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Ecological Divergence of a Novel Group of Chloroflexus Strains along
a Geothermal Gradient

Michael L. Weltzer, Scott R. Miller

Division of Biological Sciences, The University of Montana, Missoula, Montana, USA

Environmental gradients are expected to promote the diversification and coexistence of ecological specialists adapted to local
conditions. Consistent with this view, genera of phototrophic microorganisms in alkaline geothermal systems generally appear
to consist of anciently divergent populations which have specialized on different temperature habitats. At White Creek (Lower
Geyser Basin, Yellowstone National Park), however, a novel, 16S rRNA-defined lineage of the filamentous anoxygenic photo-
troph Chloroflexus (OTU 10, phylum Chloroflexi) occupies a much wider thermal niche than other 16S rRNA-defined groups of
phototrophic bacteria. This suggests that Chloroflexus OTU 10 is either an ecological generalist or, alternatively, a group of cryp-
tic thermal specialists which have recently diverged. To distinguish between these alternatives, we first isolated laboratory
strains of Chloroflexus OTU 10 from along the White Creek temperature gradient. These strains are identical for partial gene
sequences encoding the 16S rRNA and malonyl coenzyme A (CoA) reductase. However, strains isolated from upstream and
downstream samples could be distinguished based on sequence variation at pcs, which encodes the propionyl-CoA synthase of
the 3-hydroxypropionate pathway of carbon fixation used by the genus Chloroflexus. We next demonstrated that strains have
diverged in temperature range for growth. Specifically, we obtained evidence for a positive correlation between thermal niche
breadth and temperature optimum, with strains isolated from lower temperatures exhibiting greater thermal specialization than
the most thermotolerant strain. The study has implications for our understanding of both the process of niche diversification of
microorganisms and how diversity is organized in these hot spring communities.

Understanding the factors that contribute to the origins and
maintenance of ecological variation is a central goal of the

investigation of microbial diversity. Spatially structured environ-
ments including physical and chemical gradients are predicted
both to enhance diversification rates (1) and to maintain greater
diversity through the coexistence of multiple ecological specialists
that are locally adapted to different niches (2). The process of
ecological specialization entails fitness costs, or trade-offs,
whereby a trait that is beneficial in one environment is deleterious
in one or more alternative environments. Most evolutionary the-
ory assumes the existence of such trade-offs (3, 4), and evidence
for trade-offs is often, but not always, found during the adaptation
of experimentally evolved laboratory microorganisms (2, 5, 6).

The contribution of trade-offs to niche diversification in nat-
ural communities of microorganisms is less clear, but the environ-
mental gradients of Yellowstone National Park alkaline hot
springs are excellent systems for investigating this issue. In partic-
ular, trade-offs in thermotolerance appear to be important for
structuring diversity in populations of phototrophs in these sys-
tems. For example, laboratory strains of the Synechococcus A/B
group of cyanobacteria isolated from different temperatures from
both Yellowstone and Oregon hot springs are ecological specialists
with divergent temperature ranges for growth (7, 8), and these
genetically distinct lineages are restricted in situ to different re-
gions along hot spring thermal gradients (9, 10). Thermal niche
specialization has also appeared to have occurred in a group of
phototrophic Acidobacteria (“Candidatus Chloracidobacterium
thermophilum”): in White Creek (Lower Geyser Basin, Yellow-
stone National Park), four different 16S rRNA-defined Chloraci-
dobacterium lineages each occupy a relatively narrow (�5 to 15°C)
realized thermal niche in situ and peak in abundance at different
locations along the gradient (10).

These ecologically divergent phototrophic clades often exhibit

substantial sequence variation in the highly conserved 16S rRNA
gene, suggesting that divergence of these groups is ancient. For
example, strains of the Synechococcus A/B group characteristic of
these systems can vary in 16S rRNA gene sequence by over 5% (7).
Given the estimated 50 to 100 million years required for the 16S
rRNA gene to diverge by 1% (11), this suggests that the clade
began to diverge more than 100 million years ago.

In White Creek, for which the distribution of taxa along its
thermal gradient has been extensively investigated (10), members
of the genus Chloroflexus (phylum Chloroflexi) represent an ap-
parent exception to this pattern of ancient specialization. This
metabolically versatile group of anoxygenic phototrophs can ac-
count for as much as 50% of environmental sequences retrieved
from these communities (10). At White Creek, lineages of Chlo-
roflexus distinguished by unique sequence tags for the V3 region of
the 16S rRNA gene were present in high abundance across a much
broader range of temperatures than was observed for other pho-
totrophic groups (10); in particular, one lineage (Chloroflexus
OTU 10) was the most abundant Chloroflexi sequence tag in the
full data set (9.0% of the total sequences recovered) and was a
major community member (�5 to 25% of the sequences recov-
ered) over a region of the White Creek gradient spanning 39 to
64°C. Its broad distribution raises the question of whether it rep-
resents a single generalist or, rather, a group of recently diverged,
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cryptic specialists that are indistinguishable by sequencing of the
V3 region of the 16S rRNA gene.

Here, we combined phylogenetic analyses of 16S rRNA,
malonyl coenzyme A (CoA) reductase, and propionyl-CoA syn-
thase gene sequence data with physiological approaches to address
whether cultivated strains of Chloroflexus OTU 10 isolated from
samples collected along the White Creek gradient have genetically
and phenotypically diverged. These are the first cultured members
of this group of Chloroflexi, which is genetically distinct from the
previously cultured members of the genus, including laboratory
model strains Chloroflexus aurantiacus J-10-fl (12) and Chloro-
flexus aggregans strain DSM9486 (13). Together, the results reveal
extensive ecological variation in thermotolerance among closely
related White Creek population members of this novel group of
Chloroflexi.

MATERIALS AND METHODS
Laboratory strain isolation. Microbial mat samples were collected from
White Creek (WC) sites WC3 (Universal Transverse Mercator [UTM]
coordinates, 516002E 4931137N; approximate temperature, 47°), WC5
(UTM, 516362E 4930907N; approximate temperature, 54°), and WC7
(UTM, 516471E 4930848N; approximate temperature, 61°C) in May/July
2009 and May 2010. Environmental samples were spread on plates of
medium D (14) with additions of 0.00082 g/liter anhydrous sodium ace-
tate, 0.0027 g/liter sodium succinate dibasic hexahydrate, 0.0011 g/liter
sodium butyrate, 1.87 �g/liter sodium lactate, and 0.00053 g/liter ammo-
nium chloride at pH 8.2. Phytagel (0.7%, wt/vol) was used as the gelling
agent, as this has been a successful strategy for improving the cultivation
of novel microorganisms from soil (15). Spread plates of the samples
collected from WC3 were incubated at 50°C, and spread plates of samples
collected from White Creek sites 5 and 7 were incubated at 55°C. Plates
were examined under a dissecting microscope several times per week.
After 1 to 2 weeks of incubation, isolated colonies with filamentous Chlo-
roflexus morphology were transferred to fresh plates. These Chloroflexi are
capable of gliding motility and will glide away from nonmotile cells with
which they are in coculture (16). Forceps were subsequently used to trans-
fer the “leading edge” of the culture to a fresh plate, and this process was
repeated until an axenic culture was obtained. A culture was considered
axenic if no growth was observed on nutrient agar indicator plates, no
contaminating cells were observed by light microscopy, and no sequence
heterogeneity was observed for directly sequenced 16S rRNA gene frag-
ments amplified with universal primers by PCR (see below). Strains were
maintained in liquid D medium (pH 8.2) with additions of 0.8 g/liter
glycylglycine, 2.0 g/liter yeast extract, and 0.2 g/liter ammonium chloride.
All cultures were maintained under constant irradiance of 150 �mol pho-
tons m�2 s�1 of tungsten radiation.

DNA isolation, amplification, and sequence analysis. Genomic DNA
was isolated from each strain by the method of Pitcher et al. (17). A
fragment of the 16S rRNA gene was amplified for each strain using
primers 23f and 1492r (18) under the following cycling conditions: 1 min
initial denaturing at 94°C; 40 cycles of 1 min at 94°C, 1 min at 54°C, and
1.5 min at 72°C; and a final extension of 10 min at 72°C. Amplified prod-
ucts were directly sequenced with primer 23f at the University of Wash-
ington High-Throughput Genomics Unit, Seattle, WA.

Chloroflexi 16S rRNA gene sequences from the metagenomes of White
Creek, Chocolate Pots, Fairy Spring, and Bath Lake Vista Annex were
obtained from the DOE-JGI Yellowstone Metagenome Project (available
at http://img.jgi.doe.gov/cgi-bin/m/main.cgi) (C. G. Klatt, W. P. Inskeep,
M. Herrgard, Z. J. Jay, D. B. Rusch, S. G. Tringe, M. N. Parenteau, D. M.
Ward, S. M. Boomer, D. A. Bryant, and S. R. Miller, unpublished data).
16S rRNA gene sequence data for C. aurantiacus strain J-10-fl, Chloro-
flexus sp. 396-1, and C. aggregans strains DSM 9486 and MD-66 were
obtained from the NCBI database. These sequences were aligned with 16S
rRNA gene sequences from White Creek strains using ClustalW (19).

Ambiguous base calls were excluded from the analysis. Roseiflexus se-
quences from the Yellowstone Metagenome Project were also included in
the alignment as an outgroup.

Maximum likelihood trees were generated by RaxML version 7.0.3
(20) according to a GTR�G�I model of sequence evolution selected by
Modeltest version 3.7 (21). Starting trees were generated randomly, and
100 bootstrap replicates were performed using the rapid bootstrapping
algorithm. MrBayes version 3.1.2 (22) was used to generate phylogenies
by Bayesian inference. As with the likelihood analysis, the GTR�G�I
model was used. Two replicates were run simultaneously for 10,000,000
generations until convergence was attained, as assessed by an average
standard deviation of split frequencies below 0.01. To attain convergence
between individual analyses, chain swapping was improved by adjusting
the heating parameter from the program default of 0.2 to 0.025. The
chains were sampled every 100 generations, and the first 20% of sampled
trees was discarded as burn-in.

Partial sequences of the malonyl-CoA reductase (mcr) and propionyl-
CoA synthase (pcs) genes were amplified with primers designed using
sequences recovered from White Creek and Bath Lake Vista Annex by the
Yellowstone Metagenome Project. mcr was amplified using forward
primer 5=CATCTTTCCCGGCCCGATTG3= and reverse primer 5=CACA
GGCAAATTCTAACCCTTC3=. pcs was amplified from each strain using
forward primer 5=AGAAGCGTAYACCGATCARG3= and reverse primer
5=CACCRACCACAATACAATTACC3=. Both sets of primers were de-
signed from the Yellowstone National Park metagenome sequences. Both
gene fragments were amplified under the following cycling conditions: 1
min initial denaturing at 94°C; 40 cycles of 1 min at 94°C, 1 min at 54°C,
and 2 min at 72°C; and a final extension of 10 min at 72°C. Genes were
sequenced using the forward primers at either the University of Washing-
ton High-Throughput Genomics Unit or the Murdock Sequencing Facil-
ity, The University of Montana, Missoula, MT. Sequences of both genes
were aligned with CLUSTALW (19). A sequence of each gene from the
Bath Lake Vista Annex metagenome (Klatt et al., unpublished) was also
included in the alignments. Identical sequence haplotypes were identified
with DnaSP (23). A minimum spanning tree was inferred in Arlequin (24)
and manually adjusted to produce a genealogical network for which the
distance between any two sequences was identical to the number of ob-
served nucleotide differences between them.

Determination of strain growth temperature ranges. For growth rate
experiments to assay temperature performance, strains were grown in
liquid D medium (pH 8.2) with additions of 0.8 g/liter glycylglycine, 2.0
g/liter yeast extract, and 0.2 g/liter ammonium chloride. Test tubes were
inoculated with enough stationary-phase culture (generally 2 ml) to ob-
tain a starting optical density at 660 nm (OD660) of 0.01 to 0.02. ODs of
2-ml subsamples were determined by spectrophotometry at 660 nm every
24 h until the cultures reached stationary phase (3 to 5 days). Growth rates
were measured at 41°C, 45°C, 50°C, 55°C, 58°C, 60°C, 65°C, and 67°C
(67°C for strain WC7-3 only) at an irradiance of 150 �mol photons m�2

s�1 of tungsten radiation. Triplicates of each strain were performed for
each temperature treatment. The generation time during exponential
growth was estimated by log 2/b, where b is the slope of the logarithmically
transformed optical density of a culture at 660 nm regressed on time.

Nucleotide sequence accession numbers. New sequences generated
in this study were deposited in GenBank under accession numbers
KC154234 to KC154266.

RESULTS
Laboratory strain isolation. Environmental samples were col-
lected from White Creek sites WC3, WC5, and WC7 between May
2009 and May 2010. These sites are oriented along the upstream-
downstream axis of the channel, with average temperatures of
approximately 47°C, 54°C, and 61°C, respectively (10, 25). We
obtained 11 axenic Chloroflexus strains from these samples by iso-
lation of colonies from spread plates followed by subsequent plate
transfers (Table 1). All strains grew on phytagel plates containing
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1% strength medium D supplemented with ammonium and or-
ganic acids, but only six were capable of growth in liquid medium.
Light microscopy was used to confirm that strains had character-
istic Chloroflexus morphology, and absorption spectra likewise in-
dicated the presence of bacteriochlorophyll c (not shown).

Phylogenetic analyses. All strains were identical to each other
for an alignment of 680 nucleotides of the 16S rRNA gene as well
as identical to the Chloroflexus OTU 10 sequence tag previously
recovered from White Creek and Rabbit Creek (10). Phylogenies
were reconstructed to determine the evolutionary relationships of
these strains to cultured representatives of the genus and to Chlo-
roflexus sequences recovered from Yellowstone hot spring meta-
genomes (Klatt et al., unpublished; http://img.jgi.doe.gov/cgi-bin
/m/main.cgi). Bayesian inference and maximum likelihood
produced similar results (Fig. 1). The White Creek strains were
most similar (99.5 to 100% sequence identity) to sequences that
are widespread in other Yellowstone hot springs, particularly Bath
Lake Vista Annex (Mammoth Hot Springs), yet are distinct from
previously cultured Chloroflexus strains (Fig. 1). For example, se-
quence identity was �96% to Chloroflexus sp. 396-1 and �94% to
C. aurantiacus strain J-10-fl.

To determine if the White Creek strains could be distinguished
genetically, fragments of the malonyl-CoA reductase (mcr) and
propionyl-CoA synthase (pcs) genes of the 3-hydroxypropionate
carbon fixation pathway were sequenced. All White Creek strain
sequences were identical for a partial sequence (761 nucleotides)
of the mcr gene and differed by less than 1% (1/151 nucleotides in
the region of overlap) from a sequence recovered in the Bath Lake
Vista Annex metagenome. The mcr sequence exhibited 75.6% se-
quence identity to the sequence of C. aurantiacus strain J-10-fl.
White Creek strains could be distinguished by a partial (657-nu-
cleotide) pcs gene sequence, however. Three different pcs alleles
were observed among the 11 White Creek strains. Each was dis-
tinct from the allele detected in the Bath Lake Vista Annex meta-
genome (Fig. 2A), and average sequence identity with the se-
quence of C. aurantiacus strain J-10-fl was approximately 80%. All
WC3 and WC5 strains shared the same allele, two of the three
WC7 strains (WC7-1, WC7-2) had a second allele, and strain
WC7-3 had a unique sequence (Fig. 2A).

Gene sequences sampled from populations often violate the
assumptions of traditional phylogenetics that bifurcating descen-
dants are related by an extinct ancestor and that there has been no
recombination between sequences (26). Therefore, to infer the
relationships among the pcs alleles, a minimum-spanning genea-

logical network which relaxes these assumptions was recon-
structed for the White Creek and Bath Lake Vista alleles (Fig. 2B).
This network is characterized by a central loop, which indicates
that the evolutionary history of pcs has been impacted by either
recombination or recurrent mutation. Since all nucleotide sites in
the pcs alignment consisted of at most only two variants, the data
conform to the infinite site mutation model (i.e., there has been a
maximum of one mutation at each nucleotide position) and
thereby strongly implicate recombination rather than multiple
mutations at the same nucleotide position. Specifically, the
WC7-3 allele appears to be a recombinant of the other two White
Creek alleles: comparison of the variable nucleotide positions in
the pcs sequence clearly show alternating tracts of sequence iden-
tity between WC7-3 and WC7-1 and the WC3 and WC5 alleles,
respectively (Fig. 2A). This suggests recent or ongoing gene flow
among Chloroflexus lineages along the White Creek gradient.

Variation in cardinal growth temperatures. To test for eco-
logical diversification among strains, growth rates for the six
strains capable of growth in liquid medium were determined at

TABLE 1 Summary of Chloroflexus strains isolated with their field
collection sites and dates

Strain Collection site (temp) Collection date

WC3-1 White Creek 3 (47°C) May 2009
WC3-2 White Creek 3 (47°C) May 2009
WC3-3 White Creek 3 (47°C) July 2009
WC3-4 White Creek 3 (47°C) July 2009
WC3-5 White Creek 3 (47°C) July 2009
WC5-1 White Creek 5 (54°C) May 2010
WC5-2 White Creek 5 (54°C) May 2010
WC5-4 White Creek 5 (54°C) May 2010
WC7-1 White Creek 7 (61°C) May 2010
WC7-2 White Creek 7 (61°C) May 2010
WC7-3 White Creek 7 (61°C) May 2010

FIG 1 Chloroflexus 16S rRNA gene phylogeny including White Creek strains
(bold) reconstructed by Bayesian inference and outgroup-rooted with Rosei-
flexus sequences (not shown). Values at nodes represent posterior probabilities
from the Bayesian analysis followed by maximum likelihood bootstrap values
for 100 bootstrap replicates. Origins of Yellowstone metagenome sequences
are distinguished as follows: White Creek, green; Bath Lake Vista Annex, blue;
Chocolate Pots, yellow; and Mushroom Spring, brown.

Chloroflexus Niche Diversification
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seven different temperatures, ranging from 41 to 67°C. Strains
isolated from different sites along the White Creek thermal gradi-
ent exhibited considerable variation in the temperature depen-
dence of growth (Fig. 3). Strains WC3-3 and WC5-1 exhibited
similar thermal reaction norms for growth rate, with an optimum
at or below 50°C and no measurable growth at 58°C (Fig. 3A and
B). Strains WC3-1, WC3-4, and WC5-4, by contrast, exhibited
optimal growth at either 55 or 58°C but did not grow at 60°C (Fig.
3A and B). WC7-3 was the most thermotolerant strain, with max-
imal growth rate at 60°C and growth at 65°C (Fig. 3C). It also
exhibited the broadest temperature range permissive for growth.
In fact, there was statistical evidence of borderline significance for
general positive correlations both between a strain’s optimal tem-
perature and its temperature range breadth (r � 0.82, P � 0.04;
that is, the more thermotolerant a strain is, the broader its thermal
niche) and between maximal growth rate and temperature
breadth (r � 0.78, P � 0.06). WC7-3 exhibited the highest maxi-
mal growth rate in the data set (2.1 doublings per day at 60°C).
This observation reflected a more general trend for optimal tem-
perature to be positively associated with maximal growth rate,
though the estimated Pearson correlation coefficient was not sig-
nificant (r � 0.53, P � 0.28). Our observation that, at lower tem-
peratures, WC7-3 grew at rates comparable to other strains fur-
ther suggests that the extension of its thermal niche to a higher
maximum cardinal temperature came without a cost in perfor-
mance at lower temperatures.

DISCUSSION
Recent divergence of White Creek Chloroflexus. Like other pho-
totrophs from alkaline geothermal systems, the White Creek Chlo-
roflexus OTU 10 lineage has genetically differentiated. In contrast
with 16S rRNA-divergent lineages of Synechococcus and Chloraci-
dobacterium at White Creek, however, a more recent origin of

Chloroflexus OTU 10 strain diversity is indicated by their 100%
sequence identity over a partial 16S rRNA gene fragment. To-
gether with the unique mcr and pcs alleles that were observed in the
White Creek population (Fig. 2), these sequence data favor the
interpretation that there has been a comparatively recent adaptive
radiation of Chloroflexus OTU 10 along the White Creek temper-
ature gradient. Data from additional geographic locations will be
required to more conclusively address whether diversification of
these Chloroflexus strains occurred within White Creek itself.

These differences in time scales of diversification among pho-
totrophic bacteria have implications for our understanding of the
history of community structure and dynamics in these systems.
An early idea was that a tight producer-consumer relationship
between 16S rRNA-defined lineages of Synechococcus and Chloro-
flexi (27) drove their ancient coevolution along the thermal gra-
dients of these hot springs (28). Our conclusion that the diver-
gence of the White Creek Chloroflexus OTU 10 genotypes
occurred much later than the diversification of the three different
16S rRNA-defined Synechococcus A/B lineages with which they

FIG 2 (A) Alignment of the 40 variable nucleotide sites (among 657 aligned
nucleotides) in the pcs alleles from White Creek (WC) and Bath Lake Vista
Annex (BLVA). The WC7-3 allele has a mosaic structure, with alternating
tracts of sequence identity with the WC3/WC5 (normal type) and the WC7-
1/WC7-2 (boldface type) alleles, respectively. (B) Genealogical network of pcs
alleles. Branch lengths are in units of number of nucleotide differences be-
tween a pair of nodes. The number of nucleotide differences between a pair of
alleles is therefore the sum of the branch lengths separating them. Open nodes
are alleles which were not observed in the sample.

FIG 3 Temperature dependence of exponential growth rates of Chloroflexus
strains from sites WC3(A), WC5 (B), and WC7 (C), measured by the change in
optical density at 660 nm. Error bars represent standard errors for triplicate
samples.
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collectively cooccur (10) instead suggests that any coevolved eco-
logical interactions between these groups would have to have de-
veloped more recently, during or following the diversification of
Chloroflexus.

Together with more finely resolved investigations of the ge-
netic diversity of these systems, these results also suggest that the
association between these two groups is more dynamic than orig-
inally proposed. For example, the identity of the Chloroflexi part-
ner(s) can vary greatly between hot springs. Our understanding of
these interactions comes principally from Octopus Spring and
Mushroom Spring, where, over a range of temperatures that is
similar to that of White Creek, Synechococcus cooccurs primarily
with Roseiflexus (29) rather than with Chloroflexus OTU 10. More-
over, reports of the existence within a single hot spring of multiple,
recently diverged Synechococcus ecotypes with identical 16S
rRNAs (30, 31) further raise the possibility that both the genetic
and the ecological diversity of Synechococcus may vary among hot
spring communities. A potential consequence of the recent and
idiosyncratic nature of these Synechococcus-Chloroflexi associa-
tions is that the outcome of their ecological interactions (e.g.,
whether they are primarily cooperative or competitive, which
metabolites are exchanged) may differ among hot springs. The
recently proposed model of cross-feeding of glycolate and fermen-
tation products from Synechococcus to Roseiflexus for the well-
characterized Octopus Spring and Mushroom Spring systems (32)
emphasizes positive interactions. At both White Creek and Rabbit
Creek, however, pyrosequencing data showed that the relative
abundances of the two groups are negatively correlated (10),
which suggests that the ecological interactions between these two
groups may be primarily competitive. Although cross-feeding and
competition are not necessarily mutually exclusive, these latter
observations argue for a better understanding of metabolite ex-
change for Synechococcus-Chloroflexi associations in other hot
spring communities to investigate the generality of the cross-feed-
ing model.

In several respects, Chloroflexus OTU 10 diversity more closely
resembles that of the cyanobacterium Mastigocladus laminosus,
which cooccurs with Chloroflexus in White Creek mats between
temperatures of 39 and �55°C (10). White Creek M. laminosus
strains also exhibit 100% sequence identity at the 16S rRNA locus
across a broad range of temperatures but are likewise genetically
variable at more rapidly evolving loci. In both populations, eco-
logically divergent population members are restricted to different
locations along the thermal gradient (25). Recombination has
played an important role in producing genetic variation in M.
laminosus (33), and future studies can address whether this is also
generally the case for Chloroflexus, as we have observed at the pcs
locus.

Chloroflexus OTU 10 ecological variation and the nature of
trade-offs in thermotolerance. Theories of the evolution of envi-
ronmental tolerance (e.g., see reference 3) commonly assume that
the area under organism fitness curves (e.g., the thermal reaction
norms for growth rate in Fig. 3) remains constant during diversi-
fication. Implicit in this assumption is a “jack-of-all-trades is a
master of none” generalist-specialist trade-off, in which an exten-
sion in niche breadth necessarily comes at the cost of a reduction
in maximal performance. In fact, however, it is possible for gen-
eralists to maintain high relative fitness across a wide range of
temperatures (that is, a “jack-of-all-temperatures” can be “master
of all”) (34), and, in some cases, no correlation or even a positive

correlation between maximal performance and thermal niche
breadth has been reported (35–37). This was the case for our
study, for which we observed both a “master-of-all” phenotype for
strain WC7-3 and a general positive correlation of borderline sta-
tistical significance between maximal performance and tempera-
ture breadth. Whether such a “master-of-all” distribution is actu-
ally realized in situ remains to be investigated and will require
greater sampling of Chloroflexus OTU 10 diversity than was
achieved in the present study.

In addition, the significant positive correlation between opti-
mal temperature and niche breadth is in accord with the related
observation that “hotter is broader” for some microorganisms,
including G4 phage (37, 38) and Escherichia coli propagated in a
variable thermal environment (39). As for the relationship dis-
cussed above between maximal performance and the breadth of
the thermal niche, this result is at odds with a presumed generalist-
specialist trade-off, and its mechanistic basis remains unclear.

Finally, our study also bears on the “hotter is better” hypothesis
(40), which has been proposed to explain why organisms with
relatively high optimal temperatures generally have relatively high
maximal performance. The hypothesis is based on the thermody-
namic argument that reaction rates are higher at increased tem-
peratures, thereby enhancing performance measures, including
growth rate. A majority of case studies representing diverse taxa,
including phages, bacteria, plants, and animals, supports the hy-
pothesis (41, 42). Although the correlation between optimal tem-
perature and maximal growth rate was not significant for the
Chloroflexus OTU 10 data, the sign of the estimated correlation
was in the expected direction under this hypothesis. Interestingly,
thermophilic Synechococcus lineages from these alkaline geother-
mal systems appear to be an exception: contrary to the predictions
of the hotter-is-better hypothesis, Synechococcus A/B strains
adapted to the highest temperatures had the lowest maximal per-
formance (7, 42). Because the most thermotolerant members of
this group define the upper temperature limit for photosynthetic
metabolism, it raises the possibility that “hotter is better” is less
likely to apply to taxa approaching a fundamental evolutionary
constraint.

Concluding remarks. Our discovery of different degrees of
ecological specialization among strains raises challenging ques-
tions for future investigation regarding the factors which shape
the distribution and maintenance of Chloroflexus OTU 10 diver-
sity at White Creek. For example, do generalists like strain WC7-3
coexist with less thermotolerant genotypes at downstream sites?
The comparable or greater fitness of WC7-3 at lower temperatures
compared with that of more specialized strains suggests this pos-
sibility (Fig. 3). If, however, more thermotolerant generalist lin-
eages prove to be restricted to more upstream regions of White
Creek, then what is responsible for this population structure? At
the more downstream WC3 and WC5 sites, the predominant cy-
anobacterium in the community is M. laminosus, whereas it is
Synechococcus at WC7 (10). Downstream and upstream sites are
also distinguished by differences in microbial mat fabric: sites
WC3 and WC5 are streamer mats, whereas WC7 is a laminated
mat more typical of these environments. Ultimately, consider-
ation of the contribution of ecological interactions with other
community members or other physical and chemical aspects of
the environment may be required to understand the realized
niches of different members of the Chloroflexus OTU 10 popula-
tion at White Creek.
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