding both exotic success

and invader impacts on native assemblages. Most

research that has examined interactions between exotic

and native species in recipient communities has done so

from an ecological perspective. However, there is a

growing appreciation that novel selection pressures

imposed by an altered set of biotic interactions in the

introduced range can lead to rapid, evolutionary

changes (Baker 1974, Blossey and Nötzold 1995, Sakai

et al. 2001, Lee 2002, Bossdorf et al. 2005). While the

influence of these evolutionary changes in phenotype on

the ultimate abundance that exotic species attain is

unclear, adaptation to local conditions may be crucial in

determining colonization success.

Most studies of rapid evolution in exotic-plant

populations have focused on how changes in a plant’s

herbivore or pathogen community affect plant resistance

or growth (e.g., Siemann and Rogers 2001, Blair and

Wolfe 2004, Maron et al. 2004a). The evolutionary

response of exotic plants to changes in their mutualist

assemblage has received considerably less attention,

despite the importance of mutualists to pollination,

dispersal, and nutrient acquisition (Richardson et al.

2000). The fact that some plant groups, such as the

Orchidaceae, are underrepresented in the invasive flora

of the world despite widespread cultivation (Pyšek 1998)

has suggested that the limited invasion potential of these

species may be attributable to the absence of highly

specialized pollinators (Richardson et al. 2000). How-

ever, for plant species that rely on more generalized

mutualisms, the absence of native mutualists in a plant’s

introduced range may have little effect on its invasion

success (Mitchell et al. 2006). Consequently, many

plants that rely on more generalized mutualisms do

not appear to experience barriers to invasion.

One widespread generalized mutualism involves

plants and arbuscular mycorrhizal (AM) fungi, which

are generally thought to facilitate plant nutrient

acquisition, particularly of phosphorus. Although

plant–AM fungal interactions are often beneficial to

plants, the relationship between individual AM fungal

species and individual plant species can range from

parasitism to mutualism (Johnson et al. 1997, Bever

2002, Klironomos 2003). The generalized nature of

plant–mycorrhizal associations and cosmopolitan distri-

bution of AM fungi suggest that exotic plants should

associate with AM fungi similarly in their native and

introduced ranges. Thus, provided they do not exploit
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AM fungi in an unconventional manner (Marler et al.

1999), it is not clear that exotic plants necessarily benefit
or suffer as a result of changes in mycorrhizal

associations in their introduced ranges (Richardson et
al. 2000, Reinhart and Callaway 2006). Even so, some

introduced species have been found to be generally less
dependent on AM fungi than co-occurring native species
(Vogelsang et al. 2004, Vogelsang and Bever 2009).

However, differences in mycorrhizal dependence be-
tween native and introduced populations of the same

species have never been studied. Here, we investigate the
mycorrhizal dependence of native European and intro-

duced North American populations of Hypericum
perforatum L. (St. John’s Wort). We also evaluate other

post-introduction changes in life-history traits to deter-
mine if there is any indication of simultaneous selection

for weedy characteristics and reduced mycorrhizal
dependence.

METHODS

Study system

Hypericum perforatum is a short-lived perennial forb

native to Europe, North Africa, and Asia that typically
inhabits old fields, roadsides, and other disturbed sites.

It has been introduced to numerous regions of the
world, including North America, Australia, and South

Africa. Hypericum perforatum was observed in eastern
North America as early as 1780 (Muhlenberg 1793),

spread across the continent through the 1800s, and was
found in California by the early 1900s (Sampson and

Parker 1930).
Hypericum perforatum is known to associate with

arbuscular mycorrhizal (AM) fungi in both its native
European and introduced North American ranges

(Moora and Zobel 1998, Klironomos 2003). It produces
most of its seed apomictically, meaning that maternal

siblings are likely to be clones (Mayo and Langridge
2003, Pank et al. 2003).

Experimental design

We determined if native and introduced genotypes of

H. perforatum differed in their mycorrhizal responsive-
ness by growing plants in sterilized soil that was either

inoculated with a strain of AM fungi or left uninocu-
lated. We inoculated pots with a Glomus mosseae culture

established by J. Bever from a grassland in Northern
Illinois (USA). Glomus mosseae is a common AM fungus

occurring in both North America and Europe and is
known to be growth promoting across a range of

phosphorous availabilities (Vogelsang et al. 2006).
Inoculum was grown with Sorghum bicolor (L.) Moench

in a 1:1 sand : soil mixture in an Indiana University
(Bloomington, Indiana, USA) greenhouse for six

months, dried, and stored at 48C until use. We prepared
the inoculum for use in this study by cutting the roots of
1 L of G. mosseae culture into small fragments and

incorporating them into 10 L of a 1:1 mixture of
sterilized sand and Indiana field soil.

We used H. perforatum seed from 14 European

(native) and 15 North American (introduced) popula-

tions, collected in 1998 and 1999, as described in Maron

et al. (2004b; Appendix). Seed from six maternal families

per population was planted in sterilized potting soil and

stratified at 48C for seven days before seeds were

germinated on a mist bench in an Indiana University

greenhouse. Two four-week-old seedlings from each

maternal family were transplanted into Deepots (Steuwe

and Sons, Corvallis, Oregon, USA) containing 500 mL

of a 1:1 mixture of sterilized sand and Indiana field soil

that tested at 9.5 ppm available phosphorous (Vogelsang

et al. 2006). Of each maternal pair, one seedling was

transplanted into a pot containing 50 mL G. mosseae

inoculum, and the other was transplanted into a pot

containing an additional 50 mL of the sterilized sand

and soil mixture. Uninoculated pots were supplemented

with 100 mL of a non-AM fungal filtrate produced from

the inoculum to control for differences in soil flora.

Plants were grown in a heated greenhouse with a 12-h

day length for six months before reproductive structures

were harvested. We then divided plants into above-

ground and belowground portions and washed the soil

from the roots. Reproductive ratio was calculated as

reproductive biomass/total biomass. Roots were stored

at 48C for a maximum of four days before morpholog-

ical analysis. Root and shoot portions were then dried at

658C for 48 h and weighed. A 0.25-g subsample of roots

from all inoculated and 20 uninoculated plants was

rehydrated, cleared in potassium hydroxide and stained

with trypan blue. Percentage AM fungal colonization

was determined using standard methods (McGonigle et

al. 1990).

Before drying, we removed two additional subsamples

from each root system for morphological analysis with

WinRhizo image analysis software (version 2005c;

Régent Instruments 2005). Each subsample was spread

out in water to minimize root overlap and scanned using

a desktop scanner. Root length, average diameter,

number of branches, and number of tips were then

determined using WinRhizo. As branch and tip counts

are necessarily related, they were averaged to provide a

more accurate assessment of root branching patterns.

Each root subsample was separately dried and weighed,

but included in the total belowground biomass mea-

surement.

Statistical analysis

Differences in biomass, allocation patterns, and root

morphology between AM fungal treatments, continents,

populations nested within continent, and their interac-

tions were analyzed with a three-way analysis of

variance using the general linear model procedure of

SAS (SAS Institute 2003). Root : shoot ratio and

branching were log-transformed to meet the assump-

tions of the ANOVA. We treated continent and AM

fungal inoculation as fixed effects, and population

within continent and the interaction of population
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within continent and inoculation as random effects.

Treating these as random effects allowed us to test for

patterns that would persist if we randomly selected 15

new populations from the two continents. While there

were no significant differences in seed mass between

North American and European populations (J. L.

Maron, unpublished data), initial plant size was never-

theless included as a covariate in all analyses to ensure

maternal effects were accounted for and statistically

minimized.

We were primarily interested in differences between

continents, which we tested using the population 3

continent interaction as the error term. We were also

interested in variation in mycorrhizal response between

continents, which was tested using the AM fungal

inoculation3 continent interaction, with the AM fungal

inoculation 3 continent 3 population interaction as the

error term. Mycorrhizal response was calculated as

follows: (inoculated biomass � uninoculated biomass)/

uninoculated biomass.

Multiple phenotypic responses to invasion may be a

consequence of independent responses to parallel

selection pressures or correlated responses resulting

from underlying genetic correlations. While we cannot

separate genetic correlation within populations from

correlations driven by local greenhouse environment

(because maternal lines were not replicated), our design

allows broad-sense between-population genetic correla-

tions to be evaluated. Thus, phenotypic correlations

among population means represent genetic correlations

resulting from either pleiotropic effects of individual

genes or interpopulation linkage disequilibrium. Inter-

population linkage disequilibrium may be more sub-

stantial between populations than within populations

because of potential parallelism in selection pressures

across environments. In calculating our interpopulation

correlations, we first removed the maternal effect as

measured by initial size and the differences between

continents using analysis of covariance using the general

linear model procedure of SAS (SAS Institute 2003).

Comparisons of the resulting residuals were then

unconfounded by initial size differences and average

differences between continents. Pearson product-mo-

ment correlations were calculated between the residuals

of mycorrhizal response, root architecture, and biomass

allocation with the significance tested using t tests (Sokal

and Rohlf 1995).

RESULTS

Mycorrhizal infection

As expected, inoculation led to high levels of

arbuscular mycorrhizal (AM) fungal colonization

(19.3% 6 0.8% [mean 6 SE]), while the control

treatment was rarely colonized with fungi (0.25% 6

0.17%), which could not be confirmed to be AM fungi.

Within the inoculated plants, AM fungal colonization

was not significantly different between continents (F1, 134

¼ 2.41, P ¼ 0.13).

Biomass

Plants grown in soil inoculated with AM fungi were

consistently larger than those grown in uninoculated soil

(Table 1, Fig. 1). The magnitude of the positive response

of plants to mycorrhizal inoculation differed by

continent; inoculation had a greater effect on the

biomass of native European populations than it did on

introduced North American populations (AMF 3

continent interaction, Table 1, Figs. 1 and 2a). This

effect was significant despite a broad range of mycor-

rhizal responses among populations within each conti-

nent (Fig. 2a). Across treatments, there was no

difference in biomass between native European and

introduced North American plants (Table 1).

Root morphology

European populations generally had coarser root

systems, with larger average root diameter and less

branching than North American populations (Table 1,

Fig. 2b, c). Mycorrhizal inoculation resulted in greater

average root diameter and branching relative to

uninoculated plants (Table 1).

Allocation patterns

North American populations allocated more than

twice as much biomass to first-year reproduction than

TABLE 1. ANOVA results of the effects of arbuscular mycorrhizal fungi inoculation (AMF), continent of origin, population, and
their interactions on total biomass, root : shoot ratio, reproductive ratio (reproductive biomass/total biomass), branching ([no.
branches/mmþ no. tips/mm]/2), and average root diameter of Hypericum perforatum.

Effect df Biomass SS Root : shoot SS Reprod. ratio SS Branching SS Diameter SS

AMF 1 696.158**** 3.553**** 0.039** 0.120*** 0.024****
Continent� 1 29.487NS 3.013* 0.267** 0.168* 0.009**
Continent(population)� 27 404.051**** 18.815**** 0.905**** 0.765NS 0.025*
AMF 3 continent� 1 20.180** 0.001NS 0.006NS 0.055NS 0.002NS

AMF 3 continent(population) 27 68.435NS 1.025NS 0.090NS 0.419* 0.013*
Error 271 2690.317 47.891 1.066 2.406 0.085

Note: Root : shoot and branching were natural-log-transformed to meet the assumptions of the ANOVA. ‘‘SS’’ stands for the
sums of squared deviations.

* P � 0.05; ** P � 0.01; *** P � 0.001; **** P � 0.0001; NS, not significant.
� Tested using population 3 continent as the error term.
� Tested using population 3 AMF 3 continent as the error term.
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did European populations (Table 1, Fig. 3a). Introduced

H. perforatum also allocated less biomass to their roots

than European populations (Table 1, Fig. 3b). Inocu-

lated plants allocated more biomass to first-year

reproduction and less to belowground biomass than

uninoculated plants (Table 1).

Interpopulation genetic correlations

Mycorrhizal response was significantly correlated with

root branching in sterile soil (r¼�0.48; P¼ 0.009; Fig.

4a), in that populations with less branching were more

responsive to inoculation. Mycorrhizal response was not

correlated with average root diameter. There were no

significant correlations between both mycorrhizal re-

sponse and root architecture and either root : shoot ratio

or reproductive allocation. However, reproductive ratio

was strongly correlated with root : shoot ratio (r¼�0.87;
P , 0.0001; Fig. 4b).

DISCUSSION

Introduced North American and native European

populations of Hypericum perforatum differed in their

mycorrhizal responsiveness. While populations from

both continents profited from inoculation with a

cosmopolitan arbuscular mycorrhizal (AM) fungal

species, North American populations benefited less than

did European populations. North American populations

also had finer root systems, more investment in

reproductive biomass, and less investment in below-

ground biomass than European populations. These

differences in mycorrhizal response, root architecture,

and allocation patterns between populations and conti-

nents are likely genetically based as (1) populations from

both continents were grown within a common environ-

ment; (2) previous work with H. perforatum has shown

that strong founder effects are unlikely (Maron et al.

2004b); and (3) maternal effects were minimized

statistically. The genetic basis of mycorrhizal respon-

siveness has been observed in several agricultural

species, such as wheat (Hetrick et al. 1992a), maize

(Kaeppler et al. 2000), and rice (Gao et al. 2007), and in

wild species such as big bluestem (Schultz et al. 2001).

To our knowledge, this is the first evidence of a genetic

shift in dependence on a mutualism following invasion.

We tested the responsiveness of H. perforatum to

inoculation with AM fungi isolated from North

American soil because the response to North American

inoculum is the most relevant to considerations of

genetic changes during the invasion process. Although

we only measured responses to one species of AM fungi

(Glomus mosseae), we believe our results are indicative of

general differences in mycorrhizal dependence between

native and introduced H. perforatum. We base this

conclusion on several considerations. First, North

American H. perforatum populations had finer root

systems, with smaller average root diameter and more

branching than European populations. There is a well-

established trade-off between fine-root architecture and

mycorrhizal responsiveness: fine root systems are typical

of species (Baylis 1975, Hetrick et al. 1992a, b) and

genotypes (Hetrick et al. 1992a, Schultz et al. 2001) with

low mycorrhizal responsiveness. Indeed, we found that

mycorrhizal response was negatively correlated with

root branching within both continents (Fig. 4), as would

be expected if mycorrhizal response was physiologically

dependent upon root architecture (Baylis 1975, Schultz

et al. 2001). Since our measurement of root architecture

was made in AM fungi-free soil, finer root systems in

North American populations likely indicate a general-

ized reduction in mycorrhizal response rather than

simply a difference in response to G. mosseae. Second,

G. mosseae is a cosmopolitan species commonly found in

both Europe and North America (INVAM 2007). Thus,

H. perforatum populations from both continents have

likely been exposed to this species in their evolutionary

history. Third, although the responsiveness of an

FIG. 1. Total biomass of Hypericum perfo-
ratum plants from North America (introduced)
and Europe (native) when inoculated with AM
fungi and when uninoculated. Circles represent
population means; both sets of error bars are
6SE. Total biomass did not differ between
introduced and native populations; however,
there was a significant interaction between
continent and mycorrhizal inoculation.
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individual plant species can vary depending on AM

fungal species (Bever 2002, Klironomos 2003), such

specificity of plant response does not generally over-

whelm overall differences in responsiveness between

plant species (Pringle and Bever 2008) and plant

genotypes (A. E. Bennett and J. D. Bever, personal

communications). Finally, our results are consistent with

those from a multi-year common-garden experiment in

Spain (Maron et al. 2004a), which demonstrated that

European populations of H. perforatum were more

negatively affected by soil fungicide than were North

American populations, despite an overall reduction in

pathogen infection and pathogen-induced mortality with

fungicide application. Thus, although estimates of

overall mycorrhizal responsiveness based on one green-

house experiment utilizing a single fungal species are

FIG. 2. (a) Mycorrhizal response [(inoculated � uninocu-
lated)/uninoculated], (b) root branching, and (c) root diameter
of Hypericum perforatum plants from North America (intro-
duced) and Europe (native). Circles represent population
means; error bars are 6SE. North American populations had
significantly lower mycorrhizal response and finer root systems,
with more branching and smaller mean root diameter than
European populations.

FIG. 3. (a) Mean ratio of reproductive biomass to total
biomass, and (b) natural log of the root : shoot ratio of
Hypericum perforatum plants from North America (introduced)
and Europe (native). Circles represent population means; both
sets of error bars are 6SE. North American populations
allocated significantly more biomass to first-year reproduction
and had higher root : shoot ratios than did European popula-
tions.
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imperfect (Janos 2007), the observed difference in

mycorrhizal responsiveness coupled with shifts in root

architecture between North American and European H.

perforatum strongly suggests a generalized reduction in

mycorrhizal dependence in North America.

Hypericum perforatum populations from North Amer-

ica and Europe were similar in overall size, but differed

significantly in allocation patterns. North American

populations allocated less biomass to their roots and

more to first-year reproduction than did European

populations. These genetic changes in allocation pat-

terns are consistent with a shift towards a more annual,

weedier life history, which has been observed in other

introduced species. While North American and Euro-

pean populations of H. perforatum did not differ in

fecundity in a common-garden study (Maron et al.

2004b), similar shifts in allocation patterns have been

observed in the root : shoot ratio of Lythrum salicaria

(purple loosestrife; Bastlová and Květ 2002), and the

reproductive effort of Silene latifolia (Blair and Wolfe

2004) and Sapium sebiferum (Chinese tallow tree;

Siemann and Rogers 2001). In these species, escape

from herbivore and pathogen pressures in their intro-

duced ranges may have relaxed evolutionary constraints

on life-history traits, allowing the species to become

weedier than in their native ranges.

Evolutionary changes in mycorrhizal responsiveness

and root morphology have never been associated with

changes in life history as they are in H. perforatum.

While these parallel changes are consistent with expec-

tations from a genetic correlation between these traits,

life-history allocation was uncorrelated with both

mycorrhizal response and root architecture, indicating

that evolutionary change in mycorrhizal response is

independent of evolutionary change in allocation to

reproduction or perennial root structures. Moreover,

given that H. perforatum has been introduced to North

America multiple times (Maron et al. 2004b), it is

unlikely that these evolutionary shifts were caused by a

genetic bottleneck during the introduction of the species

to North America. Rather, these parallel, yet indepen-

dent, shifts in mycorrhizal response and life-history

allocation are likely a result of inherent differences in

selective pressures between the continents.

One such selective pressure could be higher soil-

nutrient availability in North America than in Europe.

Differences in mycorrhizal dependence have been

attributed to variation in soil nutrient conditions

resulting in ecotypic adaptation; nutrient-poor soils

result in increased dependence on AM fungi (Schultz

et al. 2001). In nutrient-rich soils, excessive dependence

on AM fungi does not benefit the plant, since it is more

efficient to obtain nutrients directly from the soil by

investing in finer root architecture (Hetrick et al. 1992b,

Schultz et al. 2001). However, the number of popula-

tions and their geographic extent within each continent

makes it unlikely that nutrient conditions are the sole

factor driving the reduced mycorrhizal responsiveness

and finer root architecture observed in North American

populations of H. perforatum.

Another possibility is that anthropogenic degradation

of the AM fungal community played a central role in the

evolution of reduced dependence during the invasion of

North America. In support of this hypothesis, we note

that agricultural intensification, with its tillage, annual

monocropping, and fertilization, can reduce the density

and diversity of AM fungi (Oehl et al. 2003), as well as

select for less beneficial species of AM fungi (Modjo and

Hendrix 1986, Johnson 1993). Overgrazing can result in

a similar degradation of the AM fungal community

(Eom et al. 2001). These degraded mycorrhizal environ-

ments are expected to favor plant species and genotypes

with reduced dependence on AM fungi. Consequently,

the reduced AM fungal dependence observed in many

agricultural species relative to their wild counterparts

(Tawaraya 2003) likely evolved as a result of AM

fungal-community degradation.

Agricultural intensification could therefore select for

reduced dependence on AM fungi in both North

FIG. 4. (a) Mycorrhizal response vs. root branching, and (b)
reproductive ratio vs. root : shoot ratio for introduced and
native Hypericum perforatum populations. Effect of continent
and initial size was removed using analysis of covariance, with
the resulting residuals being centered on zero. There is a
significant interpopulation genetic correlation between mycor-
rhizal response and root branching (r ¼�0.48, P ¼ 0.009) and
reproductive and root-shoot ratio (r ¼�0.87, P , 0.0001).
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American and European plant populations. However,

given Europe’s long history of intensive agriculture, we

expect native European plant species to have evolved
reduced mycorrhizal dependence relative to native

North American species. Given that plants with high

mycorrhizal dependence are at a disadvantage in AM

fungi-poor environments (Reeves et al. 1979, Miller

1987), this reduced dependence may have then provided
European plants a competitive advantage in the

relatively new post-agricultural environments of North

America. In support of this hypothesis, introduced

species have been found to be generally less dependent
on AM fungi than native species in southern California

(Vogelsang and Bever 2009, Vogelsang et al. 2004).

Moreover, pre-adaptation to anthropogenic habitats

was long ago proposed as an explanation for the success
of European weeds in New England (Gray 1879). While

in Europe, forbs like H. perforatum occupy both heavily

impacted post-agricultural environments, as well as

environments that experienced relatively little human
impact (Gibson and Brown 1991), in North America,

their habitat is mainly restricted to disturbed areas.

Given this difference in the ‘‘average’’ H. perforatum

habitat between continents, it is possible that the

evolution of further reductions in mycorrhizal depen-
dence observed in North American populations of H.

perforatum reflects adaptive specialization to anthro-

pogenically disturbed habitats in North America. The

increased allocation to first-year reproduction and
reduced belowground allocation in North American

populations of H. perforatum, a second facet of

increased weediness, may also represent an adaptation

to anthropogenic disturbance.

Regardless of the mechanisms contributing to the life
history, root architecture, and mycorrhizal-responsive-

ness shifts in North American populations of H.

perforatum, this study clearly suggests that post-intro-

duction evolution played an important role in the
establishment of the species in North America. Further-

more, it is also evident that changes in the dynamics of

generalized mutualistic relationships may be more

important in determining which species successfully

establish in novel environments than previously under-
stood.
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APPENDIX

Locations of North American and European Hypericum perforatum populations (Ecological Archives E090-068-A1).
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