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Is a Surface-Exposed Outer Membrane Protein
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Neisseria gonorrhoeae and Neisseria meningitidis express an �43-kDa �-2,3-sialyltransferase (Lst) that sia-
lylates the surface lipooligosaccharide (LOS) by using exogenous (in all N. gonorrhoeae strains and some N.
meningitidis serogroups) or endogenous (in other N. meningitidis serogroups) sources of 5�-cytidinemonophos-
pho-N-acetylneuraminic acid (CMP-NANA). Sialylation of LOS can protect N. gonorrhoeae and N. meningitidis
from complement-mediated serum killing and from phagocytic killing by neutrophils. The precise subcellular
location of Lst has not been determined. We confirm and extend previous studies by demonstrating that Lst
is located in the outer membrane and is surface exposed in both N. gonorrhoeae and N. meningitidis. Western
immunoblot analysis of subcellular fractions of N. gonorrhoeae strain F62 and N. meningitidis strain MC58�
3 (an acapsulate serogroup B strain) performed with rabbit antiserum raised against recombinant Lst revealed
an �43-kDa protein exclusively in outer membrane preparations of both pathogens. Inner membrane,
periplasmic, cytoplasmic, and culture supernatant fractions were devoid of Lst, as determined by Western blot
analysis. Consistent with this finding, outer membrane fractions of N. gonorrhoeae were significantly enriched
for sialyltransferase enzymatic activity. A trace of enzymatic activity was detected in inner membrane fractions,
which may have represented Lst in transit to the outer membrane or may have represented inner membrane
contamination of outer membrane preparations. Subcellular preparations of an isogenic lst insertion knockout
mutant of N. gonorrhoeae F62 (strain ST01) expressed neither a 43-kDa immunoreactive protein nor sialyl-
transferase activity. Anti-Lst rabbit antiserum bound to whole cells of N. meningitidis MC58�3 and wild-type
N. gonorrhoeae F62 but not to the Lst mutant ST01, indicating the surface exposure of the enzyme. Although
the anti-Lst antiserum avidly bound enzymatically active, recombinant Lst, it inhibited Lst (sialyltransferase)
activity by only about 50% at the highest concentration of antibody used. On the contrary, anti-Lst antiserum
did not inhibit sialylation of whole N. gonorrhoeae cells in the presence of exogenous CMP-NANA, suggesting
that the antibody did not bind to or could not access the enzyme active site on the surface of viable Neisseria
cells. Taken together, these results indicate that Lst is an outer membrane, surface-exposed glycosyltrans-
ferase. To our knowledge, this is the first demonstration of the localization of a bacterial glycosyltransferase
to the outer membrane of gram-negative bacteria.

The genus Neisseria consists of two major human pathogens,
Neisseria gonorrhoeae and Neisseria meningitidis. N. gonor-
rhoeae is the etiological agent of the sexually transmitted dis-
ease gonorrhea, while N. meningitidis is a cause of bacterial
sepsis and meningitis worldwide. Despite the contrast in the
diseases caused by these two organisms, they share strategies
to evade the human immune response during infection, includ-
ing antigenic and phase variation and masking of immunogenic
surface molecules (10, 25). These systems interfere with elici-
tation of protective immunity and present challenges to the
development of vaccines against these organisms. In particular,
serogroup B and C strains of N. meningitidis express polysac-
charide capsules composed of homopolymers of sialic acid
which prevent proper deposition of bactericidal components of
the complement system (23). Gonococci are not encapsulated,
but along with meningococci, they exhibit monosialylated lipo-
oligosaccharide (LOS) which blocks complement-dependent
killing through the binding of factor H (23). The extent to

which LOS sialylation confers serum resistance upon a menin-
gococcus, in lieu of its polysaccharide capsule, remains a mat-
ter of debate, and the extents may be different in different
serogroups or at different times during meningococcal infec-
tion and disease (9, 30). However, LOS sialylation is required
by serum-sensitive N. gonorrhoeae to evade serum killing in
vitro, and N. gonorrhoeae strains in urethral exudates from
infected males are sialylated, suggesting that there is a role for
this modification of LOS in the pathogenesis of gonorrhea
(12).

Sialylation of LOS is catalyzed by an �-2,3-sialyltransfer-
ase (Lst) that monosialylates the terminal galactose of LOS
by using 5�-cytidinemonophospho-N-acetylneuraminic acid
(CMP-NANA) (3, 12, 27). CMP-NANA is obtained from the
host by N. gonorrhoeae; CMP-NANA is not synthesized by N.
gonorrhoeae. However, N. meningitidis serogroups B and C can
utilize endogenously synthesized CMP-NANA. Lst has been
cloned and expressed in Escherichia coli and has been found to
be a monomeric, 42.6-kDa protein that exhibits approximately
95 to 98% identity in strains of N. meningitidis and N. gonor-
rhoeae (3). Lst does not share sequence homology with eukary-
otic sialyltransferases and exhibits broader acceptor specificity,
having the ability to sialylate alpha- and beta-linked terminal
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galactose residues (3). Sialyltransferase activity is recovered
almost exclusively in pellets of broken cell preparations of N.
meningitidis and recombinant E. coli upon ultracentrifugation,
indicating a membrane association (3). Outer membrane lo-
calization of Lst has been suggested by the ease with which Lst
activity is extracted with Triton X-100 and by the dependence
of N. gonorrhoeae on an external source of CMP-NANA (2).
The demonstration of a noncleavable signal sequence at the N
terminus of Lst further supports membrane localization, along
with the known inner membrane distribution of glycosyltrans-
ferases involved in Salmonella lipopolysaccharide (LPS) bio-
synthesis (19). Although it has not been proven experimentally,
it is reasonable to assume that the LOS biosynthetic enzymes
of Neisseria have a distribution similar to that of the LPS
biosynthetic enzymes of the Enterobacteriaceae (5). These ob-
servations support membrane association but do not unequiv-
ocally assign Lst to an inner or outer membrane location.
Intact wild-type gonococci absorb radiolabeled CMP-NANA
under cold conditions, suggesting that Lst is surface associated
(2). However, this does not eliminate the possibility of an inner
membrane location for Lst if a CMP-NANA transport system
exists. The possibility of an inner membrane-associated Lst is
supported by the ability of some N. meningitidis serogroups to
endogenously sialylate LOS. Another characteristic of Lst is its
constitutive expression, although various growth conditions re-
sult in modest increases or decreases in Lst activity in whole
cells of N. gonorrhoeae, by as-yet-unknown mechanisms (1, 16,
22). If Lst is surface exposed, it would be one of a limited
number of antigenically invariable proteins constitutively ex-
pressed on the surface of pathogenic neisseriae. Thus, because
of its antigenic stability and its constitutive expression, Lst may
be a vaccine candidate.

N. gonorrhoeae F62 and N. meningitidis MC58�3 express Lst
molecules that share �95% identity at the amino acid level. In
this study we demonstrated an outer membrane distribution
and surface exposure of Lst by using subcellular fractions of N.
gonorrhoeae F62 and N. meningitidis MC58�3 and anti-Lst
antiserum. To our knowledge, Lst is the first glycosyltrans-
ferase localized to the outer membrane of gram-negative bac-
teria.

MATERIALS AND METHODS

Bacterial strains. Stocks of N. gonorrhoeae strains F62 and ST01 that were
predominately Opa negative and nonpiliated and N. meningitidis strain MC58�

3 (an acapsulate serogroup B mutant) were used for all studies (17, 29). Strain
ST01 is an lst knockout mutant of strain F62, created by transformation of F62
with an lst construct from N. meningitidis MC58�3 that has a kanamycin resis-
tance cassette in lst. ST01 is serum sensitive in the presence of CMP-NANA (25
�g/ml) and completely lacks sialyltransferase enzymatic activity (data not
shown).

Generation of Lst antisera. Two different antisera were raised against two
different recombinant forms of Lst. A recombinant Lst from N. meningitidis
MC58�3, fused with c-Myc (designated cLst), was a gift from the laboratory of
Warren Wakarchuk at the National Research Council, Ottawa, Canada (4). A
1.25-ml aliquot (�250 �g) of this preparation was sent to Cocalico Biologicals,
Inc. (Reamstown, Pa.) for production of rabbit antiserum. Briefly, for immuni-
zation, 100 �g of antigen emulsified in Freund’s complete adjuvant was injected
subcutaneously, and this was followed by three booster doses of 50 �g of antigen
mixed with Freund’s incomplete adjuvant given at 2-week intervals. The resulting
antiserum was designated anti-cLst.

The second rabbit antiserum (designated HA7) was raised as described above
against rLst prepared in the Rest laboratory, as described below.

Cloning of lst from N. meningitidis MC58�3. The lst gene was amplified from
a single colony of N. meningitidis MC58�3 by using the 5� primer lst for (CGT
AGGCATATGGGCTTGAAAAAGGCTTG) and the 3� primer lst rev (TCTC
GAGGTAATTTTTATCGTCAAATGTCAAA). The forward and reverse prim-
ers incorporated an NdeI site at the 5� terminus and an XhoI site at the 3�
terminus of lst, respectively, as indicated by underlining. The resulting PCR
product was gel purified, digested with NdeI and XhoI, and ligated into expres-
sion vector pTyB1 (NEB) that was digested with the same two enzymes. In the
pTyB1expression vector Lst is fused at its C terminus to an affinity intein tag that
is self-cleaved after binding to a chitin column in the presence of dithiothreitol
(DTT), which allows Lst purification in the absence of a separate protease. The
resulting clone (pSSLst) was electroporated into E. coli strain XL-1 Blue (Strat-
agene, La Jolla, Calif.) and selected on Luria broth (LB) plates containing 100 �g
of ampicillin per ml and 10 �g of tetracycline per ml. Positive clones were verified
by restriction analysis and sequencing (data not shown).

Expression, induction, and purification of rLst. Purified pSSLst was electro-
porated into E. coli strain ER2566 (New England Biolab, Beverley, Mass.).
Positive clones were identified by growth on LB containing 100 �g of ampicillin
per ml and by restriction analysis of pSSLst. For expression of Lst, E. coli
ER2566 harboring pSSLst was grown in 500 ml of LB containing 100 �g of
ampicillin per ml at 37°C to an A600 of 0.5 to 0.6. Protein expression was induced
by addition of 0.5 mM isopropyl-1-thio-�-D-galactopyranoside, and growth was
continued for 5 h at the ambient temperature. Bacteria were harvested by
centrifugation at 4,100 � g for 15 min. The supernatant was discarded, and the
pellet was stored at �20°C.

The frozen pellet was thawed on ice and resuspended in 20 ml of suspension
buffer (1.0 M NaCl, 0.02 M Tris-HCl [pH 8.0], 1.0 mM EDTA, 0.1% Triton
X-100, protease inhibitor mixture [Sigma]). The suspension was sonicated on ice
for 5 min in 30-s intervals and then centrifuged for 15 min at 23,000 � g at 4°C.
The supernatant was collected and applied to a 5-ml chitin bead column that was
preequilibrated with suspension buffer. After the sample passed through the
column, the column was washed with 20 column volumes of the same buffer
without protease inhibitors. The resin was then quickly washed with 3 column
volumes of the same buffer containing 0.05 M DTT and protease inhibitors, and
the effluent was discarded. The column was clamped at both ends, and on-
column cleavage of the intein tag from the fusion protein was performed by
incubating the column at 16°C for 18 h. Purified protein was eluted in 4 column
volumes of the same buffer containing protease inhibitors and no DTT. The
eluate (rLst) was concentrated by centrifugation with a Centricon 30 filtration
apparatus (Bio-Rad), dialyzed for 3 h at 4°C against phosphate-buffered saline
(PBS) containing 0.1% Triton X-100, divided into aliquots, and stored at �80°C.

Generation of HA7 antiserum. Concentrated rLst was electrophoresed (4°C
overnight at 30 V) on a nondenaturing preparative gel consisting of a 4%
stacking gel in 1 M Tris-HCl (pH 6.8) and a 10% separating gel in 1 M Tris-HCl
(pH 8.8) in a Tris-glycine (pH 8.3, 0.05 M) running buffer. A vertical strip was cut
out from one side of the gel and quickly stained with Coomassie brilliant blue
(CBB) to locate protein bands. Two horizontal strips, which aligned with the only
two major proteins on the CBB-stained vertical strip, were excised from the gel,
individually homogenized in PBS containing 0.1% Triton X-100, and tested for
sialyltransferase activity as described above. The remainder of each strip was sent
to Cocalico Biologicals, Inc., for production of rabbit antiserum as described
above. The resulting antiserum was designated HA7.

Preparation of subcellular fractions. Cellular fractions were prepared in the
Judd laboratory by using a modification of the procedure of Osborn and Munson
(21).

(i) Growth conditions. Bacteria were grown for 16 h on clear typing medium
(29). Cells were harvested and resuspended to an A600 of 1.0 in Dulbecco’s PBS.
Sixty-five microliters of the suspension was inoculated into 100 ml of GC broth
plus supplement [200 ng of cocarboxylase per ml, 20.8 �g of Fe(NO3)3 · 9H2O
per ml, 100 �g of L-glutamine per ml, 20 mM D-glucose] in a 250-ml sidearm flask
and incubated with shaking at 37°C until the culture reached the mid-log growth
phase. Then 0.5 ml of the mid-log-phase cells was inoculated into 250 ml of GC
broth in a 1-liter sidearm flask and incubated with shaking until the culture again
reached the mid-log growth phase. Bacteria were harvested by centrifugation at
12,000 � g for 10 min at room temperature.

(ii) Isolation of inner and outer membranes. Pellets of whole cells, isolated as
described above, were resuspended in 6.25 ml (per 250 ml of culture) of 200 mM
Tris-HCl (pH 8.0) and diluted with an equal volume of ice-cold 1 M sucrose–200
mM Tris-HCl (pH 8.0). The following prechilled reagents were added sequen-
tially with vortexing and mixing: 25 �l of 250 mM EDTA; 100 �l of N-acetyl-
muramidase (5 mg/ml in H2O distilled three times; mutanolysin; catalog no.
M9901; Sigma); and 12.5 ml of 4°C distilled H2O added forcefully by pipetting.
The preparation was gently shaken overnight at 4°C. Cells were then sonicated
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by using four 20-s bursts at 50% power with a Fisher 550 Sonic Dismembranator
(Fisher Scientific). Unbroken cells and cell debris were removed by centrifuga-
tion at 12,000 � g for 10 min. The supernatant was then decanted into fresh
centrifuge tubes and centrifuged at 12,000 � g for 30 min. The supernatant was
then ultracentrifuged at 240,000 � g for 2 h at 4°C in a Ti80 rotor (Beckman).
Pellets were resuspended in 1 ml of 18% (wt/wt) sucrose.

A step gradient was layered from bottom to top in 37-ml polypropylene tubes
by adding the following sucrose solutions (all contained 1 mM EDTA and 200
�M DTT): 6 ml of 60% (wt/wt) sucrose overlaid with 5 ml each of 55, 50, 45, 35,
25, and 20% (wt/wt) sucrose. One milliliter of the membrane fraction was layered
on top of the gradient and centrifuged in an SW28 rotor (Beckman) at 80,000 �
g for 48 h at 4°C. Following centrifugation, 1-ml fractions were collected from the
top of the gradient with a peristaltic pump. The fractions were analyzed by
refractometry and by determining A280. Absorbing fractions in the density range
from �1.15 to �1.26 g/ml were pooled, dialyzed, lyophilized, resuspended in 1 ml
of 18% (wt/wt) sucrose, and layered on a second step gradient constructed by
using 5.5 ml each of 60 and 55% sucrose and 5 ml each of 50, 45, 41, 37, and 33%
sucrose. One-milliliter fractions were collected from the top of the gradient with
a peristaltic pump.

To confirm separation and to identify inner and outer membrane fractions, all
fractions were analyzed by sodium dodecyl sulfate (SDS)-polyacrylamide gel
electrophoresis (PAGE) and stained with CBB and silver. Only outer membrane
fractions showed LOS staining. Western blots of separated fractions were probed
with antibodies to known outer membrane markers (Por, Rmp, Lip, and MtrC).
Only outer membrane fractions reacted with these antibodies. Representative
fractions from inner and outer membrane peaks were tested for inner membrane
markers, including several dehydrogenases (18), heme-containing proteins, and
cytochrome oxidase activity (28). Only inner membrane fractions showed dehy-
drogenase and cytochrome oxidase activities and possessed heme-containing
proteins. These observations have been reported by Judd and colleagues (8).

Fractions from the centers of the inner and outer membrane peaks were either
tested for Lst activity or solubilized (1:1, vol/vol) in 2� SDS-PAGE solubilizing
solution and used in SDS-PAGE and Western blot studies.

(iii) Isolation of periplasm, cytoplasm, and culture supernatant. Periplasmic
contents were isolated as described by Judd and Porcella (7) from cells grown as
described above. Cells were harvested at an A600 of 0.68. Chloroform incubation
was performed at 4°C to preserve Lst enzymatic activity. The periplasmic isolate
was either tested for Lst activity or solubilized (1:1, vol/vol) in 2� SDS-PAGE
solubilizing solution and used in SDS-PAGE and Western blot studies. Cyto-
plasmic contents were isolated from cells grown on plates and harvested at an
A600 of 0.8 in PBS as described above. The cellular pellets were each resuspended
in 100 �l of Dulbecco’s PBS and subjected to four 20-s bursts at 50% power by
using the microtip of a Fisher 550 Sonic Dismembranator. Cellular debris was
removed by centrifugation at 12,000 � g for 10 min. The supernatant was
aspirated and ultracentrifuged at 130,000 � g for 1 h. The clarified supernatant
was collected and either tested for sialyltransferase activity or solubilized (1:1,
vol/vol) in 2� SDS-PAGE solubilizing solution and used in SDS-PAGE and
Western blot studies.

Culture supernatants were isolated from cells grown as described above.
Whole cells and cellular debris were removed by centrifugation at 12,000 � g for
10 min at 4°C. The supernatant was aspirated and subjected to ultracentrifuga-
tion at 225,000 � g for 4 h at 4°C. The clarified supernatant was either tested for
Lst activity or solubilized (1:1, vol/vol) in 2� SDS-PAGE solubilizing solution
and used in SDS-PAGE and Western blot studies.

Measurement of sialyltransferase activity. Sialyltransferase activity was deter-
mined by measuring the incorporation of radiolabeled N-acetylneuraminic acid
(NANA) into purified gonococcal LOS, essentially as described by Mandrell et
al. (13). Typically, 50-�l reaction mixtures contained 0.1 M sodium phosphate
buffer (pH 6.8), 0.1% Triton X-100, 0.8% bovine serum albumin, 0.85 nmol of
cold CMP-NANA, 0.094 nmol (0.03 �Ci) of [14C]CMP-NANA (Amersham,
Piscataway, N.J.), 3.8 nmol of LOS (purified from N. gonorrhoeae strain F62),
and various amounts of Lst. The reaction mixtures were incubated at 37°C for 15
min, and the reactions were stopped by addition of 0.5 ml of 5% phosphotungstic
acid–15% trichloroacetic acid. Precipitates were washed, solubilized, and
counted. Subcellular fractions made in the Judd laboratory were blinded and sent
to the Rest laboratory for measurement of sialyltransferase activity.

Inhibition of sialyltransferase activity by anti-rLst antibody HA7. Aliquots of
rLst were incubated in 20-�l mixtures with different dilutions of HA7 antibody
for 15 min at room temperature. Ten-microliter aliquots of each mixture were
removed, and their Lst activities were measured. As a positive control, rLst was
incubated for the same period of time in antibody dilution buffer (PBS contain-
ing 1% bovine serum albumin) in the absence of HA7. Lst was also tested for
enzymatic activity after incubation with preimmune serum, as indicated below.

Immunoprecipitation of Lst. A Seize X protein A immunoprecipitation kit
from Pierce (Rockford, Ill.) was used as recommended in the manufacturer’s
protocol. A 1:1,000 dilution of preimmune serum and anti-rLst antiserum HA7
were used in these assays. Twenty-five-microliter aliquots of the collected frac-
tions were analyzed by Western blotting by using HA7 (1:25,000 dilution) as the
probe, and 10-�l aliquots were tested for sialyltransferase activity as described
above.

SDS-PAGE and Western blotting. For analyzing subcellular fractions, SDS-
PAGE and Western blotting were preformed as detailed by Judd (6). The
anti-Lst antisera, anti-cLst, and HA7 were each used at a 1:10,000 dilution.

Whole-cell binding assays. To assess the exposure of Lst on the bacterial
surface, N. meningitidis MC58�3 and N. gonorrhoeae strains F62 and ST01 were
grown in GC broth to an A550 of 1.0, as described above. Aliquots were collected
in microcentrifuge tubes, pelleted, and resuspended in 1 ml of PBSG (Dulbecco’s
PBS plus 0.1% [wt/vol] gelatin) containing 0.001% Ca2�, Mg2�, and various
dilutions of preadsorbed rabbit anti-Lst antiserum HA7. Samples were mixed
end over end for 30 min at room temperature and centrifuged at 10,000 � g for
1 min. The pellets were washed twice with 1 ml of PBS containing 0.05% Tween
20, and the final pellets were suspended in 1 ml of PBS containing 0.05% Tween
20 with a 1:5,000 dilution of protein A-conjugated alkaline phosphatase (Cal-
biochem). Samples were mixed end over end for 1 h at room temperature and
centrifuged. The pellets were washed twice as described above, suspended in 210
�l of a solution containing 1 mg of p-nitrophenyl phosphate (Sigma) per ml in
10% sodium carbonate–1 mM MgCl2, and left at room temperature until color
developed. The reactions were terminated with 90 �l of 10 N NaOH. Samples
were centrifuged as described above, and the optical densities at 405 nm of the
supernatants were measured.

RESULTS

Production and characterization of anti-cLst antiserum.
For detection of Lst in subcellular fractions, we immunized
rabbits with c-Myc-tagged Lst originating from N. meningitidis
MC58�3 as described in Materials and Methods. The resulting
antiserum, anti-cLst, was used to probe whole-cell blots of N.
gonorrhoeae F62 and its isogenic lst mutant, ST01. At a
1:10,000 dilution the antiserum detected a 43-kDa band in
whole-cell extracts of F62 but not in ST01 (Fig. 1A, right panel,
lanes F62 WC and ST01 WC). This indicated that the anti-
meningococcal Lst antiserum detected gonococcal Lst, which
was not unexpected considering that the Lst molecules of N.
gonorrhoeae and N. meningitidis strains share �95% identity.
Proteins with molecular masses of �90 and �70 kDa were also
detected with this antiserum in whole-cell blots of N. gonor-
rhoeae F62 and ST01. In addition, the anti-cLst bound a pro-
tein with a molecular mass of �100 kDa in whole-cell blots of
N. meningitidis MC58�3 (Fig. 1B, right panel, lane WC). Re-
activity with these proteins probably represented cross-reactiv-
ity of the antiserum and indicated the presence of contaminat-
ing proteins that eluted with the recombinant cLst during
purification. However, it was clear from the results that the
antiserum could differentially bind a 43-kDa protein in strains
positive for Lst, which would allow its use in detection of Lst in
subcellular fractions.

Immunodetection of Lst in subcellular fractions of N. gon-
orrhoeae strains F62 and ST01 and N. meningitidis strain
MC58�3. Subcellular fractions of N. gonorrhoeae F62 and
ST01 and N. meningitidis MC58�3 were prepared as described
in Materials and Methods. Approximately 100 to 200 �g of
each fraction was analyzed by SDS-PAGE and subjected to
Western blot analysis by using a 1:10,000 dilution of anti-cLst
antiserum as the probe (Fig. 1). A 43-kDa protein was detected
in the outer membrane fraction but not in the inner mem-
brane, periplasm, cytoplasm, or culture supernatant fraction of
N. gonorrhoeae F62. As expected, the antiserum did not react
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FIG. 1. SDS-PAGE and Western blot analyses of subcellular fractions of N. gonorrhoeae strains F62 and ST01 and N. meningitidis strain
MC58�3. (A, left panel) Whole-cell lysates (WC), culture supernatants (Cult Sup), isolated outer membranes (OM), isolated periplasm (Peri),
isolated inner membranes (IM), and isolated cytoplasm (Cyto) from N. gonorrhoeae strains F62 and ST01 were separated in an SDS-12.5% PAGE
gel and stained with CBB. Lanes Cont Cult Sup contained sterile growth medium. Lanes MW contained molecular mass markers. (A, right panel)
Western blot of the SDS-PAGE gel shown in the left panel probed with anti-cLst antiserum, as described in Materials and Methods. The position
of the 43-kDa Lst is indicated by an arrow. (B) Whole-cell (WC), cytoplasmic, inner membrane (IM), periplasmic, and outer membrane (OM)
fractions of N. meningitidis MC58�3 were separated in an SDS-12% PAGE gel and transferred to a polyvinylidene difluoride membrane. (Right
panel) Polyvinylidene difluoride membrane probed with anti-cLst, preadsorbed with a lysate of E. coli DH5�. (Left panel) Blot reblocked with
0.02% Tween and stained with India ink. Lane MW contained prestained markers. The position of Lst at �43 kDa is indicated.
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with a 43-kDa protein in any of the cellular fractions of the lst
mutant ST01.

Since N. meningitidis serogroups B and C can utilize endog-
enous (i.e., internal) sources of CMP-NANA to sialylate their
LOS, we were curious to know whether the subcellular distri-
bution of Lst in N. meningitidis MC58�3, an acapsulate mutant
serogroup B strain, was the same as that observed in N. gon-
orrhoeae. As shown in Fig. 1B, Lst was detected only in whole-
cell preparations (lane WC) and in outer membrane prepara-
tions (lane OM) of N. meningitidis, while other subcellular
fractions were devoid of an �43-kDa reactive protein. These
results showed that Lst localizes to the outer membrane in
both N. gonorrhoeae and N. meningitidis, in contrast to the
hypothesized inner membrane distribution of LPS glycosyl-
transferases (20).

Measurement of Lst enzymatic activity in cellular fractions
of N. gonorrhoeae strains F62 and ST01. To confirm the results
of the Western blot analyses, we tested the subcellular frac-
tions of F62 and ST01 for sialyltransferase enzymatic activity.
Prior to testing, each fraction was blind labeled in order to
obtain an unbiased evaluation of the results. Consistent with
our immunodetection studies, sialyltransferase activity was de-
tected almost exclusively in the outer membrane fraction of
F62 (Table 1). A trace of activity was also detected in the inner
membrane fraction, indicating the higher sensitivity of the en-
zyme assay than of the Western blot analysis. This activity was
about 2.4% of that found in the outer membrane and could
have been due to fragments of membrane that did not separate
during isolation. It is also possible that a small amount of Lst
is present in the inner membrane before transport to the outer
membrane. These results support our conclusion that the 43-
kDa protein detected in the outer membrane fractions of N.
gonorrhoeae F62 and N. meningitidis MC58�3 was indeed Lst.

Generation and characterization of HA7 anti-Lst anti-
serum. We next investigated the possible surface exposure of
Lst on N. meningitidis and N. gonorrhoeae. To facilitate this
study, we generated antiserum that bound native Lst. The
c-Myc-tagged rLst used to raise antiserum to cLst exhibited
minimal sialyltransferase activity (data not shown), indicating
that it contained little native Lst. In addition, preliminary stud-
ies indicated that the anti-cLst antiserum did not detect Lst on
whole bacteria, nor did it immunoprecipitate enzymatically
active Lst (data not shown). Therefore, we attempted to raise

new antiserum that reacted with native Lst. For this endeavor,
the lst gene of N. meningitidis MC58�3 was cloned and ex-
pressed in E. coli by using the construct pSSLst, which included
the open reading frame of lst and a 3� sequence encoding a
self-cleaving intein tag to facilitate purification, as described in
Materials and Methods. This rLst preparation was analyzed by
SDS-PAGE and Western blotting by using anti-cLst as the
probe and was also tested for sialyltransferase activity. The
rLst was identified as a 43-kDa protein by Western blot anal-
ysis (it was accompanied by 70- and 100-kDa proteins) and
possessed significant sialyltransferase activity (data not shown).
To further purify rLst for immunization, it was subjected to
native PAGE as described in Materials and Methods and used
to raise rabbit antiserum. In a Western blot analysis, the re-
sulting antiserum, designated HA7, recognized Lst and, to a
lesser degree, proteins with molecular masses of �70 and
�100 kDa in whole-cell extracts of N. gonorrhoeae (data not
shown).

Inhibition of Lst activity and immunoprecipitation of native
Lst by HA7 antiserum. As a measure of its ability to bind active
rLst, we used HA7 to inhibit Lst sialyltransferase activity and
to immunoprecipitate rLst. rLst was incubated with various
dilutions of HA7 serum and subsequently tested for enzymatic
activity. Enzymatic activity decreased by approximately 50%
after rLst was incubated with a 1:2,000 or 1:1,000 dilution of
HA7 (Fig. 2), and Lst protein and enzymatic activity were
immunoprecipitated with HA7 immunoglobulin G (IgG) im-
mobilized on a protein A column. A 1:1,000 dilution of pre-
immune serum had no significant effect on Lst activity (Fig. 2).
Moderate inhibition of Lst activity by the antiserum suggested
that native epitopes were being bound but not in a region(s)
important for catalysis. We next immunoprecipitated Lst pro-
tein with HA7 IgG immobilized on a protein A column. As a
control, a second protein A column was prepared by using IgG
from rabbit preimmune serum. Whereas Lst applied to the
protein A column prepared with preimmune serum was found
predominately in the column flowthrough, Lst protein and
enzymatic activity were bound tightly to the column prepared

FIG. 2. Inhibition of rLst activity by HA7 anti-rLst antiserum. rLst
was incubated with different dilutions of HA7 antiserum and tested for
sialyltransferase activity as described in Materials and Methods. The
positive control was Lst mixed with assay buffer. Sialyltransferase ac-
tivity was also measured after incubation with normal rabbit antiserum
(NRS) isolated from rabbits prior to immunization. The data are
representative of the results of two experiments.

TABLE 1. Sialyltransferase activity in subcellular fractions of N.
gonorrhoeae strains F62 and ST01

Fraction

Sialyltransferase activity (cpm/�g of
protein)a

Strain F62 Strain ST01

Culture supernatant 0 0
Control culture supernatant 0 0
Outer membrane 4,660 	 168 0
Periplasm 0 0
Inner membrane 127 	 2.8 0
Cytoplasm 0 0

a Fraction samples were assayed as described in Materials and Methods. The
sialyltransferase activity values were subtracted from background values and are
representative of the results of at least three independent experiments conducted
in duplicate by using one set of fractions. All fractions were measured at a
protein concentration of 0.6 to 0.66 �g/�l.
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with HA7 (Fig. 3). The results indicated that HA7 antiserum
contained antibodies against native Lst epitopes and might be
helpful in demonstrating the surface exposure of Lst in N.
gonorrhoeae or N. meningitidis.

HA7 binding to whole cells. To determine if Lst is exposed
on the surface of whole cells, N. gonorrhoeae F62 or N. men-
ingitidis MC58�3 was incubated with HA7 antiserum previ-
ously adsorbed with our lst mutant, ST01. Antibody binding
was detected by using protein A conjugated to alkaline phos-
phatase. At a 1:2,500 dilution, HA7 antibody bound to various
numbers of bacteria in a dose-dependent manner (Fig. 4A).
Similarly, various concentrations of HA7 antibody bound to a
constant number of Neisseria cells in a dose-dependent manner
(Fig. 4B). Very similar results were observed for N. meningiti-
dis and N. gonorrhoeae. As expected, HA7 did not bind to lst
mutant ST01 at the lowest dilution of antibody or the highest
number of bacteria used. Thus, at least some portion of Lst is
exposed on the surface of N. gonorrhoeae and N. meningitidis.

DISCUSSION

The pathogenic neisseriae sialylate their surfaces with an
LOS-specific �-2,3-sialyltransferase (Lst) (24, 26). Character-
ization of Lst has revealed that it is a monomeric, 43-kDa
protein that is antigenically stable and constitutively expressed
(11). Several properties of Lst, including its association with
membrane fragments of whole cells of N. meningitidis and
recombinant E. coli, have suggested a membrane location for
this enzyme (2–4). In the present study we expanded the char-
acterization of Lst by demonstrating its outer membrane loca-
tion and surface exposure in whole cells of N. gonorrhoeae F62
and N. meningitidis MC58�3.

Cloning of lst and isolation of its gene product have facili-

tated construction of a defined lst insertion mutant and gen-
eration of Lst-specific antisera (4; Rest et al., unpublished
data). To localize Lst in subcellular fractions of N. gonorrhoeae
F62 and N. meningitidis MC58�3, partially purified c-Myc-
tagged rLst was used to generate rabbit anti-cLst antiserum.
We also used the cloned, insertionally inactivated lst gene of N.
meningitidis MC58�3 to produce N. gonorrhoeae ST01, an iso-
genic lst mutant of N. gonorrhoeae F62, as a control. When
used to probe Western blots of whole cells, anti-cLst antiserum
reacted with a 43-kDa protein in whole-cell and outer mem-
brane preparations of N. gonorrhoeae F62 and N. meningitidis
MC58�3 and not in cellular preparations of the Lst mutant,
ST01. To confirm these results, we tested the subcellular prep-
arations of N. gonorrhoeae F62 and ST01 for the ability to
sialylate purified LOS in vitro by using radiolabeled NANA. In
agreement with our Western blot studies, Lst activity was de-
tected mainly in the outer membrane fraction of F62. The
inner membrane fraction also contained a bit of Lst activity
that was barely greater than the background level. We attribute
this activity either to unseparated membrane fragments (20) or
to Lst that is en route to the outer membrane. The results of
this investigation demonstrated an outer membrane location
for Lst in N. gonorrhoeae and N. meningitidis. The dependence
on an external source of CMP-NANA has long suggested this
distribution for Lst in N. gonorrhoeae and further substantiates
the observation that CMP-NANA is absorbed by intact N.
gonorrhoeae (2). Endogenous sialylation of N. meningitidis
LOS by some serogroups, due to internal synthesis of CMP-
NANA, suggested that Lst in these serogroups might face the
inside of the cell, perhaps on the inside of the outer membrane.
Thus, Lst would still have access to intracellular CMP-NANA
depending on its orientation. Studies of the physiology of cap-
sule formation by the inner membrane �-2,8-polysialyltrans-

FIG. 3. Affinity purification of native rLst by HA7 anti-rLst antiserum. rLst was applied to a protein A column containing bound antibodies
from HA7 antiserum or normal rabbit serum (NRS). The column was washed, and rLst was dissociated from the column with a three-step elution
procedure as described in Materials and Methods. The wash and three elution fractions were tested for Lst sialyltransferase activity (left panel)
and by Western analysis for rLst protein (right panel) as described in Materials and Methods. (Right panel) Lane 1, rLst; lane 2, NRS column,
wash; lane 3, NRS column, elution 1; lane 4, NRS column, elution 2; lane 5, NRS column, elution 3; lane 6, HA7 column, wash; lane 7, HA7
column, elution 1; lane 8, HA7 column, elution 2; lane 9, HA7 column, elution 3. The positions of Lst and molecular mass markers are indicated
on the left of the Western blot.
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ferase suggested that activated NANA could be available near
the cytoplasmic or periplasmic face of the inner membrane (14,
15).

The outer membrane distribution of Lst prompted us to
investigate if it was surface exposed. In preliminary studies we
attempted to use anti-cLst antiserum to show binding to whole
cells, but we were unsuccessful because the antiserum did not
recognize native Lst. Thus, we generated antiserum HA7,
which recognized native Lst. Binding to native Lst was assessed
by specific enzyme inhibition and immunoprecipitation. Using
protein A beads conjugated to alkaline phosphatase as a
method of detection and adsorbed antiserum, we were able to
show that HA7 binds to whole cells of N. gonorrhoeae F62 and
of N. meningitidis MC58�3, indicating that some part of Lst is
exposed on the surface of Neisseria cells.

Our data show that Lst is an outer membrane, surfaced-

exposed enzyme in pathogenic neisseriae. Future experiments
will concentrate on investigating (i) the serum and mucosal
humoral responses to Lst and (ii) the ability of Lst antibodies
to facilitate or enhance opsonophagocytosis or complement-
mediated killing of neisseriae.
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