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Three-Dimensional, High-Resolution Skeletal Kinematics
of the Avian Wing and Shoulder during Ascending
Flapping Flight and Uphill Flap-Running
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1 Department of Biology, Providence College, Providence, Rhode Island, United States of America, 2 Department of Ecology and Evolutionary Biology, Brown University,
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Abstract

Past studies have shown that birds use their wings not only for flight, but also when ascending steep inclines. Uphill flap-
running or wing-assisted incline running (WAIR) is used by both flight-incapable fledglings and flight-capable adults to
retreat to an elevated refuge. Despite the broadly varying direction of travel during WAIR, level, and descending flight,
recent studies have found that the basic wing path remains relatively invariant with reference to gravity. If so, joints
undergo disparate motions to maintain a consistent wing path during those specific flapping modes. The underlying
skeletal motions, however, are masked by feathers and skin. To improve our understanding of the form-functional
relationship of the skeletal apparatus and joint morphology with a corresponding locomotor behavior, we used XROMM (X-
ray Reconstruction of Moving Morphology) to quantify 3-D skeletal kinematics in chukars (Alectoris chukar) during WAIR
(ascending with legs and wings) and ascending flight (AF, ascending with wings only) along comparable trajectories.
Evidence here from the wing joints demonstrates that the glenohumeral joint controls the vast majority of wing
movements. More distal joints are primarily involved in modifying wing shape. All bones are in relatively similar orientations
at the top of upstroke during both behaviors, but then diverge through downstroke. Total excursion of the wing is much
smaller during WAIR and the tip of the manus follows a more vertical path. The WAIR stroke appears ‘‘truncated’’ relative to
ascending flight, primarily stemming from ca. 50% reduction in humeral depression. Additionally, the elbow and wrist
exhibit reduced ranges of angular excursions during WAIR. The glenohumeral joint moves in a pattern congruent with
being constrained by the acrocoracohumeral ligament. Finally, we found pronounced lateral bending of the furcula during
the wingbeat cycle during ascending flight only, though the phasic pattern in chukars is opposite of that observed in
starlings (Sturnus vulgaris).
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Introduction

Birds employ their wings for a broad array of locomotor tasks.

Among these, uphill flap-running or wing-assisted incline running

(WAIR) is of particular interest. During WAIR, the wings and legs

are simultaneously engaged to scale steep inclines – a common

behavior exhibited by juvenile as well as adult birds [1,2]. WAIR

and controlled flapping descent (CFD) are employed throughout

development in all extant forms studied to date and have been

suggested to be relevant to discussions of ecological survivorship of

flightless young, as well as the evolutionary origin of avian flight

[2–6].

Birds with intact flight feathers (remiges) can ascend steeper

inclines during WAIR than those with clipped remiges [1],

suggesting that the wings provide a climbing advantage.

Measurements of body acceleration and substrate reaction forces

demonstrate that wing flapping increases traction [7]. More

recently digital particle image velocimetry (DPIV) of chukars

confirmed and further refined this assessment, showing that

aerodynamic forces, as opposed to inertial forces, were directly

involved in generating the substrate-directed component of force

[8]. Thus, compared to ascending flight at a similar trajectory, the

wing path is expected to differ during WAIR in order to redirect

the force towards the substrate, but by how much?

In a broad comparison of flapping behaviors, a consistent

pattern of wing movement was found between WAIR at multiple

inclines, level flight, and controlled-flapping descent across

ontogeny. Using 3-D reconstruction from external wing land-

marks, the sweep of the wing followed a narrow range of angles in

reference to gravity, regardless of the body’s pitch or direction of

travel [4,5]. The relatively invariant stroke-plane angle (,20

degrees) and angle of attack in the global reference frame led to the

hypothesis of a ‘‘fundamental’’ or ‘‘stereotypic’’ wing stroke, where

the body is free to pitch through an arc of angles relative to the

wing. This hypothesis predicts that the skeletal joints of the wing,

particularly the glenohumeral joints, operate through a broad
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range of excursions during different behaviors to produce a similar

global stroke-plane angle. Herein, we evaluate the forelimb skeletal

kinematics during ca. 70 degree WAIR and ascending flight to

better understand the underlying joint motions in light of

predictions made from external video [4,5].

The glenohumeral joint forms from the articulation of the

bulbous, ovoid humeral head and the saddle-shaped glenoid

supported by both the scapula and coracoid. A prominent

acrocoracohumeral ligament (AHL) spans across the anterior

surface of the glenoid from the elevated acrocoracoid process to

the transverse sulcus on the humerus. Sy [9] implicated the AHL

in restricting humeral pronation and, in part, controlling the pitch

of the body between the wings. A recent force balance model

suggests a more extensive role of the AHL as a critical element that

stabilizes the glenohumeral joint [10,11] to prevent dislocation by

the primary flight musculature. The combination of glenohumeral

morphology and AHL geometry are predicted to simultaneously

constrain and control joint mobility but also permit a broad range

of humeral paths during different behaviors. Hence, we hypoth-

esize that the morphology of glenohumeral joint and AHL are

consistent with the predicted shoulder movements of the

stereotypic wing beat hypothesis [4,5].

Many investigations of bird flight have measured external wing

kinematics [12–22], but only a few existing studies record skeletal

movements of bird flapping their wings [23–26], and these were at

the time necessarily limited to single-plane fluoroscopy during level

flight. Newly developed methods used here merge biplanar

fluoroscopy with CT scan models to provide unprecedented

accuracy and precision in reconstructing skeletal and joint

movements of locomoting animals (XROMM, X-ray Reconstruc-

tion Of Moving Morphology) [25,27,28]. Dual X-ray has been

used to study hummingbird wing mechanics [28], and although

many aspects of WAIR have been studied, no data exist on the

underlying skeletal movements. In this study, we explore the two

extremes of wing function (flap running and ascending flight;

Videos S1, S2, S3, S4) in adult chukars (Alectoris chukar) as animals

ascend the same trajectory (ca. +70 degrees) in order to evaluate

the underlying skeletal kinematics associated with these distinct

flapping behaviors.

Materials and Methods

Animals
Two adult chukars were raised from hatchling at the University

of Montana and transferred to the Brown Animal Care Facility.

Animals were cared for and housed in accordance with an IACUC

protocol that was reviewed and approved by the Brown University

Institutional Animal Care and Use Committee. Brown University

has an Animal Welfare Assurance (#A3284-01) on file with

OLAW/NIH. Animals were trained to ascend to a refuge box

both with and without a ramp present.

General Methodology
We used markerless XROMM (X-ray Reconstruction of

Moving Morphology) [25,27] also known as Scientific Rotos-

coping [25] to reconstruct skeletal motions of the forelimb

bones. We combined biplanar X-ray video with digital skeletal

models derived from CT scans of the same birds used in the

video to reanimate the actual skeletal movements (Video S1).

Six degrees of freedom (DOF) joint kinematics are then

measured from these animated anatomical models. Complete

descriptions of XROMM procedures are available at XROM-

M.org. Herein, we present only the salient details of the method

relevant to the current study.

Video Collection
The two C-arm X-ray machines were configured with a slightly

oblique lateral view and a dorsoventral view (perpendicular to the

ramp) (Fig. 1). A black nylon mesh enclosed the space around a 70

degree, 1.75 m ramp, which spanned between the floor and an

elevated perch box and passed through the overlapping beam

field. Two synchronized, high-speed Photron 102461024 cameras

with shutter speeds of 1/6000s captured digital video of the image

intensifiers’ video output windows at 500 fps. Although cameras

were mounted at the output windows of the image intensifiers,

mirroring each video left to right provided a view as seen from the

X-ray emitter (source) rather than the detector for XROMM

analysis. Eight trials with at least one complete wingbeat were

chosen for full analysis from a total of 82 trials (2 trials of WAIR

and 2 trials of ascending flight per bird). On average, birds were

exposed to the X-ray beams 0.36 seconds per trial. Runs with

deviations from the desired behaviors (e.g., stopping on the ramp

during WAIR or paddling feet towards the netting in ascending

flight) were discarded, as were runs lacking complete view of all

elements of the wing and shoulder girdle for at least one full

wingbeat.

Calibration
We removed image distortion by capturing an image of a

hexagonally perforated metal grid placed directly on the image

intensifier. A transformation matrix was derived using Matlab

(Mathworks; version 2011b) with a local weighted means solver to

correct the distorted image back to a regular grid from each

camera [27]. Then, an image of an acrylic calibration object with

3 mm stainless steel balls spaced 65 mm apart in the XYZ

direction was used to calibrate the 3-D space. Direct linear

transformation (DLT) coefficients were derived for each camera

[27,29].

Ct Scans and Bone Models
The animals were euthanized and frozen following data

collection. CT scans were collected at Rhode Island Hospital

(technique; 80 kVp, 400 mA, 0.625 mm slice thickness). Individ-

ual bone models were segmented and saved as polygonal meshes

using Amira 4.0 (Mercury) (Fig. 2). To provide a consistent frame

of reference between individuals, we calculated the center of mass

and inertial axes for each bone model by treating it as a solid [30]

using Matlab. These inertial axes, combined with anatomical

landmarks when needed, were used to create an anatomical

reference pose and a hierarchical digital ‘‘puppet’’ (Fig. 2) in Maya

2010 (Autodesk) [25]. Potential errors in the estimation of inertial

axes are variable for each bone and for axes within bones. For

example, the sternum inertial axis representing the long axis was

consistent between our two specimens. However, the other two

axes were offset relative to each other. Hence, we used the long

axis measured from inertial axes but set the other two axes based

on anatomical landmarks that were clearly visible and represen-

tative of sturdy parts of the bone (articular facets for the coracoid,

rostral process of the sternum). The inertial axes of the coracoids,

humerus and ulna were visually assessed to be at least as good as

using the less repeatable method of picking anatomical landmarks.

Any method of attempting to establish consistent axes between two

or more individuals is subject to ‘‘kinematic cross-talk’’ [31] where

some of the rotation about one axis is interpreted within another

axis. This is a major issue when attempting to estimate bone/joint

systems from external markers but is much less problematic when

directly visualizing the skeleton as in our study. Joint coordinate

systems (JCS) [32] were established for each joint to measure

translations and rotations. Rotation order was xyz in Maya which

Skeletal Kinematics of the Avian Wing and Shoulder
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means that rotations first occur about z, then y, and x last when

moving from the reference pose to the animated pose (Blue,

Green, Red; Fig. 2). Specific criteria for determining the reference

pose of each joint and are discussed in results.

Animation
In markerless XROMM, 3-D polygonal bone models are

manually positioned and oriented in Maya to match the X-ray

shadow of the bone simultaneously in both camera views. Each

joint is allowed six degrees of freedom and measured using a

consistent joint coordinate system [32]. Since the model is

hierarchical, the most upstream elements (pelvis and sternum)

are aligned to the entire video sequence, followed by the

downstream elements in order: coracoids, humerus, forearm and

hand. Ideally, the proximal element is perfectly aligned on the first

pass, but occasionally, attempts to match downstream elements

reveal inconsistencies in upstream positioning (by unlikely

movements or relative joint positions). Hence, segments of the

animation are reworked iteratively to refine the animation. The

first attempt to position and orient the coracoids is done assuming

symmetrical movements. Additional passes refine each individual

coracoid to ‘‘fine-tune’’ the shoulder girdle movements.

Data Processing and Statistics
Wingbeat timing. A few measures, such as average velocity

of the body and relative time spent in downstroke and upstroke,

were taken from raw timing. However, in order to compare joint

movements for different behaviors and individuals, we divided

wingbeats into downstroke and upstroke phases. Kinematic data

were time-scaled to percent phase (downstroke: 0% = top of

upstroke to 100% = bottom of downstroke; upstroke: 0% = bottom

of downstroke to 100% = top of upstroke). Average wingbeats were

determined by taking the average of each DOF at each percentage

timestep of upstroke and downstroke for the 4 trials of each

behavior (Video S5). Although studies using standard light video

generally rely on a primary feather tip or the wrist position to

define phase transitions e.g. [22], we chose to define upstroke/

downstroke by tracking the distal-most point on the os phalanx

distalis digiti (Fig. 2) relative to the vertebral column (inertial axes of

notarium). Using the fingertip let us account for the combined

Figure 1. Experimental setup. A. 3-D model of the experimental setup showing the position of the imaging area of the two X-ray beams (yellow
and blue cones). B. the actual setup. C. view from position of the animal handler (chukar on ramp between dual X-ray beams). D. dorsoventral X-ray
view. E. lateral X-ray view. Note WAIR images from D and E have been mirrored horizontally.
doi:10.1371/journal.pone.0063982.g001

Skeletal Kinematics of the Avian Wing and Shoulder
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contributions of shoulder, elbow and wrist movements and to

compare peak elevations of each segment for all wingbeat cycles.

We discovered that for some wingbeats, the maximum elevation

and depression of the humerus were offset from the fingertip

turnaround. For example, the shoulder may begin elevation while

the fingertip is still moving downwards. This led us to compare

peak elevation/depression for distal points on the humerus, ulna,

and fingertip for all wingbeats.

All other calculations were done in Matlab. Displayed means

and standard deviations were calculated by taking the time-step

average of all wingbeats per behavior across all birds. To test for

statistical differences between behaviors, and to account for the

non-independence of multiple measures of the same bird, we

present statistical tests from repeated measures ANOVA. Given

the small attainable sample size, only a few variables differ

significantly. However, we also highlight several variables that are

suggestive of differences but would require more samples to

demonstrate statistical significance. Individual degrees of freedom

are treated as independent variables statistically. However, it

should be noted that ordered rotations are not truly independent.

Validation. Manual model registration (rotoscoping) accura-

cy is affected by a variety of sources [25], including distortion

errors in the video images, calibration errors, bone model

reconstruction, X-ray opacity and morphological distinctness of

individual bones, and overlapping X-ray shadows from multiple

bones. To gauge our accuracy, we compared marker-based and

markerless results for the same sequence of video. We implanted

3–4 steel beads (1 mm diameter) in each of the sternum, coracoid,

and humerus of a chukar carcass and collected dual X-ray video

while manipulating the wing with a dowel attached to the manus.

Figure 2. Joint coordinate system overview. Each joint is allowed 6 degrees of freedom (DOF) about an established coordinate system based on
inertial axes of the downstream bone (e.g. humeral inertial axes determine glenohumeral axes). Joint rotations are ordered such that rotation about
the blue axis moves the other two axes and bone model; rotation about green moves only the red axis and bone model; and rotation about the red
axis only affects the bone model. Rotation order follows blue, green and red in each joint depicted. Cst = coracosternal joint: blue – abduction/
adduction; green – protraction/retraction; red – long axis rotation. Sh = shoulder (glenohumeral), El = elbow, and Wr = wrist joints: blue – elevation/
depression; green – protraction/retraction; red – pronation/supination. Note, none of the joints are depicted in their zero reference pose. For
example, the elbow is extended 120 degrees from its zero position. Specifics for each joint are discussed in results. The * marks the distal-most point
on the os phalanx distalis digiti used to determine upstroke and downstroke transitions.
doi:10.1371/journal.pone.0063982.g002

Skeletal Kinematics of the Avian Wing and Shoulder
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First, bones were animated using marker-based methods [27] as

the ‘‘gold standard’’ for bone tracking [33]. Second, marker

shadows were removed from all X-ray frames (Photoshop CS5,

Adobe Systems Inc.; stamp tool), and bone movements were

reconstructed by rotoscoping the same sequence of video [34]. We

calculated mean absolute error as the average absolute value of the

differences between marker-based and rotoscoped bones using the

joint coordinate systems established for the coracosternal and

glenohumeral joints.

Individual degrees of freedom may be misleading because a

translational error may be compensated for by rotational

correction or vice-versa. For example, if the proximal end of the

coracoid is misplaced 1 mm to the right, an additional rotation

about the proximal pivot could move the distal end of the bone to

nearly the correct position. In this case, the translation and

compensating rotation would both be magnified as errors when

looking at the 6 DOF of the coracosternal joint, but the

coordinates of points on the distal coracoid would be quite

accurate. Therefore, we also calculated mean absolute error for

the distance between the same point on the distal coracoid and

humerus for rotoscoped and marker-driven animations. We

assume the marker-driven as the gold standard, but it should be

noted that marker-driven estimates also have error [27].

Results

Wingbeat Timing
The elbow and wrist moved upward prior to the tip of the

manus at the downstroke/upstroke transition during ascending

flight (AF: elbow:24.0% 62.1, wrist: 22.0% 62.2) and Wing-

Assisted Incline Running (WAIR: 26.3% 63.0, 23.1% 64.5).

The upstroke/downstroke transition during AF showed almost no

timing offset relative to the tip of the manus (elbow 0.5% 61.2,

wrist 0.4% 61.1), but during WAIR the elbow (22.0% 64.3,

wrist 23.1% 63.0) offsets were both larger in magnitude and

more variable in pattern.

General Body Kinematics
We measured body velocity and trajectory relative to horizontal

by tracking the 3-D position and orientation of the spina interna

rostri of the sternum as a proxy for the center of mass [9]. On

average, AF was faster than WAIR (AF: 2.060.12 m/s; WAIR:

1.260.22 m/s) although not statistically different (Table 1). In

addition, the trajectory of ascent relative to horizontal (Fig. 3) was

steeper during WAIR (AF: 59.8 degrees 68.4; WAIR: 74.663.9)

despite the fact that the starting position and ending perch were

the same in both. The body axis (long axis of the notarium) was

more steeply pitched during AF (53.4 degrees 64.0; and WAIR:

39.6 degrees 64.4) and fluctuated less as indicated by a smaller

range in pitch (AF: 4.161.3; WAIR 13.3 degrees 64.4). Roll and

yaw did not differ between behaviors and were of small magnitude

(mean range: roll, 7.9 degrees 63.6, p-value 0.490; yaw, 7.4

degrees 64.0, p-value 0.477).

Coracosternal Joint and Furcula
The coracosternal joint is formed by the flattened facies articularis

sternalis of the coracoid and the sulcus articularis coracoideus of the

sternum (Fig. 4a). The articular facet occupies the medial 70% of

the proximal coracoid (12.3 mm) in our adult chukars, with the

expanded lateral process comprising the remaining width. On the

sternum, the coracoid sulcus faces anteriorly at its medial margin

and anterolaterally at its lateral margin. When looking from the

frontal view with the vertebral axis being horizontal, the shafts of

the coracoids project laterally ,65 degrees. From the lateral view,

they project anteriorly ,27 degrees from the coracosternal joint

(based on CT scans). Because the distal coracoids are joined by the

crura of the furcula, movement at the coracosternal joint results in

furcular bending. Therefore, we measured coracosternal move-

ments in conjunction with furcular spread (distance between the

distal coracoids).

We defined the coracosternal joint coordinate system (JCS)

using the inertial axes of the coracoid (Fig. 4b); abduction/

adduction spins about the axis of greatest inertia (blue in Figs. 2

and 4b), long axis rotation happens about the axis of least inertia

(red in Figs. 2 and 4b) and protraction/retraction occurs around

an axis perpendicular to the other two (green in Figs. 2 and 4b).

The rotation order follows: 1) abduction/adduction, 2) protrac-

Table 1. Summary of body velocity, trajectory, orientation
and wing movement relative to the global coordinate system.

Summary of body movement in global coordinate system

AF WAIR p-value

average velocity (m/s)* 2.0 60.12 1.2 60.22 0.184

trajectory (degrees)* 59.8 68.4 74.6 63.9 0.195

pitch(degrees)* 53.4 64 39.6 64.4 0.199

pitch range (degrees)* 4.1 61.3 13.3 64.4 0.118

roll range (degrees) 8.4 64.2 7.4 63.5 0.490

yaw range (degrees) 5.9 62.4 9.0 62.4 0.477

fingertip path (degrees) 138.5 64.6 106.5 ±3.7 0.044

Bold = significant difference based on repeated measures ANOVA.
* = non-significant but suggest possible differences.
doi:10.1371/journal.pone.0063982.t001

Figure 3. Body pitch and trajectory. Average trajectory of the body
(dotted line) compared to the vertebral axis orientation between
ascending flight (AF; n = 4) and WAIR (WAIR; n = 4). The larger middle
arrow indicates the mean vertebral pitch, the two smaller arrows are the
average maximum and minimum pitch angles for the respective
behavior. Note that pitch is less steep, more variable and differs from
the trajectory line in WAIR compared to AF. Also, AF is nearly twice as
fast as WAIR as indicated by the space between points sampled every
20 ms.
doi:10.1371/journal.pone.0063982.g003

Skeletal Kinematics of the Avian Wing and Shoulder
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tion/retraction, and then 3) long axis rotation (blue, green, red;

Fig. 4). The blue axis remained fixed to the sternum; the red axis

was fixed to the coracoid and the green axis ‘‘floats’’ to stay

perpendicular to both [32].

The majority of coracosternal motion underlying the furcular

spread during AF resulted from abduction/adduction (5.661.6

degrees; blue axis in Fig. 4b, c) and long axis rotation (4.460.9

degrees; red axis in Fig. 4b, c). Protraction/retraction was 1.461.1

degrees. As the coracoids adduct during downstroke, they rotate

about their long axis such that the laterally-facing surface faces

more anteriorly.

AF produced greater coracosternal motion and associated

furcular spread range (Fig. 5; Videos S6, S7; AF: 5.060.07 mm;

WAIR: 2.560.04 mm). Furcular spread during flapping motion

was always greater than resting distance (23.0 mm). During both

behaviors, the furcula spread to a maximum of ca. 129% of resting

Figure 4. Coracosternal articulation and coordinate system. A. the articular surface (blue) of the proximal coracoid fits into the elongate
sulcus (blue) on the anterior end of the sternum. B. the joint coordinate system used to measure coracosternal movements. Blue = abduction/
adduction axis; Green = protraction/retraction; Red = long axis rotation. C. rotation at this joint was primarily found during AF. The majority of
movement during downstroke was adduction, causing medial movement of the distal coracoid. Almost no protraction/retraction rotation was
indicated, but internal long axis rotation was found in downstroke. However, it should be noted that the amount of rotation in all cases is within the
range of error for individual degrees of freedom (Table 3). Our validations show that while the placement of the distal coracoids is highly reliable, the
actual movements at the coracosternal joints are less accurate given that measures are compounded from both sternal and coracoid registration
during rotoscoping.
doi:10.1371/journal.pone.0063982.g004

Skeletal Kinematics of the Avian Wing and Shoulder
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distance, but the furcula only recoiled to near resting distance

during AF. During WAIR, the furcula stayed spread between 129

and 118% of resting distance for the entire wingstroke. During AF,

mean maximum spread distance (29.6 mm) was reached at the

upstroke/downstroke transition. Mean minimum distance

(24.6 mm) occurred at 80% of downstroke (Fig. 5). During WAIR,

unlike AF, the interfurcular distance decreased slightly and then

expanded during upstroke reaching the minimum at 60% of

upstroke. A smaller decrease occurred during downstroke (Fig. 5).

Glenohumeral Joint
The glenoid, supported by bony facets on the omal ends of both

the coracoid and scapula, articulates with the ovoid humeral head.

The JCS was oriented by positioning the humeral inertial axes at

the center of a sphere approximating the shape of the humeral

head (Fig. 2). The zero pose was defined relative to the vertebral

reference frame with the long axis of the humerus pointing directly

laterally (perpendicular to the glenoid), the elevation/depression

axis running parallel to the vertebral column, and the protraction/

retraction axis oriented dorsoventrally. In this pose, the deltopec-

toral crest points anteriorly and the long axes of the distal condyles

and humeral head orient dorsoventrally. The rotation order of the

JCS was as follows: 1) elevation/depression, 2) protraction/

retraction, and then 3) pronation/supination (blue, green, red;

Fig. 2). The e/d axis (blue in Fig. 2) remained fixed to the glenoid,

the p/s axis (red in Fig. 2) was fixed to the humerus and the p/r

axis (green in Fig. 2) ‘‘floated’’ to remain perpendicular to both

[32].

Humeral elevation/depression showed the greatest difference

between AF and WAIR for any degree of freedom in this study

(Fig. 6C). In terms of timing, the humerus depresses to its

minimum and begins elevating prior to the end of downstroke for

both behaviors. However, peak depression is reached earlier in the

downstroke in WAIR (WAIR: 73.8% 64.6 downstroke; AF 92.0%

69.3 downstroke). During upstroke, humeral timing was similar

between AF and WAIR, reaching a combined peak at

67.6610.5% upstroke and then beginning to depress prior to

the wingtip reaching its highest point.

In terms of magnitude, total range of humeral elevation/

depression was greater during AF (101.665.5 degrees) than WAIR

(47.6611.02) although not significantly different (p-value 0.063).

Mean peak elevation was slightly higher in WAIR (105.962.1

degrees) compared to AF (101.668.7 degrees). Average maximum

depression revealed the largest difference between behaviors. The

humerus approached horizontal relative to the coronal plane in

AF (20.4612.3 degrees) but only reached 58.269.8 degrees

above this plane during WAIR (Fig. 6; Table 2).

During both AF and WAIR, the humerus primarily retracts

during downstroke and protracts during upstroke (Fig. 6D).

However, timing varies between behaviors. Retraction ends at

Figure 5. Furcular deformation. Interfurcular distance change comparing AF (red) and WAIR (blue) wingbeats. During both behaviors, the
interfurcular distance expands to 129% of resting length near the upstroke/downstroke transition. During WAIR the interfurcular distance remains
relatively unchanged, but during AF the coracoids adduct towards the resting configuration during downstroke and then re-expand during upstroke.
Dashed vertical lines indicate beginning of downstroke (downward arrow) and beginning of upstroke (upward arrow). Gray vertical lines indicate
frames of video imaged above (1, 44, 74). Horizontal dashed bar in middle image is resting length. Scale bar = 10 mm.
doi:10.1371/journal.pone.0063982.g005
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Figure 6. Glenohumeral motion. A. lateral view and B. dorsal view of average AF (red) and WAIR (blue) wingbeats at 0, 25, 50, 75 and 100% of the
cycle. Humerus shown relative to a fixed shoulder girdle. C–E mean and standard deviations for each rotational degree of freedom. Time scale 0 to
50% = downstroke, 50–100% = upstroke.
doi:10.1371/journal.pone.0063982.g006
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the downstroke/upstroke transition during AF but continues into

upstroke during WAIR.

The humerus primarily pronates during downstroke and

supinates during upstroke (Fig. 6E). The timing of beginning

supination is relatively similar, occurring approximately midway

through downstroke (WAIR: 25.3% 617.1 wingstroke; AF 29.4%

63.8). Although both behaviors were of similar total magnitude

(AF: range 35.8615.1, max 248.8614.3, min 284.663.0;

WAIR: range 30.666.5, max 257.862.7, min 288.369.6),

during AF, the humerus underwent a second pronation phase

during upstroke prior to fully supinating.

Elbow
The elbow joint forms between the distal humerus and proximal

ulna and radius. We did not attempt to quantify movement

between the radius and ulna in this study, although relative motion

is likely [35]. To place the JCS, we visually fit a sphere to the distal

condyles of the humerus to mark the position of the axes. The

orientation of the axes matched the inertial axes of the ulna.

Flexion/extension occurs about an axis passing through the distal

condyles of the humerus (blue in Fig. 2), long axis rotation follows

the axis of least inertia (red in Fig. 2), and abduction/adduction

(green in Fig. 2) remains perpendicular to both. In the zero

position, the ulna is flexed parallel to the humerus.

Non-significant but suggestive differences between WAIR and

AF occur in both timing and magnitude of flexion/extension

(Fig. 7C) and magnitude of abduction/adduction (Fig. 7D;

Table 2). During early downstroke of both behaviors, the ulna

re-extends from the previous stroke cycle. Peak extension is

reached earlier in WAIR (21611% downstroke; AF 46615%).

During the remaining downstroke, the elbow flexes. Peak flexion is

also earlier in WAIR (28610% upstroke; AF 4569%). AF

produces a higher range of flexion/extension. A similar maximum

extension is reached in both behaviors, but the AF elbow reaches

narrower angle of flexion (AF: range 91.265.2, max 126.764.4,

min 35.461.8; WAIR: range 60.869.6, max 121.764.0, min

60.869.4).

Abduction range is significantly greater during AF (47.069.4

compared to WAIR: 28.463.6) with the elbow remaining ca. 15

degrees more abducted over the entire wingbeat during AF. The

greatest abduction difference occurs in late upstroke (Fig. 7D).

Long axis rotation showed no clear pattern (Fig. 7E).

Wrist
Here we define wrist motion as the orientation of the

metacarpus relative to the ulna. As with the other joints, the

more distal element’s inertial axis (the metacarpus) is used to

establish the orientation of the JCS (Fig. 8). The primary axis is

flexion/extension (blue axis in Fig. 2), followed by ad/abduction

(green axis in Fig. 2) and long axis rotation (red axis in Fig. 2). The

position was established by placing a sphere in the space between

the metacarpus and ulna. In zero pose, the metacarpus is folded

back parallel to and in the plane of the ulna, such that when

Table 2. Summary of individual rotational degrees of freedom for each joint comparing AF (ascending flight) and WAIR (Wing-
Assisted Incline Running).

Summary comparison of AF and WAIR individual DOF

Range (mean) std p Max (mean) std p Min (mean) std p

Glenohumeral

elevation/depression AF 101.6* 5.4 0.063* 101.1 8.7 0.463 20.4* 12.3 0.103*

WA 47.6* 11.0 105.9 2.1 58.2* 9.8

protraction/retraction AF 45.5 5.9 0.516 26.8 5.4 0.336 252.3 3.0 0.617

WA 42.1 6.5 28.4 4.0 250.5 5.0

pronation/supination AF 35.8 15.1 0.630 248.8 14.3 0.528 284.6 6.4 0.284

WA 30.6 9.8 257.8 2.7 288.3 9.6

elbow

flexion/extension AF 91.3* 5.2 0.205* 126.7 4.4 0.176 35.4* 1.8 0.130*

WA 60.8* 9.6 121.7 5.0 60.9* 9.4

abduction/adduction AF 47.0 9.4 0.041 44.1* 16.7 0.071* 22.9 9.5 0.272

WA 28.4 3.6 15.9* 6.6 212.5 4.9

long axis rotation AF 37.7 8.5 0.249 19.3 13.7 0.496 218.4 8.5 0.225

WA 29.1 7.3 9.0 10.0 220.1 6.6

wrist

flexion/extension AF 90.0* 17.8 0.243* 147.9 15.5 0.034 57.9 24.2 0.524

WA 48.2* 15.4 120.4 17.0 72.2 10.7

abduction/adduction AF 79.4* 5.4 0.076* 9.5 3.1 0.946 269.9* 5.1 0.109*

WA 50.2* 4.4 8.8 8.3 241.4* 5.8

long axis rotation AF 48.1 13.0 0.262 6.5 15.2 0.166 241.6 4.6 0.685

WA 33.4 12.6 23.3 14.5 236.8 15.9

Bold = significant difference based on repeated measures ANOVA.
* = non-significant but suggest possible differences.
doi:10.1371/journal.pone.0063982.t002
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looking from dorsal view, wrist extension produces movement in

the same plane as elbow extension.

The largest difference in wrist motion between AF and WAIR

was total magnitude of flexion/extension (Fig. 8C; Range: AF

90617.8; WAIR 48.2615.4). The wrist extended to a much

greater degree during downstroke in AF and maintained the

extension well into upstroke, whereas the wrist began flexing much

earlier in the wingbeat during downstroke of WAIR (as with the

Figure 7. Elbow motion. A. lateral view and B. dorsal view of average AF (red) and WAIR (blue) wingbeats at 0, 25, 50, 75 and 100% of the cycle.
Ulna and radius shown relative to a fixed humerus. C–E. mean and standard deviations for each rotational degree of freedom. Time scale 0 to
50% = downstroke, 50–100% = upstroke.
doi:10.1371/journal.pone.0063982.g007
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elbow). Abduction (angled dorsally relative to the horizontal plane

of the ulna) was minor in both behaviors; the majority of

movement was adduction (Fig. 8D; AF 69.965.1; WAIR

41.465.8). Both behaviors followed a similar timing pattern of

being near horizontal during downstroke then gradually adducting

during late downstroke. The primary difference occurred in mid-

Figure 8. Wrist motion. A. lateral view and B. dorsal view (below) of the average AF (red) and WAIR (blue) wingbeats at 0, 25, 50, 75 and 100% of
the cycle. Manus shown relative to a fixed antebrachium. C–E. mean and standard deviations for each rotational degree of freedom. Time scale 0 to
50% = downstroke, 50–100% = upstroke.
doi:10.1371/journal.pone.0063982.g008
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upstroke when the wrist adducted to a greater degree during AF.

Long axis rotation of the wrist was particularly noisy with no

distinctive pattern (Fig. 8E).

Validation
Here, we treat marker-driven reconstructions as the gold

standard for comparison with the rotoscoped bones. The mean

standard deviations for within bone inter-marker distances in the

marker driven reconstructions were 0.08 mm, which is consistent

with previous measures of the precision for this XROMM system

[27]. For the sternum, coracoid and humerus, the mean difference

between marker-driven and rotoscoped motion varied by degree

of freedom, with long axis rotation producing the highest degree of

error all bones (Table 3).

Individual degrees of freedom at a joint are not independent.

Errors in translation may be compensated for by adjusting a

rotational degree of freedom or vice versa (see Materials and

Methods). Hence, we analyzed error by comparing both measured

translational and rotational degrees of freedom at the joint

(Table 3) and by comparing residuals of points at the distal ends of

the two bones (Table 4).

Joint translational differences for all rotoscoped bones were

between 0.25 and 0.8 mm. Rotational differences were higher for

the sternum and coracoid, in particular Rz (axis fixed to the

proximal bone) and Rx (axis fixed to the distal bone), which

ranged between ca. 3 and 5 degrees, while Ry retained much

lower differences (ca. 0.25). Ry is the pitching axis for the sternum

and the humeral protraction/retraction axis, both of which are

clearly determined from the lateral view X-ray. It seems likely that

that the errors in the other two axes were linked compensations –

an offset in one required an adjustment in the other. Humeral

rotational errors were consistently lower about all three axes (ca.

1.5 degrees).

Coordinate offsets of the distal point varied between bones,

with the sternum having the highest residuals (1.460.4 mm),

followed by the coracoid (0.360.3 mm) and humerus

(0.260.6 mm). Coracosternal joint motion is therefore the

weakest measure and glenohumeral joint motion the strongest.

The coracosternal joint movement accuracy is limited by

placement of both the sternum and coracoid. However, the

placement of the distal coracoid is still quite accurate. Thus,

joint motions can compound errors in rotational and transla-

tional degrees of freedom but still yield accurate placement of

the distal coracoid. This also suggests that furcular spread

measures are within the range of accuracy and that glenohu-

meral translations are not impacted by the lower resolution of

sternal and coracoid alignment.

Joint Contributions to Wing Path
We measured fingertip path at the distal-most vertex on the

phalanx digiti majoris (Fig. 9). When viewed laterally in a

gravitational (fixed body translations but not rotations) reference

frame, the fingertip path is more steeply angled (mean 101.6

degrees) during WAIR, and less steep (mean 142.8) during AF

(Fig. 9A). Differing pitch of the vertebral axis accounts for 14

degrees of the 41 degree offset between behaviors (Fig. 3).

Sequential removal of the effects of wrist and elbow motion does

not eliminate the difference in path angle. While keeping the

elbow and wrist fixed, removal of each rotational degree of

freedom from the glenohumeral joint independently shows that

elevation/depression is most responsible for the difference in

wingtip path angle (Fig. 9).

We also assessed individual joint contributions to fingertip path

by calculating the percent change in gravitational (inertial) X,Y

and Z position of the fingertip (wrist, elbow joint, glenohumeral;

Fig. 9, Tables 5, 6). Not surprisingly, the glenohumeral joint

accounts for the majority of fingertip movement in each of the

vertical, fore-aft, and mediolateral directions for both AF and

WAIR (Table 5). Although glenohumeral motion dominates, wrist

and elbow account for a slightly larger proportion of mediolateral

displacement (particularly in AF) compared to vertical and fore-aft

in which wrist and elbow oppose each other (a negative number in

Table 5 indicates an increase in movement of the fingertip when

the joint is frozen). For example, during both AF and WAIR, the

elbow and wrist oppose each other in the fore/aft plane, but

during AF, the wrist has a greater relative impact.

Discussion

Previous investigations of WAIR and of level and descending

flight in chukars [4,5] found that the angle of the wingtip during

downstroke falls within a narrow range relative to gravity, despite

Table 3. Translation and rotation residuals (mean followed by standard deviation in parentheses) at joint pivots comparing
rotoscoped bones to marker driven bones.

Validation test residuals at joint pivot

Bone
length
(mm) Tx (std) Ty (std) Tz (std) Rx (std) Ry (std) Rz (std)

sternum 84.5 0.57 (0.50) 0.76 (0.34) 0.46 (0.39) 24.62 (2.49) 20.26 (0.54) 2.62 (0.79)

coracoid 42.7 0.80 (0.50) 20.25 (0.33) 0.26 (0.16) 3.84 (2.93) 20.29 (0.68) 23.50 (1.31)

humerus 57.2 20.24 (0.49) 20.37 (0.47) 0.24 (0.25) 21.10 (3.80) 1.95 (1.34) 21.21 (2.17)

Translations are in mm and rotations are in degrees. Bone lengths are the maximum length.
doi:10.1371/journal.pone.0063982.t003

Table 4. Validation residuals at distal points comparing
rotoscoped bones to marker driven bones.

Validation test residuals distal point on bone

Bone length
(mm) X (mm) Y (mm) Z (mm)

sternum 84.5 1.87 (0.69) 1.33 (0.41) 1.09 (0.21)

coracoid 42.7 20.11 (0.32) 0.59 (0.27) 0.32 (0.39)

humerus 57.2 0.43 (0.36) 0.15 (1.05) 0.00 (0.37)

doi:10.1371/journal.pone.0063982.t004
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highly varying orientation of the body. Such movement predicts

that shoulder joint motion must be modulated to maintain a

relatively constant stroke path relative to gravity. Evidence here

from the wing joints demonstrates that the glenohumeral joint

controls the vast majority of wing movements (Table 2). More

distal joints are primarily involved in modifying wing shape.

During both behaviors, all joints are in relatively similar

orientations at the top of upstroke and then diverge through

downstroke (see Video S2, S3, S4, S5). The primary difference

between AF and WAIR glenohumeral movement results from

truncated depression of the humerus. Although the obvious

explanation is the need for greater sweep of the wing for higher

aerodynamic needs during ascending flight, it is also possible that

the chukars truncate the wing stroke during WAIR to avoid

collisions between the wing and the substrate. There could be a

reflex that limits wing excursion when the feet are in contact with

the ground.

Ascending flight and WAIR represent opposite ends of the

mechanical power spectrum for flapping modes – ascending flight

requires much higher mass-specific power [36] to drive the greater

aerodynamic forces for wing-only body weight support [8]. Hence

the greatly reduced excursion of the wing during WAIR is not

surprising. However, considering the fingertip path excursion in

the context of these highly varying forces offers interesting insights.

Previous studies using external video [4] found that the stroke

plane angle in adults was maintained around 120 degrees during

WAIR and ca. 135 degrees during both level and descending

flight. Here, measuring fingertip in absence of feathers, we found

more divergent paths of 102 degrees and 143 degrees. The lower

WAIR stroke angle is more consistent with juveniles [4] and may

reflect the difference in measuring from feather verses fingertip.

However, the similarity of fingertip angle between ascending flight

in this study and reported level and descending flight [4] is strongly

supportive of a stereotypic wing path.

The steeper path of WAIR is also consistent with angling the

aerodynamic force towards the substrate. But what is the

underlying cause of the difference in path? It could be the direct

result of muscular control (i.e., differential activation of the

pectoralis and other muscles). However, it is interesting to consider

that the difference in external aerodynamic force could potentially

be involved as well. Joint motions result not only from muscular

pull but also from the aerodynamic and inertial forces of the wing

[37], such that the kinematics are inherently intertwined with the

kinetics. Perhaps, the direction of pull during downstroke in

WAIR and ascending flight is exactly the same, but consistently

less steep during flight behaviors due to variation in ‘‘aerodynamic

protraction’’ from the thrust component [37].

Glenohumeral Joint Motion
Much attention has been focused on understanding control and

constraints of the glenohumeral joint [10,11,24,38–41]. The most

recent interpretation suggests that the acrocoracohumeral liga-

ment (AHL) permits a wide range of glenohumeral paths while

simultaneously stabilizing the joint by constraining the combina-

tion of rotations and translations [11]. Dorsoventral sliding of the

humeral head in the saddle shaped glenoid allows the ligament to

maintain tension across a broad array of rotational combinations.

We found variation in the translational movement of the humeral

head such that the head slides further ventrally during AF. During

WAIR, the humeral head rolls in a complex pattern, but is limited

to the more dorsal region of the joint surface. During downstroke

of AF, the humeral head appears to travel from dorsal to ventral as

shown during level flight in starlings (Sturnus vulgaris) [40]. The

patterns during these two behaviors are consistent with the

Figure 9. Joint contributions to fingertip path. A. wingtip path
relative to the glenoid in a gravitational reference frame in lateral (left
column) and anterior (right column) views for AF (red) and WAIR (blue).
B – G show the paths after sequentially fixing one or more joints in their
mean orientation and position throughout the complete wingbeat. B.
pitch frozen. C. pitch and wrist motion frozen. D. pitch, wrist, and elbow
motion frozen. E–G show the path after removal of each of the three
degrees of freedom independently from glenohumeral motion. E.
elevation/depression removed. F. protraction/retraction removed G.
pronation/supination removed.
doi:10.1371/journal.pone.0063982.g009
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expected pattern if governed by AHL constraints. However, more

detailed tracking of AHL deformation in the future should be done

to confirm this hypothesis.

Furcula and Coracoids
Measures of European starling [23] and magpie (Pica pica) [26]

furculae showed that the crura spread laterally during downstroke

and recoil during upstroke. Chukars also exhibited lateral bending.

However, the phasic pattern in flying chukars was reversed,

spreading laterally during upstroke and recoiling during down-

stroke. Additionally, we found AF spreading to be twice that of

WAIR (Videos S6, S7). However, this difference in magnitude

arose not relative to resting distance, but instead relative to

maximum spread. In other words, the furcula expands similarly in

both behaviors, but recoils more during AF. These findings should

invite further investigations into this matter in order to evaluate

the functional significance of these phase-shift observations with

respect to furcular bending within a wingbeat cycle.

The ends of the furcula are firmly attached to the coracoids, so

bending of the furcula reflects movement of the coracosternal

joint. Jenkins et.al [23] investigated several potential causes of

coracosternal movement and two particularly enticing hypotheses

regarding the role of the furcula arose: 1) an elastic energy storage

mechanism, and 2) a secondary respiratory cycling mechanism via

compression of the interclavicular air-sacs [42]. However, little

further evidence has thus far supported either energy storage [43]

or a link between furcular movement and respiration [26,44].

Several possible mechanisms may explain the pattern seen in

chukars. First, resting length is measured on a frozen, dead bird.

‘‘Resting’’ length could be affected by freezing, however, resting

length in a thawed chukar compared to frozen showed no

difference in interfurcular distance. Hence we interpret this as an

accurate resting interfurcular distance. If so, then the coracosternal

joint appears to experience a constant abduction moment. Further

exploration is needed to assess the cause of this loading pattern,

but the difference between AF and WAIR may offer some insight.

The greater movement during AF could be due to changing

orientation of the resultant forces at the distal ends of the

coracoids. The loading on the distal end of the coracoid appears to

be dominated by a medial compression of the humeral head on the

glenoid and a downward and lateral pull by the acrocoracohum-

eral ligament, which is placed in tension by the pectoralis or

supracoracoideus [10]. Changing relative magnitudes of these

components could result in varying torques at the coracosternal

joint. Future studies geared specifically towards quantitatively

analyzing the interplay of forces responsible for furcular spreading

can further take advantage of the wing-loading/kinematic

variation of a wider range of flapping behaviors to isolate the

cause of interfurcular distance changes found here.

Elbow and Wrist
All elbow and wrist rotations undergo greater excursion during AF

(as with the more proximal joints). These differences likely reflect

higher aerodynamic forces during flight, both for generating power

during downstroke and reducing drag during upstroke. One notable

difference was that the elbow maintains a more abducted posture

during AF. This might be expected during downstroke when

increased aerodynamic forces would generate a greater abducting

torque. However, abduction during AF is retained and, in fact,

exaggerated further in upstroke (also to a lesser degree in WAIR).

Many studies have explored the functional and evolutionary

implications of the automatic flexion-extension mechanism of birds

[35,45,46]. Inthis study,noattemptwasmadetomeasureradio-ulnar

or carpal movement; rather, we focused on the coarser grained

‘‘wrist’’ movement as the orientation of the metacarpus relative to the

ulna. Our results provide two insights that warrant further

consideration in studies of wrist movement and mechanics. First,

theelbowandwrist flexiontimingmatchcloselyduringWAIRbutare

offset during AF. During the latter, the extended wrist position is

Table 5. Percent change in fingertip motion after removing contributions from subsequent distal-most joint.

Joint contribution to fingertip movement

Joint Vertical% D Fore/aft% D Mediolateral% D

Wrist AF 215.6 13.0 23.5

WAIR 9.7 216.0 25.6

Elbow AF 16.2 210.7 5.0

WAIR 7.4 21.2 27.7

Glenohumeral AF 89.7 91.4 70.2

WAIR 82.6 90.3 81.0

Coracosternal and body pitch AF 9.8 6.3 1.4

WAIR 0.3 4.5 1.1

Joints are frozen at their average position and orientation through the mean complete wingbeat. Contribution is based minimum and maximum for each direction. A
negative number indicates that the joint counters the movement of the more proximal joints.
doi:10.1371/journal.pone.0063982.t005

Table 6. Angle in degrees of the fingertip path of the right
forelimb in lateral view.

Joint contributions to fingertip path angle

AF WAIR

All joints 142.8 101.6

Pitch fixed to 39.6 degrees 125.8 98.4

No wrist 114.0 99.0

No wrist or elbow 119.7 89.0

No wrist elbow or shoulder elevation/depression 54.4 72.3

No wrist elbow or shoulder protraction/retraction 131.0 110.3

No wrist elbow or shoulder pronation/supination 124.0 91.8

doi:10.1371/journal.pone.0063982.t006
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maintained until about 40% of upstroke while the elbow has already

fully flexed at this time. Thewrist then undergoes rapid flexion during

upstroke followed by an extension pattern that is consistent between

the two behaviors. Second, the wrist, like the elbow, is capable of

abduction/adduction. Perhaps the more complex loading and

movement (highly adducted during downstroke) alters the nature of

automatic flexion-extension. The pattern of retained extension of the

wrist is coincident with timing of wrist adduction.

Wingbeat Timing
We initially chose the fingertip position to define the turnaround

point for upstroke and downstroke. However, we noticed that some

joint movements (e.g. humeral elevation/depression) were offset

from the upstroke/downstroke transition such that the humerus

would begin moving upward prior to the fingertip reaching the

bottomofdownstroke.This finding ledus toconsider thepossibilityof

a lag between turn-around timing of different joints.

Many studies of avian wing function rely on downstroke and

upstroke transitions to interpret timing of relevant neuromuscular

events. EMG [13,14,47–50], deltopectoral strain [51–53], and

sonomicrometry [54,55] are dependent on upstroke/downstroke

transition timing for interpreting pectoralis function. Kinematic

data from external standard video generally relies on primary tip

or wrist position to determine wingbeat timing events (upstroke/

downstroke transitions), but the few studies using X-ray define

transitions based on the distal humerus [23,24]. Our results

suggest some caution in using the wrist or wing tip to assess of the

relative timing neuromuscular events and skeletal timing, partic-

ularly during flap-running.

During ascending flight, we did not find evidence of an offset

during the upstroke-downstroke transition, but we did find offsets

in the downstroke-upstroke transition. This suggests that wrist or

wingtip position is in fact reflective of humeral turn-around during

the upstroke-downstroke transition but not during downstroke-

upstroke. During the latter, the humerus begins moving upward

first, followed by the wrist and then followed by the fingertip.

During WAIR, both wing turn-around events showed less clear

patterning. Offsets were more variable and larger in magnitude.

This may be due to lower wing loadings. The wings are less

constrained by aerodynamic requirements. More accurate assess-

ment of this offset should be considered for other flight behaviors

and species and higher frame rates are needed to more precisely

assess the magnitude.

Whole Body Movements
Ascending flight was faster than WAIR for traversing the 70

degree incline to an elevated refuge. However, chukars chose to

perform WAIR preferentially, only resorting to flight when the

ramp was not present. WAIR has been suggested as a predator

escape strategy [1,4] and as a less fatiguing, safer way to ascend to

an elevated refuge [36]. WAIR also permits juvenile birds to

ascend to refuges prior to having flight capable wings. Familiarity

with terrain may also affect the choice of ascent mode. With

training on the ramp and learning of the refuge box, our birds

readily choose WAIR. However, in the early stages of training

they would often burst into flight in multiple directions. It may be

that knowing the terrain and refuge location permits them to make

a more energetically efficient choice.

It should also be noted that the faster AF speeds limited usable

trials because a perfectly timed run was needed to capture a full

wingbeat in both camera views. Hence, ascending flight speed may

be underestimated since only trials with complete wingbeats were

analyzed. Behaviors faster than 2 m/s may not be tenable for the

C-arm system for adult chukars if full wingbeats are needed.

Conclusions
In summary, we present the first look at the skeletal movements

during WAIR and ascending flight in adult chukars. Despite

substantial differences between individual joint movements, the

general path of the fingertip is consistent with the ‘‘stereotypic’’

flight stroke reported from external views, and also consistent with

reorienting the aerodynamic force towards the substrate during

WAIR. We conclusively show that the glenohumeral joint is the

primary influence on distal wing excursion. In terms of individual

joints, the humeral head appears to undergo a pattern of

movement within the glenoid consistent with the hypothesis that

the AHL constrains the movement of the glenohumeral joint.

Surprisingly, we found a pattern of furcular spreading opposite

that previously reported for starlings and magpies but only during

ascending flight, suggesting that the enigmatic underlying cause of

furcular spreading may be more complicated than previously

thought. Uphill flap-running combined with a broad array of flight

behaviors provides a natural experiment in skeletal and joint

loading, given the increasing forces associated with the spectrum of

behaviors from WAIR at lower to higher angles to descending,

level, and ascending flight [36,50,56]. This study provides a

foundation for broader investigations of skeletal movements during

a greater range of behaviors, age classes, and species.
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