University of Montana ScholarWorks at University of Montana

Biological Sciences Faculty Publications

Biological Sciences

5-2013

The Early Dissemination Defect Attributed to Disruption of Decorin-Binding Proteins is Abolished in Chronic Murine Lyme Borreliosis

Denise M. Imai

D. Scott Samuels *University of Montana - Missoula*, scott.samuels@umontana.edu

Sunlian Feng

Emir Hodzic

Kim Olsen

See next page for additional authors

Follow this and additional works at: https://scholarworks.umt.edu/biosci_pubs

Part of the Biology Commons Let us know how access to this document benefits you.

Recommended Citation

Imai, Denise M.; Samuels, D. Scott; Feng, Sunlian; Hodzic, Emir; Olsen, Kim; and Barthold, Stephen W., "The Early Dissemination Defect Attributed to Disruption of Decorin-Binding Proteins is Abolished in Chronic Murine Lyme Borreliosis" (2013). *Biological Sciences Faculty Publications*. 59. https://scholarworks.umt.edu/biosci_pubs/59

This Article is brought to you for free and open access by the Biological Sciences at ScholarWorks at University of Montana. It has been accepted for inclusion in Biological Sciences Faculty Publications by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact scholarworks@mso.umt.edu.

Authors

Denise M. Imai, D. Scott Samuels, Sunlian Feng, Emir Hodzic, Kim Olsen, and Stephen W. Barthold

1 The Early Dissemination Defect Attributed to Disruption of Decorin-binding Proteins is

2 Abolished in Chronic Murine Lyme Borreliosis

- 3
- 4 Denise M. Imai^a, D. Scott Samuels^b, Sunlian Feng^a, Emir Hodzic^a, Kim Olsen^a, and Stephen W.
- 5 Barthold^a
- 6 Center for Comparative Medicine, Schools of Medicine and Veterinary Medicine, University of
- 7 California at Davis, Davis, California, USA^a and Division of Biological Sciences, The University
- 8 of Montana, Missoula, Montana, USA^b
- 9
- 10
- 11

- 12
- 13

- 15
- 16
- 17
- 18
- 19
- 20
- 21 Address correspondence to Stephen W. Barthold, <u>swbarthold@ucdavis.edu</u>
- 22
- 23 Running title: Dissemination defect of Dbp-deficient B. burgdorferi

24 ABSTRACT

25	The laboratory mouse model of Lyme disease has revealed that Borrelia burgdorferi
26	differentially expresses numerous outer surface proteins that influence different stages of
27	infection (tick-borne transmission, tissue colonization, dissemination, persistence, and tick
28	acquisition). Deletion of two such outer surface proteins, decorin-binding proteins A and B
29	(DbpA/B), has been documented to decrease infectivity, impede early dissemination and,
30	possibly, prevent persistence. In this study, DbpA/B-deficient spirochetes were confirmed to
31	exhibit an early dissemination defect in immunocompetent, but not immunodeficient, mice and
32	the defect was found to resolve with chronicity. Development of disease (arthritis and carditis)
33	was only attenuated in the early stage of DbpA/B-deficient infection in both types of mice.
34	Persistence of the DbpA/B-deficient spirochetes occurred in both immunocompetent and
35	immunodeficient mice in a manner indistinguishable from wild-type spirochetes. Dissemination
36	through the lymphatic system was evaluated as an underlying mechanism for the early
37	dissemination defect. At 12 hours, 3 days, 7 days and 14 days post-inoculation, DbpA/B-
38	deficient spirochetes were significantly less prevalent and in lower numbers in lymph nodes than
39	wild-type spirochetes. However, in immunodeficient mice, deficiency of DbpA/B did not
40	significantly decrease the prevalence or spirochete numbers in lymph nodes. Complementation
41	of DbpA/B restored a wild-type phenotype. Thus, results indicated that deficiency of DbpA/B
42	allows the acquired immune response to restrict early dissemination of spirochetes, which
43	appears to be at least partially mediated through the lymphatic system.
44	

45

47 INTRODUCTION

48	Borrelia burgdorferi, the etiologic agent of Lyme disease, utilizes a multitude of surface-
49	exposed adhesins to bind to and interact with various components of the extracellular matrix in
50	mammalian hosts. These adhesins include decorin-binding protein (Dbp)A, DbpB, fibronectin-
51	binding protein (Fbp), Borrelia glycosaminoglycan-binding protein (Bgp), RevA, Borrelia
52	membrane proteins (Bmps), ErpX, and P66. Their respective ligands include decorin,
53	fibronectin, various glycosaminoglycans, laminin and $\alpha_{IIb}\beta_3$ integrin (1, 2, 3, 4, 5, 6, 7). This is
54	by no means a completely inclusive list (8); for example, a yet unidentified borrelial adhesion
55	binds directly to native type I collagen (9) and thus far, ligands for BmpD and members of the
56	OspF family have not been characterized (10). However, the interactions of adhesins and ligands,
57	particularly DbpA/B and decorin, appear to play an important role during all stages of infection.
58	DbpA and DbpB are encoded in a bicistronic operon (<i>dbpBA</i>) on plasmid lp54 of the
59	prototype <i>B. burgdorferi</i> B31 strain (11) and were two of the first borrelial adhesins identified (6,
60	12, 13, 14). These 19-kDa and 20-kDa proteins, respectively, are encoded by and expressed
61	within B. burgdorferi sensu stricto strains and also many B. burgdorferi sensu lato strains, albeit
62	as heterogeneous homologs (12, 15, 16, 17). Expression is upregulated in the mammalian host
63	after tick-borne infection (18) and DbpA and DbpB are highly antigenic during infection (14, 19,
64	20). Based on mRNA levels, DbpA and DbpB continue to be expressed throughout chronic
65	infection (12, 14, 18, 19). In comparison to DbpB, DbpA has been established as the more
66	crucial adhesin in the context of pathogenesis, eliciting stronger protective immunity (12, 14)
67	and, on its own, restoring a wild-type phenotype to DbpA/B-deficient mutant B. burgdorferi (21,
68	22).

69	In the laboratory mouse model, DbpA and DbpB have been implicated in the
70	establishment of infection, dissemination, tissue colonization, persistence, and tick
71	acquisition/transmission. Disruption of DbpA and DbpB, while nonessential to initial infection
72	(23), will increase the infectious dose (21, 24, 25), decrease total spirochete tissue burdens (25),
73	decrease recovery of spirochetes from tissues distant to the inoculation site (21, 23, 25) and
74	decrease efficiency of tick acquisition/transmission (24). None of the aforementioned studies
75	addressed the influence of DbpA and DbpB disruption on disease development or persistence.
76	The early dissemination defect of DbpA/B-deficient mutants, represented by decreased
77	recovery of spirochetes from tissues distant to the inoculation site (21, 23, 25), seems to be a key
78	to understanding the role of decorin-binding proteins in Lyme borreliosis. With the genetic
79	disruption or absence of these adhesins, spirochetes may be unable to travel by conventional
80	routes or access important microenvironmental niches, and, thus, manifest their altered
81	dissemination phenotype. Although the extracellular matrix (ECM) is important in B.
82	burgdorferi dissemination, as evidenced by direct dissemination through connective tissue (26,
83	27, 28, 29), spirochetes utilize alternate means to disseminate as well, including bacteremia (19,
84	29, 30, 31). In addition, a relatively unexplored means of dissemination is through lymphatics, as
85	draining lymph nodes are often culture-positive sooner than any other tissues proximal to the
86	inoculation site (20, 25, 32). Few molecular mechanisms that enable the lymphatic route of
87	dissemination have been proposed, but they probably involve the interaction between adhesins
88	and ligands. For example, fibronectin-binding protein, glycosaminoglycans and fibronectin
89	facilitate microvascular interactions observed by intravital microscopy in infected mice (31) and
90	both VIsE and OspC were implicated by phage display for in vivo adherence to vascular
91	endothelium (10), which is likely to include lymphatic vessels as well.

	93	influence the early stages of infection (dissemination and tissue colonization). These early
	94	differences are unique to immunocompetent mice and are abolished in the chronic stage of
-	95	infection. Results also demonstrate that decorin-binding proteins influence disease severity
LIN	96	propose that the mechanism of influence pertains to the restricted routes by which spiroche
<u>с</u>	97	lacking <i>dbpBA</i> are able to disseminate, including lymphatic dissemination.
0 7	98	
ed	99	MATERIALS AND METHODS
IAI ACCEPIS published online ahead of print	100	Borrelial strains and mutagenesis. B. burgdorferi sensu stricto strain B31-A3, a l
ne	101	passage infectious clonal isolate of B31-MI, the prototype B31 strain utilized for genome
nll	102	sequencing (33, 34), was utilized as both the wild-type control and the parental strain for g
0 T	103	manipulation (35). The <i>dbpBA</i> operon was disrupted by insertion of <i>flgBp-aadA</i> (36) by
ine	104	electroporation of competent B31-A3 as previously described (37) and selection in 50 μ g/m
siliq	105	streptomycin, which yielded the B31-\(\Delta\)dbpBA deletion mutant. All B. burgdorferi strains v
DO	106	cultivated in liquid modified Barbour-Stoenner-Kelly (BSKII) medium supplemented with
SI	107	normal rabbit serum (38). For isolation of transformants, B. burgdorferi was cultured on se
D D	108	solid gelatin-free BSKII medium supplemented with 1.7% dissolved agarose plus the appr
	109	antibiotic (37).
	110	The <i>dbpBA</i> operon was genetically reconstituted in the B31- $\Delta dbpBA$ mutant by all
	111	exchange recombination yielding the B31- <i>dbpBA</i> + complement. The shuttle vector pBSV
	112	containing a gentamicin resistance cassette (35) was utilized to create the construct in which

olished in the chronic stage of teins influence disease severity. We

The present study concurs with previous studies, in that decorin-binding proteins

ol and the parental strain for genetic

issolved agarose plus the appropriate

to create the construct in which the

113 dbpBA operon was incorporated. One 1649-bp long fragment of B31 DNA, including the dbpBA

114 operon, the promoter region from -266 to -1, and the terminator region after the stop codon from

116 TCGTGGGATCCCAAGCCAGATTGCATAGC-3') and reverse primer P7RPstI (5'-

- 117 TCGTGCTGTGATTATCGGGCGAAGAG-3'). Both pBSV2G and the amplicon were double
- 118 digested with BamHI and PstI, ligated together and sequenced to ensure the correct orientation of
- 119 the *dbpBA* operon. The construct was electroporated into B31- Δ *dbpBA* mutants, and successful
- 120 complements were selected with gentamicin (40 µg/ml). Six complemented mutants were
- 121 obtained, and confirmed by PCR for the presence of the *dbpBA* operon and gentamicin marker,
- 122 as well as the absence of the streptomycin marker. Plasmid profiling confirmed that all six
- complemented mutants contained the plasmids lp25, lp28-1, lp54, cp26 and cp32, which are
 required for infectivity (39).
- For construction of suicide vectors and general gene cloning, *Escherichia coli* strain
 TOP10F' (Invitrogen, Inc., CA) was utilized and grown in lysogeny broth (LB) broth under
 aerobic conditions at 37°C. Transformed *E. coli* were cultured in LB medium with 50 μg/ml
 spectinomycin or 5 μg/ml gentamicin.
- 129 Mice and infections. Specific-pathogen-free, 3 to 5 week old female C3H/HeN (C3H), C3H.C-Prkdc^{scid}/IcrSmnHsd (C3H-scid) and IcrTac:ICR-Prkdc^{scid} (Swiss-scid) mice were 130 131 acquired from Frederick Cancer Research Center (Frederick, MD), Harlan Sprague Dawley, Inc. 132 (Indianapolis, IN) and Taconic Farms, Inc. (Hudson, NY), respectively. Pregnant outbred 133 Crl:CD1(ICR) mice were acquired from Charles River Laboratories (Hollister, CA). Mice were 134 killed by carbon dioxide narcosis and cardiac exsanguination. Specific isolates of the borrelial 135 mutants, B31- $\Delta dbpBA$ and B31-dbpBA+ were confirmed as infectious to infant ICR mice at all inoculation doses from 10⁴ to 10⁷ (data not shown). Any individual C3H, C3H-scid or Swiss-scid 136 137 mouse, in the experiments included herein, that could not be confirmed as infected (neither PCR-

138 positive nor culture-positive) was excluded from data analysis.

139	PCR. DNA was extracted from tissue samples using DNeasy tissue kits, according to the
140	manufacturer's instructions (QIAGEN, Valencia, CA). Samples were analyzed by quantitative
141	PCR (qPCR) using optimized assays for <i>flaB</i> and <i>dbpA</i> , as previously described (18). Three
142	oligonucleotides, two primers and an internal Taqman probe, for the <i>flaB</i> (18) and the <i>dbpA</i>
143	genes were used. Primers DbpAB31-247F (5'-GCGAGCTACTACAGTAGCGGAAA-3') and
144	DbpAB31-444R (5'-TTTCAAGCACTCCTTGAGCTGTA-3') were created to amplify a 198-bp
145	fragment of <i>dbpA</i> DNA. The internal probe DbpAB31-316P (5'- GTGAAACAGGTAGCAAG
146	TATCAGAAAATTCAT -3') contained 5' 6-carboxy fluorescein reporter dye and 3' 6-carboxy-
147	tetramethyl rhodamine quencher dye. Quantification of gene copies was based on absolute
148	standard curves prepared using plasmid standards (18). Target gene copy numbers were
149	expressed as copy number per mg of tissue weight or per μ l blood. In addition, DNA extracted
150	from positive cultures and DNA from tissue samples were used to verify B. burgdorferi
151	genotypes recovered from infected mice.
152	Histology. Tissues were fixed in 10% neutral-buffered formalin, paraffin-embedded,
153	routinely processed and stained with hematoxylin and eosin. Limbs were decalcified prior to
154	processing. Tissue sections were blindly examined and graded for the presence of inflammation.
155	The presence of arthritis in each mouse was determined by examination of knees and tibiotarsi.
156	Sagittal sections through the heart, including sections of great vessels (aorta), were examined for
157	the presence of carditis, as described previously (40, 41). Tibiotarsal arthritis severity was scored
158	on a scale of 0 (no histologic evidence of inflammation) to 3 (severe), as described previously
159	(42).

160	Enzyme-linked immunosorbent assay. Ninety-six well plates were coated with 1 μ g/ml
161	B. burgdorferi B31 whole cell lysates in carbonate coating buffer (pH 9.6), as described
162	previously (12). Antibody binding was recognized by a secondary alkaline phosphatase-
163	conjugated goat anti-mouse IgH+L antibody, diluted at 1:5000 (Jackson ImmunoResearch
164	Laboratories Inc., West Grove, PA). Immunoreactivity was revealed using 1 mg/ml phosphate
165	substrate (Sigma-Aldrich, St. Louis, MO) in diethanolamine buffer and optical density values
166	were measured at 405nm on a kinetic microplate reader (Molecular Devices, Sunnyvale, CA), as
167	described previously (41). Individual serum samples were titrated in three-fold dilutions (starting
168	at 1:300). Samples were tested in duplicate, and each assay included uninfected mouse serum as
169	a negative control and 90-day B31-infected mouse serum as a positive control.
170	Infection, dissemination/colonization, and persistence experiments. Mice were
171	infected by subdermal inoculation of 10 ⁵ to 10 ⁶ mid-log phase <i>B. burgdorferi</i> B31-A3, B31-
172	$\Delta dbpBA$, and/or B31- $dbpBA$ + in 0.1 ml BSKII culture medium on the dorsal thoracic midline.
173	Subsets from each group were necropsied at 14, 28, 42, 60 and/or 90 days post-inoculation. Sub-
174	inoculation site and urinary bladder tissues were aseptically collected for culture, as previously
175	described (43). Tissues collected for DNA extraction and qPCR included: skin, sub-inoculation
176	site, heart base, ventricular muscle, quadriceps muscle and left tibiotarsus. Tissues collected for
177	histology included: heart base, left knee and right rear limb. Hearts were bisected along the
178	longitudinal axis to provide samples for both DNA extraction and histology.
179	Lymphatic dissemination experiment. Groups of C3H mice were infected by
180	subdermal inoculation of 10^5 mid-log phase <i>B. burgdorferi</i> B31-A3, B31- $\Delta dbpBA$, and/or B31-
181	<i>dbpBA</i> + in 0.1 ml BSKII culture medium in the skin of the right lateral thigh. Four mice from
182	each group were necropsied at 12 hours, 3 days, 7 days and 14 days post-inoculation. Right and

183 left inguinal lymph nodes, spleen and urinary bladder were aseptically collected for culture. Both 184 right and left inguinal, popliteal, lumbar, and axial lymph nodes were collected for DNA 185 extraction. Inguinal lymph nodes were bisected to provide samples for both culture and DNA 186 extraction. Extra-lymphatic tissues, including skin at the inoculation site, heart base, and right 187 tibiotarsus, were collected for DNA extraction. To evaluate lymphatic dissemination in the 188 absence of acquired immunity, the experiment was repeated in Swiss-scid mice. 189 Statistics. Analyses were performed using Fisher's exact test for differences, independent 190 samples t-test or two-way analysis of variance, followed by post-hoc pair-wise comparisons 191 (Tukey's HSD test) (PASW Statistics v. 18.0 and Prism v. 5, GraphPad software). Calculated P 192 values < 0.05 were considered significant.

193

194 RESULTS

195 Borrelia burgdorferi deficient in DbpA and DbpB lacks an early dissemination defect 196 in immunodeficient mice, but exhibits attenuated disease development. The dissemination 197 and pathogenic capabilities of the B31- $\Delta dbpBA$ mutant compared to wild-type B31-A3 was initially evaluated in immunodeficient mice. Groups of 4 C3H-scid mice inoculated with 10⁶ 198 199 B31- $\Delta dbpBA$ or B31-A3 were necropsied at 28 days post-inoculation. Sub-inoculation site and 200 urinary bladder from all mice in both B31- $\Delta dbpBA$ and B31-A3-inoculated groups were culture-201 positive and there were no statistical differences in tissue spirochete burdens by *flaB* qPCR 202 between groups (data not shown). B31- $\Delta dbpBA$ -inoculated C3H-*scid* mice developed both 203 arthritis and carditis (Table 1), but the severity of tibiotarsal inflammation was attenuated in the 204 B31- $\Delta dbpBA$ infection (0.8 mean severity score \pm 0.2 SEM) compared to the wild-type B31-A3 infection (2.9 ± 0.1) (P = 0.03). Carditis was milder and in equal prevalence in the B31- $\Delta dbpBA$ -205

206	inoculated C3H-scid mice compared to mice infected with B31-A3. Therefore, when unrestricted
207	by acquired immunity, B31- $\Delta dbpBA$ retained the ability to disseminate and colonize distant
208	tissues and was pathogenic, but despite the presence of equal copy numbers of spirochetes in
209	tissue compared to wild type, B31- $\Delta dbpBA$ elicited less inflammation both hearts and joints.
210	In the above experiment and similar studies by others in immunodeficient mice (24, 25),
211	1 month (28-30 days) post-inoculation was the maximum experiment duration for evaluating
212	infections utilizing DbpA/B-deficient spirochetes. In order to evaluate the capability of B31-
213	$\Delta dbpBA$ to persist in immunodeficient mice, we extended the duration to 90 days. Groups of 12
214	C3H-scid mice were inoculated with 10^6 B31- $\Delta dbpBA$ or B31-A3 and subsets of 4 mice per
215	group were necropsied at 14 days, 60 days and 90 days post-inoculation. Sub-inoculation sites
216	and urinary bladders from all mice were culture-positive at all intervals and in both groups. Copy
217	numbers of <i>flaB</i> DNA in sub-inoculation site, heart base, ventricle, quadriceps muscle and
218	tibiotarsal tissues were not significantly different between B31- $\Delta dbpBA$ and wild-type B31-A3-
219	inoculated mice at any interval (Fig. 1). The severity of tibiotarsal arthritis and carditis similarly
220	was indistinguishable between B31- $\Delta dbpBA$ and wild-type B31-A3-inoculated mice at 60 and 90
221	days post-inoculation (Table 1). The qPCR and histology data confirmed that in
222	immunodeficient mice, B31- $\Delta dbpBA$ spirochetes can disseminate to distant tissues, proliferate
223	therein to an equal degree, incite inflammation and persist in a manner similar to wild-type
224	spirochetes.
225	The early dissemination defect of <i>dbpBA</i> -deficient spirochetes in immunocompetent
226	mice is abolished in the chronic stage of infection and is rescued by complementation. To
227	evaluate whether similar spirochete tissue dissemination, persistence and disease development
•••	

228 would occur with B31- $\Delta dbpBA$ infection in immunocompetent mice, groups of 15 C3H mice

229	were inoculated with 10^5 B31- $\Delta dbpBA$ or B31-A3. Five mice from each group were necropsied
230	at 14, 28 and 42 days post-inoculation. Fewer culture-positive tissues, and fewer positive mice,
231	were identified in the B31- $\Delta dbpBA$ -inoculated mice compared to wild type at day 14 and day 28,
232	but by day 42, numbers of culture-positive tissues and numbers of culture-positive mice
233	increased until differences between B31- $\Delta dbpBA$ and B31-A3 infections were diminished (Table
234	2).
235	Similarly, at day 14, tissue spirochete burdens were undetectable in multiple tissues,
236	including sub-inoculation site, heart base, ventricular muscle, quadriceps muscle and tibiotarsus
237	(all $P = 0.0079$) in B31- $\Delta dbpBA$ -infected mice compared to wild type (Fig. 2). At day 28,
238	spirochete tissue burdens in heart base ($P = 0.034$) and ventricular muscle ($P = 0.033$) were
239	significantly lower in B31- $\Delta dbpBA$ -infected mice compared to wild type. However, by day 42
240	post-inoculation, qPCR tissue burdens were equivalent in both groups. No inflammation was
241	observed on day 28 and only minimal carditis (0.1 \pm 0.1; 1 out of 4 mice) and mild arthritis (0.4
242	\pm 0.2; 2 out of 4 mice) was observed at day 42 in B31- $\Delta dbpBA$ -inoculated mice (Table 1). By
243	contrast, in the wild type-inoculated mice at day 28, there was statistically significantly greater
244	carditis $(1.0 \pm 0.0; 5 \text{ out of 5 mice}; P < 0.05)$ and a mild arthritis $(0.2 + 0.2; 1 \text{ out of 5 mice})$. At
245	day 42, there was a trend towards slightly more severe and more prevalent disease with mild
246	carditis (0.6 ± 0.2) and mild to moderate arthritis (0.9 ± 0.3) in 4 out of 5 mice. Results
247	demonstrated that B31- $\Delta dbpBA$ spirochetes retained the capacity to infect, disseminate, and
248	persist in immunocompetent mice, and eventually attain equal levels of tissue burdens and
249	disease, but were delayed and initially only able to induce attenuated disease.
250	The duration of infection in immunocompetent mice was next extended to 90 days post-
251	inoculation in order to fully evaluate the capability of the DbpA/B-deficient mutant to persist.

252	The complemented mutant B31- <i>dbpBA</i> + was included in the experiment to evaluate whether
253	genetic complementation could rescue the phenotype of the DbpA/B-deficient mutant. Groups of
254	12 C3H mice were inoculated with 10^6 B31- $\Delta dbpBA$, B31- $dbpBA$ +, or B31-A3. Subsets of 4
255	mice were necropsied at 14 days, 60 days and 90 days post-inoculation. In mice inoculated with
256	B31- $\Delta dbpBA$, there were notably fewer culture and/or qPCR-positive mice (1/4) and minimal or
257	no detectable spirochete tissue burdens in B31- $\Delta dbpBA$ -infected mice at day 14 compared to
258	both wild-type B31 or B31-dbpBA+infected mice (Fig. 3). At subsequent intervals (day 60 and
259	90), 3/4 and 4/4 B31- $\Delta dbpBA$ -inoculated mice were culture and/or qPCR-positive and the level
260	of spirochete tissue burden (Fig. 4) and severity of arthritis and carditis (Table 1) was not
261	significantly different from B31-A3-inoculated mice. All B31-A3 and B31-dbpBA+-inoculated
262	mice were positive at 14, 60 and 90 days and tissue spirochete burdens in B31- <i>dbpBA</i> +-
263	inoculated mice were either not statistically different or were not significantly less than wild-type
264	B31-A3 (day 14 shown in Fig. 3). Similarly, the severity of arthritis and carditis was not
265	significantly different between B31-A3 and B31-dbpBA+-inoculated mice on day 60 and 90
266	(data not shown). The appropriate infecting B. burgdorferi genotypes (wild type, mutant,
267	complemented mutant) were confirmed among isolates from each mouse group at necropsy.
268	Thus, DbpA/B-deficient spirochetes, despite their early dissemination defect, were capable of
269	persistence and inducing disease in immunocompetent C3H mice, and complementation of the
270	mutant restored the early dissemination phenotype.
271	The early dissemination defect is dependent on the presence of an acquired immune
272	response. The <i>flaB</i> qPCR data from the above experiments were combined to evaluate
273	spirochete dissemination and colonization kinetics from day 14 to day 90 post-inoculation in
274	immunocompetent C3H mice compared to immunodeficient C3H-scid mice (Fig. 4). Heart base

275	and tibiotarsal results were focused upon because these two tissues are distant from the
276	inoculation site and are often poorly colonized by DbpA/B-deficient spirochetes, due to and
277	representative of the dissemination defect (21, 25). Serology from the above immunocompetent
278	C3H mouse experiments was also combined to evaluate the acquired immune response between
279	DbpA/B-deficient and wild type-inoculated mice. In C3H-scid mice, no significant differences
280	were observed in tissue spirochete burdens in heart base (Fig. 4A) or tibiotarsus (Fig. 4B)
281	between the B31- $\Delta dbpBA$ mutant and wild-type B31-A3. In contrast, B31- $\Delta dbpBA$ tissue
282	spirochete burdens in C3H mice were markedly lower to absent compared to wild type at early
283	time points (day 14 and day 28), but these differences were abolished by day 42 post-inoculation.
284	Despite a continuous rise in <i>B. burgdorferi</i> -specific antibody titer in mice inoculated with both
285	genotypes, differences between the titers in B31- $\Delta dbpBA$ and wild type infections were not
286	abolished after day 42 and remained statistically significantly greater in the wild type-inoculated
287	mice and in the B31- $\Delta dbpBA$ -inoculated mice (Fig. 5).
288	<i>dbpBA</i> -deficiency prevents early dissemination though the lymphatic system.
289	Regional lymph nodes have been reported to become rapidly culture-positive following infection
290	
	(by needle-inoculation, tick transmission and tissue graft) during infection with wild-type as well
291	(by needle-inoculation, tick transmission and tissue graft) during infection with wild-type as well as DbpA/B-deficient <i>B. burgdorferi</i> (20, 25, 32). One study reported that distant lymph nodes in
291 292	
	as DbpA/B-deficient <i>B. burgdorferi</i> (20, 25, 32). One study reported that distant lymph nodes in
292	as DbpA/B-deficient <i>B. burgdorferi</i> (20, 25, 32). One study reported that distant lymph nodes in mice infected with wild-type <i>B. burgdorferi</i> became progressively culture-positive over time, in
292 293	as DbpA/B-deficient <i>B. burgdorferi</i> (20, 25, 32). One study reported that distant lymph nodes in mice infected with wild-type <i>B. burgdorferi</i> became progressively culture-positive over time, in the order of their proximity to the inoculation site (32). The same study concluded that
292 293 294	as DbpA/B-deficient <i>B. burgdorferi</i> (20, 25, 32). One study reported that distant lymph nodes in mice infected with wild-type <i>B. burgdorferi</i> became progressively culture-positive over time, in the order of their proximity to the inoculation site (32). The same study concluded that spirochetes were in fact within lymph nodes, rather than in the surrounding connective tissue, by

298	both wild-type and DbpA/B-deficient spirochetes appeared to be able to enter into, survive
299	within, and potentially migrate through the lymphatic system. This is in contrast to the observed
300	dissemination defect in DbpA/B-deficient spirochetes where heart and joint (tissues that should
301	be accessible by hematogenous or direct routes of dissemination) are less frequently colonized
302	by DbpA/B-deficient spirochetes (21, 25) than by wild-type spirochetes. Based on these
303	observations, we postulated that the lymphatic dissemination route might be utilized by
304	spirochetes lacking DbpA/B more readily than other routes.
305	To investigate this possibility, we determined the prevalence of wild-type B31-A3, B31-
306	$\Delta dbpBA$ mutant, and B31- $dbpBA$ + complemented spirochetes within lymph nodes, both
307	proximal and distal to the inoculation site, and at multiple intervals (0.5, 3, 7 and 14 days) during
308	early infection by culture and qPCR for <i>flaB</i> DNA. Any animal that was neither culture nor <i>flaB</i>
309	qPCR-positive was considered uninfected and dropped from the data set. Both right and left
310	sides from each pair of lymph nodes (popliteal, inguinal, lumbar, and axillary) were evaluated
311	and if either one or both sides were qPCR or culture-positive, then the pair of lymph nodes was
312	considered positive (Table 3). Initially, we inoculated mice asymmetrically in the right hind limb
313	to evaluate any influence of proximity but the effect of side (right vs. left) was negligible and
314	therefore, each pair of lymph nodes was combined as a unit of evaluation.
315	At the earliest time points, qPCR-positive lymph nodes were identified in mice infected
316	with all three <i>B. burgdorferi</i> genotypes within hours after inoculation (day 0.5), but the same
317	lymph nodes were universally negative at the following time point (day 3), suggesting drainage
318	of DNA, but not viable spirochetes, from the inoculum. At day 7, the number of positive lymph
319	nodes from B31- $\Delta dbpBA$ -inoculated mice was significantly lower ($P < 0.0001$) than the number
320	of positive lymph nodes in wild type-inoculated mice. At day 14, the number of positive lymph

nodes from B31- $\Delta dbpBA$ -inoculated mice was significantly lower (P < 0.0001) than from both wild type and complemented mutant infections. Similarly, at day 7 and day 14, spirochete tissue burdens in lymph nodes from B31- $\Delta dbpBA$ -inoculated mice (10,572 mean copy no. *flaB* DNA per mg tissue \pm 10,536 SEM; 225 \pm 0.0) were lower, though not significantly, than wild type (45,904 \pm 19,596; 38,995 \pm 12,279).

326 Though there was a trend towards greater numbers of PCR-positive tissues in B31-327 $\Delta dbpBA$ extra-lymphatic tissues (skin, tibiotarsus and heart base) than in lymph nodes, only on 328 day 3 was the difference significant (P = 0.0211). Otherwise, there were significantly fewer 329 PCR-positive extra-lymphatic tissues from B31-\Delta dbpBA-inoculated mice than in wild type-330 infected mice at the later time points (day 7 P < 0.0001, day 14 P = 0.0062) (Table 3). At day 7 331 and day 14, spirochete tissue burdens in extra-lymphatic tissues from B31- $\Delta dbpBA$ -inoculated 332 mice $(25 \pm 4; 54,037 \pm 49,271)$ were lower, though not significantly, than wild type $(7,381,000 \pm 10,000)$ 6,459,000 vs. $103,140 \pm 60,179$). Based on culture, viable spirochetes could be recovered from 333 334 the lymphatic system and extra-lymphatic tissue (urinary bladder) earliest in B31-A3-inoculated 335 mice (day 7), followed by the B31-*dbpBA*+-inoculated mice (day 14) but were not recovered 336 from B31- $\Delta dbpBA$ -inoculated mice at any interval (Table 3). Therefore, the early dissemination 337 defect of DbpA/B-deficient spirochetes in immunocompetent C3H mice was characterized by 338 minimal presence in lymph nodes, ii) greater presence in extra-lymphatic tissues, and iii) an 339 overall lower spirochete tissue burden in lymph nodes and extra-lymphatic tissues when 340 compared to wild type. These data demonstrate that the lymphatic route is not a dominant means 341 of dissemination/migration utilized by DbpA/B-deficient spirochetes. 342 Early exclusion of *dbpBA*-deficient spirochetes from the lymphatic system requires

343 an acquired immune response. Results indicated that the early dissemination defect of B31-

344	$\Delta dbpBA$ spirochetes occurs only in C3H, but not C3H-scid mice. Therefore, we next sought to
345	determine if an acquired immune response is necessary to exclude B31- $\Delta dbpBA$ spirochetes from
346	lymphatic dissemination. To investigate this possibility, we intended to repeat the previous
347	experiment in congenic C3H-scid mice; however, C3H-scid mice became unavailable due to
348	elimination of this mouse strain by the vendor. Therefore, the prevalence and tissue burdens of
349	wild-type, mutant and complemented spirochetes within lymph nodes and extra-lymphatic
350	tissues during the early stage of infection was repeated in equally susceptible Swiss-scid mice.
351	Culture and PCR-positive lymph nodes were identified in B31- $\Delta dbpBA$ -inoculated <i>scid</i>
352	mice within hours after inoculation (day 0.5) (Table 4). By day 7, the number of positive lymph
353	nodes from B31- $\Delta dbpBA$ -inoculated <i>scid</i> mice was significantly fewer ($P < 0.0001$) than the
354	number of positive lymph nodes in wild type and B31- <i>dbpBA</i> +-inoculated <i>scid</i> mice. However,
355	by day 14, significant differences between the numbers of positive lymph nodes in wild type,
356	B31- $\Delta dbpBA$ or B31- $dbpBA$ +-inoculated <i>scid</i> mice were no longer apparent and spirochete
357	tissue burdens in lymph nodes from B31- $\Delta dbpBA$ -inoculated <i>scid</i> mice (2,352 ± 701) were not
358	significantly different than wild type $(33,497 \pm 11,578)$ and B31- <i>dbpBA</i> + $(35,938 \pm 10,355)$. At
359	this same time point, the number of positive lymph nodes was significantly greater in scid mice
360	inoculated with B31- $\Delta dbpBA$ ($P < 0.0001$) than in similarly inoculated C3H mice. No significant
361	differences were observed between the number of positive lymph nodes and extra-lymphatic
362	tissues in B31- $\Delta dbpBA$ -inoculated <i>scid</i> mice. Viable spirochetes could be recovered from the
363	lymphatic system and extra-lymphatic tissues earliest in B31-A3-inoculated scid mice (day 3),
364	followed by the B31- <i>dbpBA</i> +-inoculated <i>scid</i> mice (day 7) and B31- Δ <i>dbpBA</i> -inoculated <i>scid</i>
365	mice (day 14) (Table 4). In summary, DbpA/B-deficient spirochetes in immunodeficient Swiss-
366	scid mice were not excluded from the lymphatic route of dissemination.

DISCUSSION

369	The role of individual borrelial ECM adhesins is a common theme of investigation, given
370	the importance of ECM to the lifecycle and pathogenesis of <i>B. burgdorferi</i> (44). Though
371	adhesins may be necessary to a specific stage in borreliosis, no single adhesin has been shown to
372	be absolutely essential. For instance, several studies have independently documented that
373	deletion of <i>dbpBA</i> attenuates but does not abolish infectivity of <i>B. burgdorferi</i> (21, 23, 24).
374	Similarly, deletion of other adhesins has not been sufficient to alter the course of initial infection.
375	Disruption of Bgp led to an uninterrupted infectious phenotype in immunodeficient mice after 2
376	weeks post-inoculation (45) and deletion of fibronectin-binding protein did not alter infection in
377	immunocompetent mice at 3 weeks (46), although the median infectious dose was increased
378	(47). Deletion of another adhesin, P66, resulted in loss of in vitro spirochetal attachment to the
379	ligand integrin $\alpha_v\beta_3$ (48) and loss of infectivity in both immunocompetent and immunodeficient
380	mice, with retention of the ability to infect ticks and survive in in vivo dialysis membrane
381	chambers (49). Therefore, lack of any single adhesin may not be essential but, as we and others
382	have demonstrated, may influence pathogenicity by altering the course of infection, by changing
383	the ability to disseminate, colonize, cause disease, or persist.
384	While not necessary to establish infection in immunocompetent mice (23), deletion of
385	<i>dbpBA</i> was reported to decrease infectivity (21, 24), display a dissemination defect (21, 23, 25)
386	and potentially, alter the ability to persist (25). In this study, we confirmed that DbpA/B-
387	deficient spirochetes manifested an early dissemination defect, but we demonstrated that the
388	defect resolved with chronicity (after day 28 post-inoculation) and that persistence occurred in a
389	manner indistinguishable from wild-type spirochetes. Furthermore, we demonstrated, for the first

time, that deletion of DbpA/B resulted in early attenuation of disease development and prevented early dissemination and colonization within the lymphatic system. We propose that one mechanism by which the early dissemination defect of DbpA/B-deficient spirochetes occurs is restriction of lymphatic dissemination through which, by comparison, wild-type spirochetes can rapidly migrate.

395 As unlikely as it may seem for an organism dedicated to immune evasion and persistence, 396 there is abundant evidence that B. burgdorferi spirochetes actively migrate within the lymphatic 397 system. Lymph nodes are rapidly and consistently culture-positive in both acute and chronic 398 stages of infection (20, 25), become progressively culture-positive in order of proximity to the 399 inoculation site (20), and morphologically intact spirochetes have been identified in subcapsular 400 sinuses of regional lymph nodes (20). Indeed, a recent study found that the direct presence of 401 viable (in contrast to non-viable) spirochetes in lymph nodes deceptively stimulates an atypical 402 immune response that may actually favor survival of spirochetes during early infection (50). In 403 the current study, we provide additional evidence for migration of wild-type spirochetes through 404 the lymphatic system, and demonstrate the diminished ability of DbpA/B-deficient spirochetes to 405 do likewise. Taken together, the lymphatic system appears to be a route of dissemination for B. 406 burgdorferi, and DbpA and DbpB may be important for that behavior. 407 Based on data presented in this study and by Weening et al. (24), DbpA/B-deficient

spirochetes can gain initial and sporadic access to the lymphatic system, but we postulate that the inability to maintain access and migrate therein essentially results in exclusion that coincides with the repeatedly documented early dissemination defect. Involvement of the acquired immune response is strongly implicated as only in immunocompetent mice has the dissemination defect been observed (21, 23, 25) and notably, only in immunocompetent mice have we observed

413 exclusion from the lymphatic system.

414	The importance of the acquired immune response, B cell and antibody-mediated
415	immunity in particular, to disease resolution and spirochete reduction in the host is well
416	established (41, 51, 52, 53). How this clears or prevents access of DbpA/B-deficient spirochetes
417	to lymphatics is perplexing because these genetically manipulated spirochetes lack one of the
418	more immunogenic antigens, DbpA (12, 14). Without a vulnerable target, one might expect
419	DbpA/B-deficient spirochetes to escape immune pressure; however, based on our observations,
420	this is incorrect. We showed that the acquired immune response to DbpA/B-deficient spirochetes
421	(by B. burgdorferi-specific serum titer) remains significantly lower than the wild-type immune
422	response to wild type (Fig. 5) despite equilibration of tissue spirochete burdens to a wild-type
423	level (Fig. 4C and 4D). This reduced immune response remains capable of excluding DbpA/B-
424	deficient spirochetes from the lymphatics, at least within the early stages of infection.
425	Several mechanisms that would prevent lymphatic dissemination of DbpA/B-deficient
425 426	Several mechanisms that would prevent lymphatic dissemination of DbpA/B-deficient spirochetes in immunocompetent mice are possible: i) DbpA/B-deficient spirochetes have
426	spirochetes in immunocompetent mice are possible: i) DbpA/B-deficient spirochetes have
426 427	spirochetes in immunocompetent mice are possible: i) DbpA/B-deficient spirochetes have increased vulnerability to antibody clearance within lymphatics, ii) DbpA/B-deficient spirochetes
426 427 428	spirochetes in immunocompetent mice are possible: i) DbpA/B-deficient spirochetes have increased vulnerability to antibody clearance within lymphatics, ii) DbpA/B-deficient spirochetes have increased vulnerability to non-antibody-mediated clearance within lymphatics, or iii)
426 427 428 429	spirochetes in immunocompetent mice are possible: i) DbpA/B-deficient spirochetes have increased vulnerability to antibody clearance within lymphatics, ii) DbpA/B-deficient spirochetes have increased vulnerability to non-antibody-mediated clearance within lymphatics, or iii) lymphatics become inaccessible to DbpA/B-deficient spirochetes after the initial establishment
 426 427 428 429 430 	spirochetes in immunocompetent mice are possible: i) DbpA/B-deficient spirochetes have increased vulnerability to antibody clearance within lymphatics, ii) DbpA/B-deficient spirochetes have increased vulnerability to non-antibody-mediated clearance within lymphatics, or iii) lymphatics become inaccessible to DbpA/B-deficient spirochetes after the initial establishment of infection. Our observations are more consistent with the first two possibilities since
426 427 428 429 430 431	spirochetes in immunocompetent mice are possible: i) DbpA/B-deficient spirochetes have increased vulnerability to antibody clearance within lymphatics, ii) DbpA/B-deficient spirochetes have increased vulnerability to non-antibody-mediated clearance within lymphatics, or iii) lymphatics become inaccessible to DbpA/B-deficient spirochetes after the initial establishment of infection. Our observations are more consistent with the first two possibilities since involvement of the acquired immune response is implicated. If DbpA/B-deficient spirochetes are
 426 427 428 429 430 431 432 	spirochetes in immunocompetent mice are possible: i) DbpA/B-deficient spirochetes have increased vulnerability to antibody clearance within lymphatics, ii) DbpA/B-deficient spirochetes have increased vulnerability to non-antibody-mediated clearance within lymphatics, or iii) lymphatics become inaccessible to DbpA/B-deficient spirochetes after the initial establishment of infection. Our observations are more consistent with the first two possibilities since involvement of the acquired immune response is implicated. If DbpA/B-deficient spirochetes are more vulnerable to antibody clearance, then increased exposure to IgM could account for the

		1
	437	non-antibody-n
	438	cells are remind
+	439	instance, disrup
rìn	440	in diminished I
d ł	441	(57) and dissem
o 0	442	Similarl
СO	443	capability to inc
ah	444	speculative at b
ne	445	significant diffe
s published online ahead of J	446	B31- $\Delta dbpBA$ and
<u>о</u> 0	447	attenuation in d
she	448	burdens are not
sild	449	in B31- $\Delta dbpBA$
Dd	450	genotypes (Fig.
ots	451	predilection for
O	452	for the initially
CO	453	in the earlier tir
	454	wave of directly
\leq	455	Imai, unpublish
	456	In summ

457 dissemination defect that is dependent on the presence of acquired immunity, resolves with 458 chronicity of infection, and appears to reflect restricted migration through the lymphatic system.

prevents the antibody response from targeting spirochetes embedded in collagen (55, 56). As for mediated clearance, recent investigations into invariant natural killer T (iNKT) ders that there are alternate immune mechanisms to consider (57, 58). For ption of the phagocyte (macrophage or Kupffer cell)-iNKT cell interaction results FN-y production, decreased phagocytic clearance, and increased bacterial loads nination (58).

ly, the exact mechanism by which the DbpB/A-deficient spirochetes maintain the cite inflammation despite the absence of a strongly immunogenic antigen is best. Only during the earlier stage of infection (day 28) was there a statistically Perence in severity of arthritis (in C3Hscid mice) or carditis (in C3H mice) between and wild type-inoculated mice. However, in C3H mice, there was a slight disease severity in B31- $\Delta dbpBA$ extending to day 60. Relative tissue spirochete t sufficient to explain the difference in disease severity since attenuation of disease A-inoculated mice extends past the point (day 42) of equilibration between . 4C and 4D). Rapidity of dissemination to and colonization of a site of r inflammation (heart base or tibiotarsus) may be an alternate possible explanation attenuated inflammation associated with B31- $\Delta dbpBA$ spirochetes. For example, me points (<14 days), histologically evident inflammation often lags behind the ly disseminating wild-type spirochetes in immunodeficient C3Hscid mice (D. M. hed). mary, we demonstrated and confirmed that disruption of *dbpBA* results in an early

	459	We confirmed that deficiency in <i>dbpBA</i> does not diminish the ability to infect, to cause disease
	460	or to persist. The counterintuitive dispensability of DbpA and DbpB, immunodominant (19, 12,
	461	20) but potentially protective (19, 12, 59) outer surface proteins that afford the ability to
	462	disseminate in the face of acquired immunity, is only one indication of the complexity of the
rin	463	borrelial pathogen-host relationship.
d 1	464	
0 -0	465	ACKNOWLEDGMENTS
ed	466	We thank Dr. Patricia Rosa for providing the B. burgdorferi B31-A3 strain and Kevin
ah	467	Holden, Beth Todd and Edlin Escobar for technical assistance.
ne	468	This work was supported by NIAID grants R01-AI26815 (SWB), T32-AI06055 and T32
nli	469	OD011147 (DMI), and R01-AI051486 (DSS).
	470	
he	471	REFERENCES
silo	472	1. Brissette CA, Verma A, Bowman A, Cooley AE, Stevenson B. 2009. The Borrelia
Jud	473	burgdorferi outer-surface protein ErpX binds mammalian laminin. Microbiology.
ţs	474	155 :863-872.
0	475	2. Brissette CA, Bykowski T, Cooley AE, Bowman A, Stevenson B. 2009. Borrelia
VCC	476	burgdorferi RevA antigen binds host fibronectin. Infect. Immun. 77:2802-2812.
\leq	477	3. Coburn J, Chege W, Magoun L, Bodary SC, Leong JM. 1999. Characterization of the
IAI Accepts published online ahead of print	478	candidate Borrelia burgdorferi β_3 -chain integrin ligand identified using a phage display
	479	library. Mol. Microbiol. 34:926-940.

candidate *Borrelia burgdorferi* β_3 -chain integrin ligand identified using a phage display library. Mol. Microbiol. 34:926-940. 480 Fischer JR, Parveen N, Magoun L, Leong JM. 2003. Decorin-binding proteins A and 4. B confer distinct mammalian cell type-specific attachment by Borrelia burgdorferi, the 481

21

483 doi:10.1073/pnas.1231043100.

Fischer JR, LeBlanc KT, Leong JM. 2006. Fibronectin binding protein BBK32 of the
 Lyme disease spirochete promotes bacteria attachment to glycosaminoglycans. Infect.

486 Immun. **74**:435-441.

- 487 6. Guo BP, Norris SJ, Rosenberg LC, Höök M. 1995. Adherence of *Borrelia burgdorferi*488 to the proteoglycan decorin. Infect. Immun. 63:3467-3472.
- 489 7. Parveen N, Leong JM. 2000. Identification of a candidate glycosaminoglycan-binding
- 490 adhesin of the Lyme disease spirochete *Borrelia burgdorferi*. Mol. Microbiol. **35**:1220491 1234.
- 492 8. Antonara S, Ristow L, Coburn J. 2011. Adhesion mechanisms of *Borrelia burgdorferi*.
 493 Adv. Exp. Med. Biol. 715:35-49.
- 494 9. Zambrano MC, Beklemisheva AA, Bryksin AV, Newman SA, Cabello FC. 2004.
- 495 *Borrelia burgdorferi* binds to, invades and colonizes native type I collagen lattices.

496 Infect. Immun. **72**:3138-3146.

- 497 10. Antonara S, Chafel RM, LaFrance M, Coburn J. 2007. *Borrelia burgdorferi* adhesins
 498 identified using *in vivo* phage display. Mol. Microbiol. 66:262-276.
- 499 11. Hagman KE, Lahdenne P, Popova TG, Porcella SF, Akins DR, Radolf JD, Norgard
- 500 MV. 1998. Decorin-binding protein of *Borrelia burgdorferi* is encoded within a two-gene
 501 operon and is protective in the murine model of Lyme borreliosis. Infect.
- Feng S, Hodzic E, Stevenson B, Barthold SW. 1998. Humoral immunity to *Borrelia burgdorferi* N40 decorin binding proteins during infection in laboratory mice. Infect.
- 504 Immun. **66**:2827-2835.

505	13.	Guo BP, Brown EL, Dorward DW, Rosenberg LC, Höök M. 1998. Decorin-binding
506		adhesins from Borrelia burgdorferi. Mol. Microbiol. 30:711-723.
507		Immun. 66 :2674-2683.
508	14.	Hanson MS, Cassatt DR, Guo BP, Patel NK, McCarthy MP, Dorward DW, Höök
509		M. 1998. Active and passive immunity against Borrelia burgdorferi decorin binding
510		protein A (DbpA) protects against infection. Infect. Immun. 66:2143-2153.
511	15.	Benoit VM, Fischer JR, Lin Y, Parveen N, Leong JM. 2011. Allelic variation of the
512		Lyme disease spirochete adhesin DbpA influences spirochetal binding to decorin,
513		dermatan sulfate and mammalian cells. Infect. Immun. 79:3501-3509.
514	16.	Roberts WC, Mullikin BA, Lathigra R, Hanson MS. 1998. Molecular analysis of
515		sequence heterogeneity among genes encoding decorin binding proteins A and B of
516		Borrelia burgdorferi sensu lato. Infect. Immun. 66:5275-5285.
517	17.	Salo J, Loimaranta V, Lahdenne P, Viljanen MK, Hytönen J. 2011. Decorin binding
518		by DbpA and B of Borrelia garinii, Borrelia afzelii and Borrelia burgdorferi sensu
519		stricto. J. Infect. Dis. 204:65-73.
520	18.	Hodzic E, Feng S, Freet KJ, Barthold SW. 2003. Borrelia burgdorferi population
521		dynamics and prototype gene expression during infection of immunocompetent and
522		immunodeficient mice. Infect. Immun. 71:5042-5055.
523	19.	Cassatt DR, Patel NK, Ulbrandt ND, Hanson MS. 1998. DbpA, but not OspA, is
524		expressed by Borrelia burgdorferi during spirochetemia and is a target for protective
525		antibodies. Infect. Immun. 66:5379-5387.
526	20.	Tunev SS, Hastey CJ, Hodzic E, Feng S, Barthold SW, Baumgarth N. 2011.
527		Lymphadenopathy during Lyme borreliosis is caused by spirochete migration-induced

528		specific B cell activation. PLoS Pathog. 7:e1002066. doi:10.1371/journal.ppat.1002066.
529	21.	Shi Y, Xu Q, McShan K, Liang FT. 2008. Both decorin-binding proteins A and B are
530		critical for the overall virulence of Borrelia burgdorferi. Infect. Immun. 76:1239-1246.
531	22.	Shi Y, Xu Q, Seemanaplli SV, McShan K, Liang FT. 2008. Common and unique
532		contributions of decorin-binding proteins A and B to the overall virulence of Borrelia
533		burgdorferi. Plos ONE. 3: e3340. doi:10.1371/journal.pone.0003340.
534	23.	Shi Y, Xu Q, Seemanaplli SV, McShan K, Liang FT. 2006. The dbpBA locus of
535		Borrelia burgdorferi is not essential for infection of mice. Infect. Immun. 74:6509-6512.
536	24.	Blevins JS, Hagman KE, Norgard MV. 2008. Assessment of decorin-binding protein A
537		to the infectivity of Borrelia burgdorferi in the murine models of needle and tick
538		infection. BMC Microbiol. 8:82.
539	25.	Weening EH, Parveen N, Trzeciakowski JP, Leong JM, Höök M, Skare JT. 2008.
540		Borrelia burgdorferi lacking DbpBA exhibits an early survival defect during
541		experimental infection. Infect. Immun. 76:5694-5705.
542	26.	Motameni AT, Bates TC, Juncadella IJ, Petty C, Hedrick MN, Anguita J. 2005.
543		Distinct bacterial dissemination and disease outcome in mice subcutaneously infected
544		with Borrelia burgdorferi in the midline of the back and the footpad. FEMS Immunol.
545		Med. Microbiol. 45 :279-284.
546	27.	Shih CM, Pollack RJ, Telford SR, Spielman A. 1992. Delayed dissemination of Lyme
547		disease spirochetes from the site of deposition in the skin of mice. J. Infect. Dis. 4:827-
548		831.
549	28.	Shih CM, Telford SR, Pollack RJ, Spielman A. 1993. Rapid dissemination by the
550		agent of Lyme disease in hosts that permit fulminating infection. Infect. Immun. 61:2396-

- 551 2399. 552 29. Wormser GP. 2006. Hematogenous dissemination in early Lyme disease. Wien. Klin. 553 Wochenschr. 118:634-637. 554 30. Barthold SW, Persing DH, Armstrong AL, Peeples RA. 1991. Kinetics of Borrelia 555 burgdorferi dissemination and evoluation of disease after intradermal inoculation of 556 mice. Am. J. Pathol. 139:263-273. 557 31. Norman UM, Moriarty TJ, Dresser AR, Millen B, Kubes P, Chaconas G. 2008. 558 Molecular mechanisms involved in vascular interactions of the Lyme disease pathogen in 559 a living host. PLoS Pathog. 4:e1000169. doi:10.1371/journal.ppat.1000169. 560 32. Straubinger RK, Straubinger AF, Härter L, Jacobson RH, Chang Y, Summers BA, 561 Erb HN, Appel MJG. 1997. Borrelia burgdorferi migrates into joint capsules and 562 causes up-regulation of interleukin-8 in synovial membranes of dogs experimentally 563 infected with ticks. Infect. Immun. 65:1273-1285. 564 33. Casjens S, Palmer N, van Vugt R, Huang WM, Stevenson B, Rosa P, 565 Lathigra R, Sutton G, Peterson J, Dodson RJ, Haft D, Hickey E, Gwinn M, White 566 O, Fraser CM. 2000. A bacterial genome in flux: the twelve linear and nine circular 567 extrachromosomal DNAs in an infectious isolate of the Lyme disease spirochete Borrelia 568 burgdorferi. Mol. Microbiol. 35:490-516. 569 34. Fraser CM, Casjens S, Huang WM, Sutton GG, Clayton R, Lathigra R, White O, 570 Ketchum KA, Dodson R, Hickey EK, Gwinn M, Dougherty B, Tomb J, Fleischmann 571 RD, Richardson D, Peterson J, Kerlavage AR, Quakenbush J, Salzberg S, Hanson 572 M, van Vugt R, Palmer N, Adams MD, Gocayne J, Weidman J, Utterback T, 573 Watthey L, McDonald L, Artiach P, Bowman C, Garland S, Fujii C, Cotton MD,
- Al Accepts published online ahead of print

574		Horst K, Roberts K, Hatch B, Smith HO, Venter JC. 1997. Genomic sequence of a
575		Lyme disease spirochaete, Borrelia burgdorferi. Nature. 390:580-586.
576	35.	Elias AF, Stewart PE, Grimm D, Caimano MJ, Eggers CH, Tilly K, Bono JL, Akins
577		DR, Radolf JD, Schwan TG, Rosa P. 2002. Clonal polymorphism of Borrelia
578		burgdorferi strain B31 MI: implications for mutagenesis in an infectious strain
579		background. Infect. Immun. 70:2139-2150.
580	36.	Frank KL, Bundle SF, Kresge ME, Eggers CH, Samuels DS. 2003. aadA confers
581		streptomycin-resistance in Borrelia burgdorferi. J. Bacteriol. 185:6723-6727.
582	37.	Samuels DS. 1995. Electrotransformation of the spirochete Borrelia burgdorferi, p. 253-
583		259. In Nickoloff JA (ed), Electroporation Protocols for Microorganisms, vol. 47.
584		Humana Press, Totowa, New Jersey.
585	38.	Barbour AG. 1984. Isolation and cultivation of Lyme disease spirochetes. Yale J. Biol.
586		Med. 57 :521-525.
587	39.	Casjens SR, Mongodin EF, Qui WG, Luft BJ, Schutzer SE, Gilcrease EB, Huang
588		WM, Vujadinovic M, Aron JK, Vargas LC, Freeman S, Radune D, Weidman JF,
589		Dimitrov GI, Khouri HM, Sosa JE, Halpin RA, Dunn JJ, Fraser CM. 2012. Genome
590		stability of Lyme disease spirochetes: comparative genomics of Borrelia burgdorferi
591		plasmids. PLoS ONE. 7:e33280. doi:10.1371/journal.pone.0033280.
592	40.	Armstrong AL, Barthold SW, Persing DH, Beck DS. 1992. Carditis in Lyme disease
593		susceptible and resistant strains of laboratory mice infected with Borrelia burgdorferi.
594		Am. J. Trop. Med. Hyg. 47:249-258.
595	41.	Barthold SW, Hodzic E, Tunev S, Feng S. 2006 Antibody-mediated disease remission
596		in the mouse model of Lyme borreliosis. Infect. Immun. 74:4817-4825.

- 597 42. Barthold SW. 1991. Infectivity of *Borrelia burgdorferi* relative to route of inoculation
 598 and genotype in laboratory mice. J Infect. Dis. 163:419-420.
- 599 43. Barthold SW, de Souza MS, Janotka JL, Smith AL, Persing DH. 1993. Chronic
- 600 Lyme borreliosis in the laboratory mouse. Am. J. Pathol. **143**:959-971.
- 44. Cabello FC, Godfrey HP, Newman SA. Hidden in plain sight: *Borrelia burgdorferi* and
 the extracellular matrix. Trends Microbiol. 15:350-354.
- 45. Parveen N, Cornell KA, Bono JL, Chamberland C, Rosa P, Leong JM. 2006. Bgp, a
- 604 secreted glycosaminoglycan-binding protein of *Borrelia burgdorferi* strain N40, displays
- nucleosidase activity and is not essential for infection of immunodeficient mice. Infect.
 Immun. 74: 3016-3020.
- 607 46. Li X, Liu X, Beck DS, Kantor FS, Fikrig E. 2006. Borrelia burgdorferi lacking
- BBK32, a fibronectin-binding protein, retains full pathogenicity. Infect. Immun. 74:33053313.
- 610 47. Seshu J, Esteve-Gassent MD, Labandeira-Rey M, Kim JH, Trzeciakowski JP, Höök
- 611 M, Skare JT. 2006. Inactivation of the fibronectin-binding adhesion gene *bbk32*
- 612 significantly attenuates the infectivity potential of *Borrelia burgdorferi*. Mol. Microbiol.
 613 **59**:1591-1601.
- 614 48. Coburn J, Cugini C. 2003. Targeted mutation of the outer membrane protein P66
- 615 disrupts attachment of the Lyme disease agent, *Borrelia burgdorferi*, to integrin $\alpha_v \beta_3$.
- 616 Proc. Natl. Acad. Sci. **100**:7301-7306. doi:10.1073/pnas.1131117100.
- 617 49. Ristow LC, Miller HE, Padmore LJ, Chettri R, Salzman N, Caimano MJ, Rosa PA,
- 618 **Coburn J.** 2012. The β_3 -integrin ligand of *Borrelia burgdorferi* is critical for infection of
- 619 mice but not ticks. Mol. Microbiol. **85**:1105-1118.

620	50.	Hastey CJ, Elsner RA, Barthold SW, Baumgarth N. 2012. Delays and diversions
621		mark the development of B cell responses to Borrelia burgdorferi infection. J. Immunol.
622		188 :5612-5622.
623	51.	Barthold SW, deSouza M, Feng S. 1996. Serum-mediated resolution of Lyme arthritis
624		in mice. Lab. Invest. 74:57-67.
625	52.	McKisic MD, Redmond WL, Barthold SW. 2000. T cell-mediated pathology in murine
626		Lyme borreliosis. J. Immunol. 164:6096-6099.
627	53.	Schaible UE, Wallich R, Kramer MD, Nerz G, Stehle T, Museteanu C, Simon MM.
628		1994. Protection against Borrelia burgdorferi infection in SCID mice is conferred by
629		presensitized spleen cells and partially by B- but not T cells alone. Intern. Immun. 6:671-
630		681.
631	54.	Murphy K, Travers P, Walport M. 2008. The humoral immune response. P. 400-401.
632		In Janeway's Immunobiology, 7 th ed. Garland Science, New York, NY.
633	55.	Liang FT, Brown EL, Wang T, Iozzo RV, Fikrig E. 2004. Protective niche for
634		Borrelia burgdorferi to evade humoral immunity. Am. J. Pathol. 165:977-985.
635	56.	Strother KO, Hodzic E, Barthold SW, de Silva AM. 2007. Infection of mice with
636		Lyme disease spirochetes constituitively producing outer surface protein A and B. Infect.
637		Immun. 75 :2786-94.
638	57.	Hawley K, Navasa N, Olson CM Jr, Bates TC, Garg R, Hedrick MN, Conze D,
639		Rincon M, Anguita J. 2012. Macrophage p38 mitogen-activated protein kinase activity
640		regulates invariant natural killer T-cell responses during Borrelia burgdorferi infection. J.
641		Infect. Dis. 206 :283-91.
642	58.	Lee WY, Moriarty TJ, Wong CH, Zhou H, Strieter RM, van Rooijen N, Chaconas

- 643 G, Kubes P. 2010. An intravascular immune response to *Borrelia burgdorferi* involves
 644 Kupffer cells and iNKT cells. Nat. Immunol. 11:295-302.
- 645 59. Xu Q, McShan K, Liang FT. 2008. Essential protective role attributed to the surface
- 646 lipoproteins of *Borrelia burgdorferi* against innate defences. Mol. Microbiol. **69**:15-29.

647 Table 1. The inflammation associated with B31-Δ*dbpBA B. burgdorferi* infection is not significantly different from inflammation

648 associated with wild-type B. burgdorferi infection after day 28 post-inoculation, in either immunodeficient or immunocompetent mice.

				Tibiotarsus			Heartbase	
Mouse strain	Isolate	Day	No. spirochetes ^a	Prevalence ^b	Arthritis severity ^c	No. spirochet es	Prevalence	Carditis severity
T/B cell-	$\Delta dbpBA$	28	2.39E+04	8/9	$0.8 \pm 0.2^{d,e}$	4.10E+04	6/9	0.4 <u>+</u> 0.1
deficient		42	ND	ND	ND	ND	ND	ND
		60	5.55E+03	4/4	2.8 ± 0.3^{f}	9.90E+05	4/4	1.0 ^g
		90	3.19E+04	4/4	3.0 ^h	1.37E+06	4/4	1.0 ⁱ
	wild type	28	3.81E+04	8/8	2.9 ± 0.1^{d}	3.61E+04	8/8	0.8 <u>+</u> 0.1
		42	ND	ND	ND	ND	ND	ND
		60	5.68E+04	4/4	3.0	2.06E+06	4/4	1.0
		90	3.00E+01	4/4	3.0	7.10E+06	4/4	1.0
Immuno-	$\Delta dbpBA$	28	5.69E+02	0/4	0.0 ^e	2.28E+03	0/4	0.0 ^j
competent		42	6.17E+04	2/4	0.4 <u>+</u> 0.2	1.79E+03	1/4	0.1 <u>+</u> 0.1
		60	ND	3/4	0.4 ± 0.1^{f}	9.51E+02	1/4	0.1 <u>+</u> 0.1
		90	1.45E+02	3/4	0.8 ± 0.3^{h}	4.33E+03	1/4	0.1 <u>+</u> 0.1
	wild type	28	2.59E+04	1/5	0.2 <u>+</u> 0.2	3.92E+04	5/5	1.0 ^j

649 More severe inflammation does not absolutely correspond with a significantly greater spirochete tissue burden.

42	1.08E+05	4/5	0.9 <u>+</u> 0.3	6.43E+03	3/4	0.6 <u>+</u> 0.2
60	ND	4/4	1.1 <u>+</u> 0.3	2.27E+03	1/4	0.1 <u>+</u> 0.1
90	3.45E+02	4/4	0.8 <u>+</u> 0.1	2.30E+03	1/4	0.1 ± 0.1

^a No. of spirochetes in respective tissues represented as mean copy no. *flaB* per mg tissue.

652 ^b No. of mice/Total no. of mice.

653 ^c Mean severity + SEM

654 d^h Differences in arthritis severity are statistically significantly different (all *P* values < 0.05) but differences in spirochete tissue

655 burdens are not statistically significant.

 $^{\circ}$ Arthritis severity is significantly different (P < 0.05) and corresponds with significantly greater tissue spirochete burden (P = 0.007).

657 ^f Arthritis severity is significantly different (P < 0.05).

 h Carditis severity is significantly different (P < 0.05) and corresponds with significantly greater tissue spirochete burden (P = 0.0005).

 i Carditis severity is significantly different (P < 0.05) and corresponds with significantly greater tissue spirochete burden (P = 0.002).

 j Carditis severity is significantly different (P < 0.05) and corresponds with significantly greater tissue spirochete burden (P = 0.003).

⁶⁵⁰

661 **Table 2:** Viable, cultivable spirochetes lacking *dbpBA* are recovered from tissue in increasing

		No. positive cul	No. positive	
Isolate	Day	Sub-inoc site	Bladder	mice/total no.
$\Delta dbpBA$	14	2/5	0/5	2/5
	28	4/5	0/5	4/5
	42	4/5	4/5*	4/5
wild type	14	5/5	2/4	5/5
	28	5/5	5/5	5/5
	42	5/5	1/5	5/5

662 frequency over time in immunocompetent C3H mice.

* In 3 of the 4 positive cultures, spirochetes were observed only rarely.

664

665 **Table 3:** Dbp-deficiency prevents the recovery of spirochetes from the lymphatic system in the

666 early stage of infection in immunocompetent laboratory mice. Complementation of dbpBA

667 recovers the wild-type phenotype.

		<i>flaB</i> PCR (culture)*					
Isolate	Day	Popliteal^	Inguinal	Lumbar	Axillary	ExtraLN†	
wild type	0.5	2/4	3/4 (0/4)	4/4	1/4	2/12 (0/4)	
	3	1/3	0/3 (0/3)	0/3	0/3	2/9 (0/4)	
	7 ^{a,x}	4/4	4/4 (4/4)	4/4	4/4	12/12 (4/4)	
	14 ^{b,y}	4/4	4/4 (4/4)	4/4	4/4	12/12 (4/4)	
$\Delta dbpBA$	0.5	4/4	2/4 (0/4)	1/4	1/4	6/12 (0/4)	
	3	0/3	0/3 (0/3)	0/3	0/3	4/9 (0/4)	
	7 ^{a,x}	2/4	1/4 (0/4)	0/4	2/4	3/12 (0/4)	
	14 ^{b,c,y}	1/3	0/3 (0/3)	0/3	0/3	4/9 (0/4)	
dbpBA+	0.5	1/4	2/4 (0/4)	1/4	0/4	4/12 (0/4)	
	3	0/2	0/2 (0/2)	0/2	0/2	2/6 (0/4)	
	7	1/1	1/1 (0/1)	1/1	1/1	2/3 (0/4)	
	14 ^c	3/4	3/4 (3/4)	3/4	3/4	9/12 (1/4)	

668 * No. pos/total

669 ^ Includes both right and left-sided nodes.

- 670 † Extralymphatic tissues collected for PCR included skin, heart base, and tibiotarsus. ExtraLN
- 671 tissues collected for culture included spleen and urinary bladder.
- 672 ^{*a,b*} Prevalence of *flaB* DNA in lymph nodes from $\Delta dbpBA$ infected mice is significantly lower (*P*
- 673 < 0.0001 by Fisher's exact test) than in wild type infected mice.
- ^c Prevalence of *flaB* DNA in lymph nodes from $\Delta dbpBA$ infected mice is significantly lower ($P < \Delta dbpBA$)
- 675 0.0001) than in dbpBA + (complemented mutant) infected mice.
- 676 ^x The number of PCR-positive extralymphatic tissues from $\Delta dbpBA$ infected mice are
- 677 significantly fewer (P < 0.0001) than in wild type infected mice.
- 678 y The number of PCR-positive extralymphatic tissues from $\Delta dbpBA$ infected mice are
- 679 significantly fewer (P = 0.0062) than in wild type infected mice.
- 680
- 681 Table 4: Dbp-deficiency decreases but does not prevent spirochetes from utilizing the lymphatic

Isolate		<i>flaB</i> PCR (culture)				
	Day	Popliteal^	Inguinal	Lumbar	Axillary	ExtraLN†
wild type	0.5	0/4	0/4 (0/4)	0/4	1/4	5/12 (0/4)
	3	2/4	1/4 (1/4)	0/4	1/4	5/12 (0/4)
	7 ^{a,x}	4/4	4/4 (4/4)	4/4	4/4	12/12 (3/4)
	14 ^c	4/4	4/4 (4/4)	4/4	4/4	12/12 (4/4)
∆dbpBA	0.5	4/4	0/4 (4/4)	1/4	4/4	7/12 (0/4)
	3	na	na	na	na	na
	7 ^{a,b,x}	0/4	0/4 (0/4)	2/4	0/4	5/12 (0/4)
	14 ^c	3/3	3/3 (3/3)	3/3	3/3	9/9 (3/3)
dbpBA+	0.5	1/4	0/4 (0/4)	0/4	0/4	4/12 (0/4)
	3	3/4	1/4 (0/4)	0/4	0/4	3/12 (0/4)
	7 ^{b,x}	4/4	3/4 (4/4)	4/4	4/4	12/12 (0/4)
	14^{c}	4/4	4/4 (4/4)	4/4	4/4	12/12 (4/4)

682 system in the early stage of infection in immunodeficient laboratory mice.

683 * No. pos/Total

684 ^ Includes both right and left-sided nodes.

tissues collected for culture included spleen and urinary bladder. ^a Prevalence of *flaB* DNA in lymph nodes from $\Delta dbpBA$ infected mice is significantly lower ($P < \Delta dbpBA$) 0.0001 by Fisher's exact test) than in wild type infected mice. ^b Prevalence of *flaB* DNA in lymph nodes from $\Delta dbpBA$ infected mice is significantly lower (P < D0.0001 by Fisher's exact test) than in *dbpBA*+ infected mice. ^c All lymph nodes from wild type, $\Delta dbpBA$, and dbpBA+(complemented mutant) infected mice are positive for *flaB* DNA and therefore, could not be analyzed by Fisher's exact test. ^x The number of PCR-positive extralymphatic tissues from $\Delta dbpBA$ infected mice is significantly fewer (all P = 0.0046) than in wild type and dbpBA + infected mice.

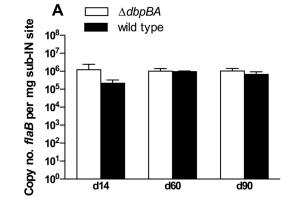
† Extralymphatic tissues collected for PCR included skin, heart base, and tibiotarsus. ExtraLN

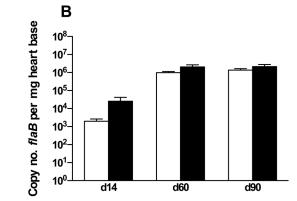
707 FIGURE LEGENDS.

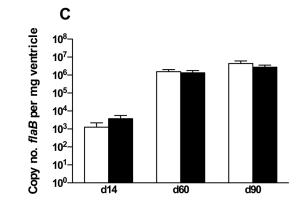
708

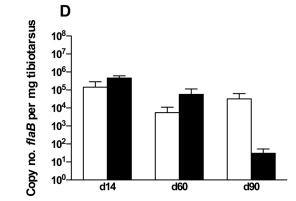
709	FIG. 1. DbpA/B are not essential for dissemination, colonization or persistence in
710	immunodeficient mice. B. burgdorferi flaB DNA per mg tissue weight (mean + SEM) in sub-
711	inoculation site (A), heart base (B), ventricle (C), tibiotarsus (D) and quadriceps muscle (E) from
712	C3H-scid mice inoculated with B31- $\Delta dbpBA$ (white bars) compared to wild-type B31-A3 (black
713	bars) at 14 days, 60 days and 90 days post-inoculation. No significant differences observed.
714	
715	FIG. 2. Early defects in dissemination and colonization, attributed to the disruption of DbpA/B,
716	are not observed in the chronic stages of Lyme borreliosis in immunocompetent mice. B.
717	burgdorferi flaB DNA per mg tissue weight (mean + SEM) in tissues from C3H mice inoculated
718	with B31- $\Delta dbpBA$ (white bars) compared to wild-type B31-A3 (black bars) at 14 days, 28 days,
719	and 42 days post-inoculation (*, all $P \leq 0.034$).
720	
721	FIG. 3. Complementation of the <i>dbpBA</i> -deficient mutant restores a wild-type phenotype. <i>B</i> .
722	burgdorferi flaB DNA per mg tissue weight (mean + SEM) in tissues from C3H mice inoculated
723	with B31- $\Delta dbpBA$ (white bars) compared to the complemented mutant B31- $dbpBA$ + (gray bars)
724	and wild-type B31-A3 (black bars) (*, $P \le 0.03$).
725	
726	FIG. 4. The early dissemination defect is dependent on an acquired immune response. B.
727	<i>burgdorferi flaB</i> DNA per mg tissue weight (mean <u>+</u> SEM) in heart base (A) and tibiotarsus (B)
728	from C3H-scid mice and heart base (C) and tibiotarsus (D) from C3H mice at days 14, 28, 42,

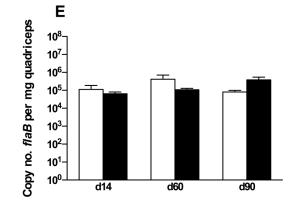
729 60, and 90 post-inoculation. Mice were inoculated with B31- $\Delta dbpBA$ (white circles) or wild-type

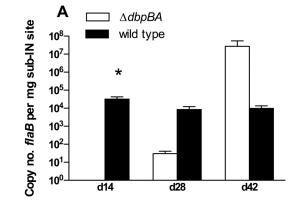

730 B31-A3 (black circles). Each data point represents 4 to 9 mice from 2 separate experiments (*, P

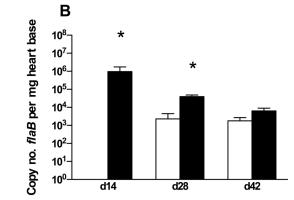

731 ≤ 0.035).

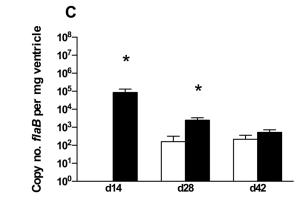

732

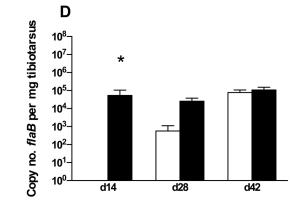

- 733 FIG. 5. Borrelia burgdorferi-specific antibody titers steadily rise over time, regardless of
- borrelial genotype, but remain significantly greater in mice inoculated with wild-type spirochetes
- 735 compared to mice inoculated with DbpA/B-deficient spirochetes. Mice were inoculated with
- 736 B31- $\Delta dbpBA$ (white circles) or wild-type B31-A3 (black circles). Each data point represent mean
- reciprocal dilutions \pm SEM of 4 to 5 mice from 2 separate experiments (*, P = 0.006, P = 0.05, P
- 738 < 0.001, respectively).

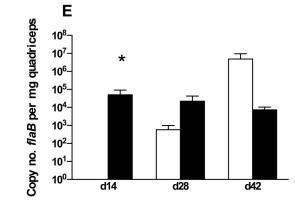

739

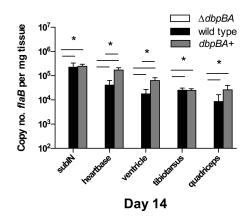


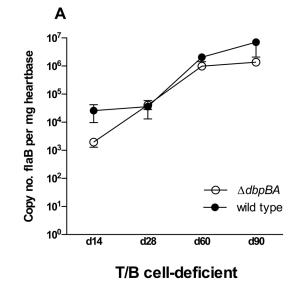


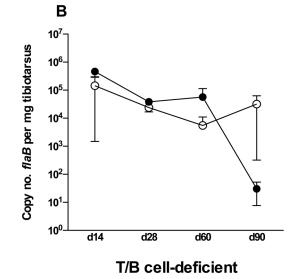


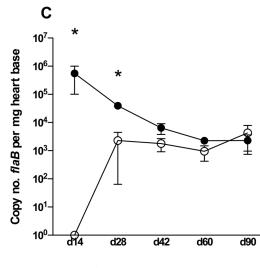


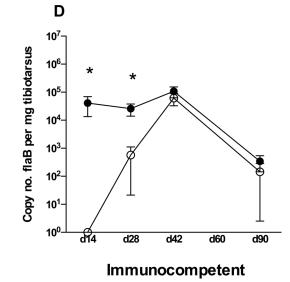


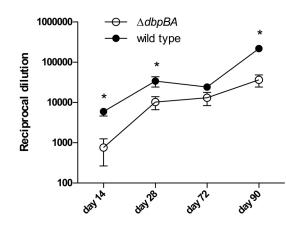












Immunocompetent

Anti-B. burgdorferi serum titer