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ABSTRACT 24 

The laboratory mouse model of Lyme disease has revealed that Borrelia burgdorferi 25 

differentially expresses numerous outer surface proteins that influence different stages of 26 

infection (tick-borne transmission, tissue colonization, dissemination, persistence, and tick 27 

acquisition). Deletion of two such outer surface proteins, decorin-binding proteins A and B 28 

(DbpA/B), has been documented to decrease infectivity, impede early dissemination and, 29 

possibly, prevent persistence. In this study, DbpA/B-deficient spirochetes were confirmed to 30 

exhibit an early dissemination defect in immunocompetent, but not immunodeficient, mice and 31 

the defect was found to resolve with chronicity. Development of disease (arthritis and carditis) 32 

was only attenuated in the early stage of DbpA/B-deficient infection in both types of mice. 33 

Persistence of the DbpA/B-deficient spirochetes occurred in both immunocompetent and 34 

immunodeficient mice in a manner indistinguishable from wild-type spirochetes. Dissemination 35 

through the lymphatic system was evaluated as an underlying mechanism for the early 36 

dissemination defect. At 12 hours, 3 days, 7 days and 14 days post-inoculation, DbpA/B-37 

deficient spirochetes were significantly less prevalent and in lower numbers in lymph nodes than 38 

wild-type spirochetes. However, in immunodeficient mice, deficiency of DbpA/B did not 39 

significantly decrease the prevalence or spirochete numbers in lymph nodes. Complementation 40 

of DbpA/B restored a wild-type phenotype. Thus, results indicated that deficiency of DbpA/B 41 

allows the acquired immune response to restrict early dissemination of spirochetes, which 42 

appears to be at least partially mediated through the lymphatic system. 43 

 44 

 45 

 46 
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INTRODUCTION 47 

Borrelia burgdorferi, the etiologic agent of Lyme disease, utilizes a multitude of surface-48 

exposed adhesins to bind to and interact with various components of the extracellular matrix in 49 

mammalian hosts. These adhesins include decorin-binding protein (Dbp)A, DbpB, fibronectin-50 

binding protein (Fbp), Borrelia glycosaminoglycan-binding protein (Bgp), RevA, Borrelia 51 

membrane proteins (Bmps), ErpX, and P66. Their respective ligands include decorin, 52 

fibronectin, various glycosaminoglycans, laminin and αIIbβ3 integrin (1, 2, 3, 4, 5, 6, 7). This is 53 

by no means a completely inclusive list (8); for example, a yet unidentified borrelial adhesion 54 

binds directly to native type I collagen (9) and thus far, ligands for BmpD and members of the 55 

OspF family have not been characterized (10). However, the interactions of adhesins and ligands, 56 

particularly DbpA/B and decorin, appear to play an important role during all stages of infection. 57 

DbpA and DbpB are encoded in a bicistronic operon (dbpBA) on plasmid lp54 of the 58 

prototype B. burgdorferi B31 strain (11) and were two of the first borrelial adhesins identified (6, 59 

12, 13, 14). These 19-kDa and 20-kDa proteins, respectively, are encoded by and expressed 60 

within B. burgdorferi sensu stricto strains and also many B. burgdorferi sensu lato strains, albeit 61 

as heterogeneous homologs (12, 15, 16, 17). Expression is upregulated in the mammalian host 62 

after tick-borne infection (18) and DbpA and DbpB are highly antigenic during infection (14, 19, 63 

20). Based on mRNA levels, DbpA and DbpB continue to be expressed throughout chronic 64 

infection (12, 14, 18, 19). In comparison to DbpB, DbpA has been established as the more 65 

crucial adhesin in the context of pathogenesis, eliciting stronger protective immunity (12, 14) 66 

and, on its own, restoring a wild-type phenotype to DbpA/B-deficient mutant B. burgdorferi (21, 67 

22).  68 
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 In the laboratory mouse model, DbpA and DbpB have been implicated in the 69 

establishment of infection, dissemination, tissue colonization, persistence, and tick 70 

acquisition/transmission. Disruption of DbpA and DbpB, while nonessential to initial infection 71 

(23), will increase the infectious dose (21, 24, 25), decrease total spirochete tissue burdens (25), 72 

decrease recovery of spirochetes from tissues distant to the inoculation site (21, 23, 25) and 73 

decrease efficiency of tick acquisition/transmission (24). None of the aforementioned studies 74 

addressed the influence of DbpA and DbpB disruption on disease development or persistence.  75 

The early dissemination defect of DbpA/B-deficient mutants, represented by decreased 76 

recovery of spirochetes from tissues distant to the inoculation site (21, 23, 25), seems to be a key 77 

to understanding the role of decorin-binding proteins in Lyme borreliosis. With the genetic 78 

disruption or absence of these adhesins, spirochetes may be unable to travel by conventional 79 

routes or access important microenvironmental niches, and, thus, manifest their altered 80 

dissemination phenotype. Although the extracellular matrix (ECM) is important in B. 81 

burgdorferi dissemination, as evidenced by direct dissemination through connective tissue (26, 82 

27, 28, 29), spirochetes utilize alternate means to disseminate as well, including bacteremia (19, 83 

29, 30, 31). In addition, a relatively unexplored means of dissemination is through lymphatics, as 84 

draining lymph nodes are often culture-positive sooner than any other tissues proximal to the 85 

inoculation site (20, 25, 32). Few molecular mechanisms that enable the lymphatic route of 86 

dissemination have been proposed, but they probably involve the interaction between adhesins 87 

and ligands. For example, fibronectin-binding protein, glycosaminoglycans and fibronectin 88 

facilitate microvascular interactions observed by intravital microscopy in infected mice (31) and 89 

both VlsE and OspC were implicated by phage display for in vivo adherence to vascular 90 

endothelium (10), which is likely to include lymphatic vessels as well.  91 
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The present study concurs with previous studies, in that decorin-binding proteins 92 

influence the early stages of infection (dissemination and tissue colonization). These early 93 

differences are unique to immunocompetent mice and are abolished in the chronic stage of 94 

infection. Results also demonstrate that decorin-binding proteins influence disease severity. We 95 

propose that the mechanism of influence pertains to the restricted routes by which spirochetes 96 

lacking dbpBA are able to disseminate, including lymphatic dissemination.  97 

 98 

MATERIALS AND METHODS 99 

Borrelial strains and mutagenesis. B. burgdorferi sensu stricto strain B31-A3, a low-100 

passage infectious clonal isolate of B31-MI, the prototype B31 strain utilized for genome 101 

sequencing (33, 34), was utilized as both the wild-type control and the parental strain for genetic 102 

manipulation (35). The dbpBA operon was disrupted by insertion of flgBp-aadA (36) by 103 

electroporation of competent B31-A3 as previously described (37) and selection in 50 µg/ml 104 

streptomycin, which yielded the B31-∆dbpBA deletion mutant. All B. burgdorferi strains were 105 

cultivated in liquid modified Barbour-Stoenner-Kelly (BSKII) medium supplemented with 6% 106 

normal rabbit serum (38). For isolation of transformants, B. burgdorferi was cultured on semi-107 

solid gelatin-free BSKII medium supplemented with 1.7% dissolved agarose plus the appropriate 108 

antibiotic (37). 109 

The dbpBA operon was genetically reconstituted in the B31-∆dbpBA mutant by allelic 110 

exchange recombination yielding the B31-dbpBA+ complement. The shuttle vector pBSV2G, 111 

containing a gentamicin resistance cassette (35) was utilized to create the construct in which the 112 

dbpBA operon was incorporated. One 1649-bp long fragment of B31 DNA, including the dbpBA 113 

operon, the promoter region from -266 to -1, and the terminator region after the stop codon from 114 
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1528 to 1649, was amplified by PCR with forward primer P1FBamHI (5′-115 

TCGTGGGATCCCAAGCCAGATTGCATAGC-3′) and reverse primer P7RPstI (5′-116 

TCGTGCTGTGATTATCGGGCGAAGAG-3′). Both pBSV2G and the amplicon were double 117 

digested with BamHI and PstI, ligated together and sequenced to ensure the correct orientation of 118 

the dbpBA operon. The construct was electroporated into B31-∆dbpBA mutants, and successful 119 

complements were selected with gentamicin (40 μg/ml). Six complemented mutants were 120 

obtained, and confirmed by PCR for the presence of the dbpBA operon and gentamicin marker, 121 

as well as the absence of the streptomycin marker. Plasmid profiling confirmed that all six 122 

complemented mutants contained the plasmids lp25, lp28-1, lp54, cp26 and cp32, which are 123 

required for infectivity (39). 124 

For construction of suicide vectors and general gene cloning, Escherichia coli strain 125 

TOP10F′ (Invitrogen, Inc., CA) was utilized and grown in lysogeny broth (LB) broth under 126 

aerobic conditions at 37oC. Transformed E. coli were cultured in LB medium with 50 μg/ml 127 

spectinomycin or 5 µg/ml gentamicin. 128 

Mice and infections. Specific-pathogen-free, 3 to 5 week old female C3H/HeN (C3H), 129 

C3H.C-Prkdcscid/IcrSmnHsd (C3H-scid) and IcrTac:ICR-Prkdcscid (Swiss-scid) mice were 130 

acquired from Frederick Cancer Research Center (Frederick, MD), Harlan Sprague Dawley, Inc. 131 

(Indianapolis, IN) and Taconic Farms, Inc. (Hudson, NY), respectively. Pregnant outbred 132 

Crl:CD1(ICR) mice were acquired from Charles River Laboratories (Hollister, CA). Mice were 133 

killed by carbon dioxide narcosis and cardiac exsanguination. Specific isolates of the borrelial 134 

mutants, B31-∆dbpBA and B31-dbpBA+ were confirmed as infectious to infant ICR mice at all 135 

inoculation doses from 104 to 107 (data not shown). Any individual C3H, C3H-scid or Swiss-scid 136 

mouse, in the experiments included herein, that could not be confirmed as infected (neither PCR-137 
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positive nor culture-positive) was excluded from data analysis. 138 

 PCR. DNA was extracted from tissue samples using DNeasy tissue kits, according to the 139 

manufacturer’s instructions (QIAGEN, Valencia, CA). Samples were analyzed by quantitative 140 

PCR (qPCR) using optimized assays for flaB and dbpA, as previously described (18). Three 141 

oligonucleotides, two primers and an internal Taqman probe, for the flaB (18) and the dbpA 142 

genes were used. Primers DbpAB31-247F (5′-GCGAGCTACTACAGTAGCGGAAA-3′) and 143 

DbpAB31-444R (5′-TTTCAAGCACTCCTTGAGCTGTA-3′) were created to amplify a 198-bp 144 

fragment of dbpA DNA. The internal probe DbpAB31-316P (5′- GTGAAACAGGTAGCAAG 145 

TATCAGAAAATTCAT -3′) contained 5′ 6-carboxy fluorescein reporter dye and 3′ 6-carboxy-146 

tetramethyl rhodamine quencher dye. Quantification of gene copies was based on absolute 147 

standard curves prepared using plasmid standards (18). Target gene copy numbers were 148 

expressed as copy number per mg of tissue weight or per μl blood. In addition, DNA extracted 149 

from positive cultures and DNA from tissue samples were used to verify B. burgdorferi 150 

genotypes recovered from infected mice. 151 

 Histology. Tissues were fixed in 10% neutral-buffered formalin, paraffin-embedded, 152 

routinely processed and stained with hematoxylin and eosin. Limbs were decalcified prior to 153 

processing. Tissue sections were blindly examined and graded for the presence of inflammation. 154 

The presence of arthritis in each mouse was determined by examination of knees and tibiotarsi. 155 

Sagittal sections through the heart, including sections of great vessels (aorta), were examined for 156 

the presence of carditis, as described previously (40, 41). Tibiotarsal arthritis severity was scored 157 

on a scale of 0 (no histologic evidence of inflammation) to 3 (severe), as described previously 158 

(42).  159 
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Enzyme-linked immunosorbent assay. Ninety-six well plates were coated with 1 μg/ml 160 

B. burgdorferi B31 whole cell lysates in carbonate coating buffer (pH 9.6), as described 161 

previously (12). Antibody binding was recognized by a secondary alkaline phosphatase-162 

conjugated goat anti-mouse IgH+L antibody, diluted at 1:5000 (Jackson ImmunoResearch 163 

Laboratories Inc., West Grove, PA). Immunoreactivity was revealed using 1 mg/ml phosphate 164 

substrate (Sigma-Aldrich, St. Louis, MO) in diethanolamine buffer and optical density values 165 

were measured at 405nm on a kinetic microplate reader (Molecular Devices, Sunnyvale, CA), as 166 

described previously (41). Individual serum samples were titrated in three-fold dilutions (starting 167 

at 1:300). Samples were tested in duplicate, and each assay included uninfected mouse serum as 168 

a negative control and 90-day B31-infected mouse serum as a positive control.  169 

Infection, dissemination/colonization, and persistence experiments. Mice were 170 

infected by subdermal inoculation of 105 to 106 mid-log phase B. burgdorferi B31-A3, B31-171 

∆dbpBA, and/or B31-dbpBA+ in 0.1 ml BSKII culture medium on the dorsal thoracic midline. 172 

Subsets from each group were necropsied at 14, 28, 42, 60 and/or 90 days post-inoculation. Sub-173 

inoculation site and urinary bladder tissues were aseptically collected for culture, as previously 174 

described (43). Tissues collected for DNA extraction and qPCR included: skin, sub-inoculation 175 

site, heart base, ventricular muscle, quadriceps muscle and left tibiotarsus. Tissues collected for 176 

histology included: heart base, left knee and right rear limb. Hearts were bisected along the 177 

longitudinal axis to provide samples for both DNA extraction and histology.  178 

Lymphatic dissemination experiment. Groups of C3H mice were infected by 179 

subdermal inoculation of 105 mid-log phase B. burgdorferi B31-A3, B31-∆dbpBA, and/or B31-180 

dbpBA+ in 0.1 ml BSKII culture medium in the skin of the right lateral thigh. Four mice from 181 

each group were necropsied at 12 hours, 3 days, 7 days and 14 days post-inoculation. Right and 182 
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left inguinal lymph nodes, spleen and urinary bladder were aseptically collected for culture. Both 183 

right and left inguinal, popliteal, lumbar, and axial lymph nodes were collected for DNA 184 

extraction. Inguinal lymph nodes were bisected to provide samples for both culture and DNA 185 

extraction. Extra-lymphatic tissues, including skin at the inoculation site, heart base, and right 186 

tibiotarsus, were collected for DNA extraction. To evaluate lymphatic dissemination in the 187 

absence of acquired immunity, the experiment was repeated in Swiss-scid mice.  188 

 Statistics. Analyses were performed using Fisher’s exact test for differences, independent 189 

samples t-test or two-way analysis of variance, followed by post-hoc pair-wise comparisons 190 

(Tukey’s HSD test) (PASW Statistics v. 18.0 and Prism v. 5, GraphPad software). Calculated P 191 

values < 0.05 were considered significant.  192 

 193 

RESULTS 194 

Borrelia burgdorferi deficient in DbpA and DbpB lacks an early dissemination defect 195 

in immunodeficient mice, but exhibits attenuated disease development. The dissemination 196 

and pathogenic capabilities of the B31-∆dbpBA mutant compared to wild-type B31-A3 was 197 

initially evaluated in immunodeficient mice. Groups of 4 C3H-scid mice inoculated with 106 198 

B31-∆dbpBA or B31-A3 were necropsied at 28 days post-inoculation. Sub-inoculation site and 199 

urinary bladder from all mice in both B31-∆dbpBA and B31-A3-inoculated groups were culture-200 

positive and there were no statistical differences in tissue spirochete burdens by flaB qPCR 201 

between groups (data not shown). B31-∆dbpBA-inoculated C3H-scid mice developed both 202 

arthritis and carditis (Table 1), but the severity of tibiotarsal inflammation was attenuated in the 203 

B31-∆dbpBA infection (0.8 mean severity score + 0.2 SEM) compared to the wild-type B31-A3 204 

infection (2.9 + 0.1) (P = 0.03). Carditis was milder and in equal prevalence in the B31-∆dbpBA-205 
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inoculated C3H-scid mice compared to mice infected with B31-A3. Therefore, when unrestricted 206 

by acquired immunity, B31-∆dbpBA retained the ability to disseminate and colonize distant 207 

tissues and was pathogenic, but despite the presence of equal copy numbers of spirochetes in 208 

tissue compared to wild type, B31-∆dbpBA elicited less inflammation both hearts and joints. 209 

In the above experiment and similar studies by others in immunodeficient mice (24, 25), 210 

1 month (28-30 days) post-inoculation was the maximum experiment duration for evaluating 211 

infections utilizing DbpA/B-deficient spirochetes. In order to evaluate the capability of B31-212 

∆dbpBA to persist in immunodeficient mice, we extended the duration to 90 days. Groups of 12 213 

C3H-scid mice were inoculated with 106 B31-∆dbpBA or B31-A3 and subsets of 4 mice per 214 

group were necropsied at 14 days, 60 days and 90 days post-inoculation. Sub-inoculation sites 215 

and urinary bladders from all mice were culture-positive at all intervals and in both groups. Copy 216 

numbers of flaB DNA in sub-inoculation site, heart base, ventricle, quadriceps muscle and 217 

tibiotarsal tissues were not significantly different between B31-∆dbpBA and wild-type B31-A3-218 

inoculated mice at any interval (Fig. 1). The severity of tibiotarsal arthritis and carditis similarly 219 

was indistinguishable between B31-∆dbpBA and wild-type B31-A3-inoculated mice at 60 and 90 220 

days post-inoculation (Table 1). The qPCR and histology data confirmed that in 221 

immunodeficient mice, B31-∆dbpBA spirochetes can disseminate to distant tissues, proliferate 222 

therein to an equal degree, incite inflammation and persist in a manner similar to wild-type 223 

spirochetes.  224 

The early dissemination defect of dbpBA-deficient spirochetes in immunocompetent 225 

mice is abolished in the chronic stage of infection and is rescued by complementation. To 226 

evaluate whether similar spirochete tissue dissemination, persistence and disease development 227 

would occur with B31-∆dbpBA infection in immunocompetent mice, groups of 15 C3H mice 228 
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were inoculated with 105 B31-∆dbpBA or B31-A3. Five mice from each group were necropsied 229 

at 14, 28 and 42 days post-inoculation. Fewer culture-positive tissues, and fewer positive mice, 230 

were identified in the B31-∆dbpBA-inoculated mice compared to wild type at day 14 and day 28, 231 

but by day 42, numbers of culture-positive tissues and numbers of culture-positive mice 232 

increased until differences between B31-∆dbpBA and B31-A3 infections were diminished (Table 233 

2).  234 

Similarly, at day 14, tissue spirochete burdens were undetectable in multiple tissues, 235 

including sub-inoculation site, heart base, ventricular muscle, quadriceps muscle and tibiotarsus 236 

(all P = 0.0079) in B31-∆dbpBA-infected mice compared to wild type (Fig. 2). At day 28, 237 

spirochete tissue burdens in heart base (P = 0.034) and ventricular muscle (P = 0.033) were 238 

significantly lower in B31-∆dbpBA-infected mice compared to wild type. However, by day 42 239 

post-inoculation, qPCR tissue burdens were equivalent in both groups. No inflammation was 240 

observed on day 28 and only minimal carditis (0.1 + 0.1; 1 out of 4 mice) and mild arthritis (0.4 241 

+ 0.2; 2 out of 4 mice) was observed at day 42 in B31-∆dbpBA-inoculated mice (Table 1). By 242 

contrast, in the wild type-inoculated mice at day 28, there was statistically significantly greater 243 

carditis (1.0 + 0.0; 5 out of 5 mice; P < 0.05) and a mild arthritis (0.2 + 0.2; 1 out of 5 mice). At 244 

day 42, there was a trend towards slightly more severe and more prevalent disease with mild 245 

carditis (0.6 + 0.2) and mild to moderate arthritis (0.9 + 0.3) in 4 out of 5 mice. Results 246 

demonstrated that B31-∆dbpBA spirochetes retained the capacity to infect, disseminate, and 247 

persist in immunocompetent mice, and eventually attain equal levels of tissue burdens and 248 

disease, but were delayed and initially only able to induce attenuated disease.  249 

 The duration of infection in immunocompetent mice was next extended to 90 days post-250 

inoculation in order to fully evaluate the capability of the DbpA/B-deficient mutant to persist. 251 
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The complemented mutant B31-dbpBA+ was included in the experiment to evaluate whether 252 

genetic complementation could rescue the phenotype of the DbpA/B-deficient mutant. Groups of 253 

12 C3H mice were inoculated with 106 B31-∆dbpBA, B31-dbpBA+, or B31-A3. Subsets of 4 254 

mice were necropsied at 14 days, 60 days and 90 days post-inoculation. In mice inoculated with 255 

B31-∆dbpBA, there were notably fewer culture and/or qPCR-positive mice (1/4) and minimal or 256 

no detectable spirochete tissue burdens in B31-∆dbpBA-infected mice at day 14 compared to 257 

both wild-type B31 or B31-dbpBA+infected mice (Fig. 3). At subsequent intervals (day 60 and 258 

90), 3/4 and 4/4 B31-∆dbpBA-inoculated mice were culture and/or qPCR-positive and the level 259 

of spirochete tissue burden (Fig. 4) and severity of arthritis and carditis (Table 1) was not 260 

significantly different from B31-A3-inoculated mice. All B31-A3 and B31-dbpBA+-inoculated 261 

mice were positive at 14, 60 and 90 days and tissue spirochete burdens in B31-dbpBA+-262 

inoculated mice were either not statistically different or were not significantly less than wild-type 263 

B31-A3 (day 14 shown in Fig. 3). Similarly, the severity of arthritis and carditis was not 264 

significantly different between B31-A3 and B31-dbpBA+-inoculated mice on day 60 and 90 265 

(data not shown). The appropriate infecting B. burgdorferi genotypes (wild type, mutant, 266 

complemented mutant) were confirmed among isolates from each mouse group at necropsy. 267 

Thus, DbpA/B-deficient spirochetes, despite their early dissemination defect, were capable of 268 

persistence and inducing disease in immunocompetent C3H mice, and complementation of the 269 

mutant restored the early dissemination phenotype.  270 

The early dissemination defect is dependent on the presence of an acquired immune 271 

response. The flaB qPCR data from the above experiments were combined to evaluate 272 

spirochete dissemination and colonization kinetics from day 14 to day 90 post-inoculation in 273 

immunocompetent C3H mice compared to immunodeficient C3H-scid mice (Fig. 4). Heart base 274 
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and tibiotarsal results were focused upon because these two tissues are distant from the 275 

inoculation site and are often poorly colonized by DbpA/B-deficient spirochetes, due to and 276 

representative of the dissemination defect (21, 25). Serology from the above immunocompetent 277 

C3H mouse experiments was also combined to evaluate the acquired immune response between 278 

DbpA/B-deficient and wild type-inoculated mice. In C3H-scid mice, no significant differences 279 

were observed in tissue spirochete burdens in heart base (Fig. 4A) or tibiotarsus (Fig. 4B) 280 

between the B31-∆dbpBA mutant and wild-type B31-A3. In contrast, B31-∆dbpBA tissue 281 

spirochete burdens in C3H mice were markedly lower to absent compared to wild type at early 282 

time points (day 14 and day 28), but these differences were abolished by day 42 post-inoculation. 283 

Despite a continuous rise in B. burgdorferi-specific antibody titer in mice inoculated with both 284 

genotypes, differences between the titers in B31-∆dbpBA and wild type infections were not 285 

abolished after day 42 and remained statistically significantly greater in the wild type-inoculated 286 

mice and in the B31-∆dbpBA-inoculated mice (Fig. 5). 287 

dbpBA-deficiency prevents early dissemination though the lymphatic system. 288 

Regional lymph nodes have been reported to become rapidly culture-positive following infection 289 

(by needle-inoculation, tick transmission and tissue graft) during infection with wild-type as well 290 

as DbpA/B-deficient B. burgdorferi (20, 25, 32). One study reported that distant lymph nodes in 291 

mice infected with wild-type B. burgdorferi became progressively culture-positive over time, in 292 

the order of their proximity to the inoculation site (32). The same study concluded that 293 

spirochetes were in fact within lymph nodes, rather than in the surrounding connective tissue, by 294 

identifying morphologically intact spirochetes in subcapsular sinuses (32). In another study, in 295 

mice inoculated with DbpA/B-deficient spirochetes, spirochetes were frequently cultured from 296 

lymph nodes at 12 hours and 2 and 3 weeks post-inoculation (25). Based on these observations, 297 
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both wild-type and DbpA/B-deficient spirochetes appeared to be able to enter into, survive 298 

within, and potentially migrate through the lymphatic system. This is in contrast to the observed 299 

dissemination defect in DbpA/B-deficient spirochetes where heart and joint (tissues that should 300 

be accessible by hematogenous or direct routes of dissemination) are less frequently colonized 301 

by DbpA/B-deficient spirochetes (21, 25) than by wild-type spirochetes. Based on these 302 

observations, we postulated that the lymphatic dissemination route might be utilized by 303 

spirochetes lacking DbpA/B more readily than other routes.  304 

 To investigate this possibility, we determined the prevalence of wild-type B31-A3, B31-305 

∆dbpBA mutant, and B31-dbpBA+ complemented spirochetes within lymph nodes, both 306 

proximal and distal to the inoculation site, and at multiple intervals (0.5, 3, 7 and 14 days) during 307 

early infection by culture and qPCR for flaB DNA. Any animal that was neither culture nor flaB 308 

qPCR-positive was considered uninfected and dropped from the data set. Both right and left 309 

sides from each pair of lymph nodes (popliteal, inguinal, lumbar, and axillary) were evaluated 310 

and if either one or both sides were qPCR or culture-positive, then the pair of lymph nodes was 311 

considered positive (Table 3). Initially, we inoculated mice asymmetrically in the right hind limb 312 

to evaluate any influence of proximity but the effect of side (right vs. left) was negligible and 313 

therefore, each pair of lymph nodes was combined as a unit of evaluation. 314 

At the earliest time points, qPCR-positive lymph nodes were identified in mice infected 315 

with all three B. burgdorferi genotypes within hours after inoculation (day 0.5), but the same 316 

lymph nodes were universally negative at the following time point (day 3), suggesting drainage 317 

of DNA, but not viable spirochetes, from the inoculum. At day 7, the number of positive lymph 318 

nodes from B31-∆dbpBA-inoculated mice was significantly lower (P < 0.0001) than the number 319 

of positive lymph nodes in wild type-inoculated mice. At day 14, the number of positive lymph 320 
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nodes from B31-∆dbpBA-inoculated mice was significantly lower (P < 0.0001) than from both 321 

wild type and complemented mutant infections. Similarly, at day 7 and day 14, spirochete tissue 322 

burdens in lymph nodes from B31-∆dbpBA-inoculated mice (10,572 mean copy no. flaB DNA 323 

per mg tissue + 10,536 SEM; 225 + 0.0) were lower, though not significantly, than wild type 324 

(45,904 + 19,596; 38,995 + 12,279).  325 

Though there was a trend towards greater numbers of PCR-positive tissues in B31-326 

∆dbpBA extra-lymphatic tissues (skin, tibiotarsus and heart base) than in lymph nodes, only on 327 

day 3 was the difference significant (P = 0.0211). Otherwise, there were significantly fewer 328 

PCR-positive extra-lymphatic tissues from B31-∆dbpBA-inoculated mice than in wild type-329 

infected mice at the later time points (day 7 P < 0.0001, day 14 P = 0.0062) (Table 3). At day 7 330 

and day 14, spirochete tissue burdens in extra-lymphatic tissues from B31-∆dbpBA-inoculated 331 

mice (25 + 4; 54,037 + 49,271) were lower, though not significantly, than wild type (7,381,000 + 332 

6,459,000 vs. 103,140 + 60,179). Based on culture, viable spirochetes could be recovered from 333 

the lymphatic system and extra-lymphatic tissue (urinary bladder) earliest in B31-A3-inoculated 334 

mice (day 7), followed by the B31-dbpBA+-inoculated mice (day 14) but were not recovered 335 

from B31-∆dbpBA-inoculated mice at any interval (Table 3). Therefore, the early dissemination 336 

defect of DbpA/B-deficient spirochetes in immunocompetent C3H mice was characterized by 337 

minimal presence in lymph nodes, ii) greater presence in extra-lymphatic tissues, and iii) an 338 

overall lower spirochete tissue burden in lymph nodes and extra-lymphatic tissues when 339 

compared to wild type. These data demonstrate that the lymphatic route is not a dominant means 340 

of dissemination/migration utilized by DbpA/B-deficient spirochetes.  341 

Early exclusion of dbpBA-deficient spirochetes from the lymphatic system requires 342 

an acquired immune response. Results indicated that the early dissemination defect of B31-343 
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∆dbpBA spirochetes occurs only in C3H, but not C3H-scid mice. Therefore, we next sought to 344 

determine if an acquired immune response is necessary to exclude B31-∆dbpBA spirochetes from 345 

lymphatic dissemination. To investigate this possibility, we intended to repeat the previous 346 

experiment in congenic C3H-scid mice; however, C3H-scid mice became unavailable due to 347 

elimination of this mouse strain by the vendor. Therefore, the prevalence and tissue burdens of 348 

wild-type, mutant and complemented spirochetes within lymph nodes and extra-lymphatic 349 

tissues during the early stage of infection was repeated in equally susceptible Swiss-scid mice.  350 

Culture and PCR-positive lymph nodes were identified in B31-∆dbpBA-inoculated scid 351 

mice within hours after inoculation (day 0.5) (Table 4). By day 7, the number of positive lymph 352 

nodes from B31-∆dbpBA-inoculated scid mice was significantly fewer (P < 0.0001) than the 353 

number of positive lymph nodes in wild type and B31-dbpBA+-inoculated scid mice. However, 354 

by day 14, significant differences between the numbers of positive lymph nodes in wild type, 355 

B31-∆dbpBA or B31-dbpBA+-inoculated scid mice were no longer apparent and spirochete 356 

tissue burdens in lymph nodes from B31-∆dbpBA-inoculated scid mice (2,352 + 701) were not 357 

significantly different than wild type (33,497 + 11,578) and B31-dbpBA+ (35,938 + 10,355). At 358 

this same time point, the number of positive lymph nodes was significantly greater in scid mice 359 

inoculated with B31-∆dbpBA (P < 0.0001) than in similarly inoculated C3H mice. No significant 360 

differences were observed between the number of positive lymph nodes and extra-lymphatic 361 

tissues in B31-∆dbpBA-inoculated scid mice. Viable spirochetes could be recovered from the 362 

lymphatic system and extra-lymphatic tissues earliest in B31-A3-inoculated scid mice (day 3), 363 

followed by the B31-dbpBA+-inoculated scid mice (day 7) and B31-∆dbpBA-inoculated scid 364 

mice (day 14) (Table 4). In summary, DbpA/B-deficient spirochetes in immunodeficient Swiss-365 

scid mice were not excluded from the lymphatic route of dissemination.  366 
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 367 

DISCUSSION 368 

The role of individual borrelial ECM adhesins is a common theme of investigation, given 369 

the importance of ECM to the lifecycle and pathogenesis of B. burgdorferi (44).  Though 370 

adhesins may be necessary to a specific stage in borreliosis, no single adhesin has been shown to 371 

be absolutely essential. For instance, several studies have independently documented that 372 

deletion of dbpBA attenuates but does not abolish infectivity of B. burgdorferi (21, 23, 24). 373 

Similarly, deletion of other adhesins has not been sufficient to alter the course of initial infection. 374 

Disruption of Bgp led to an uninterrupted infectious phenotype in immunodeficient mice after 2 375 

weeks post-inoculation (45) and deletion of fibronectin-binding protein did not alter infection in 376 

immunocompetent mice at 3 weeks (46), although the median infectious dose was increased 377 

(47). Deletion of another adhesin, P66, resulted in loss of in vitro spirochetal attachment to the 378 

ligand integrin αvβ3 (48) and loss of infectivity in both immunocompetent and immunodeficient 379 

mice, with retention of the ability to infect ticks and survive in in vivo dialysis membrane 380 

chambers (49). Therefore, lack of any single adhesin may not be essential but, as we and others 381 

have demonstrated, may influence pathogenicity by altering the course of infection, by changing 382 

the ability to disseminate, colonize, cause disease, or persist.  383 

While not necessary to establish infection in immunocompetent mice (23), deletion of 384 

dbpBA was reported to decrease infectivity (21, 24), display a dissemination defect (21, 23, 25) 385 

and potentially, alter the ability to persist (25). In this study, we confirmed that DbpA/B-386 

deficient spirochetes manifested an early dissemination defect, but we demonstrated that the 387 

defect resolved with chronicity (after day 28 post-inoculation) and that persistence occurred in a 388 

manner indistinguishable from wild-type spirochetes. Furthermore, we demonstrated, for the first 389 
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time, that deletion of DbpA/B resulted in early attenuation of disease development and prevented 390 

early dissemination and colonization within the lymphatic system. We propose that one 391 

mechanism by which the early dissemination defect of DbpA/B-deficient spirochetes occurs is 392 

restriction of lymphatic dissemination through which, by comparison, wild-type spirochetes can 393 

rapidly migrate.  394 

 As unlikely as it may seem for an organism dedicated to immune evasion and persistence, 395 

there is abundant evidence that B. burgdorferi spirochetes actively migrate within the lymphatic 396 

system. Lymph nodes are rapidly and consistently culture-positive in both acute and chronic 397 

stages of infection (20, 25), become progressively culture-positive in order of proximity to the 398 

inoculation site (20), and morphologically intact spirochetes have been identified in subcapsular 399 

sinuses of regional lymph nodes (20). Indeed, a recent study found that the direct presence of 400 

viable (in contrast to non-viable) spirochetes in lymph nodes deceptively stimulates an atypical 401 

immune response that may actually favor survival of spirochetes during early infection (50). In 402 

the current study, we provide additional evidence for migration of wild-type spirochetes through 403 

the lymphatic system, and demonstrate the diminished ability of DbpA/B-deficient spirochetes to 404 

do likewise. Taken together, the lymphatic system appears to be a route of dissemination for B. 405 

burgdorferi, and DbpA and DbpB may be important for that behavior. 406 

 Based on data presented in this study and by Weening et al. (24), DbpA/B-deficient 407 

spirochetes can gain initial and sporadic access to the lymphatic system, but we postulate that the 408 

inability to maintain access and migrate therein essentially results in exclusion that coincides 409 

with the repeatedly documented early dissemination defect. Involvement of the acquired immune 410 

response is strongly implicated as only in immunocompetent mice has the dissemination defect 411 

been observed (21, 23, 25) and notably, only in immunocompetent mice have we observed 412 
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exclusion from the lymphatic system.  413 

The importance of the acquired immune response, B cell and antibody-mediated 414 

immunity in particular, to disease resolution and spirochete reduction in the host is well 415 

established (41, 51, 52, 53). How this clears or prevents access of DbpA/B-deficient spirochetes 416 

to lymphatics is perplexing because these genetically manipulated spirochetes lack one of the 417 

more immunogenic antigens, DbpA (12, 14). Without a vulnerable target, one might expect 418 

DbpA/B-deficient spirochetes to escape immune pressure; however, based on our observations, 419 

this is incorrect. We showed that the acquired immune response to DbpA/B-deficient spirochetes 420 

(by B. burgdorferi-specific serum titer) remains significantly lower than the wild-type immune 421 

response to wild type (Fig. 5) despite equilibration of tissue spirochete burdens to a wild-type 422 

level (Fig. 4C and 4D). This reduced immune response remains capable of excluding DbpA/B-423 

deficient spirochetes from the lymphatics, at least within the early stages of infection.  424 

Several mechanisms that would prevent lymphatic dissemination of DbpA/B-deficient 425 

spirochetes in immunocompetent mice are possible: i) DbpA/B-deficient spirochetes have 426 

increased vulnerability to antibody clearance within lymphatics, ii) DbpA/B-deficient spirochetes 427 

have increased vulnerability to non-antibody-mediated clearance within lymphatics, or iii) 428 

lymphatics become inaccessible to DbpA/B-deficient spirochetes after the initial establishment 429 

of infection. Our observations are more consistent with the first two possibilities since 430 

involvement of the acquired immune response is implicated. If DbpA/B-deficient spirochetes are 431 

more vulnerable to antibody clearance, then increased exposure to IgM could account for the 432 

greater susceptibility. IgM dominates the anti-borrelial immune response (50) and though it may 433 

be too large and unwieldy to penetrate collagenous tissues, it is present in blood and lymph (54). 434 

The caveat remains that evidence exists to refute the hypothesis that steric hindrance alone 435 
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prevents the antibody response from targeting spirochetes embedded in collagen (55, 56). As for 436 

non-antibody-mediated clearance, recent investigations into invariant natural killer T (iNKT) 437 

cells are reminders that there are alternate immune mechanisms to consider (57, 58). For 438 

instance, disruption of the phagocyte (macrophage or Kupffer cell)-iNKT cell interaction results 439 

in diminished IFN-γ production, decreased phagocytic clearance, and increased bacterial loads  440 

(57) and dissemination (58).  441 

Similarly, the exact mechanism by which the DbpB/A-deficient spirochetes maintain the 442 

capability to incite inflammation despite the absence of a strongly immunogenic antigen is 443 

speculative at best. Only during the earlier stage of infection (day 28) was there a statistically 444 

significant difference in severity of arthritis (in C3Hscid mice) or carditis (in C3H mice) between 445 

B31-∆dbpBA and wild type-inoculated mice. However, in C3H mice, there was a slight 446 

attenuation in disease severity in B31-∆dbpBA extending to day 60. Relative tissue spirochete 447 

burdens are not sufficient to explain the difference in disease severity since attenuation of disease 448 

in B31-∆dbpBA-inoculated mice extends past the point (day 42) of equilibration between 449 

genotypes (Fig. 4C and 4D). Rapidity of dissemination to and colonization of a site of 450 

predilection for inflammation (heart base or tibiotarsus) may be an alternate possible explanation 451 

for the initially attenuated inflammation associated with B31-∆dbpBA spirochetes. For example, 452 

in the earlier time points (<14 days), histologically evident inflammation often lags behind the 453 

wave of directly disseminating wild-type spirochetes in immunodeficient C3Hscid mice (D. M. 454 

Imai, unpublished).  455 

In summary, we demonstrated and confirmed that disruption of dbpBA results in an early 456 

dissemination defect that is dependent on the presence of acquired immunity, resolves with 457 

chronicity of infection, and appears to reflect restricted migration through the lymphatic system. 458 
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We confirmed that deficiency in dbpBA does not diminish the ability to infect, to cause disease 459 

or to persist. The counterintuitive dispensability of DbpA and DbpB, immunodominant (19, 12, 460 

20) but potentially protective (19, 12, 59) outer surface proteins that afford the ability to 461 

disseminate in the face of acquired immunity, is only one indication of the complexity of the 462 

borrelial pathogen-host relationship.  463 
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Table 1. The inflammation associated with B31-∆dbpBA B. burgdorferi infection is not significantly different from inflammation 647 

associated with wild-type B. burgdorferi infection after day 28 post-inoculation, in either immunodeficient or immunocompetent mice. 648 

More severe inflammation does not absolutely correspond with a significantly greater spirochete tissue burden. 649 

Mouse 
strain Isolate Day 

Tibiotarsus                 Heartbase                       

No. 
spirochetesa Prevalenceb Arthritis 

severityc  

No. 
spirochet

es 
Prevalence

Carditis 
severity 

T/B cell-
deficient 

∆dbpBA 28 2.39E+04 8/9 0.8 + 0.2d,e 4.10E+04 6/9 0.4 + 0.1 

42 ND ND ND ND ND ND 

60 5.55E+03 4/4 2.8 + 0.3f 9.90E+05 4/4 1.0g 

90 3.19E+04 4/4 3.0h 1.37E+06 4/4 1.0i 

 
wild 
type 

28 3.81E+04 8/8 2.9 + 0.1d 3.61E+04 8/8 0.8 + 0.1 

42 ND ND ND ND ND ND 

60 5.68E+04 4/4 3.0 2.06E+06 4/4 1.0 

90 3.00E+01 4/4 3.0 7.10E+06 4/4 1.0 

Immuno-
competent 

∆dbpBA 28 5.69E+02 0/4 0.0e 2.28E+03 0/4 0.0j 

42 6.17E+04 2/4 0.4 + 0.2 1.79E+03 1/4 0.1 + 0.1 

60 ND 3/4 0.4 + 0.1f 9.51E+02 1/4 0.1 + 0.1g 

90 1.45E+02 3/4 0.8 + 0.3h 4.33E+03 1/4 0.1 + 0.1i 

wild 
type 

28 2.59E+04 1/5 0.2 + 0.2 3.92E+04 5/5 1.0j 
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42 1.08E+05 4/5 0.9 + 0.3 6.43E+03 3/4 0.6 + 0.2 

60 ND 4/4 1.1 + 0.3 2.27E+03 1/4 0.1 + 0.1 

    90 3.45E+02 4/4 0.8 + 0.1 2.30E+03 1/4 0.1 + 0.1 
 650 

a No. of spirochetes in respective tissues represented as mean copy no. flaB per mg tissue. 651 

b No. of mice/Total no. of mice. 652 

c Mean severity + SEM 653 

d,h Differences in arthritis severity are statistically significantly different (all P values < 0.05) but differences in spirochete tissue 654 

burdens are not statistically significant. 655 

e Arthritis severity is significantly different (P < 0.05) and corresponds with significantly greater tissue spirochete burden (P = 0.007).  656 

f Arthritis severity is significantly different (P < 0.05). 657 

h Carditis severity is significantly different (P < 0.05) and corresponds with significantly greater tissue spirochete burden (P = 0.0005).  658 

i Carditis severity is significantly different (P < 0.05) and corresponds with significantly greater tissue spirochete burden (P = 0.002). 659 

j Carditis severity is significantly different (P < 0.05) and corresponds with significantly greater tissue spirochete burden (P = 0.003).660 
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Table 2: Viable, cultivable spirochetes lacking dbpBA are recovered from tissue in increasing 661 

frequency over time in immunocompetent C3H mice.  662 

  No. positive cultures / total no. No. positive 
mice/total no.  Isolate Day Sub-inoc site Bladder 

∆dbpBA 14 2/5 0/5 2/5 
 28 4/5 0/5 4/5 
 42 4/5 4/5* 4/5 
     
wild type 14 5/5 2/4 5/5 
 28 5/5 5/5 5/5 
 42 5/5 1/5 5/5 
* In 3 of the 4 positive cultures, spirochetes were observed only rarely.  663 

  664 

Table 3: Dbp-deficiency prevents the recovery of spirochetes from the lymphatic system in the 665 

early stage of infection in immunocompetent laboratory mice. Complementation of dbpBA 666 

recovers the wild-type phenotype.  667 

  flaB PCR (culture)* 
Isolate Day Popliteal^ Inguinal Lumbar Axillary ExtraLN† 
wild type 0.5 2/4 3/4 (0/4) 4/4 1/4 2/12 (0/4) 
 3 1/3 0/3 (0/3) 0/3 0/3 2/9 (0/4) 
 7a,x 4/4 4/4 (4/4) 4/4 4/4 12/12 (4/4) 
 14b,y 4/4 4/4 (4/4) 4/4 4/4 12/12 (4/4) 
       
∆dbpBA 0.5 4/4 2/4 (0/4) 1/4 1/4 6/12 (0/4) 
 3 0/3 0/3 (0/3) 0/3 0/3 4/9 (0/4) 
 7a,x 2/4 1/4 (0/4) 0/4 2/4 3/12 (0/4) 
 14b,c,y 1/3 0/3 (0/3) 0/3 0/3 4/9 (0/4) 
       
dbpBA+ 0.5 1/4 2/4 (0/4) 1/4 0/4 4/12 (0/4) 
 3 0/2 0/2 (0/2) 0/2 0/2 2/6 (0/4) 
 7 1/1 1/1 (0/1) 1/1 1/1 2/3 (0/4) 
 14c 3/4 3/4 (3/4) 3/4 3/4 9/12 (1/4) 
* No. pos/total 668 

^ Includes both right and left-sided nodes.  669 



 33

† Extralymphatic tissues collected for PCR included skin, heart base, and tibiotarsus. ExtraLN 670 

tissues collected for culture included spleen and urinary bladder.  671 

a,b Prevalence of flaB DNA in lymph nodes from ∆dbpBA infected mice is significantly lower (P 672 

< 0.0001 by Fisher’s exact test) than in wild type infected mice.   673 

c Prevalence of flaB DNA in lymph nodes from ∆dbpBA infected mice is significantly lower (P < 674 

0.0001) than in dbpBA+ (complemented mutant) infected mice.   675 

x The number of PCR-positive extralymphatic tissues from ∆dbpBA infected mice are 676 

significantly fewer (P < 0.0001) than in wild type infected mice.  677 

y The number of PCR-positive extralymphatic tissues from ∆dbpBA infected mice are 678 

significantly fewer (P = 0.0062) than in wild type infected mice. 679 

 680 

Table 4: Dbp-deficiency decreases but does not prevent spirochetes from utilizing the lymphatic 681 

system in the early stage of infection in immunodeficient laboratory mice.  682 

  flaB PCR (culture) 
Isolate Day Popliteal^ Inguinal Lumbar Axillary ExtraLN† 
wild type 0.5 0/4 0/4 (0/4) 0/4 1/4 5/12 (0/4) 
 3 2/4 1/4 (1/4) 0/4 1/4  5/12 (0/4) 
 7a,x 4/4 4/4 (4/4) 4/4 4/4 12/12 (3/4) 
 14c 4/4 4/4 (4/4) 4/4 4/4 12/12 (4/4) 
       
∆dbpBA 0.5 4/4 0/4 (4/4) 1/4  4/4 7/12 (0/4) 
 3 na na na na na 
 7a,b,x 0/4 0/4 (0/4) 2/4 0/4 5/12 (0/4) 
 14c 3/3 3/3 (3/3) 3/3 3/3 9/9 (3/3) 
       
dbpBA+ 0.5 1/4 0/4 (0/4) 0/4 0/4 4/12 (0/4) 
 3 3/4 1/4 (0/4) 0/4 0/4 3/12 (0/4) 
 7b,x 4/4 3/4 (4/4) 4/4 4/4 12/12 (0/4) 
 14c 4/4 4/4 (4/4) 4/4 4/4 12/12 (4/4) 
* No. pos/Total 683 
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^ Includes both right and left-sided nodes.  684 

† Extralymphatic tissues collected for PCR included skin, heart base, and tibiotarsus. ExtraLN 685 

tissues collected for culture included spleen and urinary bladder.  686 

a Prevalence of flaB DNA in lymph nodes from ∆dbpBA infected mice is significantly lower (P < 687 

0.0001 by Fisher’s exact test) than in wild type infected mice.  688 

b Prevalence of flaB DNA in lymph nodes from ∆dbpBA infected mice is significantly lower (P < 689 

0.0001 by Fisher’s exact test) than in dbpBA+ infected mice. 690 

c All lymph nodes from wild type, ∆dbpBA, and dbpBA+(complemented mutant) infected mice 691 

are positive for flaB DNA and therefore, could not be analyzed by Fisher’s exact test.  692 

x The number of PCR-positive extralymphatic tissues from ∆dbpBA infected mice is significantly 693 

fewer (all P = 0.0046) than in wild type and dbpBA+ infected mice.  694 

   695 

 696 

 697 

 698 

 699 

 700 

 701 

 702 

 703 

 704 

 705 

 706 
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FIGURE LEGENDS. 707 

 708 

FIG. 1. DbpA/B are not essential for dissemination, colonization or persistence in 709 

immunodeficient mice. B. burgdorferi flaB DNA per mg tissue weight (mean + SEM) in sub-710 

inoculation site (A), heart base (B), ventricle (C), tibiotarsus (D) and quadriceps muscle (E) from 711 

C3H-scid mice inoculated with B31-∆dbpBA (white bars) compared to wild-type B31-A3 (black 712 

bars) at 14 days, 60 days and 90 days post-inoculation. No significant differences observed.  713 

 714 

FIG. 2. Early defects in dissemination and colonization, attributed to the disruption of DbpA/B, 715 

are not observed in the chronic stages of Lyme borreliosis in immunocompetent mice. B. 716 

burgdorferi flaB DNA per mg tissue weight (mean + SEM) in tissues from C3H mice inoculated 717 

with B31-∆dbpBA (white bars) compared to wild-type B31-A3 (black bars) at 14 days, 28 days, 718 

and 42 days post-inoculation (*, all P < 0.034).   719 

 720 

FIG. 3. Complementation of the dbpBA-deficient mutant restores a wild-type phenotype. B. 721 

burgdorferi flaB DNA per mg tissue weight (mean + SEM) in tissues from C3H mice inoculated 722 

with B31-∆dbpBA (white bars) compared to the complemented mutant B31-dbpBA+ (gray bars) 723 

and wild-type B31-A3 (black bars) (*, P < 0.03). 724 

 725 

FIG. 4. The early dissemination defect is dependent on an acquired immune response. B. 726 

burgdorferi flaB DNA per mg tissue weight (mean + SEM) in heart base (A) and tibiotarsus (B) 727 

from C3H-scid mice and heart base (C) and tibiotarsus (D) from C3H mice at days 14, 28, 42, 728 

60, and 90 post-inoculation. Mice were inoculated with B31-∆dbpBA (white circles) or wild-type 729 
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B31-A3 (black circles). Each data point represents 4 to 9 mice from 2 separate experiments (*, P 730 

< 0.035).   731 

 732 

FIG. 5. Borrelia burgdorferi-specific antibody titers steadily rise over time, regardless of 733 

borrelial genotype, but remain significantly greater in mice inoculated with wild-type spirochetes 734 

compared to mice inoculated with DbpA/B-deficient spirochetes. Mice were inoculated with 735 

B31-∆dbpBA (white circles) or wild-type B31-A3 (black circles). Each data point represent mean 736 

reciprocal dilutions + SEM of 4 to 5 mice from 2 separate experiments (*, P = 0.006, P = 0.05, P 737 

< 0.001, respectively).  738 

 739 
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